## MANAGEMENT OF SOLID HEALTHCARE WASTE IN THE FEDERAL CAPITAL TERRITORY: A CASE STUDY OF UNIVERSITY OF ABUJA TEACHING HOSPITAL

BY

## SANNI, OLUKAYODE DAUD

M.TECH/ SSSE/2005/1399

### DEPARTMENT OF GEOGRAPHY

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

FEBRUARY, 2009

i

## MANAGEMENT OF SOLID HEALTHCARE WASTE IN THE FEDERAL CAPITAL TERRITORY: A CASE STUDY OF UNIVERSITY OF ABUJA TEACHING HOSPITAL

BY

### SANNI, OLUKAYODE DAUD

#### M.TECH/ SSSE/2005/1399

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL UNIVERSITY OF TECHNOLOGY MINNA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF TECHNOLOGY (M.TECH) IN GEOGRAPHY WITH ENVIRONMENTAL MANAGEMENT (POLLUTION AND WASTE MANAGEMENT)

FEBRUARY, 2009

### DECLARATION

I, Sanni, Olukayode Daud declare that this dissertation entitled "Management of Solid Healthcare Waste in the Federal Capital Territory: A Case Study of University of Abuja Teaching Hospital" is a record of my own research. It has not been presented any where for higher degree or any other purpose. All sources of information used have been dully acknowledged.

Sanni, Olukayode Daud (M. Tech/SSSE/2005/1399)

Signature & Date

## **CERTIFICATION**

This thesis titled: "MANAGEMENT OF SOLID HEALTHCARE WASTE IN THE FEDERAL CAPITAL TERRITORY: A CASE STUDY OF UNIVERSITY OF ABUJA TEACHING HOSPITAL" by: Sanni, Olukayode Daud (M.Tech/SSSE/2005/1399) meets the regulations governing the award of the degree of M.Tech of Federal University of Technology, Minna and is approved for its contribution to scientific knowledge and literary presentation.

Dr. S.B. Oyeleke Name of Major Supervisor

Signature & Da

Dr. P. S. Akinyeye Name of Head of Department

Signature & Date

blul.

Prof. M. Galadima Name of Dean, School of Science and Science Education

Signature & Date

ML alywa

Signature & Date

Prof. S.L. Lamai Name of Dean, Postgraduate School

# DEDICATION

This project is dedicated to my wife Naseerah and my children Abdu-s-Samad, Aliyyah and Ahmad.

#### ACKNOWLEDGEMENT

I express my sincere gratitude to my supervisor Dr. S. B. Oyeleke for his expert advice and guidance that has made the completion of this work a reality. I also appreciate his patience and understanding which was displayed throughout the course of the work.

My gratitude also goes to the Ethical Review Committee of the University of Abuja Teaching Hospital for giving me the approval to conduct the research in the hospital. I am most grateful to all the Matrons/Heads of the Wards/Units of the Hospital, the Medical Doctors, the Nurses, Ward Cleaners, Auxiliary Staffs and Waste Handlers for their patience and cooperation in responding to the questionnaires and giving useful information that have made the completion of this work possible. I must single out for mention the supervisors and workers of the cleaning company that participated actively in the fieldwork. In this regard, I say special thank you to Mr. Charles (supervisor), Aliyu, Haruna, Peter etc.

My gratitude also goes to Mr. Remi Njoku and Mr. Chris Rwang Pam of the Laboratory department of UATH for putting me through the microbiological analysis. I am indebted to Dr. Muhammed Bamanga of the Central Bank of Nigeria (formerly of Dept. of Statistics, University of Abuja). I am grateful to Marvelous and Divine Olives for doing a marvelous job on the typing of the work.

I am indebted to my friends Segun Bankole, Zakariyau Aliyu, Mike Ogala, Bello Ishaq Mubi, Idris Ozigi, Ahmed Bagudo, Khalid Bala Gano and a host of others for their encouragement and support.

I also enjoyed the unconditional love and support of my dear wife Naseerah; my children Abdu-s-Samad, Aliyyah and Ahmad; and my brothers Olusegun and Olayinka which have contributed immensely to the completion of this work. Above all, I give glory and praises to Allah (SWT) for everything in my life.

#### ABSTRACT

The increase in number of hospitals and variety of medical services have led to rapid increase in the generation rate of potentially infectious solid healthcare waste. A study was conducted on solid healthcare waste management practices in University of Abuja Teaching Hospital. Soil samples were collected from the soil of healthcare waste dumpsite and soil adjacent to the dumpsite and taken to the laboratory for microbiological and physico-chemical analyses. Data were obtained on solid healthcare waste generation during a twelve (12) week field observation. Data were also obtained on solid healthcare waste management practices using two (2) questionnaires designed following the recommendations of SBC/UNEP (2005). The data were analyzed using percentages, proportions and tables of frequency distribution. T-test and chi-square test were carried out through SPSS 10.0 statistical package. A total of 65,873kg of solid healthcare waste was generated at the rate of 2.24kg/bed/day. Results of microbiological tests revealed the presence of some pathogenic micro-organisms in the soil of the healthcare waste dumpsite. The waste was improperly segregated, mixed together at temporary storage and dumped without any pretreatment in an open dumpsite in the hospital premises. Proper and environmentally sound management practices of solid healthcare waste should be instituted in the hospital.

# TABLE OF CONTENTS

# PAGE

| COVER PAGE i |                                 |      |
|--------------|---------------------------------|------|
| TITL         | E PAGE                          | ii   |
| DECI         | LARATION                        | iii  |
| CERT         | TIFICATION                      | iv   |
| DEDI         | ICATION                         | v    |
| ACK          | NOWLEDGEMENT                    | vi   |
| ABST         | TRACT                           | viii |
| TABI         | LE OF CONTENTS                  | ix   |
| LIST         | OF TABLES                       | xiii |
| LIST         | OF FIGURES                      | XV   |
| LIST         | OF PLATES                       | xvi  |
| CHAI         | PTER ONE                        |      |
| 1.0          | Introduction                    | 1    |
| 1.1          | The Study Area                  | 2    |
| 1.2          | Statement of the Problem        | 5    |
| 1.3          | Aim and Objectives              | 6    |
| 1.4          | Justification                   | 7    |
| CHAI         | PTER TWO                        |      |
| 2.0          | Literature Review               | 10   |
| 2.1          | Sources of Healthcare Waste     | 22   |
| 2.2          | Composition of Healthcare Waste | 23   |

| 2.3 | Rate of Waste Generation   2                         |    |  |
|-----|------------------------------------------------------|----|--|
| 2.4 | Handling of Healthcare Waste                         |    |  |
| 2.5 | Treatment/Disposal of Healthcare Waste               |    |  |
| 2.6 | Manpower and Training                                |    |  |
| 2.7 | Pathogens in wastes                                  |    |  |
| 2.8 | Healthcare Waste Managements in Developing Countries |    |  |
| 2.9 | Conducting Healthcare Waste Management Survey        |    |  |
| CHA | PTER THREE                                           |    |  |
| 3.0 | Material and Methods                                 | 58 |  |
| 3.1 | Data Collection                                      | 58 |  |
| 3.2 | Methods of Data Analysis                             | 60 |  |
|     | 3.2.1 Microbial Isolation                            | 60 |  |
| 3.3 | Characterization and Identification of Bacteria      | 61 |  |
|     | 3.3.1 Gram straining                                 | 61 |  |
|     | 3.3.2 Catalase test                                  | 62 |  |
|     | 3.3.3 Coagulase test                                 | 62 |  |
|     | 3.3.4 Oxidase test                                   | 63 |  |
|     | 3.3.5 Motility test                                  | 64 |  |
|     | 3.3.6 Indole                                         | 64 |  |
|     | 3.3.7 Citrate test                                   | 64 |  |
|     | 3.3.8 Urease test                                    | 65 |  |
|     | 3.3.9 Triple sugar iron test                         | 65 |  |
| 3.4 | Identification of Fungi Isolates                     | 65 |  |
|     | 3.4.1 Identification of mould isolates               | 65 |  |
|     | 3.4.2 Mould staining procedure                       | 65 |  |
|     | 3.4.3 Identification of yeast isolates               | 66 |  |
|     | 3.4.4 Yeast staining procedures                      | 66 |  |

|     | 3.4.5 Germ tube test for candida                                | 66   |
|-----|-----------------------------------------------------------------|------|
| 3.5 | Physico-chemical Analysis of Soil                               | 66   |
|     | 3.5.1 Determination of pH of the Soil                           | 66   |
|     | 3.5.2 Determination of Moisture Content of the Soils            | 67   |
| 3.6 | Statistical Analysis                                            | 67   |
| CHA | APTER FOUR                                                      |      |
| 4.0 | Results                                                         | 68   |
| 4.1 | Quantity of Healthcare Waste and Rate of waste Generation       | 68   |
| 4.2 | Identification of Microorganism of Medical Interest in the Soil | s of |
|     | Healthcare Waste and Domestic Waste Dumpsites                   | 71   |
| 4.3 | The pH and Moisture Content of Soil of Healthcare               |      |
|     | Waste Dumpsite and that of the Adjacent Soil                    | .74  |
| 4.4 | Present Method of Management of Solid Healthcare                |      |
|     | Waste in UATH                                                   | 76   |
| 4.5 | Segregation of Wastes                                           | 79   |
| 4.6 | Colour Coding of Containers                                     | 81   |
| 4.7 | Attitude of Staff Towards Health-care Waste,                    |      |
|     | Occupational Protection and Training                            | 81   |
| CHA | APTER FIVE                                                      |      |
| 5.0 | Discussions, Summary, Conclusion and Recommendations            | 87   |
| 5.1 | Discussions                                                     | 87   |
| 5.2 | Summary                                                         | 112  |
| 5.3 | Conclusion                                                      | 113  |
| 5.4 | Recommendations                                                 | 114  |

## LIST OF TABLES

|             | Table                                                   | Page |
|-------------|---------------------------------------------------------|------|
| Table 2.1:  | Classification of Healthcare Waste                      | 12   |
| Table 2.2:  | Recommended Colour-Coding System of                     |      |
| ,           | Healthcare Waste                                        | 35   |
| Table 4.1:  | Estimated Total Quantity of Solid Healthcare Waste (kg) |      |
|             | Generated in UATH in 12 weeks                           | i9   |
| Table 4.2:  | Weekly Relationship in the Quantity of Waste            |      |
|             | Generated in Twelve Weeks                               | 0    |
| Table 4.3:  | The Frequency of Isolation of Bacteria from Soils of    |      |
|             | Healthcare waste dumpsite and domestic waste            |      |
|             | dumpsite                                                |      |
| Table 4.4:  | The Frequency of Isolation of Fungi from the soil of    |      |
|             | Healthcare Waste Dumpsite and Domestic Waste            |      |
|             | Dumpsite                                                | 3    |
| Table 4.5:  | The Moisture Content and pH of Soil Hospital            |      |
|             | Dumpsite and That of Soil Adjacent to the dumpsite 75   | 5    |
| Table 4.6:  | Types of waste segregated from the general waste        |      |
|             | stream in UATH                                          |      |
| Table 4.7:  | Types of Containers/Bags used to Segregate              |      |
|             | Healthcare Waste in UATH 79                             | 9    |
| Table 4.8:  | Personnel that segregate healthcare waste in UATH 80    | C    |
| Table 4.9:  | Timing of segregation of wastes in UATH 80              | 0    |
| Table 4.10: | Colour coding of containers used for waste segregation8 | 1    |
| Table 4.11: | Generation of Healthcare Waste in the Course of Duty 8  | 1    |
| Table 4.12: | Attitude of workers to environmentally sound handling   |      |
|             | of healthcare waste in UATH                             | 2    |

| Table 4.13: | Number of healthcare workers working in wards/units |  |
|-------------|-----------------------------------------------------|--|
|             | where waste segregation is practiced                |  |
| Table 4.14: | Number of healthcare workers that use protective    |  |
|             | clothing in UATH                                    |  |
| Table 4.15: | Number of healthcare workers immunized against      |  |
|             | hepatitis and tetanus in UATH                       |  |
| Table 4.16: | Incidence of needle prick injury amongst healthcare |  |
|             | workers in UATH                                     |  |
| Table 4.17: | Documented cases of needle prick injury amongst     |  |
|             | healthcare worker in UATH                           |  |
| Table 4.18: | Needle prick injuries treated with post-exposure    |  |
|             | prophylaxis in UATH                                 |  |
| Table 4.19: | Healthcare workers that received training on        |  |
|             | healthcare waste management in school               |  |
| Table 4.20: | Healthcare workers that received training on        |  |
|             | healthcare waste management on the job              |  |

## LIST OF FIGURES

| Figure      |                                                        | Page |
|-------------|--------------------------------------------------------|------|
| Figure 2.1: | Figure 2.1: Classification of Healthcare Waste14       |      |
| Figure 4.1: | Daily Rate of Solid Healthcare Waste                   |      |
|             | Generation in UATH                                     | . 70 |
| Figure 4.2: | Weekly Rate of Solid Healthcare Waste                  |      |
|             | Generation in UATH                                     | 71   |
| Figure 4.3: | Figure 4.3: Percentage Appearance of Bacteria Isolates |      |
|             | in both soil                                           | 72   |
| Figure 4.4: | Figure 4.4: Percentage Appearance of Fungi Isolates in |      |
|             | both soils                                             | 74   |
| Figure 4.5: | Attitude to Environmentally Sound Handling             |      |
|             | of Healthcare Waste 8                                  | 2    |

# LIST OF PLATES

| Plate Page                                                    |  |  |
|---------------------------------------------------------------|--|--|
| Plate I: 120 litre temporary waste storage bin used in UATH76 |  |  |
| Plate II: All categories of healthcare waste mixed            |  |  |
| together in the temporary storage bin                         |  |  |
| Plate III: All categories of healthcare waste mixed           |  |  |
| together in the temporary storage bin                         |  |  |
| Plate IV: Open dumping of Healthcare waste in UATH            |  |  |
| Plate V: Open dumping of infectious waste from the laboratory |  |  |
| and safety boxes without pretreatment in UATH 77              |  |  |
| Plate VI: Unused Pyrolitic Incinerator in UATH                |  |  |

#### **CHAPTER ONE**

#### INTRODUCTION

The importance of hospitals to the well being of the human society cannot be over emphasized. In fact they are in the core of the drive to deliver adequate modern healthcare services in the world today. Hospitals are welfare centers, where the sick, ill and injured seek succor to their ailments. There cannot be meaningful and sustainable development without a healthy population. Healthy people have a greater opportunity to fulfill their potentials and contribute to the economy of a country than those in poor health (Rushbrook and Zghondi 2005). This accounts for the importance attached to the establishment of new hospitals and maintenance of the existing ones under the National Economic Empowerment and Development Strategy (NEEDS). "The last century witnessed the rapid mushrooming of hospitals in the public and private sectors, dictated by the needs of expanding population" (Chandra 1999).

In recent years, the number of hospitals in Nigeria has grown astronomically, yet, they are insufficient to meet the demand of the everincreasing population. The various governments at the local, state and national levels have responded by establishing more hospitals ranging in size and complexity, from tertiary health institutions like the teaching and

specialist hospitals, to primary health care centers, like town clinics and dispensaries. These efforts are hardly enough to cope with the enormous demands of the large population, and are therefore being complimented by private hospitals that are seeking to cash in on the gap between government efforts and the unrelenting demand for modern healthcare services.

The increase in the number and size of hospitals, increase in the variety of medical services and increasing use of disposable medical products have contributed to rapid increase in the rate of generation of healthcare waste. The need to manage the waste from the hospitals in a proper and environmentally sound manner cannot be overemphasized, considering its potential as a source of infections to man and his environment.

#### **1.1 THE STUDY AREA**

The study was conducted in the University of Abuja Teaching Hospital (UATH). The hospital is a 350 bed facility that was commissioned in 1992 and was formerly known as Gwagwalada Specialist Hospital. It started as a general hospital run by the Federal Capital Development Authority (FCDA). It was taken over by the Federal Ministry of Health (FMH) and run as a Federal Medical Centre and tertiary health institution in 1993.

Apart from the Federal Capital Territory (FCT) Schools of Nursing and Midwifery that are attached to it, it was the only hospital of the status of Federal Medical Centre that is offering a postgraduate training of specialists in Surgery, Urology, Obstetrics, Gynecology and Paediatrics. In August 2006, the status of the hospital was upgraded to that of a teaching hospital due to the fledging Faculty of Medicine of the University of Abuja. Hence, the new appellation: "University of Abuja Teaching Hospital".

The hospital has 28 vital wards/units through which various health care services are delivered to its clients. However, in order to fully capture the solid healthcare waste emanating from the Laboratory department, its two units that generate healthcare waste the most - namely Immunology Sampling Laboratory and administered room were separate questionnaires. The hospital comprises of thirteen inpatient wards that attend to an average of 925 patients monthly and 15 outpatient units that attend to an average of 8623 patients monthly. There is also a Pharmacy department. For the purpose of this study, questionnaires were administered in the following wards/units of the hospital.

1. Special Care Baby Unit (SCBU)

2. Paediatric/Maternity Outpatient Department (PMOPD)

3. Emergency Paediatric Unit (EPU)

- 4. Paediatric Medical and Surgical Ward
- 5. Male Surgical Ward
- 6. Female Surgical Ward
- 7. Male Medical Ward

8. Female Medical Ward

9. Ante Natal Clinic

10.Labour Ward

11.Post Natal Ward

12. Gynaecology Ward

13. Accidents and Emergency (A&E) Unit

14.Casualty

15.Operating Theatre

16.Intensive Care Unit (ICU)

17.Haemodialysis

18.Dental Clinic

19.Eye Clinic

20.Eye Ward

21.Eye Theatre

22.Ear, Nose and Throat Clinic (ENT)

23.Immunology Laboratory

24.Sampling Room

25. National Programme on Immunization (NPI)

26.Family Planning Unit

27.Special Treatment Clinic (STC)
28.General Out-patient Department (GOPD)
29.Surgical Out-patient Department (SOPD)
30.Radiology Unit
31.Physiotherapy
32.Pharmacy Department

#### **1.2 STATEMENT OF THE PROBLEM**

Management of solid healthcare waste in Nigeria, like all other wastes, continues to pose serious challenge to successive administrations in the country. Manyele and Anicetus (2006) identified healthcare waste as being second only to radioactive waste in terms of potential hazards to man and his environment, yet it is not handled in a proper and environmentally sound manner in Nigeria. The management of healthcare waste from the point of generation to final disposal in Nigeria falls short of internationally acceptable minimum standard. The Federal Ministry of Health (FMH) in its "National Policy on Injection Safety and Healthcare Management" (2007)observed that "the practices of Waste indiscriminate dumping, burning and burying (of healthcare waste) are prevalent in a significant number of health facilities". This state of affairs does not augur well for the well being of Nigerians and the environment.

It also runs contrary to the "precautionary" and "duty of care" principles of the Stockholm and Basel Conventions to which Nigeria is a signatory. Similar situations have been reported in many developing countries and it was attributed to paucity of financial and technical resources; and trained manpower to deal with the problem of healthcare waste management. Also most of these countries lack the requisite legislations and policies to regulate healthcare waste management. Although, there is a national policy on environment and solid waste management in Nigeria, which touches on medical waste management, but the national policy on healthcare waste management is yet to be given a legislative backing. Therefore healthcare waste management is not given the level of attention it deserves in the country.

#### **1.3 AIM AND OBJECTIVES**

The aim of the thesis is to assess the solid waste management practices in UATH as a case study of the solid healthcare waste management practice in Nigeria. The objectives to be employed include:

- i. To evaluate the quantity of solid healthcare waste generated and the rate of generation in UATH.
- To evaluate the microorganisms of medical interest present in the soil of UATH healthcare waste dumpsite.

- iii. To examine the physicochemical characteristics of the soil of UATH healthcare waste dumpsite.
- iv. To examine the present method of management of solid healthcare waste in UATH.
- v. To examine whether proper segregation of solid healthcare waste is practiced in UATH.
- vi. To examine whether proper and uniform colour coding of containers for waste segregation is practiced in UATH.
- vii. To examine the attitude of UATH staff (central to healthcare waste management) towards proper and environmentally sound handling of healthcare waste, occupational protection and training received on healthcare waste management.

#### **1.4 JUSTIFICATION**

The United Nations Conference on Environment and Development (UNCED 1992) in chapter 21 of its Agenda 21 observed that environmentally sound management of wastes was among the environmental issues of major concern in maintaining the quality of Earth's environment and especially in achieving environmentally sustainable development in countries. It went further to say that effective control of the generation, storage, treatment, recycling and reuse,

transport, recovery and disposal of hazardous waste is of paramount importance for proper health, environmental protection and natural resource management and sustainable development. It therefore becomes imperative for the University of Abuja Teaching Hospital to handle its healthcare waste in a proper and environmentally sound manner for it to deliver sustainable healthcare services to the Nigerian public. There is no gain in curing people of their primary illnesses only for them and their environment to be exposed to threats of re-infection by poorly managed healthcare waste.

As a step towards instituting a proper and environmentally sound management of healthcare waste in the hospital, this research will carry out a scientific survey of the present healthcare waste management practice in the hospital. The survey will provide useful information such as the quantity of solid healthcare waste generated in the hospital, the rate of generation and infection potential of the waste. It will also provide information on the level of understanding of the problems associated with healthcare waste management, occupational protection and training on healthcare waste management amongst healthcare workers in the hospital.

This information will be useful to the government and hospital management in formulating appropriate policies and plans to effectively deal with the problem of solid healthcare waste management in the hospital. This research would also contribute to addressing the problem of paucity of reliable data on generation rate of hospital waste in Nigeria (Coker *et al* 1999), thereby contributing to knowledge.

#### **CHAPTER TWO**

#### LITERATURE REVIEW

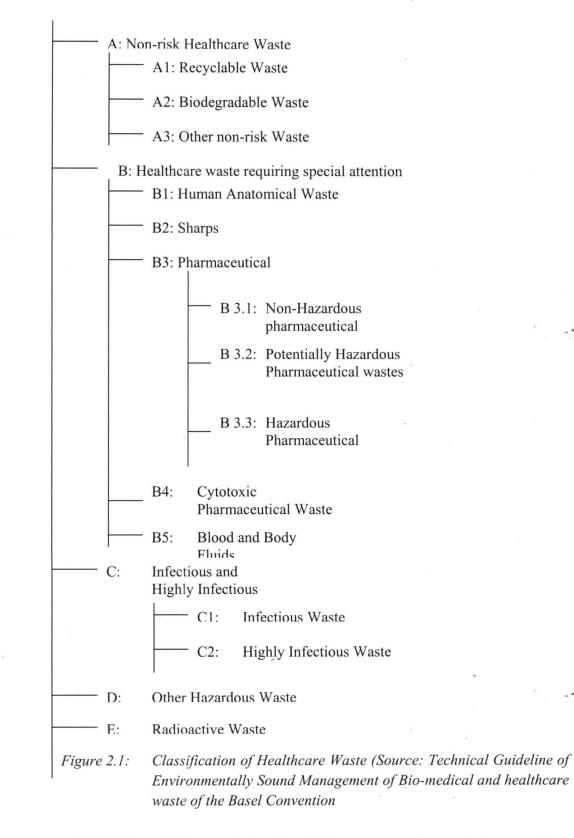
United States Environmental Protection Agency (US EPA) defined medical waste as "all waste materials generated at healthcare facilities such as hospitals, clinics, physician's offices, dental practices, blood banks and veterinary hospitals/clinics as well as medical research facilities and laboratories (<u>http://www.epa.gov/eposwer/other/ medical 2007</u>). But the US Medical Waste Tracking Act (MWTA) of 1988 defined medical waste as "any solid waste that is generated in the diagnosis, treatment or immunization of human beings or animals, in research pertaining thereto or in the production or testing of biologicals (<u>http://www.epa.gov/epaoswer/other/ medical 2007</u>).

A critical look will reveal the disparity in the approaches of these two definitions of the same origin. The MWTA approach is a legislative one and attempts to be explicit on the kind of activities that could lead to the generation of healthcare waste. EPA, the US environmental regulatory body, approaches its own definition from the point of view of an environmental watchdog, by focusing on the locations where such wastes are generated.

Pruss et al (1999) defined healthcare waste as including "all wastes generated by healthcare establishments, research facilities and laboratories. In addition it includes the waste originating from minor or scattered sources – such as that produced in the course of healthcare undertaken in the home (dialysis, insulin injections etc). The definition by Pruss *et al* (1999) is the one adopted and widely used by the World Health Organization (WHO) in its publications on healthcare waste; probably because it is more encompassing and takes into cognizance wastes generated outside the formal medical setting. It is therefore considered suitable to the Nigerian environment where a lot of healthcare procedures take place outside the orthodox medical practice.

Two major fundamental concepts have been observed concerning the classification of healthcare waste. The WHO prefers a wide classification from the point of view of public health and in line with the "precautionary principle". This classification in principle covers all wastes contaminated with blood and other body fluid, but excluded all theoretical pathways for infectious disease. Pruss *et al* (1999) classification shown in Table 2.1 is widely used in WHO's publications.

| Table 2.1 Cl | assification of | <sup>c</sup> Healthcare waste |
|--------------|-----------------|-------------------------------|
|--------------|-----------------|-------------------------------|


| ASTE CATEGORY                                                                                                           | DESCRIPTION AND EXAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fectious Waste                                                                                                          | Waste suspected to contain pathogens e.g. laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | cultures; waste from isolation wards; tissues (swabs),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         | materials or equipment that have been in contact with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                         | infected patients; excreta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| thological Waste                                                                                                        | Human tissues or fluids e.g. body parts, blood and other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | body fluids, fetuses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| arps                                                                                                                    | Sharp wastes e.g. needles, infusion sets; scalpels;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         | knives; blades broken glass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| armaceutical Waste                                                                                                      | Waste containing pharmaceuticals that are expired or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | no longer needed; items contaminated by or containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                         | pharmaceuticals (bottles, boxes).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| enotoxic Waste                                                                                                          | Waste containing substance with genotoxic properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | e.g. waste containing cytostatic drugs (often used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                         | cancer therapy), genotoxic chemicals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| emical Waste                                                                                                            | Waste containing chemical substances e.g. laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | reagents; film developer; disinfectants that are expired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | or no longer needed, solvents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aste with high content of                                                                                               | Batteries, broken thermometers, blood pressure gauges,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| avy metals                                                                                                              | etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| essurized containers                                                                                                    | Gas cylinders, gas cartridges; aerosol cans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dioactive Wastes                                                                                                        | Waste containing radioactive substances e.g. unused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         | liquid from radiotherapy or laboratory research;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | contaminated glassware, packages, or absorbent paper;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                         | urine and excreta from patients treated or tested with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         | unsealed radio nuclides; sealed sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| armaceutical Waste<br>enotoxic Waste<br>emical Waste<br>aste with high content of<br>avy metals<br>essurized containers | Sharp wastes e.g. needles, infusion sets; scalpe<br>knives; blades broken glass.<br>Waste containing pharmaceuticals that are expired<br>no longer needed; items contaminated by or containing<br>pharmaceuticals (bottles, boxes).<br>Waste containing substance with genotoxic propert<br>e.g. waste containing cytostatic drugs (often used<br>cancer therapy), genotoxic chemicals.<br>Waste containing chemical substances e.g. laborator<br>reagents; film developer; disinfectants that are expire<br>or no longer needed, solvents.<br>Batteries, broken thermometers, blood pressure gauge<br>etc.<br>Gas cylinders, gas cartridges; aerosol cans.<br>Waste containing radioactive substances e.g. unus<br>liquid from radiotherapy or laboratory researc<br>contaminated glassware, packages, or absorbent pap<br>urine and excreta from patients treated or tested w |

Source: Pruss *et al* (1999)

Although Pruss *et al* (1999) recognized the fact that between 75%-90% of the waste produced by healthcare providers is non-risk or general waste.

But their classification is from public health perspective; little consideration is given to general waste which is just like domestic waste, and is considered harmless. The focus is therefore the remaining 10-25% of healthcare waste, which is regarded as hazardous and requires special attention.

The United Nations Environmental Programme (UNEP) on the other hand focuses on a more pragmatic and cost effective management of healthcare waste. Its approach in classification is therefore narrower. The implication is that the desired high safety cannot be ensured for the whole disposal process, especially since it encourages the disposal of general waste from hospitals along with municipal solid waste. Figure 1.1 depicts the classification of healthcare waste by the Secretariat of the Basel Convention (SBC/UNEP 2002) in their Technical Guidelines on Environmentally Sound Management of Bio-medical and Healthcare waste.



The SBC/UNEP guideline explains the different categories and classes of healthcare wastes thus:

## A2. Biodegradable Healthcare Waste

This category of waste comprises of left over food, garden waste etc that can be composted.

#### A3 Other Non-risk Waste

This category includes all the non-risk waste that do not belong to categories A1 and A2.

#### **B.** Biomedical and Healthcare Waste requiring special attention.

#### **B1. Human Anatomical Waste**

This category comprises of non-infectious human body parts, organs and tissues and blood bags. Examples are tissue waste, removed organs, amputated parts, placentas etc.

#### **B2.** Waste Sharps

Sharps are all objects and materials that are closely linked with healthcare activities and pose a potential risk of injury and infection due to their puncture ability. Typical examples are needles, broken glassware, ampoules, scalpel, blades, lancets, vials without content etc.

#### **B3** Pharmaceutical Waste

This includes a multitude of active ingredients and types of preparations, ranging from teas through heavy metal containing disinfectants to highly specific medicines. This category consists of expired pharmaceuticals,

and pharmaceuticals that are unusable for other reasons (e.g. call back campaign). Pharmaceuticals are divided into three classes and their management follows differentiated and class-specific approach. Daughton and Ternes (1999) are of the view that pharmaceuticals and active ingredients in personal care products have received comparatively little attention as potential environmental pollutants than toxic/carcinogenic pesticides and industrial intermediate chemicals.

#### **B3.1.** Non-hazardous Pharmaceutical Waste

This class includes pharmaceuticals such as chamomile tea or cough syrup that pose no hazard during collection, intermediate storage and management. They are not considered hazardous waste and should be managed jointly with municipal waste.

#### **B3.2.** Potentially Hazardous Pharmaceutical Waste

This class embraces pharmaceuticals that pose a potential hazard when used improperly by unauthorized person. They are considered as hazardous waste and their management must take place in an appropriate waste disposal facility.

#### **B3.3. Hazardous Pharmaceutical Waste**

This class comprises heavy metal containing and unidentifiable pharmaceuticals as well as heavy metal containing disinfectants. They are regarded as hazardous wastes and their management must take place in appropriate waste disposal facility.

#### **B4.** Cytotoxic Pharmaceutical Waste

These are pharmaceutical wastes arising from the use, manufacture and preparation of pharmaceuticals with cytotoxic (antineeoplastic) effect. The potential health risk to persons who handle cytotoxic pharmaceuticals results above all, from the mutagenic, carcinogenic and tetratogenic properties of these substances (SBC/UNEP and WHO 2002). Examples of such wastes are discernible liquid pharmaceutical and materials proven be visibly contaminated by cytotoxic to pharmaceuticals. Examples of cytotoxic drugs are azathioprine, clorambucil, chlornaphazine, melphlan etc. Urine, faeces and vomit from patients, which may contain potentially hazardous amounts of the administered cytotoxic drug or of their metabolites and which should be considered genotoxic for at least 48hours and sometimes up to 1 week after drug administration (Pruss et al 1999). These wastes pose a hazard and the measure to be taken must also include those required by occupational health and safety provisions.

#### **B5. Blood and Body fluid Waste**

This category includes wastes that are not categorized as infectious waste but are contaminated with human or animal blood, secretions and

excretions. It is safe to assume that these wastes might be contaminated with pathogens. Examples are dressing material, swabs, syringes without needle, infusion equipment without spike, bandages etc.

#### C. Infectious and Highly Infectious Waste

Infectious waste is suspected to contain pathogens (bacteria, viruses, parasites or fungi) in sufficient concentration and quantity to cause disease in susceptible hosts (Pruss *et al* 1999). Special requirements regarding the management of infectious wastes must be imposed whenever waste is known or expected to be contaminated by causative agents of diseases. Especially when this contamination gives cause for concern that the disease might spread. Wastes in this category are grouped into two depending on the degree of expected infectiousness.

#### **C1 Infectious Waste**

This class comprises all biomedical and healthcare waste known or clinically assessed by a medical practitioner or veterinary surgeon to have the potential of transmitting infectious agents to humans and animals. Examples of waste in this class include blood from patient contaminated with HIV, Viral hepatitis, brucellosis, Q fever. Faeces from patients infected with typhoid fever, enteritis, *Cholera*, respiratory tract secretions from patients infected with TB, anthrax, rabies, poliomyelitis.

#### **C2. Highly Infectious Waste**

This class includes all microbiological cultures in which a multiplication of pathogens of any kind has occurred. They are generated in institutes working in the fields of hygiene, microbiology and virology as well as in medical laboratories, medical practices and similar establishments. It also includes laboratory waste cultures and stocks with any viable biological agents artificially cultivated to significantly elevated numbers, including dishes and devices used to transfer, inoculate and mix cultures of infectious agents and infected animals from laboratories. Typical examples are sputum cultures of TB laboratories, contaminated blood clots and glass-ware material generated in the laboratories and other highly concentrated microbiological cultures carried out in medical analysis laboratories.

#### **D.** Other Hazardous Waste

This category includes gaseous, liquid and solid chemicals, waste with high content of heavy metals such as batteries, pressurized containers etc. They are not exclusive to the healthcare sector. Examples are thermometers, blood pressure gauges, photographic fixing and developing solutions in X-ray department, halogenated or nonhalogenated solvents, organic and inorganic chemicals.

### E. Radioactive Healthcare Waste

Radioactive waste includes liquids, gases, and solids contaminated with radio-nuclides whose ionizing radiations have genotoxic effects. X-ray, gamma ray, Alpha ray and Beta ray are the ionizing radiation of medical interest. Examples are solid, liquid and gaseous waste contaminated with radio-nuclides generated from in-vitro analysis of body tissue and fluid, in-vivo body organ imaging and tumor localization; and investigative and therapeutic procedures.

In the above classification attempt has been made to bring the environmental and pragmatic approach of UNEP together with the public health safety and the precautionary approach of the WHO. Many authors that have written on healthcare waste have used different approach in defining and classifying it. Definitions and criteria for the determination of infectious substance represent an area where international harmonization is of relevance (SBC/UNEP 2002). This is of paramount importance in the quest for standardized quantification, characterization and hence uniform and consistent codes of environmentally sound management of healthcare waste on a global basis. The need for consensus is underscored by the collaboration of major multilateral bodies, such as WHO and UNEP, to strike a balance between public principle) health safety (precautionary the environmental and

protectionist approach. This has led to the issuance of joint guidance manuals like "Preparation of National Healthcare waste management in Sub-Saharan countries" by SBC/UNEP and WHO.

#### **2.1 SOURCES OF HEALTHCARE WASTE**

Pruss *et al* (1999) identified two different sources form which healthcare wastes are generated as:

- Major sources (a) Hospitals e.g. university hospitals, general hospitals, district hospital (b) Other healthcare establishments e.g. emergency medical care services, healthcare centers and dispensaries, obstetric and maternity clinics, outpatient clinics, dialysis centers etc. (c) related laboratories and research e.g. medical and biomedical laboratories, biotechnology laboratories and institutions, medical research centers (d) mortuary and autopsy centers (e) animal research and testing facilities (f) blood banks and blood collection services and (g) nursing homes for the elderly.
- Minor sources are (a) small healthcare establishments e.g.
   physician offices, dental clinics and acupuncturist (b) specialized
   healthcare establishments and institutions with low waste
   generation e.g. convalescent nursing homes, psychiatric hospital,
   institutions for disabled persons etc.

Although minor sources may produces some healthcare waste in categories similar to hospital waste, their composition will be different (Pruss *et al* 1999). They rarely produce radioactive or cytotoxic waste, human body parts are generally not included and sharps consist mainly of hypodermic needles. (Pruss *et al* 1999)

## **2.2 COMPOSITION OF HEALTHCARE WASTE**

Most of the waste produced in healthcare facilities is non-risk or general waste, which are comparable to domestic waste in nature. Only a small fraction between 10-25%, of the waste is considered hazardous (Pruss et al 1999; Chandra 1999; Coker et al 1999; Suwannee 2002). According to WHO (http://www.who.int 2007) sharps waste, highly infectious waste, genotoxic/cytotoxic waste and radioactive waste are considered hazardous and require special attention. In the study by Bassey et al (2006) in FCT, Nigeria, the proportion of the infectious waste as a percentage of total generation rate (in kg/bed/day) ranged from 0.7% in National Institute of Pharmaceutical Research and Development (NIPRD) to 25% in International Diagnostic Center (IDC), the only privately owned facility in their study. General Waste had a mean percentage of 73.5%, infectious waste 19.5%, sharps 4.5% and paper/cellulose 2.5%. The studies by Chandra (1999) and Suwannee (2002) follow this trend too. Chandra (1999) observed that hazardous waste was 15% while non-

hazardous waste was 85%. He further subdivided hazardous waste into (a) hazardous but non-infective (5%) hazardous and infective (10%). It was also observed that the composition by weight was made up of plastic 14%, combustible dry cellulostic solid 45%, combustible wet cellulostic solid 18% and non-combustible waste 20%. To estimate the composition of the wastes Suwannee (2002) sorted the wastes from each hospital in his study into three main groups namely general, medical and hazardous. Medical waste was further sorted into needles, gloves, drain tube, cotton gauze, napkin, plastic syringe, and swab and body parts. It was observed in the study that average of general waste in hospitals was 85% of the total waste. A high proportion of it was generated from organic material from food preparation and remnant. The others were paper, plastic, bottle etc. The average of medical waste in hospital and clinics was 10.6% of the total waste, with the maximum being generated from emergency department and a small portion by wards, laboratories etc. In terms of weight (kg/bed/day), gloves (19.33%) and needles (18.19%) were the most prevalent medical waste. The least was swab (0.15%). The average of hazardous waste in hospitals was 0.4% of the total, the highest being from the X-ray laboratory. Longe and Williams (2006), however observed the percentage composition of healthcare waste in four Lagos hospitals – including a teaching and specialist hospital to range between 50% and 66% of the total waste stream for general waste, between 19%

and 37% of the total waste stream for infectious waste; sharps constituted between 7% and 10% while chemical waste constituted only 3% of the total waste stream.

The amount of infectious waste generated by the medical facilities as a percentage of their total waste stream varies widely depending on the type of healthcare facility, the definition of infectious waste used, and the standard operating procedure specified by it for designating and separating waste types (<u>http://www.epa.gov/epaoswer/other/medical/</u>2007).

#### **2.3 RATE OF WASTE GENERATION**

Hospital waste generation differs within and between countries (Pruss *et al* 1999). Pruss *et al* (1999) also observed that waste generation depends on numerous factors such as established waste management methods, type of health care establishment, hospital specialization, proportion of reusable items employed in healthcare and proportion of patients treated on a day-care basis. Hamoda *et al* (2005) reported that the generation rates were related to important factors such as number of patients, number of beds and the type of activities conducted in the hospital. Healthcare waste generation is usually lower in middle- and low- income countries than in high-income countries (Pruss *et al* 1999). A comparison of healthcare waste generation by Halbwachs (1994) revealed that high-

income countries generate more healthcare waste and hazardous waste more than middle- and low-income countries. Low-income countries generate the least amount of healthcare waste. On a regional basis, generation rate ranges from 7-10 kg/bed/day in North America to 1.3-3kg/bed/day in Eastern Mediterranean (Johannessen 1997). Although Africa was not included in this report, it is however, apparent that, the trend follows that reported by Halbwachs (1994) for high-, middle-, and low-income countries. This is attributable to the level of affluence which enables people in high-income countries (represented by North America) to afford more medical goods and services, especially disposables than people in low-income countries (represented by Eastern Mediterranean). Chandra (1999) gave the hospital waste generated (in kg/bed/day) in the United States, Spain, United Kingdom, France and India as 4.5, 3.0, 2.5, 2.5 and 1.5 respectively. Data compiled by Economopoulos (1993) in high-income countries reveal that daily waste generation according to source size are 4.1-8.7 kg/bed, 2.1-4.2 kg/bed, 0.5-1.8kg/bed and 0.05-0.2 kg/bed for university hospital, general hospital, district hospital and primary healthcare centre respectively.

The waste generation rate also depends on the activities in hospital or ward/unit. Coker *et al* (1999) observed a significant disparity in the average waste generation per head per day of the three hospitals studied.

In one hospital, it ranged from 3.84 g/h/day at the injection room and 632.5g/h/day at the Labour ward. In another hospital the average waste generation per head per day ranged from 3.84g/head/day at the child health clinic to 229g/head/day at the neonatal ward. At the third hospital, it ranged from 2.4 g/head/day at the eye clinic to 567.9 g/head/day at the maternity unit. Coker et al (1999) in rationalizing the observed disparity in the waste generation rate per head per day in the hospitals in Ibadan, Nigeria suggested that, "the considerably minute quantity of solid hospital waste generated at the eye clinic is not surprising given the fact that the kind of therapy usually prescribed there do not lead to generation of much wastes. Also, the majority of the patients attending the injection room were out-patients, generating typically light-weight wastes such as needles. This is unlike relatively heavy and moisturized wastes (e.g. soaked swabs, gauze, pads and disposable napkins) that were generated by the largely in-patients at the labour and neonatal wards. This is similar to the result obtained in the FCT by Bassey et al (2006). The waste generation rate per bed per day ranged from 0.08kg/bed/day in the Ear, Nose and Throat (ENT) unit to 3.11kg/bed/day in the post natal unit in one hospital. In the second hospital it ranged from 0.10kg/bed/day in the antenatal unit to 4.08kg/bed/day in the labour ward. In the third, it ranged from 0.23kg/bed/day in the out-patient unit to 5.67kg/bed/day in the labour unit. The story in not different in the fourth hospital where, a range

of 0.13kg/head/day in the out-patient unit to 3.03kg/bed/day in the labour ward was reported. Coker *et al* (1999) observed that the average generation rate per head per day was higher in the private hospital (186.9g/head/day) than the two public hospitals (97.5 and 167 g/head/day) in their study. They attributed this disparity to the fact that the private hospitals are generally patronized by the middle- and high-class citizens who can afford the more exorbitant charges. As opposed to the patrons of the public hospitals who are less affluent and are more prone to reusing materials from their previous treatments. This is similar to observations made by Halbwachs (1994) and Pruss *et al* (1999) for low-, middle- and high-income countries.

From the result of the study in FCT by Bassey *et al* (2006), it is apparent that the government hospitals – National hospital, Garki General Hospital and Wuse General Hospital recorded generation rates per bed per day of 3.59kg, 2.86kg and 2.50kg respectively. These figures are much higher than the 1.98kg recorded by International Diagnostic Centre, the only private hospital in the study. This is not unconnected to the fact that, as observed by Bassey *et al* (2006), the FCT is predominantly made up of civil servants, who may have preference for the public hospitals that charge lower than the private hospitals. A similar trend was reported by Suwannee (2002) that the daily hospital waste generation (kg/bed) from general hospital was higher than private hospital in Thailand. Thailand,

like Nigeria is a developing country and for economic reasons, the government hospitals may enjoy more patronage than the private hospitals. Suwannee (2002) observed that daily waste generation (kg/bed) in hospitals was 4-6 times higher than clinics in all categories of waste and concluded that, the higher the number of patients the greater the waste generation. The higher average generation rate per day for hazardous waste was, however, recorded in the private hospital in the FCT by Bassey *et al* (2002). This underscores the importance of affluence as a determining factor in the generation rate of hazardous waste. This appears to agree with Halbwachs (1994) observation that high-income countries generate more healthcare and hazardous waste than middle- and low-income countries.

Suwannee (2002) also observed that the source size affects the daily hospital waste generation. It was observed that the daily waste generation (kg/bed) was higher in the small hospitals than the larger ones. Although, no reason was proffered for this trend, but it may be that the smaller hospitals enjoy more patronage than the larger ones in Thailand. Coker *et al* (1999) reported an average waste generation rate of about 150g/head/day for Ibadan, Nigeria based on the measurement of the three hospitals in their study. Whereas Bassey *et al* (2006) reported an average waste generation rate of 2.782kg/bed/day for FCT based on the

measurement of the five medical facilities in their study. Suwannee (2002)observed an average daily waste generation rate of 2.048kg/bed/day for hospital and 0.366kg/bed/day for clinics in a district of Thailand. The average generation rate (kg/bed/day) reported by Bassey et al (2006) is somewhat similar to that reported for hospitals in Thailand by Suwannee (2002). But it is difficult to compare the result of Coker et al (1999) because they used a different unit, g/head/day, to quantify the average generation rate. It should be noted, however, that kg/bed/day is the unit recommended in the joint guidance manual on the "Preparation of National Healthcare Waste Management Plans in Sub-Saharan countries" by UNEP/Secretariat of the Basel Convention and WHO. In Lagos, Longe and Williams observed that, though most hospitals had no record of waste being generated, it is easily expressed in volume as most storage facilities are in liters aside those at depot centers. They evaluated and presented all data on a weight basis. They observed an average generation rate of 0.573kg/bed/day of medical waste stream in the four hospitals in their study. Hamoda et al (2005) observed that minimal quantities of waste were collected in the weekends in Kuwait.

## 2.4 HANDLING OF HEALTHCARE WASTE

The United Nations Conference on the Environment and Development (UNCED) in its Agenda 21 recommends measures for the

environmentally sound management of waste, which may be summarized as follows;

- Prevention and minimization of waste production.
- Reusing and recycling the waste as much as possible.
- Treat waste by safe and environmentally sound methods.
- Dispose of final residues by landfill in confined and carefully designed sites.

The institution of a waste management plan is the best way of improving environmental performance in waste management.

The Conference of the Parties to the Basel Convention on the Control of Trans-boundary Movements of Hazardous Wastes and their Disposal at its sixth meeting in Geneva in December 2002, recommended that, such management plan be based on a system that will ensure the following.

- Availability of auditable and verifiable documentation to demonstrate that operations are taking place as required.
- Assist with the provision of quality data and information on which a state-of-the environment report can be prepared.

"A prerequisite for developing or updating such a plan is adequate characterization and analysis of the existing wastes stream and a detailed assessment of the existing waste management practices" (SBC/UNEP 2002). This initial process is commonly referred to as a waste audit (SBC/UNEP 2002, Chitnis *et al* 2005). Surveys on the generation of waste will be the basis for identifying opportunities and settings targets for waste minimization, reuse and recycling, and cost reduction (Pruss *et al* 1999). SBC/UNEP and WHO in the Guidance Manual suggested that, the healthcare wastes that are generated within a healthcare facility should always follow an appropriate and well identified stream from their point of generation until their final disposal. This stream is the minimum observance

for healthcare waste management and is composed of several steps that include waste minimization and recycling, segregation, recommended colour coding of containers, waste storage, on-site transportation of waste, off-site transportation of waste and disposal.

## a. Minimization and Recycling of Healthcare Waste

One of the basic principles of the Basel Convention requires that each party shall take the appropriate measures to ensure that the generation of hazardous wastes within it is reduced to a minimum and adequate disposal facilities for the environmentally sound management of hazardous wastes and other wastes are available. Effective management of medical wastes incorporates waste reduction and recycling where appropriate (http://www.epa.gov/epaoswer/other/medical/ 2007). Efforts

aimed at reducing waste should be focused on the two fundamental characteristics of waste which are toxicity (eliminating or finding benign substitutes for substances that pose risks when they are discarded) and quantity (changing the design or use of products to minimize the amount of waste generated when they are discarded) (http://www.epa.gov/epaoswer/other/medical/ 2007). Waste could be minimized or reduced, if conscious efforts and deliberate plans are put in place to reduce the quantity and toxicity of discarded products.

The use of disposables in healthcare has increased significantly in the last two decades (<u>http://www.epa.gov/epaoswer/other/medical/</u> 2007). Although, this is very important from the point of view of infection control. But there is a need to reassess those reasons based primarily on economy and convenience. This is with a view of replacing disposable materials with reusable ones, hence, reducing waste arising from healthcare. Items which are not directly used for healthcare like paper, cardboard, glass, metal containers, plastic wrappings etc could be recycled and reused. Waste minimization has the advantages of reducing purchasing cost and cost related to waste management (Nessa *et al* 2001).

## b. Waste Segregation

Segregation is the essence of waste management and should be done at the source of generation of biomedical waste (Chandra 1999).

Segregation is the key to effective biomedical and healthcare waste management (SBC/UNEP 2002). It is one of the most important steps to successfully manage healthcare waste (SBC/UNEP and WHO 2005). Considering the fact that only 10-25% of the healthcare waste is hazardous, a proper segregation will greatly reduce treatment and disposal costs. Segregation should always be the responsibility of the waste producer, should take place as close as possible to where the waste is generated (Pruss et al 1999). According to Chandra (1999) only about 15% of hospital waste is hazardous, but when hazardous waste is not segregated at source of generation and mixed with non-hazardous, then 100% waste becomes hazardous. When waste is properly segregated at source, each waste component can be adequately treated by the method best suited for its characteristics thereby preventing environmental pollution. Waste segregation also presents the opportunity of separating reusable and recyclable materials from the whole stream. Thereby reducing the quantity of waste destined for treatment and final disposition. The cost of waste management is then reduced. Recycling of healthcare waste could be flourishing business providing jobs for hundreds of people through small and medium-scale enterprises (Ahmed 1997). Segregating hazardous from non-hazardous waste greatly reduced the risk of infecting workers handling healthcare waste (SBC/UNEP and WHO 2005).

# c. Recommended Colour Coding of Containers

The application of a colour system aims at ensuring an immediate and non equivocal identification of the hazards associated with the type of healthcare waste that is handled or treated (SBC/UNEP and WHO 2005). The most appropriate way of identifying the categories of healthcare waste is by sorting the waste into colour coded plastic bags or containers (Pruss *et al* 1999). Therefore a simple and uniform colour coding should be applied throughout a country (SBC/UNEP and WHO 2005). Table 2.2 depicts the colours recommended by SBC/UNEP and WHO (2005).

| BLACK                   | YELLOW                          | BROWN                  |
|-------------------------|---------------------------------|------------------------|
| Non-risk waste of       | Special Waste of Categories B1, | Pharmaceutical Waste   |
| category A              | B2, B4, B5                      | of Categories B3,      |
|                         |                                 | classes B32 and B33    |
| Exceptionally small     | Infectious waste and highly     | Category D such as     |
| quality of waste        | infectious waste of categories  | chemicals, heavy metal |
| category B1             | C1 and C C2, radio active waste | wastes.                |
|                         | of Categories E                 |                        |
| Pharmaceutical waste of | Radioactive waste of Category E |                        |
| category B3 class B1    |                                 |                        |
| only                    |                                 |                        |

 Table 2.2
 Recommended Colour Coding System of Healthcare Waste

"Waste bags and containers should be labeled in order to identify their origin in case of mishandling. Information on the content and the date of collection should be written on the bags; bags and containers should be marked with the international infectious symbol" (Pruss *et al* 1999).

## d. Waste Storage

A storage location for healthcare waste should be designated inside the healthcare establishment (Pruss *et al* 1999). Storage area must be identified as containing infectious waste, with the biohazard symbol clearly displayed (SBC/UNEP 2002). No other material other than waste should be placed in the waste storage area. The storage area should not be close to store for fresh or cooked food. WHO recommends that the maximum storage time for healthcare waste is 72 hours in winter and 48 hours in summer for temperate climate. While the recommended time for tropical climate is 48 hours during the cool season and 24 hours during the hot season.

#### e. Collection and On-site Transportation of Waste

In order to avoid accumulation of the waste, it must be collected on a regular basis and transported to a central storage area within the healthcare facility before being treated or removed. In order to prevent injury and infection during their handling within and outside the hospital, sharps should be collected and managed separately from the other categories of hospital waste. Puncture and leak-proof containers or safety boxes must be used. The box is treated with other infectious waste (SBC/UNEP and WHO 2005). All disposable syringes and needles must

be discarded of immediately following use. Syringes even without needles must be considered as unsafe (SBC/UNEP and WHO 2005).

Within hospital waste routes must be designated to avoid the passage of waste through patient care areas and separate times should be earmarked for transportation of biochemical waste to reduce chances of it's mixing with general waste (Chandra 1999). According to SBC/UNEP (2002) dedicated wheeled trolleys, containers or carts should be used to transport waste within the hospital and must meet the following specifications;

- Easy to load.
- No sharp edges that could damage waste bags or containers during loading and unloading.
- Easy to clean.

## f. Off-site Transportation of Waste

The healthcare waste producer is responsible for safe packaging and adequate labeling of waste to be transported off-site and for authorization of its destination (Pruss *et al* 1999). Chandra *et al* (1999) recommended that the transport is done through dedicated vehicles having fully enclosed body, lined internally with stainless steel or aluminum to provide smooth and impervious surface that can be cleaned.

# 2.5 TREATMENT/DISPOSAL OF HEALTHCARE WASTE

According to Chandra (1999) treatment of healthcare waste is required for the following reasons;

- To disinfect the waste so that it is no longer the source of infection.
- To reduce the volume of the waste.
- Make waste unrecognizable for aesthetic reasons
- Make recycled items unusable.

Depending on the local conditions, the final choice of treatment system should be made on the basis of various factors which Pruss *et al* (1999) identified as follows:

- Disinfection efficiency.
- Health and environmental considerations.
- Volume and mass reduction.
- Occupational health and safety considerations.
- Quantity of waste for treatment and disposal/capacity of the system.
- Types of waste for treatment and disposal.
- o Infrastructure requirements.
- Locally available treatment options and technologies.
- Options available for final disposal.

- Training requirements for operation of method.
- Operation and maintenance considerations.
- Available space.
- Location and surrounding of the treatment site and disposal facility.
- Investment and operating costs.
- Public acceptability.
- o Regulatory requirements.

The choice of technology for healthcare waste treatment should always be driven with the objective of minimizing negative impacts on health and environment (SBC/UNEP and WHO 2005).

Some of the available treatment/disposal options available include incineration, autoclaving, microwave irradiation, chemical disinfection and land disposal. Incineration used to be the method of choice for most hazardous healthcare waste and is still widely used (Pruss *et al* 1999). According to SBC/UNEP (2002) depending on the type of incinerator the following objectives can be achieved;

- Destruction of pathogens.
- Reduction of the hazard and pollution potentials as far as possible.

- Reduction of volume and quantity.
- Conversion of remaining residue into a form which is utilizable or suitable for landfill.

Weir (2002), however, observed that 3 types of materials are difficult to incinerate. Materials with low heating values, such as full urine bags and dense body parts which may burn more slowly than the surrounding materials and not completely be destroyed during incineration. Toxic metals, such as lead, chromium and cadmium found in red plastic bags and vacutainer caps, vapourize during incineration and form fine fumes that enter the atmosphere with flue gas. Plastics composed of polyvinyl chloride contain hydrochloric acid which is released to the atmosphere during incineration. US EPA has identified medical waste incineration as the third largest of dioxin, carcinogen source a known (http://www.epa.gov/epaoswer/othermedical/mwpdfc/rx/ ch4.pdf/ 2007). The emission of toxins like dioxins, furans, mercury etc., from incinerators has led to the enactment of strict regulations and standards which are not favourable to old incinerators (Sibbald 2001). This has compelled hospital to seek the services of modern commercial incinerators. The cost implication of this has made hospitals to segregate their waste more carefully, thereby, reducing the cost of treating their infectious waste. Kumar et al (2004) in a survey of trace metals

determination in hospital waste incinerators in Lucknow, India found that, the concentration of Zinc and Lead were very high in incinerator in comparison to other metals due to burning of plastic products. If the bottom ash is finally disposed in a poorly constructed landfill as is usually done in developing countries, the possibility of contamination of ground water and the environment by these heavy metals is very high. SBC/UNEP and WHO (2005) recommends that if the incineration option is chosen to treat used syringes and needles, temperature greater than 1400°C must be used to completely oxidize the needle. To burn the syringes and disinfect the needles, temperature of 800-900°C must be used. However, the incinerators like pyrolytic incinerators or rotary kilns that are capable of attaining these temperatures are expensive to install and operate. Alternatively, open air burning of cardboard safety boxes in pits can be used. Land disposal of untreated healthcare waste is not recommended and should only be used as a last resort and should be done only in a sanitary land fill (SBC/UNEP and WHO 2005). Highly infectious waste of category C2 generated in medical laboratories should be immediately pre-treated, by autoclaving or chemically using concentrated Sodium hypochlorite solution, before joining the other medical wastes (SBC/UNEP and WHO 2005).

SBC/UNEP (2002) recommended that steam sterilization or autoclaving should be used for the treatment of infectious waste because thermal methods are easy to validate and monitor and are less damaging to the environment. In fact, other methods should be considered only, if steam sterilization or autoclaving is impracticable or inappropriate.

# 2.6 MANPOWER AND TRAINING

Human beings are the soul of healthcare waste management. These include the hospital personnel, patients and the general public. Training of healthcare personnel in implementing the waste management policy is critical if a waste management programme is to be successful (Pruss *et al* 1999). The overall aim of training is to develop awareness of the health, safety and environmental issue relating to healthcare waste and how these can affect employees in their daily work. Special training should be targeted at the following group of personnel.

- $\Rightarrow$  Hospital manager and administrative staff responsible for the implementation of regulation on health-care waste management.
- $\Rightarrow$  Medical doctors.
- $\Rightarrow$  Nurses.

 $\Rightarrow$  Cleaners, porters, auxiliary staff and waste handlers.

The hospital management should appoint a waste management officer who should be the fulcrum of a waste management team to be made up

by all vital officers in the hospital (Pruss *et al* 1999). "Proper training of workers; provision of equipment and clothing for personal protection; and establishment of effective occupational health programme that includes immunization, post-exposure prophylactic treatment and medical surveillance are essential occupational health and safety measures. "It is very important to safeguard the occupational health of healthcare workers" (http://www.epa.gov/epaoswer/other/medical 2007). Public education on hazards linked with healthcare waste and promotion of the appropriate handling and disposal of medical waste is important for community health (Pruss *et al* 1999).

## **2.7 PATHOGENS IN WASTES**

Pathogenic organisms present in healthcare waste include a wide range of bacteria, viruses, fungi, yeast and other organisms such as mycobacteria and rickettsia, which are virulent enough to infect the human body if the opportunity arises (http://www.epa.gov/epaoswer/other/medical 2007).

The level of pathogenicity of organisms found in healthcare institutions and their increased resistance to antibiotics may make them greater threat for those who handle the material and may also introduce the possibility of public health concerns (http://www.epa.gov/epaoswer/other/medical 2007). Of particular interest are those pathogens present in the hospital environment that get transported along with wastes to the landfill where they have some degree of survival. These organisms constitute threat to the wellbeing of patients, hospital workers and the public. Uwaezuoke and Aririatu (2002) isolated 48 *Staphylococcus aureus* strains from clinical sources in Owerri, Nigeria. The strains were resistant to penicillin (95.8%), ampicilin (89.6%), tetracycline (87.5%) and chloramphenicol (75.0%). Guardabassi *et al* (1998) isolated 385 *Acinetobacter* strains from sewers receiving waste effluent from a hospital and a pharmaceutical plant. The *Acinetobacter* from the hospital sewage were found to be resistant to oxy-tetracycline. Grabow and Prozesky (1973) isolated drug resistant coliform bacteria like *E. coli* and *Salmonella typhi* from hospital and city sewages and observed that such drug resistant pathogens in the water environment could be of particular concern.

Hospital infection or nosocomial infection is any infection acquired by a patient in the hospital. The causative organism is commonly resident in the hospital or in a particular ward and can be found in the floor, walls, beddings, wastes etc. *Staphylococcus aureus* is widely distributed among patients and hospital staff and extensive contamination of the hospital environment is usual (Thomas 1973). Oyeleke *et al* (2008) reported that unsecured hospital waste dumpsite may have adverse effects on its immediate environment as a result of the different pathogenic microorganisms isolated from the waste.

# 2.8 HEALTHCARE WASTE MANAGEMENT IN DEVELOPING COUNTRIES

Although many developing countries, Nigeria inclusive, are signatories to international agreements such as "Basel Convention and Stockholm Convention whose underlying principles are:

- a. The "polluter pays" principle implies that all producers of waste are legally and financially responsible for the safe and environmentally sound disposal of the waste they produce.
- b. The "precautionary" principle is a key principle governing health and safety protection. When the magnitude of a particular risk is uncertain, it should be assumed that this risk is significant, and measures to protect health and safety should be designed accordingly.
- c. The "duty of care" principle stipulates that any person handling or managing hazardous substances or related equipment is ethically responsible for using the utmost care in that risk.
- d. The "proximity" principle recommends that treatment and disposal of hazardous waste take place at the closet possible location to its source in order to minimize the risks involved in its transport.

In spite of the above fact, healthcare waste management in developing countries still leaves a lot to be desired. Waste production in healthcare facilities in developing countries has brought a variety of concerns due to

the use of inappropriate methods of managing the waste (Diaz et al 2005). Facts obtained from the Basel Convention Regional Centre for English Speaking countries website (http://www.baselpretoria.org 2007) is to the effect that most developing countries do not have any law or regulation specifically targeted at healthcare waste management. Apart from the fact that there presently exists no legislation targeted specifically at healthcare waste, there are currently insufficient resources being made available to ensure the required enforcement of the existing legislation, largely as a result of insufficient financing of waste management systems, facilities and human resources (http://www.balseprotoria.org.za.htm 2007) "National Legislation is the basis for improving healthcare waste practices in any country. It establishes legal controls and permits the national agency responsible for the disposal of healthcare waste to apply pressure for their implementation" (Pruss et al 1999).

Although in the National Policy on Injection Safety and Healthcare Waste Management the Federal Ministry of Health (FMH) in Nigeria has set a target of the year 2008 for itself, to ensure the enactment of relevant legislations required for effective healthcare waste management policy implementation. The FMH observed in the National Policy document that there are inadequate healthcare waste management systems for healthcare facilities in communities and that indiscriminate dumping; burning and

burying are prevalent in a significant number of health facilities. To address the problem posed by the improper management of healthcare waste, the FMH has a set a number of targets to be achieved between the year 2008 and 2010. One of the targets is to ensure that teaching hospitals, specialist hospitals, Federal Medical Centers with more than 200 beds shall provide within their premises a modern incinerator which complies with WHO standard on air pollution emission, capable of onsite destruction of all hazardous waste generated in such facility. It is therefore apparent that the first line treatment recommended by the FMH is incineration. This is contrary to the recommendation of SBC/UNEP (2002), and indeed modern trend in healthcare waste management, which requires that it is only when stream sterilization is not practicable or inappropriate that any other treatment option should be considered. This tends to discourage incineration of healthcare waste due to the problem of environmental pollution associated with it.

The disparity in the FMH and SBC/UNEP approach is a pointer to the gap between the public health and environmental protection concerns on healthcare waste management. Healthcare waste management is both a public health and environmental protection issue. But a critical look at the Nigerian policy document betrays a lack of input from the Federal Ministry of Housing and Environment (FMHE), hence the gap in approach.

Where specific laws on healthcare waste management exist (e.g. India, Thailand and Brazil), they are observed more in the breach than in adherence. There is a paucity of finance, technical and trained manpower available to economically developing countries to adequately manage their healthcare waste (Diaz and Savage 2003). Nessa et al (2001) reported that waste management systems are limited in Africa and South-East Asia where segregation is seldom practiced and urban hospitals burn their waste in the open within the hospital premises. This is in contrast with Europe and North America where wastes are properly segregated at the point of generation and subjected to appropriate treatment methods (Nessa et al 2001). Coker et al (1999) observed that no proper waste management practice exists in all the surveyed hospitals, which are major hospitals in the city of Ibadan, Nigeria. "Lack of training and equipment for the waste handlers was a common feature in all the surveyed hospitals, particularly in the public hospitals. "This portrays the lip service approach to the menace of hospital waste problem in Nigeria" (Coker et al 1999). The hospitals dumped their waste indiscriminately in open and unfenced dump sites where rain, wind, animals, and scavengers have unlimited access. These reports were corroborated by Bassey et al (2006) who observed that "medical waste management has received very little attention in waste management process in Nigeria". They observed that unwholesome waste disposal by many hospitals, clinics and health centers in Abuja, Nigeria poses serious health hazard to the city dwellers in general and people living within the vicinity of the healthcare institutions in particular. Almost all the healthcare institutions surveyed disposed every kind of waste generated into municipal dumpsites without pre-treatment. 18% of the health institutions surveyed incinerate their waste in locally built incinerators without safety devices. 36% of the wastes generated are disposed into municipal dumpsites. 9.1% bury their waste in the hospital premises while another 36.3% burnt waste produced in open pits. None of the health institutions segregated their wastes.

A.C.

The legislation provided by the Indian Biomedical Waste (Management and Handling) Rules of 1998 notwithstanding, Pandit *et al* (2005) in a study to assess the level of awareness and practice of healthcare waste management in a district of India, where doctors and auxiliary staff from 30 hospitals were randomly selected, discovered that, there was no effective waste segregation, collection, transportation and disposal system in any hospital in the district. The doctors were aware of the existence of the laws related to waste management but did not know the details. They were also aware of the potential risk of HIV and Hepatitis B and C inherent in poorly managed healthcare waste. The auxiliary staff (ward boys, sweepers etc.) were not aware of any law or the potential dangers. Although, laws regulating the management of healthcare waste are in existence, but Suwannee (2002) observed in a district of Thailand, that all wastes such as potentially infectious waste, waste from office, general waste, food, construction debris and hazardous chemical materials were all mixed together while they are being generated, collected, transported and finally disposed of. The hospitals in the study burned wastes or dumped wastes in municipal bins, which were transported to unsecured dumps. Some of the wastes contained mercury and other heavy metals, chemical solvents and preservatives (e.g. formaldehyde), which are known carcinogens, and plastics (e.g. PVC).

Literature is replete with reports of less than satisfactory practice in the management of healthcare waste in developing countries as evidenced in Brazil (Da Silva *et al* 2005), India (Patil and Shekdar 2001, Singh *et al* 2004), Iran (Askarian *et al* 2004; Koushiar *et al* 2006); Jordan (Bdour *et al* 2006), Pakistan (Janjua 2003; Rasheed *et al* 2005), Tanzania (Manyele and Anicetus 2006), Nigeria (Coker *et al* 1999; Bassey *et al* 2006).

In Tanzania, Manyele and Anicetus (2006) observed that the main disposal methods for medical wastes in hospitals comprised of open pit burning, burying and incineration. Ordinary incinerators, made of red bricks were used. Only 4% of the hospitals were reported to use autoclave for waste treatment. Suwannee (2002) reported improper disposal of hospital waste, open dumping and uncontrolled burning.

Although the prevailing state of affairs in developing countries was attributed to lack of enabling legislation, financial and human resources (Diaz and Savage 2003. http://www.baselpretoria.org.za 2007). and Basu (1995) added an attitudinal dimension to the Blenkharn problem, when they observed that, despite publication of clear definitive working guidelines, the introduction of increasingly stringent legislative control and availability of resources, in some cases, a large implementation gap for waste management still exists. This is in contrast to the observations of Rutala et al (1989); Cannata et al (1997); and Naudin-Rouselle and Valejo (1997) in US, Australia and France respectively, of a very high compliance rate with recommendations of regulatory bodies.

Generally in developing countries few individuals in the staff of healthcare facilities are familiar with the procedure required for a proper waste management. Furthermore, the management of wastes is usually delegated to poorly educated labourers who perform most activities without proper guidance and sufficient protection (Diaz *et al* 2005). Coker *et al* (1999) observed lack of relevant training and equipment of the waste handlers in hospitals in Ibadan. Also Bassey *et al* (2006) observed a lack of trained waste managers in the health institution in their study. In a study on safety considerations in the management of hospital generated waste in University of Calabar Teaching Hospital Asuquo *et al* (2003) discovered that 30.6% of the workers studied did not wear any form of protective clothing during work.

Though teaching hospitals are centers of excellence in medical training and care, but they appear not to be insulated from the problems of healthcare waste management being experienced in the developing world. In a study of four hospitals (including a teaching and specialist hospital) in Lagos, Longe and Williams (2006), using a questionnaire based on the guidelines of the safe management of waste from health care facilities by WHO, observed non-compliance of any of the health care facilities investigated with existing regulatory requirements. Although, 75% of the hospital segregated infectious and sharp wastes from source by the use of colour coding system, the commendable level of segregation of medical waste currently being achieved in the hospitals, surveys revealed that segregated medical wastes are sometimes mixed together by collectors either at the point of collection or at the dumpsites. The total waste stream therefore becomes infectious (Chandra 1999, WHO 2005). It was also observed that the hospitals did not use uniform colour coding for their

healthcare waste. Rasheed *et al* (2005) in a cross-sectional survey conducted in eight teaching hospitals of Karachi, Pakistan – using a self administered questionnaire, with four sections, relating to the general information of the institutions, administrative information, information regarding healthcare waste management personnel and check-list of hospital waste management activities discovered that only 25% of the hospitals were segregating health care waste at source. Longe and Williams (2006) and Rasheed *et al* (2005) reported open dumping and non-treatment of infectious waste before final disposal in all the hospitals in their studies. In University of Calabar Teaching Hospital, neither generators nor managers segregated waste into infectious and non-infectious components while sterilization of waste material was not done before final disposal (Asuquo *et al* 2003).

# 2.9 CONDUCTING HEALTHCARE WASTE MANAGEMENT SURVEY.

According to SBC/UNEP and WHO (2005), a survey should be conducted on the current healthcare waste management situation within the hospital in close co-operation with head nurses from the medical departments. This is with a view of identifying necessary improvements. The following are some of the pertinent tasks recommended by SBC/UNEP and WHO in the guidance manual for healthcare waste management:

- Compile general information: type of waste generated in the healthcare establishment, number of beds, occupancy rates, and number of medical departments.
- Conduct a waste generation survey: Waste composition, waste quantity, sources of generation and number of beds in use. The survey should be presented in the form of average daily quantities of waste generated in (kg) in each healthcare category from each department.
- Conduct a critical review of existing waste management practices (i.e. segregation, storage, collection, transport, treatment and disposal).
- Assess existing safety e.g. protective clothing and security measures.
- TRaise awareness amongst health workers.

In order to develop a waste management plan, the waste management team needs to make an assessment of all waste generated in the hospital. The survey should determine the average daily quantity of waste in each category generated by each hospital department (Pruss *et al* 1999). The development of a waste management plan for the hospital should then be based on the data obtained from the waste generation survey.

Two basic methods of calculating the daily production of hazardous healthcare waste were enunciated by SBC/UNEP and WHO (2005).

- Weighing all bags/bins before they are emptied or disposed of.
   "this is the most precise option and should be used if there is an adequate scale within the healthcare facility" (SBC/UNEP and WHO 2005)
- ii. Otherwise a good estimation can be obtained by estimating the volume of containers (bags, rubbish bins) used for medical waste collection in each medical unit for a defined period of time. Discussion can be held with nurses and paramedical staff in order to estimate the total volume of waste collected by using a filling rate for each category of container. A volumetric mass ratio is then applied to estimate the total weight of hazardous waste generated, depending on the type of waste thrown in the container and their humidity rate.

"Since in many sub-Saharan countries, hazardous and non-hazardous healthcare waste are not segregated at source but are mixed together, it is only possible to estimate the total quantities of healthcare waste (hazardous and non-hazardous) produced and then apply an estimated rate/ratio (that generally varies between 0.1 and 0.3) to calculate the

proportion of hazardous healthcare waste generated per hospital category. The weight in kilogram of hazardous healthcare waste generated can then be estimated by using a ratio between 0.24 and 0.31.

Syringes and needles have a high potential to cause injury and transmit infection because they are often contaminated by blood and body fluids of the patients. Although it is important to estimate specifically the amount of sharps generated in the hospital but utmost care must be displayed in handling them, once syringes and needles are disposed in safety boxes, the boxes must not be re-opened again. SBC/UNEP and WHO (2005) recommended that the amount of syringes and needles and other sharps (needles, intravenous catheter, lancets, scalpels, blades and sutures) received by the hospitals or central pharmacy should be obtained from the records.

Coker *et al* (1999) and Bassey *et al* (2006) employed questionnaires, indepth interviews, meetings, discussions and participant observed strategy in cross-sectional studies to characterize types and evaluate waste disposal techniques in Ibadan and Abuja respectively. They also employed collection, sorting (segregation, identification and characterization and weighing of waste types from ward and units of the selected hospitals.

Whereas Longe and Williams (2006) in another cross-sectional survey of healthcare waste management in Lagos metropolis, used a simple and objective questionnaire based on WHO guidelines for the safe management of waste from healthcare facilities. Waste generation was estimated in hospitals surveyed based on the number of 50 liters waste bins used for collection and storage of wastes, that were filled daily. And all data were evaluated and presented on a weight basis. A similar approach was used in Tanzania (SBC/UNEP and WHO 2005). The amount of hazardous healthcare waste generated in each healthcare facility was calculated by estimating the number of containers (bags, rubbish bins) used for healthcare waste collection during a defined period of time. Discussions were held with the medical and paramedical staff to enable adjustment to be made for the total volume of waste collected by using a filling rate for each category of container. To estimate the total weight of clinical waste generated a volumetric mass ratio of 0.30 kg/l was applied.

## CHAPTER THREE

# MATERIALS AND METHODS

## **3.1 DATA COLLECTION**

Participant observation, field observations, and survey were designed and conducted to evaluate the solid healthcare waste management practice and also the generation rate of solid healthcare waste in the hospital. Indepth interviews were held with key officials such as the matrons/heads of the various wards/units, doctors, nurses, auxiliary staff supervisors and staff of the private company to whom the job of cleaning the hospital is contracted to evaluate the management practices in terms of waste segregation, collection, storage, transportation and disposal.

Two questionnaires were designed following the recommendations and guidelines of SBC/UNEP and WHO (2005) on the proper and environmentally sound management of healthcare waste. The first questionnaire was administered on the matrons/heads of each wards/units of the hospital, to evaluate the current solid healthcare waste management practices in terms of segregation and colour coding.

The second questionnaire was administered on hospital personnel central to the generation and management of healthcare waste like doctors, nurses, auxiliary staff, ward cleaners and waste handlers. It was established from the official records of the hospital that there are 150

doctors, 350 nurses, 60 auxiliary staff and 114 ward cleaners/waste handlers in the hospital. 10% of each of these categories of personnel was randomly sampled to evaluate their awareness and practice of the recommended minimum standard of environmentally sound management of healthcare waste. The questionnaire was also used to evaluate their level of training on healthcare waste management and measures put in place to protect them from the occupational hazards associated with healthcare waste.

Parallel to interviews and questionnaire administration, the quantity of solid healthcare waste generated in the hospital was evaluated by counting the number of 120 litre rubbish bins that were disposed at the dumpsite daily for twelve (12) weeks. The filling rate of each rubbish bin was observed and a volumetric mass ratio of 0.3kg/litre was applied to evaluate the total weight of healthcare waste generated daily. And then the proportion of potentially infectious healthcare waste was calculated by using a ratio of 0.3kg/litre of total solid healthcare waste generated. The solid waste generation rate in kg/bed/day was obtained by dividing by 84, the number of days for which the survey was conducted to get the waste generation rate per day. And then 350, the number of beds in the hospital, to get the waste generation rate per bed per day.

Soil samples were collected in sterile plastic universal containers from the healthcare waste dumpsite and soil adjacent to the dumpsite at a distance of 10m as control. The samples were collected consecutively for twelve weeks and taken for microbiological analysis in the microbiology laboratory of the hospital within three (3) hours of collection. The soil samples for physico-chemical analysis were collected in clean polythene bags from twenty-four (24) different spots on both the healthcare dumpsite and the adjacent control area and taken to the laboratory for the evaluation of their pH value and moisture content.

#### **3.2 METHODS OF DATA ANALYSIS**

#### **3.2.1 MICROBIAL ISOLATION**

Ten grams (10g) of soil was suspended in 90ml of sterile distilled water and serially diluted from  $10^{-1}$  to  $10^{-10}$  dilutions. Chocolate Agar and CLED Bovis Medium were used for the isolation and identification of bacteria. All the plates were incubated at 37°C for 48 hours under aerobic and anaerobic conditions. Sabouraud Dextrose Agar (SDA) was used for fungi culture. The SDA plates were incubated at room temperatute (28±2°C) for five (5) to seven (7) days after which colonies which developed on the plates were further investigated and results recorded.

# 3.3 CHARACTERIZATION AND IDENTIFICATION OF BACTERIA

Bacteria colonies of different sizes, shapes and pigmentations were selected randomly from the plates. They were further sub-cultured on nutrient agar by the streak plate technique and re-incubated at 37°C for twenty-four (24) hours. After further purification using the streak plate technique, they were maintained further on agar slants for characterization and identification. The bacteria isolates were characterized according to their colonial morphology, cultural characteristics and biochemical reactions.

#### 3.3.1 GRAM STAINING

Bacterial colonies which were twenty-four (24) hours old were picked by means of a sterile wire loop. They were then emulsified in a drop of distilled water that was placed on a clean slide to make a smear. The smear was air dried and heat fixed. It was then flooded with 0.5% crystal violet for one (1) minute. Thereafter, it was washed with acetone/alcohol briefly and then rinsed with water. The smear was counter stained with 1% safranin for thirty (30) seconds. It was thereafter observed under the microscope by immersion oil objective. The retaining of the dark purple colour of crystal violet indicates the presence of Gram positive bacteria. While the retention of the red colour of the counter stain indicates the presence of a Gram negative bacteria (Cheesbrough 2000; Oyeleke and Manga 2008).

### 3.3.2 CATALASE TEST

Two to three mililitre (2-3ml) of 3% hydrogen peroxide  $(H_2O_2)$  solution was poured into a test-tube. Colonies of the culture was taken using a sterile glass rod and immersed in the hydrogen peroxide solution. Immediate and active bubbling indicates positive catalase test. While no bubbling indicates a negative catalase test (Cheesbrough 2000).

#### 3.3.3 COAGULASE TEST

**Slide Test Method:** A drop of distilled water each was placed on two (2) separate slides. A colony of the culture was emulsified in each of the drops to make two (2) thick suspensions. A loop full of plasma was added to the second suspension to differentiate any granular appearance of the organism from true coagulase clumping. The first slide was observed for clumping within ten (10) seconds. Clumping within ten (10) seconds indicate a positive coagulase test. While no clumping within 10 seconds indicate a negative coagulase test (Cheesbrough 2000).

#### **Tube Test Method:**

Zero point two mililitre (0.2ml) of human plasma was pipetted into a testtube. 0.8ml of 18-24hours broth of culture was added to it and mixed gently. The test-tube was then incubated at 37<sup>o</sup>C. It was examined for clotting after 1 hour. If no clotting has taken place after 1 hour, it was examined after 3 hours. Still if no clotting took place, it was left overnight and examined again. Clotting of the tube content indicates a positive coagulase test. No clotting indicates a negative coagulase test. (Cheesbrough 2000).

#### 3.3.4 OXIDASE TEST

A piece of filter paper was placed in a clean Petri-dish. 2 to 3 drops of freshly prepared oxidase reagent (Tetra-methyl-p-phenylene diamine dichloride). A colony of the culture was picked with a sterile glass rod and smeared on the filter paper. The development of a blue-purple colour within 10 seconds is indicative of a positive oxidase test. And no blue-purple colour within 10 seconds is indicative of a negative oxidase test (Cheesbrough 2000).

#### 3.3.5 MOTILITY TEST

Motility medium (peptone water) was fine stabbed with wire loop carrying the isolate to a depth of 1-2cm and incubated at 37<sup>o</sup>C for 24 to

63

48hours. Then a hanging drop for bacteria motility examination was done.

#### 3.3.6 INDOLE

The bacteria were inoculated in a bijou bottle containing 3ml of sterile tryptone water. It was incubated at 37<sup>o</sup>C for up to 48 hours. 0.5ml of Kovac's reagent was added and shaken gently. Appearance of red layer is indicative of a positive indole test. While no red surface layer is indicative of a negative indole test.

#### 3.3.7 CITRATE TEST

Slopes of the medium were prepared in bijou bottles. Using a sterile straight wire, the slope was streaked with a saline suspension of the culture and then the butt was stabbed. It was then incubated at 37<sup>o</sup>C for 48hours. Development of bright blue colour in the medium indicates a positive citrate test. No change in colour of the medium indicates a negative citrate test (Cheesbrough, 2000).

#### 3.3.8 UREASE TEST

A sterile urea agar slant in a bijou bottle was inoculated with the isolate and incubated at  $37^{0}$ C for 24 to 72 hours. The appearance of bright pink or red colour is indicative of a positive urease test.

# 3.3.9 TRIPLE SUGAR IRON AGAR (TSI)

A stretch wire was used to obtain culture from a solid medium and it was used to streak the surface of the TSI slant and to stab the butt 2 or 3 times. The tube was capped tightly and incubated at 37<sup>o</sup>C for 24 hours. Gas formation was indicated by the appearance of one or more bubbles in the butt, cracks in the butt or the butt may be pushed from the bottom. Black precipitate indicates the production of Hydrogen Sulphide. The butt will turn yellow, if only glucose is fermented, but if the fermentation of glucose is accompanied by gas production, the butt will turn yellow. If there is fermentation of either lactose or sucrose or both, in addition to glucose, the butt and the slant will turn yellow.

#### **3.4 IDENTIFICATION OF FUNGI ISOLATES**

#### 3.4.1 IDENTIFICATION OF MOULD ISOLATES

The mould isolates were identified and classified based on factors such as growth rate, colonial morphology, microscopic morphology, the colour of aerial hyphae.

#### 3.4.2 MOULD STAINING PROCEDURE

The adhesive side of scotch or cello tape was used to touch the surface of the mould colony (Ellen and Sydney 1990). The length of the tape was then adhered to the surface of microscopic slide to which a drop of lacto phenol cotton blue had been added. It was then viewed under x10 and x40 objective of the microscope for the shape and arrangement of the spores (macroconidia).

#### 3.4.3 IDENTIFICATION OF YEAST ISOLATES

The yeast isolates were identified and classified by their morphological characteristics, microscopic examination and their ability to undergo sugar fermentation (Oyeleke and Manga 2008).

#### 3.4.4 YEAST STAINING PROCEDURE

A colony of the test organism from SDA plates was picked carefully using an inoculating needle. It was then placed on a drop of lacto phenol cotton blue on a slide. It was covered with a cover slip and viewed under x10 and x40 objective (Ellen and Sydney, 1990).

#### 3.4.5 GERM TUBE-TEST FOR CANDIDA

A colony of suspected yeast was placed in five (5) ml plasma, mixed and incubated for 30minutes -1 hour at 37<sup>0</sup>C. A drop is then placed on a clean slide, covered with cover slip and viewed under x10 and x40 objective.

#### **3.5 PHYSICO-CHEMICAL ANALYSIS OF SOIL**

#### **3.5.1 DETERMINATION OF pH OF THE SOIL**

The pH of the soil samples was determined using pH meter (Labtech). Ten grams (10g) of soil sample was suspended in 25ml distilled water and the suspension was stirred (Wild 1989). The pH meter was first calibrated in buffer solution of known pH (4.0 and 7.0), after which the electrode was inserted in the stirred suspension and the reading taken.

# 3.5.2 DETERMINATION OF MOISTURE CONTENT OF THE SOILS

This was carried out using the dry weight method. A metallic dish was dried in an oven at 80C for few minutes, cooled in a desiccator and weighed ( $W_1$ ). Ten grams (10g) of the soil sample was weighed into the dish ( $W_2$ ). The dish with the sample was then dried in an oven at 80C until a constant weight was reached and quickly transferred to a desiccator to cool and weighed quickly with minimum exposure to the atmosphere ( $W_3$ ). The loss in weight of the sample during drying is the moisture content. It was calculated using the formula below:

% moisture content =  $W_3 - W_1 \times 100$ 

 $W_2-W_1$ 

 $W_1$  = Weight of the dried dish without soil sample.

 $W_2$  = Weight of the dish + weight of soil sample before drying.

 $W_3$  = Weight of the dish + weight of soil sample after drying.

#### 3.6 STATISTICAL ANALYSIS

Data were analyzed using percentages, proportions, and tables of frequency distribution. T-test and chi-square test were carried out through the statistical package SPSS 10.0.

### **CHAPTER FOUR**

## 4.0 RESULTS

# 4.1 QUANTITY OF HEALTHCARE WASTE GENERATED AND RATE OF GENERATION IN UATH.

Table 4.1 shows the estimated quantity of solid healthcare waste generated in UATH during the twelve (12) weeks of field study.

|               |             |             |             |             |            | WE          | EKS          |             |             |             |             |             | Total    | Mean         | Std       | Std     |
|---------------|-------------|-------------|-------------|-------------|------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|----------|--------------|-----------|---------|
| DAYS          | 1<br>Kg     | 2<br>kg     | 3<br>Kg     | 4<br>Kg     | 5<br>kg    | 6<br>kg     | 7<br>kg      | 8<br>Kg     | 9<br>Kg     | 10<br>kg    | 11<br>Kg    | 12<br>Kg    | kg       | Kg           | deviation | error   |
| Sunday        | 540         | 468         | 504         | 468         | 540        | 468         | 486          | 1152        | 468         | 432         | 1008        | 756         | 7290     | 607.50       | 237.8237  | 68.6538 |
| Monday        | 810         | 676         | 828         | 936         | 828        | 792         | 936          | 1116        | 972         | 792         | 828         | 828         | 10342    | 861.83       | 112.5295  | 32.4845 |
| Tuesday       | 828         | 856         | 936         | 828         | 828        | 720         | 1116         | 1044        | 990         | 990         | 828         | 828         | 10810    | 900.83       | 116.2676  | 33.5636 |
| Wednesda<br>v | 802.8       | 936         | 936         | 792         | 864        | 828         | 900          | 1008        | 1026        | 1026        | 738         | 720         | 10612.8  | 884.40       | 112.6909  | 32.5310 |
| Thursday      | 723         | 828         | 972         | 878         | 828        | 756         | 1242         | 1008        | 1188        | 1188        | 684         | 864         | 10943    | 911.92       | 173.4948  | 50.0836 |
| Friday        | 540         | 468         | 576         | 612         | 612        | 540         | 900          | 684         | 864         | 864         | 828         | 900         | 8352     | 696.00       | 158.2909  | 45.6946 |
| Saturday      | 540         | 468         | 468         | 468         | 540        | 468         | 540          | 612         | 1152        | 1152        | 684         | 720         | 7524     | 627.00       | 206.2100  | 59.5277 |
| Total         | 4783.<br>8  | 4700        | 5220        | 4982        | 5040       | 4572        | 6120         | 6624        | 6174        | 6444        | 5598        | 5616        | 65873.8  | 784.211<br>9 | 203.6020  | 22.2148 |
| Mean          | 683.4<br>0  | 671.4<br>3  | 745.71      | 711.71      | 720.0<br>0 | 653.1<br>4  | 874.29       | 946.29      | 882.00      | 920.57      | 799.71      | 802.29      | 784.21   |              |           |         |
| Std           | 138.1       | 205.2       | 221.64      | 194.362     | 148.431    | 156.13      | 277.273      | 211.670     | 199.629     | 258.019     | 112.82      | 71.137      | 203.6020 |              |           |         |
| deviation     | 134         | 436         | 06          | 0           |            | 18          | 5            | 9           | 7           | 9           |             | 7           |          |              |           |         |
| Std error     | 52.202<br>0 | 77.574<br>8 | 83.772<br>3 | 73.461<br>9 | 56.1019    | 59.012<br>3 | 104.799<br>5 | 80.004<br>1 | 75.452<br>9 | 97.522<br>4 | 42.642<br>3 | 26.887<br>5 | 22.2148  |              |           |         |

Table 4.1: Estimated Total Quantity of solid Healthcare waste (kg) generated in UATH in 12 weeks

| Week Quantity Generated |        | Significance $P = 0.05$ |                  |                                    |  |  |  |
|-------------------------|--------|-------------------------|------------------|------------------------------------|--|--|--|
|                         | (kg)   | < Week(s)               | > Week(s)        | Not different from weeks           |  |  |  |
| 1                       | 683.40 | 8,9                     |                  | 2, 3, 4, 5, 6, 7, 10, 11, 12       |  |  |  |
| 2                       | 671.43 | 8, 9, 10                |                  | 1, 3, 4, 5, 6, 7, 11, 12           |  |  |  |
| 3                       | 745.71 |                         |                  | 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 |  |  |  |
| 4                       | 711.71 | 8, 10                   |                  | 1, 2, 3, 4, 5, 6, 7, 9, 11, 12     |  |  |  |
| 5                       | 720.00 | 8                       |                  | 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 |  |  |  |
| 6                       | 653.14 | 7, 8, 9, 10             |                  | 1, 2, 3, 4, 5, 11, 12              |  |  |  |
| 7                       | 874.29 |                         | 6                | 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 |  |  |  |
| 8                       | 946.29 |                         | 1, 2, 3, 4, 5, 6 | 7, 9, 10, 11, 12                   |  |  |  |
| 9                       | 882.00 |                         | 2,6              | 1, 3, 4, 5, 7, 8, 9, 10, 11, 12    |  |  |  |
| 10                      | 920.57 |                         | 1, 2, 4, 6       | 3, 5, 7, 8, 9, 10, 11, 12          |  |  |  |
| 11                      | 799.71 |                         |                  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12  |  |  |  |
| 12                      | 802.29 |                         |                  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  |  |  |  |

Table 4.2Weekly Relationship in the Quantity of Waste Generated inTwelve Weeks

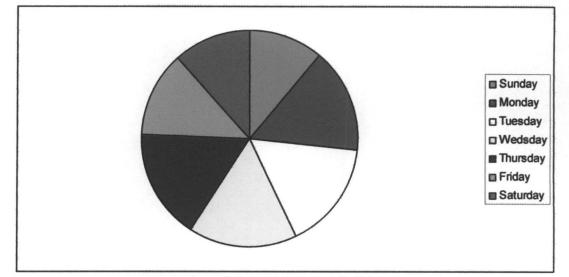
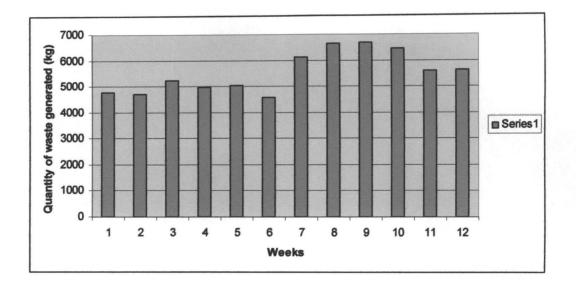
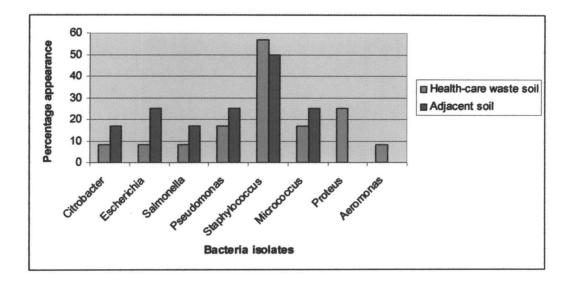



Figure 4.1: Daily Rate of Solid Healthcare Waste Generation in UATH





Figure 4.2: Weekly Rate of Solid Healthcare Waste Generation in UATH

## 4.2 IDENTIFICATION OF MICRO-ORGANISMS OF MEDICAL INTEREST IN THE SOIL OF HEALTHCARE WASTE DUMPSITE.

The frequency of isolation of bacteria and fungi from the soils of the healthcare waste dumpsite and soil adjacent to the dumpsite are presented on tables 4.3 and 4.4 respectively. Figures 4.3 and 4.4 also depict the frequency of isolation of bacteria and fungi from both soils.

| No. of<br>Samples | Inclator                  |                          | Healthcare Wa<br>Dumpsite | aste         | Soil Adjacent to the Dumpsite |                 |              |
|-------------------|---------------------------|--------------------------|---------------------------|--------------|-------------------------------|-----------------|--------------|
|                   | Isolates                  | Total No.<br>of Isolates | %<br>Appearance           | Std<br>Error | Total No. of<br>Isolates      | %<br>Appearance | Std<br>Error |
| 12                | Citrobacter spp           | 1                        | 8.33                      | 5.8548       | 2                             | 16.67           | 5.6645       |
| 12                | Escherichia coli          | 1                        | 8.33                      | 1            | 3                             | 25.00           | 1            |
| 12                | Salmonella typhi          | 1                        | 8.33                      |              | 2                             | 16.67           | 1            |
| 12                | Pseudomonas<br>aeroginosa | 2                        | 16.67                     |              | 3                             | 25.00           | -            |
| 12                | Staphylococcus<br>aureus  | 8                        | 56.67                     |              | 6                             | 50.00           |              |
| 12                | Micrococcus spp           | 2                        | 16.67                     |              | 3                             | 25.00           |              |
| 12                | Proteus vulgaris          | 3                        | 25.00                     |              | -                             | -               | 1            |
| 12                | Aeromonas spp             | 1                        | 8.33                      |              | -                             | -               | 1            |

Table 4.3: The Frequency of Isolation of Bacteria from Soil of Healthcarewaste dumpsite and soil adjacent to the dumpsite.



|                   | T. 1-4                       |                             | Healthcare W<br>Dumpsite | aste         | Soil Adjacent to the<br>Dumpsite |                     |              |
|-------------------|------------------------------|-----------------------------|--------------------------|--------------|----------------------------------|---------------------|--------------|
| No. of<br>Samples | Isolates                     | Total<br>No. of<br>Isolates | %<br>Appearanc<br>e      | Std<br>Error | Total<br>No. of<br>Isolates      | %<br>Appearanc<br>e | Std<br>Error |
| 12                | Aspergillus<br>niger         | 4                           | 33.73                    | 3.163<br>2   | 3                                | 25.00               | 3.163<br>2   |
| 12                | Rhizopus<br>nigrican         | 1                           | 8.33                     |              | 1                                | 8.33                |              |
| 12                | Candida<br>albican           | 3                           | 25.00                    |              | 1                                | 8.33                |              |
| 12                | Fusarium<br>gypsum           | 2                           | 16.67                    |              |                                  |                     |              |
| 12                | Penicillium<br>viricadium    | 3                           | 25.00                    |              | 1                                | 8.33                |              |
| 12                | Microsporu<br>m canis        | 1                           | 8.33                     |              | 1                                | 8.33                |              |
| 12                | <i>Geotricum</i><br>spp      | 2                           | 16.67                    |              | 1                                | 8.33                |              |
| 12                | <i>Sporothrix</i> spp        | 1                           | 8.33                     |              | 1                                | 8.33                |              |
| 12                | Trichophyto<br>n rubrum      | 3                           | 25.00                    |              | 1                                | 8.33                |              |
| 12                | <i>Cladiospori</i><br>um spp | 1                           | 8.33                     |              | 1                                | 8.33                |              |
| 12                | <i>Pityrosporiu</i><br>mspp  | 1                           | 8.33                     |              | 1                                | 8.33                |              |

Table 4.4: The Frequency of Isolation of Fungi from the soil of Healthcare Waste Dumpsite and Soil Adjacent to the Dumpsite

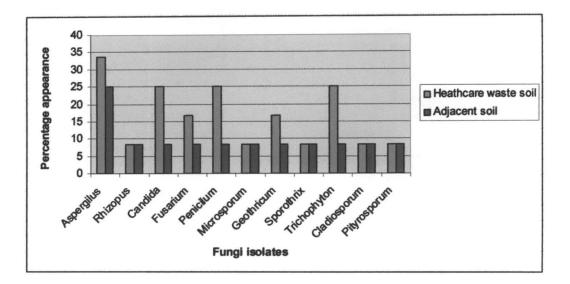



Figure 4.4: Percentage Appearance of Fungi Isolates in both Soils

## 4.3 THE pH AND MOISTURE CONTENT OF THE SOIL OF HEALTHCARE WASTE DUMPSITE AND THAT OF THE ADJACENT SOIL

The pH and moisture content of the soil of healthcare waste dumpsite and

that of the adjacent soil are presented on Table 4.5

| Sample Code      | Soil of Hospital Dum | osite | Sample Code      | Soil Adjacent to Dumpsite |     |  |
|------------------|----------------------|-------|------------------|---------------------------|-----|--|
| -                | Moisture Content (%) | pН    | Sample Code      | Moisture Content (%)      | pН  |  |
| AHC <sub>1</sub> | 7.6                  | 6.8   | AAD <sub>2</sub> | 4.6                       | 6.7 |  |
| BHC <sub>1</sub> | 3.6                  | 7.9   | BAD <sub>2</sub> | 3.6                       | 7.3 |  |
| CHC <sub>1</sub> | 4.6                  | 8.1   | CAD <sub>2</sub> | 4.5                       | 7.7 |  |
| DHC <sub>1</sub> | 4.2                  | 7.2   | DAD <sub>2</sub> | 4.5                       | 7.9 |  |
| EHC <sub>1</sub> | 6.9                  | 7.9   | EAD <sub>2</sub> | 6.2                       | 7.5 |  |
| FHC <sub>1</sub> | 6.4                  | 8.9   | FAD <sub>2</sub> | 6.6                       | 7.4 |  |
| GHC <sub>1</sub> | 6.8                  | 7.6   | GAD <sub>2</sub> | 6.9                       | 7.0 |  |
| HHC <sub>1</sub> | 4.1                  | 9.2   | HAD <sub>2</sub> | 4.6                       | 7.8 |  |
| IHC <sub>1</sub> | 4.2                  | 7.2   | IAD <sub>2</sub> | 4.2                       | 7.6 |  |
| JHC1             | 4.4                  | 9.2   | JAD <sub>2</sub> | 7.5                       | 7.3 |  |
| MHC <sub>1</sub> | 5.8                  | 9.0   | MAD <sub>2</sub> | 5.6                       | 7.2 |  |
| NHC <sub>1</sub> | 4.4                  | 8.8   | NAD <sub>2</sub> | 4.2                       | 7.3 |  |
| OHC <sub>1</sub> | 4.6                  | 7.6   | OAD <sub>2</sub> | 4.6                       | 7.2 |  |
| PHC <sub>1</sub> | 4.8                  | 7.7   | PAD <sub>2</sub> | 4.7                       | 7.0 |  |
| QHC <sub>1</sub> | 3.8                  | 7.8   | QAD <sub>2</sub> | 3.8                       | 6.8 |  |
| RHC <sub>1</sub> | 3.8                  | 8.5   | RAD <sub>2</sub> | 3.8                       | 7.2 |  |
| SHC <sub>1</sub> | 6.0                  | 7.6   | SAD <sub>2</sub> | 6.6                       | 7.0 |  |
| THC <sub>1</sub> | 3.7                  | 8.2   | TAD <sub>2</sub> | 3.7                       | 7.8 |  |
| UHC <sub>1</sub> | 4.2                  | 8.8   | UAD <sub>2</sub> | 4.4                       | 7.6 |  |
| VHC <sub>1</sub> | 4.6                  | 8.0   | VAD <sub>2</sub> | 4.2                       | 7.2 |  |
| WHC <sub>1</sub> | 4.4                  | 7.8   | WAD <sub>2</sub> | 4.1                       | 7.4 |  |
| XHC <sub>1</sub> | 4.0                  | 8.9   | XAD <sub>2</sub> | 4.0                       | 7.6 |  |
| YHC <sub>1</sub> | 3.8                  | 9.1   | YAD <sub>2</sub> | 5.6                       | 7.6 |  |
| ZHC <sub>1</sub> | 6.6                  | 7.6   | ZAD <sub>2</sub> | 6.8                       | 7.1 |  |

Table 4.5The Moisture Content and pH of Soil of Hospital Dumpsiteand that of Soil Adjacent to the Dumpsite

# 4.4 PRESENT METHOD OF MANAGEMENT OF SOLID HEALTHCARE WASTE IN UATH

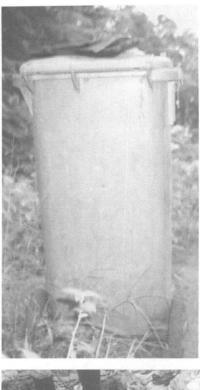



Plate I: 120 litre temporary waste storage bin used in UATH



Plates II and III: All categories of wastes mixed together in the temporary storage bin.



Plate IV: Open dumping of healthcare waste in UATH



Plate V: Open dumping of infectious waste in UATH

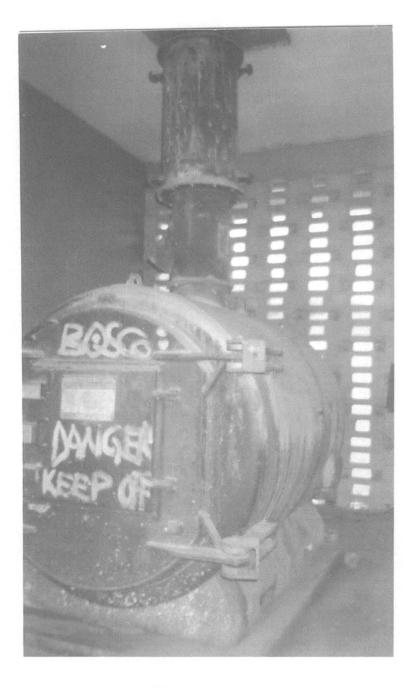



Plate VI: Unused Pyrolitic Incinerator in UATH.

# 4.5 SEGREGATION OF WASTE

Table 4.6:Types of Waste Segregated from the general waste stream inUATH.

| Types of Waste Segregated<br>from General Stream | No. of Wards/Units that<br>Segregate | Percentage | Std Error |
|--------------------------------------------------|--------------------------------------|------------|-----------|
| Sharp                                            | 9                                    | 28.1%      | 3.07      |
| General Waste and Sharp                          | 2                                    | 6.3%       | 8.00      |
| Infectious Waste and Sharp                       | 10                                   | 31.3       | 3.45      |
| All Wastes                                       | 7                                    | 21.9%      | 3.15      |
| None                                             | 3                                    | 9.4%       | 2.19      |
| General                                          | 1                                    | 3.1%       |           |
| Total                                            | 32                                   | 100%       |           |

Table 4.7 presents the types of containers/bags that are used to segregate

healthcare waste in UATH.

| Table 4.7 | Types of Containers/Bags u | used to Segregate Healthcare |
|-----------|----------------------------|------------------------------|
|           | Waste in UATH              |                              |

| musie in OATH                                      |                                        |            |           |  |  |  |
|----------------------------------------------------|----------------------------------------|------------|-----------|--|--|--|
| Types of Containers/Bags                           | No. of Wards/Units<br>Using each Types | Percentage | Std Error |  |  |  |
| Cardboard Boxes                                    | 3                                      | 9.4        | 4.18      |  |  |  |
| Plastic buckets                                    | 8                                      | 25.0       | 3.48      |  |  |  |
| Polythene bags and cardboard boxes                 | 1                                      | 3.1        | -         |  |  |  |
| Cardboard boxes and Plastic buckets                | 15                                     | 46.9       | 2.21      |  |  |  |
| Cardboard boxes/plastic buckets and polythene bags | 2                                      | 6.3        | 7.50      |  |  |  |
| Anything available                                 | 3                                      | 9.4        | 3.79      |  |  |  |
| Total                                              | 32                                     | 100        |           |  |  |  |

Table 4.8 shows the response of the matrons and unit heads of the wards and units to the question regarding the personnel that segregate healthcare waste.

| Personnel                        | No. of<br>Wards/Units | Percentage | Std Error |
|----------------------------------|-----------------------|------------|-----------|
| Doctors                          | 2                     | 6.3%       | 1.00      |
| Nurses                           | 7                     | 21.9%      | 2.81      |
| Wards cleaners                   | 6                     | 18.8%      | 4.22      |
| Doctors and Nurses               | 5                     | 15.6%      | 5.15      |
| Nurses and Ward cleaners         | 1                     | 3.1%       | -         |
| Doctor, Nurses and Ward cleaners | 7                     | 21.9%      | 2.88      |
| Nobody                           | 4                     | 12.5%      | 6.03      |
| Total                            | 32                    | 100%       |           |

 Table 4.8:
 Personnel that segregate healthcare waste in UATH.

Table 4.9 shows when segregation of wastes takes place in UATH.

 Table 4.9:
 Timing of segregation of wastes in UATH

| Timing of Segregation          | No. of Wards/units | Percentage | Std Error |
|--------------------------------|--------------------|------------|-----------|
| Periodically                   | 2                  | 6.3        | 4.00      |
| At the end of each shift       | 4                  | 12.5       | 3.84      |
| Immediately waste is generated | 19                 | 59.4       | 2.05      |
| At the end of each working day | 3                  | 9.4        | 5.03      |
| No segregation at all          | 4                  | 12.5       | 4.00      |
| Total                          | 32                 | 100.0      | 1.71      |

# 4.6 COLOUR CODING OF CONTAINERS

Table 4.10 shows the response of the matrons/heads of wards/units to the question on whether the containers for waste segregation are colour coded or not.

| Table 4.10: Colour coding of containers used for waste seg | egregation. |
|------------------------------------------------------------|-------------|
|------------------------------------------------------------|-------------|

| Practice                        | Number of wards/unit<br>involved | Percentage | Std Error |
|---------------------------------|----------------------------------|------------|-----------|
| Containers are colour coded     | 18                               | 56.3%      | 2.35      |
| Containers are not colour coded | 10                               | 31.3%      | 2.41      |
| No segregation                  | 4                                | 12.5%      |           |
| Total                           | 32                               | 100%       | 1.71      |

## 4.7 ATTITUDE OF STAFF TOWARDS HEALTHCARE WASTE, OCCUPATIONAL PROTECTION AND TRAINING ON HEALTH CARE WASTE MANGEMENT

Table 4.11: Generation of Healthcare Waste in the Course of Duty

| Designation      | Generation of HCW during the course of duty |    |    |  |
|------------------|---------------------------------------------|----|----|--|
|                  | Yes                                         | No |    |  |
| Doctor           | 14                                          | 1  | 15 |  |
| Nurse            | 35                                          | 0  | 35 |  |
| Aux Staff        | 0                                           | 6  | 6  |  |
| Ward Cleaner     | 0                                           | 7  | 7  |  |
| Waste<br>Handler | 0                                           | 7  | 7  |  |
| Total            | 49                                          | 21 | 70 |  |

|             |                  | Attitude to Env                | ng of waste | Total                                    |    |
|-------------|------------------|--------------------------------|-------------|------------------------------------------|----|
|             |                  | Respondents'<br>responsibility |             | Hospital<br>management<br>responsibility |    |
| Designation | Doctor           | 5                              | 3           | 7                                        | 15 |
|             | Nurse            | 8                              | 10          | 17                                       | 35 |
|             | Aux Staff        | 0                              | 5           | 1                                        | 6  |
|             | Ward Cleaner     | 5                              | 0           | 2                                        | 7  |
|             | Waste<br>Handler | 7                              | 0           | 0                                        | 7  |
| Total       |                  | 25                             | 18          | 27                                       | 70 |

Table 4.12: Attitude of workers to environmentally sound handling of health care waste in UATH.

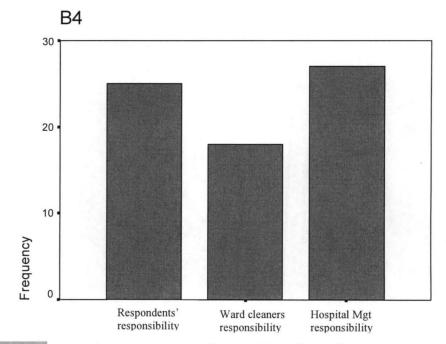



Figure 4.5: Attitude to environmentally sound handling of health-care waste

|             |               | Segregation of waste in<br>worker's ward/unit |    | Total |
|-------------|---------------|-----------------------------------------------|----|-------|
|             |               | Yes                                           | No |       |
| Designation | Doctor        | 11                                            | 4  | 15    |
|             | Nurse         | 28                                            | 7  | 35    |
|             | aux Staff     | 1                                             | 5  | 6     |
|             | Ward Cleaner  | 4                                             | 3  | 7     |
|             | Waste Handler | 0                                             | 7  | 7     |
| Total       |               | 44                                            | 26 | 70    |

Table 4.13: Number of healthcare workers working in wards/units where waste segregation is practiced.

Table 4.14 shows the number of healthcare workers that use protective clothing in UATH. While table 4.15 shows the number of healthcare workers that are immunized against hepatitis and tetanus.

 Table 4.14: Number of healthcare workers that use protective clothing in UATH

|             |           | Use of protec | ctive clothing | Total |
|-------------|-----------|---------------|----------------|-------|
|             |           | Yes           | No             |       |
| Designation | Doctor    | 13            | 2              | 15    |
|             | Nurse     | 24            | 11             | 35    |
|             | aux Staff | 3             | 3              | 6     |
|             | Ward      | 7             | 0              | 7     |
|             | Cleaner   |               |                |       |
|             | Waste     | 5             | 2              | 7     |
|             | Handler   |               |                |       |
| Total       |           | 52            | 18             | 70    |

| Γ     | Designation   | Immunization against<br>hepatitis & tetanus |    | Total |
|-------|---------------|---------------------------------------------|----|-------|
|       |               | Yes                                         | No |       |
|       | Doctor        | 9                                           | 6  | 15    |
|       | Nurse         | 22                                          | 13 | 35    |
|       | aux Staff     | 1                                           | 5  | 6     |
|       | Ward Cleaner  | 1                                           | 6  | 7     |
|       | Waste Handler | 0                                           | 7  | 7     |
| Гotal |               | 33                                          | 37 | 70    |

 Table 4.15:
 Number of healthcare workers immunized against hepatitis and tetanus in UATH

Table 4.16 depicts the incidence of needle prick injury amongst healthcare workers in UATH. Table 4.17 shows the number of the cases that were documented and table 4.18 shows the number that were treated with post exposure prophylaxis.

*Table 4.16: Incidence of needle prick injury amongst healthcare workers in UATH* 

|             |               | Needle prick injury in last 6<br>months |    | Total |
|-------------|---------------|-----------------------------------------|----|-------|
|             |               | Yes                                     | No |       |
| Designation | Doctor        | 4                                       | 11 | 15    |
|             | Nurse         | 2                                       | 33 | 35    |
|             | aux Staff     | 0                                       | 6  | 6     |
|             | Ward Cleaner  | 1                                       | 6  | 7     |
|             | Waste Handler | 1                                       | 6  | 7     |
| Total       |               | 8                                       | 62 | 70    |

|             |               | Documentation of needle prick injury |    | Total |
|-------------|---------------|--------------------------------------|----|-------|
|             |               | Yes                                  | No | 1     |
| Designation | Doctor        | 1                                    | 3  | 4     |
|             | Nurse         | 0                                    | 2  | 2     |
|             | Ward Cleaner  | 0                                    | 1  | 1     |
|             | Waste Handler | 0                                    | 1  | 1     |
| Total       |               | 1                                    | 7  | 8     |

 Table 4.17: Documented cases of needle prick injury amongst healthcare worker in UATH

*Table 4.18: Needle prick injuries treated with post-exposure prophylaxis in UATH* 

|             |               | Post exposure prophylaxis |    | Total |
|-------------|---------------|---------------------------|----|-------|
|             |               | Yes                       | No |       |
| Designation | Doctor        | 1                         | 3  | 4     |
|             | Nurse         | 0                         | 2  | 2     |
|             | Ward Cleaner  | 0                         | 1  | 1     |
|             | Waste Handler | 0                         | 1  | 1     |
| Total       |               | 1                         | 7  | 8     |

Tables 4.19 and 4.20 that received training on healthcare waste

management in school and on the job respectively.

Table 4.19: Healthcare workers that received training on healthcare waste management in school.

|             |               | Training | in school | Total |
|-------------|---------------|----------|-----------|-------|
|             |               | Yes      | No        |       |
| Designation | Doctor        | 9        | 6         | 15    |
| C           | Nurse         | 19       | 16        | 35    |
|             | aux Staff     | 0        | 6         | 6     |
|             | Ward Cleaner  | 0        | 7         | 7     |
|             | Waste Handler | 0        | 7         | 7     |
| Total       |               | 28       | 42        | 70    |

|             |               | Training on the job |    | Total |
|-------------|---------------|---------------------|----|-------|
|             |               | Yes                 | No |       |
| Designation | Doctor        | 4                   | 11 | 15    |
|             | Nurse         | 24                  | 11 | 35    |
|             | aux Staff     | 1                   | 5  | 6     |
|             | Ward Cleaner  | 1                   | 6  | 7     |
|             | Waste Handler | 0                   | 7  | 7     |
| Total       |               | 30                  | 40 | 70    |

Table 4.20: Healthcare workers that received training on healthcare waste management on the job.

#### **CHAPTER FIVE**

#### DISCUSSION, SUMMARY, CONCLUSION AND RECOMMENDATIONS 5.1 DISCUSSION

A total of 65,873.8kg of solid healthcare waste was generated during the period of the study. On a daily basis an average of 784.21kg of solid healthcare waste was generated. The highest quantity of waste of 911.92kg was generated on Thursday, while the lowest quantity of 607.50kg was generated on Sunday. There was no significant difference (p < 0.05) in the amount of waste generated on Monday, Tuesday Wednesday and Thursday, but the amount of waste generated on Sunday, Friday and Saturday was significantly lower (p>0.05) than the other four (4) days, although there is no significant difference (p<0.05) amongst these three days.

On a weekly basis, the highest quantity of 6,624kg was generated on the eighth week. The lowest quantity of 4,572kg was generated on the sixth week. The quantity of waste generated during the first week was significantly lower (p<0.05) than those of eighth and tenth weeks. But the quantity of waste generated in the third week was neither significantly lower nor significantly higher (p<0.05) than the quantity generated during any other week. The quantity of solid waste generated in the fourth week

was significantly lower (p>0.05) than those of the eighth and tenth week, but was not significantly different from the other weeks. The quantity of solid waste generated in the fifth week was not significantly different from the other weeks, but it was significantly lower than that of the eighth week. The quantity of solid healthcare waste generated in the sixth week was significantly lower than those of the seventh, eighth and tenth weeks, but was not significantly different from the other weeks. In the seventh week, the quantity generated was not significantly different from the other weeks but significantly higher than that of the sixth week.

Although the quantity of solid healthcare waste generated was highest in the eighth week. But it was not significantly higher than those of the third, seventh, ninth, tenth, eleventh and twelfth weeks. In the ninth week, the quantity of waste generated was not significantly different from the other weeks, but it was significantly higher than those of second and sixth weeks. The quantity of waste generated in the tenth week was significantly higher than those of weeks one, two, four and six, while it is not significantly different from those of the other weeks. The quantity of waste generated in the eleventh and twelfth weeks followed the trend of the third week by not being significantly different from the waste generated in all the other weeks. Table 4.2 presents the weekly relationships in the quantity of waste generated in the twelve weeks of field study.

If the average daily waste generation of 784.21 kg is divided by 350, the number of beds in the hospital, we will arrive at a waste generation rate of 2.24kg/bed/day. Figures 4.1 and 4.2 depict the daily and weekly rates of generation of solid healthcare waste in UATH respectively.

Out of the 784.21kg of solid healthcare waste generated in the hospital, only 235.26kg is estimated to be infectious. If these wastes were properly segregated from the point of generation to final disposal, it is only this proportion of infectious waste that would require special treatment. The bulk of 448.95kg is harmless general waste and could join the municipal waste stream. The knowledge of the generation rate which is estimated to be 2.24kgkg/bed/day will enable the hospital management to forecast the future trend of solid healthcare waste generation and thus effectively plan and budget for waste management.

The factors responsible for daily and weekly variations in the quantity of solid waste generation were observed to be; the number of surgical operations performed, the number of child deliveries in the labour ward

89

and the number of accidents and emergency cases. All of these mostly led to the generation of heavily blood soaked cotton gauze, bandages, sanitary pads and hand gloves. The quantity of waste generated reduced significantly (p>0.05) towards the weekend from Friday to Sunday as compared with the weekdays of Monday, Tuesday, Wednesday and Thursday. It was observed during the field study that patronage of the hospital reduced over the weekend. Units like General Outpatient Department, Paediatric/Maternity Outpatient Department, Dental clinic, Laboratory, Operating theatre, Radiology, Physiotherapy, Ante-natal clinic, Eye clinic, Ear, Nose and Throat clinic, Special Treatment Clinic, Family Planning Unit, National Programme on Immunization etc do not open to the public during weekends. Hence, lesser crowd of people was observed in the hospital on weekends than weekdays. This tends to be in agreement with the observation of Suwannee (2006) that the higher the number of patients the greater the waste generation. It is also in agreement with the observation of Hamoda (2005) of minimal collection of waste on weekends in Kuwait.

The solid waste generation of 2.24kg/bed/day is comparable and consistent with the rates obtained by Sumannee (2006) in Thailand and

Bassey *et al* (2005) in Abuja, Nigeria. It is also within the range observed by Johannessen (1997) for the low income Mediterranean area.

The result of the identification test carried out on the isolates from the soil of the healthcare waste dumpsite and the adjacent soil as presented on table 4.3 revealed the presence of the following bacteria species; Citrobacter. Escherichia coli. Salmonella typhi, Pseudomonas aeroginosa, Staphylococcus aureus, Micrococcus spp, Proteus vulgaris and Aeromonas spp. The most frequently isolated bacteria specie from the two soil samples was Staphylococcus aureus. It had 56.67% appearance from the soil of healthcare waste dumpsite and 50.00% appearance from the soil adjacent to the dumpsite. The bacteria specie was more frequently isolated from the soil of healthcare waste dumpsite than the soil adjacent to the dumpsite, and the difference is significant (p>0.05). The least frequently isolated bacteria from the soil of the healthcare waste dumpsite were Citrobacter spp, Escherichia coli, Salmonella typhi and Aeromonas spp. Also the least frequently isolated bacteria species from the soil adjacent to the dumpsite were Citrobacter spp and Salmonella typhi. Figure 4.3 presents the frequency of isolation of bacteria from the soils.

91

The result of the identification tests carried out on the soil of the healthcare waste dumpsite and adjacent soil revealed the presence of the following fungi species; Aspergillus niger; Rhizopus nigrican; Candida albican; Fusarium gypsum; Penicillium viracadium; Microsporum canis; Geothricum spp; Sporothrix spp; Trichhophyton rubrum; Cladiosporum spp and *Pityrosporum* spp. The frequency of isolation of fungi isolates identified is presented on table 4.4. The most frequently isolated fungi species from the soil of the healthcare waste dumpsite was Aspergillus niger followed by Candida albican, Penicillium viricadium and Tricophyton rubrum. Next were Fusarium gypsum and Geothricum spp. While the least were Rhizopus nigrican, Microsporum canis, Sporothrix spp. Cladiosporium spp and Pityrosporium spp. Aspergillus niger was also the most frequently isolated fungi species in the soil adjacent to the dumpsite. Figure 4.4 shows the percentage appearance of fungi species from the soil samples.

More bacteria species were isolated from the soil of the healthcare waste than the soil adjacent to the dumpsite, but not significantly more (p<0.05). But the bacteria species appeared to thrive more in the soil adjacent to the dumpsite except for *Staphylococcus aureus* that thrived more in the soil of the healthcare waste dumpsite. This may be due to the frequent burning that the healthcare waste is subjected to in the dumpsite, thereby making it less conducive to the growth of bacteria. Also the presence of chemicals in the healthcare waste dumpsite may act as antiseptic to bacteria. This agrees with Oyeleke et al (2008) that reported that the reason for the low level of microbial load could be due to antiseptic and other chemicals contained in the hospital wastes. Most of the bacteria were gram negative rods or bacilli (Citrobacter spp, Escherichia coli, Salmonella typhi, Pseudomonas aeroginosa, Proteus vulgaris and Aeromonas spp). The others were gram positive cocci (Staphylococcus aureus and Micrococcus spp). Gram negative bacilli (coliforms) like Escherichia coli, Pseudomonas spp and Proteus spp are implicated in cases of sepsis occurring in surgical wounds. Coliforms along with Staphylococcus spp are responsible for a large proportion of urinary tract infections in hospitals (Thomas 1973). These bacteria are therefore important causes of hospital acquired or nosocomial infections.

Also more fungi species (p<0.05) were isolated from and thrived more in the soil of the healthcare waste dumpsite than the soil adjacent to the dumpsite. This is also in agreement with Oyeleke *et al* (2008) who isolated most of these organisms. *Aspergillus niger* is an animal and human pathogen that causes diseases collectively known as aspergillosis

93

as reported by Oyeleke *et al* (2008). Similar to the observation of Oyeleke *et al* (2008), *Microsporum canis* was one of the least frequently isolated fungi species. This organism was reported by Ernest *et al* (1984) to be the cause of dermatitis in cats and dogs which can be transmitted to humans. *Candida albicans* is reported by Cheesbrough (2000) to be the cause of candidiasis.

The pH of hospital dumpsite soil ranged from 6.8 to 9.2, while that of the adjacent soil ranged from 6.74 to 7.89 as shown on table 4.5. The result show that the pH value of the soil of the healthcare waste dumpsite is not significantly higher (p<0.05) than that of the adjacent soil. The moisture content of the soil of the healthcare waste dumpsite ranged from 3.6% to 7.6%. While that of the adjacent soil ranged from 3.6% to 6.9% but there is a significant difference between them (p>0.05). The higher pH of the soil of the healthcare waste dumpsite is similar to the observation of Oyeleke *et al* (2008). According to Oyeleke *et al* (2008) this may be as a result of the ash being generated from open burning of waste.

The task of cleaning the hospital is contracted to a private company that approaches the task strictly from the point of view of housekeeping, without any special regard for infectious healthcare waste. To discharge

its contractual obligations the company employs a barely literate workforce, mostly women, as ward cleaners and waste handlers. The workforce that is lacking of any training whatsoever in healthcare waste management go about sweeping, mopping and disposing of various kinds of waste emanating from the wards/units, under the watchful eyes of their supervisors who equally had no training in healthcare waste management. The cleaning personnel indiscriminately empty waste containers from the wards/units into the twenty (20) number 120 litre temporary storage bins, placed haphazardly outside the wards/units (Plate I). An examination of the temporary storage bins revealed odd mixture of different types of healthcare waste like blood soaked bandages, cotton gauze and sanitary pads; used intravenous infusion sets; bottles and glass; filled safety boxes; unused drugs; aerosol cans; packaging for drugs, equipment, food and sachet water; food remnants; paper; grass and lawn trimmings etc (Plates II and III). Field observations reveal that healthcare wastes are dumped in an unfenced and unsecured open dumpsite in the hospital (Plate IV). Highly infectious and infectious wastes from the laboratory and wards/units are dumped openly without any pre-treatment whatsoever (Plate V). The wastes were conveyed to the open dumpsite, which is about 25m from the last unit of the hospital, in the temporary storage bins early in the morning and in the afternoon by wastes handlers working in two shifts. The dumpsite is openly patronized by flies, rodents, birds, domestic animals (like dog, goats, chicken, cattle) and human scavengers. Bon fire is made of the dumpsite periodically, during which sounds of exploding bottles and aerosol cans rent the air. The immediate vicinity of the dumpsite was covered in thick smoke during this period. However the waste was left unburnt for several weeks during the rainy season because of wetness. The immediate vicinity of the dumpsite was overwhelmed by putrefying odour while flies were having a field day on the accumulated wastes. Although there is a pyrolitic incinerator (Plate VI) installed in the hospital premises, field investigations revealed that it was never commissioned for use and open dumping and burning has been the method of choice since the inception of the hospital.

The environmental department which was, hitherto, in charge of waste management was scrapped and its entire staff was laid off earlier in the year hence the cleaning service was contracted to the private company. Apparently, this is in line with the downsizing policy of the Federal government, which encourages out-sourcing of non-core services in order to engender a more focused and efficient service delivery to the public. Field investigations revealed that the hospital neither has a waste management committee nor an infection control committee and the task of cleaning the hospital is purely housekeeping and administrative one.

The University of Abuja Teaching Hospital is a major source of healthcare waste. However, it was observed that the hospital management does not consider healthcare waste management in such a hospital as a major task, which requires careful planning and implementation by well trained personnel. The present waste management practice in the hospital falls short of the requirements for the environmentally sound handling of healthcare waste recommended by SBC/UNEP and WHO (2005). It is also in violation of the "duty of care" and the "precautionary" principles of Stockholm and Basel Conventions.

Appendix III presents the wards/units where segregation of waste is practiced in UATH. Twenty-seven (27) matrons/unit heads claimed that segregation of waste is practiced in their wards/units. While five (5) matrons/unit heads admitted that waste segregation is not practiced in their wards/units. Therefore segregation of solid healthcare waste takes place in 84% of the thirty-two (32) wards/units while it does not take place in 15.65%. There is a significant difference (p>0.05) between the wards/units that segregate waste and those who do not. The five (5) units

where segregation of waste does not take place are, Paediatric/Maternity Outpatient Department, Dental clinic, Family Planning, Surgical Outpatient Department and Physiotherapy (Appendix III). Field observation revealed that these units are light generators of infectious healthcare waste. They hardly generated blood soaked cotton, bandages and sharps. Although, the disposition of the few syringes and needles used in these units along with the general waste stream may be overlooked because of the extremely small quantity involved, but the need to institute a uniform code of healthcare waste management practice in the hospital will not permit this. Especially considering the fact that doctors and nurses who may have become accustomed to this practice in the above mentioned units may find it difficult to adjust when they find themselves working in other wards/units where large quantities of infectious solid healthcare waste are generated.

Table 4.6 depicts the types of waste that is segregated from the general waste stream in the wards and units of UATH. Nine (9) wards/units representing 28.1% of the wards/units segregate only sharp, most especially needles and syringes, from the general waste stream. Two (2) wards/units (6.3%) segregate general waste and sharp only. Ten (10) wards/units (31.3%) segregate infectious waste and sharp. Seven (7)

wards/units (21.9%) segregate all the waste categories, while four (4) wards/units segregate none of the waste categories. There is a significant difference (p>0.05) in the response of the wards/units.

The focus of waste segregation efforts differ from ward to ward in the hospital. A critical analysis of the responses of matrons/heads of wards/units reveal that proper segregation of solid healthcare waste into the three (3) categories recommended by SBC/UNEP and WHO (2005) takes place only in 21.9% of the wards/units (p>0.05). Improper segregation of solid healthcare waste takes place in the majority (65.7%) of the wards/units because they have only two receptacles for solid healthcare waste. Sharp wastes go into sharp boxes while the general waste and the infectious waste are mixed together in the same receptacle. Another 12.5% of the wards/units do not segregate waste at all. This fact is borne out during field observation. It was observed that most of the wards/units mix their general wastes and infectious wastes together, although, most of them segregate sharps properly in sharp boxes. Field investigations reveal that a non-governmental organization, Making Medical Injection Safe (MMIS), which is funded by United States Agency for International Development (USAID) donates sharp boxes to the hospital. The Federal Ministry of Health also donated yellow coloured

99

buckets for infectious waste. The provision of materials for the segregation of waste in the hospital is externally driven and sustained, but not through the direct efforts of the hospital management.

The responses of the matrons and heads of wards and units reveal that the choice of containers or bags used to segregate solid healthcare waste vary among wards and units. As shown on table 4.7 it was observed that only 46.9% (p>0.05) use cardboard safety boxes for sharp waste and plastic buckets for infectious waste as recommended by SBC/UNEP and WHO (2005). 25% use only plastic buckets. 9.4% use only cardboard boxes. Another 9.4% use anything they can lay their hands on. 6.3% use cardboard boxes, plastic buckets and polythene bags. 3.1% use polythene bags and cardboards boxes. SBC/UNEP and WHO (2005) recommended the use of cardboard safety box and plastic bucket, amongst others, for segregation sharps and other waste categories respectively. This is because safety box prevents injury from sharps while plastic bucket prevents seepage of body fluids (e.g. blood and vomit).

As shown on Table 4.8, in 6.3% of the wards and units of UATH it is the medical doctors that segregate the waste. In 21.9%, it is the nurses and in 18.8%, it is the ward cleaners. Doctors and Nurses segregate the waste in

15.6% of the wards and units. In 3.1%, it is Nurses and Ward cleaners that segregate the wastes. Doctors, Nurses and Ward cleaners segregate the waste in another 21.9%, while nobody segregates the waste in 12.5%. There is a significant difference (p>0.05) in the responses. According to SBC/UNEP and WHO (2005), segregation of waste should be done by the person generating the waste. In a typical hospital setting, most of the infectious wastes and sharps wastes are generated in the course of medical treatment of patients by doctors and nurses. Therefore segregation of these wastes should be done by them. If wastes were segregated by the person generating them the possibility of contamination of harmless general waste and infection during sorting will be drastically reduced. Ward cleaners should only be involved in waste segregation in of ward sweeping and accidental waste spillage. case The recommendation of SBC/UNEP and WHO (2005) and Pruss et al (1999) and WHO (2002) is that segregation of wastes should be done immediately it is generated by the person generating it. Table 4.9 shows that, 59.4% of the wards and units in UATH segregation of waste take place immediately it is generated. But segregation of waste takes place at various times such as periodically (6.3%), at the end of each working day (9.4%), no segregation at all (12.5%) in the rest of the wards. Again there is a significant difference (p>0.05) in the timing of segregation of waste

amongst the wards/units. It is observed that almost 60% of the wards in the hospital comply with the recommendation for timing of segregation of waste. The number of wards/units that segregate waste on time is significantly higher (p>0.05) than those who do not segregate waste on time. The wards/units who do not segregate solid healthcare waste on time pose grave danger to the wellbeing of health workers, especially waste handlers, who are saddled with the duty of sorting the mixed up waste.

As depicted on Table 4.10, more than half of the wards and units use colour coded containers to segregate solid healthcare waste and they are significantly more (p>0.05) in number than the wards and units that do not use colour coded containers. But only 66.7% of those that responded "yes" could say precisely the colour codes that were used for general wastes and infectious wastes in their units. Appendix IV depicts the colour codes that are used in different wards/units of the hospital for the segregation of general waste and infectious waste. It was observed that the SBC/UNEP and WHO (2005) recommended colour codes of black for general non-risk wastes and yellow for infectious wastes was employed in Male Surgical ward, Gynaecology ward and Ear Nose and Throat clinic. Others adopted various colour codes to segregate their wastes. Some of

the other colour combinations used were yellow for general wastes and red for infectious wastes in Special Care Baby Unit; orange for general wastes and white for infectious wastes in Intensive Care Unit etc. The most amazing colour combination was in Female Medical ward, where yellow was used for general waste and black for infectious wastes. This colour code is the direct opposite of the recommendation of SBC/UNEP and WHO (2005) on colour coding of containers for segregation of healthcare wastes. Going by field observations the situation in UATH as far as colour coding of containers for segregation of wastes is concerned, could be described as a "colour riot" as each ward/unit segregated its wastes with any combination that caught its fancy. The hospital does not have any policy regarding colour coding of containers for waste segregation. This negates the recommendation of SBC/UNEP and WHO (2005) that a simple and uniform colour coding should be applied throughout a country. The practice of using multiple colour codes in one hospital is fraught with danger as medical personnel and wastes handlers have to memorize the colour codes in use in all the wards and units. This is cumbersome and staff members who find themselves posted to new wards/units may find it difficult to adjust to colour codes in use in their new duty posts, hence the danger of mixing together of different kinds of

wastes. This is similar to the observations of Longe and Williams (2006) in some hospitals in Lagos.

However, field observation revealed that there is no attempt whatsoever to segregate waste in the temporary storage rubbish bins in the hospital. The practice of mixing all kinds of waste together in the temporary storage bins in UATH has the effect of nullifying the little attempt made at segregating waste at the wards/units. It also tends to discourage personnel central to waste management because, there is no point in taking the pains to segregate waste in the wards/units, only for them to be mixed together in the temporary storage bins. Consequently, healthcare waste in the hospital becomes 100% infectious (Chandra 1999; SBC/UNEP and WHO 2005). This is similar to observations made by Rasheed et al (2005) in Karachi and Longe and Williams (2006) in Lagos. The implication is that, instead of between 10% - 25% of the total waste stream that should be regarded as potentially infectious requiring special treatment (Pruss et al 1999; Chandra 1999; Coker et al 1999 and Suwannee 2002), the whole waste stream has become potentially infectious. The potential threat to human beings, animals and the environment is multiplied. The cost of waste management is increased. Also the opportunity for recycling materials like paper, cardboard, nylon,

104

plastic, bottles etc. is seriously hampered because all wastes have become potentially infectious, hence the potential of generating employment and income from the recycling of healthcare wastes is drastically reduced in UATH. Oyeleke et al (2008) reported the following as some of the hazards associated with open and unsecured solid healthcare waste dumpsite: pathogens present in wastes can leach out and contaminate ground water and surface water; harmful chemicals present in biomedical waste such as heavy metals can also cause water pollution and excess nutrient leachate such as nitrates and phosphates can cause a phenomenon called eutrophication. The method of open burning of potentially infectious solid healthcare waste is filled with public health and environmental hazards. Some of the hazards include the release of dioxins and furans which are known carcinogens, from the combustion of the plastic products which were abound in the open dumpsite. Incomplete combustion of wastes that takes place during the open burning of solid healthcare wastes exposes human beings, animals and the environment to the risk of infection from the pathogenic microorganisms contained in the waste. The release of green house gases like methane, carbon dioxide, carbon monoxide, nitrogen oxides etc will contribute to global warming and climate change. In fact open dumping and burning of infectious solid healthcare waste is a violation of "duty of care" principle. It also

contravenes SBC/UNEP and WHO (2005) recommendations that highly infectious wastes from medical laboratories should be pre-treated immediately with sodium hypochlorite solution, before joining other medical wastes. Land disposal of untreated healthcare wastes is not recommended and should only be used as a last resort and should be done only in a sanitary land fill. This unwholesome treatment of healthcare wastes is similar to the observations of Oyeleke *et al* (2008), Bassey *et al* (2006), Longe and Williams (2006), Manyele and Anicetus (2006), Rasheed *et al* (2005), Asuquo *et al* (2003) Suwannee (2002), Nessa *et al* (2001) and Coker *et al* (1999).

Table 4.11 shows the response of the staff central to healthcare waste management to the question whether healthcare waste was being produced during the course of discharging their duties. Fourteen (14) of the doctors (p<0.05) said that healthcare waste was being generated in the course of discharging their duties. While only one doctor (p<0.05) said healthcare waste not generated during the course of discharging his duty. All the nurses (p<0.05) admitted that healthcare waste was being generated in the course of discharging their duties. Also all the workers in the categories of auxiliary staff, ward cleaners and waste handlers

(AUX/WC/WH) said no healthcare waste was generated in the course of discharging their duties.

Attitudes towards the environmentally sound handling of healthcare waste vary among the different categories of workers in the hospital as depicted on Table 4.12 and Figure 4.5. Only five (5) of the doctors (p<0.05) felt that the environmentally sound management of the healthcare waste generated in the course of their duty was their responsibility. Three (3) of the doctors (p < 0.05) felt that it is the responsibility of ward cleaners and seven (7) felt it is the responsibility of the hospital management. Eight (8) nurses (p<0.05) felt that the environmentally sound handling of the healthcare waste generated in the course of discharging their duties is their responsibility. 10 (p<0.05) of the nurses felt that it is the responsibility of wards cleaners and 17 felt it is the responsibility of the hospital management. Although workers in the category of auxiliary, ward cleaners and waste handlers, do not generate healthcare waste in the course of discharging their duties but twelve (12) of them (p < 0.05) felt that the environmentally sound handling of the waste is their responsibility. Five (5) of them, who are auxiliary staff (p < p0.05) felt it is the responsibility of the ward cleaners and three (3) (p<0.05) felt it is the responsibility of the hospital management. The

107

attitudes of 66.7% of the doctors and 76.1% of the nurses go against the international convention which says that the environmentally sound handling of healthcare waste is the responsibility of the person generating it. The other categories (auxiliary staff, ward cleaners and waste handlers), although traditionally poorly educated, have a more altruistic attitude towards environmentally sound handling of healthcare waste. This is probably due to their designation as waste cleaners and waste handlers. The doctors and nurses appear to be snobbish of the waste generated by them, probably due to the elitist natures of their jobs.

Eleven (11), twenty-eight (28) and five (5) of the doctors, nurses and auxiliary staff, ward cleaners and waste handlers respectively are working in wards/units where waste segregation is practiced as depicted on table 4.13. 26.7%, 20% and 75% of the doctors, nurses and auxiliary staff, ward cleaners and waste handlers respectively are not working in an environment where they are made to handle waste in an environmentally sound manner. Although the proportion of personnel not working in wards/units where waste is handled in an environmentally sound manner is not significant (p<0.05) for doctors and nurses, but the activities of this minority group may thwart the effort of the majority, especially when they find themselves working alongside each other. This minority group

may find it difficult to adjust to doing the correct thing. Their attitude towards waste segregation may also discourage those who are used to segregating their waste. Especially if the errant personnel happen to be senior and respected staff members who can influence their subordinates. In the wards/units where waste segregation is practiced, all categories of workers appear to be involved in the exercise.

As shown on table 4.14 fifty-two (52) workers use protective clothing while eighteen (18) workers do not. The number of healthcare workers who use protective clothing in UATH is not significantly higher (p<0.05) than that of those who do not. 74.3% of the workers use protective clothing while 25.7% do not. This is somewhat similar to the observation of Asuquo *et al* (2003) in University of Calabar Teaching Hospital.

Table 4.15 depicts the number of personnel that were immunized against hepatitis and tetanus. Nine (9) doctors were immunized against hepatitis and tetanus while six (6) doctors were not. Twenty-two (22) nurses were immunized against hepatitis and tetanus and thirteen (13) were not so immunized. But only two (2) of the personnel in the category of auxiliary staff, ward cleaners and waste handlers were immunized. The level of immunization against hepatitis and tetanus amongst doctors and nurses is above average but not significantly (p<0.05). One would have expected a higher level of immunization amongst professionals who are the elites of the medical profession. Little wonder then that the level of immunization is very low amongst personnel of lower cadre. The occupational health of healthcare worker is not accorded the level of importance it deserves especially amongst personnel of lower cadre who by the nature of their jobs are prone to injury and infection from sharps.

As shown on Table 4.16, the incidence of needle prick injury is highest amongst medical doctors in UATH, representing 50% (p>0.05) of the cases in the last six months. Four (4) doctors have experienced needle prick injury in the last six months as compared to two (2) nurses and two (2) workers in the category of auxiliary staff, ward cleaners and waste handlers. The incidence of needle prick injury is significant (p>0.05) amongst healthcare workers in the hospital. Only one (1) of the eight (8) cases of needle prick injury in the hospital in the last six (6) months was documented and only one victim, a medical doctor took post exposure prophylaxis as shown on tables 4.17and 4.18 respectively. 87.5% of the needle prick injuries in the hospital in the last six months were undocumented and untreated. This is indicative of the low level of importance attached to the risk of infection from deadly diseases such as

110

hepatitis, tetanus and HIV amongst healthcare workers in the hospital. This lackadaisical attitude is surprising in view of the fact that almost all the respondents claimed to be aware of the hazards inherent in healthcare waste.

As shown on table 4.19 and 4.20 respectively nine (9) doctors received training on healthcare waste management while in school and only four (4) received training on healthcare waste management on the job. Nineteen (19) nurses received training on healthcare waste management while in school and twenty-four (24) received training on the job. While none of the lower cadre workers received training on healthcare waste management in school and only two were trained on the job. Significantly more (p>0.05) doctors received training on healthcare waste management in school than nurses. While significantly more (p>0.05) nurses have received training on healthcare waste management on the job than medical doctors. More nurses took advantage of a week seminar organized in the hospital by the Federal Ministry of Health during the field study of this research. Only 10% of the workers in the category of auxiliary staff/ward cleaners/waste handlers received on the job training in healthcare waste management. Considering their lack of prior training in healthcare waste management, and their vital role in the management of healthcare waste, more of these low cadre workers should have been encouraged to take advantage of the one week seminar organized by the Federal Ministry of Health. Also the syllabus of the Schools of Nursing and Midwifery should be planned in such a way as to expose more of them to training on healthcare waste management while in school. While more doctors should be encouraged to avail themselves of on the job opportunities to update their knowledge of healthcare waste management.

Most (p>0.05) of the hospital workers central to healthcare waste management, of all categories, are aware of the potential hazards inherent in healthcare waste. This is in contrast to the observation of Pandit *et al* (2005) in India, where most of the doctors were aware of the potential risk of infection inherent in healthcare waste, but the auxiliary staffs (ward boys, sweepers, etc.) were not aware.

#### 5.2 SUMMARY

i. A total of 65,873kg of solid healthcare waste was generated at the rate of 2.24kg/bed/day during the 12 weeks of study.

ii. The soil of the hospital's healthcare waste contains some pathogenic bacteria and fungi.

iii. The pH of the soil of the healthcare waste dumpsite was significantly higher than that of the adjacent soil.

iii. Segregation of healthcare waste takes place in 84.45% of the wards and units but only 21.9% had provision for the segregation into the three categories recommended by SBC/UNEP (2005).

iv. There is no uniform colour coding of containers used for waste segregation in the hospital.

v. All categories of solid healthcare waste are mixed together at temporary storage, untreated and openly dumped in UATH.

## 5.3 CONCLUSION

The University of Abuja Teaching Hospital is a 350 bed medical facility and generates solid healthcare waste at the rate of 2.24kg/bed/day. These wastes are not properly segregated, untreated, dumped openly in the hospital premises and constitute a health hazard to the hospital workers, patients, the general public and the environment. The management of solid healthcare waste in the hospital is improper and environmentally unsound and contravenes major international conventions to which Nigeria is a signatory.

## **5.4 RECOMMENDATIONS**

The need to institute proper and environmentally sound management of healthcare waste in UATH cannot be overemphasized. Apart from the "duty of care" imposed on it by international conventions, the hospital as a training ground for different categories of healthcare workers, owes the society the duty of instilling the etiquette of proper and environmentally sound management of healthcare waste in its students from the beginning of their training. There is no better way of doing this than the example of its own practice.

The following recommendation should be considered as part of efforts to institute proper and environmentally sound management of healthcare waste in the hospital.

- Setting up a waste management committee and appointment of a waste management officer who will be responsible for the waste management plan in the hospital.
- 2. Waste reduction, reuse and recycling should be the aim of the waste management plan.

- Formulation of a code of practice that will stipulate and enforce a uniform practice of solid healthcare waste segregation and colour coding from the generation point to final disposal.
- 4. Infectious healthcare waste should be adequately treated before joining the general waste stream.
- 5. Healthcare workers central to the management of healthcare waste should be properly trained. And also adequate protection against hazards should be given to them. Especially in the area of immunization against infectious diseases such as hepatitis and tetanus.

# REFERENCES

- Adegboye A. A., Moses G. B., Soyinka and Kresis J. K., (1994) The epidemiology of needleprick and sharp instrument accidents in a Nigerian Hospital. *Infect Control Hosp Epidemio* 15:1 pg 27-31.
- Ahmed R. (1997) Hospital Waste Management in Pakistan. Case study report. Special Waste Fractions: Hospital Waste. Waste: http://www.waste.nl.
- Al-Shawani M. F., Jazrawi S. F., Al-Rawi E. H. and Al-Hindawi A.
  K. S. (1986) Bacteria densities of hospital sewage in Baghdad city. *Environ Pollut. Series A 4:1* pg 1-10.
- Askarian M., Vakili M. and Kabir G. (2004) Results of a Hospital Waste survey in Private Hospitals in Fars Province, Iran. *Waste Management 24: 4* pg 347-352
- Asuquo A. E, Epoke J, Kalu N. M and Aniah E. J. (2003) Safety Consideration in the Management of Hospital Generated Wastes in University of Calabar Teaching Hospital, Calabar. *Mary Slessor Journal of Medicine 3:1* pg 69-71
- Bassey B. E., Benka-Coker M. O. and Aluyi H. S. A. (2006) Characterization and management of solid medical wastes in the Federal Capital Territory, Abuja Nigeria. *African Health Sciences* 6:1 pg 58-63.

- Basu R. N. (1995) Issues involved in hospital waste management: An Experience from a Large Teaching Institution. J. Acad Hosp Adm. 7:1 pg 79-83.
- Bdour A., Altrabsheh B., Hadadin N. and Al-Shareif M. (2006) Assessment of medical wastes management practice: A case study of the northern part of Jordan. *Waste Manag.* www.pubmed.gov
- Blenkharn J. J. (1995) The disposal of clinical waste. J. Hospital Infect 30 Suppl: pg 514-520
- Cannata S., Bek M., Baker P. and Fett M. (1997) Infection control and contaminated waste practices in Southern Sydney Area Health Service Dental Clinics. *Aust Dent J.* 42:5 pg 347-352
- Chandra H. (1999) Hospital Waste: An environmental hazard and its management. <u>http://www.geocities.com/isebindia/95/99-07-2</u> html? <u>2006 30.</u>
- Cheesbrough M. (2000) District Laboratory Practice in Tropical Countries. Part II. Cambridge University Press.Cambridge pg. 1-90.
- Coker A. O., Sikiru K. A, Sridhar M. K. C. and Sangodoyin A. Y. (1999) Characterization and management of solid hospital wastes. Proceedings of the 25<sup>th</sup> WEDC Conferences, Addis Ababa, Ethiopia pg 331-334.

- Da Silva C. E, Hoppe A. E, Ravanello M. M. and Mello N. (2005) Medical Wastes Management in the South of Brazil. *Waste Manag.* 25:6 pg 600-605.
- Daughton C. G. and Ternes T. A. (1999) Pharmaceutical and personal care products in the environment: Agents of subtle change? *Environ Health Perspect.* 107:6 pg 907-938.
- **Diaz L. F. and Savage G. M. (2003)** Risks and costs associated with the management of infectious wastes. WHO/WPRO Manila, Philippines.
- Diaz L. F., Savage G. M. and Eggerth L. L. (2005) Alternatives for the treatment and disposal of healthcare waste in developing countries. <u>Wastes Management 25:6 pg 626-637</u>
- **Economouplos A. P. (1993)** Assessment of sources of air, water and land pollution: A guide to rapid source inventory techniques and their use in formulating environmental control strategies. Part 1: Rapid inventory techniques in environmental pollution. World Health Organization, Geneva.
- Ellen J. and Sydney M. F. (1990) Diagnostic Microbiology. 8<sup>th</sup> edition.C. V. Mosby Company USA. pg. 468-470.

- Ernest J., Joseph L. M. and Edward A. D. (1984) Review of Medical Microbiology. 16<sup>th</sup> edition. Lange Medical Publications Los Allos, California. pg 56-112.
- **Federal Ministry of Environment**, Federal Republic of Nigeria Draft of National Healthcare Waste Management Plan in Nigeria. pg. 5-26.
- Grabow W. O. K. and Prozesky O. W (1973) Drug resistance of coliform bacteria in hospital and city sewage. *Antimicrobial Agents and Chemotherapy* 3:2 pg. 175-180.
- Guardabassi L, Peterson A, Olsen J. I. and Dalsgaard A. (1998) Antibiotic Resistance in Acinetobacter spp. Isolated from receiving waste effluent from a Hospital and a Pharmaceutical Plant. Appl. Environ. Microbiol 64:9 pg 250-255.
- Halbwachs H. (1994) Solid waste disposal in district health facilities. World Health Forum, 15 pg 363-367.
- Hamoda H. M, El-Tomi H. N and Bahman Q. Y (2005) Variations in hospital waste quantities and generation rates. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:2 pg 467-476
- Janjua N. Z. (2003) Injection practices and sharp waste disposal by general practitioners of Muree, Pakistan. J. Pak Med Assoc. 53:3 pg 107-111.

- Johannessen L. M. (1997) Management of healthcare waste. In: Proceedings of Environment '97 Conference 16-18 February 1997, Egyptian Environmental Affairs Agency Cairo.
- Koushiar G., Nabizadeh R., Omrani G., Nikoomaram H. and Monavari M. (2006) A Comprehensive Survey on the Present Status of Hospital Waste Management in Iran. *Journal of Applied Sciences 6:3* pg 721-725.
- Kumar R., Patel D. K. and Kumar A. (2004) A survey of trace metals determination in hospital wastes in Lucknow city. *India Online J Health Allied Scs.* 2:2.<u>http://www.ojhas.org/issue10/2004-2-2.htm</u>
- Kungskulniti N, Pulket C, Miller F. D and Smith K. R. (1991) Solid waste scavenger community: An investigation in Bangkok, Thailand. Asia Pac J Public Health 5:1 pg 54-65
- Longe E. O. and Williams A. (2006) A Preliminary Study of Medical Waste Management in Lagos Metropolis, Nigeria. *Iran J. Environ. Health Sci. Eng. 3: 2* pg. 133-139.
- Manyele S. V. and Anicetus H. (2006) Management of medical waste in Tanzania hospitals. *Tanzania Health Research Bulletin* 8:3 pg 177-182.

- Ministry of Health, Federal Republic of Nigeria (2007) National Policy on Injection Safety and healthcare waste management. pp. 1-20.
- Naudin-Rousselle P. and Valejo C. (1997) Medical waste disposal in private practice: Survey among a sample of general practitioners in Haute-Vienne. *Sante Publique 9:3* pg 267-272.
- Nessa K., Quaiyum M. A. and Barkat-e-Khuda B (2001) Waste Management in healthcare facilities: A Review. ICDDR, B Working Paper No. 144.
- Oyeleke S. B, Istifanus N. and Manga S. B (2008) The effects of hospital solid waste on the environment (Report). *International Journal of Intergrative Biology* 6 pg 12-16.
- **Oyeleke S. B. and Manga S. B (2008)** Essentials of laboratories practicals. TOBEST Pub. Company, Minna. Niger State pg 35-76.
- Pandit N. B., Mehta H. K. Kartha G. P., Choudhary S. K. (2005) Management of biomedical waste: Awareness and practices in a district of Gujarat. *Indian J. Public Health 49:4* pg 245-247.
- Patil A. D. and Shekdar A. V. (2001) Healthcare waste management in India. J. Environ Manage. 63:2 pg 211-220.

- Pruss A., Giroult E. and Rushbrook P. (1999) Safe Management of wastes from Healthcare activities. World Health Organization, Geneva ISBN 924 1545259.
- Rasheed S., Iqbal S., Baig L. A. and Mufti K. (2005) Hospital waste management in the teaching hospitals of Karachi. J. Pak Med. Assoc. 55:5 pg 192-195.
- Rushbrook P. and Zghondi R. (2005) Better Health Care Waste Management: An Integral Component of Health Investment. World Health Organization. Amman
- Rutala W. A., Odette R. L., and Samsa G. P. (1989) Management of infectious waste by US hospitals. *JAMA 262: 12* pg 163-168.
- Secretariat of the Basel Convention/United Nations Environment Programme (2002) Technical Guidelines on the Environmentally Sound Management of Biomedical and Healthcare UNEP/CHW.6/20 pp. 3-72.
- Secretariat of the Basel Convention/United Nations Environment Programme and World Health Organization (2005) Preparation of National Healthcare Waste Management Plans in Sub-Saharan Countries Guidance Manual UNEP and WHO Geneva pg. 6-41.
- Sibbald B (2001) Crackdown on hospital incinerators coming soon. Available: <u>http://www.cmaj.ca/cgi/reprint/164/553-a</u>

Singh K., Arora S. K., Dhadwal P. J., Singla A. and John S. (2004) Biomedical waste management in the U. T. Chandigarh. *J. Environ Sci Eng 46:1* pg 55-60.

- Suwannee A. (2002) Study on waste from hospitals and clinics in Phitsanulok. Online Journal of Health and Allied Sciences. Available: http://www.ojhas/issue3/suwannee/suwa.htm
- Thomas C. G. A. (1973) *Medical Microbiology*, Third Edition. Bailliere Tindall, London. pg. 1-349.
- Turk D. C. and Porter I. A. (1978) A Short Textbook of Medical Microbiology, Fourth Edition. The English Language Book Society and Hodder and Stroughton, Suffolk. pg 83-257.
- Uwaezuoke J. C. and Aririatu L. E. (2004) A Survey of Antibiotic Resistant Staphylococcus Aureus Strains from Clinical Sources in Owerri. J. Appl. Sci. Environ. Mgt. 8:1 pg 67-69.

Weir E. (2002) Hospital and the environment. *Canadian Medical* Association Journal Available: http://www.cmaj.ca/cgi/reprint/163/3/354

World Health Organization (2002) Basic Steps in the Preparation of Healthcare Waste Management Plan for Healthcare Establishments. Healthcare Waste Practical Information Series No.
2. WHO-EM/CEH/100/E/L.

http://www.baselpretoria.org Date site was visited: 26-04-2007

http://www.baselpretoria.org.za.htm Date site was visited: 26-04-2007

http://www.epa.gov/epaoswer/other/medical Date site was visited: 19-03-2007

http://www.who.int Date site was visited: 13-03-2007

## **APPENDIX I**

# SURVEY QUESTIONNAIRE FOR HEALTHCARE WASTE MANAGEMENT

# **QUESTIONNAIRE 1**

(To be completed by matrons/heads of units/wards)

No. of out-patients: ...../ day

No. of beds (total): ...../day

Average number of beds occupied/day

SECTION B: SEGREGATION OF WASTE

- Is segregation of waste practiced in your unit/ward? Yes []
   No []
- If yes, indicate ✓ against any of the following wastes that are segregated from the general stream.
   General Waste [] Infection Waste [] Sharps []
- 3. What type of containers/bags is used to segregate the waste?
  Polythene bags [] Cardboard boxes [] Plastic buckets
  []

Anything available []

- Who does the segregation? Indicate ✓ against any of the applicable options. Doctors [] Nurses [] Ward cleaners []
   Others [] Specify .....
- 5. When is waste segregation done in your ward/unit?

| Periodically [] At the end of each<br>Immediately waste is generated []                         |                    | l of each working day [] |
|-------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| SECTION C: COLOUR CODING AND L                                                                  | ABELLING           |                          |
| <ol> <li>Are the containers used for coded/labeled? Yes []</li> </ol>                           |                    | on colour-               |
| 7. If yes, what type of colour-code/labe                                                        | l is used for:     |                          |
| a. General                                                                                      |                    | waste                    |
| b. Infectious waste                                                                             |                    |                          |
| SECTION D: SHARP MANAGEMEN                                                                      | ΝT                 |                          |
| <ol> <li>What types of containers are used to<br/>Safety boxes [] Plastic buckets []</li> </ol> |                    | []                       |
| Others [                                                                                        | ]                  | specify                  |
|                                                                                                 |                    |                          |
| 9. On the average estimate how many                                                             |                    |                          |
| patients per day                                                                                | in your            | ward?                    |
| /day                                                                                            |                    |                          |
| 10.Apart from injection what other needles used for in your ward? Takin                         |                    |                          |
| Intravenous infusion [] Mixing of a                                                             | drugs/solvents []  |                          |
| Others [] specify                                                                               |                    |                          |
| 11.Estimate average number of syringer                                                          | s and needles used | d per day for            |
| 10 above in your ward/unit?                                                                     |                    |                          |
|                                                                                                 |                    |                          |

- 12. What type of syringes and needles are used? Disposable []
  Reusable []
- 13.Is there a manual or guidelines on management of healthcare waste in your ward/unit? Yes [] No []
- 14.If yes, give the title of the document. .....

#### **APPENDIX II**

# SURVEY QUESTIONNAIRE FOR HEALTHCARE WASTE MANAGEMENT

# **QUESTIONNAIRE 2**

(To be completed by doctors, nurses, auxiliary staff, ward cleaners, waste handlers)

SECTION A: PERSONAL INFORMATION

- What is your designation? Doctor [] Nurse [] Auxiliary staff []
   Ward cleaner [] Waste handlers []
- 2. What is your sex? Female [] Male []

SECTION B: WASTE INFORMATION

- Is healthcare waste generated during the course of discharging your duty? Yes [ ]
   No [ ]
- 4. The environmentally sound handling of the waste is?

My responsibility []

Responsibility of Ward cleaners []

Responsibilities of Hospital Management []

5. Is waste segregated in your ward/unit?Yes [] No []

If yes, by whom?

By the doctors [] By the Auxiliary staffs [] By the waste handlers []

By the Nurses [] By ward cleaners []

# SECTION C: OCCUPATIONAL PROTECTION

- 6. Do you use protective clothing? Yes [] No []
- 7. Are you immunized against hepatitis B and C and tetanus?Yes [] No []

## SECTION D: TRAINING

8. Have your received any form of training in healthcare waste management?

| (a) In School | Yes [ ] | No [ ] |
|---------------|---------|--------|
| (b)On the job | Yes []  | No [ ] |

If yes, what type?

.....

.....

9. What is the duration of the course? .....

10. Have you experienced needle prick injury in the last 6 months?

Yes [] No []

11. If yes, was the incident documented? Yes [] No []

12.If yes, did you take post-exposure prophylaxis? Yes [] No []

13. Are you aware of the potential hazard inherent in healthcare waste?

Yes [] No []

14.If yes name few?

| S/N | WARD/UNIT                             | RESP         | RESPONSE |  |
|-----|---------------------------------------|--------------|----------|--|
|     |                                       | YES          | NO       |  |
| 1.  | Special Care Baby Unit                |              | 1        |  |
| 2.  | Paediatric/Maternity Outpatient Dept. | . 1          |          |  |
| 3.  | Emergency Paediatric Unit             | 1            |          |  |
| 4.  | Paediatric Medical & Surgical         | 1            |          |  |
| 5.  | Male Surgical Ward                    | ~            |          |  |
| 6.  | Female Surgical Ward                  | 1            |          |  |
| 7.  | Male Medical Ward                     | 1            |          |  |
| 8.  | Female Medical Ward                   | ✓            |          |  |
| 9.  | Ante Natal Clinic                     | 1            |          |  |
| 10. | Labour Ward                           | ✓            |          |  |
| 11. | Post Natal Ward                       |              |          |  |
| 12. | Gynaecology Ward                      | ✓            | 1.000    |  |
| 13. | Accidents & Emergency                 | ✓            |          |  |
| 14. | Casualty                              | ✓            |          |  |
| 15. | Operating Theatre                     | ✓            |          |  |
| 16. | Intensive Care Unit                   | ✓            |          |  |
| 17. | Haemodialysis                         | ✓            |          |  |
| 18. | Dental Clinic                         |              | ~        |  |
| 19. | Eye Clinic                            | ✓            |          |  |
| 20. | Eye Ward                              | ✓            |          |  |
| 21. | Eye Theatre                           | ✓            |          |  |
| 22. | Ear Nose and Throat Clinic            | ✓            |          |  |
| 23. | Immunology Laboratory                 | 1            |          |  |
| 24. | Sampling Room                         | 1            |          |  |
| 25. | National Programme on Immunization    | ✓            |          |  |
| 26. | Family Planning Unit                  |              | 1        |  |
| 27. | Special Treatment Clinic              | ✓            |          |  |
| 28. | General Outpatient Department         | ✓            |          |  |
| 29. | Surgical Outpatient Department        |              | ✓        |  |
| 30. | Radiology Unit                        | $\checkmark$ | 1        |  |
| 31. | Physiotherapy                         |              | ~        |  |
| 32. | Pharmacy Department                   | 1            |          |  |
|     | Frequency                             | 27           | 5        |  |
|     | Percentage                            | 84.4%        | 15.6%    |  |

# Appendix III: Practice of Waste Segregation in Wards/Units of UATH

| 2.       P         3.       E         4.       P         5.       M         6.       F         7.       M         8.       F         9.       A         10.       L         11.       P         12.       C         13.       A         14.       C         15.       C         16.       In         17.       H         18.       D         19.       E         20.       E         21.       E         22.       E         23.       In         24.       S         25.       N         26.       F         27.       S         28.       C         29.       S         30.       R         31.       P | Ward/Unit                            | Colour Code    |                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | General Wastes | Infectious Wastes |  |  |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Special Care Baby Unit               | Yellow         | Red               |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paediatric/Maternity Outpatient Dept | -              | -                 |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emergency Paediatric Unit            | -              | -                 |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paediatric Medical & Surgical        | Blue/Green     | Yellow            |  |  |  |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Male Surgical Ward                   | Black          | Yellow            |  |  |  |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Female Surgical Ward                 | Yellow         | -                 |  |  |  |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Male Medical Ward                    | -              | -                 |  |  |  |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Female Medical Ward                  | Yellow         | Black             |  |  |  |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ante Natal Clinic                    | -              | -                 |  |  |  |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Labour Ward                          | -              | -                 |  |  |  |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Post Natal Ward                      | -              | -                 |  |  |  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gynaecology Ward                     | Black          | Yellow            |  |  |  |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accidents and Emergency Ward         | Blue/Green     | Yellow            |  |  |  |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Casualty Ward                        | -              | Yellow            |  |  |  |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operating Theatre                    | -              | -                 |  |  |  |
| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intensive Care Unit                  | Orange         | White             |  |  |  |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Haemodialysis                        | -              | -                 |  |  |  |
| 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dental Clinic                        | -              | -                 |  |  |  |
| 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eye Clinic                           | -              | -                 |  |  |  |
| 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eye Ward                             | Black          | Red               |  |  |  |
| 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eye Theatre                          | -              | -                 |  |  |  |
| 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENT Clinic                           | Black          | Yellow            |  |  |  |
| 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Immunology Laboratory                | -              | -                 |  |  |  |
| 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sampling Room                        | Blue           | Red               |  |  |  |
| 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | National Programme on Immunization   | Yellow         | -                 |  |  |  |
| 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Family Planning Unit                 | -              | -                 |  |  |  |
| 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Special Treatment Clinic             | Red            | -                 |  |  |  |
| 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Outpatient Department        | White          | Yellow            |  |  |  |
| 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surgical Outpatient Department       | -              | -                 |  |  |  |
| 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radiology Unit                       | -              | -                 |  |  |  |
| 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Physiotherapy                        | -              | -                 |  |  |  |
| 32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pharmacy Department                  | Brown/Black    | Red               |  |  |  |

Appendix IV: Coloured codes used in wards/units of UATH for segregation of general and infectious wastes.

APPENDIX V

| Descriptives<br>TOTALHCW                                      |                                              |                                                                          |                                                                                              |                                                     |                                                                            |                                                                                                                 |                                                                              |                                                                                     |
|---------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| TOTALHEW                                                      | Ν                                            | Mean                                                                     | Std.<br>Deviation                                                                            | Std. Error                                          |                                                                            | Confidence<br>al for Mean                                                                                       | Minimum                                                                      | Maximum                                                                             |
| 1.00<br>2.00<br>3.00<br>4.00<br>5.00<br>6.00<br>7.00<br>Total | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>84 | 861.8333<br>900.8333<br>884.4000<br>911.9167<br>696.0000<br>627.0000     | 237.8237<br>112.5295<br>116.2676<br>112.6909<br>173.4948<br>158.2909<br>206.2100<br>203.6020 | 33.5636<br>32.5310<br>50.0836<br>45.6946<br>59.5277 | 812.7996                                                                   | Upper<br>Bound<br>758.6059<br>933.3311<br>974.7062<br>956.0004<br>1022.1500<br>796.5732<br>758.0196<br>828.3962 | 432.00<br>676.00<br>720.00<br>720.00<br>684.00<br>468.00<br>468.00<br>432.00 | 1152.00<br>1116.00<br>1116.00<br>1062.00<br>1242.00<br>900.00<br>1152.00<br>1242.00 |
| ANOVA<br>TOTALHCW<br>Sun<br>Squa<br>Between 131634            | res                                          | df                                                                       | Mean<br>Square<br>219391.65                                                                  | F<br>7.952                                          | Sig.<br>.000                                                               |                                                                                                                 |                                                                              |                                                                                     |
| Groups<br>Within 212431<br>Groups<br>Total 344066             | 98<br>2.7<br>70                              |                                                                          | 0<br>27588.478                                                                               | 7.952                                               | .000                                                                       |                                                                                                                 |                                                                              |                                                                                     |
| Multiple Compariso<br>Dependent Variable<br>LSD               |                                              | DTALHCW                                                                  |                                                                                              |                                                     |                                                                            |                                                                                                                 |                                                                              |                                                                                     |
|                                                               |                                              | Mean<br>Difference<br>(I-J)                                              | Std. Error                                                                                   | Sig.                                                | 95% C                                                                      | Confidence<br>Interval                                                                                          |                                                                              |                                                                                     |
| (I) DAY (J) D                                                 |                                              |                                                                          |                                                                                              |                                                     | Lower<br>Bound                                                             | Upper<br>Bound                                                                                                  |                                                                              |                                                                                     |
| 3<br>4<br>5<br>6                                              | .00<br>.00                                   | -254.3333<br>-293.3333<br>-276.9000<br>-304.4167<br>-88.5000<br>-19.5000 | 67.8091<br>67.8091<br>67.8091<br>67.8091<br>67.8091<br>67.8091                               | .000<br>.000<br>.000<br>.196                        | -389.3586<br>-428.3586<br>-411.9252<br>-439.4419<br>-223.5252<br>-154.5252 | -158.3081<br>-141.8748                                                                                          |                                                                              |                                                                                     |
| 2.00 1<br>3<br>4<br>5<br>6                                    | .00<br>.00<br>.00<br>.00                     | 254.3333<br>-39.0000<br>-22.5667<br>-50.0833<br>165.8333                 | 67.8091<br>67.8091<br>67.8091<br>67.8091<br>67.8091                                          | .000<br>.567<br>.740<br>.462<br>.017                | 119.3081<br>-174.0252<br>-157.5919<br>-185.1086<br>30.8081                 | 389.3586<br>96.0252<br>112.4586<br>84.9419<br>300.8586                                                          |                                                                              |                                                                                     |
| 3.00 1<br>2<br>4<br>5                                         | .00<br>.00<br>.00<br>.00<br>.00              | 234.8333<br>293.3333<br>39.0000<br>16.4333<br>-11.0833<br>204.8333       | 67.8091<br>67.8091<br>67.8091<br>67.8091<br>67.8091<br>67.8091                               |                                                     | 99.8081<br>158.3081<br>-96.0252<br>-118.5919<br>-146.1086<br>69.8081       | 369.8586<br>428.3586<br>174.0252<br>151.4586<br>123.9419<br>339.8586                                            |                                                                              |                                                                                     |
| 4.00 1<br>2                                                   | .00<br>.00<br>.00                            | 273.8333<br>276.9000<br>22.5667<br>-16.4333                              | 67.8091<br>67.8091<br>67.8091<br>67.8091                                                     | .000<br>.000<br>.740                                | 138.8081<br>141.8748<br>-112.4586<br>-151.4586                             | 408.8586<br>411.9252<br>157.5919<br>118.5919                                                                    |                                                                              |                                                                                     |

|      | 5.00 | -27.5167  | 67.8091 | .686 | -162.5419 | 107.5086  |  |
|------|------|-----------|---------|------|-----------|-----------|--|
|      | 6.00 | 188.4000  | 67.8091 | .007 | 53.3748   | 323.4252  |  |
|      | 7.00 | 257.4000  | 67.8091 | .000 | 122.3748  | 392.4252  |  |
| 5.00 | 1.00 | 304.4167  | 67.8091 | .000 | 169.3914  | 439.4419  |  |
|      | 2.00 | 50.0833   | 67.8091 | .462 | -84.9419  | 185.1086  |  |
|      | 3.00 | 11.0833   | 67.8091 | .871 | -123.9419 | 146.1086  |  |
|      | 4.00 | 27.5167   | 67.8091 | .686 | -107.5086 | 162.5419  |  |
|      | 6.00 | 215.9167  | 67.8091 | .002 | 80.8914   | 350.9419  |  |
|      | 7.00 | 284.9167  | 67.8091 | .000 | 149.8914  | 419.9419  |  |
| 6.00 | 1.00 | 88.5000   | 67.8091 | .196 | -46.5252  | 223.5252  |  |
|      | 2.00 | -165.8333 | 67.8091 | .017 | -300.8586 | -30.8081  |  |
|      | 3.00 | -204.8333 | 67.8091 | .003 | -339.8586 | -69.8081  |  |
|      | 4.00 | -188.4000 | 67.8091 | .007 | -323.4252 | -53.3748  |  |
|      | 5.00 | -215.9167 | 67.8091 | .002 | -350.9419 | -80.8914  |  |
|      | 7.00 | 69.0000   | 67.8091 | .312 | -66.0252  | 204.0252  |  |
| 7.00 | 1.00 | 19.5000   | 67.8091 | .774 | -115.5252 | 154.5252  |  |
|      | 2.00 | -234.8333 | 67.8091 | .001 | -369.8586 | -99.8081  |  |
|      | 3.00 | -273.8333 | 67.8091 | .000 | -408.8586 | -138.8081 |  |
|      | 4.00 | -257.4000 | 67.8091 | .000 | -392.4252 | -122.3748 |  |
|      | 5.00 | -284.9167 | 67.8091 | .000 | -419.9419 | -149.8914 |  |
|      | 6.00 | -69.0000  | 67.8091 | .312 | -204.0252 | 66.0252   |  |

\* The mean difference is significant at the .05 level.

#### Descriptives TOTALHCW

|       | Ν  | Mean     | Std.<br>Deviation | Std. Error |                | Confidence<br>al for Mean | Minimum | Maximum |  |
|-------|----|----------|-------------------|------------|----------------|---------------------------|---------|---------|--|
|       |    |          |                   |            | Lower<br>Bound | Upper<br>Bound            |         |         |  |
| 1.00  | 7  | 683.4000 | 138.1134          | 52.2020    | 555.6664       | 811.1336                  | 540.00  | 828.00  |  |
| 2.00  | 7  | 671.4286 | 205.2436          | 77.5748    | 481.6099       | 861.2473                  | 468.00  | 936.00  |  |
| 3.00  | 7  | 745.7143 | 221.6406          | 83.7723    | 540.7309       | 950.6977                  | 468.00  | 972.00  |  |
| 4.00  | 7  | 711.7143 | 194.3620          | 73.4619    | 531.9595       | 891.4691                  | 468.00  | 936.00  |  |
| 5.00  | 7  | 720.0000 | 148.4318          | 56.1019    | 582.7235       | 857.2765                  | 540.00  | 864.00  |  |
| 6.00  | 7  | 653.1429 | 156.1318          | 59.0123    | 508.7450       | 797.5407                  | 468.00  | 828.00  |  |
| 7.00  | 7  | 874.2857 | 277.2735          | 104.7995   | 617.8505       | 1130.7209                 | 486.00  | 1242.00 |  |
| 8.00  | 7  | 946.2857 | 211.6709          | 80.0041    | 750.5228       | 1142.0486                 | 612.00  | 1152.00 |  |
| 9.00  | 7  | 882.0000 | 199.6297          | 75.4529    | 697.3734       | 1066.6266                 | 468.00  | 1062.00 |  |
| 10.00 | 7  | 920.5714 | 258.0199          | 97.5224    | 681.9428       | 1159.2001                 | 432.00  | 1188.00 |  |
| 11.00 | 7  | 799.7143 | 112.8210          | 42.6423    | 695.3723       | 904.0563                  | 684.00  | 1008.00 |  |
| 12.00 | 7  | 802.2857 | 71.1377           | 26.8875    | 736.4943       | 868.0771                  | 720.00  | 900.00  |  |
| Total | 84 | 784.2119 | 203.6020          | 22.2148    | 740.0276       | 828.3962                  | 432.00  | 1242.00 |  |
|       |    |          |                   |            |                |                           |         |         |  |

#### ANOVA TOTALHCW

| IOTALIIOW                |       |          |       |      |
|--------------------------|-------|----------|-------|------|
| Sum of                   | df    | Mean     | F     | Sig. |
| Squares                  |       | Square   |       |      |
| Between 798195.89        | 11 72 | 2563.263 | 1.977 | .043 |
| Groups 1                 |       |          |       |      |
| Within 2642466.7         | 72 36 | 6700.927 |       |      |
| Groups 77                |       |          |       |      |
| Total 3440662.6          | 83    |          |       |      |
| 68                       |       |          |       |      |
| Multiple Comparisons     |       |          |       |      |
| Dependent Variable: TOTA |       |          |       |      |
| LSD                      |       |          |       |      |

|          |          | Mean<br>Difference     | Std. Error           | Sig. | 95%                    | Confidence<br>Interval |  |
|----------|----------|------------------------|----------------------|------|------------------------|------------------------|--|
|          |          | (I-J)                  |                      |      |                        | interval               |  |
| (I) WEEK | (J) WEEK | . ,                    |                      |      | Lower                  | Upper                  |  |
|          |          |                        |                      |      | Bound                  |                        |  |
| 1.00     | 2.00     | 11.9714                | 102.4011             |      | -192.1614              |                        |  |
|          | 3.00     | -62.3143               | 102.4011             |      | -266.4471              |                        |  |
|          | 4.00     | -28.3143               | 102.4011             |      | -232.4471              | 175.8185               |  |
|          | 5.00     | -36.6000               | 102.4011             |      | -240.7328              |                        |  |
|          | 6.00     | 30.2571                | 102.4011             |      | -173.8757              |                        |  |
|          |          | -190.8857              | 102.4011             |      | -395.0185              |                        |  |
|          |          | -262.8857              | 102.4011             |      | -467.0185              |                        |  |
|          |          | -198.6000              | 102.4011<br>102.4011 |      | -402.7328              |                        |  |
|          |          | -116.3143              | 102.4011             |      | -441.3042              |                        |  |
|          |          | -118.8857              | 102.4011             |      | -320.4471<br>-323.0185 | 87.8185<br>85.2471     |  |
| 2.00     | 1.00     | -11.9714               | 102.4011             |      | -216.1042              |                        |  |
| 2.00     | 3.00     | -74.2857               | 102.4011             |      | -278.4185              |                        |  |
|          | 4.00     | -40.2857               | 102.4011             |      | -244.4185              | 163.8471               |  |
|          | 5.00     | -48.5714               | 102.4011             |      | -252.7042              |                        |  |
|          | 6.00     | 18.2857                | 102.4011             |      | -185.8471              | 222.4185               |  |
|          |          | -202.8571              | 102.4011             |      | -406.9899              |                        |  |
|          |          | -274.8571              | 102.4011             |      | -478.9899              |                        |  |
|          | 9.00     | -210.5714              | 102.4011             |      | -414.7042              |                        |  |
|          | 10.00    | -249.1429              | 102.4011             | .017 | -453.2757              | -45.0101               |  |
|          |          | -128.2857              | 102.4011             | .214 | -332.4185              | 75.8471                |  |
|          | 12.00    | -130.8571              | 102.4011             | .205 | -334.9899              |                        |  |
| 3.00     | 1.00     | 62.3143                | 102.4011             | .545 | -141.8185              |                        |  |
|          | 2.00     | 74.2857                | 102.4011             |      | -129.8471              | 278.4185               |  |
|          | 4.00     | 34.0000                | 102.4011             |      | -170.1328              |                        |  |
|          | 5.00     | 25.7143                | 102.4011             |      | -178.4185              |                        |  |
|          | 6.00     | 92.5714                | 102.4011             |      | -111.5614              |                        |  |
|          |          | -128.5714              | 102.4011             |      | -332.7042              |                        |  |
|          |          | -200.5714              | 102.4011             |      | -404.7042              |                        |  |
|          |          | -136.2857<br>-174.8571 | 102.4011<br>102.4011 |      | -340.4185<br>-378.9899 |                        |  |
|          | 11.00    | -54.0000               | 102.4011             |      | -258.1328              |                        |  |
|          | 12.00    | -56.5714               | 102.4011             |      | -260.7042              |                        |  |
| 4.00     | 1.00     | 28.3143                | 102.4011             |      | -175.8185              |                        |  |
| 4.00     | 2.00     | 40.2857                | 102.4011             |      | -163.8471              | 244.4185               |  |
|          | 3.00     | -34.0000               | 102.4011             |      | -238.1328              |                        |  |
|          | 5.00     | -8.2857                | 102.4011             |      | -212.4185              |                        |  |
|          | 6.00     | 58.5714                | 102.4011             |      | -145.5614              |                        |  |
|          | 7.00     | -162.5714              | 102.4011             | .117 | -366.7042              | 41.5614                |  |
|          | 8.00     | -234.5714              | 102.4011             | .025 | -438.7042              | -30.4386               |  |
|          |          | -170.2857              | 102.4011             | .101 | -374.4185              |                        |  |
|          |          | -208.8571              | 102.4011             |      | -412.9899              |                        |  |
|          | 11.00    | -88.0000               | 102.4011             |      | -292.1328              |                        |  |
|          | 12.00    | -90.5714               | 102.4011             |      | -294.7042              |                        |  |
| 5.00     | 1.00     | 36.6000                | 102.4011             |      | -167.5328              |                        |  |
|          | 2.00     | 48.5714                | 102.4011             |      | -155.5614              |                        |  |
|          | 3.00     | -25.7143               | 102.4011             |      | -229.8471              | 178.4185               |  |
|          | 4.00     | 8.2857                 | 102.4011             |      | -195.8471              | 212.4185               |  |
|          | 6.00     | 66.8571                | 102.4011<br>102.4011 |      | -137.2757<br>-358.4185 |                        |  |
|          |          | -154.2857<br>-226.2857 | 102.4011             |      | -358.4185              |                        |  |
|          |          | -162.0000              | 102.4011             |      | -366.1328              |                        |  |
|          |          | -200.5714              | 102.4011             |      | -404.7042              |                        |  |
|          | 10.00    | 200.07 14              | 102.4011             | .004 | 101.1042               | 0.0014                 |  |

|       | 11.00 | -79.7143  | 102.4011 |      | -283.8471 | 124.4185 |
|-------|-------|-----------|----------|------|-----------|----------|
|       | 12.00 | -82.2857  | 102.4011 | .424 | -286.4185 | 121.8471 |
| 6.00  | 1.00  | -30.2571  | 102.4011 | .768 | -234.3899 | 173.8757 |
|       | 2.00  | -18.2857  | 102.4011 | .859 | -222.4185 | 185.8471 |
|       | 3.00  | -92.5714  | 102.4011 | .369 | -296.7042 | 111.5614 |
|       | 4.00  | -58.5714  | 102.4011 | .569 | -262.7042 | 145.5614 |
|       | 5.00  | -66.8571  | 102.4011 | .516 | -270.9899 | 137.2757 |
|       | 7.00  | -221.1429 | 102.4011 | .034 | -425.2757 | -17.0101 |
|       | 8.00  | -293.1429 | 102.4011 | .005 | -497.2757 | -89.0101 |
|       | 9.00  | -228.8571 | 102.4011 | .029 | -432.9899 | -24.7243 |
|       | 10.00 | -267.4286 | 102.4011 | .011 | -471.5614 | -63.2958 |
|       |       | -146.5714 | 102.4011 | .157 | -350.7042 | 57.5614  |
|       |       | -149.1429 | 102.4011 | .150 | -353.2757 | 54.9899  |
| 7.00  | 1.00  | 190.8857  | 102.4011 | .066 | -13.2471  | 395.0185 |
|       | 2.00  | 202.8571  | 102.4011 | .051 | -1.2757   | 406.9899 |
|       | 3.00  | 128.5714  | 102.4011 | .213 | -75.5614  | 332.7042 |
|       | 4.00  | 162.5714  | 102.4011 | .117 | -41.5614  | 366.7042 |
|       | 5.00  | 154.2857  | 102.4011 | .136 | -49.8471  | 358.4185 |
|       | 6.00  | 221.1429  | 102.4011 | .034 | 17.0101   | 425.2757 |
|       | 8.00  | -72.0000  | 102.4011 | .484 | -276.1328 | 132.1328 |
|       | 9.00  | -7.7143   | 102.4011 | .940 | -211.8471 | 196.4185 |
|       | 10.00 | -46.2857  | 102.4011 | .653 | -250.4185 | 157.8471 |
|       | 11.00 | 74.5714   | 102.4011 | .469 | -129.5614 | 278.7042 |
|       | 12.00 | 72.0000   | 102.4011 | .484 | -132.1328 | 276.1328 |
| 8.00  | 1.00  | 262.8857  | 102.4011 | .012 | 58.7529   | 467.0185 |
|       | 2.00  | 274.8571  | 102.4011 | .009 | 70.7243   | 478.9899 |
|       | 3.00  | 200.5714  | 102.4011 | .054 | -3.5614   | 404.7042 |
|       | 4.00  | 234.5714  | 102.4011 | .025 | 30.4386   | 438.7042 |
|       | 5.00  | 226.2857  | 102.4011 | .030 | 22.1529   | 430.4185 |
|       | 6.00  | 293.1429  | 102.4011 | .005 | 89.0101   | 497.2757 |
|       | 7.00  | 72.0000   | 102.4011 | .484 | -132.1328 | 276.1328 |
|       | 9.00  | 64.2857   | 102.4011 | .532 | -139.8471 | 268.4185 |
|       | 10.00 | 25.7143   | 102.4011 | .802 | -178.4185 | 229.8471 |
|       | 11.00 | 146.5714  | 102.4011 | .157 | -57.5614  | 350.7042 |
|       | 12.00 | 144.0000  | 102.4011 | .164 | -60.1328  | 348.1328 |
| 9.00  | 1.00  | 198.6000  | 102.4011 | .056 | -5.5328   | 402.7328 |
|       | 2.00  | 210.5714  | 102.4011 | .043 | 6.4386    | 414.7042 |
|       | 3.00  | 136.2857  | 102.4011 | .187 | -67.8471  | 340.4185 |
|       | 4.00  | 170.2857  | 102.4011 | .101 | -33.8471  | 374.4185 |
|       | 5.00  | 162.0000  | 102.4011 | .118 | -42.1328  | 366.1328 |
|       | 6.00  | 228.8571  | 102.4011 | .029 | 24.7243   | 432.9899 |
|       | 7.00  | 7.7143    | 102.4011 | .940 | -196.4185 | 211.8471 |
|       | 8.00  | -64.2857  | 102.4011 | .532 | -268.4185 | 139.8471 |
|       | 10.00 | -38.5714  | 102.4011 | .708 | -242.7042 | 165.5614 |
|       | 11.00 | 82.2857   | 102.4011 | .424 | -121.8471 | 286.4185 |
|       | 12.00 | 79.7143   | 102.4011 | .439 | -124.4185 | 283.8471 |
| 10.00 | 1.00  | 237.1714  | 102.4011 | .023 | 33.0386   | 441.3042 |
|       | 2.00  | 249.1429  | 102.4011 | .017 | 45.0101   | 453.2757 |
|       | 3.00  | 174.8571  | 102.4011 | .092 | -29.2757  | 378.9899 |
|       | 4.00  | 208.8571  | 102.4011 | .045 | 4.7243    | 412.9899 |
|       | 5.00  | 200.5714  | 102.4011 | .054 | -3.5614   | 404.7042 |
|       | 6.00  | 267.4286  | 102.4011 | .011 | 63.2958   | 471.5614 |
|       | 7.00  | 46.2857   | 102.4011 |      | -157.8471 | 250.4185 |
|       | 8.00  | -25.7143  | 102.4011 |      | -229.8471 | 178.4185 |
|       | 9.00  | 38.5714   | 102.4011 |      | -165.5614 | 242.7042 |
|       | 11.00 | 120.8571  | 102.4011 | .242 | -83.2757  | 324.9899 |
|       | 12.00 | 118.2857  | 102.4011 | .252 | -85.8471  | 322.4185 |
| 11.00 | 1.00  | 116.3143  | 102.4011 | .260 | -87.8185  | 320.4471 |
|       |       |           |          |      |           |          |

| 2.00 128.2857 102.4011 .214 -75.8471                                                  | 332.4185 |
|---------------------------------------------------------------------------------------|----------|
| 3.00 54.0000 102.4011 .600 -150.1328                                                  | 258.1328 |
| 4.00 88.0000 102.4011 .393 -116.1328                                                  | 292.1328 |
| 5.00 79.7143 102.4011 .439 -124.4185                                                  | 283.8471 |
| 6.00 146.5714 102.4011 .157 -57.5614                                                  | 350.7042 |
| 7.00 -74.5714 102.4011 .469 -278.7042                                                 | 129.5614 |
| 8.00 -146.5714 102.4011 .157 -350.7042                                                | 57.5614  |
| 9.00 -82.2857 102.4011 .424 -286.4185                                                 | 121.8471 |
| 10.00 -120.8571 102.4011 .242 -324.9899                                               | 83.2757  |
| 12.00 -2.5714 102.4011 .980 -206.7042                                                 | 201.5614 |
| 0 1.00 118.8857 102.4011 .249 -85.2471                                                | 323.0185 |
| 2.00 130.8571 102.4011 .205 -73.2757                                                  | 334.9899 |
| 3.00 56.5714 102.4011 .582 -147.5614                                                  | 260.7042 |
| 4.00 90.5714 102.4011 .379 -113.5614                                                  | 294.7042 |
| 5.00 82.2857 102.4011 .424 -121.8471                                                  | 286.4185 |
| 6.00 149.1429 102.4011 .150 -54.9899                                                  | 353.2757 |
| 7.00 -72.0000 102.4011 .484 -276.1328                                                 | 132.1328 |
| 8.00 -144.0000 102.4011 .164 -348.1328                                                | 60.1328  |
| 9.00 -79.7143 102.4011 .439 -283.8471                                                 | 124.4185 |
| 10.00 -118.2857 102.4011 .252 -322.4185                                               | 85.8471  |
| 11.00 2.5714 102.4011 .980 -201.5614<br>an difference is significant at the .05 level | 206.7042 |

12.00

\* The mean difference is significant at the .05 level.

```
Paired Samples Statistics
```

|                                             | Mean    | Ν  | Std.<br>Deviation | Std. Error<br>Mean |
|---------------------------------------------|---------|----|-------------------|--------------------|
| Pair 1 Fungi<br>Healthcare<br>waste soil    | 16.7018 | 11 | 9.2031            | 2.7748             |
| Fungi<br>Adjacent<br>soil                   | 9.8455  | 11 | 5.0262            | 1.5155             |
| Pair 2 Bacteria<br>Healthcare<br>waste soil | 18.5413 | 8  | 16.5598           | 5.8548             |
| Bacteria<br>Adjacent<br>soil                | 19.7925 | 8  | 16.0216           | 5.6645             |

#### Paired Samples Correlations

|        |            | NCor | Sig. |      |
|--------|------------|------|------|------|
| Pair 1 | Fungi      | 11   | .614 | .045 |
| H      | ealthcare  |      |      |      |
| v      | vaste soil |      |      |      |
|        | & Fungi    |      |      |      |
|        | Adjacent   |      |      |      |
|        | soil       |      |      |      |
| Pair 2 | Bacteria   | 8    | .655 | .078 |
| H      | ealthcare  |      |      |      |
| v      | vaste soil |      |      |      |

#### & Bacteria Adjacent soil

Paired Samples Test

| r area oamp                |                                         | Paired Differences |                   |                    |                                 |                         | t       | df       | Sig. (2- |
|----------------------------|-----------------------------------------|--------------------|-------------------|--------------------|---------------------------------|-------------------------|---------|----------|----------|
|                            |                                         | Mean               | Std.<br>Deviation | Std. Error<br>Mean | 95% Conf<br>Interval<br>Differe | of the                  |         |          | tailed)  |
|                            | Fungi<br>lealthcare<br>waste soil       | 6.8564             | 7.2930            | 2.1989             | Lower<br>1.9568                 | Upper<br>11.7559        | 3.118   | 10       | .011     |
| Pair 2                     | - Fungi<br>Adjacent<br>soil<br>Bacteria | -1.2512            | 13.5337           | 4.7849             | -12.5657                        | 10.0632                 | 262     | 7        | .801     |
| F                          | lealthcare<br>waste soil<br>- Bacteria  | -1.2312            | 13.3337           | 4.7049             | -12.3037                        | 10.0032                 | 202     | ,        | .001     |
|                            | Adjacent<br>soil                        |                    |                   |                    |                                 |                         |         |          |          |
| Descriptives<br>IDNO       |                                         |                    |                   |                    |                                 |                         |         |          |          |
|                            | Ν                                       | Mean               | Std.<br>Deviation | Std. Error         |                                 | onfidence<br>I for Mean | Minimum | Maximum  |          |
|                            |                                         |                    |                   |                    | Lower<br>Bound                  | Upper<br>Bound          |         |          |          |
| Yes                        | 27                                      | 16.44              | 8.81              | 1.69               | 12.96                           | 19.93                   | 1       | 32<br>29 |          |
| No<br>Total                | 5<br>32                                 | 16.80<br>16.50     | 13.33<br>9.38     | 5.96<br>1.66       | .25<br>13.12                    | 33.35<br>19.88          | 2<br>1  | 32       |          |
| ANOVA<br>IDNO              |                                         |                    |                   |                    |                                 |                         |         |          |          |
| 12110                      | Sum of<br>Squares                       | df                 | Mean<br>Square    | F                  | Sig.                            |                         |         |          |          |
| Between                    | .533                                    | 1                  | .533              | .006               | .939                            |                         |         |          |          |
| Groups<br>Within<br>Groups | 2727.467                                | 30                 | 90.916            |                    |                                 |                         |         |          |          |
|                            | 2728.000                                | 31                 |                   |                    |                                 |                         |         |          |          |
| Descriptives               |                                         |                    |                   |                    |                                 |                         |         |          |          |
| IDNO                       | Ν                                       | Mean               | Std.<br>Deviation | Std. Error         |                                 | onfidence<br>I for Mean | Minimum | Maximum  |          |
| 2                          |                                         | 00.00              |                   |                    | Lower<br>Bound                  | Upper<br>Bound          | 23      | 23       |          |
| Gen<br>Sharp               | 1<br>9                                  | 23.00<br>16.56     | 9.21              | 3.07               | 9.48                            | 23.63                   | 3       | 30       |          |
| All<br>Gen-Sharp           | 7                                       | 14.71<br>16.00     | 8.32<br>11.31     | 3.15<br>8.00       | 7.02<br>-85.65                  | 22.41<br>117.65         | 4       | 27<br>24 |          |
|                            |                                         |                    |                   |                    |                                 |                         |         |          |          |

| Inf-Sharp<br>None<br>Total       | 10<br>3<br>32                | 14.20<br>26.33<br>16.50          | 10.90<br>3.79<br>9.38     | 3.45<br>2.19<br>1.66 | 6.40<br>16.93<br>13.12                   | 22.00<br>35.74<br>19.88                   | 1<br>22<br>1       | 32<br>29<br>32       |  |
|----------------------------------|------------------------------|----------------------------------|---------------------------|----------------------|------------------------------------------|-------------------------------------------|--------------------|----------------------|--|
| ANOVA                            |                              |                                  |                           |                      |                                          |                                           |                    |                      |  |
| IDNO                             | Sum of<br>Squares            | df                               | Mean<br>Square            | F                    | Sig.                                     |                                           |                    |                      |  |
| Between<br>Groups                | 408.083                      | 5                                | 81.617                    | .915                 | .487                                     |                                           |                    |                      |  |
|                                  | 2319.917                     | 26                               | 89.228                    |                      |                                          |                                           |                    |                      |  |
|                                  | 2728.000                     | 31                               |                           |                      |                                          |                                           |                    |                      |  |
| Descriptives<br>IDNO             | N                            | Mean                             | Std.<br>Deviation         | Std. Error           |                                          | onfidence<br>for Mean                     | Minimum            | Maximum              |  |
|                                  |                              |                                  | Deviation                 |                      | Lower                                    | Upper                                     |                    |                      |  |
| CB<br>PLB<br>All<br>POB-CB       | 3<br>8<br>2<br>1             | 11.33<br>19.13<br>24.50<br>21.00 | 7.23<br>9.83<br>10.61     | 4.18<br>3.48<br>7.50 | Bound<br>-6.64<br>10.90<br>-70.80        | Bound<br>29.30<br>27.35<br>119.80         | 3<br>5<br>17<br>21 | 16<br>31<br>32<br>21 |  |
| CB-PLB<br>Anything<br>Total      | 15<br>3<br>32                | 12.80<br>26.33<br>16.50          | 8.56<br>3.79<br>9.38      | 2.21<br>2.19<br>1.66 | 8.06<br>16.93<br>13.12                   | 17.54<br>35.74<br>19.88                   | 1<br>22<br>1       | 27<br>29<br>32       |  |
| ANOVA<br>IDNO                    |                              |                                  |                           |                      |                                          |                                           |                    |                      |  |
| Between                          | Sum of<br>Squares<br>778.892 | df<br>5                          | Mean<br>Square<br>155.778 | F<br>2.078           | Sig.<br>.101                             |                                           |                    |                      |  |
| Groups<br>Within<br>Groups       | 1949.108                     | 26                               | 74.966                    |                      |                                          |                                           |                    |                      |  |
|                                  | 2728.000                     | 31                               |                           |                      |                                          |                                           |                    |                      |  |
| Descriptives<br>IDNO             |                              |                                  |                           |                      |                                          |                                           |                    |                      |  |
|                                  | N                            | Mean                             | Std.<br>Deviation         | Std. Error           |                                          | onfidence<br>for Mean                     | Minimum            | Maximum              |  |
| Doctors<br>Nurses<br>Ward        | 2<br>7<br>6                  | 24.00<br>18.14<br>19.33          | 1.41<br>7.43<br>10.33     | 1.00<br>2.81<br>4.22 | Lower<br>Bound<br>11.29<br>11.28<br>8.49 | Upper<br>Bound<br>36.71<br>25.01<br>30.17 | 23<br>5<br>9       | 25<br>27<br>32       |  |
| cleaners<br>Doc-Nur<br>Nur-Ward  | 5<br>1                       | 10.00<br>12.00                   | 11.51                     | 5.15                 | -4.29                                    | 24.29                                     | 1<br>12            | 30<br>12             |  |
| cleaners<br>All<br>None<br>Total | 7<br>4<br>32                 | 13.29<br>20.50<br>16.50          | 7.61<br>12.07<br>9.38     | 2.88<br>6.03<br>1.66 | 6.25<br>1.30<br>13.12                    | 20.32<br>39.70<br>19.88                   | 2<br>3<br>1        | 24<br>29<br>32       |  |
|                                  |                              |                                  |                           |                      |                                          |                                           |                    |                      |  |

## ANOVA IDNO

|         | Sum of<br>Squares | df | Mean   | F     | Sig. |
|---------|-------------------|----|--------|-------|------|
|         | Squares           |    | Square |       |      |
| Between | 547.381           | 6  | 91.230 | 1.046 | .420 |
| Groups  |                   |    |        |       |      |
|         | 2180.619          | 25 | 87.225 |       |      |
| Groups  | 2100.010          | 20 | 01.220 |       |      |
|         |                   |    |        |       |      |
| Total   | 2728.000          | 31 |        |       |      |
|         |                   |    |        |       |      |

## Descriptives IDNO

| IDNO                                  |                                |                          |                   |            |                          |                         |         |         |  |
|---------------------------------------|--------------------------------|--------------------------|-------------------|------------|--------------------------|-------------------------|---------|---------|--|
|                                       | Ν                              | Mean                     | Std.<br>Deviation | Std. Error |                          | onfidence<br>for Mean   | Minimum | Maximum |  |
| Periodicall                           | 2                              | 6.00                     | 5.66              | 4.00       | Lower<br>Bound<br>-44.82 | Upper<br>Bound<br>56.82 | 2       | 10      |  |
| y<br>At the end<br>of each<br>shift   | 4                              | 22.75                    | 7.68              | 3.84       | 10.54                    | 34.96                   | 13      | 31      |  |
| Immediatel<br>y waste is<br>generated | 19                             | 15.05                    | 8.92              | 2.05       | 10.76                    | 19.35                   | . 1     | 32      |  |
| At the end<br>of each<br>working      | 3                              | 19.00                    | 8.72              | 5.03       | -2.66                    | 40.66                   | 9       | 25      |  |
| day<br>Total                          | 28                             | 15.93                    | 9.06              | 1.71       | 12.41                    | 19.44                   | 1       | 32      |  |
| ANOVA<br>IDNO                         |                                |                          |                   |            |                          |                         |         |         |  |
|                                       | Sum of                         | df                       | Mean              | F          | Sig.                     |                         |         |         |  |
| Between<br>Groups                     | Squares 426.160                | 3                        | Square 142.053    | 1.903      | .156                     |                         |         |         |  |
| Within<br>Groups                      | 1791.697                       | 24                       | 74.654            |            |                          |                         |         |         |  |
| Total                                 | 2217.857                       | 27                       |                   |            |                          |                         |         |         |  |
|                                       | nparisons<br>Variable: IDNO    |                          |                   |            |                          |                         |         |         |  |
| LSD                                   | Dif                            | Mean<br>ference<br>(I-J) | Std. Error        | Sig.       | 95% C                    | onfidence<br>Interval   |         |         |  |
| of                                    | (J) Timing<br>of<br>segregatio | (1-3)                    |                   |            | Lower<br>Bound           | Upper<br>Bound          |         |         |  |
| n of waste                            | n of waste<br>At the end       | -16.75                   | 7.48              | .035       | -32.19                   | -1.31                   |         |         |  |
| ,                                     | shift<br>Immediatel            | -9.05                    | 6.42              | 2.172      | -22.31                   | 4.20                    |         |         |  |
|                                       |                                |                          |                   |            |                          |                         |         |         |  |

| y waste is generated                          |                       |      |      |        |       |
|-----------------------------------------------|-----------------------|------|------|--------|-------|
| At the end<br>of each                         | -13.00                | 7.89 | .112 | -29.28 | 3.28  |
| working<br>day                                |                       |      |      |        |       |
| At the end Periodicall<br>of each y           | 16.75                 | 7.48 | .035 | 1.31   | 32.19 |
| shift                                         |                       |      |      |        |       |
| Immediatel<br>y waste is<br>generated         | 7.70                  | 4.75 | .118 | -2.11  | 17.51 |
| At the end<br>of each<br>working              | 3.75                  | 6.60 | .575 | -9.87  | 17.37 |
| day<br>Immediatel Periodicall<br>y waste is y | 9.05                  | 6.42 | .172 | -4.20  | 22.31 |
| generated                                     |                       |      |      |        |       |
| At the end<br>of each<br>shift                | -7.70                 | 4.75 | .118 | -17.51 | 2.11  |
| At the end<br>of each                         | -3.95                 | 5.37 | .469 | -15.03 | 7.13  |
| working                                       |                       |      |      |        |       |
| day<br>At the end Periodicall<br>of each y    | 13.00                 | 7.89 | .112 | -3.28  | 29.28 |
| working                                       |                       |      |      |        |       |
| day                                           | and the second second |      |      |        |       |
| At the end<br>of each<br>shift                | -3.75                 | 6.60 | .575 | -17.37 | 9.87  |
| Immediatel<br>y waste is                      | 3.95                  | 5.37 | .469 | -7.13  | 15.03 |
|                                               |                       |      |      |        |       |

generated \* The mean difference is significant at the .05 level.

#### Descriptives IDNO

| IDNO              |                   |       |                   |            |                                |       |         |         |  |
|-------------------|-------------------|-------|-------------------|------------|--------------------------------|-------|---------|---------|--|
|                   | Ν                 | Mean  | Std.<br>Deviation | Std. Error | 95%<br>Confidenc<br>e Interval |       | Minimum | Maximum |  |
|                   |                   |       |                   |            | for Mean<br>Lower              | Upper |         |         |  |
|                   |                   |       |                   |            | Bound                          | Bound |         |         |  |
| Yes               | 18                | 16.28 | 9.96              | 2.35       | 11.32                          | 21.23 | 1       | 32      |  |
| No                | 10                | 15.30 | 7.63              | 2.41       | 9.84                           | 20.76 | 5       | 30      |  |
| Total             | 28                | 15.93 | 9.06              | 1.71       | 12.41                          | 19.44 | 1       | 32      |  |
| ANOVA<br>IDNO     |                   |       |                   |            |                                |       |         |         |  |
|                   | Sum of<br>Squares | df    | Mean<br>Square    | F          | Sig.                           |       |         |         |  |
| Between<br>Groups | 6.146             | 1     | 6.146             | .072       | .790                           |       |         |         |  |
| Within            | 2211.711          | 26    | 85.066            |            |                                |       |         |         |  |

Groups Total 2217.857 27

| Case Proces                                             | ssing Summ  | nary              |               |                           |                   |                   |
|---------------------------------------------------------|-------------|-------------------|---------------|---------------------------|-------------------|-------------------|
|                                                         | Val         | id                | Case<br>Missi |                           | Tota              | I                 |
| Designatio<br>n *                                       | N<br>70     | Percent<br>100.0% | N<br>0        | Percent<br>.0%            | N<br>70           | Percent<br>100.0% |
| Generation<br>of HCW<br>during the<br>course of<br>duty |             |                   |               |                           |                   | K                 |
|                                                         | * •         | 1101              |               |                           |                   |                   |
| Designation                                             | * Generatio | on of HCW o       |               | ourse of duty<br>n of HCW | Crosstab<br>Total | ulation           |
|                                                         |             |                   | during the    | course of                 |                   |                   |
|                                                         |             |                   |               | duty                      |                   |                   |
|                                                         |             |                   |               |                           |                   |                   |
|                                                         |             |                   | yes           | no                        |                   |                   |
| Designatio                                              | Doctor      | Count             | 14            | 1                         | 15                |                   |
| n                                                       | Doctor      | Count             | 14            |                           | 10                |                   |
|                                                         |             | Expected          | 10.5          | 4.5                       | 15.0              |                   |
|                                                         |             |                   | 10.5          | 4.5                       | 15.0              |                   |
|                                                         |             | Count             | 0.5           |                           | 0.5               |                   |
|                                                         | Nurse       | Count             | 35            | 0                         | 35                |                   |
|                                                         |             | Expected          | 24.5          | 10.5                      | 35.0              |                   |
|                                                         |             | Count             |               |                           |                   |                   |
|                                                         | aux Staff   | Count             | 0             | 6                         | 6                 |                   |
|                                                         |             | Expected          | 4.2           | 1.8                       | 6.0               |                   |
|                                                         |             | Count             | 1.2           | 1.0                       | 0.0               |                   |
|                                                         | Mard        |                   | 0             | 7                         | 7                 |                   |
|                                                         | Ward        | Count             | 0             | 7                         | 1                 |                   |
|                                                         | Cleaner     |                   |               |                           |                   |                   |
|                                                         |             | Expected          | 4.9           | 2.1                       | 7.0               |                   |
|                                                         |             | Count             |               |                           |                   |                   |
|                                                         | Waste       | Count             | 0             | 7                         | 7                 |                   |
|                                                         | Handler     |                   |               |                           |                   |                   |
|                                                         |             | Expected          | 4.9           | 2.1                       | 7.0               |                   |
|                                                         |             | Count             |               |                           |                   |                   |
| Total                                                   |             | Count             | 49            | 21                        | 70                |                   |
| Total                                                   |             |                   | 49.0          | 21.0                      | 70.0              |                   |
|                                                         |             | Expected          | 49.0          | 21.0                      | 70.0              |                   |
| 01 : 0                                                  | <b>T</b> (  | Count             |               |                           |                   |                   |
| Chi-Square                                              |             |                   |               |                           |                   |                   |
|                                                         | Value       | df                | Asymp.        |                           |                   |                   |
|                                                         |             |                   | Sig. (2-      |                           |                   |                   |
|                                                         |             |                   | sided)        |                           |                   |                   |
| Pearson                                                 | 65.556      | 4                 | .000          |                           |                   |                   |
| Chi-                                                    |             |                   |               |                           |                   |                   |
| Square                                                  |             |                   |               |                           |                   |                   |
| Likelihood                                              | 78.173      | 4                 | .000          |                           |                   |                   |
| Ratio                                                   | 10.170      | -1                |               |                           |                   |                   |
|                                                         | 17 EE 4     | 1                 | .000          |                           |                   |                   |
| Linear-by-                                              | 47.554      | 1                 | .000          |                           |                   |                   |
| Linear                                                  |             |                   |               |                           |                   |                   |
| Associatio                                              |             |                   |               |                           |                   |                   |
| n                                                       |             |                   |               |                           |                   |                   |
| N of Valid                                              | 70          |                   |               |                           |                   |                   |
|                                                         |             |                   |               |                           |                   |                   |

Cases

a 7 cells (70.0%) have expected count less than 5. The minimum expected count is 1.80.

#### Case Processing Summary

|                                                |       |         | Case  | es      |      |         |  |
|------------------------------------------------|-------|---------|-------|---------|------|---------|--|
|                                                | Valie | d       | Missi | ng      | Tota | al      |  |
|                                                | N     | Percent | N     | Percent | N    | Percent |  |
| Designatio<br>n * Attitude<br>to Env.<br>sound | 70    | 100.0%  | 0     | .0%     | 70   | 100.0%  |  |
|                                                |       |         |       |         |      |         |  |

handling of waste

## Designation \* Attitude to Env. sound handling of waste Crosstabulation

|            | Attitude to Env. sound handling of |          |         |          |          |      |  |  |  |
|------------|------------------------------------|----------|---------|----------|----------|------|--|--|--|
|            |                                    |          |         | waste    |          |      |  |  |  |
|            |                                    |          | my resp | res ward | res hmgt |      |  |  |  |
| Designatio | Doctor                             | Count    | 5       | 3        | 7        | 15   |  |  |  |
| n          |                                    |          |         |          |          |      |  |  |  |
|            |                                    | Expected | 5.4     | 3.9      | 5.8      | 15.0 |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
|            | Nurse                              | Count    | 8       | 10       | 17       | 35   |  |  |  |
|            |                                    | Expected | 12.5    | 9.0      | 13.5     | 35.0 |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
|            | aux Staff                          | Count    | 0       | 5        | 1        | 6    |  |  |  |
|            |                                    | Expected | 2.1     | 1.5      | 2.3      | 6.0  |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
|            | Ward                               | Count    | 5       | 0        | 2        | 7    |  |  |  |
|            | Cleaner                            |          |         |          |          |      |  |  |  |
|            |                                    | Expected | 2.5     | 1.8      | 2.7      | 7.0  |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
|            | Waste                              | Count    | 7       | 0        | 0        | 7    |  |  |  |
|            | Handler                            |          |         |          |          |      |  |  |  |
|            |                                    | Expected | 2.5     | 1.8      | 2.7      | 7.0  |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
| Total      |                                    | Count    | 25      | 18       | 27       | 70   |  |  |  |
| , ota,     |                                    | Expected | 25.0    | 18.0     | 27.0     | 70.0 |  |  |  |
|            |                                    | Count    |         |          |          |      |  |  |  |
|            |                                    |          |         |          |          |      |  |  |  |

| Chi-Square T                       | ests   |    |                              |
|------------------------------------|--------|----|------------------------------|
|                                    | Value  | df | Asymp.<br>Sig. (2-<br>sided) |
| Pearson<br>Chi-<br>Square          | 30.825 | 8  | .000                         |
| Likelihood<br>Ratio                | 33.499 | 8  | .000                         |
| Linear-by-<br>Linear<br>Associatio | 10.723 | 1  | .001                         |
| n<br>N of Valid<br>Cases           | 70     |    |                              |

a 10 cells (66.7%) have expected count less than 5. The minimum expected count is 1.54.

Case Processing Summary

| Case FIDLes   | sing Summ   | lary              |              |             |              |              |
|---------------|-------------|-------------------|--------------|-------------|--------------|--------------|
|               |             |                   | Case         | es          |              |              |
|               | Val         | id                | Missi        |             | Tota         | 1            |
|               | N           | Percent           | N            | Percent     | N            | Percent      |
| Designatio    | 70          | 100.0%            | 0            | .0%         | 70           | 100.0%       |
| n*            |             |                   |              |             |              |              |
| Segregatio    |             |                   |              |             |              |              |
| n of waste    |             |                   |              |             |              |              |
| in worker's   |             |                   |              |             |              |              |
| ward/unit     |             |                   |              |             |              |              |
| Designation   | * Sogragati | on of wasta       | in workor's  | word/upit   | Crosstabulat | ion          |
| Designation   | Segregati   |                   | Segregation  |             | Total        | 1011         |
|               |             |                   | in worker's  | in or waste | Total        |              |
|               |             |                   | III WOIKEI S | waru/unit   |              |              |
|               |             |                   | yes          | no          |              |              |
| Designatio    | Doctor      | Count             | 11           | 4           | 15           |              |
| n             |             |                   |              |             |              |              |
|               |             | Expected          | 9.4          | 5.6         | 15.0         |              |
|               |             | Count             |              |             |              |              |
|               | Nurse       | Count             | 28           | 7           | 35           |              |
|               |             | Expected          | 22.0         | 13.0        | 35.0         |              |
|               |             | Count             |              |             |              |              |
|               | aux Staff   | Count             | 1            | 5           | 6            |              |
|               |             | Expected          | 3.8          | 2.2         | 6.0          |              |
|               |             | Count             |              |             |              |              |
|               | Ward        | Count             | 4            | 3           | 7            |              |
|               | Cleaner     | oount             |              | •           |              |              |
|               | oleaner     | Expected          | 4.4          | 2.6         | 7.0          |              |
|               |             | Count             | 4.4          | 2.0         | 1.0          |              |
|               | Waste       | Count             | 0            | 7           | 7            |              |
|               | Handler     | oount             | 0            |             |              |              |
|               | Tianulei    | Expected          | 4.4          | 2.6         | 7.0          |              |
|               |             | Count             | 4.4          | 2.0         | 1.0          |              |
| Total         |             | Count             | 44           | 26          | 70           |              |
| Total         |             |                   | 44.0         | 26.0        | 70.0         |              |
|               |             | Expected<br>Count | 44.0         | 20.0        | 70.0         |              |
|               |             | Count             |              |             |              |              |
|               |             |                   |              |             |              |              |
| Chi-Square    |             | -14               | A            |             |              |              |
|               | Value       | df                | Asymp.       |             |              |              |
|               |             |                   | Sig. (2-     |             |              |              |
|               |             |                   | sided)       |             |              |              |
| Pearson       | 22.538      | 4                 | .000         |             |              |              |
| Chi-          |             |                   |              |             |              |              |
| Square        |             |                   |              |             |              |              |
| Likelihood    | 24.967      | 4                 | .000         |             |              |              |
| Ratio         |             |                   |              |             |              |              |
| Linear-by-    | 13.880      | 1                 | .000         |             |              |              |
| Linear        |             |                   |              |             |              |              |
| Associatio    |             |                   |              |             |              |              |
| n             |             |                   |              |             |              |              |
| N of Valid    | 70          |                   |              |             |              |              |
| Cases         |             |                   |              |             |              |              |
| a 6 cells (6) | 0.0%) have  | expected co       | ount less th | an 5. The i | minimum ex   | pected could |

a 6 cells (60.0%) have expected count less than 5. The minimum expected count is 2.23.

| Ca | se Process                       | ing Summ<br>Cases | ary     |         |         |       |         |  |
|----|----------------------------------|-------------------|---------|---------|---------|-------|---------|--|
|    |                                  | Valid             |         | Missing |         | Total |         |  |
|    |                                  | N                 | Percent | Ň       | Percent | N     | Percent |  |
| se | esignatio<br>n * Who<br>gregates | 70                | 100.0%  | 0       | .0%     | 70    | 100.0%  |  |
|    | waste in<br>your<br>vard/unit    |                   |         |         |         |       |         |  |

| Deelghaden | J                |                   | ,       |     |     | Who s  | egregates w | vaste in yo | our ward/unit |      |     |        |     |      | Total |
|------------|------------------|-------------------|---------|-----|-----|--------|-------------|-------------|---------------|------|-----|--------|-----|------|-------|
|            |                  |                   | doctors | aux | wh  | nurses | wc          | d-n         | d-n-wc        | n-wc | all | d-a-n- | wc  | none | iotai |
| Designatio | Doctor           | Count             | 1       | 0   | 0   | 0      | 4           | 2           | 1             | 0    | 2   |        | 0   | 5    | 15    |
| n          |                  |                   |         |     |     |        |             |             |               |      |     |        |     |      |       |
|            |                  | Expected<br>Count | .2      | .2  | 1.1 | 1.7    | 4.5         | .6          | .6            | .2   | .4  |        | .4  | 4.9  | 15.0  |
|            | Nurse            | Count             | 0       | 1   | 4   | 8      | 8           | 1           | 2             | 1    | 0   |        | 2   | 8    | 35    |
|            |                  | Expected<br>Count | .5      | .5  | 2.5 | 4.0    | 10.5        | 1.5         | 1.5           | .5   | 1.0 |        | 1.0 | 11.5 | 35.0  |
|            | aux Staff        | Count             | 0       | 0   | 0   | 0      | 2           | 0           | 0             | 0    | 0   |        | 0   | 4    | 6     |
|            |                  | Expected<br>Count | .1      | .1  | .4  | .7     | 1.8         | .3          | .3            | .1   | .2  |        | .2  | 2.0  | 6.0   |
|            | Ward<br>Cleaner  | Count             | 0       | 0   | 0   | 0      | 3           | 0           | 0             | 0    | 0   |        | 0   | 4    | 7     |
|            |                  | Expected<br>Count | .1      | .1  | .5  | .8     | 2.1         | .3          | .3            | .1   | .2  |        | .2  | 2.3  | 7.0   |
|            | Waste<br>Handler | Count             | 0       | 0   | 1   | 0      | 4           | 0           | 0             | 0    | 0   |        | 0   | 2    | 7     |
|            |                  | Expected<br>Count | .1      | .1  | .5  | .8     | 2.1         | .3          | .3            | .1   | .2  |        | .2  | 2.3  | 7.0   |
| Total      |                  | Count             | 1       | 1   | 5   | 8      | 21          | 3           | 3             | 1    | 2   |        | 2   | 23   | 70    |
|            |                  | Expected<br>Count | 1.0     | 1.0 | 5.0 | 8.0    | 21.0        | 3.0         | 3.0           | 1.0  | 2.0 | 2      | 2.0 | 23.0 | 70.0  |

Designation \* Who segregates waste in your ward/unit Crosstabulation

#### Chi-Square Tests

|                      | Value  | df | Asymp.<br>Sig. (2-<br>sided) |  |
|----------------------|--------|----|------------------------------|--|
| Pearson<br>Chi-      | 38.738 | 40 | .527                         |  |
| Square               |        |    |                              |  |
| Likelihood           | 43.077 | 40 | .341                         |  |
| Ratio                |        |    |                              |  |
| Linear-by-<br>Linear | .115   | 1  | .735                         |  |
| Associatio           |        |    |                              |  |
| n                    |        |    |                              |  |
| N of Valid<br>Cases  | 70     |    |                              |  |
|                      |        |    |                              |  |

a 53 cells (96.4%) have expected count less than 5. The minimum expected count is .09.

Case Processing Summary

|                                                    | 5                        | Cases                                               |           |
|----------------------------------------------------|--------------------------|-----------------------------------------------------|-----------|
|                                                    | Valid                    | Missing                                             | Total     |
|                                                    | N Percent                | N Percent                                           | N Percent |
| Designatio<br>n * Use of<br>protective<br>clothing | 70 100.0%                | 0.0%                                                | 70 100.0% |
| Designation * U                                    | se of protective clothir | ng Crosstabulation<br>Use of protective<br>clothing | Total     |
|                                                    |                          | ves no                                              |           |

| Designatio | Doctor           | Count             | 13   | 2    | 15   |
|------------|------------------|-------------------|------|------|------|
| n          |                  | Expected<br>Count | 11.1 | 3.9  | 15.0 |
|            | Nurse            | Count             | 24   | 11   | 35   |
|            |                  | Expected<br>Count | 26.0 | 9.0  | 35.0 |
|            | aux Staff        | Count             | 3    | 3    | 6    |
|            |                  | Expected<br>Count | 4.5  | 1.5  | 6.0  |
|            | Ward<br>Cleaner  | Count             | 7    | 0    | 7    |
|            | Ciculio          | Expected<br>Count | 5.2  | 1.8  | 7.0  |
|            | Waste<br>Handler | Count             | 5    | 2    | 7    |
|            |                  | Expected<br>Count | 5.2  | 1.8  | 7.0  |
| Total      |                  | Count             | 52   | 18   | 70   |
|            |                  | Expected<br>Count | 52.0 | 18.0 | 70.0 |

Chi-Square Tests

Value

df Asymp.

|                                         |       |   | Sig. (2-<br>sided) |  |
|-----------------------------------------|-------|---|--------------------|--|
| Pearson<br>Chi-                         | 6.108 | 4 | .191               |  |
| Square                                  |       |   |                    |  |
| Likelihood<br>Ratio                     | 7.759 | 4 | .101               |  |
| Linear-by-<br>Linear<br>Associatio<br>n | .005  | 1 | .944               |  |
| N of Valid<br>Cases                     | 70    |   |                    |  |
|                                         |       |   |                    |  |

a 5 cells (50.0%) have expected count less than 5. The minimum expected count is 1.54.

#### Case Processing Summary

|                                                                         | Valie | d       | Case<br>Missi |         | Tota | al      |
|-------------------------------------------------------------------------|-------|---------|---------------|---------|------|---------|
|                                                                         | N     | Percent | N             | Percent | N    | Percent |
| Designatio<br>n *<br>Immunizati<br>on against<br>hepatitis &<br>tetanus | 70    | 100.0%  | 0             | .0%     | 70   | 100.0%  |

# Designation \* Immunization against hepatitis & tetanus Crosstabulation Immunization against Total hepatitis & tetanus

| Designatio | Doctor           | Count             | yes<br>9 | no<br>6 | 15   |
|------------|------------------|-------------------|----------|---------|------|
| n          |                  | Expected<br>Count | 7.1      | 7.9     | 15.0 |
|            | Nurse            | Count             | 22       | 13      | 35   |
|            |                  | Expected<br>Count | 16.5     | 18.5    | 35.0 |
|            | aux Staff        | Count             | 1        | 5       | 6    |
|            |                  | Expected<br>Count | 2.8      | 3.2     | 6.0  |
|            | Ward<br>Cleaner  | Count             | 1        | 6       | 7    |
|            | Oleaner          | Expected<br>Count | 3.3      | 3.7     | 7.0  |
|            | Waste<br>Handler | Count             | 0        | 7       | 7    |
|            | Папитет          | Expected<br>Count | 3.3      | 3.7     | 7.0  |
| Total      |                  | Count             | 33       | 37      | 70   |
| TOLAI      |                  | Expected<br>Count | 33.0     | 37.0    | 70.0 |

df

#### Chi-Square Tests Value

Asymp. Sig. (2-sided)

| Pearson<br>Chi- | 15.976 | 4 | .003 |
|-----------------|--------|---|------|
| Square          |        |   |      |
| Likelihood      | 19.293 | 4 | .001 |
| Ratio           |        |   |      |
| Linear-by-      | 12.884 | 1 | .000 |
| Linear          |        |   |      |
| Associatio      |        |   |      |
| n               |        |   |      |
| N of Valid      | 70     |   |      |
| Cases           |        |   |      |
| a               |        |   |      |

a 6 cells (60.0%) have expected count less than 5. The minimum expected count is 2.83.

### Case Processing Summary

|                    |              |                   | Case        |           |       |         |
|--------------------|--------------|-------------------|-------------|-----------|-------|---------|
|                    | Val          |                   | Missi       |           | Tota  | al      |
| 1                  | N            | Percent           | N           | Percent   | N     | Percent |
| Designatio<br>n *  | 70           | 100.0%            | 0           | .0%       | 70    | 100.0%  |
| Training in school |              |                   |             |           |       |         |
| Designation        | * Training i | n school Cro      | sstabulatio | n         |       |         |
|                    | j            |                   |             | in school | Total |         |
|                    |              |                   | yes         | no        |       |         |
| Designatio<br>n    | Doctor       | Count             | 9           | 6         | 15    |         |
|                    |              | Expected          | 6.0         | 9.0       | 15.0  |         |
|                    |              | Count             |             |           |       |         |
|                    | Nurse        | Count             | 19          | 16        | 35    |         |
|                    |              | Expected          | 14.0        | 21.0      | 35.0  |         |
|                    |              | Count             |             |           |       |         |
|                    | aux Staff    | Count             | 0           | 6         | 6     |         |
|                    |              | Expected<br>Count | 2.4         | 3.6       | 6.0   |         |
|                    | Ward         | Count             | 0           | 7         | 7     |         |
|                    | Cleaner      |                   |             |           |       |         |
|                    |              | Expected<br>Count | 2.8         | 4.2       | 7.0   |         |
|                    | Waste        | Count             | 0           | 7         | 7     |         |
|                    | Handler      | Expected          | 2.8         | 4.2       | 7.0   |         |
|                    |              | Count             | 2.0         |           |       |         |
| Total              |              | Count             | 28          | 42        | 70    |         |
|                    |              | Expected<br>Count | 28.0        | 42.0      | 70.0  |         |

Chi-Square Tests Value

Asymp. Sig. (2-sided)

df

| Pearson<br>Chi-      | 18.810        | 4          | .001        |
|----------------------|---------------|------------|-------------|
| Square<br>Likelihood | 25.768        | 4          | .000        |
| Ratio                |               |            |             |
| Linear-by-           | 15.104        | 1          | .000        |
| Linear               |               |            |             |
| Associatio           |               |            |             |
| n                    |               |            |             |
| N of Valid           | 70            |            |             |
| Cases                |               |            |             |
| a 6 cells (60 (      | 1%) have ever | ected cour | at loss the |

a 6 cells (60.0%) have expected count less than 5. The minimum expected count is 2.40.

#### Descriptives IDNO

| IDNO                |              |                   |                   |                |                |                       |         |         |  |
|---------------------|--------------|-------------------|-------------------|----------------|----------------|-----------------------|---------|---------|--|
|                     | N            | Mean              | Std.<br>Deviation | Std. Error     |                | onfidence<br>for Mean | Minimum | Maximum |  |
|                     |              |                   |                   |                | Lower<br>Bound | Upper<br>Bound        |         |         |  |
| Yes                 | 13           | 14.69             | 9.99              | 2.77           | 8.66           | 20.73                 | 4       | 32      |  |
| No                  | 19           | 17.74             | 9.01              | 2.07           | 13.40          | 22.08                 | 1       | 31      |  |
| Total               | 32           | 16.50             | 9.38              | 1.66           | 13.12          | 19.88                 | 1       | 32      |  |
| Test of Hom<br>IDNO | ogeneity of  | Variances         |                   |                |                |                       |         |         |  |
| Levene<br>Statistic | df1          | df2               | Sig.              |                |                |                       |         |         |  |
| .240                | 1            | 30                | .628              |                |                |                       |         |         |  |
| ANOVA<br>IDNO       |              |                   |                   |                |                |                       |         |         |  |
|                     | Sum of       | df                | Mean              | F              | Sig.           |                       |         |         |  |
|                     | Squares      |                   | Square            |                |                |                       |         |         |  |
| Between             | 71.547       | 1                 | 71.547            | .808           | .376           |                       |         |         |  |
| Groups<br>Within    | 2656.453     | 30                | 88.548            |                |                |                       |         |         |  |
| Groups              | 2000.400     | 00                | 00.010            |                |                |                       |         |         |  |
|                     | 2728.000     | 31                |                   |                |                |                       |         |         |  |
| Case Proces         | ssing Summ   | nary              | ×.                |                |                |                       |         |         |  |
|                     |              |                   | Cas               |                |                |                       |         |         |  |
|                     | Vali         |                   | Miss              |                | Tota           |                       |         |         |  |
| Desimatio           | N            | Percent           | N                 | Percent<br>.0% | N<br>70        | Percent<br>100.0%     |         |         |  |
| Designatio<br>n *   | 70           | 100.0%            | 0                 | .0%            | 70             | 100.0%                |         |         |  |
| Training            |              |                   |                   |                |                |                       |         |         |  |
| on the job          |              |                   |                   |                |                |                       |         |         |  |
| Designation         | * Training o | on the job C      | Crosstabula       | tion           |                |                       |         |         |  |
| 0                   | Ū            |                   |                   | on the job     | Total          |                       |         |         |  |
|                     | _            |                   | yes               | no             |                |                       |         |         |  |
| Designatio<br>n     | Doctor       | Count             | 4                 | 11             | 15             |                       |         |         |  |
|                     |              | Expected<br>Count | 6.4               | 8.6            | 15.0           |                       |         |         |  |
|                     |              | Jount             |                   |                |                |                       |         |         |  |

|       | Nurse            | Count             | 24   | 11   | 35   |  |
|-------|------------------|-------------------|------|------|------|--|
|       |                  | Expected<br>Count | 15.0 | 20.0 | 35.0 |  |
|       | aux Staff        | Count             | 1    | 5    | 6    |  |
|       |                  | Expected<br>Count | 2.6  | 3.4  | 6.0  |  |
|       | Ward<br>Cleaner  | Count             | 1    | 6    | 7    |  |
|       |                  | Expected<br>Count | 3.0  | 4.0  | 7.0  |  |
|       | Waste<br>Handler | Count             | 0    | 7    | 7    |  |
|       |                  | Expected<br>Count | 3.0  | 4.0  | 7.0  |  |
| Total |                  | Count             | 30   | 40   | 70   |  |
|       |                  | Expected<br>Count | 30.0 | 40.0 | 70.0 |  |
|       |                  |                   |      |      |      |  |

#### Chi-Square Tests

|                 | Value  | df | Asymp.<br>Sig. (2-<br>sided) |  |
|-----------------|--------|----|------------------------------|--|
| Pearson<br>Chi- | 20.319 | 4  | .000                         |  |
| Square          |        |    |                              |  |
| Likelihood      | 23.487 | 4  | .000                         |  |
| Ratio           |        |    |                              |  |
| Linear-by-      | 5.799  | 1  | .016                         |  |
| Linear          |        |    |                              |  |
| Associatio      |        |    |                              |  |
| n               |        |    |                              |  |
| N of Valid      | 70     |    |                              |  |
| Cases           |        |    |                              |  |
|                 |        |    |                              |  |

a 6 cells (60.0%) have expected count less than 5. The minimum expected count is 2.57.

#### Case Processing Summary

|                                                                 |            |                   | Cas        | es                                        |                   |         |
|-----------------------------------------------------------------|------------|-------------------|------------|-------------------------------------------|-------------------|---------|
|                                                                 | Valio      | b                 | Miss       | ing                                       | Tota              | al      |
|                                                                 | N          | Percent           | N          | Percent                                   | N                 | Percent |
| Designatio<br>n * Needle<br>prick injury<br>in last 6<br>months | 70         | 100.0%            | 0          | .0%                                       | 70                | 100.0%  |
| Designation *                                                   | Needle pri | ck injury in      | Needle pri | ths Crossta<br>ck injury in<br>t 6 months | bulation<br>Total |         |
|                                                                 |            |                   | yes        | no                                        |                   |         |
| Designatio<br>n                                                 | Doctor     | Count             | 4          | 11                                        | 15                |         |
|                                                                 |            | Expected<br>Count | 1.7        | 13.3                                      | 15.0              |         |

|           | Nurse            | Count             | 2                            | 33      | 35   |
|-----------|------------------|-------------------|------------------------------|---------|------|
|           |                  | Expected          | 4.0                          | 31.0    | 35.0 |
|           | our Ctaff        | Count             |                              | 1.17.15 |      |
|           | aux Staff        | Count             | 0                            | 6       | 6    |
|           |                  | Expected<br>Count | .7                           | 5.3     | 6.0  |
|           | Ward             | Count             | 1                            | 6       | 7    |
|           | Cleaner          |                   |                              |         |      |
|           |                  | Expected          | .8                           | 6.2     | 7.0  |
|           | Masta            | Count             |                              |         |      |
|           | Waste<br>Handler | Count             | 1                            | 6       | 7    |
|           |                  | Expected<br>Count | .8                           | 6.2     | 7.0  |
| Total     |                  | Count             | 8                            | 62      | 70   |
|           |                  | Expected<br>Count | 8.0                          | 62.0    | 70.0 |
| hi-Square | Tests            |                   |                              |         |      |
|           | Value            | df                | Asymp.<br>Sig. (2-<br>sided) |         |      |
|           |                  |                   |                              |         |      |

|                      |       |   | Sideu) |  |
|----------------------|-------|---|--------|--|
| Pearson<br>Chi-      | 5.457 | 4 | .244   |  |
| Square<br>Likelihood | 5.541 | 4 | .236   |  |
| Ratio                |       |   |        |  |
| Linear-by-<br>Linear | .370  | 1 | .543   |  |
| Associatio           |       |   |        |  |
| n                    | 70    |   |        |  |
| N of Valid<br>Cases  | 70    |   |        |  |

a 5 cells (50.0%) have expected count less than 5. The minimum expected count is .69.

Case Processing Summary

|                                                                     | Vali    | d                 | Cases<br>Missin |            | Total             |         |
|---------------------------------------------------------------------|---------|-------------------|-----------------|------------|-------------------|---------|
|                                                                     | N       | Percent           | N               | Percent    |                   | Percent |
| Designatio<br>n *<br>Document<br>ation of<br>needle<br>prick injury | 8       | 11.4%             | 62              | 88.6%      |                   | 00.0%   |
| Designation *                                                       | Documen | tation of nee     |                 | ntation of | oulation<br>Total |         |
|                                                                     |         |                   | yes             | no         |                   |         |
| Designatio<br>n                                                     | Doctor  | Count             | 1               | 3          | 4                 |         |
|                                                                     |         | Expected<br>Count | .5              | 3.5        | 4.0               |         |
|                                                                     | Nurse   | Count             | 0               | 2          | 2                 |         |

|                           |                  | Expected<br>Count | .3                           | 1.8 | 2.0 |
|---------------------------|------------------|-------------------|------------------------------|-----|-----|
|                           | Ward<br>Cleaner  | Count             | 0                            | 1   | 1   |
|                           |                  | Expected<br>Count | .1                           | .9  | 1.0 |
|                           | Waste<br>Handler | Count             | 0                            | 1   | 1   |
|                           |                  | Expected<br>Count | .1                           | .9  | 1.0 |
| Total                     |                  | Count             | 1                            | 7   | 8   |
|                           |                  | Expected<br>Count | 1.0                          | 7.0 | 8.0 |
| Chi-Square Te             | ests             |                   |                              |     |     |
|                           | Value            | df                | Asymp.<br>Sig. (2-<br>sided) |     |     |
| Pearson<br>Chi-<br>Square | 1.143            | 3                 | .767                         |     |     |
| Likelihood<br>Ratio       | 1.530            | 3                 | .675                         |     |     |
|                           | 000              |                   | 100                          |     |     |

|                                    |       |   | sided) |  |  |
|------------------------------------|-------|---|--------|--|--|
| Pearson<br>Chi-                    | 1.143 | 3 | .767   |  |  |
| Square                             |       |   |        |  |  |
| Likelihood<br>Ratio                | 1.530 | 3 | .675   |  |  |
| Linear-by-<br>Linear<br>Associatio | .600  | 1 | .439   |  |  |
| n                                  |       |   |        |  |  |
| N of Valid<br>Cases                | 8     |   |        |  |  |
|                                    |       |   |        |  |  |

a 8 cells (100.0%) have expected count less than 5. The minimum expected count is .13.

#### Case Processing Summary

|                                                  |       |         | Case    | es      |       |         |
|--------------------------------------------------|-------|---------|---------|---------|-------|---------|
|                                                  | Valid |         | Missing |         | Total |         |
|                                                  | N     | Percent | N       | Percent | N     | Percent |
| Designatio<br>n * Post<br>exposure<br>prophylaxi | 8     | 11.4%   | 62      | 88.6%   | 70    | 100.0%  |
| S                                                |       |         |         |         |       |         |

| Designation *   | Post expo | osure prophyl     | Post ex  |         | Total |
|-----------------|-----------|-------------------|----------|---------|-------|
| Designatio<br>n | Doctor    | Count             | yes<br>1 | no<br>3 | 4     |
|                 |           | Expected<br>Count | .5       | 3.5     | 4.0   |
|                 | Nurse     | Count             | 0        | 2       | 2     |
|                 |           | Expected<br>Count | .3       | 1.8     | 2.0   |

|       | Ward<br>Cleaner  | Count             | 0   | 1   | 31  |
|-------|------------------|-------------------|-----|-----|-----|
|       |                  | Expected<br>Count | .1  | .9  | 1.0 |
|       | Waste<br>Handler | Count             | 0   | 1   | 1   |
|       |                  | Expected<br>Count | .1  | .9  | 1.0 |
| Total |                  | Count             | 1   | 7   | 8   |
|       |                  | Expected<br>Count | 1.0 | 7.0 | 8.0 |
|       |                  |                   |     |     |     |

## Chi-Square Tests

|                               | Value | df | Asymp.<br>Sig. (2-<br>sided) |  |
|-------------------------------|-------|----|------------------------------|--|
| Pearson<br>Chi-               | 1.143 | 3  | .767                         |  |
| Square<br>Likelihood<br>Ratio | 1.530 | 3  | .675                         |  |
| Linear-by-<br>Linear          | .600  | 1  | .439                         |  |
| Associatio                    |       |    |                              |  |
| n                             |       |    |                              |  |
| N of Valid<br>Cases           | 8     |    |                              |  |

a 8 cells (100.0%) have expected count less than 5. The minimum expected count is .13.

#### Case Processing Summary

|                   |       |         | Case  | es      |      |         |
|-------------------|-------|---------|-------|---------|------|---------|
|                   | Valie | d       | Missi | ng      | Tota | al      |
|                   | N     | Percent | N     | Percent | N    | Percent |
| Designatio<br>n * | 70    | 100.0%  | 0     | .0%     | 70   | 100.0%  |
| Awareness         |       |         |       |         |      |         |

Awareness of hazards

| Designation     | Total     |                   |           |         |      |
|-----------------|-----------|-------------------|-----------|---------|------|
| Designatio<br>n | Doctor    | Count             | yes<br>15 | no<br>0 | 15   |
| п               |           | Expected<br>Count | 13.5      | 1.5     | 15.0 |
|                 | Nurse     | Count             | 29        | 6       | 35   |
|                 |           | Expected<br>Count | 31.5      | 3.5     | 35.0 |
|                 | aux Staff | Count             | 6         | 0       | 6    |
|                 |           | Expected<br>Count | 5.4       | .6      | 6.0  |

|                                         |                  |                   | - Net                        |     |      |
|-----------------------------------------|------------------|-------------------|------------------------------|-----|------|
|                                         | Ward<br>Cleaner  | Count             | 7                            | 0   | 7    |
|                                         |                  | Expected<br>Count | 6.3                          | .7  | 7.0  |
|                                         | Waste<br>Handler | Count             | 6                            | 1   | 7    |
|                                         |                  | Expected<br>Count | 6.3                          | .7  | 7.0  |
| Total                                   |                  | Count             | 63                           | 7   | 70   |
|                                         |                  | Expected<br>Count | 63.0                         | 7.0 | 70.0 |
| Chi-Square Te                           | ests             |                   |                              |     |      |
|                                         | Value            | df                | Asymp.<br>Sig. (2-<br>sided) |     |      |
| Pearson<br>Chi-<br>Square               | 5.238            | 4                 | .264                         |     |      |
| Likelihood<br>Ratio                     | 7.700            | 4                 | .103                         |     |      |
| Linear-by-<br>Linear<br>Associatio<br>n | .017             | 1                 | .896                         |     |      |
| N of Valid<br>Cases                     | 70               |                   |                              |     |      |

a 5 cells (50.0%) have expected count less than 5. The minimum expected count is .60.

#### Paired Samples Statistics

|                                          | Mean   | N  | Std.      | Std. Error |  |
|------------------------------------------|--------|----|-----------|------------|--|
|                                          |        |    | Deviation | Mean       |  |
| Pair 1 pH of<br>Healthcare<br>waste soil | 8.1417 | 24 | .7027     | .1434      |  |
| pH of<br>adjacent<br>soil                | 7.3417 | 24 | .3202     | 6.536E-02  |  |

| Paired Samples Correla                                                  |            |             |      |
|-------------------------------------------------------------------------|------------|-------------|------|
|                                                                         | NC         | Correlation | Sig. |
| Pair 1 pH of<br>Healthcare<br>waste soil<br>& pH of<br>adjacent<br>soil | 24         | .365        | .080 |
| Paired Samples Test                                                     |            |             |      |
|                                                                         | Paired     |             |      |
|                                                                         | Difference |             |      |

s

Mean

df Sig. (2tailed)

t

Std. Std. Error 95% Confidence

|              |                     |                 | 15 %       |           |                       |          |       |                                          |
|--------------|---------------------|-----------------|------------|-----------|-----------------------|----------|-------|------------------------------------------|
|              |                     | I               | Deviation  | Mean      | Interval o<br>Differe |          | K.    |                                          |
|              |                     |                 |            |           | Lower                 | Upper    | 236   |                                          |
| Pair 1       | pH of<br>Healthcare | .8000           | .6574      | .1342     | .5224                 | 1.0776   | 5.962 | 23 .000                                  |
|              | waste soil          |                 |            |           |                       |          |       |                                          |
|              | - pH of             |                 |            |           |                       |          |       | 8 E                                      |
|              | adjacent            |                 |            |           |                       |          |       |                                          |
|              | soil                |                 |            |           |                       |          |       | and the second                           |
| Daired Sam   | nlos Statistis      |                 |            |           |                       |          |       |                                          |
| Palleu Salli | ples Statistic      | Mean            | Ν          | Std.      | Std. Error            |          |       | 2                                        |
| Deind        | Maintain            | 4 0075          | 24         | Deviation | Mean                  |          |       | <                                        |
| Pair 1       | Moisture content of | 4.8875          | 24         | 1.1936    | .2436                 |          |       | (                                        |
|              | healthcare          |                 |            |           |                       |          |       |                                          |
|              | waste soil          |                 |            |           |                       |          |       |                                          |
|              | Moisture            | 4.9708          | 24         | 1.1804    | .2410                 |          |       |                                          |
|              | content of          |                 |            |           |                       |          |       |                                          |
|              | adjacent            |                 |            |           |                       |          |       |                                          |
|              | soil                |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       |                                          |
| Paired Sam   | ples Correla        | tions           | orrelation | Sig.      |                       |          |       |                                          |
| Pair 1       | Moisture            | 24              | .640       | .001      |                       |          |       |                                          |
| Pair I       | content of          | 24              | .040       | .001      |                       |          |       |                                          |
|              | healthcare          |                 |            |           |                       |          |       | P                                        |
|              | waste soil          |                 |            |           |                       |          |       |                                          |
|              | & Moisture          |                 |            |           |                       |          |       |                                          |
|              | content of          |                 |            |           |                       |          |       |                                          |
|              | adjacent            |                 |            |           |                       |          |       | 2.0287                                   |
|              | soil                |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       | 5                                        |
|              |                     |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
|              |                     |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       | 5                                        |
|              |                     |                 |            |           |                       |          |       | 2                                        |
|              |                     |                 |            |           |                       |          |       |                                          |
| Paired Sar   | mples Test          |                 |            |           |                       |          | t     | df Sig. (2-                              |
|              |                     | Paired          |            |           |                       |          |       | tailed)                                  |
|              |                     | Difference<br>s |            |           |                       |          |       | 2                                        |
|              |                     | Mean            | Std.       | Std. Erro | r 95% Co              |          |       | e                                        |
|              |                     | Weall           | Deviation  |           | n Interva             | l of the |       |                                          |
|              |                     |                 |            |           | Differ                | rence    |       |                                          |
|              |                     |                 |            |           | Lower                 |          | 405   | 23 .689                                  |
| Pair 1       | Moisture            | -8.3333E-       | 1.0077     | .205      | 75088                 | .3422    | 405   | 25 .000                                  |
| , an i       | content of          |                 |            |           |                       |          |       |                                          |
|              | healthcare          |                 |            |           |                       |          |       |                                          |
|              | waste soi           |                 |            |           |                       |          |       |                                          |
|              | - Moisture          |                 |            |           |                       |          |       |                                          |
|              | content of          |                 |            |           |                       |          |       |                                          |
|              | adjacen<br>soi      |                 |            |           |                       |          |       |                                          |
|              | 301                 |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       |                                          |
|              |                     |                 |            |           |                       |          |       | And P                                    |
|              |                     |                 |            |           |                       |          |       | ent                                      |

#### **APPENDIX VI**

| CONTA  | INERS                      | S                       | SUNDAY            | 1    | M             | 10NDAY            | ¥    | TU            | UESDA           | .Y    | WE | EDNESD            | AY                  | TF | HURSDA            | AY     | F   | FRIDAY            | X                   | SA  | TURDA   | AY                  | 7        |
|--------|----------------------------|-------------------------|-------------------|------|---------------|-------------------|------|---------------|-----------------|-------|----|-------------------|---------------------|----|-------------------|--------|-----|-------------------|---------------------|-----|---------|---------------------|----------|
| Number | Vol<br>(litres)            | Nb<br>emptied           | Filling<br>d rate |      | Nb<br>emptied | Filling<br>1 rate |      | Nb<br>emptied | Filling<br>rate |       |    | Filling<br>I rate | g Total<br>(litres) |    | Filling<br>I rate | 0      |     | Filling<br>I rate | g Total<br>(litres) | 1   | Filling | g Total<br>(litres) |          |
| 1      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 4        |
| 2      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1 33     |
| 3      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 4      | 120                        | 1                       | 1                 | 120  | 2             | 1                 | 240  | 2             | 1               | 240   | 2  | 1                 | 240                 | 2  | 1                 | 240    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 5      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 7-5      |
| 6      | 120                        | 1                       | 1 '               | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 0.6               | 72     | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 7      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1:02     |
| 8      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 9      | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 15       |
| 10     | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 13       |
| 11     | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 12       |
| 12     | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 10.      |
| 13     | 120                        | 1                       | 1                 | 120  | 2             | 1                 | 240  | 2             | 1               | 240   | 2  | 1                 | 240                 | 2  | 1                 | 120    | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1-       |
| 14     | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 0.5               | 60                  | 1  | 0.8               | 96     | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 15     | 120                        | 1                       | 1                 | 120  | 1             | 1                 | 120  | 1 '           | 1               | 120   | 1  |                   | 120                 | 1  | 0.8               | 96     | 1   | 1                 | 120                 | 1   | 1       | 120                 | 1        |
| 16     | 120                        | Nil                     | '                 |      | 1             | 1                 | 120  | 1 '           | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | Nil |                   | and l               | Nil |         |                     | 1        |
| 17     | 120                        | Nil                     | '                 |      | 2             | 1                 | 240  | 2             | 1               | 240   | 2  | 1                 | 240                 | 2  | 1                 | 120    | Nil |                   | 1º con              | Nil |         |                     | 1        |
| 18     | 120                        | Nil                     | '                 |      | 1             | 0.5               | 60   | 1 '           | 1               | 120   | 1  | 1                 | 120                 | 1  | 0.9               | 108    | Nil |                   |                     | Nil |         |                     | í        |
| 19     | 120                        | Nil                     | '                 |      | 1             | 1                 | 120  | 1 '           | 1               | 120   | 1  | 0.8               | 96                  | 1  | 1                 | 120    | Nil |                   |                     | Nil | -       |                     | Grand    |
| 20     | 120                        | Nil                     |                   |      | 1             | 1                 | 120  | 1             | 1               | 120   | 1  | 1                 | 120                 | 1  | 1                 | 120    | Nil |                   | 18                  | Nil | V       | 4                   | (litres) |
| Total  |                            |                         |                   | 1800 | -             | ,                 | 2700 | -             |                 | 2760  | -  | J                 | 2676                | -  |                   | 2412   | 1   | +                 | 1800                |     | L       | 1800                | 1594     |
|        | d weight (l<br>y by 0.30]  |                         |                   | 540  | -             |                   | 810  | _             |                 | 828   | -  | -                 | 802.8               | -  | ŀ                 | 723.6  |     | -                 | 540                 |     | 5       | 540                 | 4784     |
|        | d weight (l<br>nultiply by | (kg) of infe<br>( 0.30] | ctious            | 162  |               | ſ                 | 243  |               |                 | 248.4 |    | Γ                 | 240.84              |    |                   | 217.08 |     |                   | 162                 |     | . 1     | 162                 | 1435.3   |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 26-08-2007 TO SATURDAY 01-09-2007 (WEEK 1)

| CONTA                | INERS                    | S                        | SUNDAY            | Y     | M | IONDA           | Y      | T             | TUESDA            | Y                   | WE            | DNESD             | AY    | ТН | IURSDA          | AY    | F             | FRIDAY          | Y     | SA  | TURDA             | AY    | 7                 |
|----------------------|--------------------------|--------------------------|-------------------|-------|---|-----------------|--------|---------------|-------------------|---------------------|---------------|-------------------|-------|----|-----------------|-------|---------------|-----------------|-------|-----|-------------------|-------|-------------------|
| Number               | Vol<br>(litres)          | Nb<br>emptied            | Filling<br>d rate |       |   | Filling<br>rate |        | Nb<br>emptied | Filling<br>I rate | g Total<br>(litres) | Nb<br>emptied | Filling<br>I rate | 0     |    | Filling<br>rate |       | Nb<br>emptied | Filling<br>rate |       |     | Filling<br>I rate |       |                   |
| 1                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 0.5               | 60                  | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | /                 |
| 2                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | -                 |
| 3                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | -                 |
| 4                    | 120                      | 1                        | 1                 | 120   | 2 | 1               | 120    | 6             | 1                 | 720                 | 4             | 1                 | 480   | 2  | 1               | 240   | 1             | 1               | 120   | 1   | 1                 | 120   | 7 3 7             |
| 5                    | 120                      | 1                        | 1                 | 120   | 1 | 0.5             | 60     | 1             | 0.5               | 60                  | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1 .             | 120   | 1   | 1                 | 120   | -                 |
| 6                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | -                 |
| 7                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | 1                 |
| 8                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1                 | 120   | 1325              |
| 9                    | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | $\frac{1}{1}$     | 120   | 1.8.7             |
| 10                   | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 1 i               | 120   |                   |
| 11                   | 120                      | 1                        | 1                 | 120   | 1 | . 1             | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | i t               | 120   | 1                 |
| 12                   | 120                      | 1                        | 1                 | 120   | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | (i)               | 120   | 1                 |
| 13                   | 120                      | 1                        | 1                 | 120   | 2 | 1               | 120    | 2             | 1                 | 120                 | 2             | 1                 | 240   | 1  | 1               | 120   | Nil           | ( )             | (,    | Nil | -                 | 120   | 1                 |
| 14                   | 120                      | Nil                      | 1                 |       | 1 | 0.8             | 96     | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | 1             | 1               | 120   | 1   | 11                | 120   |                   |
| 15                   | 120                      | Nil                      |                   |       | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | Nil           |                 | (     | Nil | 1                 | 120   | 1                 |
| 16                   | 120                      | Nil                      | 1                 |       | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | Nil           |                 | (     | Nil |                   |       | 1                 |
| 17                   | 120                      | Nil                      | 1                 |       | 2 | 1               | 120    | 3             | 1                 | 120                 | 3             | 1                 | 360   | 3  | 1               | 360   | Nil           |                 | ( ,   | Nil | $\square$         |       | 1                 |
| 18                   | 120                      | Nil                      | 1                 |       | 1 | 0.5             | 60     | 1             | 0.8               | 96                  | 1             | 1                 | 120   | 1  | 1               | 120   | Nil           |                 | ( )   | Nil |                   |       | 1                 |
| 19                   | 120                      | Nil                      |                   |       | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | Nil           |                 | 1     | Nil |                   |       | 1                 |
| 20                   | 120                      | Nil                      |                   |       | 1 | 1               | 120    | 1             | 1                 | 120                 | 1             | 1                 | 120   | 1  | 1               | 120   | Nil           |                 |       | Nil |                   |       | Grand<br>(litres) |
| Total                |                          |                          |                   | 1560  | _ |                 | 2256   | _             | J                 | 2856                | -             |                   | 3120  | 4  |                 | 2760  | 4             |                 | 1560  | 1   | 1                 | 1560  | 15672             |
| Estimate<br>by 0.30] |                          | t (kg) [mul              | ltiply            | 468   | - | ļ               | 676.8  | -             |                   | 856.8               | -             |                   | 936   |    |                 | 828   |               | F               | 468   |     | -                 | 468   | 4701.6            |
|                      | ed weight<br>ous waste[r | t (kg) of<br>multiply by | у                 | 140.4 |   |                 | 203.04 |               |                   | 257.04              |               |                   | 280.8 |    |                 | 248.4 |               |                 | 140.4 |     |                   | 140.4 | 1410.48           |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 02-09-2007 TO SATURDAY 08-09-2007 (WEEK 2)

| CONTA                | INERS                   | S                     | UNDAY           | ľ                 | M             | IONDAY          | 7                 | TU            | JESDA           | Y                 | WE            | DNESD           | AY    | TH            | URSD            | AY                | H             | FRIDAY  | ·                 | SA            | TURDA           | Y                |                       |
|----------------------|-------------------------|-----------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------|---------------|-----------------|-------------------|---------------|---------|-------------------|---------------|-----------------|------------------|-----------------------|
| Number               | Vol<br>(litres)         | Nb<br>emptied         | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate |       | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres |                       |
| 1                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | 4                     |
| 2                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 2             | 1               | 240               | 1             | 1       | 120               | 1             | 1               | 120              | 1 2 2 2               |
| 3                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              |                       |
| 4                    | 120                     | 1                     | 1               | 120               | 2             | 1               | 240               | 4             | 1               | 480               | 4             | 1               | 480   | 2             | 1               | 240               | 2             | 1       | 240               | 1             | 1               | 120              | 1200                  |
| 5                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | K BOY                 |
| 6                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              |                       |
| 7                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              |                       |
| 8                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | 05                    |
| 9                    | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | and                   |
| 10                   | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | 12                    |
| 11                   | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | 1. N.                 |
| 12                   | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1               | 120              | in .                  |
| 13                   | 120                     | 1                     | 1               | 120               | 2             | 1               | 240               | 2             | 1               | 240               | 2             | 1               | 240   | 3             | 1               | 360               | 1             | 1       | 120               | 1             | 1               | 120              | 1                     |
| 14                   | 120                     | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | Nil           |                 | 11               |                       |
| 15                   | 120                     |                       |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1             | 1       | 120               | Nil           | 2200            | 1000             |                       |
| 16                   | 120                     |                       |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | Nil           |         | 1.1.1             | Nil           |                 |                  | 1                     |
| 17                   | 120                     |                       |                 |                   | 2             | 1               | 240               | 3             | 1               | 360               | 3             | 1               | 360   | 4             | 1               | 480               | Nil           |         | 1000              | Nil           |                 |                  | 1                     |
| 18                   | 120                     |                       |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | Nil           |         |                   | Nil           |                 |                  | 1                     |
| 19                   | 120                     |                       |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | Nil           | 5       |                   | Nil           |                 |                  | 1                     |
| 20                   | 120                     |                       |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | Nil           |         | 2.5               | Nil           |                 | 1.00             | Grand Tota<br>litres) |
| Total                |                         |                       |                 | 1680              | -             |                 | 2760              | -             |                 | 3120              |               |                 | 3120  |               |                 | 3240              |               |         | 1920              | Vry           | 2               | 1560             | 17400                 |
| Estimate<br>by 0.30] | 0                       | (kg) [mul             | tiply           | 504               | -             |                 | 828               |               |                 | 936               |               |                 | 936   |               |                 | 972               |               |         | 576               |               |                 | 468              | 5220                  |
|                      | ed weight<br>1s waste [ | (kg) of<br>multiply b | у               | 151.2             |               |                 | 248.4             |               |                 | 280.8             |               |                 | 280.8 |               | 3               | 291.6             |               |         | 172.8             |               | 50              | 140.4            | 1566                  |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 02-09-2007 TO SATURDAY 08-09-2007 (WEEK 3)

| CONTA<br>S       | INER                          | SUNE          | DAY              |       | MONI          | DAY             |                   | TUES              | DAY             |       | WE                | DNESI           | DAY               | THUR              | SDAY            |       | FRI               | DAY             |                   | SATU              | RDAY            |                 |                     |
|------------------|-------------------------------|---------------|------------------|-------|---------------|-----------------|-------------------|-------------------|-----------------|-------|-------------------|-----------------|-------------------|-------------------|-----------------|-------|-------------------|-----------------|-------------------|-------------------|-----------------|-----------------|---------------------|
| lumber           | Vol<br>(litres<br>)           | Nb<br>emptied | Fillin<br>g rate |       | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptie<br>d | Filling<br>rate |       | Nb<br>emptie<br>d | Filling<br>rate | Total<br>(litres) | Nb<br>emptie<br>d | Filling<br>rate |       | Nb<br>emptie<br>d | Filling<br>rate | Total<br>(litres) | Nb<br>emptie<br>d | Filling<br>rate | Tota<br>(litres |                     |
| 1                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 2                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 3                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 4                | 120                           | 1             | 1                | 120   | 3             | 1               | 360               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 3                 | 1               | 360               | 1                 | 1               | 120             | 1                   |
| 5                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 6                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 7                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 8                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 9                | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | -                   |
| 10               | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             |                     |
| 11               | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | 1                   |
| 12               | 120                           | 1             | 1                | 120   | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120             | 1.                  |
| 13               | 120                           | 1             | 1                | 120   | 2             | 1               | 240               | 3                 | 1               | 360   | 3                 | 1               | 360               | 2                 | 1               | 240   | 2                 | 1               | 240               | 1                 | 1               | 120             | 1                   |
| 14               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | Nil               | 1               | 120             |                     |
| 15               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | Nil               | -               |                   | Nil               |                 |                 | -                   |
| 16               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | Nil               |                 |                   | Nil               |                 |                 | -                   |
| 17               | 120                           | Nil           |                  |       | 4             | 1               | 480               | 2                 | 1               | 240   | 1                 | 1               | 120               | 3                 | 1               | 360   | Nil               |                 | 202               | Nil               |                 |                 |                     |
| 18               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | Nil               |                 |                   | Nil               |                 |                 | -                   |
| 19               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | Nil               |                 |                   | Nil               | -               | -               | 1                   |
| 20               | 120                           | Nil           |                  |       | 1             | 1               | 120               | 1                 | 1               | 120   | 1                 | 1               | 120               | 1                 | 1               | 120   | Nil               |                 |                   | Nil               |                 | -57             | Grand T<br>(litres) |
| otal             |                               |               |                  | 1560  |               |                 | 3120              |                   |                 | 2760  |                   |                 | 2640              |                   | -               | 2760  |                   | -               | 2040              |                   |                 | 1560            | 16440               |
| timated<br>0.30] | d weigh                       | t (kg) [mu    | lltiply          | 468   |               |                 | 936               |                   |                 | 828   |                   |                 | 792               |                   |                 | 828   |                   |                 | 612               |                   |                 | 468             | 4932                |
| ectious          | d weigh<br>s waste<br>by 0.30 |               |                  | 140.4 |               |                 | 280.8             |                   |                 | 248.4 |                   |                 | 237.6             |                   |                 | 248.4 |                   |                 | 183.6             |                   |                 | 140.4           | 1479.6              |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 16-09-2007 TO SATURDAY 22-09-2007 (WEEK 4)

| CONTA                  | INERS           | S                    | UNDAY           | ľ                 | M             | ONDA            | Y                 | TU            | ESDA            | Y                 | WE            | DNESD           | AY                | TH            | URSDA           | Y                 | F             | RIDAY           | 1     | SA            | TURD    | AY               | 7      |
|------------------------|-----------------|----------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------|---------------|---------|------------------|--------|
| Number                 | Vol<br>(litres) | Nb<br>emptied        | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate |       | Nb<br>emptied | Filling | Total<br>(litres |        |
| 1                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | I             | 1       | 120              | 4      |
| 2                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | -      |
| 3                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | -      |
| 4                      | 120             | 1                    | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240   | 1             | 1       | 120              | -      |
| 5                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | -      |
| 6                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 7                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 8                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 9                      | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 10                     | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 11                     | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 12                     | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 13                     | 120             | 1                    | 1               | 120               | 3             | 1               | 360               | 3             | 1               | 360               | 3             | 1               | 360               | 2             | 1               | 240               | 2             | 1               | 240   | 1             | 1       | 120              | 1      |
| 14                     | 120             | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1       | 120              | 1      |
| 15                     | 120             | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | 14              |       | Nil           |         |                  | 1      |
| 16                     | 120             | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | 05              |       | Nil           |         |                  | 1      |
| 17                     | 120             | Nil                  |                 |                   | 3             | 1               | 360               | 2             | 1               | 240               | 2             | 1               | 240               | 3             | 1               | 360               | 1             | 1               | 120   | Nil           |         |                  | 1      |
| 18                     | 120             | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | -               | C.F.  | Nil           |         |                  |        |
| 19                     | 120             | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |                 |       | NUI           | -       |                  | Grand  |
| 20                     | 120             | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |                 |       | Nil<br>Nil    | ~       | -                | Total  |
| Total                  | 120             | 1.11                 |                 | 1800              |               |                 | 2760              |               |                 | 2760              |               | -               | 2880              | 1             | 1               | 2760              | INII          |                 | 2040  | INII          | -       | 1000             | (litre |
| Total                  |                 |                      |                 | 1000              |               |                 | 2700              | 1             |                 | 2700              |               |                 | 2000              |               | t               | 2700              |               |                 | 2040  |               | -       | 1800             | 168    |
| Estimated<br>0.30]     | l weight (      | kg) [multij          | oly by          | 540               |               |                 | 828               |               |                 | 828               |               |                 | 864               |               |                 | 828               |               |                 | 612   |               | ~       | 540              | 504    |
| Estimated<br>waste [mi |                 | kg) of infe<br>0.30] | ctious          | 162               |               |                 | 248.4             |               |                 | 248.4             |               |                 | 259.2             |               | t               | 248.4             |               |                 | 183.6 | 2             |         | 162              | 151    |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 23-09-2007 TO SATURDAY 29-09-2007 (WEEK 5)

| CONTA           | INERS                    | S                    | UNDAY           | /                 | M             | ONDA            | Y                 | TU            | ESDA            | Y                 | WE            | DNESD           | AY                | ТН            | URSDA           | Y                 | F             | RIDAY           | 1      | SA            | TURDA   | Y                 | 1           |
|-----------------|--------------------------|----------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|--------|---------------|---------|-------------------|-------------|
| Number          | Vol<br>(litres)          | Nb<br>emptied        | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate |        | Nb<br>emptied | Filling | Total<br>(litres) |             |
| 1               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 2               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               |             |
| 3               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               |             |
| 4               | 120                      | 1                    | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 3             | 1               | 360               | 2             | 1               | 240               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 5               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 6               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 7               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 8               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 9               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               | 1           |
| 10              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 100           | -1      | 120               | 1           |
| 11              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               |             |
| 12              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               |             |
| 13              | 120                      | 1                    | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 1             | 1               | 120    | 1             | 1       | 120               |             |
| 14              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 0.5             | 60                | 1             | 1               | 120               | 1             | 1               | 120    | Nil           |         |                   |             |
| 15              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120    | Nil           |         |                   |             |
| 16              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | 1               |        | Nil           |         |                   |             |
| 17              | 120                      | Nil                  |                 |                   | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | Nil           | 2               | -      | Nil           |         |                   |             |
| 18              | 120                      | Nil                  |                 |                   | 1             | 0.5             | 60                | Nil           | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | V               | 144.10 | Nil           |         |                   |             |
| 19              | 120                      | Nil                  |                 |                   | 1             | 0.5             | 60                | Nil           | 1               | 120               | 1             | 0.5             | 60                | 1             | 1               | 120               | Nil           | 1.1             |        | Nil           | - 14    |                   | Gra<br>Tota |
| 20              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | Nil           | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |                 |        | Nil           |         | 1                 | (litr       |
| Total           | 120                      | INI                  |                 | 1560              | 1             | 1               | 2640              | T vii         | 1               | 2400              | 1             | 1               | 2760              | 1             | 1               | 2520              | INI           |                 | 1800   | INI           | 1       | 1560              | 15          |
| Total           |                          |                      |                 | 1500              | 1             |                 | 2010              |               |                 | 2100              |               |                 | 2700              |               |                 | 2520              |               |                 | 1000   |               | 5       | 1500              | 15          |
| stimated<br>30] | d weight (               | kg) [multij          | oly by          | 468               | -             |                 | 792               |               |                 | 720               | -             |                 | 828               |               |                 | 756               |               |                 | 540    |               | 2       | 468               | 4           |
|                 | d weight (<br>ultiply by | kg) of infe<br>0.30] | ctious          | 140.4             |               |                 | 237.6             |               |                 | 216               |               |                 | 248.4             |               |                 | 226.8             |               |                 | 162    | ~             |         | 140.4             | 13          |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 30-09-2007 TO SATURDAY 05-10-2007 (WEEK 6)

| CONTA              | INERS                    | S                     | UNDAY           | 7                 | M             | ONDA            | Y                 | TU            | JESDA           | Y                 | WE            | DNESD           | AY                | TH            | URSDA           | Y                 | F             | RIDAY   | 1    | SA            | TURDA           | Y                 | 1             |
|--------------------|--------------------------|-----------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|---------|------|---------------|-----------------|-------------------|---------------|
| Number             | Vol<br>(litres)          | Nb<br>emptied         | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling |      | Nb<br>emptied | Filling<br>rate | Total<br>(litres) |               |
| 1                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | -             |
| 2                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 3                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 4                  | 120                      | 1                     | 1               | 120               | 3             | 1               | 360               | 3             | 1               | 360               | 3             | 1               | 360               | 5             | 1               | 600               | 2             | 1       | 240  | 1             | 1               | 120               | 1             |
| 5                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 6                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 7                  | 120                      | 1                     | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 8                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 9                  | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 10                 | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               |               |
| 11                 | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 3             | 1               | 360               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 12                 | 120                      | 1                     | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               |               |
| 13                 | 120                      | 1                     | 1               | 120               | 2             | 1               | 240               | 4             | 1               | 480               | 3             | 1               | 360               | 4             | 1               | 480               | 3             | 1       | 360  | 1             | 1               | 120               | 1             |
| 14                 | 120                      | 1                     | 0.5             | 60                | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | 1             | 1               | 120               | 1             |
| 15                 | 120                      | Nil                   |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 16            | 1       | 120  | 1             | 1               | 120               | 1             |
| 16                 | 120                      | Nil                   |                 |                   | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 3             | 1               | 360               | 1             | 1       | 120  | Nil           |                 |                   | ]             |
| 17                 | 120                      | Nil                   |                 |                   | 3             | 1               | 360               | 4             | 1               | 480               | 1             | 1               | 120               | 1             | 1               | 120               | 3             | 1       | 360  | Nil           |                 |                   |               |
| 18                 | 120                      | Nil                   |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 4             | 1               | 480               | 1             | 1       | 120  | Nil           |                 |                   |               |
| 19                 | 120                      | Nil                   |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 0.5             | 60                | 1             | 1       | 120  | Nil           |                 |                   | Gran<br>Total |
| 20                 | 120                      | Nil                   |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120  | Nil           | 4. 5            | S                 | (litre        |
| Total              |                          |                       |                 | 1620              | -             |                 | 3120              | -             |                 | 3720              | -             |                 | 3000              |               |                 | 4140              |               |         | 3000 |               | 2               | 1800              | 2040          |
| Estimated<br>).30] | d weight (               | (kg) [multi           | ply by          | 486               | -             |                 | 936               | -             |                 | 1116              |               |                 | 900               |               |                 | 1242              |               |         | 900  | -             | 5               | 540               | 612           |
|                    | d weight (<br>ultiply by | (kg) of infe<br>0.30] | ectious         | 145.8             |               |                 | 280.8             |               |                 | 334.8             |               |                 | 270               |               |                 | 372.6             |               |         | 270  |               |                 | 162               | 183           |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 06-01-2008 TO SATURDAY 12-01-2008 (WEEK 7)

| CONTA                 | INERS           | S                     | UNDAY           | (                 | M | ONDA            | Y                 | т             | JESDA           | Y                 | WE            | DNESD           | AY                | TH            | URSDA           | Y                 | F             | RIDAY           | /                 | SA            | TURDA   | Y                 | ]              |
|-----------------------|-----------------|-----------------------|-----------------|-------------------|---|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|---------|-------------------|----------------|
| Number                | Vol<br>(litres) | Nb<br>emptied         | Filling<br>rate | Total<br>(litres) |   | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling | Total<br>(litres) |                |
| 1                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 2                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 3                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 4                     | 120             | 4                     | 1               | 480               | 4 | 1               | 480               | 3             | 1               | 360               | 4             | 1               | 480               | 3             | 1               | 360               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 5                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 6                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 7                     | 120             | 2                     | 1               | 240               | 2 | 1               | 240               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 8                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 9                     | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 10                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 100           | 1       | 120               | 1              |
| 11                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 12                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 13                    | 120             | 5                     | 1               | 600               | 4 | 1               | 480               | 4             | 1               | 480               | 3             | 1               | 360               | 3             | 1               | 360               | 1             | 1/              | 120               | 1             | 1       | 120               | 1              |
| 14                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |                 |                   | 1             | 1       | 120               | 1              |
| 15                    | 120             | 2                     | 1               | 240               | 2 | 1               | 240               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 16                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |                 |                   | 1             | 1       | 120               | 1              |
| 17                    | 120             | 4                     | 1               | 480               | 4 | 1               | 480               | 4             | 1               | 480               | 4             | 1               | 480               | 4             | 1               | 480               | 1             | 1               | 120               | 1             | 1       | 120               | ]              |
| 18                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |         |                   |                |
| 19                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           |         |                   | Grand<br>Total |
| 20                    | 120             | 1                     | 1               | 120               | 1 | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | Nil           | 1       |                   | (litres        |
| Total                 |                 |                       |                 | 3840              | - |                 | 3720              | -             |                 | 3480              | -             |                 | 3360              |               |                 | 3360              |               |                 | 2160              |               | 5       | 2040              | 2196           |
| Estimated<br>0.30]    | d weight (      | (kg) [multi           | ply by          | 1152              | _ |                 | 1116              | -             |                 | 1044              |               |                 | 1008              |               |                 | 1008              |               |                 | 648               | -             | 5       | 612               | 658            |
| Estimated<br>waste [m |                 | (kg) of infe<br>0.30] | ectious         | 345.6             | ] |                 | 334.8             | ]             |                 | 313.2             |               |                 | 302.4             |               |                 | 302.4             |               |                 | 194.4             |               |         | 183.6             | 1976           |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 13-01-2008 TO SATURDAY 19-01-2008 (WEEK 8)

| CONTA           | INERS                    | S                    | UNDAY           | /                 | M             | ONDA            | Y                 | Т             | JESDA           | Y                 | WE            | DNESD           | AY                | TH            | URSDA           | Y                 | F             | RIDAY           | 1     | SA            | TURDA           | Y                 |             |
|-----------------|--------------------------|----------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------|---------------|-----------------|-------------------|-------------|
| Number          | Vol<br>(litres)          | Nb<br>emptied        | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate |       | Nb<br>emptied | Filling<br>rate | Total<br>(litres) |             |
| 1               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 0.5             | 60                | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 2               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 3               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 4               | 120                      | 1                    | 1               | 120               | 3             | 1               | 360               | 4             | 1               | 480               | 4             | 1               | 480               | 3             | 1               | 360               | 2             | 1               | 240   | 2             | 14              | 240               | 1           |
| 5               | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 6               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 7               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 8               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 9               | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 10              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | 1           |
| 11              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | _ 1           | 1               | 120               | 1           |
| 12              | 120                      | 1                    | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               |             |
| 13              | 120                      | 1                    | 1               | 120               | 4             | 1               | 480               | 3             | 1               | 360               | 4             | 1               | 480               | 3             | 1               | 360               | 3             | 1               | 360   | 2             | 1               | 240               |             |
| 14              | 120                      | Nil                  | 1               | 120               | 2             | 1               | 240               | 1             | 1               | 120               | 3             | 1               | 360               | 1             | 1               | 120               | 1             | 1               | 120   | 2             | 1               | 240               | ]           |
| 15              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               |             |
| 16              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               |             |
| 17              | 120                      | Nil                  |                 |                   | 2             | 1               | 240               | 4             | 1               | 480               | 3             | 1               | 360               | 4             | 1               | 480               | 1             | 1               | 120   | 2             | 1               | 240               |             |
| 18              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               |             |
| 19              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120               | Gra<br>Tota |
| 20              | 120                      | Nil                  |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120   | 2100          | 1               | 120               | (lit        |
| otal            |                          |                      |                 | 1560              |               |                 | 3240              | -             |                 | 3360              | -             |                 | 3540              |               |                 | 3240              |               |                 | 2760  |               | <               | 2880              | 20          |
| stimated<br>30] | l weight (               | kg) [multij          | oly by          | 468               | -             |                 | 972               | -             |                 | 1008              |               |                 | 1062              |               |                 | 972               |               |                 | 828   |               | 9               | 864               | 6           |
|                 | l weight (<br>ultiply by | kg) of infe<br>0.30] | ctious          | 140.4             |               |                 | 291.6             |               |                 | 302.4             |               |                 | 318.6             |               |                 | 291.6             |               |                 | 248.4 |               |                 | 259.2             | 18          |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 20-01-2008 TO SATURDAY 26-01-2008 (WEEK 9)

| CONTA        | INERS                 | S                        | UNDAY           | <u> </u>          | M             | ONDA            | Y                 | Т             | JESDA           | Y                 | WE            | DNESD           | AY                | TH            | URSDA           | Y                 | F             | RIDAY   | ľ                 | SA            | TURDA | AY                | 7              |
|--------------|-----------------------|--------------------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|---------|-------------------|---------------|-------|-------------------|----------------|
| umber        | Vol<br>(litres)       | Nb<br>emptied            | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling | Total<br>(litres) | Nb<br>emptied |       | Total<br>(litres) | -              |
| 1            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               |                |
| 2            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1       | 120               | 2             | 1     | 240               | 1              |
| 3            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 2             | 1     | 240               | 1              |
| 4            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 4             | 1               | 480               | 4             | 1               | 480               | 4             | 1               | 480               | 2             | 1       | 240               | 3             | 15    | 360               | 1              |
| 5            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1       | 120               | 2             | â     | 240               | 1              |
| 6            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 2             | 1     | 240               | 1              |
| 7            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 2             | 1 0   | 240               | 1              |
| 8            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 2             | 1       | 240               | 3             | 1     | 360               | 1              |
| 9            | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 2             | 1               | 240               | 1             | 1       | 120               | 1             | 71    | 120               | 1              |
| 10           | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 11           | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 0.5             | 60                | 1             | 0.5             | 60                | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 12           | 120                   | 1                        | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 13           | 120                   | Nil                      |                 |                   | 2             | 1               | 240               | 4             | 1               | 480               | 4             | 1               | 480               | 5             | 1               | 600               | 2             | 1       | 240               | 2             | 1     | 240               |                |
| 14           | 120                   | Nil                      |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 15           | 120                   | Nil                      |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 16           | 120                   | Nil                      |                 |                   | 1             | 1               | 120               | 3             | 1               | 360               | 4             | 1               | 480               | 4             | 1               | 480               | 2             | 1       | 240               | 3             | 1     | 360               | 1              |
| 17           | 120                   | Nil                      |                 |                   | 2             | 1               | 240               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | 1              |
| 18           | 120                   | Nil                      |                 |                   | -1            | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | ]              |
| 19           | 120                   | Nil                      |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1             | 1     | 120               | Grand<br>Total |
| 20           | 120                   | Nil                      |                 |                   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 21            | 1     | 120               | (litres        |
| otal         |                       |                          |                 | 1440              |               |                 | 2640              | _             |                 | 3300              |               |                 | 3420              |               |                 | 3960              |               |         | 2880              |               | 2     | 3840              | 2148           |
| imateo<br>0] | d weight (            | (kg) [multi              | ply by          | 432               | -             |                 | 792               |               |                 | 990               |               |                 | 1026              |               |                 | 1188              |               |         | 864               | 1             |       | 1152              | 6444           |
|              | ed weight<br>us waste | t (kg) of<br>[multiply b | у               | 129.6             |               |                 | 237.6             |               |                 | 297               |               |                 | 307.8             |               |                 | 356.4             |               |         | 259.2             | 3             |       | 345.6             | 1933           |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 27-01-2008 TO SATURDAY 02-02-2008 (WEEK 10)

| CONTA          | INERS                   | S                | UNDAY           |                   | М             | MONDAY          |       | TU            | JESDA           | Y          | WEI           | DNESD   | AY         | ТН            | URSDA           | Y          | F             | RIDAY           | 1                 | SATURDAY      |                 |                   |         |
|----------------|-------------------------|------------------|-----------------|-------------------|---------------|-----------------|-------|---------------|-----------------|------------|---------------|---------|------------|---------------|-----------------|------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------|
| Number         | Vol<br>(litres)         | Nb<br>emptied    | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate |       | Nb<br>emptied | Filling<br>rate |            | Nb<br>emptied | Filling |            | Nb<br>emptied | Filling<br>rate |            | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling<br>rate | Total<br>(litres) |         |
| 1              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | Nil           |                 | (                 |         |
| 2              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 0.5             | 60         | 1             | 1               | 120               | 1             | 1               | 120               | 1.CV    |
| 3              | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               | 1       |
| 4              | 120                     | 2                | 1               | 240               | 2             | 1               | 240   | 2             | 1               | 240        | 2             | 1       | 240        | 1             | 1               | 120        | 2             | 1               | 240               | 1             | 1               | 120               | ]       |
| 5              | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 6              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               | ]       |
| 7              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               | ]       |
| 8              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               | ]       |
| 9              | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 10             | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 11             | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 0,19          | 1               | 120               |         |
| 12             | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | - 1           | 1               | 120               |         |
| 13             | 120                     | 2                | 1               | 240               | 3             | 1               | 360   | 3             | 1               | 360        | 2             | 1       | 240        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 14             | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 15             | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 0.5             | 60         | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 16             | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 17             | 120                     | 2                | 1               | 240               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 3             | 1               | 360               | 1             | 1               | 120               |         |
| 18             | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               |         |
| 10             | 120                     |                  |                 | 120               | 1             | 1               | 120   | 1             | 1               | 120        | 1             | 1       | 120        | 1             | 1               | 120        | 1             | 1               | 120               | 1             | 1               | 120               | Gran    |
| 19             | 120                     | 1                | 1               | 120               | 1             | 1               | 120   | 1             | 1               | 120<br>120 | 1             | 1       | 120<br>120 | 1             | 1               | 120<br>120 | 1             | 1               | 120               |               | 1               | 120               | Total   |
| 20             | 120                     |                  | 1               | 120               | 1             | 1               | 120   | 1             | 1               |            | 1             |         |            | 1             | 1               |            | 1             | 1               | 120               | 1 hours       | 1               | 120               | (litre: |
| otal           |                         |                  |                 | 3360              | -             |                 | 2760  | -             |                 | 2760       | -             |         | 2640       |               |                 | 2280       |               |                 | 2760              |               | 6               | 2280              | 188     |
| timated<br>30] | l weight (              | kg) [multi       | ply by          | 1008              | -             |                 | 828   | -             |                 | 828        |               |         | 738        |               | à               | 684        |               |                 | 828               |               | 5               | 684               | 55      |
| aste           | l weight (<br>y by 0.30 | kg) of infe<br>] | ectious         | 302-4             |               |                 | 248.4 | -             |                 | 248.4      |               |         | 221.4      |               |                 | 205.2      |               |                 | 248.4             | 5             | 2               | 205.2             | 13      |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 03-02-2008 TO SATURDAY 09-02-2008 (WEEK 11)

| CONTA                 | INERS           | S                     | UNDAY           | (     | M             | ONDA            | Y                 | TU            | JESDA           | Y                 | WE            | DNESD           | AY                | THURSDAY      |                 |                   | FRIDAY        |                 |                   | SATURDAY      |         |                   |                |
|-----------------------|-----------------|-----------------------|-----------------|-------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|-----------------|-------------------|---------------|---------|-------------------|----------------|
| Number                | Vol<br>(litres) | Nb<br>emptied         | Filling<br>rate |       | Nb<br>emptied | Filling<br>rate | Total<br>(litres) | Nb<br>emptied | Filling | Total<br>(litres) |                |
| 1                     | 120             | 1                     | 0.5             | 60    | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 2                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 3                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 4                     | 120             | 2                     | 1               | 240   | 2             | 1               | 240               | 2             | 1               | 240               | 1             | 1               | 120               | 3             | 1               | 360               | 3             | 1               | 360               | 1             | 1       | 120               | ]              |
| 5                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | 1              |
| 6                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | ]              |
| 7                     | 120             | 1                     | 0.5             | 60    | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 12      | 120               |                |
| 8                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 9                     | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 10                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 11                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 7-1           | 1       | 120               | - C            |
| 12                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 13                    | 120             | 2                     | 1               | 240   | 2             | 1               | 240               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 2             | 1               | 240               | 1             | 1       | 120               |                |
| 14                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 15                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 16                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 17                    | 120             | 1                     | 1               | 120   | 2             | 1               | 240               | 2             | 1               | 240               | 1             | 1               | 120               | 2             | 1               | 240               | 3             | 1               | 360               | 1             | 1       | 120               |                |
| 18                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               |                |
| 19                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | Grand<br>Total |
| 20                    | 120             | 1                     | 1               | 120   | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1               | 120               | 1             | 1       | 120               | (litres)       |
| Total                 |                 |                       |                 | 2520  | _             |                 | 2760              |               |                 | 2760              | -             |                 | 2400              |               |                 | 2880              |               |                 | 3000              |               | 2       | 2400              | 1872           |
| Estimated<br>0.30]    | d weight (      | (kg) [multi           | ply by          | 756   | -             |                 | 828               |               |                 | 828               | -             |                 | 720               |               |                 | 864               |               | -               | 900               |               | 5       | 720               | 5616           |
| Estimated<br>waste [m |                 | (kg) of infe<br>0.30] | ectious         | 226.8 |               |                 | 248.4             | ]             |                 | 248.4             | ]             |                 | 216               |               |                 | 259.2             |               | [               | 270               |               |         | 216               | 1684.8         |

QUANTITY OF HEALTHCARE WASTE DISPOSED IN UNIVERSITY OF ABUJA TEACHING HOSPITAL (UATH) FROM SUNDAY 10-02-2008 TO SATURDAY 16-02-2008 (WEEK 12)

#### **APPENDIX VII**

#### **Preparation of:**

- 1. Chocolate Agar
- 2. CLED Bovis Medium
- 3. Sabouraud Dextrose Agar

#### 10% Chocolate Agar

- According to manufacturers instruction 28grams of Nutrient Agar was dissolved in 1,000ml of distilled water.
- It was heated to boil to dissolve the medium completely.
- It was sterilized at 15lbs pressure (121°C) for 15 minutes.
- It was allowed to cool for 45minutes;
- 100ml of the melted sterilized agar was removed and 100ml of sterile blood was added aseptically to give 10% blood agar.
- The 10% blood agar was heated to  $80^{\circ}$ C to give 10% chocolate agar.

Calculation –

R = Required Concentration

V = Total Volume of Solution

O = Original Concentration

 $= 10\% \text{ x } 1000 = \underline{10 \text{ x } 1000}_{100} = 100 \text{ mls}$ 

• It was allowed to cool to  $45^{\circ}$ C.

- It was mixed and was poured into sterile Petri dish aseptically.
- It was allowed to solidify, and was ready for used.

#### **CLED Bovis Medium**

- CLED = Cystine Lactose Electrolyte Deficiency
- 36 grams of the CLED Bovis Medium was dissolved in 1,000mls of deionized water.
- It was heated to boil.
- ✤ It was sterilized at 15 lbs pressure (121°C) for 15 minutes.
- It was allowed to cool to 47°C and was thoroughly mixed and was poured aseptically into sterile Petri dish.
- It was allowed to solidify and was ready for use.

#### Sabouraud Dextrose Agar

- 62 grams of Sabouraud dextrose agar was dissolved in 1,000mls of de-ionized water.
- It was allowed to soak for 10 minutes
- It was swirled to mix and was sterilized at 15lbs pressure (121°C) for 15 minutes.
- It was allowed to cool to  $47^{\circ}$ C.
- It was mixed well and poured aseptically into Petri dish.

#### Inoculation

The samples were inoculated into the above medium aseptically.

They were incubated at different temperature i.e. chocolate and CLED medium plates were incubated at 37°C, while the Sabouraud medium Plate was incubated at room temperature.

Note: The chocolate plate was incubated in  $CO_2$  enriched environment (anaerobic) and the CLED plate was incubated aerobically (oxygen environment), while the fungi needs more air and a reduced temperature.

### **APPENDIX VIII**

## Summary of Cultural and Biochemical Characteristics of Bacterial Isolates

| Isolate Code | Cultural Characteristics                                                  | Grams<br>Reaction | Shape | Catalase | Coagulase | Oxidase | Motility | Indole | Urease | Citrate | Slope | Butt | H2S | Gas | Isolate                   |
|--------------|---------------------------------------------------------------------------|-------------------|-------|----------|-----------|---------|----------|--------|--------|---------|-------|------|-----|-----|---------------------------|
| HCW1         | Large round greyish flat colonies                                         | -                 | Rod   | 0        | 0         | 0       | +        | -      | +      | -       | R     | Y    | +   | -   | Citrobacter spp           |
| ADS1         | Large round greyish flat colonies CLED-large round pinkish colonies       | -                 | Rod   | 0        | 0         | 0       | +        | +      | -      | -       | Y     | Y    | -   | +   | Escherichia Coli          |
| HCW2a        | Large and greyish flat colonies                                           | -                 | Rod   | 0        | 0         | 0       | +        | -      | -      | +       | R     | Y    | +   | +   | Salmonella typhi          |
| HCW2b        | Large round greyish flat colonies                                         | -                 | Rod   | 0        | 0         | 0       | +        | +      | -      | -       | Y     | Y    | -   | +   | Escherichia Coli          |
| ADS2a        | Large round greyish flat fishy smell colonies with haemolytic background  | -                 | Rod   | -        | -         | +       | +        | -      | -      | -       | R     | R    | in  |     | Pseudomonas<br>aeroginosa |
| ADS2b        | Large round greyish flat colonies                                         | -                 | Rod   | 0        | 0         | 0       | +        | +      | -      | -       | Y     | Y    | -   | +   | Escherichia Coli          |
| HCW3         | Small round whitish colonies                                              | +                 | Cocci | +        | +         | 0       | 0        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Staphylococcus aureus     |
| ADS3a        | Small round whitish colonies                                              | +                 | Cocci | +        | +         | 0       | 0        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Staphylococcus aureus     |
| ADS3b        | Large round greyish flat fishy smell colonies with haemolytic background. | -                 | Rod   | -        | -         | +       | +        | -      | -      | -       | R     | R    | in  | -   | Pseudomonas<br>aeroginosa |
| HCW4a        | Small round whitish colonies                                              | +                 | Cocci | +        | +         | 0       | 0        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Staphylococcus aureus     |
| HCW4b        | Large round creamy colonies                                               | +                 | Cocci | +        | -         | -       | -        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Micrococcus spp           |
| ADS4a        | Small round whitish colonies                                              | +                 | Cocci | +        | +         | 0       | 0        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Staphylococcus aureus     |
| ADS4b        | Large round creamy colonies                                               | +                 | Cocci | +        | -         | -       | -        | 0      | 0      | 0       | 0     | 0    | 0   | 0   | Micrococcus spp           |
| HCW5a        | Large round greyish flat colonies                                         | -                 | Rod   | 0        | 0         | 0       | +        | -      | +      | +       | R     | Y    | +   | -   | Proteus vulgaris          |
| HCW5b        | Creamy round colonies                                                     | -                 | Rod   | -        | -         | -       | +        | -      | -      | -       | R     | R    | -   | · - | Aeromonas spp             |
| ADS5a        | Large round greyish flat colonies                                         | -                 | Rod   | 0        | 0         | 0       | +        |        | -      | +       | R     | Y    | +   | +   | Salmonella typhi          |

| ADS5b  | Large round creamy colonies                                               | + | Cocci                | + | - | - | - | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Micrococcus spp           |
|--------|---------------------------------------------------------------------------|---|----------------------|---|---|---|---|---|---|---|---|---|----|---|---------------------------|
| HCW6a  | Large round greyish flat colonies                                         | - | Rod                  | 0 | 0 | 0 | + | - | + | + | R | Y | +  | - | Proteus vulgaris          |
| HCW6b  | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| ADS6   | Small round greyish flat colonies                                         | - | Rod                  | 0 | 0 | 0 | + | - | - | + | R | Y | +  | + | Salmonella typhi          |
| HCW7a  | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| HCW7b  | Large round greyish flat fishy smell colonies with haemolytic background  | - | Rod                  | - | - | + | + | - | - | - | R | R | -  | - | Pseudomonas<br>aeroginosa |
| ADS7a  | Large round flat dark greyish colonies                                    | - | Rod                  | 0 | 0 | 0 | + | - | + | + | R | Y | -  | + | Citrobacter spp           |
| ADS7b  | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| HCW8   | Small round whitish colonies                                              | - | Cocci in<br>clusters | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| ADS8   | Large round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus typhi      |
| HCW9a  | Large round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| HCW9b  | Large round creamy colonies                                               | + | Cocci                | + | - | - | - | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Micrococcus spp           |
| ADS9a  | Large round greyish flat fishy smell colonies with haemolytic background. | - | Rod                  | - | - | + | + | - | - | • | R | R | -  | - | Pseudomonas<br>aeroginosa |
| ADS9b  | Large round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| HCW10  | Large round greyish flat colonies                                         | - | Rod                  | 0 | 0 | 0 | + | - | + | + | R | Y | +  | - | Proteus vulgaris          |
| ADS10  | Large round greyish flat colonies                                         | - | Rod                  | 0 | 0 | 0 | + | + | - | - | Y | Y | 50 | + | Escherichia coli          |
| HCW11a | Large round greyish flat fishy smell colonies with haemolytic background  | - | Rod                  | - | - | + | + | - | - | - | R | R | -  | - | Pseudomonas<br>aeroginosa |
| HCW11b | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| ADS11  | Large round flat dark greyish colonies                                    | - | Rod                  | 0 | 0 | 0 | + | - | + | + | R | Y | -  | + | Citrobacter spp           |
| HCW12  | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| ADS12a | Small round whitish colonies                                              | + | Cocci                | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Staphylococcus aureus     |
| ADS12b | Large round creamy colonies                                               | + | Cocci                | + | - | - | - | 0 | 0 | 0 | 0 | 0 | 0  | 0 | Micrococcus spp           |

| Isolate<br>Code | Colour of Aeria<br>hyphae | Nature of<br>Hyphae | Shape of<br>Asexual spore                 | Appearance of<br>Sporangiophore | Characteristics of spore head              | Probable<br>Organism |
|-----------------|---------------------------|---------------------|-------------------------------------------|---------------------------------|--------------------------------------------|----------------------|
| MYC 1           | Black                     | Septate             | Oval                                      | Long, erect and<br>unbranched   | Large and round                            | Aspergilus Niger     |
| MYC 2           | Grey                      | Non-septate         | Oval and black                            | Long, erect and non-<br>septate | Round and black                            | Rhizopus             |
| MYC 3           | Cream                     | Budding yeast       |                                           | Hyphae forming pseudomycellium  |                                            | Candida              |
| MYC 4           | White brown               | Non-septate         | Canoe shape                               | Ĵ.                              |                                            | Fusarium             |
| MYC 5           | Yellow Green              | Septate             | Elliptical                                | 3 stages branching              | Free shape                                 | Pencillium           |
| MYC 6           | Yellow                    | Septate             | Fusiform                                  | Canoe shaped<br>macroconidia    | Spindle shape                              | Microsporum          |
| MYC 7           |                           |                     |                                           |                                 |                                            |                      |
| MYC 8           | White to<br>creamy colour | Septate             | Rectangular or<br>rounded or<br>irregular | Arthroconidia                   | Rounded or<br>irregular form of<br>conidia | Geothricum           |
| MYC 9           | Cream color to<br>black   | Non-septate         | blastospores                              | Blastoconidia                   | None                                       | Sporothrix           |
| MYC 10          | Pinkish buff              | Septate             | Spherical or pear shaped                  | Pencil shaped macroconidia      | Chains of<br>arthroconidia                 | Trichophyon          |
| MYC 11          | Velvety green<br>to brown | Septate             |                                           | Elongated                       | Phialides                                  | Cladiosporum         |
| MYC 12          | Grey                      | Budding yeast       |                                           | Oval                            | Round                                      | Pityrosporium        |

Appendix IX: Summary of Fungi Characteristics