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ABSTRACT 

We are proposing to write a project on the Lagrange's Multiplier's tcchnique for , 

Nonlinear Progranmling Problem in order to find an algorithm/tcchnique that 

solve tl)e nonlinear programming. " problems that arise from our day to day 

activities. It has been observed ,that most of our daily activities arc based 011 

nonlinear progrmllilling due to complex nature of decisions to be taken in somc 

aspects of our life, examples arc industries, transportation systems, marketing 

etc. Due to the above, some techniques have to be developed, so as to tacklc 

most of the problems one would encounter in ones daily activities. It is thcreforc 

to derive techniques/algOlithm that solve nonlinear problems. 

Among the methods to be considered in this project are Separable, Quadratic 

Programming and Lagrange's Multipliers Method. But emphasis will bc placcd 

on methodes) that gives best result or best approximation among thc mcthods 

stated above. 

Then from that method that we are going to choose fro111 the above, i.c, 

Lagrange's Multiplier method (Lagrange's Multiplier Code) will be written and 

this would solve some nonlinear programming problem encountcred in our day 

to day activities and that is going to be our aim for this project. 

IX 



CHAPTER ONE 

INTRODUCTION TO OPTIMIZATION THEORY 

1.1 INTRODUCTION 

The problem of finding optima-that is, minima or maxima of real

valued functions plays a central role in Mathematical optimization. 

We are going to restrict ourselves to case of constrained problems. 

Here we shall treat the classical Lagrangian multiplier theory and 

some necessary and sufficient conditions for optima of differentiable 

functions. 

1.2 PROBLEM OF OPTIMIZATION 

Optimization is concerned with achieving the best outcome of a given . 

operation while satisfying certain restrictions. J-Juman beings, guide 

and influenced by their natural surrounding, almost instinctively 

perform all functions in a manner that economizes energy or minimize 

discomfort and pain. The motivation is to exploit the available limited 

resources in a manner that maximizes output or profit. The early 

inventions of the rocket are clear manifestation of man's desire to 

maximize moon exploitation. 

Physicists, chemists, mathematicians, engll1eers, economists, 

operations researchers, managers, and practicing computer scientists 

are often interested in achieving optimal solutions to their problems. 

These problems may be to determine designs, programs, trajectories, 

allocation of resources, approximations of functions. Frequently, 

different designs or programs, all satisfying the conditions arising 

from the actual solution are compared, and one is chosen that also as 



the best in terms of an optimality criterion. Optimization techniques, if 

properly applied, will automatically examine different designs or 

plans and select an optimum. 

We shall present example 1.1. The WYNDOR GLASS CO produces 

high quality glass products including windows and glass doors. It has 

three plants. Aluminium frames and hardware are made in plant A, 

wood frames are made in plant B, and plant C produce the glass and 

assembles the products. 

Because of declining earnings, top management has decided to 

revamp the company's product line. Unprofitable products are being 

discontinued, releasing production capacity to launch two new 

products having large sales potential: 

Product 1: An 8-foot glass door with aluminium framing 

Product 2: A 4x6 foot double-hung roof-framed window 

Product] requ ires some of the production capacity in plant A and C, 

but none in plant B, product 2 needs only plants Band C. The 

marketing division has concluded that the company could sell as much 

of either product as could be produced by these plants. However, both 

products would be competing for the same production capacity 

because in plant C, it is not clear which mix of the two products 

would be most profitable. 

Determine what the production rates should be for the two products in 

order to maximize their total protit, subject to the restrictions imposed 

by the limited production capacities available in the three plants. 

Table 1.1 summarises the data gathered. 

To formulate the mathematical model for this problem, let 

XI = number of batches of product 1 produced per week 
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X2 = number of batches of product 2 produced per week 

z = total profit per week from producing these two products 

Production time for Production time 

Batch, Hours 

Product Available per week, 

Hours 

Plant 1 2 

A 1 0 4 

B 0 2 12 

C 3 2 18 

Profit per batch W 3,000 W 5,000 

Table 1.1 Data for the Wydor for Glass Co. problem 

Thus Xl, and X2 are the decision variable for the model. Using the 

bottom row of table 1.1, we obtain 

Z = 3Xl + 4X2 

Using the data in row 2,3 and 4, then we have, the following: 

XI ~ 4 

2x] ~ 12 

3x I + 2X2 ~ 18 

Plus the restriction XI ~ 0 and X2 ~ o. The above model can be 

rewritten as follows: 
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Maximize Z = 3x I + 5x2 

Subject to 

XI ::; 4 

2x2 ::; 12 

3x I + 2X2 ::; 18 

: .. ~. 

1.3 CHARACTERISTICS AND TYPES OF MATHEMATICAL 

MODELS 

The problem of optimizing a numerical function of one or more 

variables when they are constrained in some manner is called a 

mathematical programming problem, specifically, the purpose of such 

a problem is to determine the value of n variables XIlX2,.' ',Xn that 

optimize the function 

Z = !(XI,X2, .. . x
lI

) ••••••••••••••••••••••••••••••••••••••••••• 1.1 

Subject to the constraints 

gl (x" x2, ... x,J {::; = ~ }b,i ;;.1 ,2, ... ,m ............................ 1.2 

It is usually assumed that the values of the n variables cannot be 

negative numerically. The nonnegativity restrictions on the variables 

may be stated as 

x > a 1 - j = 1,2, ... ,n ................... 1.3 

Also, it is usually desired to determine the optimal value (minimum 

and maximum) of the function Z in 1.1 which is called the objective 

function. 
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The formulation of business and economic questions"as mathematical 

programming problems has resulted in the successful resolution of 

many complex real-world optimization solutions. Most of the 

applications of mathematical programming to business and economics 

involve the maximization of revenues or projects and minimization of 

costs. 

1.3.1 MODEL CLASSIFICATION AND SPECIFIC MODELS OF 

INTEREST 

A real-world optimization problem may be classified in five ways: 

1. The functional relations in the problem may be known 

( deterministic) or uncertain (probabilistic) 

2. The function f(x" x2 , ••• ,xlI )and gt(x"x2 , .•. ,xtJ,i= 1,2, ... ,111 m 1.1 

and 1.2 may be linear in x"x2 ' .•• ,xtt ; or at least one function in 

the set may be non linear 

3. The functions may be continuously differentiable (smooth) or 

non differentiable (non smooth) 

4. The variables x"x2 , • •• ,x)n the mathematical programmmg 

problem may be continuous or may be restricted to integer 

values 

5. The optimization may take place at a fixed point in time (static) 

or during an interval of time (dynamic) 

Most mathematical programml11g models are deterministic; given 

x, , X l " " ' XI/' the values of f,gl,g2,' " ,gm are uniquely determined. Most 

of the current applications of mathematical programming to business 
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and economic problems assume that all model functions are linear 

there is a very simple reason for this. The simplex method is 

extremely effici ent procedure for solving linear programming 

problems. When this method is programmed on a computer, it is 

possible to solve linear problems involving hundreds of variables and 

thousands of con straints. If one or more of the functions is nonlinear, 

the problems is a lways more difficult to solve than linear ones. Thus, 

even though the real-world problem may be complex and inherently 

highly nonlinear, successful modeling of it may be possible by using 

many variables and constraints in a linear formulation. 

Most algorithm s devised to solve mathematical programmmg 

problems require that the functions in the model be continuously, 

differentiable; thus all functions typically must be smooth. The best 

known mathem atical programming model is linear programming 

model. All fun ctional in 1.1 and 1.2 are linear in the n-variables 

x , . X 2 .. .. , x" . The model may be written as 

Optimize z = f(x"x2 , ... ,x,,) = IfJ(xJ ................... 1 ......... 1.4 
./=1 

Subject to 

/I 

gJ", x2 ,·· ·, xJ= IgiixJ~;=~}bi i = 1,2, ... ,m 
./=1 

where the f 's .;',' .\". and aij 's are known constants. 

The linear progrcllnming model has been successfully used to solve a 

variety of business, economic and scientific problems. 

If in the model above, at least one function in the set f,gI,g2," .,gm is 

nonlinear, it is cnlled a nonlinear programming model.
j 

We observed 
; 
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that, a nonlinear problem is generally much mon:~A difficult to solve 

than a linear one. Many algorithms have been developed to alleviate 

this, among which are the following separable programming, 

Quadratic programming algorithms, Lagrangian multipliers technique 

etc. 

A special case of the general nonlinear programming model, which 

has received a great deal of attention, is the quadratic programming 

problem in both chapters 2 and 3. In this model the objective function 

is quadratic in XI ,X2 , ... ,XII and the constraints are I inear. Specifically, 

the model is 

II II " 

Optimize Z= If,k, + IIgi'X,X, .......................... 1.5 
, ; I ,; 1 .1 ; 1 

II 

Subject Ih'lxl ~ b,i = 1,2, ... ,m 
1; 1 

XI ~ OJ = 1,2, ... ,n 

Where the ~i' s, gjj' sand hjj ' s are known constants 

1.4 FORMULATING AN OPTIMIZATION PROBLEM 

An optimization problem is an exercise in mathematical modeling that 

requires great care in setting up the model. Four steps are involved: 

1. Decide the exact objective to be optimized many different 

objectives are possible. 

2. Set up the objective function USII1g .as many variables as are 

required. Try for accuracy rather than compactn.ess. Make sure that 

all the terms have the same dimensional unit. 
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3. Set up all the constraints and relationships between the variables 

4. If possible, reduce the objective function in step (2) to independent 

variables 

5. The objective function is now ready for solution. If it contains 

independent variables only, the differentials can be set equal to 

zero to optimize the expression, or alternatively, tabulation can be 

made. If the objective function contains dependent variables in 

addition to independent variables, a Langragian expression can be 

tried. If this fails, the objective function and its constraints must be 

optimized, using the skill and ingenuity of the Separable, 

Quadratic Programmers etc. 

Example 1.2 

As an illustration of the above, consider the following example. A 

cheese shop has 20kg of a seasonal fruit mix and 60kg of an 

expensive cheese with which it will make two cheese spread, delux 

and regular, that are popular during Christmas week. Each pound 

of the delux spread consists of O.2kg of the fruit mi x, O.3kg of the 

expensive cheese, and O.5kg of a filler cheese, which is cheap, and 

in plentiful supply. From past pricing policies, the shop has found 

that the demand for each spread depends on its price as follows: 

D, = 190- 25p, and D2 = 250- 50P2 

where D denotes demand (in kilograms), P denotes prIce (in 

dollars per kg) , and the subscripts 1 and 2 refer to the delux and 

regular spreads, respectively. How many kgs of each spread should 

the cheese shop prepare, and what prices should it establish, if it 
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wishes to maximize income and he left with no:'.inventory of either 

spread at the end of Christmas week? CR. Brown) .. 

Solution 

Mathematical equivalent of the example 

Let XI kgs of deluxe spread and X2 kgs of regular spread be made. 

If all products can be sold, the objective is 

Now, all products will indeed be sold (and none will be left over in 

inventory if production does not exceed demand, i.e. if XI s DI and 

X2 S D2 . This gives the constraints 

XI + 25PI s 190 and X2 + 50P2 s 250 ........................ 1.7 

From the availability of fruit mix, 

O.2xl + 0.2X2 s 20 .............................................. 1.8 

and from the availability of expensive cheese, 

0.8xl + 0.3x2 s 60 .............................................. 1.9 

There is no constraint on the filler cheese, since the shop has as 

much as it needs. Finally, neither production nor price can be 

negative; so four hidden constraints are XI ~ 0,X2 ~ O,PI ~ 0 and 

P2 ~ O. Combining these conditions with 1.6 through 1.9, we obtain 

the mathematical programming problem as follows: 

O.2x l + O.2xx s 20 

....................... 1.10 
. 0.8xl + 0.3x2 s 60 

Subject to : , 25 190 
XI + PI S 

x2 + 50P2 ::; 250 

With all variables nonnegative 
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System 1.10 is a quadratic programming problem in the variables 

XI,X2,Ph and P2. It can be simplified if we note that for any fixed 

position XI and X2 the objective function increases as either PI and 

P 2 increases. Thus for a maximum, PI and P2 must be such that the 

constraint 1.7 becomes equations; where PI and P2 may be 

eliminated from the objective function. We then have a quadratic 

function in x I and X2 

Maximize Z = (7.6- 0.04x ,)x, + (5 - 0.02 x2)X2 -

... 1.11 
. 0.2 x , + 0.2x2 ~ 20 

Subject to 08 ' 0"" < 60 
. X I + . .,X2 -

'vVith X I and X2 nonnegative -

1.5 NONLINEAR PROGRAMMING 

In this work, emphasis was placed on nonlinear programming than 

linear programming due to the fact that my work was centred on 

nonlinear programming problem, both separable and quadratic 

programming. Algorithms were discussed in chapter 2 while the 

Lagrangian multiplier's technique was also discussed in chapter 3. 

Although the simplex method was later utilized in finding solution to 

both the piecewise linear approximation model and the equivalent 

linear model of the quadratic programming in chapter 2. 

The introduction of nonlinear functions in the mathematical 

programming problem usually insures more difficulty in solving the 

problem than if all functions are linear. The primary difficulty 

introduced by the nonlinear functions in the potential existence of 

relative or local minima or maxima. The existence of local optima 

arise due to the nonlinearly of the objective function [(x), the 

10 
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nonlinearity of one or more constraint functions gi (x), or a 

combination effect of the nonlinearity in f(x) and in one or more of 

the constraint functions. 

1.6 TYPES OF NONLINEAR OBJECTIVE FUNCTIONS 

1.6.1 A NONLINEAR FUNCTION IN ONE VARIABLE 

) 

That is, optimizing a nonlinear objective function of a single 

variable. Note that many of the techniques for solving several 

variable nonlinear optimization problems actually. To begin, it 

is conven ient to postulate maximization "as the sense of 

optimization throughout the following discussion. {if the real 

problem is to minimize an objective function f(x), then you can 

reformulate the method so as to maximize -f(x)}. 

It is assumed that the functions considered possessed 

continuous first and second derivatives and partial derivative 

everywhere. Consider a function of a single variable, such as 

that shown in figure 1.1. A necessary condition for a particular 

solution x=- x* to be either a minimum or maximum is that 

eI!' (.\" ) = 0 at x=x* ..................................... 1.12 
(.I.\-

Thus in fi gure 1.3.1, there are five solutions satisfying these 

conditions. To obtain more information about these five so 

called crit ical points, it is necessary to examine the second 

derivative. Thus, 

d
2

f (xJ > 0 * elx 2 at x=x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1. I 3 
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~-----------------------------------------/~ 
Fig 1.1 A function having several maxima and minima 

Then x* must be at least a local minimum (ie f(x*) ~ f(x) for all x 

sufficiently close to x*). So x* must be a local minimum if f(x) is 

strictly convex with neigbourhood of x*. Similarly, a sufficient 

condition for x* to be a local maximum (given that it satisfies the 

necessary condition) is that f(x) is strictly concave with a 

neighbourhood of x* (that is, the second derivatives is negative at x. if 

the second derivatives is negative at x. lfthe second derivative is zero, 

the point may not even be an inJ:lection point and it is necessary to 

examine higher derivatives. 

To first a global minimum (ie a solution x* such that f(x*) ~ f(x) for 

all x) it is necessary to compare the local minima and identify the 

value is less than f(x) as x -t -00 and as x -t +00 (or at the endpoints of 

the function, if it is only defined over a finite interval) then his point is 

a global minimum. 

12 



However, if f(x) is known to be either a convex or concave function, 

in particular, if f(x) is a convex function, then any solution x*, dCh 

that 

df(x) = 0 
dx 

atx=x* 

is known automat ically to be a global minimum. In other words this 

condition is not only a necessary but a sufficient condition for a global 
" 

minimum of a convex function. If this function is strictly convex, 

then this solution must be the only global minimum. Similarly, if f(x) 

is a concave funcl ion, then having 

df(x) = 0 at x=x * 
dx 

becomes both necessary and sufficient condition for x* to be a global 

maximum. If for any XI and X2 in 1=[-00,001 where Xl< X2, and for all 

p, o:s; p :s; l,f(.\") satisfies 

convex function I . 14 

A function is uni modal wherever it is concave, that is, if for any XI 

and X2 in I, where XI < X2 and for all p,O:S; p :s; I,f(x) satisfies 

p!(x,) + (1- p)f(x2 ) :s; f[px, + (1- p)x2 ] concave function ............ 1.15 

1.6.2 A NONLINEAR FUNCTION OF SEVERAL UNCONST

RAINED VARIABLES 

That IS, 111 ax 11111 z I11g a nonlinear functio~1 of several 

unconstrained variables. There are two motivating rel;lsons for 

studying this problem. Firstly, an analysis of the 

multidimensional, unconstrained, nonlinear maximization 

problem sets the stage for the analysis of constrained models. 

The algorithmic difficulties to be overcome here are also 

13 
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present in the constrained cases. Secondly, a constrained problem can 

often be solved by first converting it to an unconstniined problem. We 

postulate that f(Xl,X2, ... ,xn) is smooth and posses a finite maximum 

value, occurring at the finite values x* 1 'X*2 , ... ,X*n . Abbreviating a 

set of values for Xl,X2, .. ',Xn by the symbol x, and the expression 

f(xt,x2, .. ',Xn ) by the symbol f(x), these assumptions can be stated 

more precisely as: 

1. For all values of x, f(x) is uniquely defined and finite 

ii. For all values of x, every partial derivatives of / ox, is uniquely 

defined, finite, and continuous, and hence f(x) is continuous 

111. f(x) possesses a finite maximum f* 

lV. For any possible value of f(x), say f, there exists an associated 

finite number Me such that every Ix"~ ml if f(x) ~ f 

Applying differential calculus, we can state the following. Necessary 

condition for maximum. Given assumptions (i) through (iii), the 

function f(x) has a maximum at x* only if of / oxf = 0 for j=1,2, ... ,n 

The validity of the result is easy to see. Suppose there is a variable Xj 

such that o/(x*) / ox, > O. Then f(x) can be increased by increasing x*j 

by a small amount. Analogously, if Of(x*) / Ox < 0, then f(x) can be 
.I 

increased by decreasing x*j by a small amount. But unfortunately, 

without imposing further restrictions on the shape of f(x), the 

necessary condition is not sufficient for a maximum. x* may not 

maX1l11lZe f(x) when all Of(x*) / Ox.l = o. The illustration in Fig 1.2 

shows why. The derivative of of / Ox . = 0 at points a,b,c,d,e as well as 
.I 

at g, which gives the only global maximum. 
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Fig 1.2 Example with Multiple Local ptima 6ir 

After identifying the critical points that satisfy the condition 

W(xp X2 , ... xJ I ax, = 0 at = (Xi' X2 , ... , xJ = (x; ,x; , ... , XI:) for j = 1,2, ... ,n, 

each of such po i 11t would then be classified as a local minimum or 

max imum if the function is strictly convex or strictly concave 

respectively, wit hin a neighbourhood of the point. The global 

minimum and m8ximum would be found by comparing the relative 

minima and maxi ma and the checking the value of the function as 

some of the vari ab les approach - 00 or +00. However, if the function 

is known to be convex or concave, than a critical point must he a 

. glo bal minimum or a global maximum respectively. 

1.6.3 A NONLINEAR FUNCTION OF SEVERAL 

CONSTRAINED VARIABLES 

That is, optimi zing a nonlinear function with nonlinear constraints. 

The a im here is to solve optimization problems containing 

nonlinear constraints. For the sake of definiteness, suppose the 

model is states as 

Max imize 1-{X I,X2,""X Il ) . . . .. . .... .. .................. 1.16 

Subject to g/ (XI ,X2, .. . ,XJ ~ o i= 1,2, ... ,m .... .. ...... 1.17 

x , ~o j=1,2, . . . ,n ........... ... ......................... l.18 

15 
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1.16 and 1.17 above can be viewed as a canonical statement of a 

nonlinear programming problem (NPP). Here, the constraints function 

gj(x) and objective function f(x) are to be postulated upon as follows: 

Definition 1.1 Fe,\sible region. 
\ 

The assumption on each nonlinear function gj(x) are given in terms of 

its shape and smoothness characteristics. To set the stage, a real value 

function g(x) is defined to be convex if, for any two points x;f. y, and 

for all P,O::; P ::; L 

P~(XI 'X1 , .. . ,x,, )+ (1 P )g(YI 'Y1""'Y" ) ~ g [pxl + (1- P )YI, .. ·,PX/l + (1- P )Yl/] 

convex ....................... . 1.19 

and strictly convex if there is a strictly inequality (» for 0 < P < 1 

(Note that if - g (x) is concave, then g(x) is convex). 

A related characteristic of a convex function is that for any two points 

x and y, 

/I 8,~ (x) ( ) g(y)~g(x)+ I -,,- y, -x, convex ................................... l.20 
,= 1 ( ,\', 

gi(X) in 1.20 sati s ly the following shape and smoothness assumptions. 

I. Each gj(x) is uniquely defined, finite, and convex for all values 

of(xl,x2, .. . xn) . 

ii. Each 8g,(x )/ 8x, is continuous for all x satisfying the constraints 

in 120 

DEFINITION] .2: OBJECTIVE FUNCTION: 

The function f(x) is also hypothesized to satisfy certain shape and 

smoothness assumptions (i) through (iv). 

1. f(x) is single-valued and finite for each x satisfying the 

constraints 1.20. 
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ii. Every patiial-derivative of (x) / ox) is a single-valued finite, and 

continuous at and each x satisfying the constraint 1.20 

Ill. f(x) possesses a finite maximum f!' over all values of a 

satisfying the constraints 1.20 

lV. f(x) is concave over all values of x satisfying the constraints 

1.20 

It is the purpose of this chapter to develop the basic theory upon 

which methods devised to solve the nonlinear programming problem 

are typically based. Among the topics considered are the definitions of 

local and global optima, the necessary and sufficient conditions 

introduced into this identification process by nonlinearity. 

The final section contains some applications of this material to 

nonlinear optima. 

1.7 LOCAL AND GLOBAL OPTIMA 

The concepts of local and global optima play an extremely important 

role in nonlinear programming. 

Definition 1.3 - Global maximum (unconstrained problem), the 

unconstrained function f(x) is said to take on its global maximum at 

the point x* if f(x) ~ f(x*) for all x over which the function f(x) is 

de fin ed. 

Definition 1.4 - Local maXlmum (unconstrained problem) The 

unconstrained function f(x) is said to take on a local maximum at the 

point XU if constants E and 0,0 < E < 0, exist such that for all x 

satisfying 0 <Ix - x"l< E,fex) ~ fe x" ), whose f(x) is defined for all points 

in some 8-neighbouhood ofxo. 
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Figure 1.1 illustrates a local and global maximum' for a univariate 

function. Notice from definition 1.3 and 1.4 that a global is also a 

local maximum. A familiar theorem from differential calculus is now 

introduced, which states the necessary conditions for a point XO to be a 

local (or global) maximum. 

?\. 0 0') 
(:!-1 1'0 

--~~;;) 

L-________________________ ~ ____ _?%, 

Fig. 1.3 Illustration of Local Optima 

Theorem 1.1 f(x) assumes a relative (local) maximum at XO then XO 

must be a solution to the set of negations 

of (x) 0 

ox 
.I 

proof 

j= 1,2, ... ,n 

Suppose that f(x) ass umes a local maxImum at XO . Then from the 

definition of a local maximum, an Ebo must exist such that for all 

,points x in a 8-neighbourhood of xO, f (x) ~ f (x" ). In particular, 

consider a point in the 8-neighbourhood of xl! of the x = x" + he where 
} 

< = [0,0, ... ,0,1,0, .. . ,0] with the 1 placed in the jth position of ej and 

O</< /<E.Then 

f (x" + he, ) ~ f (x" ) j= I,2, ... ,n .................. 1.21 
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for all h, 0 <I hl< E • Dividing 1.21 by h results in the expi-essions 

f(x" + he) - f(x").._ . 
h s; 0 if h>O J-1 ,2, ... ,n .................. 1.22 

f(x O + he ) - f(xO) 
.I ~ 0 ifh<O j=1,2, ... ,n ................ 1.23 
h 

On taking the limits of 1.22 and 1.23 as h -> 0, it follows from the 

definition of partial derivative that's 

~f(x") s; 0 f' 1 0 or 1-> 
ox 

.I 

h>O 

of(x O) 0 .cor h -> 0 
:l ~ 11 
ux 

.I 

h<O 

Thus 

of(xO) 
iJx =0 j=1,2, .. ,n ................ 1.24 

.I 

The condition in 1.24 can be conveniently displayed in vector notation 

in terms of the gradient vector of f(x). 

Definition 1.5 the Gradient vector: 

The gradient vector of f(x) = f(xl,x2, ... ,xn), denoted by 'Vf(x), is the 

nx1 column vector whose components are in the first-order partial 

derivatives of f(x): 
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Vf(x) = 

IJf (x)1 
I IJx , 

:{...,., . . 

............................ 1.25 

The condition in 1.24 stated in vector form is V f(x") = 0 

If a point XU satisfies 1.24, it might not be a maximizing point. 

Theorem 1.1 provides only the necessary condition for XO to be 

maximizing point. In the univariate 1.24 may be satisfied at a 

minimizing point, a maximizing point, or a point of inflection as 

illustrated in figure 1.4. In the n-multidimensional case where 

x' = [x p x2 , • . • ,x,,], the analogy to the univariate case is a minimizing 

point, maximizing point, or saddle point. A saddle point is the 

multidimensional analogy to the inflection point in the univariate case. 

A saddle point for the bivariate case [Xl = (x p x2)] is illustrated in Fig. 

1.5. 

The sufficient condition for x U to be a maxlmlzmg point can be 

expressed as a property of the Hessian matrix of f(x) . 
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~--------------------------------------~~---? X 
Fig. 1.4 Possible Solution Points to df(x)/dxj=O 

Definition 1.6 The Hessian Matrix 

The Hessian matrix of f(x) = f(xl,x2, ... ,xn), denoted by H(x), is the 

nxn matrix whose elements are the second order partial derivatives of 

f(x): 

H(x) = 

tJ2 f(x ) tJ2 f(x) 

tJx~ tJx 2 
2 

tJ2 f( x ) tJ2 f(x) 

Ox 20x - I 2 Ox2 
2 

rJ2f( x ) tJ2 f(x) 

OxIl OxI Oxll0x2 

tJ2 f (x) 
--
Ox1tJxII 

tJ2 f(x) 

Ox20x
1l 

........ 1.26 

Theorem 1.2. A sufficient condition for f(x)=f(xbx2' ... ,xn) to have a 

local maximum at the point XO where 'V l ex") = 0 is that the Hessian 
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matrix H(x) be negative definite is for any y' = [YI 'Y2 , ... ,y,,], except 

y=O, y'H(x)y<O 

Proof: 

This theorem can be proved by applying Taylor's theorem to the 

function f(x). Taylor's theorem states that for any two points Xl and 

x2=xl+h, there exists a scalar e, 0 ~ 0 ~ 1, such that 

f(x2 ) = f(x ,)+ 'Y!'(x,)h+ O.5h' I-J[OXI + (1- O)x2]h ..................... 1.27 

Applying 1.27 to f(x), where XI = XO and X2 = xOth, produces the 

expressiOn 

f(xorh) = f(x") + 'Y!, (x")h + O.5h'I-J[Ox" + (1- O)(x" + h)]h 

since 'Y f(x") = 0 

f(xOth) = f(x") + O.5h' H[Ox" + (1- O)(x() + h)]h 

or 

f(xOth) - f(x() = O.Sh' H[OxO + (1- O)(XO + h)]h ......................... 1.28 

If the right-hand side of 1.28 is negative for all h in a 

8-neighbourhood of xu, by definition lA, XO must be a local 

maximum, since I(x()rh) - f(x") ~ 0 if this is the case. The second 

partial derivatives 02f(x") /ox,ox, will have the same sign as 

02 f[Ox" + (1- O)(x"lh)] / ox/ox, provided that the point OX" + (1- O)(x"th) is 

in a suitable 8-neighbourhood ofxo. Thus the right hand side of 1.28 is 

negative only if h 'H(x)h<O; i.e. the Hessian matrix evaluated at xO, 

H(xO), must be negative definite to insure that XO is a maximizing 

point. 
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Fig. 1.S Two Dimensional Saddle Point 

We shall present example 1.3, as an illustration. Example 1.3 

determine the maximum of: 

(R.C. Pfaffenberger & D.A. Walker) 

of (x) 
- 8x I + 16 0 

ox I 

'Y f(x) 
of (x) 

= - 6x2 + 24 set 0 - ox 2 

of (x) 
- 2x 0 

ox J 
2 

The condition 'Yf(x) =0 generate a system of three linear equations 

three unknowns. The solution to his system is x' = [XI ,X2 ,x3] = [2,4,0]. 

The Hessian matrix H(x) is now determined. 
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The Hessian matrix H(x) is now determined. 

0 2/(x) 
= -8 

0 2/(x) 
= 0 

rJ 2f(x) 

ox2 rJxrJx rJxrJx I I 2 I 3 

02f(x) 
= -6 

02f(x) 
= 0 

0 2 f(x) 
rJx2 ox rJx ox 

2 2 2 3 

Thus the Hessian matrix evaluated at XO = [2,4,0] is 

H(x") = 

-8 0 0 

o -6 0 

o 0 -2 

The sealer quantity y'H(xO)y is 

~8 0 ][y] o -6 0 Y2 
o 0 -2 Y3 

:.0;..... .. . . 

= 0 

= -2 

which is clearly less than zero for any Y' = [YIY2YJ ]'Y f. 0 

Thus XO = [2,4,0] is a maximizing point. 
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CHAPTER TWO 
:{..;.t. 

TYPES OF NONLINEAR PROGRAMMING PROBLEMS 

2.1 INTRODUCTION 

Linear programming methods developed in the 1950s can be used 

very effectively in cases where both the constraints and the function to 

be optimized are linear. Variations of linear programming methods are 

also available for cases where the function to be optimized is 

quadratic (quadratic programming) and for cases where the nonlinear 

constraints can be expressed as pieceuise linear functions (separable 

programming). Examples of each packages for nonlinear problems are 

MINOS, GRAMS/MINOS and GINO. 

2.2 SOLUTION TECHNIQUES FOR NONLINEAR 

PROGRAMMING PROBLEM 

Here, separable programming problems can be solved by the simplex 

method, because any such problem can be approximated as closely as 

desired by a linear programming problem with a larger number of 

variables. 
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It is assumed that the objective function f(x) is concave, that each of 

the constraint function gi(X) is convex, and that all tl1ese functions are 

separable functions (functions where each term involves just a single 

variable). We focus here on the special case where the convex and 

separable glx) are, in fact, linear functions just as for linear 

programmll1g. Thus only the objective function requires special 

treatment. 

Under the preceeding assumptions, the objective function can be 

expressed as a sum of concave function of individual variables 

1/ 

f(x) = If (x ) 
./ ./ 

./= 1 

So that each fj(Xj) has a shape such as the one shown in Fig. 2.1 (either 

case) over the feasible range of values of values of Xj. Because f(x) 

represents the measure of performance (say, profit) for all the 

activities together,G(xj) represents the contribution of profit from 

activity j when it is conducted at level xj. The condition of f(x) being 

separable simply implies activity i.e., there are no interactions 

between the activities (no cross product terms) that affect total profit 

beyond their independent contributions. The assumption that each 

fj(Xj) is concave says that the marginal profitability (slope of the 
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curve) either stays the same or decreases (never i,ncreases) as xj IS 

increased . 
. .{,; &:) Ii\. 

J J . 

Case 2 ~'3 

Case 1 

-S'(~') \'\ C<m~ve v""~ PleCt< ..... n~- ti~~.". 

'-fJl)(J) 
- --- ~/I~-h~ 

o;f .f; CxJ' ) 

Fig. '.2.1 Shape of profit curves for separable programming 
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Concave profit curves occur quite frequently. For example, it may be 

possible to sell a limited amount of some product at a certain price, 

then a further amount at a lower price, and perhaps finally a further 

amount at a still lower price. Similarly, it may be necessary to 

purchase raw materials from increasingly expensive sources. In 

another common situation, a more expensive production process must 

be used (eg over time rather than regular-time work) to increase the 

production rate beyond a certain point. 

These kinds of situation can lead to either type of profit curve shown 

in Fig. 2.1. In case 1, the slope decreases only at certain breakpoints, 

so that ~(Xj) is a piecewise linear function (a sequence of connected 

line segments). For case 2, the slope may decrease continuously as xj 

increases, so that fj(Xj) is a general concave function. Any such 

function can be approximated as closely as deserved by as needed for 

separable programmlllg problems. (Figure 2.1 shows an 

approximating function that consists of just three line segments, but 

the approximation can be made even better just by introducing 

additional breakpoints). This approximation 1S very convenient 

because a piecewise linear function of a single variable can be 
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rewritten as a linear function of several variables, with one special 

restriction on the values of these variables, as described next. 

2.3 REFORMULA TION AS A LINEAR PROGRAMMING 

PROBLEM 

The key to rewriting a piecewise linear function is to use a separate 

variable for each line segment. To illustrate, consider the piecewise 

linear function fj(Xj) shown in Figure 2.1, case 1 (or the approximating 

piecewise linear function for case 2), which has three line segments 

over the feasible range of values of xj. Introduce the three new 

variable Xj I, X j2, and x j3 and set 

Xj = Xj I + xj2 + Xj3 ....................................... 2.1 

where 

o ~Xjl ~Ujl' ......... . ................................... 2.2 

O~Xj2~Uj2, ........................................... 2.3 

o ~ Xj3 ~ Uj3 ....................................... ·· ... 2.4 

Then use the slope sjI, Sj2, and Sj3 to rewrite flXj) as 

fj (Xj ) = Sjl Xjl + S j2 Xj2 + sj) xiJ .............. ... 2.5 

With special restriction that 
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Xj2 = 0 whenever Xjl < Ujl , 

X"3 = 0 .I " X"2 < U"2 .I .I' 

To see why this special restriction is required, suppose that x j = 1, 

where u jk > 1 (k=l ,2,3), so that f.iC 1) = s j I . Note that 

permits 

XI = 1 I , X"2 = 0 I , X j3 = 0 => fj (1) = s j I , 

X "I = 0 
.I ' 

X"2 = 1 I , X "3 .I =0 => f. (1) = S2, .I .I 

Xj3 = 1 => f " (1) = S "3, .I .I X "I = 1 I , X"2 = 0 I , 

and soon, where 

s j I > S j2 > s j3· 

However, the special restriction permits only the first possibility, 

which is the only one giving the correct value fj (l). 

Unfortunately, the special restriction does not fit into the required 

format for linear programming constraints, so some piecewise linear 

functions cannot be rewritten in a linear programming format. 

However, our fj (x j) are assumed to be concave, so s j I > s j2 > ... , so 

that an algorithm for maximizing f(x) automatically gives the highest 

priority to using x j I when (in effect) increasing x j from zero, the next 

highest priority to using x j2 , and so on, without even including the 
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special restriction explicitly in the model. This o:bservation leads to 

the following key propeliy. 

2.4 KEY PROPERTY OF SEPARABLE PROGRAMMING 

When f(x) and the gi(X) satisfy the assumptions of separable 

programming, and when the resulting piecewise linear functions are 

rewritten as linear functions, deleting the special restriction gives a 

linear programming model whose optimal solution automatically 

satisfies the special restriction. 

To write down the complete linear programming model in the above 

notation, let nj be the number of line segments in fj(Xj) (or the 

piecewise linear function approximating it). So that 

x, = LX,k ....................................... 2.6 
k= 1 

would be submitted throughout the original model and 

f / x) = L J..,kX,k ................................. 2.7 
k= 1 

would be submitted into the objective function for j=1,2, ... n. The 

resulting model is 
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1/ 

........................... 2.8 
:{......, . . 

subject to 

II II I 

La" LX,k S; b, for 1=1,2, ... ,m ........................ 2.9 
1= 1 k= 1 

Xjk ~ Ujk, for k=1,2, ... ,nj : J=1,2, ... ,n ............ 2.10 

and 

Xik Z 0 for k=1 ,2, ... ,n j : j= 1,2, ... ,n ......... 2.11 

(The L~= 1 X)k ~ 0 constraints are deleted because they are ensured by 

the x jk Z 0 constraints) If some original variable Xj has no upper 

bound, then Ujnj = 00, so the constraint involving this quantity will be 

deleted. 

An efficiently way of solving this model is to use the stream lined 

version of the simplex method for dealing in the upper bound 

constraints. After obtaining an optimal solution for this model, you 

then would calculate 
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for j= 1,2, ... ,n in order to identify an optional solution for the original 
:v-t· . 

. . 
piecewise linear separable programmll1g program (or its 

approximation). 

Example 2.1 

Consider the following: 

Maximize x~ - XI + X2 

Subject to XI + xi ~ 4 

(G.E. Whitehouse, S.L. Wechsler) 

Solution 

Step 1 

where 

Step ii 

From the original problem we see that both x I and X2 must be ~ 0 
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The first constraint indicates that XI::; 4 and X2 ::;2 (The variables do 

not necessarily need to have the same domain). 

In our case, let us partition the domain of each variable into four 

segments, thus we will have five grid points. 

Step III 

At k = 0, Xlk = XIO = 0 

Atk= 1,xlk=xll = 1 

At k = 0, XIO=O 

Similarly, fl (Xlk) = 0, k = 1 

Use the table below to evaluate the separate functions 

Fig. 2.1 Evaluation Table. , 

k Xlk X2k gIl (Xlk) gl2 (X2k) fl (Xlk) f2 (X2k) 

0 0 0 0 0 0 0 
~ 

1 1 .5 1 .25 0 .5 

2 2 1 2 1 2 1 

3 3 1.5 3 2.25 6 1.5 

4 4 2 4 4 12 2 
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Step iv 

The original problem can now be written as follows: 

Maximize f(x i ,xJ::: I Alk!;k + I AU!'k = 
k=O k=O 

subject to 

I Alk = A IO + All + AI2 + AI3 + AI4 = 1 
k=0 

I Au = Au + A21 + A22 + A 23 + A24 = I 
k=O 

A > { /=1.2 
./k - k=0,1.2.3,4 

Step v 

: .......... 

By introducing a slack variable s, we can write the first constraints as 

an equality. Proceed by applying simplex method to solve the 

piecewise linear functions as follows: 
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: ............ . 

Basis AID All AI2 Au AI4 A20 A21 A22 A23 A24 S b 

S 0 1 2 3 4 0 .25 1 2.25 4 1 4 

AID 1 1 1 1 0 0 0 0 0 0 1 

A20 0 0 0 0 0 1 1 1 0 1 

0 0 2 6 12 0 .5 1.5 2 0 0 

Initial tableau (Figure 2.2) 

By letting AI4 enter the basis, AI4 will replace S while AID and A20 remain in 

the basis. Clearly AIO and AI4 arc not adjacent points and this is a situation we 

cannot tolerate. Alternatively, we allow AI4 to replace AID, in that case we 

would have S, AI 4 and A20 in the basis, a perfect condition as shown in the 

next table. 

Improved Solution 

Basis AID All AI2 Au AI4 A20 A21 A22 A23 A24 S b 

S -4 -3 -2 -1 0 0 V4 1 9/4 4 1 0 

AI4 1 1 1 1 1 0 0 0 0 0 0 1 

A20 0 0 0 0 0 1 0 1 

-12 -12 -10 -6 0 0 .5 1 1.5 2 0 -12 

First tableau (Figure 2.3) 
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The first-tableau yields the solution AI.4=1, A20 = 1, ill other variables 

= O. Either A24) A22 or A21 would make b i negative or the adjacency 

condition would not be met, if any other variable enters. We have 

therefore found the optional solution to our linear piecewise 

approximation. 

It now only remains to translate our solution into terms of the original 

variables XI and X2 

Step vi 

XI = I AlkX lk = (0)(0)+ (0)(1)+ (0)(2)+ (0)(3)+ (1)(4) = 4 
k=O 

and 

X 2 = I AU X 2k = (11)(0) + (0)(.5)+ (0)(1.5) + (0)(2) = 0 
k=O 

and the evaluation of the objective function yields 

2.5 QUADRATIC PROGRAMMING TECHNIQUE 

Quadratic programming problems again have linear constraints, but 

the objective function f(x) must be quadratic. Thus, the only 

difference between them and a linear programming is that some of the 
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terms in the objective function involve the square of a variable or the 
:';'A' 

product of two variabl"es. 

We assumed here, that f(x) is concave. So we are going to apply the 

modified simplex method to solve our problem. The quadratic 

programming problem differs from the linear programming problem 

only in that the objective function also includes x~ and XIXj (i :;tj) 

terms. Thus, if we use matrix notation, the problem is to find x so as 

to 

Maximize f(x) = Cx - Y2 x TQX ............................. 2.12 

Subject to 

Ax~ b and x ~ 0 ...................................... 2.13 

Where C is a row vector, x and b are column vectors, Q and A are 

matrices, and the superscript T denotes the transpose. The qij 

(elements of Q) are given constants such that qij = qji (which is the 

reason for the factor of Y2 in the objective function). By performing 

the indicator vector and matrix multiplication, the objective function 

then is expressed in terms of these qi.j, the Cj (elements of C) and the 

variables as follows: 

n II II 

f(x) = Cx- ~ xtQx = I cjx, - ~ I I q"x,x, .................... 2.14 
)= 1 1=1 ) =1 
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If i=j 111 this double summation, then X/Xi = x~ , so - ~ qij is the 

the total coefficient for the product of Xi and xi, 

Consider the following quadratic programming problem gIven as 

example 2.2 below: 

Example 2.2 

Subject to 

In this case 

C = [15 ex I] r ~ 
30J, x = X2 Q = l= ~ 

A=[12J, b = [30J 

Note that 
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? ? 

= q 11xl- + CJ 21X 2X I + (/ I .,X1X 2 + qn xi 

multiplying throu gh by - 1h gives 

-- 1 rQ 2 2 4 4 2 - :2 x x = - X I + X IX 2 - x2 ' 

which is the nonlinear portion of the objective function for this 

example . 

. For this project, the modiiied simplex method will be used to solve 

this quadratic programming problem. 

2.6 THE MODIFIED SIMPLEX METHOD 

The modified simplex method exploits the key fact, with the 

exception of the complementarity constraint, the 

complementarity simply implies that it is not permissible for 

both complementarity variables of any pair to be (non 

degenerate) basic variables (the only variables >0) when (non-

degenerate) BF solutions are considered. Therefore the 

problem reduces to finding an initial BF solution to any linear 
1 

programming problem that has these constraints, subject to this 

additional restriction on the identity of the basic variables. (This 

initial BF solution may be the only feasible solution in this 

case ). 
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Finding such an initial BF solution relatively straightforward. In the 

simple case C
T ~ 0 (unlikely) and b ~ 0, the initial basi~ variables are 

elements of y and v (multiple through the first set of equation by -1) 

so that the desired solution is x=O, u=O, y=_CT
, v=b. Otherwise, you 

need to revise the problem by introducing an artificial variable into 

each of the equations where Cj > 0 (add the variable on the left) or b j 

< 0 (subtract the variable on the left and then multiply through by -1), 

in order to use these artificial variables (call them Zj, Z2, and so on) 

initial basic variables for the revised problem. (Note that this choice of 

initial basic variables satisfies the complimentarily constraint, because 

as nonbasic variables x = 0 and u = 0 automatically). 

Next, use phase 1 of the two-phase method to find a BF solution for 

real problem: i.e., apply the simplex method (with one modification) 

to the following linear programming problem 

Minimize z = :L>, ....................... 2.15 
j 

Subject to the linear programming constraints obtained from the Kuhn 

Tucker conditions, but with these artificial variables included. 

The one modification on the simplex method is the following change 

in the procedure for selecting an entering basic variable. 
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2.7 RESTRICTED ENTRY RULE 
:tA.. 

When you are choosing an entering basic variaqle, exclude from 

consideration any non basic variable whose complimentary variable 

already is a basic variable; the choice should be made from the other 

nonbasic variables according to the usual criterion for the simplex 

method. 

This rule keeps the complimentarily constraint satisfied throughout 

the course of the algorithm. When an optional solution 

x* ,u* ,y* ,v*z,=O ... ,zn=O 

is obtained for the phase 1 problem, x* is the desired optional solution 

for the original quadratic programming problem. Phase 2 of the two

phase method is not needed. 

We shall now illustrate this approach using example 2.1. It will be 

noted that f(xi ,X2) is strictly concave, that is 

4 -4 
Q= 

-4 8 

is positive definite, so the algorithm can be applied. 
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After the needed artificial v.ariables are introduced, the linear 

programming problem to be addressed explicitly by the modified 

simplex method then is 

Minimize Z = ZI + Z2, 

Subject to 

4XI- 4x2 + UI-YI 

-4xl + 8X2 + 2uI 

and 

+ZI = 15 

+Z2 = 30 

+ VI = 30 

The addition complementarity's constraint 

XIYI + X2Y2 + UIVI = 0 

Is not included explicitly, because the algorithm automatically 

enforces this constraint because of the restricted - entry rule. In 

particular, for each of the three pairs of complementary variables-

(XI, YI), (X2' Y2) , (UI' VI), and (U2' V2) whenever one of the two 

variables already is a basic variable, the other variable is excluded as a 

.candidate for the entering basic variables. Remember that the only 

non-zero variables are basic variables. Because the initial set of basic 

variables for the I i near programming problem - Zt,Z2,VI - gives an 
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initial BF solution that satisfies the complementari'ty constraint, there 

is no way that this constraint can be violated by any subsequent BF 

solution. 

Table 2.2.1 - 2.2.4 shows the results of applying the modified simplex 

method to this problem. The first simplex tableau exhibits the initial 

system of equations after converting from minimizing z to 

maximizing -z and algebraically eliminating the initial basic variables 

from row 4. The three iterations proceed just for the regular simplex 

method except for eliminating certain candidates for the entering basic 

variable because of the restricted entry-rule. 

XI X2 UI YI Y2 VI Zl Z2 b -

Zl 4 -4 1 -1 0 0 1 0 15 

Z2 -4 8 2 0 -1 0 0 1 30 

VI 1 2 0 0 0 1 0 0 30 

z 0 -4 -3 1 1 0 0 0 -45 

In the first tableau, UI is eliminated as a candidate its complementary 

variable (VI) already is a basic variable (but X2 would have been 

chosen anyway because -4 < -3). 
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XI X2 UI YI Y2 VI ZI Z2 b 

ZI 2 0 2 -1 -Y2 0 1 Y2 30 

X2 -Y2 1/4 0 -1/8 0 0 118 3 314 

VI 2 0 - Y2 0 14 1 0 - 114 22 Y2 

Z -2 0 -2 1 Y2 0 0 Y2 -30 

In the second tableau, both UI and Y2 are eliminated as candidates 

(because VI and X2 are basic variables), so XI automatically is chosen 

as the only candidate with a negative coefficient in row 4 (whereas the 

regular simplex method would have permitted choosing either XI or UI 

because they are tied for the largest negative coefficient). 

XI X2 UI YI Y2 VI ZI Z2 b 

ZI 0 0 5/2 -1 _ 314 -1 1 314 7Y2 

X2 0 1 118 0 -116 14 0 1116 9 3
/ 8 

XI 1 0 -14 0 118 Y2 0 -118 11 114 

Z 0 0 -5/2 1 314 1 0 14 -7 Y2 

In the third tableau, both YI and Y2 are eliminated (because XI and X2 

basic variables). However, UI is not eliminated because VI no longer a 

basic variable, so U I is chosen as the entering basic variable in the 

usual way. 
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z 

o 

o 

o 

X 2 

o 

o 

o 

o 

o 

o 

Y2 Z2 b 

-2/5 -3/1 0 -2/5 2/5 3/10 3 

1120 -1140 3/10 -1120 1140; 9 

-1110 1120 2/5 1110 -1120 12 

000 1 1 0 

The resulting opti onal solution for this phase 1 problem is XI = 12, 

X2 = 9, u I = 3, wi th the rest of the variables zero. Therefore, the 

optional solution fo r the quadratic programming is (x)'x2)=(l2,9). 

2.8 REMARKS 

It was observed that separable and quadratic programmings 

gave a good account of themselves, and both can be used as 

search-light for finding the global optimum. . It was also 

observed th at the more the variables, the more the number of A;' 

to be considered in the case of separable programming and the 

more the work/computational time one needs. The above 

comments 8re based on the examples 2.1 and 2.2. 
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CHAPTER THREE 

COMPUTER OPTIMIZATION METHOD 

3.1 INTRODUCTION 

In calculus we learnt how to obtain the mInImUm and the 

maximum of a function by setting derivative equal to zero. 

Unfortunately minimization or maximization ' '(optimization) 

problems l'l1countered in industry are not that simple. Usually, 

optimization should take place while satisfying a number of 

constraints imposed on the system. In case where the 

constraints and the function to be optimized are expressed 

analytically, the Lagrangian method of undetermined 

multipliers can be used to obtain the optimum solution. 

3.2 SOLUTION BY LAGRANGIAN MULTIPLIER'S TECHNIQUE 

3.2.1 LAGRANGIAN MULTIPLIERS AND EQUALITY 

CONSTRAINED PROBLEMS 

Before investigating the general nonlinear progr~mming problem, 

it is necessary to first introduce the method of Lagrangian 

multipliers for solving the equality - constrained mathematical 

programming problem. The problem is specified as 
I 
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Maximum z = f(x) = f(Xh X2, ... , xn) .......... ::--:-.... 3.1 

Subject to giCx) = gi(Xh X2, ... , xn) = bi .......... :..... 3.2 

The method of Lagrangian multipliers has been introduced into 3.1 

and 3.2 as follows: 

11/ 

F(X,A)= j(x}t I A,[bi - g,(x)] 3.3 
i=1 

The necessary conditions for a point [X*,A *] 1 = [x* I, X*2, ... ,X*lll A * I, 

A*2, A*m] to maximize F(x, A] are, from theorem 1.1, 

11/ 

OF(X,A) = ~r(x) _ I A, og, (x) = 0 

Ox j oXi i= I ox, 
j=1,2, ... ,n ................... 3.4 

o F( x, A) = b _ g (x) = 0 
OAi I I 

1=1,2, .. ,111 ........•.•••...•••••.••••• 3.5 

In the case where f(x), gl(X), . .. gm(x) are linear in x, if point x* 

satisfies (3.4) and 3.5), it is the maximizing point to the corresponding 

linear programming problem 3.l and 3.2 where (x), gl(X), ... gm(x) are 

linear functions. For the general nonlinear programming problem, it 
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will now be shown why a solution x* to 3.4 and 3~5, which is a local 

maximum ofF(x, A) in (3.3), is also a local maximum for 3.1 and 3.2. 

To demonstrate this result, first assume that n=2 and m= 1 so that the 

(3.1) and (3.2) problem is 

Maximize z=f(XI,X2) ............................. 3.6 

Subject to g1(XI,X2)=b l ...................... ..... 3.7 

If the condition of the implicity function theorem are satisfied, it must 

be possible to write XI in terms ofx2 so that XI = 81 (XI)' The theorem 

then guarantees that 81 (XI) is differentiable. The objective function, 

can be written using 81 (XI) as a univariate function in XI and the (3.6) 

and (3.7) problem is equivalent to the unconstrained problem 

The necessary condition for x~ to be a local optimum off[xi = 81 (XI)] 
IS 

_______ =0 

But recall from differential calculus that the total derivative d/dxl of 

f(xi X2) can be written as 
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But X2 = 8 1 (XI) . If 8 1 (XI) is substituted for X2 i'rr 3.8 and the total 

derivative df/dxl is evaluated at (x~ ,xn, 

3.9 

3.10 

where 8 1(xl) has been substituted for XI in the last term. From (3.10) 

Now substitute the right hand side of 3.11 for d8 1(xl)/dxl in (3.9) 

where d8 1(xl)/dxl is evaluated at (x;',x~). Then 

ogl (x;' ~x;') 
0'(x;' ,x;' ) c~7j'(x;' ,x;') oX

I 

Ox l o.x:2 

3.12 ogl ( x;' ,x~) = 0 ......... . 

rJx2 

and define A I as 
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~:t...A' . 

Then (3.12) can be written as 

1f( x;' ,x;' ) ogl ( x;' ,X;' ) 
-----'~--'- - AI = 0 ........................ 3.13 

Oxl oX2 

Directly from the definition of AI it follows that 

Additionally, (x;' ,x~ ) must satisfy 

( 
(I (I)-b gl X I ,X2 - I ....................................... . 3.15 

Therefore, by using the implicit function theorem, it is possible to 

write the necessary conditions for determining a local maximum to 

(3.6) and (3.7) in the form (3.14) (3.15). 

Now consider the Lagrangian function corresponding to (3.6) and 

(3.7): 

The necessary conditions for maximizing F(x,A) are, from theorem on 

relative (local) maximum 

3.16 

3.17 
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of(x,J. ) :~, 
Ox = b,- gl(X" X2)= 0 ............................. 3.18 

, 

The necessary conditions for a point XO to maximize F(X,A), given by 

3.l6 - 3.18 are identical to the necessary conditions for the equality-
,:" 

:! 
constrained problem in (3.6) and (3.7). 

It is possible to extend the above argument from the n=2 case to the 

general n-variate case to show that the necessary conditions to , 

,I 

maXImIze the Lagrangian function F(X,A) 111 3.3 are equality-

constrained problem 3.1 and 3.2. Before doing this, it IS first 

necessary to modify the definitions of a local and a global maximum 

in the presence of constraints. 

Definition 3.1 

Global maximum (constrained problem). The function f(x) is said to 

take on its global maximum at the point x* if f(x) ::; f(x*) for all X 

(including x*) that belong to the feasible set of points x, where the set 
',' 

X represents the constraint region. , 

~ " 

In the equality-constrained problem for example, x belongs to X if x 

satisfies g j(x) = bj, i= 1,2, ... ,m. 
' .. 

,', 
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Definition 3.2 

Local maximum (constrained problem). The function f(x) is said to 

take on a local maximum at XO if XO belongs to X and there exists an E 

> 0 such that for every x ;f:. XO that belongs to X and is in an E-

neighbourhood of XO , f(x) ~ f(xO). 

Now, suppose that F(x) takes on a local maximum for the equality-

constrained set of feasible points, X, at xO. Furthermore, assume that 

at XO the conditions of the implicit function theorem are satisfied so 

that the rank of G, denoted by r(G), IS m. Then for 

Xli' = [X;:I+ I,X;;'+2' ''' 'X::], there exist in functions (J/~(XIJ ), such that 

Xj = (J; .. (xlJ
) i=1,2, ... ,m .......... . . .. .......... .......... 3.19 

Now consider the total differentials of f(x) and gj(x): 

/I 

~ Of(x) 
df(x) = ~ --dx 

;J" ./ 
./= 1 VA j 

/I 

i=1,2, ... ,m .......... .. 

3.20 

3.21 

. rJf(x" )/ _ 
Sll1ce I rJx/ - 0 , j= 1,2, ... ,n, if XO is a stationary point, 3.20 may 

be written as 
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11 

3.22 

Additionally, since gj(x)=b j, i=1,2, ... ,m 3.21 may be written as 

11 

L og,(x) dx = 0 i=1,2, .. . ,m ........................ 3.23 
Ox J 

.1=1 J 

From the rules for differentiating compound functions, 

11/ 

j=m+l,m+2, ... ,n 3.24 

where h(x) = f(B/x), .. . ,Bm(xo),xo) . It is now possible to proceed as has 

been done for the two-dimensional case. Identify an expression for 

oB,(x) / Oxj in terms of the partial derivatives Og'(%j and substitute 

this expression for oOj(x) / OX, in (3.24); However, it is not possible to 

arrive at the desired result by solving for oOj(x) / ox directly. Introduce 
J 

the Lagrangian multiplier Aj and write 

11/ 

df(x) - L A,dg,(x) 3.25 
,=1 

At the point xo, it follows from (3.22) and (3.23) that (3.25) may b 

written as 
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/I 11/ 
: .~ .. 

Of(xo) og,(xu
) I ,- I dx j = 0 ...................... :.. 3.26 

/ = 1 ox, ;= 1 ox, 

Since the first m variables can be expressed in terms of the remaining 

n-m by (3.19), the set of n-m variables may be though of as 

independent variables in (3.19). This dXj, j=m+ 1, m+2, ... ,n, may be 

considered as independent variables, and if (3.26) is satisfied, it must 

follow that 

11/ 

o!(x () ) _ " 1,. og; (x") == 0 ~ It. j=m+l, m+2, ... ,n . ... 
oXj ;=1 OX, 

3.27 

Now (3.26) can be rewritten excluding the components in the sum for 

j=m+1, 111+2, ... ,n, since by (3.27) that are zero: 

III m 

3.28 
" of(xo) " og,(xo) 
~ --=---.o----!... - ~ dx = 0 

;J., .::Jx / 
/= 1 VAj ;=1 v. j 

Since the dXj, j= 1 ,2, ... ,m are the dependent variables determined 

uniquely by dXj, j=m+ 1, m+2, ... ,n in (3.19) coefficients of dXj, 

j= 1,2, ... ,m, in (3.28) must be identically zero. Thus 

11/ 

1f(xo) _ " 1 og, (X" ) == 0 
~ It. j=1,2, ... ,m ........ . 

ox, ,= 1 ' Ox/ 
3.29 

55 



Combining (3.27) and (3.29), it is seen that the fOllowing condition 

must be satisfied for xo: 

11/ 

c?f(x
U

) _ I A Ogi (X") = 0 j=I,2, ... ,m ....... 3.30 
OX, 1= 1 'ox, 

Additionally, 

i=1,2, ... ,m ......... 3.31 

It is seen that these conditions in 3.30 and 3.31 are identical to the 

necessary conditions for maximizing the Lagrangian function F(X,A) 

given by (3.4) and (3.5). 

In summary, the necessary conditions for XO to be a local maximum to 

the equality - constrained problem 

i=1,2, ... ,m 

Can be generated by defining the Lagrangian function 

11/ 

F(x,A) = f(x) + I Ai[bi - gi(X)] ................... 3.34 
i = 1 

These condition for Xo to be maximizing point to (3.34) are 
• 

11/ 

of(x'' ,A" ) = of (x II ) _ '\' 1" og, (Xli) = 0 
L.. A, j= 1,2, ... ,n .... ox, Ox, i = 1 ox, 3.35 
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i=1,2, ... ,m .... . 3.36 

If reG) = m at xo, then (3.35) and (3.36) will also be the necessary 

condition for XO to be local maximum to (3.32) and (3.33) 

We shall present example 3.1, as an illustration: 

Example 3.1 

Subject to x~ + x; + xi = 27 

The Lagrangian function is 

and the four equations resulting from (3.4) and (3.5) are 

X2X) - 2AI X I = 0 

X IX) - 2 A IX2 = 0 

X IX2 - 2 A IX) = 0 

27 - X2 - X 2 - X 2 - 0 I 2 ) -

-- (2) 

There are eight possible solutions to this set of equations, which are 

the combination of XI = X2 = XJ = ±3 with AI = 3/2,AI = -3/2 in four 

solutions each. 

The maximum of f(x) is not unique; four points in the variable space 

ofxl,x2, and X3 (3,3,3), 3,-3,-3), (-3,3,-3), and (-3,-3,3) will give the 
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maximum value of f(x), which is 27. The other foul' points (-3,-3,-3), 

(3,3,-3), (-3,3,3), and (3,-3,3) will give the minimuh1 off(x) which is 

-27 on the shell of the sphere delineated by equations (1), 

3,3 Behaviour of the functions at the critical point x*, It is necessary to 

investigate the behaviour of the functions f, gl, ... ,gm at the critical 

point x* in a more general way than has been presented above. Denote 

the Y'f and Y'gl the column gradient vectors associated with the 

functions f(x) and gl (x), where 

I [oJ ~r oJ ] vJ = -,-, ... ,-
oXI oX2 ox" 

and 

I [ ogj ogj ogj 1 Vg - - -- --
j - Ox' Ox , ... , Ox 

I 2 " " 

and define the (m+ 1) x n matrix GO and the m x n matrix G by 

Y' a' 01 Y'g'l 

GO= G= 3.37 

Y'g'llI Y'g'm 
Y'f 

respectively 
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The Lagrangian function can be written in a more general form: 
:.~. ' 

11/ 

F"(X,A)= A,,/(X) + L Ai[bi - g,(X)] 
,= 1 

where Ao is either 0 or 1. If f(x) takes on a local maXlmum (or 

minimum) at x*, then x* must satisfy 

11/ 

OF"(X ,A) = 1 0/ _ ~ 1 , og,(x) = 0 
IL L., IL j=1,2, ... ,n .. 3.38 

ox, " ox, '=1 ' ox, 

and 

of''(x A) 
Ox' = bi - g,(x) = 0 i=1,2, ... ,m ........ 3.39 

J 

where Ao = 0 or 1. 

Notice that if Ao = 1, the result are the usual Lagrangian necessary 

condition given in (3.35) and (3.36). In the special cases where x* will 

not satisfy (3.35) and (3.36), x* will satisfy (3.38) and (3.39) when 

3.3.1 SADDLE POINT 

The necessary conditions for (x*, A *) to be an optimizing point also 

are necessary for the Lagrangian function to have a saddle point at 
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(x*, "A *). By a saddle point, it is meant that F(x, "A):'isa maximum with 

respect to x and minimum with respect to "A: 

F(x, "A*) ~ F(x*, "A*) ~ F(x*, "A) 

and [x*, "A *) is a global saddle point if 

Sup F(x, "A *) = F(x*, "A *) = InfF(x*, "A) 

"A "A 

Note that global saddle point will also be sufficient if f(x) is a concave 

function and the constraints glx) = b i i=1,2,3, ... ,m form a convex set. 

3.4 COMPUTATIONAL ALGORITHM 

The Lagrangian procedure outlines in the development of the Kuhn -

Tucker conditions may be directly applied in a computational 

algorithm that will guarantee the global maximum of the nonlinear 

programming problem. 

The Lagrangian solution method involves the following steps: 

Step I 

Find the unconstrained maximum of f(x). Frequently, by inspecting 

the function, it is apparent that the unconstrained maximum will not 

be feasible, so that this step may be deleted. If this solution is feasible, 
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it will be the global maximum,' and there is no need to proceed to the 

steps. 

Step II 

Solve the Lagrangian function based only on the m - s equality 

constraints gi(X) = bj, i = s + 1, ... ,m. If this solution satisfies the 

remaining constrnints, it will be the global maximum of f(x) and the 

process may be stopped. 

Step III 

Add one of the inequality constraints to the Lagrangian function in 

. Step II treating it as if it were active. Solve this Lagrangian system. 

If the solution satisfies the remaining s-l constraints, stop. Otherwise, 

drop the current inequality constraints fail to yield a feasible solution 

when treats individually as equality constraints, proceed to step IV. 

Step IV 

Repeat the process by now adjoining pairs of inequality constraints to 

the Lagrangian function in step II, treating them as active constraints. 

Continue until a feasible solution to the s-2 remaining constraints is 
i 

encountered or all C; = s!/ 2!(s - 2)! pairs have been exhausted. If the 

latter occurs, proceed to Step V. 
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Step V 

Continue the process taking all C; combinations for a = 3,4, ... s until a 

feasible solution is encountered. 

In what follows we shall present example 3.2 as an illustration of 

Lagrangian algorithm 

The problem is 

2xI + X2 ~ 18 

Subject to XI + 2 X2 ~ 16 

XI , X2~ O 

CR. C. Pfaffenberger, D. A. Walker) 

'f b 

Fig. 3.1 Graphic solution to example 3.1 
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From the graphic representation of the problem gl'ven in fig 3.1, it is 

apparent that the solution occurs at the intersection of the two lines 

2x I + X2 = 18 and x I + 2X2 = 16. The Lagrangian algorithm will now 

be applied to verify this conjecture and to illustrate the technique. 

Step I 

The unconstrained global maximum from inspection of f(XI,X2) occurs 

at (11,6), which clearly is not feasible. 

Step II 

From the Lagrangian function using the constraint x I + 2X2 = 16. 

The solution to (1) is XI = 7.5, X2 = 4.25, AI = 7, and 11.2 = o. 

Since the point (7.5, 4.25) is not feasible, the process continues. 

Step III 

Form the Lagrangian function using the constraint 2xI + X2 = 18. 

63 



OF;(X ,A ) ( ) 
:J = - 2 XI - 11 - 2A2 = 0 
UX I 

:'~ ...... 

OF;(X,A) = -8(x - 6)- A = 0 
Ox 2 2 

2 

(2) 

OF;(X ,A ) 
---=--'---"-- = 18 - 2x - X = 0 OA I 2 

2 

The solution to (2) is XI = 6.3, X2 = 5.4, AI 0, and 11,2 = 4.8. 

Since (6.3, 5.4) also is not feasible, the process continues. 

Step IV 

Form the Lagrangian function using both constraints XI + 2X2 = 16 and 

(3) 

The solution to (3) is XI = 6.67, X2 = 4.67, AI = 4.2 and 11,1=2.23. The 

point (6.67, 4.67) is the intersection of the two lines and hence is 

feasible. Therefore, the global maximum occurs at the point 

X* = (6.67, 4.67), and f(x*) is -25.82. 
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Notice that the nonnegative constraints have been ignored,although 

technically they should have been incorporated in the solution 

process. However, figure 3.1 illustrates that they will not participate in 

the global maximization of f(x). 

In the above problem if it is desired to minimize f(Xl,X2) rather than 

maximize this function, the nonnegative constraints obviously would 

now play an important role. Indeed, by inspecting the minimizing 

point (Xl,X2) would be (0,0). 

We shall present example 3.3 as an illustration of Lagrangian 

algorithm 

Example 3.3 

The problem is 

XI + X2 ~ 4 

Subject to x~ + x~ = 4 

x"x2 ~ 0 

(Same as above) 
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~--~I----~-----+-----~~------------+· ~ 

Fig. 3.2 graphic Solution to Example 3.3 

The Lagrangian method will be used to solve this problem also. 

Step I 

The unconstrained maXlmum from inspection of f(XI,X2) occurs at 

(4,4), which is not feasible. 

Step II 

From the Lagrangian function using the constraint XI + X2 = 4 

O}<~ (X , A) = -2(x - 4)- A = 0 ox I I 
I 

(1) OF; (X, A) = -2(x - 4)- A = 0 
Ox 2 I 

2 
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, 
The solution to (1) is XI = X2 = 2, ,{ 1= 4, and ,{2 = 0 

Since (2,2) is not teasible, the process continues. 

Step III . 

From the Lagrangian function using the constraint X I
2 + xi = 4 . 

.......................... .. (2) 

The solution to (2) is XI = X2 =.J2, ~ = 0, and ~ = 1.83 

Since (.J2, .J2,) is feasible, the maximum is f (.J2, .J2,). 

F rom the graphic representation of the problem displayed in Fig. 3.2, 

It is clear that this point is the global maximum. 
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3.5 REMARKS 

It was observed that the Lagrangian multiplier's method gives 

the best optimum value for nonlinear problems and also gives 

the global optimum value all the time. And it is therefore the 

best method among the three considered in this research/work. 

We therefore recommended that a program be written for 

Largrangi clll multiplier's method, which would now form the 

appendi x (l( the end of this project. The output of this appendix 

(code) wi II form part of chapter four. The above remarks are 

based on the three examples considered in this chapter. 
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CHAPTER FOUR 

COMPUTER TECHNIQUE FOR LAGRANGIAN 

MULTIPLIER'S METHOD 

4.1 INTRODUCTION 

We considered the output of a computer code (Lagrangian code) in 

this chapter. Here, we used the code to solve a particular example in 

chapter 3, that is, Example 3.2 and we are able to see that the code 

worked perfectly well for this particular example. It can therefore be 

use for other problems as well. In this chapter, we have psuedocode 

and flowchart representations, which tend to simplify the working of 

the Lagrangian code. 

4.2 PSUEDOCODE REPRESENTATION 

STEP I 

INPUT OBJECTIVE FUNCTION F(x) AND CONSTRAINTS gi 

i=l, 2, 3, ... , m. TI-IEN 

STEP II 

ADD OBJECTIVE FN f(x) and CONSTRAINTS gi TOGETHER TO 
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STEP III 

IF NO CONSTRAINT(S) GIVEN, THEN FIND PARTIAL 

DERIV ATIVES OF OBJECTIVE FN, F(x), W.r.t x, OTHERWISE 

III 

FIND PARTIAL DERIVATIVES OF F = f + L,1;g; w.r.t x, A and 
1=1 

EQUATE BOTH THE DIFFERENTIALS TO ZEROS. 

STEP IV 

CONVERT THE DIFFERENTIALS RESULTING FROM III 

ABOVE TO MATRIX, AX=B 

STEP V 

PERFORM ROW OPERATION (GAUSS-JORDAN METHOD) ON 

IV ABOVE 

STEP VI 

EVALUATE THE DECISION VARIABLE Xi, i=1,2, ... n FROM 

STEP V ABOVE 

STEP VII 

SUBSTITUTE THE DECISION VARIABLES Xi INTO OBJECTIVE 

FN, f(x) 
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STEP VIII 

PRINT NUMERICAL VALUES OF THE DECISION VARIABLES 

Xi, i=1,2, ... ,n AND ALSO PRINT NUMERICAL VALUE OF 

OBJECTIVE FN, f(x) 
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FLOWCHART FOR LAGRANGIAN MULTIPLIER'S METHOD 

Yes 

of . 
-&0t= 1,2, ... n 

, 

START 

ENTER 08J. FN 
fAND 
CONSTRAINTS 

III 

F=f+ LA.,g, 

111=0 
? 

CONVERT TO 
MATRIX FORM 
AX = 8 

PERFORM ROW 
OPERATION 

EVALUATE xi,J=1,2, ... n 

No 

of . 
:J -..ot= 1,2, ... n 
ux· , 
of . 
O;{~O,t= 1,2, ... m 

9 
PRINT NUM. 
VALUE OF xi 
PRlNTNUM. 
VALUE OF f 

STOP 



:~. -

4.3 OUTPUT OF COMPUTER (LAGRANGIAN) CODE 

Here, we have solution to the Example 3.2 in chapter 3, using the 

Lagrangian code in the Appendix of this project and the output is as 

shown on the next page: 
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Objective Function ~x1"'2+22)(1-4>:2"'2+48x2-265 

Constraint Add 

-x1·2)(2+ 16 
-2)(1-)(2+18 

Maximize 

-xl "'2+22xl-4x2"'2+48x2-26S-xl *xll-2x2"'xll + 16xll-2xl*xl2-x2*xL2+ 18xL2 

-2x1" 1+22·1xL1-2xL2 
·8)(2" 1 +48·2)(L ,-, xL2 
·1)(1-2x2+16 
-2)(1-1)(2+18 

I r::::::::::':¢K:::::::::::r1 
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:< 1 :·6.666667 
x 2 ... ·4.666667 

f:·25.88889 
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REMARKS 

The chapter consists of Psuedocode; flowchart and output of the 

Lagrangian code on Example 3.2. The output of the code on Example 

3.2 agreed with the results of Example 3.2 solved manually. The code 

in this project can solve some nonlinear programming problem 

(quadratic in nature) with large number of variables and linear 

constraints. 

, 
" 
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CHAP,TER FIVE 

5.0 ANALYSIS OF RESULTS, RECOMMENDATION AND 

CONCLUSION 

5.1 INTRODlJCTION 

This chapter deals with analysis, recommendation and 

conclusion of the whole project. So the chapter is divided into 3 
, 

sections as stated above. 

5.2 ANALYSIS 

The separable programmmg and Quadratic programmmg 

methods (I re used to find approximations to Nonlinear 

programming problems. And we are able to get good results 

for al the examples considered. But, looking through the 

procedures to be followed when separable programming 

method is to be adopted, we are able to see that Linearization of 

the objecti \'e function or constraints (or both) must take place, 

before the modified simplex method is now used to find both 

the decisioll variables and objective value, while in the case of 

the Quadratic programming technique the Kuhn Tucker 

technique is adopted in order to get linear programming 

problem be lore the modified simplex method is applied on it. In 
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applying modified simpl~x method, the two-phase method is 

adopted in order to finds the basic feasible solution. 

The Lagrangian's method is both necessary and sufficient 

conditions for the global optimum to be discovered. The 

method adopts the uses of partial derivatives of the sum of the 

objective i'unction and constraints, F(x), with respect to the 

I 

decision v' lriables, Xi, and the Lagrangian multipliers', Ai' and 

the resulting differentials equates to zeros. Therefore the 

resulting equation is now solve using the Row reduction 

(Gauss-Jordan) method. 

5.3 RECOMMENDATION 

The prognll11 in this project, is recommended for use only for 

the Quadratic problem (i.e. Quadratic objective) because 

provision is not made for the methodes) that s?lves nonlinear 

differential s, that may have resulted from the partial derivatives 

of the objective function plus the constraints F(x). The program 

(code) in the Appendix can be used to solve ap the problems 

(Examples) in both chapter 2 and 3 as well. 
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CONCLUSION 

In concluding this project work, we can say that among all the 

techniques adopted so far the most effective and reliable one is the 

Lagrangian multiplier's method, which is quiet straight forward, easy 

to adopt, and uses less compilation time. 

The code in this project is only for Lagrangian multiplier's method, 

which can be used to solve any problems considered in this project. 

And the output 0 f Example 3.2 in chapter three is a good illustration 

of this statement. And in addition, to this, it does give the global 

optimum value fo r the objective function. 
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APPENDIX (LAGRANGIAN MULTIPLIER'S CODE) 

'User Interface Module Form 1 
Public Constraints As Collection 
Public Objective As Expression 

Private Sub AddCommand Click() 
Lis21.AddItem Text2.Text 
End Sub 

Pr~vat~ Sub Commandl Click() 
Dim Cons As Expression 
Set Objective = New Expression 
Set Cohstraints = New Collection 

If Textl.Text = Empty Then 
MsgBox "you must provide the objective func t i o n to c ontinue ", 

vbInformation 
Else 

Obj e ctive . Value = Textl.Text 
'Constraintl.Value = Text2.Text 
Text2 . Text = Diff(Objective, "xl " ) . Value 'text2 .Te xt 
For i = 0 To Listl.ListCount - 1 

Set Cons = New Expression 
Cons . Value = Listl . List(i) 
Constraints . Add Cons 

Next i 
m = Listl . ListCount 
N = GetNoVars 
Dimension = m + N 
ReDim Matrix(l To Dime nsion , 1 To Dimension + 1) 
ReDim Differentials (1 To Dime nsion) 
For i = 1 To Dimension 

Set Differentials (i) = Ne w Expression 
Next i 
~sgBox AddUp . Value 
Form2 . Show 

End If 
'Form2.Show 
End Sub 

Private Sub Text2_Click() 
Set Objective = New Expression 
Objecti~~ . Value = Text2.Text 
Text2 =' Diff(Objective, "x3") .Value 
End Sub 
Function GetNoVars() 
Dim A As SuhExp 



Dim B As String 
Dim C As Collection 
Set C = Objective.Split(I+-") 
For Each A In C 

If InStr(B, A.Var) = 0 The n 
B = B + II " + A.Var 
GetNoVars = GetNoVars + 1 

End If 
Next A 
End Function 



'User Interface Module Form 2 
Private Sub Form Click() 
Form3.Show 
End Sub 

Private Sub Form_Load() 
Dim A As Expression 
Set A = AddUp 
For i = 1 To N 

Print Diff(A, "x" & LTrim(Str(i))) .Value 
Differentials (i) .Value = Diff(A, "x" & LTrim(Str(i))) .Value 

Next i 
For i = 1 To m 

Print Diff(A, "xL" & LTrim(Str(i))) .Value 
Differentials(i + N) .Value = Diff(A, "xL" & 

LTrim(Str(i))) .Value 
Next i 
End Sub 



'User Interface Module Form 3 
Private Sub Form_Load() 
Dim A As SubExp 
Dim C As Collection 
Grid.Rows = Dimension 
Grid.Cols = Dimension + 1 
For i = 0 To Dimension - 1 

For j = 0 To Dimension 
Grid.Row = i 
Grid.Col = j 
Grid.Text = 0 
Mat r i x (i + I, j + 1) 0 

Next j 
Next i 
For i = 1 To Dimension 

Set C = Differentials (i) .Split("+-") 
For Each A In C 

' If A.Var <> Empty Then 
Grid.Row = i-I 
Grid.Col = GetNumber(A.Var) - 1 
Grid.Text = A.Multiplier 

:.~ . 

If Grid.Text = Empty Then Grid.Text = 0 
Matrix(i, GetNumber(A.Var)) = A.Multiplier 

'End If 
Next A 

Next i 
End Sub 

Private Sub Form Resize() 
Grid.Width = Width 
Grid.Height = Height 
End Sub 

Public Function GetNumber(s As String) As Integer 
For i = 1 To Len(s) 

If IsNumeric(Mid(s , i , 1)) Then Exit For 
Next i 
GetNumber = Val(Right(s, Len(s) - i + 1)) 
If Mid(s, 2, 1) = "L" Then GetNumber = GetNumber + N 
If GetNumber = 0 Then GetNumber = N + m + 1 
End Function 

Private Sub Grid Click() 
Form4 .Show 
End Sub 



'User Interface Module Form 4 
Private Sub Command1_Click() 
Iterate 
Update 
End Sub 

Private Sub Form_Load() 
Grid.Rows 
Grid . Cols 
Update 
End Sub 

Dimension 
Dimension + 1 

Private Sub Form_Resize() 
Grid . Width = Width 
Grid . Height = Height - 1200 
Command1 . Top = Height - 1180 
End Sub 

Sub Update() 
For i = 1 To Dimension 

For j = 1 To Dimension + 1 
Grid . Row = i - 1 
Grid . Col = j - 1 
Grid . Text = Matrix(i , j ) 

Next J 
Next i 
End Sub 
Sub Iterate ( ) 
' row 1 by element 1 , 1 
doom = 1 
Do 

t = Matrix(doom, doom) 
For i = 1 To Dimens ion + 1 

Matrix (doom , i) = Matrix(doom, i) / t 
Next i 

For Row = 0 + 1 To Dimension 
If Row <> doom Then 
t = Matrix (Row , doom) 
For Col = 1 To Dimension + 1 

:,~ . . 

Matrix(Row , Col) = Ma t rix (Row , Col) - t * Matrix (doom, 
Col) 

Next Col 
End If 

Next Row 
doom = doom + 1 

Loop Until doom Dimension + 1 



End Sub 



'Standard Module 
Public Matrix() As Single 
Public Differentials() As Expression 
Public Dimension As Integer 
Public N As Integer 'no of variables 
Public m As Integer 'no of constraints 
Public Function AddUp() As Expression 
Dim StrTemp As String 
StrTemp = Form1.0bjective.Value 
Dim Con As Expression 
i = 1 
For Each Con In Form1.Constraints 

If Left (Multiply(Con, "xL" & LTrim(Str(i))), 1) = "+" Or 
Left (Multiply(Con, "xL" & LTrim(Str(i))), 1) = "-" Then 

StrTemp StrTemp & Multiply(Con, "xL" & LTrim(Str(i))) 
Else 

StrTemp 
LTrim (Str (i) ) ) 

End If 
i = i + 1 

Next Con 

StrTemp & "+" & Multiply(Con, "xL" & 

Set AddUp 
AddUp.Value 
End Function 

New Expression 
StrTemp 

Function Multiply(m As Expression, L As String) As String 
Dim t As Collection 
Set t = m.Split("+-") 
Dim S As SubExp 
For Each S In t 

If Left(S.Value, 1) = "+" Or Left(S.Value, 1) 
If IsNumeric(S.Value) Then 

Multiply Multiply & S.Value & L 
Else 

"_" 

Multiply Multiply & S.Value & "* " & L 
End If 

Else 
If IsNumeric(S.Value) Then 

Multiply Multiply & "+" & S.Value & L 
Else 

Multiply Multiply & "+" & S.Value & "*" & 

End If 
End If 

Next S 
End Function 

Then 

L 

Public Function Diff(E As Expression, Var As String) As Expression 
Dim Temp As Collection, t As Collection 



Dim E1 As Expression 
Set E1 = New Expression 
Dim sE As SubExp 
Dim D As String 
Set Temp = New Collection 
Set Temp = E.Split("+-") 
Set t = New Collection 
For Each sE In Temp 
If D <> Empty And Sgn(sE.Multiplier) 
'If Left(D, 1) = II II Then 

D = "+" + LTrim(D) 

'End If 
If InStr(sE . Value , Var) Then 

If InStr(sE.Var, "*") Then 
E1.Value = sE.Value 
Set t = E1.Split("*") 

:~. 

<> -1 Then D D & "+" 

If t(2) .Var = Var Then D 
t(2) .Multiplier) & t(l) .Var Else D 
t(2) .Multiplier) & t(2) .Var 

D & Str(t(l) .Multiplier * 
D & Str(t(l) .Multiplier * 

Else 
If sE.Exponent - 1 <> 0 Then 

D = D & sE.Mu1tiplier * sE.Exponent & sE.Var & IIAII & 
Str(sE.Exponent - 1) 

Else 
D = D & sE.Multiplier * sE.Exponent '& sE.Var ' & IIAII 

& Str(sE.Exponent - 1) 
End If 

End If 
Else 

If D <> Empty Then 
If Right(D, 1) = "+" Then D 

End If 
End If 
Next sE 
Set Diff = New Expression 
Diff.Value = D 
End Function 

Left(D, Len(D) - 1) 

Function Eliminate (Exp As String, Var As String) As String 
i = InStr(Exp, Var) 
If i = 0 Then 

Eliminate Exp 
Else 

Eliminate 
Len (Var) + 1) 
End If 
End Function 

Left (Exp, i - 1) + Right (Exp, Len(Exp) - i -



'Class Module Expression 
Public Value As String 
Public Function Evaluate (Bindings 
Dim 
Dim 
Set 
For 

subs As Collection 
E As SubExp, B As Binding 
subs 
Each 
For 

= Split ("+_") 

E In subs 
Each B In Bindings 
If InStr(E.Value, 

Exit For 
End If 

Next B 

B.Var) 

As Collection) 

> 0 Then 

Evaluate 
Next E 

Evaluate + Eval(E, B.Value) 

End Function 

:L.>t. .• 

As Single 

Public Function Split (Tokens As String) As Collection 
Dim noToks As Integer, i As Integer, Pos As Integer 
Dim SubExp1 As SubExp 
Dim Exp As String 
Exp = Value 
noToks = Len(Tokens) 
Dim Toks() As String 
ReDim Toks(noToks) 
For i = 1 To noToks 

Toks(i) = Mi d( Tokens , l, 1 ) 
Next i 
Set Split = New Collection 
Pos = FindToken(Toks, noToks, Exp) 
While Pos <> 0 

Set SubExp1 = New SubExp 
SubExp1.Value = Left (Exp, Pos - 1) 
Exp = Right (Exp, Len(Exp) - Pos + 1) 
Split.Add SubExp1 
Pos = FindToken(Toks, noToks, Exp) 

Wend 
Set SubExp1 = New SubExp 
SubExp1.Value = Exp 
Split.Add SubExp1 
End Function 

Private Function FindToken(T() As String, no As Integer, Exp As 
String) 
Dim f As Integer 
FindToken = InStr(2, Exp, T(l)) 
For i 1 To no 

f = InStr(2, Exp, T(i)) 



If FindToken = 0 Then FindToken = f ~. 

If f < FindToken And f <> 0 Then FindToken f 
Next i 
End Function 
Private Function Eval(E As SubExp, V As Single) As Single 
Eval = E.Multiplier * V A E.Exponent 
End Function 
Public Function RightSide() As Single 
Dim Temp As Collection, SubE As SubExp 
Set Temp = Split ("+_") 

For Each SubE In Temp 
If SubE.Var = Empty Then 

RightSide = -SubE.Multiplier 
Exit For 

End If 
Next SubE 
End Function 



1 

'Class Mod~le SubExp 
Public Value As String 
Public Function Var() As String 
If InStr(Value, "x") = 0 Then 

Var = "" 
Else 

Var = Mid(Value, InStr(Value, "x"), InStr(Value + 
InStr (Value, "x")) 
End If 
End Function 
Public Function Exponent() As Single 
Dim i As Integer 
i = InStr(Value, """) 
If i = 0 Then 

Exponent = 1 
Else 

Exponent Right (Value, Len(Value) - i) 
End If 
End Function 
Public fUnGt.lon Multipl ier () 1\:::, Si ng1 8 
If Var <> Empty Then 

"1\,, 

"x") - 1)) 

"1\") _ 

Multiplier = Val (Left (Value, InStr(Value, 
If Not IsNumeric(Left(Value, InStr(Valu e , 

If Left (Value, InStr(Value, " x ") - 1) 
Multiplier -1 

"x") - 1)) Then 
"-" Then 

Else 
Multiplier 1 

End If 
End If 

ElseIf InStr(Value, """) <> 0 Then 
Multiplier Left (Value, InStr(Value, " " ")) 

Else 
Multiplier = Val (Value) 

End If 
End Function 


