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ABSTRACT 

This thesis investigated the effect of temperature dependent thermal conductivity and 

diffusion coefficient on the filtration combustion in a wet porous medium. The model which 

relies on several assumptions and based on the conservation of total mass, chemical species 

and energy written in transient state mode of operation which governed the phenomenon is 

presented. The existence of unique solution of the problem was examined by actual solution 

method. The properties of solution were investigated. The coupled nonlinear governing 

equations were solved simultaneously for the temperature and concentration field 

analytically via parameter expanding method, direct integration and eigenfunction 

expansion technique. The influence of dimensionless parameter such as scaled thermal 

conductivity 1 , species diffusion coefficient 1D , Frank kamenetskii parameter peclet mass 

number emp
 
on the filtration combustion was investigated. He thesis established that the 

maximum temperature is attained when  =0.5 for fixed time t. Simulation results also 

revealed that high temperature front created by combustion; the oxygen molar fraction, 

vapor molar fraction, passive gas molar fraction, molar concentration of the solid fuel and 

molar concentration of liquid depend appreciably on the values of the parameters involved. 
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CHAPTER ONE 

1.0                                                 INTRODUCTION 

1.1 Background to the Study 

Air injection leading to in situ combustion is generally considered applicable to 

recovery of heavy oils because it causes a significant reduction in oil viscosity. 

However, it can also be used to recover light oils by mechanisms such as combustion 

gas drive recovery, distillation and thermal expansion. The air injection process usually 

refers to high pressure air injection (HPAI), whereas the term in situ combustion 

traditionally has been used for heavy oil reservoirs (Negar et al., 2014). The method of 

air injection has also been reported to increase recovery rates of light oils (Negar et al., 

2015) in this case; thermal expansion and gas drive promoted by the oxidation reaction 

are responsible for enhancing the recovery of oil. The reaction that takes place between 

light oil and injected oxygen occurs at lower temperatures, bounded by the boiling 

point; it is termed low temperature oxidation (LTO). Aldushin et al. (1997) described 

Filtration combustion as the propagation of exothermic reaction waves in a porous 

medium through which there is gas filtration. The porous solid is composed of both 

reactive and inert components. Filtration combustion covers a wide range of natural and 

technological combustion processes in porous media having a common mechanism of 

reaction front propagation. The principal feature of this mechanism is the delivery of 

gaseous reactants to the reaction front by filtration from the surrounding environment, 

where it reacts with the solid reactants. Filtration can be caused by two different 

mechanisms, referred to as forced and natural. In the former case an external force 

pushes the gas into the porous matrix, and is often used in technological processes while 

in the natural filtration combustion, the gas flow is induced by combustion process 

itself, which is due to consumption of gas in the reaction. 
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Filtration combustion (FC) waves involve a heterogeneous exothermic reaction front 

propagating through a porous solid that reacts with a gas carrying oxidizer flowing 

through its pores (Aldushin, 2003). Filtration combustion involves exothermic reactions 

within the matrix of a porous media (Micheal and Janet, 1999) the solid may be a 

condensed fuel with an oxidizer filtrating through the matrix, or the solid may be inert 

with the filtrating gas consisting of both fuel and oxidizer. In either case, the 

characteristics of the reaction front differ substantially from homogeneous combustion. 

The propagation of combustion fronts in porous media is a subject of interest to a 

variety of applications, ranging from in situ combustion for the recovery of oil to 

catalyst regeneration, coal gasification, waste incineration, calcinations and 

agglomeration of ores, smoldering, and high-temperature synthesis of solid materials. 

The percolation of the oxidizing fluid plays a crucial role; therefore, such processes are 

often referred to generically as Filtration Combustion (FC). While these problems may 

differ in application and context, they share a common characteristic that the reaction 

involves a stationary fuel reactant. The fuel may pre-exist as part of a solid matrix or, as 

in the case of in situ combustion, may be created in an inert porous medium by 

processes preceding the combustion region, such as vaporization and low temperature 

oxidation (Yucel and Yannis, 2003). Filtration combustion FC is a process of 

importance to a variety of applications, from the recovery of oil from oil reservoirs to 

the processing of materials (Chuan and Yannis, 2005). The process involves the 

combustion of a stationary fuel in a porous medium through the injection of an 

oxidizing agent. It can also serve as an example of a strong exothermic chemical 

reaction taking place in a confined geometry. When ignition occurs at the gas inlet, 

reaction and thermal fronts propagate in the direction of the injected gas, and the 

process is referred to as forward FC. When it is on the opposite side, the fronts 
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propagate in the direction opposite to the gas flow, and the process is reverse FC. The 

combustion process is a subject of interest to a variety of applications, ranging from in-

situ combustion for the recovery of oil to catalyst regeneration, coal gasification, waste 

incineration, calcinations and agglomeration of ores, smouldering, and high-temperature 

synthesis of solid materials (Oliveira and Kaviany, 2001).The use of air injection as a 

method of enhanced oil recovery has been explored for a long time.  In this method, part 

of the oil burns with the injected air, increasing the well temperature and lowering the 

oil viscosity, thus enhancing its mobility. Traditionally, air injection has been used to 

recover heavy oils, oils with a very high viscosity. In this case, chemical reactions crack 

the oil into a non-volatile part (coke) and volatile components, which are expelled from 

the high temperature region (Endo and Mailybaev, 2017).    

1.1.1 Eigenfunction expansion method 

The method of eigenfunctions is closely related to the Fourier method, or the method of 

separation of variables, which is intended for finding a particular solution of a 

differential equation. When using these methods, we are often concerned with special 

functions being solution of an eigenfunction problem. The method of separation of 

variables was proposed by d’Alembert(1749). In the 18th century it was used by Euler, 

Bernoulli, an lagrange for solving the problem of oscillation of a string. Early in the 19th 

century, Fourier developed this method in considerable detail and applied it to the heat 

conductivity problem. 

1.1.2 Existence and uniqueness of solution  

When a problem is formulated, we need to examine the solution(s) so as to predict the 

behavior of such solution(s). Moreover, for a problem that has two solutions, any design 

from such a problem could behave either way.  Thus the necessity for uniqueness of 

solution is as important as the existence of solution. 
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Generally, there are some rules that must be satisfied before concluding that an equation 

has a unique solution. The rules make use of first order differential equation. Thus for 

an ordinary differential equation of order greater than one, the equation will be re-

written as a system of first order equations. 

1.2 Statement of the Problem 

The applications of filtration combustion includes, but are not limited to, such important 

processes as smouldering and self- propagating high-temperature synthesis (SHS). 

Smouldering and SHS are both complicated processes involving chemistry; diffusive 

and convective transport of reactants, products, and heat through a porous medium; heat 

losses to the environment by radiation and convection (wahle et al., 2013). For this 

reason, it is necessary to increase our knowledge about this phenomenon. Hence the 

need for this research work. 

1.3   Aim and Objectives of the Study  

1.3.1 Aim  

The aim of this research work is to provide an analytical solution to a mathematical 

model describing Filtration Combustion in a wet porous medium taking into 

consideration the temperature dependent thermal conductivity and diffusion coefficient. 

1.3.2 Objectives 

The objectives are to: 

i. Formulate a mathematical model governing the phenomena; 

ii. Establish the criteria for the existence and uniqueness of solution of the 

model;   

iii. Obtain the analytical solution using parameter expanding method and    

eigenfunctions expanding technique; and     
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iv. Provide the graphical representation of the results obtained. 

1.4    Significance of the Study  

Filtration combustion, where air is injected into a porous medium containing fuel, is a 

method of enhancing oil recovery and has numerous applications in technology and 

nature. The essence of the research work is to study the effect of temperature dependent 

thermal conductivity and diffusion coefficient on the process. 

1.5   Scope and Limitation of the Study  

The essence of the research work is to study the process of filtration combustion in a 

porous taking into consideration the temperature dependent thermal conductivity and 

diffusion coefficient. The work is limited to the mathematical modeling of the 

phenomenon.   

1.6     Definition of Terms 

Combustion: is the exothermic oxidation of fuel. In the case of a carbon-base 

compound, the products are primarily carbon dioxide, water and energy (Olayiwola, 

2015). 

Convection: is the transfer of heat by mass motion of a fluid such as air or water when 

heated fluid is caused to move away from the sources of heat, convening the energy. 

Differential Equations: An equation involving derivatives of one or more dependent 

variables with respect to one or more independent variables is called a differential 

equation. In physics, engineering, economics and other sciences mathematical models 

are built that involve rates at which things happen. These models are equations and the 

rates are derivatives. Equation containing derivatives are called differential equations. 
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Diffusion: is the movement of atoms or molecules from an area of higher concentration 

to an area of lower concentration.  

Diffusion coefficient: is a measure of rate of material transport as a result of the 

random thermal movement of particles. 

Filtration: is any mechanical, physical or biological operations that separate solids 

from fluids (liquid or gases) by adding a medium through which only the fluid can pass.  

Heat: Is the transfer of the kinetic energy from one medium or object to another. Such 

energy transfer can occur in three ways: radiation, convection and conduction. The 

standard unit of heat is calorie (cal). 

Heat Capacity: The heat capacity of a defined system is the amount heat (usually 

express in calories, kilocalories, or joules) needed to raise the system’s temperature by 

one degree (usually express in Kelvin or celcius). 

In-situ combustion: is basically injection of an oxidizing gas (air or oxygen- enriched 

air) to generate heat by burning a portion of resident oil. 

Ordinary Differential Equation: is a differential equation involving ordinary 

derivatives of one or more dependent variables. 

Order of Differential Equation: the order of differential equation is the order of the 

highest derivative appearing in the equation. 

Degree of a Differential Equation: is given by the exponent that is raises the highest 

derivative that occurs in the equation. 

Partial Differential Equation: is an equation involving partial derivatives of one or 

more dependent variables with respect to more than one independent variable. 
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Specific Heat capacity: Is the amount of heat required to change a unit mass (or unit 

quantity, such as mole) of a substance by one degree in temperature. 

Temperature: Is defined as the degree of hotness or coolness of a human subject or an 

object over a period of time. It is measured in Celsius, Fahrenheit and Kelvin. 

Thermal conductivity: Thermal conductivity is a material property describing the 

ability to conduct heat. Thermal conductivity can be defined as “the quantity of heat 

transmitted through a unit thickness of a material – in a direction normal to a surface of 

unit area due to a unit temperature gradient under steady state conditions”.  

Mathematical modeling: is the process of using various mathematical structures-

graphs, equations and diagrams to represent real world situations. The process of 

developing a mathematical model is termed mathematical modeling. A mathematical 

model may help to study the effects of different components, and to make a prediction 

about a behavior (Bellomo et al., 1995). 
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CHAPTER TWO 

2.0                                           LITERATURE REVIEW 

2.1 Related Literature 

Since last few decades, Filtration Combustion has been studied extensively; these 

include the work of Olayiwola (2015) who formulated a model for forward propagation 

of a combustion front through a porous medium with reaction involving oxygen and a 

solid fuel. Dependence of thermal conductivity and diffusion coefficient on temperature 

and gas composition was neglected. Existence and uniqueness of solution of the model 

was proved by actual solution method and the show that temperature is a non-

decreasing function of time. The system of partial differential equations, describing the 

problem under consideration was transform into a boundary value problem of coupled 

ordinary differential equation and the numerical technique was used to solve the 

reduced system. The heat transfer and species consumption are significantly influence 

by the Frank-kamenetskii number was observed by the researcher.  Grigori et al. (2012) 

studied the asymptotic approximation of long time solution for low temperature 

filtration combustion by considering a combustion process when air is injected into a 

porous medium containing immobile fuel and inert gas. They focus on the case when 

the reaction is active for all temperatures, but heat losses were neglected and developed 

a method for computing the traveling wave profile in the form of an asymptotic 

expansion and derived its zero-order approximation. Numerical simulations were 

performed in order to validate the asymptotic formulae. Chapiro and Marchesin (2015) 

studied the effect of thermal losses on traveling waves for in-situ combustion in porous 

medium. The purpose of research is to identify waves that arise in one-dimensional 

models of combustion in porous media, and to understand how the waves fit together in 
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solutions of Riemann problems. Diffusion effects and the dependence of gas density on 

temperature was disregard. They simplify the proof of uniqueness and existence of the 

travelling wave solution. Michael and Janet (1999) developed a model of filtration 

combustion in a packed bed by investigating the low velocity filtration combustion 

reaction of lean methane/air mixtures flowing through a packed bed and compare to 

experimental results. The reaction is represented with a complete methane/air kinetic 

mechanism. Their results for solid temperature agree with the experiments for a mixture 

with an equivalence ratio 0.15 which is consistent with the existing theory on filtration 

combustion and discovered that gas-phase transport is not important to wave 

propagation at this condition. They discovered that gas-phase dispersion is important 

only at higher equivalence ratios. Olayiwola et al. (2014) presented a mathematical 

model for forward propagation of combustion front with Arrhenius kinetics through a 

porous medium with the reaction involving oxygen and solid fuel. They assume that the 

solid fuel depends on the space variable and that the amount of gas produced by the 

reaction is equal to the amount consumed by it. Existence and uniqueness of solution of 

the model was proved by actual solution and provided the analytical solution of the 

model through Homotopy perturbation method and represented the results graphically. 

They discovered that the Frank-kamenestsskii number on the heat transfer and species 

consumption is of great importance. Mailybaev et al. (2013) formulated a model for 

recovery of light oil by medium temperature oxidation. They considered two phase flow 

possessing a combustion front when a gaseous oxidizer (air) is injected into porous rock 

filled with light oil. The temperature of the medium is bounded by the boiling point of 

the liquid and, thus, relatively low. They disregarded the gas phase reactions. They 

observed that the initial period, the recovery curve is typical of gas displacement but 

after a critical amount of air has been injected the cumulative oil recovery increases 



10 
 

linearly until all oil has been recovered, they conclude that oil recovery is independent 

of reaction rate parameters but recovery is much faster than for gas displacement and 

among their findings is that oil recovery is faster when the injected pressure is higher.  

Bruining et al. (2009) developed a model of filtration combustion in wet porous 

medium. By considering a porous rock cylinder thermally insulated on the side filled 

with inert gas, liquid and solid fuel. An oxidizer was injected. They assumed that the 

amount of liquid is small, so its mobility is negligible, and that only a small part of the 

available space is occupied by solid fuel and liquid, so that changes of rock porosity in 

the reaction, evaporation, and condensation processes can be neglected. They neglected 

the dependence of thermal conductivity and diffusion coefficients on the temperature 

and gas compositions. They discovered that when the diffusion is dominant at the 

reaction layer, it lead the oxygen to extinction and also  discovered two possible 

sequences of waves, and the internal structure of all waves was characterized. They 

compared the analytical results with direct numerical simulations. Their model Equation 

is as shown in equation (2.1) to equation (2.4) 
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As the solid fuel and the liquid do not move, their concentrations satisfy the equations 

for reaction and evaporation respectively as shown in equation (2.5) to equation (2.6) 
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(2.6)  

Where  [mole/m3] is the molar density of gas, T [k] is the temperature, gc  is the heat 

capacity of rock, u [m/s] is the Darcy velocity of gas, resT is the initial reservoir 

temperature,  [w/mk] is thermal conductivity of the porous medium, ( rQ and eQ ) 

[J/mole] are the heats enthalpies of combustion and evaporation of the solid and the 

liquid at reservoir temperature, Y  is the molar fraction of oxygen, X  is the vapor 

molar fraction in the gas phase (mole of vapo/mole of gas), Z  is the molar fraction of 

passive gas in the gas-phase,   is the porosity, 𝑛𝑓 Is the molar concentration of solid 

fuel,  𝑛𝑙 Is the molar concentration of liquid, xD [m2/s] is the diffusion coefficients for 

vapor of porous medium, yD  [m2/s] is the diffusion coefficients for oxygen of porous 

medium,  𝐷𝑧 [m2/s] is the diffusion coefficients for passive gas in the gas-phase of 

porous medium, f  is the moles of solid fuel, o  is the moles of oxygen and g  is the 

moles of gaseous product. 

This research work extended the work of Bruining et al. (2009) by incorporating 

temperature dependent thermal conductivity and diffusion coefficient. We shall provide 

the criteria for the existence and uniqueness of solution of the equations, examine the 

properties of solution and provide the analytical solution of the model by parameter 

expanding and eignfunction expansion methods. 
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CHAPTER THREE 

3.0                                      MATERIALS AND METHODS 

3.1 Mathematical Formulation 

Following Bruining et al. (2009), we consider a porous rock cylinder thermally 

insulated on the side and filled with vaporizable liquid, inert gas, and combustible solid 

fuel. An oxidizer (air) is injected. The liquid can be water or light oil, and the 

combustible solid can be coke. We assume that the amount of liquid is small, so its 

mobility is negligible. We assume that only a small part of the available space is 

occupied by solid fuel and liquid, so that we can neglect changes of rock porosity in the 

reaction, evaporation, and condensation processes. We assume that the solid, gas, and 

liquid are in local thermal equilibrium, so they have the same temperature. Based on the 

above assumptions, a one-dimensional model with time t and space coordinate x is 

considered the energy equation governing the system is giving by equation (3.1):  
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      (3.1) 

We consider a single component liquid (water), and denote by X  its vapor molar 

fraction in the gas phase (mole of vapor/mole of gas). The gas has several components: 

oxygen, vapor, and passive (inert and combusted) gas. We denote the molar fractions of 

oxygen and passive gas in the gas-phase by Y  and Z , respectively. Then, we write the 

mass balance equations for the components X , Y , Z  as equation (3.2) to equation 

(3.4): 
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As the solid fuel and the liquid do not move, their concentrations satisfy the equations 

for reaction and evaporation respectively giving by equation (3.5) to equation (3.6): 
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(3.6) 

Where;  

 [mole/m3] is the molar density of gas 

T [k] is the temperature 

resT is the initial reservoir temperature 

gc  is the heat capacity of rock 

u [m/s] is the Darcy velocity of gas 

 [w/mk] is thermal conductivity of the porous medium 

( rQ and eQ )[J/mole] are the heats enthalpies of combustion and evaporation of the solid 

and the liquid at reservoir temperature 
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rK [1/s] is the pre exponential parameter.  

Y  is the molar fraction of oxygen 

X  is the vapor molar fraction in the gas phase (mole of vapo/mole of gas)  

Z  is the molar fraction of passive gas in the gas-phase, 

𝑛𝑓 Is the molar concentration of solid fuel  

 𝑛𝑙 Is the molar concentration of liquid 

r
E [J/mole] is activation energe 

R  = 8.314[J/mole k] is the ideal gas constant 

bT  is the boiling temperature of the liquid at atmospheric pressure atmp
 

  is the porosity 

xD [m2/s] is the diffusion coefficients for vapor of porous medium 

yD  [m2/s] is the diffusion coefficients for oxygen of porous medium 

  𝐷𝑧 [m2/s] is the diffusion coefficients for passive gas in the gas-phase of porous 

medium 

f  is the moles of solid fuel  

 o  is the moles of oxygen  

g  is the moles of gaseous product 
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3.2 Coordinate Transformation 

The balance of mass can be eliminated by the means of streamline function (Olayiwola, 

2015) giving by equation (3.7) 
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Then coordinate transformation is giving by equation (3.8) to (3.9) 
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We make the additional assumptions that
gc , D , and  are constant. Although these 

assumptions could be relaxed in the future, they considerably simplify the equations. 

The equations (3.1) to equation (3.4) can be simplified as equation (3.10) to equation 

(3.13): 
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The initial and boundary conditions were formulated as follows: 
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Initial condition is giving by equation (3.14): 
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Boundary Condition is giving by equation (3.15): 
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3.3   Method of Solution  

Here, we shall establish the criteria for the existence and uniqueness of solution of the 

equations and solve the equations analytically. 

We let  and D to be constants, then equation (3.10) to equation (3.13) reduces as 

shown in equation (3.16) to equation (3.19). 

  


































X
RT

P

c

knQ
Yn

c

KQT

c
TT

t
ee b

er

TTR

Q
atm

g

le
RT

E

f

g

rr

g

res

11

2

2





               (3.16)         



17 
 

































X
RT

P
kn

X
D

t

X
e b

e

TTR

Q
atm

l

11

22

2




                                                       (3.17)                     

e RT

E

fr

r

YnK
Y

D
t

Y 










022

2






                                                                        (3.18) 

e RT

E

frg

r

YnK
Z

D
t

Z 















22

2

                                                                         (3.19) 

Multiplying equation (3.17) by 
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0 , we obtain equation (3.20) 
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Multiplying equation (3.16) by 0 , we obtain equation (3.21) 
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Multiplying equation (3.18) by 
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, we obtain equation (3.22) 
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Multiplying equation (3.19) by 
gc

0 , we obtain equation (3.23) 
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Adding equation (3.20) to equation (3.23), we have equation (3.24) 
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Let D =
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Then equation (3.24) yield equation (3.25) 
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With the initial and boundary conditions as equation (3.26)  
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From equation (3.25) and equation (3.26) , we obtain equation (3.27)    to equation 

(3.39):             
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we seek a solution of the form 
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Integrating equation (3.34), we obtain equation (3.36) 
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This led us to the theorem 3.1 and its proof. 
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3.3.1 Existence and uniqueness of Solution 

Theorem 3.1: let 
gc

D



  and resT = constant. Then there exists a unique solution of 

equation (3.10) to equation (3.13) satisfy Equation (3.14) and equation (3.15). 

Proof:  

Let 
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  and resT = constant and 
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 Then, equation (3.10) to equation (3.13) reduces to equation (3.40) to (3.41) 
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Using eigenfunction expansion technique, we obtain the solution of equation (3.40) and 

equation (3.41) as equation (3.42) to (3.46).  
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(3.46) 

Hence, there exist unique solutions of equation (3.10) to equation (3.13). This 

completes the proof. 

We shall return to our original equations, that’s equation (3.1) to equation (3.6) 

satisfying equation (3.14) and equation (3.15) and consider an alternative method for 

the existence of unique solution of the problem. 

Here, the dependence of thermal conductivity and diffusion coefficient on the 

temperature is taken into account by the mathematical expression giving by equation 

(3.47) and equation (3.48): 
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Where 0  is the initial thermal conductivity, 0D is the initial diffusion coefficient, and 

0T  is the initial temperature of the medium. 

Substituting equation (3.44), equation (3.45), equation (3.46) and equation (3.47) into 

equation (3.5) and equation (3.6), equation (3.10) to equation (3.13), we have equation 

(3.49) to equation (3.53) 
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 3.3.2   Non – dimensionalization 

 

Here we shall non-dimensionalized equation (3.49) to equation (3.53) using the 

following dimensionless variables as shown in equation (3.54) 
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Then, we have equation (3.55) 
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Now,

                                                                                                                                              

eeee RT

E

RT

E

RT

E

RT

E rrrr

00




 

ee TTR

E

RT

E rr














11

00  

ee TT

TT

R

E

RT

E rr










 


 0

0

0  

 ee T

T

RT

E

RT

E rr















 



10

0

00  

eee RT

E

RT

E rr








 10                                                                                                      (3.56) 
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Where; 
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Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into 

equation (3.49), that is 
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Dropping prime, we have equation (3.58)  
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 Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into 

equation (3.50), that is 
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Dropping prime, we have equation (3.59) 
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Substituting equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into 

equation (3.52), that is 
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Dropping prime, we have equation (3.60) 

   

   










































e

e

f

tnP

n

nZbXab

nBABAa
Y

D
t

Y em















1
221

1

11111

1

sin)(1
22

            (3.60) 
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Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into 

equation (3.52), that is 
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That is 
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Dropping prime, we have equation (3.61) 
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Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into 

equation (3.53), that is 
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Dropping prime, we have equation (3.62) 
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Where; 
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Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into 

equation (3.6), that is 
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Dropping prime, we have equation (3.63) 
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P
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Substituting equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into 

equation (3.15), that is 
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Dropping prime, we have equation (3.64) 
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Dropping prime, we have equation (3.65) 
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   10,X                                                                                                             (3.65) 

Also 
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Dropping prime, we have equation (3.66) 
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Dropping prime, we have equation (3.67) 
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Also 
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That is 
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Dropping prime, we have equation (3.68) 
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And 
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111  llresllres nnnn  

Dropping prime, we have equation (3.69) 

1ln                                                                                                                      (3.69) 

Substituting Equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into 

equation (3.15), that is 
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Dropping prime, we have equation (3.70) 
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Dropping prime, we have equation (3.71) 
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Dropping prime, we have equation (3.72) 
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Dropping prime, we have equation (3.73) 
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Dropping prime, we have equation (3.74) 
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Dropping prime, we have equation (3.75) 
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Dropping prime, we have equation (3.76) 
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Dropping prime, we have equation (3.77) 

  0,1 tZ                                                                                                                    (3.77) 

Therefore, the dimensionless equations together with initial and boundary conditions are 

giving as equation (3.78) to equation (3.84): 
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3.3.3 Properties of Solution 

To examine the properties of solution, we consider the following asymptotic expansion  

 

of temperature of   and concentrations ,,,, innandnZYX lf  as shown in equation 

(3.85) .
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Then, we have equation (3.86) 
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Substituting equation (3.85) and equation (3.86) into equation (3.78) to (3.81), we have 

equation (3.87) to equation (3.90)
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Collecting like power of 
0 and 

1  in equation (3.87) to equation (3.90), we have 

equation (3.91) to equation (3.100): 
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                                                       (3.100) 

This question of existence and uniqueness of solutions to these equations has been 

addressed by Ayeni (1978) who consider a similar set of equations and showed among 

other results that existence and uniqueness are somewhat well known. In his work, he 

studied the following system of parabolic equation (3.101) 
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 nxxxxx

xhxv
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,...,,,
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0,

321
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0









 

(S.1):    xgxf ,0  and )(0 xh  are bounded for .nRx Each has at most countable 

number of discontinuities. 

(S.2): hgf ,,   satisfies the uniform Lipschitz condition 

        GtxvvuuMvutxvutx  ,,,,,,,,,, 212121222111   

Where;  

  .0,:,  tRxtxG n

 

Our proof of existence of unique solution of the system of parabolic equation (3.91) to 

equation (3.95) will be analogous to his proof. 

Theorem 3.2: There exists a unique solution         tZandtYtXt ,,,,,,, 0000   of 

equation (3.91), equation (3.92), equation (3.93) and equation (3.94) which satisfy 

equation (3.95). 

In the proof we shall need the following Lemma: 
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Lemma 3.3 ( Ayeni (1978)) 

Let  0,0,0,0 jhgf  and  jhgf ,,,  satisfy    2.1. SandS  respectively. Then there 

exists a solution of equation (3.91), equation (3.92), equation (3.93) and equation (3.94). 

Proof of Lemma: see Ayeni (1978) 

Proof of theorem 3.2 

We rewrite equation (3.91), equation (3.92), equation (3.93) and equation (3.94) as 

equation (3.102) to equation (3.105) 
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Where;
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Ignoring the second term at the right hand side, the fundamental solution of equation 

equation (3.91), equation (3.92), equation (3.93) and equation (3.94) are (see Toki and 

Tokis (2007)). 
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 are lipschitz continues. Hence by Lemma 3.1, the result follows. This completes the 

proof. 
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3.3.4   Analytical Solution 

Ayeni (1982) has shown that e 



1  can be approximated as   221   e . For 

convenience, we assume an approximation as giving in equation (3.106)  

 

 211  ee                                                                                                     (3.106) 

Substituting equation (3.106) into equation (3.78) to equation (3.83), we have equation 

(3.107) to equation (3.114) 
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Let 10    and ,, 11  mm   2m , 

 32 m ,  43 m ,  5m                                                                                   (3.113) 

Such that  
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Where h.o.t read Higher Order Terms 

Substituting equation (3.113) and equation (3.114) into equation (3.107) to equation 

(3.112), we have equation (3.115) to (3.120) 
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Collecting like power of   in equations (3.115) to equation (3.120), we have equation 

(3.121)    to equation (3.32) 
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Considering equation (3.125), that is  
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 Integrating, we have  
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Applying initial condition, we have equation (3.133) 

  110,0  ccn f   

  10,0 fn                                                                                                           (3.133) 

Considering equation (3.126), that is  
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 Integrating, we have  

  ctnl ,0   

Applying initial condition, we have equation (3.134) 
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Considering equation (3.121), that is            
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Solving equation (3.121), we have equation (3.135) to equation (3.147) 
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Differentiating equation (3.136) with respect to t, we have  
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Differentiating equation (3.136) with respect to , we have  
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Differentiating equation (3.136) twice with respect to t, we have  

2

2

2

2

2

2

2

2

2

0

2

0






























 sss
 

Therefore equation  (3.136) becomes 
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To solve equation (3.137), we shall consider the following problem: 
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We assume the solution of the form                                                                                                                 
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Comparing equation (3.137) and equation (3.138) 
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Therefore  
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Considering equation (3.122), that is  
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Substituting equation (3.147) into (3.121), we have 
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Comparing equation (3.138) and equation (3.148) 
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Integrating equation (3.150), we have equation (3.151) 
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Integrate equation (3.152) with respect to . We have equation (3.153) 
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Therefore, we have equation (3.154)  
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considering equation (3.122), that is              
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Solving equation (3.122), we have equation (3.155) to equation (3.147) 
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Differentiating equation (3.156) with respect to t, we have  
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Differentiating equation (3.156) with respect to , we have  
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Differentiating equation (3.156) twice with respect to t, we have  
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Therefore equation  (3.156) becomes 
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Comparing equation (1.157) and (1.138) 

  su  , x , 1Dk  , 0 ,   0, txf ,   1xf , 1L  

Then  

   dnbn  
1

0
sin12                                                                                          (3.158) 

Integrating, we obtain equation (3.156) 

n
bn

2
                                                                                                                    (3.159) 

But   0,  nFotf   

Then  

e
t

L

n
D

n
n

s

2

12 













                                                                                                     (3.160) 
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Considering equation (3.123), that is             
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Comparing equation (1.123) and (1.138) 
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Considering equation (3.132), that is 
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Substituting equations (3.134), (3.147) and equation (3.154) into (3.132), we have 
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Integrating equation (3.167) with respect to t, we have 
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Apply   000,1  cnl    

Therefore , we have equation (3.169) 
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Substituting equation (3.133), equation (3.147), equation (3.154), equation (3.166) into 

equation (3.131) 
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Integrating equation (3.170) with respect to t yields equation (3.171) 
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Now, differentiating equation (3.147), we have equation (3.172) 
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Then equation (3.172) becomes 
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Comparing equation (3.136) and equation (3.172), we have equation (3.174) 
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Integrating equation (3.175) with respect to , we have equation (3.176) 
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Integrating equation (3.177) with respect to , we have equation (3.178) 
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Differentiating equation (3.15), we have Equation (3.180) 
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Comparing equation (3.138) and equation (3.181), we have equation (3.182) to equation 

(3.186): 
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Integrating with respect to , we have equation (3.183) 
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Integrating equation (3.184) with respect to , we have equation (3.185) 
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Differentiating equation (3.162) with respect to , we have equations (3.18) and (3.188)
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Comparing equation (3.138) and (3.189) 
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Integrating with respect to , we have  
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Integrating equation (3.192) with respect to , we have equation (3.193) 
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Therefore, we obtain equation (3.194) 
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Differentiating equation (3.162) with respect to , we have equation (3.195)
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Then equation (3.130) yields equation (3.196) 
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Integrating equation (3.198) with respect to , to obtain equation (3.199) 
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Integrating equation (3.200) with respect to , we have equations (3.201) and (3.202): 
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Therefore, we obtain equation (3.202)  

     ntZtZ
n

n sin,
1

11 






                                                                                       (3.202)
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CHAPTER FOUR 

4.0                                         RESULTS AND DISCUSSIONt 

The systems of equations describing filtration combustion with temperature dependent 

thermal conductivity and diffusion coefficients in wet porous medium is solved 

analytically using parameter expanding method and eigenfunctions expansion 

technique. Analytical solution given by equations (3.122)-(3.133) are computed for the 

following parameters values of 1 =0.4, 1D =0.3,  =0.4, emp =1 using computer 

symbolic algebraic package MAPLE 17. 

Where,  

1 = scaled thermal conductivity 

1D = species diffusion coefficient 

 = Frank-kamenesskii parameter 

emp = peclet mass number 
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The results obtained from the method are shown in Figure 4.1 to 4.32.  

Figure 4.1: shows the effect of scaled thermal conductivity 1 on the temperature. It is 

observed that the temperature increases and later decreases along distance , but 

decreases with increase in scaled thermal conductivity. 

 

 

Figure 4.1: Relation between temperature  t,  and distance   at various values of 

scaled thermal conductivity 1 . 

Figure 4.2: shows the effect of scaled thermal conductivity 1 on the temperature. It is 

observed that the temperature decreases with time t, and decreases with increase in 

scaled thermal conductivity. 
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Figure 4.2: Temperature  t,  –time t relationships at various values of scaled thermal 

conductivity 1 . 

Figure 4.3: shows the graph of temperature  t,  against distance    and time t for 

different values of scaled thermal conduct 1 .  It is observed that the temperature 

increases and later decreases along distance with increase in time, but decreases with 

increase in scaled thermal conduct 1 .   

 

 

Figure 4.3: Relation among temperature  t, , time t and distance   at various values 

of scaled thermal conduct 1 . 
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Figure 4.4: shows the effect of scaled thermal conductivity 1 on the vapour molar 

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase 

increases and later decreases along distance , but increases with increase in scaled 

thermal conductivity. 

 

Figure 4.4: Relation between vapour molar fraction in the gas phase  tX ,  and distance 

  at various values of scaled thermal conductivity 1 . 

Figure 4.5: shows the effect of scaled thermal conductivity 1 on the vapour molar 

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase 

decreases with time t, but increases with increase in scaled thermal conductivity. 
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Figure 4.5: vapour molar fraction in the gas phase  tX ,  – time t relationships at 

various values of scaled thermal conductivity 1 . 

Figure 4.6: shows the graph of vapour molar fraction in the gas phase  tX ,  against 

distance    and time t for different values of scaled thermal conduct 1 .  It is observed 

that the vapour molar fraction in the gas phase increases and later decreases along the 

distance with increase in time, but increases with increase in scaled thermal conduct 1 . 

 

Figure 4.6: Relation among vapour molar fraction in the gas phase  tX , , time t and 

distance   at various values of scaled thermal conduct 1 . 
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Figure 4.7: shows the effect of scaled thermal conductivity 1 on the molar concentration 

of solid fuel. It is observed that the molar concentration of solid fuel decreases and later 

increases along distance , but increases with increase in scaled thermal conductivity 1 . 

 

Figure 4.7: Relation between molar concentration of solid fuel  tn f ,  and distance   

at various values of scaled thermal conductivity 1 . 

Figure 4.8: shows the effect of scaled thermal conductivity 1 on the molar concentration 

of solid fuel. It is observed that the molar concentration of solid fuel increases with time 

t, but increases with increase in scaled thermal conductivity 1 . 
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Figure 4.8:  molar concentration of solid fuel  tn f ,  – time t relationships at various 

values of scaled thermal conductivity 1 . 

Figure 4.9: shows the graph of molar concentration of solid fuel  tn f ,  against 

distance    and time t for different values of scaled thermal conduct 1 .  It is observed 

that the molar concentration of solid fuel increases along the distance with increase in 

time, but increases with increase in scaled thermal conduct 1 . 

 

Figure 4.9: Relation among molar concentration of solid fuel  tn f , , time t and 

distance   at various values of scaled thermal conductivity 1 . 
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Figure 4.10: shows the effect of species diffusion coefficient 1D  on the temperature. It is 

observed that the temperature increases and later decreases along distance , but 

decreases with increase in species diffusion coefficient 1D . 

 

Figure 4.10: Relation between temperature  t,  and distance   at various values of 

species diffusion coefficient 1D . 

Figure 4.11: shows the effect of species diffusion coefficient 1D  on the temperature. It 

is observed that the temperature decreases with time t, but decreases with increase in 

species diffusion coefficient 1D . 
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Figure 4.11: Temperature  t,  –time t relationships at various values of species 

diffusion coefficient 1D .  

Figure 4.12: shows the effect of species diffusion coefficient 1D  on the vapour molar 

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase 

increases and later decreases along distance , but decreases with increase in species 

diffusion coefficient 1D . 

 

 

Figure 4.12: Relation between vapour molar fraction in the gas phase  tX ,  and 

distance   at various values of species diffusion coefficient 1D . 
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Figure 4.13: shows the effect of species diffusion coefficient 1D  on the vapour molar 

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase 

decreases with time t, but decreases with increase in species diffusion coefficient 1D . 

 

Figure 4.13: vapour molar fraction in the gas phase  tX ,  – time t relationships at 

various values of species diffusion coefficient 1D . 

Figure 4.14: shows the graph of vapour molar fraction in the gas phase  tX ,  against 

distance    and time t for different values of species diffusion coefficient 1D .  It is 

observed that the vapour molar fraction in the gas phase increases and later decreases 

along the distance with increase in time, but decreases with increase in species diffusion 

coefficient 1D . 
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Figure 4.14: Relation among vapour molar fraction in the gas phase  tX , , time and 

distance   at various values of species diffusion coefficient 1D . 

Figure 4.15: shows the effect of species diffusion coefficient 1D  on the molar fraction of 

oxygen. It is observed that the molar fraction of oxygen increases and later decreases 

along distance , but decreases with increase in species diffusion coefficient 1D . 

 

Figure 4.15: Relation between molar fraction of oxygen  tY ,  and distance   at 

various values of species diffusion coefficient 1D . 
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Figure 4.16: shows the effect of species diffusion coefficient 1D  on the molar fraction of 

oxygen. It is observed that the molar fraction of oxygen decreases with time t, but 

decreases with increase in species diffusion coefficient 1D . 

 

Figure 4.16:  molar fraction of oxygen  tY ,  – time t relationships at various values of 

species diffusion coefficient 1D . 

Figure 4.17: shows the graph of molar fraction of oxygen  tY ,  against distance    and 

time t for different values of species diffusion coefficient 1D .  It is observed that the 

molar fraction of oxygen increases and later decreases along the distance with increase 

in time, but decreases with increase in species diffusion coefficient 1D .         
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Figure 4.17: Relation among molar fraction of oxygen  tY , , time t and distance   at 

various values of species diffusion coefficient 1D . 

Figure 4.18: shows the effect of species diffusion coefficient 1D on the molar fraction of 

passive gas in the gas phase. It is observed that the molar fraction of passive gas in the 

gas phase increases and later decreases along distance , but decreases with increase in 

species diffusion coefficient 1D . 

 

Figure 4.18: Relation between molar fraction of passive gas in the gas phase  tZ ,  and 

distance   at various values of species diffusion coefficient 1D . 
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Figure 4.19: shows the effect of species diffusion coefficient 1D on the molar fraction of 

passive gas in the gas phase. It is observed that the molar fraction of passive gas in the 

gas phase decreases with time t, but decreases with increase in species diffusion 

coefficient 1D . 

 

Figure 4.19:  molar fraction of passive gas in gas phase  tZ ,  – time t relationships at 

various values of species diffusion coefficient 1D . 

Figure 4.20: shows the graph of molar fraction of passive gas in the gas phase  tZ ,         

against distance    and time t for different values of species diffusion coefficient 1D .  It 

is observed that the molar fraction of passive gas in the gas phase increases and later 

decreases along the distance with increase in time, but decreases with increase in 

species diffusion coefficient 1D .          
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Figure 4.20: Relation among molar fraction of passive gas in the gas phase  tZ , , time 

t and distance   at various values of species diffusion coefficient 1D . 

Figure 4.21: shows the effect of species diffusion coefficient 1D on the molar 

concentration of solid fuel. It is observed that the molar concentration of solid fuel 

decreases and later increases along distance , but decreases with increase in species 

diffusion coefficient 1D . 

 

Figure 4.21: Relation between molar concentration of solid fuel  tn f ,  and distance   

at various values of species diffusion coefficient 1D . 
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Figure 4.22: shows the effect of species diffusion coefficient 1D on the molar 

concentration of solid fuel. It is observed that the molar concentration of solid fuel 

increases with time t, but decreases with increase in species diffusion coefficient 1D . 

 

 

Figure 4.22:  molar concentration of solid fuel  tn f ,  – time t relationships at various 

values of species diffusion coefficient 1D . 

Figure 4.23: shows the graph of molar concentration of solid fuel  tn f ,  against 

distance    and time t for different values of species diffusion coefficient 1D .  It is 

observed that the molar concentration of solid fuel decreases and later increases along 

the distance with increase in time, but decreases with increase in species diffusion 

coefficient 1D . 
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Figure 4.23: Relation among molar concentration of solid fuel  tn f , , time t and 

distance   at various values of species diffusion coefficient 1D . 

Figure 4.24: shows the effect of species diffusion coefficient 1D on the molar 

concentration of liquid. It is observed that the molar concentration of liquid decreases 

and later increases along distance , but increases with increase in species diffusion 

coefficient 1D . 

 

Figure 4.24: Relation between molar concentration of liquid  tnl ,  and distance   at 

various values of species diffusion coefficient 1D . 
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Figure 4.25: shows the effect of species diffusion coefficient 1D on the molar 

concentration of liquid. It is observed that the molar concentration of liquid increases 

with time t, but increases with increase in species diffusion coefficient 1D . 

 

Figure 4.25:  molar concentration of liquid  tnl ,  – time t relationships at various 

values of species diffusion coefficient 1D . 

Figure 4.26: shows the graph of molar concentration of liquid  tnl ,  against distance    

and time t for different values of species diffusion coefficient 1D .  It is observed that the 

molar concentration of liquid decreases and later increases along the distance with 

increase in time, but increases with increase in species diffusion coefficient 1D . 
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Figure 4.26: Relation among molar concentration of liquid  tnl , , time t and distance 

  at various values of species diffusion coefficient 1D . 

Figure 4.27: shows the effect of Frank-kamenesskii parameter on the temperature. It is 

observed that the temperature increases and later decreases along distance  , but 

increases with increase in Frank-kamenesskii parameter .   

 

Figure 4.27: Relation between temperature  t,  and distance   at various values of 

Frank-kamenesskii parameter . 
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Figure 4.28: shows the effect of Frank-kamenesskii parameter on the temperature. It is 

observed that the temperature decreases with time t, but inecreases with increase in 

Frank-kamenesskii parameter . 

 

Figure 4.28: Temperature  t,  –time t relationships at various values of Frank-

kamenesskii parameter . 

Figure 4.29: shows the graph of temperature  t,  against distance    and time t for 

different values of Frank-kamenesskii parameter . It is observed that the temperature 

increases and later decreases along distance with increase in time, but increases with 

increase in Frank-kamenesskii parameter . 

 



107 
 

 

Figure 4.29: Relation among temperature  t, , time t and distance   at various values 

of Frank-kamenesskii parameter . 

Figure 4.30: shows the effect of peclet mass emp on the molar concentration of solid fuel. 

It is observed that the molar concentration of solid fuel decreases along distance , but 

increases with increase in peclet mass emp . 

 

Figure 4.30: Relation between molar concentration of solid fuel  tn f ,  and distance   

at various values of peclet mass emp . 
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Figure 4.31: shows the effect of peclet mass emp on the molar concentration of solid fuel. 

It is observed that the molar concentration of solid fuel increases with time t, but 

increases with increase in peclet mass emp . 

 

 

Figure 4.31:  molar concentration of solid fuel  tn f ,  – time t relationships at various 

values of peclet mass emp . 

Figure 4.32: shows the graph of molar concentration of solid fuel  tn f ,  against 

distance    and time t for different values of peclet mass emp .It is observed that the 

molar concentration of solid fuel increases oscillate along the distance with increase in 

time, but increases with increase in peclet mass emp . 
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Figure 4.32: Relation among molar concentration of solid fuel  tn f , , time t and 

distance   at various values of peclet mass emp . 

4.3 Comparison of Results 

From the literature review, Bruining  et al. (2009) in their studies, they discovered that 

when the diffusion is dominant at the reaction layer, it lead the oxygen to extinction. 

These agreed with Figure 4.15: shows the effect of species diffusion coefficient 1D  on 

the molar fraction of oxygen. It is observed that the molar fraction of oxygen increases 

and later decreases along distance , but decreases with increase in species diffusion 

coefficient 1D  and Figure 4.16: shows the effect of species diffusion coefficient 1D  on 

the molar fraction of oxygen. It is observed that the molar fraction of oxygen decreases 

with time t, but decreases with increase in species diffusion coefficient 1D . 

Figure 4.27: shows the effect of Frank-kamenesskii parameter on the temperature. It is 

observed that the temperature increases and later decreases along distance  , but 
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increases with increase in Frank-kamenesskii parameter , Figure 4.28: shows the effect 

of Frank-kamenesskii parameter on the temperature. It is observed that the temperature 

decreases with time t, but inecreases with increase in Frank-kamenesskii parameter  

and Figure 4.29: shows the graph of temperature  t,  against distance    and time t 

for different values of Frank-kamenesskii parameter . It is observed that the 

temperature increases and later decreases along distance with increase in time, but 

increases with increase in Frank-kamenesskii parameter . These agreed with Olayiwola 

(2015) who formulated a model for forward propagation of a combustion front through 

a porous medium with reaction involving oxygen and a solid fuel and Olayiwola et al. 

(2014) presented a mathematical model for forward propagation of combustion front 

with Arrhenius kinetics through a porous medium with the reaction involving oxygen 

and solid fuel. Both researchers observed that with the increase in Frank-kamenesskii 

parameter , solid phase temperature decreases as time increases and decreases along 

the distance but increases with increase in Frank-kamenesskii parameter . 
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CHAPTER FIVE 

5.0                                   CONLUSION AND RECOMMENDATIONS 

5.1    Conclusion 

We have formulated and solved analytically a mathematical model of filtration 

combustion with temperature dependent thermal conductivity and diffusion coefficient 

in a wet porous medium. The existences of unique solution of the problem were 

examined by actual solution method. The properties of solution were investigated. We 

solved the model equations analytically using parameter expanding method, direct 

integration and eigenfunction expansion technique. Finally, the graphical summaries of 

solutions were provided. 

5.2 Contribution to Knowledge 

From the studies made on this research work, we achieve the following: 

i. Formulation of model of filtration combustion with temperature dependence 

thermal conductivity and diffusion coefficient in a wet porous medium. 

ii. Existence and uniqueness of solution by actual solution approach. 

iii. Analytical solution by parameter expanding method and eigenfunctions 

expansion method. 

iv. We provide the Graphical summaries of system responses 

5.3    Recommendation 

We study one-dimensional problem in the present research, interested researchers may 

wish to study two-dimensional problems. Therefore, it is recommended for further 

research. 
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