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ABSTRACT 

This project is based on some numerical methods of solving ordinary first 

order differential equations. 

comparisons between simple Euler, Modified Euler, Improved Eulers and 

Runge kutta methods are considered and based on accuracy, memory space 

and computing time. 

The need to solve differential equation was one of the original and primary 

motivations to the development of analog and digital computers. The 

numerical solution of such problems still requires a substantial fraction of 

t he available computing time on existing computers. Our goal is to 

introduce numerical methods for solving ordinary differential equations 

especially boundary value problem. 

v 



1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

2.2 

2.2.1 

2.2.2 

2.2.3 

2.2.4 

2.3 

2.4 

2.4.1 

TABLE OF CONTENTS 

Title Page 

Certification 

Dedication 

Acknowledgement 

Abstract 

Chapter one 

Introduction 

Definitions 

Formation of Differential Equation 

Order and Degree of Differential 

Solution of Differential Equation 

Initial Value Problem 

Chapter Two 

General methods of Solution 

Anal ytical Methods 

Variable Separable 

Homogenous Equation 

Linear Differential Equation 

Exact Differential Equation 

Graphical Methods 

Numerical Methods 

Stability of Numerical Equation 

vi 

Equation .. 

ii 

iii 

iv 

v 

1 

1 

1 

2 

3 

4 

5 

7 

7 

7 

7 

8 

11 

13 

14 

16 

17 



2.4.2 Boundary Conditions 

3.1 

3.2 

3.2.1 

3.2.2 

3.2.3 

3.2.4 

3.2.5 

3.2.6 

3.3 

3.3.1 

3.3.2 

3.4 

3.4.1 

3.4.2 

3.4.3 

3.4.4 

3.5 

Chapter Three 

Error Analysis 

I ntrod uction 

Sou rce (T y pes) of Errors 

Gross Errors 

Rounding errors 

Truncation Errors 

Absolute Errors 

Relative Errors 

Percentage Errors 

Precision and Accuracy 

Precision 

Accuracy 

Types of Numerical Methods 

Taylor series Methods 

Simple Eulers Methods 

Modified Euler Methods 

Improved Eulers (Heun's) 

Runge Kutta Method 

Chapter Four 

Comparisons 

Methods 

18 

19 

19 

19 

19 

19 

19 

20 

20 

21 

21 

22 

22 

22 

23 

24 

25 

26 

27 

27 

29 

29 

4.1 Comparison of Eulers (simple, Modified and Improved) Methods 29 

4.2 Comparison of Eulers and Runge Kutta Methods 30 

vii 



4.3 

4.4 

5.1 

5.2 

5.3 

Accuracy Determination 

Error Analysis 

Chapter Five 

Analysis of Results 

Summary 

Conclusion 

Recommen dation 

References 

Appendices 

viii 

31 

32 

34 

34 

34 

34 

34 

36 

38 



CHAPTER ONE 

INTRODUCTION 

1.1 I ntoduction 

A wide variety of application in science, engineering and other 

fields lead to differential equations. So few of these eqautions can 

be solved analytically. Hence it is one of the major problems of 

numerical analysis. The solutions of some practically important 

classes of differential equations can be represented in closed form 

i.e in terms of finite combination of elementary functions such as 

polynomials, logarithms and exponential functions. 

But it is known that inspite of an excellent collection of 

exp licit solutions, even relatively easy looking equations such as 

..... (1.1.0) 

can not be solved interms of elementary function, hence the use of 

numerical methods to solve differential equation. 

1.2 Definitions 

An ordinary differential equation is an equation containing one 

independent and one dependent variable and at least one of its 

derivative with respect to the the independent variable, no one of 

the two variables need enter the eq uation explicitly. It is one of the 

most important mathematical tool s used in modelling problems in the 
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physical sciences. Thus a differential equation is a relationship 

between an independent variable X, a dependent variable Y and one 

or more differential co-efficients of Y with respect to X. Consider 

the following examples:-

x 2 dy + ysinx = 0 
dx 

d 2y dy xy + y_ + e 3x = 0 
dx2 dx 

...... (1.2.0) 

..•.•. (1.2.1) 

Differential equations represent dynamic relationship i.e quantities 

that change and are thus frequently occuring in scientific and 

engineering problems. 

1.3 Formation of Differential Equation 

Differential equation may be formed in practice from a 

consideration of physical problems to which they refer. 

Mathematically, they can occur when arbitrary constants are 

eliminated from a given function. 

Consider 

y = Asinx + Bcosx ..... (1.3.0) 

where A and B are two arbitrary constants, if we differentiate, we 

get 

dy = Acosx - Bsinx 
dx 

....... (1.3.1) 

which is identical to the original equation but with the sign changed 
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- Asinx - Bcosx ...... (1.3.2) 

i.e 

- y ..•.... (1.3.3) 

Therefore 

....... (1.3.4) 

1.4 Order and Degree of Defferential Equation 

The Order of a differential equation is given by the highest 

derivative involved in the equation i.e If the highest derivative that 

occurs in an equation is 

the equation is said to be of order n. For example 

dy - y2 = 0 x-
dx 

...... (1.4.0) 

is an equation of the first order. 

d 3y _ ydy 
+ e 4X = 0 

dx3 dx 
...... (1.4.1) 

is an equation of the third order. 

d 2y 
.xy dx2 

- y 2 sinx = 0 ..•... (1.4.2) 

is an equation of the second order. 
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The Degree of differential equation is the power to which the 

highest derivative is raised. For example 

....... (1.4.3) 

is a differential equation of the third order and of the fourth 

degree. 

NOTE that the degree of the equation is determined by the power of 

the highest derivative. 

Therefore, a differential equation which involves derivatives 

or differentials of a function or functions has as an order the 

largest positive integer n for which the nth derivative occurs in the 

differential equation. If the differntial equation is written as a 

polynomial, then the highest power of the highest derivative is 

called the degree of the equation. It should also be noted that order 

is defined for all differential equations but degree is not defined for 

some. Take for example 

siny ...•.• (1.4.4) 

is a second order differential equation, however degree is not 

defined, since the equation is not a polynomial. 

1.5 Solution of Differential Equation 

To solve a differential equation, we have to find the function 

for which the equation is true,This means that we have to manipulate 

the equation so as to eliminate all the differential co-efficients and 

4 



leave a relationship between y and x, that is the differential 

equation which normally arise from physical situations and its often 

required to obtain a functional relationship between x and y alone, 

having eliminated the derivatives. 

This relation is referred to as the solution of differential equation. 

It can be shown that solution of order n involves n arbitrary 

constants. For example 

dy = x 
dx 

...... (1.5.0) 

straight forward integration yields the solution 

also 

y = V2X 2 + A 

d
2
y = 0 

dx2 

By two successive integration i.e 

_ dy = A 
dx 

....•. (1.5.1) 

....•.. (1.5.2) 

•..•.. (1.5.3) 

....... (1.5.4) 

where A and B are arbitrary constants. The general methods of 

solution of differential equations (Analytical, Graghical and Numerical) 

are discussed in chapter two. 

1.6 Initial Value Problem. 

The first order differential equation is given by 
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dy = f(x,y) 
dx 

...... (1.6.1) 

The equation possess an infinite number of solutions. For example, 

the function 

Y(X) = ce x ...... (1.6.2) 

is for any value of the constant c, a solution of the differntial 

equation 

dy = Ay 
dx 

where A is a given constant. 

...... (1.6.3) 

We can pick out a particular condition, y Ca) = n. For the above 

example, the particular solution satisfying this initial condition is 

Y (x) = ne 2 (x-a) ...... (1.6.4) 

Hence, the differential equation (1.6.1) with a given initial condition 

constitutes the classical initial value problem. 

: = f(x,y) , yea) = n ...... (1.6.5) 

However, the differential equation may be given together with a set 

of n constraints or boundary conditions, satisfying values of the 

function y and/or its derivative at two or more distinct values of 

the independent variable. This type of problem is called the 

boundary value problem. The theory for the initial value problems 

is well established and relatively simple. 
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CHAPTER TWO 

GENERAL METHODS OF SOLUTION 

2.1 There are variety of methods for solving ordinary differential 

equations; Some of the methods are discussed below:-

2.2 Analytical Method 

Most of ordinary differntial equations either cannot be solved 

by analytical methods or they have too laborious analytical solutions 

because of large number of integrals involved. There are four main 

types of first order first degree differential equations, they are: 

2.2.1 Variable Variable 

These are differential equation with the terms containing x and 

dx can be separated from the terms containing y and dy by means 

of simple algebraic transformations and after this, the integration is 

carried out immediately. They have the general form. 

: = f(x) cl) (y) ....... (2.2.0) 

where f(x) and cl)(y) are function of x and y alone respectively. we 

may then "separate the variable" and write 

dy 
cl) (y) = f (x) dx ....... (2.2.1) 

and their general solution is expressed by the formula 
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J ~ ~~) = J f(x) dx + c ...... (2.2.2) 

where c is arbitrary constant (which is usually regarded as being 

included into the sign of indefinate integral) in order to stress that 

the constant enters into the general solution. Thus we see that 

equation (2.2.1) has been integrated by quadratures. 

Consider the following example 

dy = x2y + y 
dx 

.....•. (2.2.3) 

Expressing the right hand side in the form f(x)~(x) and separate the 

variables, we have 

...... (2.2.4) 

....... (2.2.5) 

To complete the solution of this type of equation, we simply 

integrate the separated result i.e 

log eY = .!.x3 + X + c 
3 

....... (2.2.6) 

...... (2.2.7) 

which is the general solution to the differential equation. 

Equation (2.2.7) above could be written as 

...... (2.2.8) 
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thus 

log eY - log ~ = x + ..!.x3 

3 

which implies that 

log ,y/B = x + 1/3x3 

...... (2.2.9) 

...... (2 .2.10) 

Taking the anti-logarithm of equation (2.2.10), we have 

Therefore, 

x+ x
3 

Y = e 3 
B 

...... (2.2.11) 

...... (2.2.12) 

is an alternative and possibly more convinient form of general 

solution. 

2.2.2 Homogenous Equation 

M(x,y) is said to be a homogeneous function of degree n if the 

sum of the powers of x ans y in each term of M is n. Take for 

example 

....... (2.2.13) 

is a homohenous equation of degree 3. if the first order defferential 

equation is written in the form: 

dy = M(x, y) 
dx N(x,y) 

...... (2.2.14) 

where M and N are homogenous functions of the same degree, then 

the equation is said to be homogenous. Considering equation (2.2.14) 
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where M and N are homogenous of degree n, we may divide them by 

xn and express the RHS as a function of the simple variable V. where 

v = y/x 

Consider the following example 

xy ...... (2.2.15) 

This implies that 

E 
dy x V = = 
dx 1+ ( y) 2 1+v2 

....... (2.2.16) 

X 

M and N both being divided by x2 • 

This suggests the use of the substitution V=y/x or y=vx as the 

standard method of solving homogenous differential equation, Hence 

dy :::; 
dx 

V+ x dv 
dx 

....... (2.2.17) 

and substituting this in the differential equation. we will see that 

the result is a new differential equation in which the variables v 

and x can then integrate to obtain relation between v and x and 

finally, replace v by y/x. Therefore equation (2.2.15) becomes 

V+ x dv V = dx 1+V2 
....... (2.2.18) 

that is 

dv V 
V V 3 

x- - = 
dx 1+V2 1+V2 

....... (2.2.19) 

in which v and x are separables. We now integrate and substitute 

for v which gives the general solution 
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dx 
x 

1 1 [----J dv 
V 3 V 

which implies that 

log uK = 1 - log e V + log ~ 
2V2 

Hence 

log Y 
6A 

2.2.3 Linear differential Equation 

...... (2.2.20) 

....... (2.2.21) 

..•... (2.2.22) 

If the differential equation can be written in the form 

dy + Py = Q 
dx 

...... (2.2.23) 

where P and Q are functions of x only, the equation is said to be 

linear of first order, since dy/dx and y occur linearly. 

Considering the equation (2.2.23), the presence of the terms dy/dx 

and y suggests the differentiation of a product involving y. To 

produce this product, we multiply the equation throughout by a 

function of x, U say, to be detaermined later. This gives 

Udy + UPy = UQ 
dx 

which may be written as 

! (Uy) + (UPy- y :) = UQ 

...... (2.2.24) 

...... (2.2.25) 
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I hi s equation could be solved by direct integration if 

Upy _ ydy 
dx 

vainshes since the equation would then reduce to 

~ (UV) = UQ 
dx 

Hence we impose the condition 

i.e 

du 
UPy - y- = 0 

dx 

du 
dx 

= Up 

•.••... (2.2.26) 

...... (2.2.27) 

....... (2.2.28) 

Since y = 0 is not acceptable as the solution, this is a variable 

separable differential equation in u and x. now solving to obtain u, 

we have 

du 
u 

Pdx 

which implies that 

10geU = Jpdx 

....•.. (2.2.29) 

.....• (2.2.30) 

....... (2.2.31) 

In summary, we could solve linear differenetial equation with 

then following steps 

1. Write the equation in the standard form 
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2. Evaluate 

dY+Py = Q 
dx 

and obtain integrating factor f 
u=e

Pdx 

(No arbitrary constant is introduced at this stage) 

3. Multiply the equation 

dy + Py =Q 
dx 

by U and check that the result is 

d - (Uy) = UQ 
dx 

4. Integrate to complete the solution as 

Uy = fUQdx + A 

2.2.4 Exact Differential Equation 

The first order differential equation 

P(x,y) dx + Q(x,y) dy = 0 ...... (2.2.32) 

is said to be exact if a function U(x,y) exists such that 

du = Pdx + Qdy ...... (2.2.33) 
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If such a function ex ists, the equation becomes du = 0 which leads 

to U = A where A is a constant. 

For instance, consider the differential equation 

...... (2.2.34) 

By inspection, this can be written as 

du = d(X3 y 2) = 0 ...... (2.2.35) 

with sol ution 

...... (2.2.36) 

Since 

du = tJ u dx + t> U dy 
tJx tJy 

this implies that 

t> U = P and t> u = 0 
tJx 6y 

...... (2.2.37) 

then noting that 

= ....... (2.2.38) 

we obtain 

tJp 60 = ay ax ....... (2.2.39) 

This is the condition for Pdx + Qdy to be an exact differential. 

2.3 Graphical Methods 

This method enables us to construct the integral curves of the 

differential equation 
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where f(x,y) is a single valued continous function of x and y 

We first draw the family of curve f(x,y) = K where k is a constant. 

These curves are called ISOCLINAS and connect the points at wh'ich 

the integral curves have the same slope. Each isocline is now 

crossed at many points by short parallel lines of slope K (where K 

is t he value for the particular isocline crossed), so that these short 

parallel lines indicate the slope (dy/dx) of the integral curves 

crossing a particular isocline. By constructing several isoclinals at 

short intervals, we obtain a general picture of the integral curves 

satisfying dy /dx = f(x,y) as below 

~ 

!~~~~====-I~o" 
-0 ""1 

--------~------"----~~x ( a ) ) 

To be effective, the work should be carried out on a drawing board 

(b) is being used to transfer lines of slopes 0.1, 0.2, 0.3, .••. across 

the page by set square. 

Having drawn the isoclinals at reasonably short intervals, the short 

parallel lines should be made to meet about half way between 

consecutive isoclines. The link polygon so obtained is finally 

smoothed off. When a specified integral curve is required, say to 

pass through (a,b), only portions of the isoclinals need to be drawn. 
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This method may give a very useful insight into the nature of the 

solutions of ordinary differential equations. but they suffer from 

several serious disadvantages. some of which are:-

a. Accuracy is limited by the draughtsman's technique 

b. The judgement is subjective 

c. The error is difficult to compute. 

2.4 Numerical methods 

By numerical method for solving the initial value problem (IVP) 

dy _ () dx-f(x'y) ..... 2.4.1 

It meant a procedure for finding approximate values Yo' Y1J ....• Yn 

of the exact solution y (x) at points Xo <x1 < .... <xn ... The first step 

is to estimate y 1 from the initial conditions and y'o = f(xo'yo)' After 

knowing Yl' 'we determine Y2 and so on. 

In general, methods that require only a knowledge of Yn to 

determine Yn+l are called STARTING or SINGLE- STEP METHODS. On 

the other hand. the methods that make use of data at more than one 

previous points. say Yn' Yn- l' Yn-2 to determine Yn+1 are called 

CONTINUING or MULTISTEP METHODS. 

One should be very careful in using numerical methods because they 

can have inherent difficulties of their own. In the first place. there 

is the question o~ convergence i.e as the difference h between the 

points xo' xl' ..... xn approaches zero. do the values of the numerical 
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solutions Yo' Yl' .... , Yn approaches the values of the exact solution. 

There is also a serious question of estimating error which arises 

generally from the following two causes. 

a. The formula used in numerical method is only an approximate one 

which introduces truncation error. 

b. It is possible to carry only a limited number of digits in any 

computation which gives rise to rounding error. 

2.4.1 Stability of Numerical Procedure 

Roughly speaking, stability is the phenomenon of the computed 

solution behaving like the true solution of differential equation. It 

is concerned with the way errors propagate through the solution. 

Much of the study of stability has been sonfined to the equation 

: =ly ........ (2. 4 . 2) 

for a constant 1 

This is because the general problem is so very complicated, 

thus; Stability may depend upon the differential equation under 

study, the method used for solution and the step size h. There is 

the possibility of inherent instability where small variations in the 

initial conditions attached to the problem give rise to large variation 

in the true solution. Such ill-conditioning must be reflected in the 

numerical scheme and will occur whatever method is used. 

Consider the differential equation 
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: = y - 2x. . . . . (2. 4 . 3 ) 

this has the analytical solution 

y = Ae x + 2x + 2 .•...• (2.4.4) 

Suppose the initial conditions are y = 2 when x = 0, then A = 0 and 

the particular solution becomes 

y = 2x + 2 ...... (2.4.5) 

The term Aex which would dominate for large value of x is absent; 

However, round-off error and truncation error will ensure that eX 

will appear in the solution, albeit with small co-efficient. 

This mean that for large value of x, the spurious term will swamp 

the true solution, since the phenomenon is a feature of the 

differential equation, the only hope is to reformulate the problem. 

2.4.2 Boundary Conditions 

We can classify the problems in differential equations to the 

nature of the boundary conditions. If all the required conditions are 

given s imply at one point, the problem is known as initial value 

problem or Starting problem or Marching problem as the solution is 

advanced in steps. 

If the boundary conditions are given at two or more points, the 

problem is known as Boundary value problem or jury problem. the 

solutions of initial value problem can easily be obtained using direct 

methods where as the solutions of boundary value -problems are in 

general determined iteratively. 
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3.1 Introduction 

CHAPTER THREE 

ERROR ANALYSIS 

An error in a numerical computation is the difference between 

the true (actual) value of a quantity and its computed (approximate) 

value. if x represents the actual value for which is X*, then the 

error sayer is defined by 

e.c = x· - x ...... {3.1.1} 

I n general, er may be positive or negative and hence it is 

considered to be the modulus (absolute) value of the error i.e I erl 

3.2 Sources (Types) of Errors 

3.2.1 Gross Error 

These are either caused by human mistakes or by the 

computer. A few of them are as follows:-

a. Misreading or misquoting of figures, particularly in the 

interchanges of adjacent digits 

b. Carrying out incorrect sequences of operations 

c. The mathematical description of the problems is inexact e.g the 

initial data are not reliable 

d. Some of inaccurate mathematical formula to solve the problems. 

3.2.2 Rounding error 

The error introduced by rounding-off numbers to a limited 

number of decimal places e.g. it would be inpracticable to mention 
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the di st llnce between 2 point ~) on the earth as 15. 2~)67m. It would be 

more reasonable if it were to be rounded to the nearest whole 

number i.e 15m the error introduced by rounding is 0.2967m. 

Rounding errors play an important role in numerical analysis, our 

goal is to eliminate (or minimize) the effects of errors rather trying 

to obtain a smaller error as a r esult of rounding-off, we apply the 

following: 

a. If the first discarded digit is less than 5, the previous digit 

is unchanged 

b. If the first discarded digit is greater than 5, the previous 

digit is increased by 1 

c. If the first discarded digit is exactly 5, the previous digit is 

unchanged if it is odd. 

In practice, the following round- off rule is commonly used:-

If the first discarded digit exceeds 5 or equal to 5, we add 1 to the 

last retained digit. Important feature is that if a number is correct 

to n decimal places, it has a rounding error 

.... (3 . 1 • 2) 

3.2.3 Truncation Errors 

These are errors introduced when we are forced to 

app roximate the sum of an infinite (or finite) series by the sum of 

a smaller number of terms i.e truncation error may occur when an 

infinite series is approx imated by a finite one. 
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3.2.4 Absolute Errors 

The true value of a quantity less its rounded value, if X and 

X· are respectively the rounded and the true values of a quantity, 

then the absolute error is defined by 

AE = I X* - X I ..... (3.1.4) 

3.2.5 Relative Errors 

This is the ratio of the absolute error to the true value oa a 

quantity and is defined by 

AX E I RE = 
X # 0 .... (3.1.5) 

If the true value is not known, The relative error is defined by 

RE = I A E 
X-- X* # 0 .... (3.1.6) 

Relative error is more precise than the absolute error, this is 

particularly so when the true value is either very small or very 

large. The size of absolute error depends on the unit employed, 

where as relative error is a dimensionless quantity and does not 

depend on the unit used. 

3.2.6 Percentage Errors 

This is a relative error expressed in percentage and is defined 

as PE = 100 x RE • • . . (3 • 1 • 7) 
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3.3 PREC ISION AND ACCURACY 

3.3.1 Precision 

The number of digits to which a number is expressed or an 

answer given, i rrespective of the correctness of these digits. 

3.3.2 Accuracy 

The number of digits to which an answer is correct, accuracy 

can be quoted by either of the following two ways 

a. To a given number of decimal places 

b. To a given number of significant figures 

Precicion is a disoiption of maximum absolute error, whereas 

accuracy is used to describe relative error. Because precision 

describes absolute measured quantities, expressions of precision 

usually have dimension, thus when statements about precision are 

made, the un it involved need to be expressed. 

3.4 Types of Numerical Methods 

The range of differ ent ial equations that can be solved by 

straight forward analytical methods is relatively restricted. Even 

solutions in series may not always be satisfactory either because of 

slow convergence of the resulting series or because of the involved 

manipulation in reapeated stages of differential equation. In such 

cases where a different ial equation an d known boundary conditions 

are given, an approximate solution is often obtainable by the 

app l ication of numerical methods when the relevant particular 
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solution is obtained as a set of function v alues for the range of the 

independent variable. 

Comparatively, few differential equation can be solved in finite 

form by the methods in standard works and we are now going to 

consider the numerical solution of ordinary first order differential 

equation with given initial conditions and having numerical co-

efficients. 

The following methods are known as 'step by step' methods 

because the values of the dependent variable yare constructed by 

short steps ahead for equal intervals h of the independent 

variable x. The problem then is to tabulate the solution of 

dy _ 
dx-f(x'y) ..... (3.1.8) 

for which y = Yo x = xo' the values of y, corresponding to the 

values of xO' Xl = xo+h, x2 = xo+2h, ... of X being found. We shall 

denote these values by Yo' Y1' Y2' ..... 

Generally, numerical methods fall into the following classes:-

a. A class of methods which produces expression for y in terms 

of function of x, from which values of y can be obtained by 

direct substitution, under this, we have 

i. Pocard's method 

ii. Taylor's series method. 

b. Another classes of methods find the numerical values of the 

changes in y due to a given increament in x, under this we 

have 
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i. Eulers method 

ii. Modified and Improved Eulers methods 

iii. Runge Kutta methods. 

c. Predictor-Corrector method 

Here, we first predict a value for Yn+1 using a Predictor 

formula and then use a different formula called the Corrector 

formula to improve upon this value. 

3.4.1 Taylor series Method 

We attempt to find the relation between y and x by finding 

the co-efficients of the Taylor series in which we expand y about 

the point x = Xo 

where Yo' yo, .... are the derivatives and can be calculated from the 

given equation 

y' = f(x,y) 
Yo' = f(xo'yo) 

Let h = x-xo, then (3 . 1 . 9) becomes 

... (3 . 2 . 0) 

..... {3.2.1} 

which is a kth order Taylor series formula 

Remark 

Taylor series method can be very effective but its main disadvantage 

lies in the calculation of higher order derivations which are 

sometimes complex to compute. This renders the methods 
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impracticable. Taylor series method is however often used to provide 

some values of Y required in a predictor- corrector method. 

3.4.2 Simple Euler Method 

The oldest and simplest Taylor series method is Euler, it works 

iteratively and does not require the computation of higher-order 

derivatives. For solving ordinary differential equation in which 

Taylor series 

h 2 
f(a+h) = f(a) + hf'(a) + -f"(a) + 

2! 
.... (3.2.1) 

is truncated after the second term to give 

f(a+h) .. f(a) + hf' (a) ..... (3.2.2) 

Th is truncation is called local truncation error (also called error per 

step) in Euler method is given by the following relation 

.... (3.2.3) 

Thi s shows that the "local truncation error" is proportional to the 

square of the stepwise 

t 
I 

/'j = f( ~) ' 
B .' 

----------/ A 
. .---------

I'J , 
Oo-----------------~a~«~====-h--~---------~>--~a-+~h----------------~>K 

----- ---------
'L 

If h is the interval between two near ordinates and if we denote f(a) 
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by Yo' then the relationship 

f(a+h) + f(a) + hf'(a) 

becomes 

Yl = Yo + h(y')o 

Yn+l = Yn + h(y')n .•..• (3 • 2 . 5) 

Hence knowing Yo' h, and (y')o' we can compute Yl' an approximate 

value for the function value at B. 

If we take the value of x, y, y' that we have just found for point 

B and treat these as new starter values xo' Yo' (y')o' we can repeat 

the process and find values corresponding to the value C. So we 

could continue in a step-by- step method. At each stage the 

determined values of xo' Yo' and (y')o for the next stage. 

Remark 

Although the procedure is simple, when h is small, the method is 

slow and laborious. Once chosen value of h may give sufficiently accurate 

results for some equations, whereas other equations may require a smaller 

value of h and in general there is no way of determining how good the 

approximation will be. By increasing h to cut down numerical work, the 

method yields crude result which are too inaccurate for practical purposes. 

3.4.3 Modified Euler Method 

To reduce the inherent error in the simple Euler method, 

variation is implemented and the new formula becomes:-
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..... (3.2.6) 

3.4.4 Improved Euler Method (Heun's method) 

Al so variations is iplimented on simple Euler method to obtain 

The local truncation error for the improved Euler method is 

proportional to the cube of the stepwise. 

3.5 Runge Kutla Method 

, he Runge Kutta methods ar e a family of methods derived from 

the Taylor seriE;s method for solving first order differential 

equations is widely used and affords a high degree of accuracy. It 

is a further step- by- step process where a table of x is accumulated. 

Several intermediate calculations are required at each stage, but 

t hese are straight forward and present little difficulty. In general 

t erms, t he metod is as follows:-

To sol v e 

y' = f(x,y) ....• (3 . 2 • 8) 

with initial condition 

y = Yo at x = Xo 

for a range of x = Xo (h) xn• 

st arting as usual with x = xo' y = Yo' y'= (y')o and h, 

we have = Finding y, requires four i ntermed iate 

27 



calculations:-

kl = hf(xo'Yo) = h(y')o 

k2 = hf(xo+!h,yo+!k 1 ) 

k3 = hf(xo+ih,yo+!k2) 

k4 = hf(xo+h,y O+k3) 

The i ncreament • Yo in the y 

·yo = {kl + 2k2 + 2k3 + k 4}/6 

and 

Y1 = Yo + ·yo 

i.e 

y 0+1 = Yo + • Yo 

Remark 

•••.. (3 . 2 • 9) 

(3 2 10) 

(3 2 11) 

(3 2 12) 

value from x = Xo to x = Xl is then 

..•... (3 • 2 . 13) 

...•. (3 . 2 • 14) 

...... (3 . 2 . 15) 

Estimation of error in the Runge Kutta method is very 

laborious, however, the truncation error can be obtained from the 

next term of the Taylor series and in the simplified form. There is 

practically no error in the method, the computation involved in the 

procedure may be rather more tedious but the extra labour involved 

is rewarded tJy the higher deg r ee of accuracy of the result. 
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CHAPTER FOUR 

COMPARISONS 

4.1 Comparison of Euler (Simple, Modified and Improved) methods 

Consider the initial value problem 

dy = x + y 
dx 

Yeo) ;;;:; 1 ••..• (4.1.0) 

On the interval (0,1) whose exact solution is given by 

y = 2ex - x - 1 ....• (4 • 1 • 1) 

Using simple Euler's method to solve the problem, we get the 

following results 

y (0.5) = 1.7210200 for h=0.1 • . . • . (4 . 1 • 2) 

where as the true solution is 

y(0.5) = 1.797442541400 .... (4 . 1 . 3) 

Hence, the total error due to truncation and round-off for h=O.1 is 

1.7974425414- 1.7210200=0.0764255 .... (4 . 1 . 4) 
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Consider the same problem evaluated using modified Euler method, 

we obtained the following 

y(0.5) = 1.7948940 for h=0.1 ..... (4 • 1 . 5) 

The total error given is 

1.7974425414 - 1.7948940=0.0025485 . . . . (4 . 1 . 6) 

Also considering the same problem evaluated using improved 

Eu ler method, we obtained the same result as for modified Eulers 

method i.e the total error is 

1.7974425414-1.7948940=0.0025485 • . • . (4 • 1 • 7) 

The greater accuracy of improved modified Euler methods must 

be paid for by an increase in the number of computation and 

function evaluation. 

4.2 Comparison of Eulers and Runge Kutta Methods 

The result obtained when the problem is evaluated using the 

classical 4th order Runge Kutta methods are 

y(0.5) = 1.7974410 for h=0.1 (appendix VIII) 

A compar ison of the four methods using the same stapwise 
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II CL I i :.. uiv\.:n bulow 

1.7974410 

' S INo I Simple Euler t MOdified Euler improved 

I -- ---- ----.-- ---.-----.------ ··-·--··------+-------1 
I 0 5 I' 1.7210200 1. 7948940 1. 7948940 , . 
~_~,~ ____________ I~ ____________ _Ji ______________ ~ __________ ~ 

Euler Runge Kutta 

It is obvious that the Runge Kutta is the most accurate single 

step method for this initial value problem. The accuracy of this 

method is also paid for by the number of computations and the 

function manipulation at each step. 

The Runge Kutta method requires approximately twice the 

comp uting time of the improved Eulers method and four (4) times the 

computing time of the simple Eulers method. 

4.3 Accuracy Determination 

The accuracy of the solution is not determined by the number 

of function evaluations alone but also the manner in which these 

functions are combined together. This is illustrated by evaluating 

y(O.5) us ing the four methods and the same number of function 

evaluation. 

Since Simple Eulers method requires only one evaluation of the 

function per step, while modified and improved Eulers methods 

require two (2) evaluations and the Runge Kutta method requires 

four evaluations of the function per step, we can choose h=O.025, 

0.05 and 0.1 for simple Eulers, improved Eulers and Runge Kutta 

methods respecti vel y. 

This would require approximately the same amount of 
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computing time s ince each method would require twenty evaluations 

of the function. We should therefore expect the methods to have the 

methods the same accuracy. performing the necessary computations, 

the result obtained are: 

I X 
I n I Modified Euler 

I 
Simple Euler improved Euler Runge Kutta 

1.7974424 i 0.5 
, 

i 1.79628088 1.7772329 1.7974413 

The result shows that it is not only the number of function 

evaluations which ultimately determines the accuracy of the solution 

but also the manner in which these functions are combined. 

4.4 Error Analysis 

We can see that there is practically no error in the Runge 

Kutta method. The computation involved in the procedure may be 

rather more tedious than in the other methods considered but the 

extra labour involved is rewarded by the higher degree of accuracy 

of the resu It. 

Having obtained the solution to other methods, it is useful to 

compare the error in each case. 
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1--- ____ , __ ~_._. ___ 0 __ ' 

ABSOLUTE ERRORS 
I 
I I I Xn Simple Eulers Modified Eulers Runge Kutta I 

: I 

! 0.0 I 0.000000 0.0000000 0.0000000 
I 
I I 
I 0.1 I 0.010342 0.000342 0.0000000 

I I 

! 
0.2 0.022806 0.000756 0.0000000 

0 .3 0.037718 0.001253 0.0000000 

0.4 0.055447 0.001845 0.0000000 
I 

\ 0.5 0.076423 0.022550 0.0000001 

The supremacy of Runge Kutta method is self-evidence and the 

method is popular where accuracy of result is all important. one 

disadvantage of Runge KuUa, however is that it does not readily 

lend itself to any self checking procedure. 
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5.1 Summary 

CHAPTER FIVE 

ANALYSIS OF RESULT 

From the comparison carried out in chapter four, it is 

evidently clear that the Runge Kutta method is the most accurate of 

all the methods considered, although a price has to be paid for the 

high accuracy and that is the tedious calculation involved. The other 

methods could be used when one considers time constraints and for 

instructional purposes. 

5.2 Concl usion 

Based on our error analysis, it can be seen that the Runge 

Kutta is more accurate than the Eulers (Simple, modified and 

improved) methods. It is seen that the Runge Kutta methods are 

highly accurate near the initial point, but like other methods, the 

accuary tends to decrease as we move away from the initial point. 

Runge Kutta also pay for the higher accuracy in terms of computing 

time. 

5.3 Recommen dation 

Having concluded that the Runge Kutta is preferrred to other 

methods considered in terms of accuracy, it is therefore 
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r ecommended that for a purposeful models roquiring the application 

of numerical methods of solving first order ordinary differential 

equation, Runge Kutta method is recommended until a more accurate 

method is discovered. 
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<begin nin g of file> 
PROGRAM EULER 
READ( *,* )X,Y,H,XN 
WRITE(*,13) 

13 FORMAT(2X,4F9.8) 
10 YCOMP=F(X,Y) 

j' =X+Y 

YNEW=Y+H*YCOMP 
W[{lTE(*,* lX, Y, YCOMP, YNEW 
Y=YNEW 
X=X+H 
If(X . LE. XN )GOTO 10 
STOIJ 
FUNCTION f(X,y) 

RETURN 
EN]) 
<end of file> 

a:euleLfor (0,1,58944) WATFOR-77 V3.0 PC/DOS 
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<beginning of fil e> 
PROGRAM MODIF 

C MODIFIED EULERS METHOD 
READ( *,*)X, Y,H,XN 
WRITE(*,17) 

17 FORMAT(2X, 4F9.8) 
15 YCOMP=F(X, Y) 

XMD=X+H/2 
YM])=Y+H/2*YCOMP 
YNEW=Y +l-I*F(XMD, YMD) 
WRITE(*,* )X, Y, YCOMP, YNEW 
Y=YNEW 
X=XHI 
1l"(X .LE. Xt-.;)GOTO 15 
STOP 
FUNCTION F(X,Y) 
f=X+Y 
l{ETU k N 
END 

<en cJ of fill!> 

APPENDIX II 

a: ntucJ1Lfor (0, I ,59493) WATfOR- 77 VJ.O PC/DOS 
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<be g inning of file> 
PROGRAM HEUNS 

APPENDlX 1fT 

C IMPROVED EULERS METHOD (HEUNS METHOD) 
READ( * ,* lX, V ,H,XN 
WRITE( * ,23) 

23 FORMAT(2X,4f9 .8) 
20 YCOMP=F(X, Y) 

YP=Y+II*YCOMP 
XP=X+H 
Y I M p= r: (X P, Y P) 
YNEW=Y+H/2* (VCOMP+VIMP) 
Wl\ ITl:..( *,*) X, Y, YCOMP, YNEW 
V=YNEW 
X=X+H 
IF(X .LE. XN)GOTO 20 
STOP 
l "UNCTlON F(X,V) 
f=X+Y 
RETURN 
END 

<e nd of file> 
u:heun s.fof (0,1,58944) WATFOR-77 VJ.O PC/DOS 
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<begin ning of file> 
PROGRAM KUTTA 

C RUNGE KUTTA METHOD 
REAL Kl, K~, KJ, K4, K 
READ (*,* lX, Y,H,XN 
WRITE(*,n ) 

:2 7 rORMAT(~X ,-+F9.8) 
25 Kl=H*F(X,Y ) 

K 1 =[J*F(X+H/~, Y+K 1/2 ) 
KJ=H* F(X+H/:2, Y+Kl/2) 
J\:-+=fH F (X +H/ 2, Y +K 1/ 2) 
K=( K 1 +2( J.;:2+KJ)+ K4 ) /G 
YNLW=Y +J\: 
WRITE(*,* lX, Y ,K, YNEW 
Y=Y NEW 
X=X+H 
JF (X .LE. XN)GOTO 25 
STOP 
FUNCTION F (X, Y) 
F=X+Y 
HETURN 
END 

<l' ne! o/' r ilL-> 

r\PPL1'-:DIX IV 

<.d : utto1.for (0,1,591 57) WATFOR- 77 V3.0 PC/DOS 
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APPENDIX V 

<e nd of file> 
a :e ul e r.for (0,1,58944) WATFOR-77 V3.0 PC/DOS 
r;:'UN 
o 1 0.1 1 

X Y YCOMP YNEW 
0.00000000 1.00000000 1.00000000 1.10000000 

0.10000000 1.10000000 1.20000000 1.22000000 

0.20000000 1.22000000 1.42000000 1.36200000 

0.30000000 1.36200000 1.66200000 1.52820000 

0.40000000 1.52820000 1.92820000 1. 72102000 

0.50000000 1.72102000 2.22102000 1.94312200 

0.60000000 l. Q4312200 2.54312200 2.19743400 

0. 70000000 2.19743400 2.89743400 2.4871 7800 

0. 80000000 2.487 17800 3.28717800 2.81 589500 

0.90000000 2. 8 1589500 3.71589500 3.18748500 
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APPENDIX VI 

<e nd o f file> 
d; lJl0c.1iLful' (0,1,59403) WATFOR-77 VJ.O PC/DOS 

1ZL'1\ 
0 1 0.1 

X Y YCOMP YNEW 0.00000000 1.00000000 1.00000000 1.11000000 
0.10000000 1.11000000 1.21000000 1. 24205000 
0 .20000000 1.24205000 1.44205000 1.39846500 
0.30000000 1.3 9826500 1.69846500 1.58180400 
0.40000000 1.58J80400 1.98180400 1.79489400 
0 .50000000 1.79489400 2.29489400 2.04085800 
(). hO OO()()()() ::>. ()4() F: .'l ~;OO 2. ()40S.'l800 2 .. 12.1 J 4~OO 

0. 7 0000000 2.32314800 3.02314800 2.64557800 
0. 80000000 2.64557800 3.44557800 3.01236400 
0. 90000000 3.01236400 3.91236400 3.42816200 
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APPENDIX Vl! 

<l!ntl o f file> 
a :heuns .for (0,1,5 8944) WATFOR-77 V3.0 PC/DOS 
RUN 
o 1 0. 1 1 

X Y YCOMP YNEW 
0.00000000 1.00000000 1.00000000 1.11000000 

0. 10000000 1.11000000 1.21000000 1.24205000 

0. 20000000 1. 24205000 1.44205000 1.39846500 

0 .30000000 1.39826500 1.69846500 1.58180400 

0.40000000 1.58180400 1.98180400 1.79489400 

0.50000000 1.79489400 2.29489400 2.04085800 

0.60000000 2.04085800 2.64085800 2.32314800 

0.70000000 2.32314800 3.02314800 2.64557800 

0.80000000 2.64557800 3.44557800 3.01236400 

0. 90000000 3.01236400 3.91236400 3.42816200 
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APPENDIX V HI 

<end of file> 
a:kutta.for (0,1,5 9 157) WATFOR-77 V3.0 PC/DOS 
RUN 
o 1 0. 1 1 

X Y K YNEW 
0.00000000 1.00000000 0.11034170 1.11034200 

0.10000000 1.11034 200 0.13246350 1. 24280500 

O. :20000000 1. 242805 00 0.15691190 1.39971700 

0.30000000 1.39971700 0.18393150 1.58364800 

0.40000000 1.58364800 0.21379280 1.79744100 

0. 50000000 1.79744100 0.24679470 2.04423600 

O.fiOOOOOOO 2.04423600 0.28326730 2.32750300 

0. 70000000 2.32750300 0.32357590 2.65107900 

0 .80000000 2.65107900 0.3681 2370 3.01920300 

0.90000000 3.01920300 0.41735660 3.43656000 
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