
E-YEARBOOK

(A JAVA-ORACLE DATABASE

IMPLEMENTATION)

BY

FATI TINI BABA
PGDIMCS/200S/2006/1190

DEPARTMENT OF MATHEMATICS/COMPUTER SCIENCE
FEDERAL ~RSITY OF TECHNOLOGY, MINNA

" 10'

: . ,. ':: . '.'
. : "': .

... • r; " ' .. ~ M, •

··'<·, '.(,r)·:···. ,
,:,", . .'.

". ~. ,4 I" ,i. i

. '.. ' . "
c ,, '

,~ . .
. . •.. \ t ~ .

.. ' .
~. . ' .. "

..

E-YEARBOOK

(A JAVA-ORACLE DATABASE

IMPLEMENTATION)

BY

FATI TINI BABA
PGDIMCS/200S/2006/1190

DEPARTMENT OF MA THEMATICS/COMPUTER SCIENCE
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

A P OJECT SUBMITTED TO THE SCHOOL OF SCIENCE AND
:" SCIENCE EDUCATION

' .. .

·PARTIAL FULFILLMENT OF
QUIREMENT FOR THE AWARD OF

.... ~U TE DIPLOMA COMPUTER SCIENCE,

~ .. " :
• i. •

. ' ,.

··.l

ii

CERTIFICATION
. . ----~

This is to certify that this project work was carried out by Saba Fati Tini under

the supervision of Mr. Victor Akinola of the Department of Mathematics/Computer

Science in partial fulfillment of the requirement for the award of Post-Graduate

Diploma in Computer Science.

Superv sor's Signature Date

I-lead of Department's Signature Date

----------------------~ -------------~----
External Examiner's S~nature Date

'-,

..•.

DEDICATION

To Almighty Allah, beneficent, merciful and knowledgeable .

This work is dedicated to the memory of my late mother Hajia Hauwa'u Talatu Baba

Nahannu Dama. May her soul rest in perfect peace .

. ~

---'"'>

ACKNOWLEDGEMENT

My profound ' Gratitude goes to the Almighty Allah , who has given me the

strength and spared my life to complete this programme successfully .

I wish to express my deep appreciation to my supervisor, Mr. Victor Akinola ,

who has contributed to this project both explicitly and implicitly. His kindness and

understanding of humanity is highly appreciated .

I equally wish to sincerely thank the Head of Mathematics/Computer Science

Department and to all my Lecturers, especially, Mr Mohammed Jiya , Alhaji D.

Hakimi, Prince Badmus, Mr C. Abraham , Mallam Salihu , Mr B. Gbolahan, Mallam

Idris, Alh . Isah Audu , and Mallam Ndanusa, the coordinator, for imparting the needed

knowledge towards the realization of this work .

Mallam Mohammed Usman Dattijo has also helped in no small way. I really

appreciate his effort rendered to me during the course of this study.

My profound gratitude goes to Mallam Ibrahim Mohammed Bomoi (Auditor

General for MFCT Area Council) your kindness is acknowledged .

I must recognize and acknowledge the support I received from my immediate

family with every 'sense of sincerity. I deepiy ~p~reciate all they did for me by way of

moral and spiritual' support. I appreciate my Little Ibrahim for his sacrifice and

support to make sure 'l s.ucceed in my endeavor.

Furthermore, I am warmly indebted to Dr. and Mrs. Babangida Aliyu , Mr. and

Mrs. M. K. Ibrahim, Mr and mrs. Sa 'id ; your concern is highly appreciated .

we much thanks to my good course mates, for their contributions in their

own differen ays.

ABSTRACT

The E-Yearbook uses Oracle 10g Express Edition to store address information such

as names, pictures, phone numbers, email addresses , personal statements and

postal addresses. It allows you to create new address entries and to save, edit, and

delete them. The application creates its tables the first time if they don 't already

exist, a task that can also be done from the Oracle 10g XE database Home page.

The application uses a Data Access Object (DAO) to isolate the database-specific

code. The DAO encapsulates database con~ections and statements. A DAO is a

useful design pattern that allows loose coupling between an application and the

underlying persistence-storage mechanism.
. .. - - -"'>

•

ABSTRACT

The E-Yearbook uses Oracle 10g Express Edition to store address information such

as names, pictures , phone numbers, email addresses , personal statements and

postal addresses. It allows you to 'create new address entries and to save, edit, and

delete them. The application creates its tables the first time if they don 't already

exist, a task that can also be done from the Oracle 10g XE database Home page.

The application uses a Data Access Object (DAO) to isolate the database-specific

code. The DAO encapsulates database connections and statements . A DAO is a

useful design pattern that allows 100s8 co~:q,g between an application and the

underlying persistence-storage mechanism.

TABLE OF CONTENTS
Cover Page

Title Page

Certification

Dedication

Acknowledgement

Abstract

Table of Con tents

CHAPTER ONE: INTRODUCTION

1.1 A History of Java

1.2

1.3

1.4

1.5

Java Class Libraries

Basics of a Typical Java Environment

Justification for tbe Study

Aim and objective of the project

CHAPTER TWO: LITERATURE REVIEW

2.1 Java's Past, Present, and future

2.2 Java is Platform-Independent

2.3 Object-Oriented Programming

2.4 Relational Databases

2.4.1 The Relational Model

2.4.2 Codd 's Rules

2.4.3 Relationships

2.4.4 Normalization

2.5 Structured Query Language (SQL)

2.6 Transaction Management and Transac"tion Control COlllmands

CHAPTER THREE: SYSTEM ANALYSIS AND DESIGN

3.1 E- Yearbook Application

3.2 Design or rapbical User Interface

3.3 Integrating Oracle 109 with NetBeans IDE 5.5

3.4 Connecting to Oracle 109 XE

II

III

IV

v

VI

VII

2

3

7

7

9

10

12

15

16

18

21

23

27

29

33

36

37

41

CHAPTER FOUR: SOFTWARE DESIGN AND IMPLEMENTATION

-
4.1

4.2

Using the Database

Deploying the Application

CHAPTER FIVE: SUMMARY/RECOMMENDATION

5.1 Summary

5.2 Recommendation

References

Appendix: Program Listing

43

46

48

48

50

CHAPTER ONE

INTRODUCTION

1. t A History of Java

Perhaps the microprocessor revolution's most important contribution to date is

that it made possible the development of personal computers which may soon number

300 million world-wide. Personal computers have had a profound impact on people and

the way organisations conduct and manage their business.

Many people believe that the next major area in which microprocessors will have

a, profound impact is in intelligent consumer electronic devices. Recognising this, Sun

Microsystems funded an internal corporate research project code-named Green in 1991 .

The project resulted in the development of a C and C++ based language which its

creator, James Gosling , called Oak after an oak tree outside his window at Sun. It was

later discovered that there already was a computer language called Oak. When a group

of Sun people visited a local coffee place, the name Java was suggested and it stuck.

But the Green project ran into some difficulties. The marketplace for intelligent

consumer electronic devices was not developing as quickly as Sun had anticipated.

Worse yet, a major contract for which Sun competed was awarded to another company.

So the project was in danger of being cancelled . By sheer good fortune, the World Wide

Web exploded in popularity in 1993 and Sun people saw the immediate potential of using

Java to create Web pages with so-called dynamic content. This breathed new life into the

project.

Sun formally announced Java at a major conference in May 1995. Ordinarily, an

event Ike this would not have generated much attention. However, Java generated

immediate interest in the business Community because of the phenomenal interest in the

World Wide Web. Java is now used to cre~te Web pages with dynamic and interactive

content, to develop large-scale enterprise applications, to enhance the functionality of

World Wide Web servers (the computers that provide the content we see in our Web

browsers), to provide applications for consumer devices (such as cell phones, pagers

and personal digital assistants) , and so on.

1.2 Java Class Libraries

Java programs consist of pieces called classes. Classes consist of pIeces called

methods that perform tasks and return information when they complete their tasks. You

can program each piece you may need to form a Java program. But most Java

programmers take advantage of rich collections of existing classes in Java class libraries.

The class libraries are also known as the Java APls (Applications Programming

Interfaces). Thus, there are really two pieces to learning the Java "world". The first is

learning the Java language itself so that you can program your own classes and the

second is learning how to use the classes ' in '1h"'e-:::' extensive Java class libraries. Class

libraries are provided primarily by compiler vendors, but many class libraries are supplied

by independent software vendors. Also, many class libraries are available from the

Internet and World Wide Web as shareware (products you can download for a small fee)

and freeware (products you can download for free).

My own Class
Libraries,
Classes &
Methods

Libraries that
come with
Java

p ries from
r software

vendors

Class Libraries Classes

myMaths Ic-----j Trigonometry kc----j

javax.swing Calculus

freeLibrary Algebra

Figure 1.2 Class Libraries, Classes and Methods.

Methods

sin

cosine

pythagoras

The advantage of creating your own classes and methods is that you will know exactly

how they work. You will be able to examine the Java code. The disadvantage is the time

consuming and complex effort that goes into designing and developing new classes and

methods.

1.3 Basics of a Typical Java Environment

Java systems generally consist of several parts : an environment, the

language, the Java Applications Programming Interface (API) , and various class

libraries. The following discussion explains'-8:1ypical Java program development

environment as shown below.

Java programs normally go through five phases to be executed (Figure 1.1).

These are: edit, compile, load , verify and execute.

Phase 1 consists of editing a file . This is accomplished with an editor

program. The programmer types a Java program using the editor and makes

corrections if necessary. When the programmer specifies that the file in the editor

should be saved, the program is stored on a secondary storage device such as a

disk. Java program file names end with the .java extension . Java integrated

development environments (IDEs) such as Netbeans, Eclipse, and a host of others ,

have built-in editors that are smoothly integrated into the programming environment.

In Phase 2, the programmer gives the command javac to compile the

program. The Java compiler translates the Java program into bytecodes the

language understood by the Java interpreter

Phase J

Pila~e 2

Pha~e 1

Pha~e .$

Pha~e 5

r
~--- -\ Plogl<tln IS cl ea ted in

'-

___ E_d_i·t_or __ ---'I4--~.! ------1 \ tile ~dltor altd stored I [I lSI' I ' _~___ j on disk.

r
---- \ Co mpilerclea tes

'-
______ ---'I4---I>fr----::-:-::::-~! byieeodes and stoles Compiler 1 DISk 1 - tltem on disk.

-~------ ,J

PlUnalY
11,.1el!101Y

CJa::s Loader

i
r DiSkJ

PlUn"'l),
MemOIY

Byiecode Velifier
....

Plimary

MemOIY

In te rpre te I ...

\
\ C la::s loader puts 1 by1e,;odes in memory.

/
\\

B:!tecode vellfier
\ co nfinns tha t all

\ byte';odes are valid

(

and do not vIOla te

Java~s ~ecl11i.ty
restnc tlDns .

)

\ \ Intelpletel reads

by1ecodes altd
\ bansiates theln into a

II,

CO mr"ltel can
W'lderstand, possIbly
storing dati values as

th .. pmgmm executes .

Figure 1.1 - A typical Java environment.

Phase 3 is called loading. The program must first be placed in memory before

it can be executed . This is done by the class loader, which takes the class file (or

files) containing the bytecodes and transfers it to memory. The .class file can be

loaded from a disk on your system or over a network (such as your local university or

company network or even the Internet) . There are two types of programs for which

the class loader loads .class files - applications and applets . An application is a

A

program such as a word processor program, a spreadsheet program , a drawing

program, an email program, etc. that is normally stored and executed from the user's

local computer. An applet is a small program that is normally stored on a remote

computer that users connect to via a World Wide Web browser. Applets are loaded

from a remote computer into the browser, executed in the browser and discarded

when execution completes. To execute an applet again, the user must point their

browser at the appropriate location on the World Wide Web and reload the program

into the browser. Applications are loaded into memory and executed using the Java

interpreter via the command java.

The class loader also is executed when a Java applet is loaded into a World

Wide Web browser such as Netscape's Communicator or Microsoft's Internet

Explorer. Browsers are used to view documents on the World Wide Web called

HTML (Hypertext Mark-up Language) documents. HTML is used to format a

document in a manner that is easily understood by the browser application . An

HTML document may refer to a Java applet. When the browser sees an applet

referenced in an HTML document, the browser launches the Java class loader to

load the applet (normally from the location where the HTML document is stored) .

Browsers that support Java each have a built-in Java interpreter. Once the applet is

loaded, the browser's Java interpreter executes the applet.

Before the bytecodes in an applet are executed by the Java interpreter built

into a browser, they are verified by the bytecode verifier in Phase 4 (this also

happens in applications that download bytecodes from a network) . This ensures that

the bytecodes for classes that are loaded from the Internet (referred to as

downloaded classes) are valid and that . they do not violate Java's security

restrictions . Java enforces strong security because Java programs arriving over the

network should not be able to cause damage to your files and your system (as

computer viruses might) . ,

Finally, in Phase 5, the computer, under the control of its CPU, interprets the

program one bytecode at a time, thus performing the actions specified by the program.

Programs may not work on the first try . Each of the preceding phases can fail

because of various errors that we will discuss in this text. For example, an executing

program might attempt to divide by zero (an illegal operation in Java just as it is in

arithmetic) . This would cause the Java program to print an error message. The

programmer would return to the edit phase , make the necessary corrections and

proceed through the remaining phases again to determine if the corrections work

properly.

Most programs in Java input and/or output data . When we say that a program

prints a result, we normally mean that the result is displayed on a screen . Data may

be output to other devices such as disks and hardcopy printers.

Perhaps the most striking problem with early versions of Java is that Java programs

execute interpretively on the clients machine. Interpreters execute slowly compared

to fully compiled machine code. Interprete'r~ have an advantage over compilers for

the Java world, namely that an interpreted program can begin execution immediately

as soon as it is downloaded to the client's machine, whereas a source program to be

compiled must first suffer a potentially long delay as the program is compiled before

it can be executed.

Although only Java interpreters were available to execute bytecodes at the

client's site on early Java systems, Java compilers have been written for most

popular platforms. These compilers take the Java bytecodes (or in some cases the

Java source code) and compile them into the native machine code of the client's

machine. These compiled programs perform comparably to comp.iled C or C++ code.

Because there are "Compilers for every Java platform , Java programs will perform at

the same level on all platforms.

An intermediate step between interpreters and compilers is a just-in-time (JIT)

compiler that, as the interpreter runs , produces compiled code for the programs and

executes the programs in machine language rather than reinterpreting them. JIT

compilers do not produce machine language that is as efficient as a full compiler.

Full compilers for Java are under development now.

1.4 Justification for the Study

The E-Yearbook uses Oracie 10g Express Edition to store address

information such as names, pictures, plio'n"elibmbers, email addresses , personal

statements and postal addresses . It allows you to create new address entries and to

save, edit, and delete them. The application creates its tables the first time if they

don't already exist, a task that can also be done from the Oracle 10g XE database

Home page. The application uses a Data Access Object (DAO) to isolate the

database-specific code . The DAO encapsulates database connections and

statements. A DAO is a useful design pattern that allows loose coupling between an

application and the underlying persistence-storage mechanism.

1.5 Aim and objective of project

Every effective system gains its quality from the speed at which it executes its

dedicated task, which is a subject of time and other resources required such as an

effective information system. Therefore this project is aimed at

• Developing a Java Application , with an oracle XE Database backend , that

manages students' personal information for the purpose of sharing this with

other students after graduation .

CHAPTER TWO

LITERATURE REVIEW

2.1 Java's Past, Present, and Future

Java is an object-oriented programming language developed by Sun

Microsystems, a company best known for its high-end Unix workstations. Modeled

after C++ , the Java language was designed to be small , simple , and portable across

platforms and operating systems, both at the source and at the binary level (more

about tli is later) . Java is often mentioned in the same bregth as HotJSVd, 9 World

Wide Web browser from Sun like Netscape or Mosaic. What makes HotJava

different from most other browsers is that, in addition to all its basic Web features , it

can also download and play applets on the reader's system. Applets appear in a

Web page much in the same way as images do, but unlike images, applets are

dynamic and interactive. Applets can be used to create animations , figures , or areas

that can respond to input from the reader, games, or other interactive effects on the

same Web pages among the text and graphics. Although HotJava was the first

World Wide Web browser to be able to play Java applets, Java support is rapidly

becoming available in other browsers. Netscape provides support for Java applets,

and other browser developers have also announced support for Java in forthcoming

products. Java 's goals at that time were to be small , fast , efficient, and easily

portable to a wide range of hardware devices. It is those same goals that made Java

an ideal language for distributing executable programs via the World Wide Web , and

also a general-purpose programming language for developing programs that are

easily usable and portable across different platforms.

The Java language was used in several projects within Sun , but did not get

, very much commercial attention until it 'wils--!}aired with HotJava . HotJava was

written in 1994 in a matter of months, both as a vehicle for downloading and running

applets and also as an example of the sort of complex application that can be written

in Java. Presently, Sun has released the 6th version of the Java Developer's Kit

(JDK1 .6.0), which includes tools for developing Java applets and applications on

Sun systems running Solaris , for Windows NT and Linux.

The JDK does include an application called appletviewer that allows you to

test your Java applets as you write them. If an applet works in the appletviewer, it

should work with any Java-capable browser.

2.2 Java Is Platform-Independent

Platform independence is one of the most significant advantages that Java

has over other programming languages, particularly for systems that need to work on

many different platforms. Java is platform-independent at both the source and the

. binary level. Platform-independence is a program's capability of moving easily from

one computer system to another.

At the source level , Java's primitive data types have consistent sizes across

all development platforms. Java's foundation class libraries make it easy to write

code that can be moved from platform to platform without the .need to rewrite it to

work with that platform.

Platform-independence doesn 't stop ,at .tile source level , however. Java binary

files are also platform-independent and can run on multiple problems without the

need to recompile the sourte. How does this work? Java binary files are actually in a

form called bytecodes. Bytecodes are a set of instructions that looks a lot like some

machine codes, but that is not specific to anyone processor.

Normally, when you compile a program written in C or in most other

languages, the compiler translates your program into machine codes or processor

instructions. Those instructions are specific to the processor your computer is

running-so, for example, if you compile your code on a Pentium system, the

resulting program will run only on other Pentium systems. If you want to use the

same program on another system, you have to go back to your original source, get a

compiler for that system, and recompile your code . Figure 1.2 shows the result of

this system: multiple executable programs for multiple systems.

Things are different when you write code in Java. The Java development

environment has two parts: a Java compiler and a Java interpreter. The Java

compiler takes your Java program and instead of generating machine codes from

your source files , it generates bytecodes.

Figure 1.2.
Tradi tiona! campi lrei
pragr.m.1f.

--.[]
Ccn~u:r ,.SF.O\F..CI

To run a Java program, you run a program called a bytecode interpreter, which in

turn executes your Java program (see Figure 1.3) . You can either run the interpreter

by itself, or - for applets - there is a bytecode interpreter built into HotJava and

other Java-capable browsers that runs the applet for you .

Fi~Ufe 1.3.
/.1I·.1l'rut;rJ!lIS.

Why go through all the trouble of adding this extra layer of the bytecode

interpreter? Having your Java programs in bytecode form means that instead of

being specific to anyone system, your programs can be run on any platform and any

operating or window system as long as the Java interpreter is available. This

capability of a single binary file to be executable across platforms is crucial to what

enables applets to work , because the World Wide Web itself is also platform-

independent. Just as HTML files can be read on any platform, so applets can be

executed on any platform that is a Java-capable browser.

2.3 Object-Oriented programming

To some, object-oriented programming (OOP) technique is merely a way of

organizing programs, and it can be accomplished using any language. Working with

a real object-oriented language and programming environment, however, enables

you to take full advantage of object oriented methodology and its capabilities of

creating flexible, modular programs and reusing code.

Many of Java's object-oriented concepts are inherited from C++, the language

on which it is based, but it borrows many concepts from other object-oriented
• ' .. !""""<- --:>

languages as well. Like most object-oriented programming languages, Java includes

a set of class libraries that provide basic data types , system input and output

capabilities, and other utility functions. These basic classes are part of the Java

development kit, which also has classes to support networking , common Internet

protocols, and user interface toolkit functions . Because these class libraries are

written in Java, they are portable across platforms as all Java applications are .

Java Is Easy to Learn

In addition to its portability and object-orientation , one of Java 's initial design

goals was to be small and simple, and therefore easier to write , easier to compile ,

easier to debug, and, best of all , easy to learn. Keeping the language small also

makes it more robust because there are fewer chances for programmers to make

difficult-to-find mistakes . Despite its size and simple design , however, Java still has a

great deal of power and flexibility .

Java is modeled after C and C++, and much of the syntax and object-oriented

structure is borrowed from the latter. If you are familiar with C++, learning Java will

be particularly easy for you , because you have most of the foundation already.

Although Java looks similar to C and C++, most of the more complex parts of

those languages have been excluded from Java, making the language simpler

without sacrificing much of its power. There are no pointers in Java, nor is there

pointer arithmetic. Strings and arrays are real objects in Java . Memory management

is automatic. To an experienced programmer, these omissions may be difficult to get

used to, but to beginners or programmers who have worked in other languages, they

make the Java language far easier to learn .

Object-oriented programming is modeled on how, in the real world , objects

are often made up of many kinds of smaller objects . This capability of combining

objects, however, is only one very general aspect of object-oriented programming .

Object-oriented programming provides several other concepts and features to

make creating and using objects easier and more flexible , and the most important of

these features is that of classes. A class is a template for multiple objects with

similar features . Classes embody all the features of a particular set of objects. When

you write a program in an object-oriented language, you don 't define actual objects.

You define classes of objects.

For example, you might have a Tree class that describes the features of all

trees (has leaves and roots , grows, creates chlorophyll) . The Tree class serves as

an abstract model for the concept of a tree-to reach out and grab, or interact with ,

or cut down a tree you have to have a concrete instance of that tree. Of course, once

you have a tree class, you can create lots of different instances of that tree, and

each different tree instance can have different features (short, tall, bushy, drops

leaves in autumn) , while still behaving like and being immediately recognizable as a

tree.

An instance of a class is another word for an actual object. If classes are an

abstract representation of an object, an instance is its concrete representation. So
• .c "......-~

what, precisely, is the difference between an instance and an object? Nothing, really .

Object is the more general term, but both instances and objects are the concrete

representation of a class . In fact, the terms instance and object are often used

interchangeably in OOP language. An instance of a tree and a tree object are both

the same thing . When you write a Java program, you design and construct a set of

classes . Then, when your program runs , instances of those classes are created and

discarded as needed . Your task , as a Java programmer, is to create the right set of

classes to accomplish what your program needs to accomplish. Fortunately, you

don't have to start from the very beginning : the Java environment comes with a

library of classes that implement a lot of the basic behavior you need-not only for

basic programming tasks (classes to provide basic math functions , arrays, strings,

and so on), but also for graphics and networking behavior. In many cases , the Java

class libraries may be enough so that all you have to do in your Java program is

create a single class that uses the standard class libraries. For complicated Java

programs, you may have to create a whole set of classes with defined interactions

between them . A class library is a set of classes .

2.4 Relational Databases

A database is a structured collection of meaningful information stored over a

period of time in machine-readable form for subsequent retrieval. This definition is

fairly intuitive and says ,nothing about strl:Jci.uJe or methodology. By this definition ,

any file or collection of files can be considered a database. However, to be useful in

practical terms, a database must form part of a system that provides for the

management of the data it contains . Seen from this perspective, a database must be

more than a mere collection of files . It must be a complete system.

A practic'ai database management system combines the physical storage of

data with the capability to manage and interact with the data . Such a system must

support the following tasks :

• Creation and management of a logical data structure

, ..

• . Data entry and retrieval

• . Manipulation of the data in a logical and consistent manner

• Storage of data reliably over a significant period of time

Prior to the development of modern relational databases, a number of different

approaches were tried . In many cases, these were simple , proprietary data-storage

systems designed around a specific application . However, large corporations,
. "--~"":>

notably IBM, were marketing more general solutions .

2.3.1 The R.elational Model

The big step forward in database technology was the development of the

relational database model. The relational database derives from work done in the

late 1960s by E.F. Codd , a mathematician at IBM. His model is based on the

mathematics of set theory and predicate logic. In fact, the term relational has its

roots in the mathematical terminology of Codd's paper entitled "A relational model of

data for large shared data banks ," which was published in Communications of the

ACM, Vol. 13, No.6, June 1970, pp . 377-387 . In this paper, Codd uses the terms

relation , attribute, and tuple where more common programming usage refers to

table , column, and row, respectively.

, . .'
The importance of Codd's ideas is such that the term "database" generally

refers to a relational database. Similarly, in common usage, a Database

Management System, or DBMS, generally means a Relational Database

Management System. The terms are always used interchangeably.

Codd's model covers the three primary requirements of a relational database:

structure, integrity, and data manipulation . The fundamentals of the relational model

are as follows :

t /'

• A relational database consists of a 'n~n;~0r of unordered tables .

• The structure of these tables is independent of the physical storage medium

used to store the data .

• The contents of the tables can be manipulated using nonprocedural

operations that return tables ,

The implementation of Codd's relational model means that a user does not need

to understand the physical structure of the data in order to access and manage data

in the database. Rather than accessing data by referring to files or using pointers ,

the user accesses data through a common tabular architecture, The relational model

maintains a clear distinction between the logical views of the data presented to the

user and the physical structure of the data stored in the system .

Codd based his model on a simple tabular structure, though his term for a table

was a relation. Each table is made up of one or more rows (or tuples) , Each row

contains a number of fields , corresponding to the columns or attributes of the table ,

The tabular structure Codd defines is simple and relatively easy for the user to

understand . It is also sufficiently general to be capable of representing most types of

data in virtually any kind of structure. An additional advantage of a tabular structure

is that tables are amenable to manipulation by a clearly defined set of mathematical

'operations that generate results that are also in the form of tables . These

mathematical operations lend themselves readily to implementation in a high-level

language, In fact, Codd's rules require that a high level language be incorporated in

the RDBMS for just this purpose. That language has evolved into the Structured

Query Language, SOL.

The use of a high-level language to manipulate the data at the logical level is

an important feature , providing a level of abstraction which lets the user insert or

retrieve data from the tables based on attributes of the data rather than its physical

structure . For example, rather than requiring the user to retrieve a number stored in

a certain location on disk, the use of a high-level query language allows the user to

request the checking balance of a particular customer's account by account number

or customer name.

A further advantage of this approach is that, while the user defines his or her

requests in logical terms, the database management system (DBMS) can implement

them in a highly optimized manner with respect to the physical implementation of the

storage system. By decoupling the logical operations from the physical operations,

the DBMS can achieve a combination of user friendliness and efficiency that would

not otherwise be possible.

2.4.2 Codd's Rules

When Codd initially presented his paper, the meaning of the relational model

he described was not widely understood. To clarify his ideas, Codd published his

famous Fidelity Rules. In theory, a RDBMS must conform to these rules. As it turns

out, some of these rules are extremely difficult to implement in practice, so no

existing RDBMS complies fully.

For example, Rule 1, the Information Rule, requires that all data be

represented as values in tables ; it is imp<?rtant to understand the idea of tables
• "' ,...... ,..':>

before moving on to discuss Rule 0, which requires that the database be managed in

accordance with its own rules for managing data .

....

Tables, Rows, Columns, and Keys

Codd's Information Rule (Rule 1) states that all data in a relational database

must be explicitly represented at the logical level as values in tables and in no other

way. In other words, tables are the basis of any RDBMS. Tables in the relational

model are used to represent collections of objects or events in the real world . A

single table should represent a collection of a single type of object, such as

customers or inventory items.

All relational databases rely on the following design concepts :

• All data in a relational database is explicitly represented at the logical level as

values in tables.

• Each cell of a table contains the value of a single data item.

• Cells in the same column are members of a set of similar items.

• Cells in the same row are members of a group of related items.

• Each table defines a key made up of one or more columns that uniquely
--.">

identify each row.

Nulls

In a practical database, situations arise in which you either don't know the value

of a data element or don't have an applicable value. Does that blow away the whole

table? The answer lies in the concept of systematic nulls.

Codd's Systematic Nulls Rule (Rule 3) states that the RDBMS is required to

support a representation of missing and inapplicable information that is systematic,

distinct from all regular values, and independent of data type. In other words , a

relational database must allow the user to insert a NULL when the value for a field is

unknown or not applicable . Clearly, the requirement to suppot!~ULLS means that
' ,-

the RDBMS must be able to handle NULL values in the course of normal operations

in a systematic way. This is managed th rough the ability to insert, retrieve , and test

for NULLS and to specify NULLS as valid or invalid column va lues .

Primary Keys

Codd's Guaranteed Access Rule (Rule 2) states that every data element must

be logically accessible through the use of a combination of its primary key name,

primary key value, table name, and column name. This is guar~nteed by designating

a primary key that contains a unique value for each row in the table . Each table can

have only one primary key, which can be. ~QY column or group of columns in the
. • ~ ::>

table having a unique value for each row.

It is worth noting that, while most relational database management systems will let

you create a table without a primary key , the usability of the table will be

compromised if you fail to assign a primary key. The reason for this is that one of the

strengths of a relational database is the ability to link tables to each other. These

links between tables rely on using the primary key as a linking mechanism .

Primary keys can be simple or composite . A simple key is a key made up of

one column , whereas a composite key is made up of two or more columns. Although

there is no absolute rule as to how you select a column or group of columns for use

as a primary key, the decision should usually be based upon common sense. In

other words, you should base your choice of a primary key upon the following

factors:

• Use the smallest number columns necessary, to make key access efficient.

• Use columns or groups of columns that are unlikely to change, since changes

will break links between tables .

• Use columns or groups of columns that are both simple and understandable

to users.

In practice, the most common type of key is a column of unique integers specifically

created for use as the primary key . The uni'ql""'''>i.nteger serves as a row identifier or

10 for each row in the table . Oracle, in fact , defines a special ROW_IO pseudo

column and Access has an AutoNumber data type commonly used for this purpose.

Another good reason to use a unique integer as a primary key is that integer

comparisons are far more efficient than string comparisons. This means that

accessing data using a single integer as a key is faster than using a string or, in the

case of a multiple column key, several integers or strings.

Note: Since primary keys are used as unique row identifiers , they can never have a

NULL value. The NOT NULL integrity constraint must be applied to a column

designated as a primary key . Many Relational database Management Systems apply

the NOT NULL constraint to primary keys automatically.

Foreign Keys

A foreign key is a column in a table used to refe rence a primary key in

another table. If your database contains only one table , or a number of unrelated

tables , you won't have much use for your primary key. The primary key becomes

important when you need to work with multiple tables . For example, in the tables

used in oW application we have three tables : Addresses , Blob content and

Clob content.

2.4.3 Relationships

As illustrated in the preceding discussions of primary and foreign keys , they

are defined to model the relationships among the different tables in a database.

These tables can be related in one of three ways:

• One-to-one

• One-to-many

• Many-to-many

One-to-one relationships

In a one-to-one relationship, every row in the first table has a corresponding

row in the second table . This type of relationship is often created to separate

different types of data for security reasons . For example, you might want to keep

confidential information such as credit-card data separate from less restricted

information .

Another common reason for creating tables with a one -to-one relationship is

to simplify implementation . For example, if you are creating a Web application

involving several forms , you might want to use a separate table for each form .

Other reasons for breaking a table into smaller parts with one-to-one

relationships between them are to improve performance or to overcome inherent

restrictions such as the maximum column count that a database system supports.

Tables related in a one-to-one relationship should always have the same primary

key . This is used to perform joins when the related tables are queried together.

One-to-many relationships

In a one-to-many relationship , every row in the first table can have zero, one, or

many corresponding rows in the second table . But for every row in the second table ,

there is exactly one row in the first table . One-to-many relationships are also

sometimes called parent-child or master-detail relationships because they are

commonly used for lookup tables .

Many-to-many relationships

In a many-to-many relationship , every row in the first table can have many

corresponding rows in the second table , and every row in the second table can have

many corresponding rows in the first table . Many-to-many relationships can't be

directly modeled in a relational database. They must be broken into multiple one-to-

many relationships .

Normalization

Normalization is the process of organizing the data in a database by making it

conform to a set of rules known as the normal forms . The normal forms are a set of

design guidelines that are designed to eliminate redundancies and to ensure

consistent dependencies . Apart from wasting space , redundant data creates

maintenance problems. For example, if you save a customer's address in two

locations, you need to be absolutely certain to make any required changes in both
.. . ,........".

locations.

It is important to ensure that data dependencies are consistent so that you

can access and manipulate data in a logical and consistent manner. Although

normalization enhances the integrity of the data by minimizing redundancy and

inconsistency, it does so at the cost of some impact on performance.

Data-retrieval efficiency can be reduced , since applying the normalization

rules can result in data being redistributed across multiple records. A database that

conforms to the' normalization rules is said to be in normal form. If the database

conforms to the first rule , the database is said to be in first normal form,

abbreviated as 1NF. If it conforms to the first four rules , the database is considered

to be in fourth normal form (4NF) .

First normal form

The requirements of the first normal form are as follows :

• All records have the same number of fields .

• All fields contain only a single data item.

• There must be no repeated fields .

The first of these requirements, that all occurrences of a record type must contain

the same number of fields , is a built-in feature of all database systems.

The second requirement, that all fields contain only one data item, ensures that

you can retrieve data items individually: This requirement is also known as the

atomicity requirement. Requiring that each data item be stored in only one field in a

record is important to ensure data integrity.

Finally, each row in the table must be identified using a unique column or set of

columns. This unique identifier is the primary key.

Second normal form

The requirements of the second normal form are as follows :

• The table must be in first normal form .

• The table cannot contain fields that do not contain information related to the

whole of the key.

The. second normal form is only relevant when a table has a multipart key. Second

normal form requires that a table should only contain data related to one entity, and

that entity should be described by its primary key. In addition , of course, storing the

same data item in multiple locations is very inefficient in terms of space , and requires

that any change to the data item be made to all rows containing the data item, rather

than to a single master reference .

' ..

Third normal form

The requirements of the third normal 'fon::q>are as follows :

• The table must be in second normal form.

• The table cannot contain fields that are not related to the primary key.

Third normal form is very similar to second normal form , with the exception

that it covers situations involving simple keys rather than compound keys.

Fourth normal form

The requirements of the fourth normal form are as follows :

• The table must be in third normal form .

• The table cannot contain two or more independent multivalued facts about an

entity.

For example, if you wanted to keep track of customer phone numbers, you could

create a new table containing a Customer_ID number column , a phone number

column, a fax number column, and a cell-phone number column . As long as a

customer has only one of each listed in the table , there is no problem . However, if a

customer has two land line phones, a fax, and two cell phones, you might be

tempted to enter the numbers as shown in Table 1-14.

TJble 1·U: Phone Numbers TablE' ''''hich violat€'s 4NF

I CUSTOMERJO '--~HONE -- 1 FAX

r
-~------·--- r 'I
100 I '2:?·234·345e 1:2.·224·3450

l ;o~' . --~... - ·'1 <22 .;34.34'57 r "t~L.LL>

-,- -.
J CELL
I

1 1-" 34" "5'9 ~ .. -... <,J-.., I

21-345-e57~

Since there is no relationship between the different phone numbers in a given row,

this table violates the fourth normal form, in that there are two or more independent

multivalued facts (or phone numbers) for the customer on each row. The

combinations of land line, fax, and cell phone numbers on a given row are not

meaningful. The main problem with violating the fourth normal form is that there is no

obvious way to maintain the data. If, for example, the customer decides to give up

the cell phone listed in the first row, should the cell p hone number in the second row

be moved to the first row, or left where it is? If he or she gives up the land line phone

in the second row and the cell phone in the first row, should all the phone numbers

be consolidated into one row? Clearly, the maintenance of this database could

become very complicated.

The solution is to design around this problem by deleting the phone, fax, and

cell columns from the original table and creating an additional table containing

Customer 10 as a foreign key, and phone number and type as data fields (see Table

1-15). This will allow you to handle several phone numbers of different types for each

customer without violating the fourth normal form .

Tabl~ 1-15: Phone Numb ~rs Table

rC USTor.~~~--- - - - r ~~MB ER -
!"lOe - - .. _._- ! ,23.2:?4-3456

110
·C .•• ---- - 1 1 ·1~''''''4 _ ~4 <=;- -

I - -.. -~ ,. ~f

1 1O~- . u_-._-.-_ - 1 123.234.;450

110; r 12- .34 ~-- 56;o

, . 1 1O~ . __ -_ 112 .345-5:': .

r TY PE

I
IPHOt E
f
' PHOt E

• I FA>::
I"

CEL_

Fifth normal form

The requirements of the fifth normal form are as follows:

• The table must be in fourth normal form:-""

• It must be impossible to break down a table into smaller tables unless those

tables logically have the same primary key as the original table.

The fifth normal form is similar to the fourth normal form, except that where the

fourth normal form ' deals with independent multivalued facts , the fifth normal form

deals with interdependent multivalued facts.

2.5 Structured Query language (SQl)

The Structured Query Language (SQL) was first developed by IBM in the

1970s and was later the subject of several ANSI standards. As a result of the way

that the requirements for a high-level database language are defined , SQL is usually

considered to be composed of a number of sublanguages . These sublanguages are

as follows : Data Definition Language (DOL) is used to create , alter, and drop tables

and indexes.

• Data Manipulation Language (DMl) is used to insert, update, and delete data.

• Data Query Language (DQl) is used to query the database using the

SELECT command .

• Transaction Control Commands are used to start, commit, or rollback

transactions.

. -- --"'"">
• Data Control language (DCl) is used to grant and revoke user privileges and

to change passwords.

Despite the conventional division of SQL into a number of sublanguages ,

statements from any of these constituent sublanguages can be used together. The

convention is really just a reflection of the way Codd's rules define the requirement

for a high level language, with sublanguages for different functions .

Data Definition Language

Data definition operations are handled by SOL's Data Definition Language,

which is used to create and modify a database. The SOL2 standard refers to DOL

statements as "SOL Schema Statements ." The SOL standard defines a Schema as

a high level abstraction of a container object which contains other database objects.

A good example of the use of the DOL is the creation of a table .

Data Manipulation Language

The Data Manipulation Language comprises the SOL commands used to

insert data into a table and to update or delete data . SOL provides the following

three statements you can use to manipulate data within a database: . • ~.>

• INSERT

• UPDATE

• DELETE

The INSERT statement is used to insert data into a table , one row or record at a

time. It can also be used in combination with a SELECT statement to perform bulk

inserts of multiple selected rows from another table or tables .

The UPDATE command is used to modify the contents of individual columns

within a set of rows. The UPDATE command is normally used with a WHERE

clause, which is used to select the rows to be updated .

The .DELETE command is used to delete selected rows from a table . Again , row

selection is based 0 n the result of an optional WHERE clause .

. r . ,

Data Query Language

The Data Query Language is the portion of SQL used to retrieve data from a

database in response to a query. The SELECT statement is the heart of a SQL

query. In addition to its use in returning data in a query, it can be used in

combination with other SQL commands to select data for a variety of other

operations, such as modifying specific records using the UPDATE command .

The most common way to use SELECT, however, is as the basis of data

retrieval commands, or queries , to the database. The basic form of a simple query

specifies the names of the columns to be returned and the name of the table they

can be found in. A basic SELECT command looks like this :

SELECT columnName1, columnName2, .. FROM tableName;

In addition to this specific form , where the names of all the fields you want

returned are specified in the query, SQL supports a wild-card form . In the wild-card

form, an asterisk (*) is substituted for the column list , as shown here :

SELECT * FROM tableName;

The wild card tells the database management system to return the values for all

columns.

The real power of the SELECT command comes from the use of the WHERE

Clause. The WHERE clause allows you to restrict the query to return the requested

fields from only records that match some specific criteria . For example, you can

query the Customers Table :

SELECT * FROM ContacUnfo WHERE Last_Name = 'Corleone';

2.6 Transaction Management and the Transaction Control Commands

Transaction management refers to the capability of an RDBMS to execute

database commands in groups, known as transactions . A transaction is a group or

sequence of commands, all of which must be executed in order and all of which must

completed successfolly. The Transaction Control Commands are used to control

transactions.

The ACID Test

A commonly used expression in data processing is the ACID test. The ACID

test defines a set of properties that a database management system must have in

order to be adequate for handling transactions. These properties are as follows :

• Atomicity

• Consistency

• Isolation

• Durability

A discussion of the preceding properties follows .

Atomicity

Transactions must be atomic. Specifically, a transaction must be executed in

its entirety and committed as a whole or rolled back as a whole , so that either all

changes that constitute a transaction take effect or none of them take effect. A

classic example of an atomic transaction is a transfer of funds from a checking

account to a savings account. Clearly, you want both the deduction from savings and

the addition to checking to take place , failing which, neither should take place. When

atomicit~ is not guaranteed , you have an accounting nightmare.

Consistency

The consistency requirement defines a transaction as legal only if it obeys

user-defined integrity constraints. Esse~tially , these constraints define legal
• 0(_ _

databas.e states and proscribe transactions that cause transitions from a legal state

to an illegal state. For example , if you are making a transfer of funds from a checking

account to a savings account and your business rules require that such a transfer be

logged to another table , any problems updating that table will violate the integrity

constraint and will require that the entire transaction be rolled back .

Isolation

Isolation means that the effects of a transaction must be invisible to other

transactions until the current transaction is complete . For example, if you are making

a transfer of funds from a checking account to a savings account, the intermediate

balances after savings have been debited , but before checking has been credited ,

must not be available to an outside transaction . If the intermediate balances are

available to an outside transaction, you might, for example, generate an insufficient

funds warning, since the funds will show up in neither account.

Durability

The durability requirement demands that, once committed , tile results of a

transaction be preserved in some form of long term storage. In other words, once a

funds transfer has been made from savings to checking, the DBMS must save it to

persistent storage.

Transaction Management in SQL

If anything goes wrong during the 'tr't::";;::;action , the database management

system allows the entire transaction to be cancelled , or "Rolled Back." If, on the other

hand, it completes successfully, the transaction can be saved to the database, or

"Committed," A transaction typically involves several related commands, as in the

case of a bank transfer. If a client orders a transfer of funds from his savings account

to his checking account, at least these two database-access commands must be

executed :

• The savings account must be debited .

• The checking 'account must be credited .

If one of these commands is executed and the other is not, the funds will either

vanish from the savings account without appearing in the checking account, or the

funds will be credited to the checking account without being withdrawn from the

savings account. The solution is to combine logically related commands into groups

that are committed as a single transaction . If a problem arises , the entire transaction

can be rolled back, and the problem can be fixed without serious adverse impact on

business operations.

SOL supports this re~uirement through the COMMIT and ROLLBACK

commands. The COMMIT command commits changes made from the beginning of

the transaction to the point at which the command is issued , and the ROLLBACK

command undoes them. In addition , most databases support the AUTOCOMMIT

.. • ~-"->

option , which tells the database management system to commit a" commands

individually as they are executed. This option can be turned on or off with the SET

command . By default, the AUTOCOMMIT option is usually on.

3.1 E-Yearbook Application

CHAPTER THREE

SYSTEM ANALYSIS AND DESIGN

The E-Yearbook application uses Oracle XE Database to store address

information . It stores names, phone numbers, email addresses , pictures etc. It allows

you to create new address entries and to save, edit, and delete them. Oracle 10g

Express Edition must be installed for the application to work. To deploy this database

application, we need only the application .JAP-::.1JJe and the Oracle database jdbc

library JAR file .

JDBC is a Java Database Connectivity API that lets you access virtually any

tabular data source from a Java application . In addition to providing connectivity to a

wide range of SOL databases, JOBC allows you to access other tabular data

sources such as spreadsheets or flat files . Although JOBC is often thought of as an

acronym for Java Database Connectivity, the trademarked API name is actually

JOBC.

JOBC defines a low-level API designed to support basic SOL functionality

independently of any specific SOL implementation . This means the focus is on

executing raw SOL statements and retrieving their results . JOBC is based on the

X/Open SOL Call Level Interface, an international standard for programming access

to SOL databases, which is also the .b.asis for Microsoft's OOBC interface.

The JOBC 2.0 API includes two packages: java .sql , known as the JOBC 2.0

core API ; and javax.sql, known as the JOBC Standard Extension . Together, they

contain the necessary classes to develop database applications using Java. As a

core of the Java 2 Platform, the JOBC is available on any platform running Java.

The JOSC 3.0 Specification , released in October 2001 , introduces several

features , including extensions to the support of various data types, additional

MetaOata capabilities, and enhancements to a number of interfaces.

The JOSC Extension Package Uavax.sql) was introduced to contain the parts

of the JOBe API that are closely related to other pieces of the Java platform that are

themselves optional packages , such as the Java Naming and Directory Interface

(JNOI) and the Java Transaction Service (JTS) . In addition , some advanced features

that are easily separable from the core JOSC API , such as connection pooling and

rowsets , have been added to javax.sql. Putting these advanced facilities into an

optional package instead of into the JOSC 2.0 core API helps to keep the core JOSC

API small and focused.

The main strength of JOSC is that it is designed to work in exactly the same

way with any relational database. In other words , it isn't necessary to write one

program to access an Oracle database, another to access a Sybase database,

another for SOL Server, and so on . JOSC provides a uniform interface on top of a

variety of different database-connectivity modules. As we have demonstrated in this

application , a single program written using JOSC can be used to create a SOL

interface to virtually any relational database. The three main functions of JOSC are

as follows :

• Establishing a connection with a database or other tabular data source

• Sending ·SOL commands to the database

• Pr~cessing the results
'.

The JOSC API defines standard mappings between SOL data types and

Java/JOSC data types, including support for Oracle 10g advanced data types such

as SLOSs and CLOSs, and SFILES.

The JOBC API supports both two-tier and three-tier models for database

access. In other words , JOBC can either be used directly from your application or as

part of a middle-tier server application .

Two-Tier Model

In the two-tier model , a Java application interacts directly with the database.

Functionality is divided into these two layers:

• Application layer, including the JOBC driver, business logic, and user

interface

• Database layer, including the ROBMS

The interface to the database is handled by a JOBC driver appropriate to the

particular database management system being accessed . The JOBC driver passes

SOL statements to the database and returns the results of those statements to the

application .

Three-tier Model

In the three-tier model commands are sent to an application server, forming

the middle tier. The application server then sends SOL statements to the database.

The database processes the SOL statements and sends the results back to the

application server, which then sends them to the client. These are some advantages

of three-tier architecture:

• Performance can be improved by separating the application server and

database server.

• Business logic"is clearly separated from the database.

• Client applications can use servlets access services.

The three-tier model is common in Web applications , where the client tier is

frequently implemented in a browser on a client machine, the middle tier is

implemented in a Web server with a servlet engine , and the database management

system runs on a dedicated database server.

The main components of a three-tier architecture are as follows :

• Client tier, typically a thin presentation layer that may be implemented using

a Web browser

• Middle tier, which handles the business logic or application logic. This may

be implemented using a servlet engine such as Tomcat or an application

server such as JBOSS. The JOBC driver also resides in this layer.

• Data-source layer, including the RDBMS

3.2 Design of Graphical User Interface (GUI)

E-Yearbook's main frame window is an AddressFrame class that extends a Java

foundation Classes/Swing (JFC/Swing) JFrame. The AddressFrame is a container

for other graphical components and also acts as a controller by handling various

events generated by the child components . The child components are JPanel

subclasses, each with a different responsibility :

• AddressPanel represents an address-re:ford. It also provides the UI for

editing existing records and creating new records . It contains text fields for all

the major properties of an Address object.

• AddressActionPanel provides buttons for all the major use cases that the

application supports. This panel generates events that AddressFrame must
*

ha~9Ie . For ex~mple , when the user clicks Save, this panel generates an

ev·ent. AddressFrame listens to and handles all important events from this

panel.

• AddressListPanel provides a scrollable list of names on the far left of the

AddressFrame. The list holds ListEntry objects. A ListEntry stores a database

record's unique identifier. The record identifier (10) allows the application to

retrieve an entire record's contents into the AddressPanel.

The application uses a Data Access Object (DAO) to isolate the database-specific

code. The DAO encapsulates database connections and statements . A DAO is a

useful design pattern that allows loose coupling 5etween an application and the

underlying persistence-storage mechanism . The application's AddressDao class is

an example of a DAO. When the AddressFrame edits , saves , or deletes an Address

object, it always uses an instance of the Ad~re.~~Q,.ao class. Although the Address

Book application uses Oracle 10g database you could change it to use an entirely

different database just by modifying this one class.

3.3 Integrating Oracle 10g with NetBeans IDE 5.0

Most IDEs provide a way to add libraries to the development classpath . Follow

these instructions to add the Oracle 10g libraries to NetBeans IDE 5.5:

.1

'.

a. From the Tools menu , select Library Manager, as shown in Figure 2.

t~etBeahS IDE 5.5 GJ[Q)
r-~--------------------~~---~==~~==

File Edit View Navigat e Source Refactor Build Run CVS Tools Window Help

1: ~rOje~~ ~_ x ! : ~u!ltime :Files

I ___ __ . i > j

t 1

I!
I!

: i
I

I
L OK .. .1 l,--c_-a_n_ce_l~ ,--_H_e_lp--j

i
"

- -.-~~--- ".' .. -- -. -_ - .. -. .

Component Library r'lanager

Project Template r'lanager

Javadoc Index Search

Internationalization

Java Platform r'''lanager

NetBeans Platform r' lanager

Server r'''lanager

Library Manager

Palette r"lanager

Template rvlanager

Log File

Options

r'''lodule rvlanager

Upd.3te Center

Shift+FI

l
I
I

~ I

I
I

J

~ I
i

I

_______ __ . _______ ... _. __ . __________ ::-. -====C=="".==_= __ =_= __ = __ ==-=._::-::. _: __ :== __ =_ = ._==-=cc-::'J

Figure 2: The library manager lets you add third-party libraries to your project.

b. In the Library Manager window, create a new library named Oracle, as shown

',.

in Figure 3. Click OK.

-;::f I ,I I II I " \," < I

Libraries:
a. ~,uutS 1. L, ;~

a S'Ning Layout Extensions

B T opLink Essentials

';§ Web Service Support

: A Libr ary Name: Absolute Layout

I Classpath I. Sources !, Javadoc ;

Component Libraries 7" New Li b nu y
~ JSF 1,1 Design-Time Support r--------~------

~ JSF 1.1 RI Design' Time Suppo Library Name: Oracle

~ JSF 1.1 RI Run-Time Support

E'?£ J5F 1,1 Run· Time Support

B JSF 1,2 Support

E Sun \Neb UI Components

B Sun Web UI Components Desi

a Web UI Components

Library Type: : Class Libraries

Library Or·~cle alre.3dy eYi;;ts,

vi

! Cancel J

Theme Libraries

Eo Default Theme

'a Gray Theme

a Green Theme

, I I
ii,

---ri1------.----- -=':"-=~-:::-::=-:::-':-. == .. _-.. I

I i I
'a \Neb UI Default Theme : v . II < ! :"1 I > 1

! ~ II, ~~ 1 ___ J2.L j I - " ._. __ _

New ~ibr ary , , , I I Remove I

Add JAR/Folder, , ,

Remove

OK I [Cancel) [Help

Figure 3: Name the set of libraries that your project will need.

c. To add the ojdbc14. jar file to the Oracle library, click on Add JAR/Folder ...
in the Library Manager window. Navigate the file chooser to the ojdbc14 . jar file in
your Oracle 10g XE installation
(C:\oraclexe\app\oracle\product\ 1 0 . 2 . O\serve r~dbc\lib) and select it as shown in
Figure 4

" :. ,- .~ , ,
.. ...

'.

libraries:

, .:'. 'a Java DB Driver
. 'a JAX-RPC 1.6

\ 'a JAX-WS 2.0
I

';9 JAXB 2.0

I, ';g JDBC Design-Time Support

'e JDBC Run-Time Support

E JSF 1.1 i.
\ 8 JSTL 1.1
I: I : . 'a JUnit

I :TE p raclel

I; a Struts 1.2 .9

: ... 'a Swing Layout Extensions

r . ~ Toplink Essentials

:. . 'a Web Service Support

10 Component Libraries

'a- JSF 1. 1 Design-Time Support

; .. a J5F 1.1 RI Design-Time Supp

I A I libr ary Name: Oracle

I (i Classpath Sources ' Javadoc

Library Classpath:
• r '" .' \ i p\or ade\product\ 10.2. O\server\jdbc\lIb\ojdbc 14. jar

, I
I "1' I I '

\ I:
I'i
\ I

III
1 I

; ... '.§r J5F 1.1 RI Run-Time 5upportf~ 1<1. l> .. L~.L 111\ 1 ______ W _
[New Library.. . I I Remove I

i
"-A-dd-J-A-R/-Fo-Id-er-.~-. 1 i

Remove I !

r I! ·

OK) [Cancel I [Help

You can now add the Oracle library to your NetBeans IDE 5.5 project by using the

project's proper,ty settings. When you compile, debug , and run the application within

the IDE, the IDE will be able to find the needed ojdbc14.jar file .

The "E-Yearbook applicatiC!n reads' tti;-:ariver name from a configuration

~.

property file and passes the narJ:le to a 10adDriver method. Additionally, as

mentioned earlier, E-Yearbook encapsulates all database functionality into a Data

Access Object (.DAO), . a core Java EE design pattern used to access data from a

variety' of s~urces . The DAO pattern works equally well for Java SE applications like

E-Yearbook. The following code snippet shows how AddressDao reads the driver

name and loads the driver:
• '~I

privale Properties bProperties = null;

public AddressDao(String addres s Boo ~Nam) I
this . dbName = addressBoo r.IJame ;
setDBSystemDir() ;
dbProperties = loadDBProperties ();
String driverName = dbProperties.getPro p e rt yl " o ra c l e .driver ") ;
loadDatabaseDriver(driverName) ;

private Properties loadDBProperties() (
InputStream dbPropInputStream = null;
dbPropInputStream =

AddressDao.class . getResourceAsStream("Configuration . properties ");
dbProperties = new Properties();
try (

dbProperties.load(dbPropInputStream) ;
catch (IOException ex) {

ex.printStackTrace() ;

return dbProperties ;

private void l oadDatabaseDriver(Slring driverName) I
II Load the Java DB driver .
try {

Class . forName (driverName) ;
catch (ClassNotroundException ex) {

ex.printStackTrace() ;

3.4 Connecting to the Oracle 1 Og Data~ase
<>:'"""-

A JOSe technology connection identifies a specific database and allows you

to perform admi~j~trative tasks. Tasks include starting , stopping , copying , and even
. .. '. , -..

deleting a database.: "The driver manager provides all database connections.

Retrieve a' connection from the driver manager by providing a URL string that

'! .

identifies the database and a ~ s~t . of properties that influence the connection 's
." :..

. ~ . ~" ...
interaction with the database. A v·e'f)t. common use of properties is to associate a

user name and passwqrd with a connection . The Oracle 10g XE connection URL in

the configur~tion properties file is :

oracle. url=jdbc: oracle :th i n :@localhost:1521/XE

The ADDRESS table is created thus

"create tabl e ADDRESS (" +

") " ;

REGNO VARC HAR2(l2) CONSTRAINT address_pk PRIMARY KEY ," +
SURNAME VARCHAR2(30) , " +
FIRSTNAME VARC HAR2 (30) , " +
MIDDLENAME VARC HAR2(30) , " +
PHONEl VARCHAR2 (20) , " +
PIIONE2
EMAIL
ADDRESSl
ADDRESS2
CITY
SSTATE
COU NTRY

VARCH1\R2 (20) , " I

VARCHAR:' (30) , " I

VARCHAR2(SO) , " +
VARCHAR2(SO) , " +
VARC HAR2(30) , " +

VARC HAH2(30) , " +
VARC HAR2(30) " +

The REGNO field is the primary key for each address record .

All remaining address record fields contain varchar elements of various lengths. For

example, the LASTNAME field can contain a maximum of 30 varchar characters .

The varchar type is equivalent to a UTF-16 Java char code unit. The Java

technology code that uses the above SOL statement to create the ADDRESS table

looks like the following code. The dbConnection is the same as the one shown in the

previous code. We simply pass it into createTables , create a new Statement, and

call the execute method to run the SOL code on the newly formed database. The

strCreateAddressTabre instance variable holds the SOL statement text.

'. private boolean createTa».r~s (Connection dbConnection) {

..

boo lean bCreat edTables ~ false ;
Statement statement = ~~il;
try (• ~

statement = dbConnection. createSta ement() ;
state~ent.execute(strCreateAddressTable) ;

. bCreatedTables = true;
J. c.atch ·(SQr:E;·;ception e;·;) (

',:' ". fix . printStackTrace () ;
J '

return bCreatedTables ;

CHAPTER FOUR

SOFTWARE DESIGN AND "r.vii'1.EMENTATION

4.1 Using the Database

'Once the database and its tables have been created , your application can create

new connections and statements to add, edit, delete, or retrieve records . In Address
•

Book, these actions are controlled by buttons within the AddressActionPanel.

Figure 5 shows the available options:

New. Create a new address record .

Delete. Delete the displayed address record.

Edit. Edit the displayed address record .

Save. Save the new or edited address record that is displayed.

Cancel. Cancel any edits or any attempt to create a new record .

\tn YeM Book ______ k;J. [.' .
Millin View I-Ielll

-;~----~~~--~--------------~------------------------------~~

. (...

fl"IdN.I~e
1'11_1 08035980190

~

Phone 2

E-p,hl jasonva200%:>valloo (om ..
'IDenl of ~1.~th~ITI;::j~t.S~~UT , Mi~na ..

1~ 1(5 415 Fed Low ('1)sl, Ma lkunkele

'{ ~I!I'

i[Oelete fdil -' Il s .. rve

Figure 5: Address Book has several options for interacting with records .

[emll:.1 ,I
_ i. ~~.

The main window of the application IS AddressFrame, which acts as a

controller and as' a view at the same time. It registers itself with the

AddressActionPanel to receive notification when a user clicks anywhere on the

action bar.

The New command clears the address entry panel and enables the user to

edit all fields. No SOL commands are issued at this point, but the UI should allow

you to enter a new address.

The Delete command attempts to delete the currently selected add ress

record . AddressFrame retrieves the currently selected Address identifier from the

AddressPanel and uses AddressDao to delete the record. The panel calls its own

deleteAddress method, which calls the DAO's deleteRecord method with the correct

REGNO. After deleting the record from the database, the application must delete the

ListEntry from the AddressListPanel too.

private void deleteAddress () (
int id = addressPanel . getld () ;
if (id ,= -1) (

db.de1eteRecord(id);
int se1ected1ndex = addressListPanel.deleteSelectedEntry() ;

' .'

. .
In the AqdressDao, the del'eteRecord method handles the actual deletion of

the record from the database. The AddressDao creates a PreparedStatement when
it first connects to the database.

stmtDeleteAddress = dbCo nnec tion.prepareSt a Le me nl (
" DELETE FROM APP.ADDRESS " +
"WHERE 1D = ? ");

The Prepared Statement can be used multiple times, and this one uses a parameter
to determine which record to delete. The deleteRecord method executes the update
after setting the REGNO parameter:

public b oo lean deleteRecorrl(int ld) I
boolean bDeleted = false ;
try I

stmtDeleteAddress . c l earParameLersl) ;
stmtDeleteAddress. set lnt (1 / id) ;
stmtDeleteAddress . execu eUpdatel) ;
bDeleted = true ;

catch (SQLExcepti on sqle)
sqle . pr intStackTrace() ;

return bDe leted ;

The Edit command allows the user to edit the currently selected Address

record in the AddressPanel. For example, you can change the name, city, or phone

number of a saved record .

The Save command retrieves either the newly created or edited Address from

the AddressPanel and attempts to either update the existing record or create a new

record . If the user has been editing a record, Save will update that record with the

new information . If the user has created a new record , Save will insert a new record

in the database. New records have not yet" be~,saved . At this point, their REGNO

field is still set to the d~fault null value. This value changes to an autogenerated ,

unique record identifier once you save the record .

The following code in AddressFrame will save edited and newly created

address records . by calling the DAO's editRecord or saveRecord method,
.~ '.

respectively. Of course, when you create a new record , the application must also

update the AddressListPanel.

priva e void saveAddressl) I
if (addres.s Panel . isEdi table ())

Address address = addressPane l . getAddress();
in ·ld = address . getldl) ;

1 f (ld == -1) (
id = db . saveRecord(address) ;
address.setld(id) ;
String ln~me = address.getLastNam () ;
Str ing fname = addres s . getFitstName() ;
String mname = address . getMiddleM~me() ;

ListEntry entry = new ListEntry(lname, fname , mname, id) ;
addressListPanel.addListEntry(enLry) ;

else (
db.editRecord(address) ;

addressPanel.setEditable(false) ;

4.2 Deploying Your Application

Now that we have written the application , you must deploy it to users. Java

technology applications can use a variety of deployment strategies, including Java

We,b Start software, applets, and stand-alone JAR files . We distribute the E-

Yearbook application as a stand-alone application with JAR files .

The ANT build file, build.xml , uses a dist target to create MyAlbum.jar. It also

places the database JAR file in the lib subdirectory directly under the MyAlbum.jar

location . The final distribution structure for the application looks like this :

tvlyAlbum. jar
lib/ojdbcl.4.jar

If our build process includes classpath information in the MyAlbum.jar manifest file ,

you can run the application by simply passing the MyAlbum.jar file on the execution

command line. all most platforms , you can also just double-click on the JAR file

name in a graphical window. On a command line , you can use this simple execution

command :

java -jar AddressBook . jar

This simple deployment and execution scenario can be accomplished by creating a

manifest.mf file that becomes part of the MyAlbum.jar file . You can include
. ,.-.....

, '.

information in the manifest that tells the Java programming language interpreter

which class contains the main method and what other JAR files should become part

Of. the classpath . The following manifest does both , and we can include it when

building MyAlbum.jar.

Manifest-Ve rsi on : 1 . 0
Main-Class: com . avj.AddressFrame
Class-Path : lib/ojdbc14.jar

Once our build process generates the application distribution structure shown

previously, we can simply distribute this structure as a ZIP file . Users can simply

unzip the file into any location and run the MyAlbum.jar file . The MyAlbum.jar file will

contain the manifest file mentioned earlier and will tell your runtime environment

what JAR files should also be on the classpath . Of course, Oracle 10g XE must be

up and running in order for the application to work .

5.1 Summary

CHAPTER FIVE

SUMMARY/RECOMMENDATION

We have succeeded in developing a Java Application , with an oracle XE

Database backend , that manages students ' personal information for the purpose of

sharing this with other students after graduation . Working with Oracle 10g XE is easy

and fun . Oracle Database Express Edition is a relational database that stores and

retrieves collections of related information. A database, also called a database

server, is the key to solving the problems of information management. In a relational

database, collections of related information are organized into structures called

tables . Each table contains rows (records) that are composed of columns (fields) .

The tables are stored in the database in structures called schemas, which are logical

structures of data where database users store their tables. In developing

aqpplications that use the Oracle 10g XE database place the ojdbc14.jar file in your

development environment's classpath so that your Java technology compiler and

runtime environment can find the libraries to compile and run the application . Create

a build process that places the ojdbc.jar file in a lib subdirectory immediately below

your application's own directory and lastly add ojdbc14.jar to the application

classpath by including a Class-Path property in your application JAR's manifest file .

5.2 Recommendation

The.work can still be modified to become a three-tier application , that is , a

web application . This will give some added functionality such as online checking of

graduates, email services and so on.

" 0

REFERENCES

Oracle (2006) OraCle Database Express Edition 2 Day Developer Guide, 10g
Release 2 10.2) 825108-01

John O'Donahue (2002) Java Database Programming Bible ISBN:0764549243
John Wiley & Sons © 2002 (702 pages)

Kevin Loney (2004) Oracle Database 10g: The Complete Reference. McGraw
Hill/Osborne

H.M. Deitel and P. J. Deitel (2005) Java How To Program 6th Edition . Prentice-Hall of
India

Jason Price (2002) Oracle 9i : JDBC Programming. Oreilly

Jason Price (2004) Oracle database 10g SOL. McGraw-Hili/Osborne

R. Greenwald , R. Stackowiak, J. Stern (2004) . Oracle Essentials: Oracle database
10g, 3rd Edition . O'Reilly

AI""\. '.

