TIILE PAGE

COMPUTERIZATION OF MEASURES OF DISPERSION

By

ABDULHAKEEM MOHAMMED
PGD/MCS/2003/2004/1124
A PROJECT SUBMITED TO THE DEPARTMENT OF MATHEMATICS/ COMPUTER SCIENCE.

IN PARTIAL FUL FILMENT OF THE REQIUEMENTS
FOR THE AWARD OF A POSTGRADUATE DIPLOMA
IN COMPUTER SCEINCE.
FEDERAL UNIVERSITY OF TECHNOLOGY,
MINNA, NIGER STATE

November 2004

DECLARATION

I ABDULHAKEEM MOHAMMED with registration number PGD/MCS/2003/2004/1124 hereby declare that this project work is carried out by me under the guidance of my supervisor Professor K.R ADEBOYE

ABDULHAKEEM MOHAMMED

SIGNATURE

DATE

CERTIFICATION

I hereby certify that this project is the original work of MR. MOHAMMED ABDULHAKEEM. PGD/MCS/2003/2004/1124. Submitted for the award of POSTGRADUATE DIPLOMA IN COMPUTER SCIENCE OF FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA.

PROFESSOR K.R ADEBOYE PROJECT SUPERVISOR

MR L.N EZEAKO

HEAD OF DEPARTMENT

EXTERNAL EXAMINER

DATE -
\qquad
DATE

DEDICATION

This project is dedicated to my beloved late father ALH MOHAMMED SANI AKANBI IBRAHIM, whom up to this moment I am still enjoying the fruit of what he had labour, may Almighty Allah reward him with the best paradise (Amin).

ACKNOWLEDGEMENT

All praises and thanks are due to Allah (S.W. A) for given me health \& strength to carry out this project work

My sincere appreciation goes to my project supervisor Professor K.R ADEBOYE who despite his tight schedule was patient to read through my project in which necessary correction and advise are given which increase the reliability quality of this project work.

A profound gratitude goes to the entire IBAS FAMILY for giving me both financial and moral support in my PGD programmed may Allah (S.W.T) reward and blessed them all (Amin).

Sincere gratitude is due to the H.O.D Maths/Computer science department MR L.N EZEAKO, DR AKINWANDE, DR YOMI AIYESIMI, PGD CORDINATOR DR U.Y ABUBAKAR, PRINCE BADMUS, MR JIYA MOHAMMED, MR HAKIMI and other lecturer of the department.

A special thanks is due to my friend, college, MUSA MOHAMMADU ISA to him I which him breather feature. Also special appreciation is due my friends UMAR IDRIS GANA, MUKHTAR ISA, ABDULLAHI NDAGANA and my course mates SANUSI ABUBAKAR, ALH LAWAL JIBRIN, IBRAHIM AL-AMIN, UMAR NDAGI and my little pet

May ALLAH (S.W.T) in His infinite mercy continue to be with us all (Amin)

Abstract

\section*{ABSTRACT}

An introduction to statistical data analysis was explained in chapter one

Measures of dispersion, types of dispersion, area of application, advantages and disadvantages of each types of dispersion are explained in chapter two

Manual computation of each method of dispersion with a life data was use to explained each of the computational processes.

QBASIC programming language was use in written the programmed because of its debugging aids, it can be learnt virtually on every computer and also because it require little memory space

Steps on how to use the software are explained in chapter four of this project work

Conclusion and recommendation are made base on. the result obtained from research work..

TABLE OF CONTENT

Title page i
Declaration ii
Certification iii
Dedication iv
Acknowledgement v
Abstract vi
Table of content vii
CHAPTER ONE
1.1 Statistical Data analysis 1
1.2 Forms of data 1
1.2.1 Quantitative Data- 2
1.2.1.1 measurement (interval data) 2
1.2.1.2 ordinal data 2
1.2.2 qualitative data 3
1.2.2.1 nominal data -3
1.3 classifications of data -3
1.3.1 published source 3
1.3.2 unpublished source 4
1.4 aim and objectives 4
1.5 scope and limitation 4
CHAPTER TWO
Literature review -5
2.1 Measure of dispersion 5
2.2 Types of dispersion -6
2.3 Definition of Range 6
2.3.1 Advantages of Range 6
2.3.2 Disadvantages of range 6
2.3.3 Area of application 7
2.4 Definition of mean deviation 7
2.4.1 Advantages of mean deviation -7
2.4.2 Disadvantages of mean deviation 8
2.4.3 Area of application 8
2.5 Definition of Variance 8
2.5.1 Advantages of Variance -8
2.5.2 Disadvantages of Variance 9
2.5.3 - Area of application -9
2.6 Definition of Standard deviation -9
2.6.1 Advantages of Standard deviation 10
2.6.2 Disadvantages of Standard deviation 10
2.6.3 Area of application 10
2.7 Definition of Coefficient variation 10
2.71 Advantages of Coefficient variation 10
2.7.2 Disadvantages of Coefficient variation 10
2.7.3 Area of application 10
CHAPTER THREE SYSTEM ANALYSIS AND DESIGN 12
3.1 Problem definition 12
3.2 Analysis of existing system 12
3.2.1 Range 12
3.2.2 Mean deviation 13
3.2.2.1 Mean deviation for ungrouped data 13
3.2.2.2 Mean deviation for grouped data 14
3.2.3 Variance 15
3.2.3.1 Variance for ungrouped data 15
3.2.3.2 Variance for grouped data 16
3.2.4 Standard deviation 17
3.2.4.1 Standard deviation for ungrouped data 17
3.2.4.2 Standard deviation for grouped data- 17
3.2.5 Coefficient of Variation 17
3.2.5.1 Coefficient of variation for ungrouped data 17
3.2.5.2 Coefficient of variation for grouped data 18
CHAPTER FOUR
System Development 19
4.1 Programming language used 19
4.2 Syntax of the system developed 19
CHAPTER FIVE
Summary /Conclusion and Recommendation 29
5.1 Summary 29
5.2 Conclusion 30
5.3 Recommendation 30
REFRENCE 31
APPENDIX

CHAPTER ONE

INTRODUCTION

1.1 STATISTICAL DATA ANALYSIS

Statistics can be defined as a branch of science that deal with scientific method of Collecting, organizing, summarizing, presenting and analyzing data as well as drawing valid conclusion and making reasonable decision on the basis of such data.

The word data is virtually used in every day activities. Although the word carries something of an aura of scientific mystique, it's meaning is quite simple. Data can therefore be thought of as the result of observation. Data are collected in virtually every aspect of life; statements given to a police officer or physician during an interview are data. Data are obtained in the course of scientific inquiry; the position of fossils in an archaeological site, the number of interactions between two members of an animal colony during a period of observation or the spectral composition of light emitted by a star.

1.2 FORMS OF DATA

Data can be divided into quantitative and qualitative data.

1. 2. 1 QUANTITATIVE

Data are said to be quantitative when they can be expressed numerically. Quantitative data can be classified as measurement or ordinal data.

1.2.1.1 MEASUREMENT (INTERVAL DATA)

When result of scientific observations are expressed as or translated into numerical value, these data are called measurement or scores. Measurement expressed characteristics such as height, time taken for individual athletes to a race, examination score of an individual students e.t.c.

1.2. 1.2 ORDINAL DATA

These usually have to do with personal opinion. It consists of rank, assignment to ordered categories or of sequential information. For instance two people can be asked to rank ten different brands of cars from best to lowest. Also one hundred participant can be asked to rate objects by placing them in one of five ordered categories, where one is very bad and five is very good, the result will resemble a hundred set of ranks with ties, that is, with several objects sharing the same rank.

1.2.2 QUALITATIVE DATA

These are data that cannot be expressed numerically. Statistical techniques cannot be used to analyze such data are called nominal data.

1.2.2.1 NORMINAL DATA

These are phenomena that cannot be translated into numbers. For instance attribute such as gender, blood group, political party affiliation, e.t.c.

1.3 CLASSIFICATION OF DATA (SOURCE OF DATA)

There are two main sources of data collection and these are published and published sources.

1.3.1 PUBLISHED SOURCES

These are data published as information to the public wher summarized. They are data in which general public are allow access
to. These forms of data are also known as published national date because they have produce been published by indigenous medic organization within the country.

There are also published international sources such as
EPIDEMIOLOGICAI AND STATISTICS BOOKS published yearly by World Health Organization.

1.3.2 UNPUBLISHED SOURCES

These kinds of data are usually out of reach of the public unless on official requisition by the body in-charge or in which the organization is answerable to. These involve files of government and nongovernmental agencies and departments. Collection of these types of data is usually difficult and time consuming due to its confidential nature.

1.4 AIMS AND OBJECTIVES

1) To improve speed and efficiency in this aspect of data analysis
2) To aid student who want to make further research in this aspect of analysis
3) Since manual computation is prone to error, this will reduce the error, if not eliminate the error completely.

1.5 SCOPE AND LIMITATION

This project is base on computerization of some measure of dispersion.
The process and program for drawing bar chart, pie chart, histogram, ogive, etc by this programming language is complex and advanced. It is therefore beyond the scope of this program.

The program cannot compute range if the data is grouped

CHAPTER TWO

LITERATURE REVIEW

2.1 MASURES OF DISPERSION

Strategic development is the main objective of every society. And for the fact that we are advancing every day so we are also becoming aware of the need to keep good and reliable records for consultation. These data may look arbitrary and can only be meaningful when processed and analyzed. For the analysis of the data to be made, some characteristics and traits of the data must be known such as the central values of the data, its consistency and variability. If these characteristics are inevitable then some statistical measures are designed to give a mathematical and logical aid to the entire process. These are the measures of Central Tendency and Dispersion

Measures of Dispersion may be defined as a statistics signifying the extent of the scatterness of items around a measure of central tendency. It could be interpreted as measuring how far each data value is from the mean (center) of the data. The knowledge of the variability along with its center can help us visualize the shape of a data set as well as its extremes values. It indicates the variation of observation from a finite population or a sample.

. 2 TYPES OF DISPERSION

The following are types of dispersion;
Range
Mean deviation
Variance
Standard deviation
Coefficient of variation

2.3 Range

The range of a quantitative data set is equal to the largest measurement minus the smallest measurement. Range is easy to compute and easy to understand, but it is insensitive measure of data variation when the data set are large. This is because two data sets can have the same range and be vastly different with respect to data variation.

3.3.1 Advantages Of Range

1) It is easy to compute and understand
2) It is easy to interpret
3) It provides single value

3.2 Disadvantages Of Range

1) It only considered the two extreme values
2) It does not encourage equal representation
3) The frequencies are not used at all

2.3.3 Area Of Application

1) Industries uses the range in plotting RANGE CHART for
2) Statistical quality control technique

2.4 Mean Deviation

The mean deviation also called absolute deviation; make use of an absolute value obtained from a given result. It captures variability in a way that is easy to interpret. Possibilities of capturing dispersion by looking at the deviation of every observation from some constant immediately beg the question of selecting an appropriate constant. It makes intuitive sense that the value of our constant should be typical of the value observed in the data. We might therefore select the most frequently observed value, the mode, but if we want our index of variability to reflect the average difference among all observation, our constant should itself reflect all of the observation. On this bases an appropriate statistic is the arithmetic mean.

2.4.1 Advantages Of Mean Deviation

1) It is easy to compute
2) Taken the absolute value reduces the error term, thereby increases the variability
3) It makes use of all the frequencies; thereby giving room for equal representation
4) Using the absolute values of the deviation reduces the error terms

2.4.2 Disadvantages Of Mean Deviation

1) Interpreting the result can some time be obscure.
2) Its always difficult to interpret the result
3) The result is not always single value.

2.5 VARIANCE

This is the squared deviation that forms the bases of the most widely use measure of dispersion Summing all square deviation from the mean and dividing by one less than the sample size gives the variance.

2.5.1 Advantages Of Variance

(1) It is singled value
(2) Easy to compute
(3) Each squared deviation enter the sum with the same frequency
(4) It satisfies all the four criteria of good statistic

2.5.2 Disadvantages Of Variance

(1) It is not expressed in the same unit of measurement of the observation
(2) Its computation is usually tedious

2.5.3 Area Of Application Of Variance

Manufacturing industries make use of variance to compare variation of a particular batch produced with a standard.

2.6 Standard Deviation

The standard deviation is a number representing the "spread" of a set of numbers around their average value. It is calculated from all the individual deviation from the average. It is an important concept in most statistical calculation because it is a precise indicator of the degree of variability within the set of numbers.

2.6.1 Advantages Of Standard Deviation

(1) The standard deviation is more informative measure of dispersion than the variance because the squaring effect as been reduced
(2) The units of standard deviation are the same as those of the individual Values.
(3) The average absolute deviation actually measures the average distance. .

2.6.2 Disadvantages Of Standard Deviation

(1) For Large values, computation of variance is time consuming and tedious.
(2) Variables with deferent units of measurement cannot be compared.

2.6.3 AREA OF APPLICATION OF STANDARD DEVIATION

(1) School makes use of it to determine the performance between sexes
(2) The extend to which different batches of product produce by manufacturing industries varies from a stated standard

2.7 COEFFICIENT OF VARIATION

Otherwise known as coefficient of determination, it is used to compare the variability of two or more sets of data. It is denoted by: it is expressed as a percentage.

2.7.1 ADVANTAGES OF COEFFICINT OF VARIATION

(1) It has all the advantages of standard deviation
(2) It can be used to compare data in different units of measurement
3) it can easily be interpreted since it is in percentage.

2.7.2 DISADVANTAGE OF COEFFICINT OF VARIATION

When you have a voluminous data it is tedious.

2.7.3 AREA OF APPLICATON

Industries use it to compare raw material in different unit of measurement

CHAPTER THREE

System Analyses And Design

3.1 Problem Definition

The purpose of this chapter is to find out whether there is need to change
the existing system. This is done by defining the problem to be solved.

3.4 Analysis Of Existing System

In analyzing the existing,(i.e. measure of dispersion) with manual computation, an artificial data is used for each computation.

3.4.1 RANGE

Range for ungrouped data
Range $=\mathrm{X}_{\text {max }}-\mathrm{X}_{\text {min }}$
Example of range for ungrouped data $3,5,6,7,23,33,2,20,13,34,10$
Range $=34-2=32$
Example of Range for grouped data
$0-9,10-19,20-29,30-39,40-49,50-59$ has a range of
Range $=59-0=59$

3.4.2 MEAN DEVIATION

The formulalcomputation for mean deviation of ungrouped and grouped
data with there examples are given below;
Deviation for ungrouped data $=\Sigma_{i}|(x-\bar{x})|$

3.4.2.1 Mean Deviation For Ungrouped Data

TABLE 1.0

x	$x-\bar{x}$	$\|(x-\bar{x})\|$
5	0	0
7	2	2
8	3	3
3	-2	2
2	-3	3
TOTAL $=25$	0	10

Mean, $x=\Sigma_{i} x_{i} / \Sigma N=25 / 5=5$
Mean deviation $=\Sigma|(x-\bar{x})| / N=10 / 5=2$
the formula for calculating mean deviation for grouped data is given below

Mean deviation $=\{\Sigma f|(x-\bar{x})|\} / \Sigma f$
3.4.2.2 Mean Deviation For Grouped Data

TABLE 2.0

Scores ($\left.x_{i}\right)$	Frequency (f)	$f x$	$(x-\bar{x})$	$\|(x-\bar{x})\|$	$f\|(x-\bar{x})\|$
0	3	0	-2	2	9
1	6	6	-1	1	6
2	2	4	0	0	0
3	3	6	1	1	9
4	3	12	2	2	6
5	1	5	3	3	3
TOTAL	18	36			33

Mean, $x=\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} / \Sigma \mathrm{f}_{\mathrm{i}}=36 / 18=2$
Mean deviation $==\{\Sigma f|(x-\bar{x})|\} / \Sigma f=33 / 18=1.83$

3.4.3 VARIANCE

The variance $\left(\mathrm{O}^{2}\right)$ is the sum of the squared deviation from the mean divided by the size of the population, n.

Mathematically as:

$$
O^{\prime 2}=\Sigma(x-x)^{2} / n, \text { for ungrouped data }
$$

3.4.3.1 Variance For Ungrouped Data

TABLE 3.0

x_{i}	$x_{i}-\bar{x}$	$\sum\left(x_{i}-\bar{x}\right)^{2}$
1	-5	25
3	-3	9
5	-1	1
6	0	0
10	4	16
11	5	25
36		76

$$
\begin{aligned}
X & =\Sigma x_{i} / n=3 / 6=6 \\
\dot{o}^{2} & =\Sigma\left(x_{i}-\bar{x}\right)^{2} / n, \quad \dot{o}^{2}=76 / 6=12.67
\end{aligned}
$$

4.3.2 Variance For Grouped Data

$$
O^{\prime 2}=\Sigma f_{i}(x-\bar{x})^{2} / N
$$

TABLE 4.0

Scores $\left(x_{i}\right)$	Frequency (f)	$f x$	$(x-\bar{x})$	$(x-\bar{x})^{2}$	$f(x-\bar{x})$
0	3	0	-2	4	12
1	6	6	-1	1	6
2	2	4	0	0	0
3	3	9	1	1	3
4	3	12	2	4	12
5	1	5	3	9	9
TOTAL	18	36			42

Solution
Mean, $x=\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} / \mathrm{N}=36 / 18=2$

$$
O^{2}=\Sigma f_{i}(x-\bar{x})^{2} / N=42 / 18=2.33
$$

3.4.4 STANDARD DEVIATION

The standard deviation $\left(O^{\prime}\right)$ of a distribution is the square root of the variance of that distribution.

UNGROUPED DATA

$$
O^{\prime}=\sqrt{ } \Sigma(x-\bar{x})^{2} / n
$$

With reference to example of variance for ungrouped data in table 3.0, Standard deviation, $O^{\prime}=\sqrt{ }$ variance

$$
O^{\prime}=\sqrt{ } 12.67=3.56
$$

GROUPED DATA

$$
O^{\prime}=\sqrt{ } \Sigma f_{i}(x-\bar{x})^{2} / f
$$

With reference to example of variance for grouped data in table 4,

$$
\begin{aligned}
O^{\prime} & =\sqrt{\Sigma f_{i}(x-x)^{2} / f} \\
& =\sqrt{ } 2.33 \\
& =1.53
\end{aligned}
$$

3.4.5 COEFFICIENT OF VARITION

C. $v=$ Standard deviation
 Mean

FOR UNGROUPED DATA

With reference from table 3.0 and standard deviation for ungrouped
data, we have the following result
$\mathrm{x}=\Sigma \mathrm{x}_{\mathrm{i}} / \mathrm{n}=3 / 6=6$
$O^{\prime}=\sqrt{ } \Sigma(x-\bar{x})^{2} / n=\sqrt{ } 12.67=3.56$
C. $v=\frac{3.56}{6} \quad * 100=59.33$

With reference to table 4.0, the mean and standard deviation for grouped data we have the following result.

Mean, $x=\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} / \mathrm{N}=36 / 18=2$
$\mathrm{O}^{2}=\Sigma \mathrm{f}_{\mathrm{i}}(\mathrm{x}-\overline{\mathrm{x}})^{2} / \mathrm{N}=42 / 18=2.33$
$C v=\frac{O^{2}}{X} \cdot 100=\frac{2.33}{2} * \frac{100}{1}=116.5$

CHAPTER FOUR

SYSTEM DEVELOPMENT

4.1 Programming Language Used

Programming language used is Q-BASIC (Quick-Beginners All Purpose Symbolic Instruction Code)

Q-Basic was is because of the following reasons
It is easy to use and understand
Debugging process is easy
With Q-BASIC interpreter, this program can be learnt on virtually every computer, because it requires little memory space.

2 Syntax Of The System Developed

The interpreter has to be installed in the hard disk before it can run the program. If the interpreter is installed, then one can run the program.

After the installation, then go to the background of the interpreter as in
fig 1 below, although the background is usually blue

Fig2
File Edit View Search Run Debug Options Help.

Fig3
File Edit View Search Run Debug Options Help
; File Name: |*.BAS
$1 \quad \mathrm{~A}: 1$
i
Files
Dirs/Drives
! :VARIAN~1 • ! _
$1 \quad 11$
: $1[-A-]$:
i [-B-] _i -
: i[-C-] -i : $:\left[\right.$ [-D-] - ${ }^{-}$: i[-E-] _i i i • : _ ; 1+• - + +---
 i•_i <OK > <Cancel > <Help > \qquad

1

F1=Help Enter=Execute Esc=Cancel Tab=Next Field Arrow=Next Item

Then double click on 'PROF.BAS' to open the program. Using our mouse click 'Run' and from the pull down menu click Start and thereafter follow subsequent instruction issued by the program

Fig4

File Edit View Search Run Debug Options Help
\qquad
¡REM THIS PROGRAM CALCULATES THE MEAN,VARIANCE ,STANDARD DEVIATION
'REM COEFFICIENT OF VARIATION
;REM written by Muhammad Abdulhakeem
;COLOR 7, 4: CLS : COLOR 1, 2: LOCATE 2, 32: PRINT "WELCOME"
;LOCATE 4, 40: PRINT "TO": LOCATE 6, 35: PRINT "project": LOCATE 8, 40: PRINT "_
;LOCATE 10, 20: PRINT "computerization of some measures of dispersion"
;LOCATE 12, 35: PRINT "presented by Muhammad Abdulhakeem (PGD/MCS/2003/2004/1124
'LOCATE 24, 26: COLOR 12, 3: PRINT "press any key to continue...": ans\$ = INPUT
'MENU:
;COLOR 7, 0: CLS : COLOR 0, 2
;LOCATE 5, 2: PRINT "DATE:"; DATE\$: LOCATE 5, 64: PRINT "TIME:";
TIME\$
;COLOR 7, 9: LOCATE 5, 24: PRINT CHR\$(201): LOCATE 7, 24 :
PRINT CHR\$(201)
;FOR i $=25$ TO 55
'LOCATE 5, i: PRINT CHR\$(205): LOCATE 7, i: PRINT CHR\$(205):
LOCATE 19, i: PRIN_
iNEXT i
'LOCATE 5, 56: PRINT CHR\$(187): LOCATE 7, 56: PRINT CHR\$(187): LOCATE 19, 24: P_
; FOR j $=6$ TO 18
'LOCATE j, 24: PRINT CHR $\$(186):$ LOCATE j, 56: PRINT CHR\$(186)
+---------------------------------- Immediate
<Shift+F1=Help> <F6=Window> <F2=Subs> <F5=Run> <F8=Step> ; N 00001:001

Example: using OPTION 1 which is to compute the Mean, Mean deviation, variance, standard deviation, and covariance of data that have already been grouped

From fig4, click: Run

Start

The main menu appears as below, after you type 1 by the side of Select Option (1-5)? 1

After typing the 1 , a command at the bottom of the main menu is there asking you to press any key to continue DATE:10-21-2004

TIME:06:22:18
; PRINT MAIN MENU ;

; 1.Grouped Data i
; 2.Grouped Continuous Data ;
: 3.Grouped Discrete Data
; Ungrouped Data
| 5.Quit

Select Option (1-5)? 1
Press Any Key To Continue

After pressing any to continue, example press 'Enter' from the key board and a message appears as thus:

THIS MODULE CALCULATES MEAN, VARIANCE, S.D, C.V, AND
M.D

FOR DATA THAT HAVE ALREADY BEEN GROUPED

At the bottom, an instruction asking you to continue appears. After pressing any key, the instruction is as thus,

For a data with a class of five groups as below:

Class interval	Frequency
$1-9$	3
$10-19$	2
$20-29$	7
$30-39$	1
$40-49$	

STEP1

Enter the number of classes $--\rightarrow$, type 5
Press Enter
Enter the lower class limit--- \rightarrow, type 1
Press Enter
Enter the upper class limit---- , type 9
Press enter
This completes imputing the data for the first class
Press enter and continue in this manner, and finally the result is printed on the screen as:

FOR GROUPED DATA

1	0-0	3	0	0	0	72.91666
2	10-19	2	14.5	29	420.5	19.61111
3	20-29	5	24.5	122.5	3001.25	. 9722233
4	30-39	7	34.5	241.5	8331.75	71.36111
5	40-49	1	44.5	44.5	1980.25	20.19444

MEAN $=24.30556$
VARIANCE = 172.2261
STANDARD DEV. = 13.12349
MEAN DEV. $=10.28086$
COEF. OF VAR. $=53.9938 \%$
Press Any Key to Continue...

CHAPTER FIVE

SUMMARY/ CONCLUTION AND RECOMMENDATION

5.1 SUMMARY

Computerization can be defined as planned and articulated changes from a manual system to automation using computer system. This project topic; computerization of measure of dispersion was carried out base on the afro mentioned reasons in chapter 1 of this project, some of which are manual computation is prone to error, computation is tedious etc. with a good and reliable program, these computations are carried out yielding reliable and accurate results.

Q BASIC programming language was used due to the fact that one can copy a QBasic compiler on a floppy diskette, install it in his/her computer system with little or no problem. Its compatibility on virtually every computer system has increased its acceptability and usage by programmers. QBasic is easy to learn, understand and it provide debugging aids. lastly, QBasic compiler requires very little space of the hard disk which is as added advantage to its portability.

5.2 CONCLUSION

It is understandable that measure of dispersion indicates spread of distribution and as such, proper consideration should be taken in statistical data analysis, this is what necessitate for the project topic: computerization of some measures of dispersion which were explained in chapter four of this project work.

Accuracy of every computation is highly stressed and to achieve this, a reliable technique should be ensured. A well written program, tested a
documented program will certainly perform analysis on voluminous data
for the user.

5.3 RECOMMENDATION

Government and non -government organization should be encouraged to use computerized method of dispersion to solve any problem on measure of dispersion.

An individual who to go on research work in which measure of dispersion will be used should use this software to solve it.

If all the aforementioned recommendation are taken into
consideration, the resulting effect will be speed in computation process, reduce error reliability efficiency and easy documentation.

Battely I.G Brokes C.J, (1979): Loxton .S.M	FUNDAMENTAL OF MATHEMATICS AND STATISTICS Published By Bro (Norwich) Ltd.
Benjamin Fruchter (1987):	FUNDAMENTAL STATISTICS IN Fuilford J.P
	PSYCHOLOGY AND EDUCATION Third Edition Printed By B\& Jo Enterprises Pte Ltd
Emuoyibofarhe O . Justice	FUNDAMENTALS OF COMPUTER
Fasanya A. Kola	SCIENCE AND TECHNOLOGY Sunday A. Reju (2003)
Published by KAY- EM Publishers	
Frank J.Kohout (1974)	STATISTICS FOR SOCIAL
SCIENTISTS	Published By John Wiley \& Sons, Inc

JIYA MOHAMMED (2004)

TECHNOLOGY

INTRODUCTION TO PROGRAMMING LANGUAGE(QBASIC) UNPUBLISHED FEDERAL UNIVERSTY OF

Ronald J, Guilford (1986):
Thomas H.Wonnacott

INTRODUCTORY STATISTICS Third Edition

IS PROGRAM CAICUULATES THE MEAN, VARIANCE, STANDARD DEVIATION EFFICIENT OF VARIATION
itten by Muhammad Abdulhakeem
4: CLS : COLOR 1, 2: LOCATE 2, 32: PRINT "WELCOME"
4, 40: PRINT "TO": LOCATE 6, 35: PRINT "project": LOCATE 8, 40: PP 10, 20: PRINT "computerization of some measures of dispersion"
12. 35: PRINT "presented by Muhammad Abdulhakeen (PGD/MCS/2003/20

24, 26: COLOR 12, 3: PRINT "press any key to continue...": ans $\$=$
7, 0: CLS : COLOR 0, 2
5, 2: PRINT "DATE:"; DATE\$: LOCATE 5, 64: PRINT "TIME:"; TTME§ 7. 9: LOCATE 5, 24: PRINT CHR\$ (201): LOCATE 7, 24: PRINT CHR\$ (201) $=25 \mathrm{TO} 55$
5, i: PRINT CHR\$ (205) : LOCATE 7, i: PRINT CHR\$ (205): LOCATE 19, i: iRIN
5. 56: PRINT CHR\$ (187) : LOCATE 7, 56: PRINT CHR\$ (187): LOCATE 19, $: 1: \mathrm{P}$ $=6 \mathrm{TO} 18$
j, 24: PRINT CHR\$ (186) : LOCATE j, 56: PRINT CHR\$ (186)
LOCATE 19, 56: PRINT CHR\$ (188)
, 4: LOCATE 6, 31: PRINT "PRINT MAIN MENU": 'COLOR 7, 4:PRINT
8, 27: PRINT "1.Grouped Data": LOCATE 10, 27: PRINT "2.Grouped Con: inou
12, 27: PRINT "3.Grouped Discrete Data": LOCATE 14, 27: PRINT "Ung :1p:
17. 27: PRINT "5.Quit"
, 3: LOCATE 21, 27: INPUT "Select Option (1-5)"; opt
< 1 OR opt > 5 THEN
COIOR 5, 2: LOCATE 12, 25: PRINT "INVALID OPTION,TRY AGAIN": BEEP
(2) : GOTO MENU
$=1$ THEN GOTO GROUP1
$=2$ THEN GOTO group 2
$=3$ THEN GOTO GROUP3
$=4$ THEN GOTO UNGROUPED ELSE GOTO QUIT
OOLOR 1, 2 : CL」S
12, 13: PRINT "THIS MODULE CALCULATES MEAN, VARIANCE, S.D,C.V, \&M.D"
13, 18: PRINT "FOR DATA THAT HAVE ALREADY BEEN GROUPED"
2, 3: LOCATE 25, 26: PRINT "Press any key to continue...": ans $\$=11 \mathrm{UY}$
$=0: s 2=0: s 3=0: c=0: d=0$
, 1: LOCATE 12, 23: INPUT "Enter the Number of classes--.->", n
$(n), u(n), f(n), x(n)$
1 TO n
0: CLS : COLOR 10, 4
9, 23: INPUT "Enter the Lower class Limit $\ldots-{ }^{2}$ ", l(i)
11, 23: INPUT "Eenter the Upper class Limit $-\ldots->"$ " u(i)
13, 23: INPUT "Enter the Erequency of the class \ldots -
) $=(1(i)+u(i)) / 2: \operatorname{LET} s 1=s l+f(i) * x(i)$
$=s 2+f(i) * x(i) \wedge 2: \operatorname{LET} c=c+f(i)$
s1/c: LET var $=\left(s 2 / \mathrm{c}-\mathrm{m}^{\wedge} 2\right): \operatorname{LET} \mathrm{sd}=\operatorname{SQR}($ var $): \operatorname{LET} \mathrm{cvar}=\mathrm{sd}$ 1 TO n
$d+f(i) * \operatorname{ABS}(x(i)-m)$
$v=d / c: C O L O R 7,1:$ CLS
AB (16); "COMPUTED VALUES OF SOME MEASURES OF DISPERSION"
$A B(27)$; "FOR GROUPED DATA"
AB (1) ; STRING\$ (73, "*")
$\mathrm{S} / \mathrm{N} " ; \mathrm{TAB}(8) ; " \mathrm{Class} \operatorname{Int} . " ; \mathrm{TAB}(24) ; " E " ; \mathrm{TAB}(34) ; " \mathrm{x} " ; \mathrm{TAB}(44)$;
AB (1) ; STRING\$ (73, "-")
1 TO n
$; \operatorname{TAB}(7) ; 1(i) ; "-" ; u(i) ; \operatorname{TAB}(23) ; \int(i) ; \operatorname{TAB}(33) ; x(j) ; \operatorname{TAB}(43) ;$

3: LOCATE 12, 17: INPUT "Enter the Number of Data to be comput o
3(n3), f3(n3): COLOR 7, 0: CLS
1 TO n3: COLOR 4, 3: CLSS

$=k 1+f 3(i) * x 3(i): \operatorname{LET} k 2=k 2+f 3(i) * x 3(i) \wedge 2: \operatorname{LET} z=2: i:(i$
$\max =0$:
1 TO n3
) $>=$ max THEN max $=x 3$ (i)
) $s=$ min THEN min $=x 3(\mathrm{i})$
x - min: LET m = k1 / z: LET var = k2 / z - m ^ 2: LET sd = SQR(va,): L, 1 TO n3
$=k 3+f 3(i) * \operatorname{ABS}(x 3(i)-m)$
$\mathrm{fv}=\mathrm{k} 3$ / z: COLOR 7, 1: CLS : PRINT TAB(15); "COMPUTED VALUES OF : 4 M AB(26); "FOR GROUPED DESCRETE DATA": PRINT
TTRING\$ (76, "*")
S/N."; TAB(10); "X"; TAB(25); "E"; TAB(40); "£x"; TAB(55); "fx^2";
BTRING\$(76, "-")
1 TO n3

STRING\$(76, "-")
「 $\mathrm{AB}(24) ; \mathrm{z}$; $\mathrm{TAB}(39) ; \mathrm{k} 1$; $\mathrm{TAB}(54) ; \mathrm{k} 2 ; \mathrm{TAB}(68) ; \mathrm{k} 3$
हTRING\$(76, "*"): PRINT
"MEAN"; TAB(18); "="; m; TAB(48); "VARIANCE"; TAB(62); "="; var: PE:
STANDARD DEV."; TAB(18); "="; sd; TAB(48); "MEAN DEV."; TAB(62); : : m
"COEF. OF VAR."; TAB(18); "="; cvar; "\%"; TAB(48); "RANGE"; TAB(62); ":"
12, 3: LOCATE 25, 26: PRINT "Press Any key To Continue...": ans\$ = inpuT
PED :
COLOR 1, 2: CLS
12, 12: PRINT "THIS MODULE COMPUTES MEAN,VARIANCE,S.D,C.V,M.D \& RA:
13, 30: PRINT "FOR UNGROUPED DATA"
12, 3: LOCATE 25, 26 : PRINT "Press Any key to Continue..."; ans\$:-
LET $t 1=0: t 2=0: t 3=0$
1, 3: LOCATE 12, 13: INPUT "Enter the Number of Variables to be co: x2(n2): COLOR 7, 0: CLS

$=1 \mathrm{TO} \mathrm{n} 2$

4, 3: LOCATE 12, 25: PRINT "Enter the Value of $\mathrm{x} " ; ~ i ; ~ "-->"$
12, 55: INPUT $\mathrm{x} 2(\mathrm{i}):$ LET $\mathrm{t} 1=\mathrm{t} 1+\mathrm{x} 2(\mathrm{i})$
$=t 2+x 2(i) \wedge 2: \min =x 2(1)$
$\max =0$
$=1 \mathrm{TO} \mathrm{n} 2$
i) $>=\max$ THEN max $=x 2(i)$
i) $<=\min$ THEN min $=x 2(i)$
x - min: LET $\mathrm{m}=\mathrm{t} 1 / \mathrm{n} 2: \operatorname{LET}$ var $=\mathrm{t} 2 / \mathrm{n} 2-(\mathrm{m}) \wedge 2$
$=$ SQR (var) : LET cvar $=(\mathrm{sd} / \mathrm{m}) * 100$
$=1$ TO n2: LET t3 = t3 + ABS (x2 (i) - m) : NEXT i: LET mdev = t3/ni 7, 1: CLS : PRINT TAB(13); "COMPUTED VALUES OF SOME MEASURES OF DI: TAB (26) ; "FOR UNGROUPED DATA"
"S/N."; TAB(15); "Variable(x)"; TAB(45); "x^2"; TAB(65); "|x-m|"
$\operatorname{STRING}(73, \quad "-1)$
$=1 \mathrm{TO} \mathrm{n} 2$
i; TAB(15); $x 2(i) ; \operatorname{TAB}(45) ; \quad x 2(i) \wedge 2 ; ~ T A B(65) ; ~ A B S(x 2(i)-m)$
STRING\$ (73, " - ")
TAB(15); t1; TAB(45); t2; TAB(65); t3
TAB(1); STRING\$(73, "*"): PRINT
"MFAN": TAR(18): "=": m: TAB(48): "VARIANCE"; TAB(62)

PRINT TAB(23); c; TAB(43); s1; TAB(53); s2; TAB(65); d
PRINT TAB(1); STRING\$(73, "*"): PRINT
ZRINT "MEAN"; TAB(18); "="; m; TAB(48) ; "VARTANCE"; TAB(62); "="; var: PRifT
rRINT "STANDARD DEV."; TAB(18); "=", sd; TAB(48); "MEAN DEV."; TAB(62); "."; m PRINT "COEF. OF VAR."; TAB(18); "="; cvar; "\%"
OLOR 12, 3: LOCATE 25, 26: PRINT "Press Any Key to Continue...": ans $\$=$ indul
group2 :
ILS : COLOR 1, 2: CLS
_OCATE 12, 12: PRINT "THIS MODULE IS FOR A FREQUENCY DISTRTBUTION AND COM:IPS LOCATE 13, 11: PRINT "MEAN,VARIANCE,S.D,C.V,M.D \& RANGE FOR THE INPUTED 1, COLOR 12, 3: LOCATE 25, 26: PRINT "Press Any Key to Continue...": ans\$ $=$ M! OLOR 3, 1: CLS : s1 = $0: \mathrm{s} 2=0: \mathrm{s} 3=0$ LOCATE 12, 23: INPUT "Enter Number of Variables--->", n1 REDTM x1(n1), midp(n1), k(n1)
$\mathrm{OR} \mathrm{i}=1 \mathrm{TO} \mathrm{n} 1$
ILS : COLOR 1, 7: LOCATE 12, 25: PRINT "Enter the value of x"; i; "--->": jलA min $=x 1(1):$ COLOR 3, 1.
mext i: max = 0
$O R$ i = 1 TO n1
IF $\mathrm{xl}(\mathrm{i})>=\max$ THEN max $=\mathrm{x} 1(\mathrm{i})$
$1 \mathrm{~F} \times 1(\mathrm{i})<=$ min THEN min $=x 1(i)$
'EXT i
$=\max -\min : \mathrm{k}=1+3.32 * 1 / \operatorname{LOG}(10) * \operatorname{LOG}(\mathrm{n} 1): \operatorname{Cw}=\operatorname{CINT}(\mathrm{r} / \mathrm{k})$
IF CW <= 0 THEN
EEP: CLS : COLOR 12, 3: LOCATE 12, 10: PRINT "THE DATA INPUTED CAN NOT 1: O RO OLOR 12, 3: LOCATE 25, 26: PRINT "Press Any key to Continue...": ans\$ = 1ruT END IF
$c=\operatorname{CINT}(k): s p=m i n: \quad \operatorname{CINT}(m i n-c w / 2)$
OLOR 7, 1: CLS : PRINT TAB(16); "COMPUTED VALUES OF SOME MEASURES OF DJ:•
PRINT TAB(27); "FOR GROUPED DATA"
DRINT TAB(1); STRING\$(73, "*")
RINT "S/N."; TAB(8); "Class Int."; TAB(24); "E"; TAB(34); "x"; TAB(44);
rRJNT STRING $(73, \quad "-")$
FOP i $=1$ TO nc
$c=s p+c w: k=0$
$O \mathrm{O}_{\mathrm{j}}=1 \mathrm{TO} \mathrm{nl}$
IF x (j) $>=\mathrm{sp}$ AND $\mathrm{x} 1(\mathrm{j})<=\mathrm{uc}$ THEN $\mathrm{k}(\mathrm{i})=\mathrm{k}(\mathrm{i})+1$
EXT j: midp(i) $=(s p+u c) / 2$
$x=k(i) * \operatorname{midp}(i): £ x 2=k(i) * \operatorname{midp}(i)$ ^ 2
$\mathrm{s}^{1}=\mathrm{s} 1+\mathrm{fx}: \mathrm{s} 2=\mathrm{s} 2+\mathrm{fx} 2$
PRINT i; TAB(7); sp; "-"; uc; TAB(23); k(i); TAB(33); midp(i); TAB(43); f:; TA $\rho=s p+c w+1$
.EXT i
$\mathrm{n}=\mathrm{s} 1 / \mathrm{n} 1:$ var $=\mathrm{s} 2 / \mathrm{n} 1-\mathrm{m} \times 2$
$\lambda=S Q R($ var $): c$ cvar $=(s d / m) * 100$
JR i = 1 TO nc
$\mathrm{l}=\mathrm{k}(\mathrm{i})$ * $\operatorname{ABS}(\operatorname{midp}(\mathrm{i})-\mathrm{m}): \mathrm{s} 3=\mathrm{s} 3+\mathrm{d}: \operatorname{LOCATE} 5+\mathrm{i}, 65:$ PRINT d
उXT i
lev $=\mathrm{s} 3 / \mathrm{n} 1$
'RINT STRING\$(73, "-")
'RINT TAB(23); n1; TAB(43); s1; TAB(53); s2; TAB(65); s3
रINT TAB(1); STRING\$(73,."*"): PRINT
RINT "MEAN"; TAB(18); "="; m; TAB(48); "VARIANCE"; TAB(62); "="; var: 4 RJNT "STANDARD DEV."; TAB(18); "="; sd; TAB(48); "MEAN DEV."; TAB(62);
UJNT "COEF. OF VAR."; TAB(18); "="; Cvar; "\%"; TAB(48); "RANGE"; TAB(62); " ";
WOR 12, 3: LOCATE 25, 26: PRINT "Press Any key To Continue...": ans\$ = \&U'
? \because UP3:
is : COLOR 1, 2: CLS
1CATE 12, 12: PRINT "THIS MODULE COMPUTES MEAN,VARIANCE,S.D,C.V,M.D \& RA:
ATE 13, 24: PRINT "FOR GROUPED DISCRETE DATA"
HOR 12. 3: LOCATE 25. 26: PRTNT "Press Any koy Tn rmiti....."

END IF

ILS : COLOR 6, 2 :
, OCATE 12, 22: PRINT "INVALID ANSWER, PLEASE PRESS Y OR N": BEEP SLEEE (2): GOTO QUIT ONT: BCREEN 1: COLOR 4, 5: FOR i\% = 2 TO 5: COLOR i\%: LOCATE 12, 16: PRINT "GM, StUEP (1) NEXT $\mathrm{i} \%$
;TOP

THE FLOW CHART FOR MEASURES OF DISPERSION

