STRUCTURAL DESIGN OF PROPOSED UNITS OF 3BEDROOM MAISONETTE LOKOGOMA FCT ABUJA

BY

SAMSON OLUGBENGA VICTOR PGD/CIVIL ENG/07/001

DEPARTMENT OF CIVIL ENGINEERING
SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY
FEDERAL UNIVERSITY OF TECHNOLOGY MINNA NIGER STATE

STRUCTURAL DESIGN OF PROPOSED UNITS 'OF 3BEDROOM

 MAISONETTELOKOGOMA FCT ABUJA

BY

SAMSON OLUGBENGA VICTOR PGDICIVIL ENG/07/001

DEPARTMENT OF CIVIL ENGINEERING

SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY FEDERAL UNIVERSITY OF TECHNOLOGY MINNA NIGER STATE

DECLARATION

I, Samson Olugbenga victor declare that this project work "Structural Design of two storey residential building \{ 4 unit of 3 bedroom maisonettes\}" was solely carried out by me. All authors from whom vital information were gotten have been duly acknowledged.
Samson Olugbenga Victor

Date

PGD/Civii ENG/07/001

CERTIFICATION

This is to certify that this project is the original work done by Samson Olugbenga Victor under supervision and accepted by the Civil Engineering Department Federal University of technology Minna.Engr Oritola SDate
\{Supervisor\}
Engr ProfSadiku's Date
\{Head of Department\}
External supervisorbate

DEDICATION

I d dicated this project to the King of Kings and Lord of Lords, the ;;tmighty God, wh has seen me through my course of study. Furthermore, to my parents and fridnds who because of their love for education for me, put in all they can to get me educated.

ACKNOWLEDGEMENT

I ish to express my gratitude and deep appreciation to my supervisor Engr Oritola for the wonderful, careful supervision, invaluable assistance and encouragement recFived in making this project work a reality.

I am particularly indebted to my project supervisor, Engr Oritola S.F who, despite his tight schedule, took pain to go through the manuscript and offered useful suggestions at all stages of this project report

My special thanks goes to the head of department Engr Prof S. Sadiku, Dr Sudo [PGD Coordinator] all lecturers and members Mr P.N Ndoke, Engr Alhassan, Engr Kudu, Mr Saidu, Engr James,Engr [Dr] 0 D Jimoh, Engr Abudullar, Mallam Sule A, their humble guidance, encouragement and assistance towards sharpening the pen of my mind and making this project possible.

I deem it imperative to express my heart felt appreciation to my parent's Mr \& Mrs Samson Agunbiade, my lovely wife' Olanike Samson, my precious daughter Oluwaferanmi Samson, lastly my brother and sister Ariyo Samson, Kayode Samson, Mary Samson, for their moral assistance which enable me to carry out the project work easily.

Finally, to the great I am that I am for his continually sustenance and guidance.

Abstract

This project covers the analysis, design and detailing of proposed 4 units of 3 bedroom maisonette at Logokoma satellite town of Abuja, the project was prepared based on the standard and principle set out by the structural use of concrete B58110 parts 1, 2 and 3 to achieve the desired objectives. The roof members, Beams slabs, stair - case, column and the foundations were analyzed and designed in accordance to B58110. The results were used to produce simple and neat structural detailed drawing to ease estimation and construction of the proposed project.

TABLE OF CONTENT

TITLE PAGE
DECLARATION 1
CERTIFICATION 11
DEDICATION 111
ACKNOWLEDGMENT V
ABSTRACT VI
TABLE OF CONTENT Vll
LIST OF NOTATION xu
LIST OF TABLES
CHAPTER ONE
1.1 Introduction 1
1.2 Aim and Objective 1
1.2.1 Aim 2
1.2.2 Objective 2
1.3 Methodology 2
1.4 Scope 3
1.5 Limitation 3
CHAPTER TWO
2.0 Literature Review 4
2.1 History of Residential Building 6
2.2 Type of Residential building 6
2.3 Design Literature review 10
2.4 Design method (Limit State method) 13
2.5 Design codes and standard 14
2.6 Design stresses 17
2.7 Concrete \& Reinforcement 18

CHAPTER THREE

3.0 Structural Analysis \& Roof Truss Design 20
3.1 Loading 20
3.1.1 Dead load 21
3.1.2 Imposed load 21
3.1.3 Wind load 22
3.1.4 Function of safely and load combination 23
3.2 Roof Design 24
CHAPTER FOUR
4.1. 1Design of slab and stair case structure 25
4.1.2 Analysis \& design of roof beam \& floor beam 45
4.1.3 Analysis \&design of column \& pad foundation 99

CHAPTER FIVE

5.1 Analysis of result 126
5.2 Discussion of result 132
5.3 Conclusion and Recommendation 133
References 134

LIST OF NOTATION

As' Cross sectional of compress reinforcement
As Cross sectional area of tension reinforcement
Asb Cross sectional shear reinforcement in the form of bend up
Asc Cross sectional area of reinforcement in compression
Asv Cross sectional area of shear reinforcement in the form of links
b Width of section
bw Breath of web
d Effective depth of section
B modulus of elasticity of concrete
feu characteristic of concrete cube strength
fs Service stress of steel
fy characteristic strength of steel reinforcement
fyv characteristic strength of link reinforcement
Gk characteristic dead load
H overall depth of section
Hf .thickness of flange
I second moment of inertial
L length of beam
Lc effective height of a column of wall
M bending moment
Mu ultimate moment of resistance
axial load
characteristic live load

V shear force
V shear stress
Vc ultimate shear stresS
diameter of sted
0
Z lever arm Oa1

CHAPTER TWO

2. LITERATURAL REVIEW

As' the title of the project is structural design of two storey residential building $\{4$ unit of 3 bedroom maisonette\}. It will be important to discuss prehistory residential building, types of residential building know up to date.

2.1 PREHISTORIC RESIDENDIAL BUILDING

Years ago, early man lived on mountains, in caves for protection against
Unfriendly weather, early detection of enemies and defense of war.
Those choose to live on mountain suffered hot scourge of Sunlight and cold experienced after heavy rainfall because of lack of coverage. Others living in Cave suffered hotness of cave in day and night tirire because some of the cave had no vent or opening to provide ventilation.

After peace reigned for several years, early:man decided to build a structure that has a roof and wall [like cave] and opening to allow fresh air [ventilation] into the structure. The modem types of building today originated from the erection of tall, old historic building of the early man.

2.2 TYPES OF RESIDENTAL BUILDING

(1) BUNGALOW; is a type of modem residential building constructed on on level, that is very wide but not very deep from front to back and has rodf that is very flat without stair or suspended slab.
(2) DUPLEX; is a type of modern residential building constructed into two separate homes having stair and apartment with rooms on two floors.
(3) STOREY BUILDING; is a type of residential building constructed into levels of floor ranging from 2 to 10 with stairs usually with one major entrance.

MAISONETTE; is a type of storey building constructed into apartment with a rooms on two or three floors within and usually with a separate entrance.

2. DESIGN LITERATURE REVIEW

It s important to note that steel and concrete structural member are among the commonly used material in building and construction industries .The design of an engineering structure must ensure that
(1) Under the worst loading, the structure is safe.
(2) During normal working condition, the deformation of the member does not detract from the appearance, durability or performance of the structure. Despite the difficulty in assessing the precise loading and variation in the strength of the concrete and steel, this requirement must be met.

Three basic methods using factors of safety to achieve safe, workable structure have been developed and they are
(a) The permissible stress method; which ultimate strength of the material are divided by factor of safety to provide design stress which are usually within the elastic range
(b) The load factor method; which the working loads are multiplied by a factor of safety
(c) The limit state method; which multiplies the working loads by partial factor of safety and also divides the material ultimate strength by further partial factor of safety.

Construction structural members are;
(1) Roof trusses member carries lateral load and is compose of strut and ti~s which is transfer to roof beam
(2) Beam is a member carrying lateral load in bending and shearing which is transfer to the column.
(3) Column is a member carrying axial load in compression and is often subjected to bending also transfer the entire load of structure to the foundation.
(4) Foundation transfer load from the super structure to sup structure or stable soil in efficient uniform manner.

2.4 DESIGN METHOD

Th limit state method of design is used in this project work, because the design method overcomes many of the disadvantages and inconsistencies of the two mdthods discussed earlier. Limit state method, the design of each individual member or section of a member must satisfy two separate criteria of

* The ultimate limit state which ensure that the probability of failure is acceptably low
* The limit state of serviceability which ensure satisfactory behavior under service (i.e working) load. The principal criteria relating to serviceability are the prevention of excessive vibration, but with certain types of structure and in special circumstances. Other limit state criteria may have to be considered are fatigue, durability and fire resistance.

2.5 DESIGN CODES AND STANDARDS

The project work is done to satisfy the requirement of the B.S 8110; PART 1; 1997, and PART 2; 1995 standard use 0^{\prime} [concrete.

2.6 DESIGN STRESSES

The project work is concerned with two material namely; concrete and rbd reinforcement (steel). The steel is either mild steel, round bar (R-bar) or high Yilld steel (high tensile) bars (Y-bar). Concrete characteristic strength, feu section 3.1 . 2 of B.S 8110 of standard specified minimum of grade 25 (fcu $=25 \mathrm{n} / \mathrm{mm} / \mathrm{vZ}$) or reinforced concrete. Characteristic strength of reinforcement are given in B.S 4449, BS 4461 and BS 4483.For mild steel round bars, the characteristic strength is 2DO $\mathrm{n} / \mathrm{mm}=\mathrm{z}$ while for high tensile bar is $460 \mathrm{~N} / \mathrm{mm} / 2$. Experience has shown, how ever, that a value of $410 \mathrm{~N} / \mathrm{mm} / 2$ is the most appropriate of high tensile bars in this country.

2.7 CONCRETE AND REINFORCEMENT

Corcrete is a composite inert material comprising of a binder course e.g cement an mineral filler (body) or aggregate and water. There are basically two types of co crete, viz

* Dense concrete, is the common form of concrete for reinforced concrete work and the average density is $2400 \mathrm{~kg} / \mathrm{mA}_{\mathrm{A}} 3$
* Light weight concrete can be defined as those weighting less than 1920 $\mathrm{kg} / \mathrm{m}_{\mathrm{A}} 3$ and are made in densities down to about $160 \mathrm{~kg} / \mathrm{m}_{\mathrm{A}} 3$

REINFORCEMENT

Section 7, ofBS 8110; part 1, specifies that reinforcement should comply with BS 4449 , BS 4462 or BS 4483 and that different types of reinforcement may be used in the same structural member. Hence, for a beam, the main reinforcement might be high yield bars while mild steel bars are used for the links,

CHAPTER THREE

3.1 LOADING

The load on a structure is divided into two ways; dead load and live/imposed load.

3.1.1 DEAD LOAD

Dead load is the load of constant magnitude and that is acting permanently on the structure, including self weight.

3.1.3 LIVEfIMPOSED LOAD

Imposed loads are all the loads without constant magnitude and position of acting e.g man

3.1.3WIND LOAD

This is the load due to forces been exerted on the structure as a result of wind action. Although, the wind load is an imposed load, it is kept in a separate category when its partial factors of safety are specified. And when the load combinations on the structure are being considered.

3.1.4

FACTOR OF SAFETY AND LOAD COMBINATION

Various combinations of the characteristic values of dead load Gk , imposed load Qk, wind load and their partial factor of safety must be considered for the loading of the structure. The partial factors of safety specified by BS 8110 and for the ultimate limit state. The loading combinations are

Dead and imposed load $=1.4 \mathrm{Gk}+1.6 \mathrm{Qk}$
Dead and wind load $=1.0 \mathrm{Gk}+1.4 \mathrm{Wk}$
Dead, imposed and wind load $=1.2 \mathrm{Gk}+1.2 \mathrm{Qk}+1.2 \mathrm{Wk}$

The partial factor of safety specified by BS 8110 and for the serviceability limit sta~e,the load combination is usually Yf 1.0 applied to all load combination.

3.2 ROOF DESIGN DESIGN INFORMATION

Ref Intended use of building
Relevant codes

Design stresses

Exposure condition

Soil condition

General condition

Residential
BS 6399 part 1;1984
BS 8110 part 1;1997
BS 8110 part 2;1988
Fcu $=20 \mathrm{~N} / \mathrm{mm}_{A} 2$
$F y=250 \mathrm{~N} / \mathrm{mm}_{A} 2$
One hour for all element Mild for all element Cover;
Slab and stair $=20 \mathrm{~mm}$
Beam \& column $=25 \mathrm{~mm}$
Foundation $=50 \mathrm{~mm}$
Firm gravely lateriti~ clay. Allowable soil bearing capacity $=100 \mathrm{KN} / \mathrm{ma}_{\mathrm{A}} 2$
Live $10 \mathrm{ad}=1.5 \mathrm{KN} / \mathrm{m}_{\mathrm{A}} 2$
Roof
$\operatorname{load}(q k+g k)=1.5 \mathrm{KN} / \mathrm{mA} 2$
Floor finishing $=1.2 \mathrm{KN} / \mathrm{m}_{A} 2$
Wall
and
rendering $=3.47 \mathrm{KN} / m_{A} 2$
Screeding $=2.0 \mathrm{KN} / \mathrm{m}_{\mathrm{A}} 2$

The span of the roof is 11.855 with a slope of 30110 . Therefore for the building $2.44 \mathrm{~kg} / \mathrm{ml} \backslash 3$ corrugated alluminium sheet will be used. The purlins have a span of 5.93 m and are space at 900 mm center on the plan or slope of 906 mm along the slope.
p

P-Reaction of force transfer to the rafter at the note $\mathrm{Ra} \& \mathrm{Rb}$-Reaction of force from span $\mathrm{a} \& \mathrm{~b}$

LOADING ON PURLIN

Self weight of alluminium roofmg sheet

$$
(2.44 * 9.81 * 0.9) 11000=0.0 \quad 125 \mathrm{KN} / \mathrm{m}
$$

Self weight of purlin
($976 * 9.81 * 0.05 * 0.075$) 1100 b
$=0.03959 K N / m$

TOTAL DEAD LOAD
$0.0125+0.03959=0.0484 \mathrm{KN} / \mathrm{m} \quad G k=0.0484 \mathrm{KN} / \mathrm{m}$

Imposed load on roof without access except for maintenance
BS $8110 \quad$ Say $=0.75 \mathrm{KN} / \mathrm{m}^{\prime \prime \prime} J$
TOTAL IMPOSED LOAD
$0.75 * 0.9=0.675 K N / m$

$$
Q k=0.675 \mathrm{KN} / \mathrm{m}
$$

LOAD ON RAFTER

1.15 kNM

1.5 M

RA
RB

$$
\mathrm{RA}=\mathrm{RB}
$$

Where $\mathrm{W}=$ Design load,
$\mathrm{L}=$ length of span of rafter
$\mathrm{RA}=\mathrm{RB}=W L / 2=\left\{1.15^{*} 1.5\right] / 2=0.8625 \mathrm{KN}$

This is transfer to the rafter at the nodes. for
Internal nodes $\mathrm{P}=2 * 0.8625=1.725 \mathrm{KN}$
Reaction from the roof truss

$$
=6.5 \mathrm{P}=6.5 * 1.725=11.21 \mathrm{KN}
$$

Number of trusses
A TO F
$=11.855 / 2=5.92=6$
Uniform load on the roof beam
No of trusses $=6$

UL on the roof beam $=5.66 \mathrm{KNM}$
$\{6$ * 11.213\}/11885 $=5.66 \mathrm{KNM}$

CALCULATION

OUTPUT

DESIGNED ROOF

1.725 KN

.8625 B

A J L G

$$
6 @ 2 \mathrm{~m}=12 \mathrm{~meters}
$$

,
Design member $A B$ assuming pry condition and long term loading SC3 timber

$$
\begin{aligned}
& \mathrm{RA}= \mathrm{RG}=10.35 / 2=5.175 \mathrm{KN} \\
& .8625
\end{aligned}
$$

Reaction at $\mathrm{A} \& \mathrm{~B}=$ 5.175 KN

FAB

A
5.175 KN

Rl~F

BS

526B

CALCULATION8625
.8625
FAB SIN 30FAR
AT JOINT A
5.175
$\mathrm{EV}=0$
$5.175+$ FAB SIN $30-0.8625=0$
FAB $=[-5.175+0.8625] / S I N \quad 30=-9.1 \mathrm{KN}$
-9.1KN [COMPRESSION] -9.1KN COMP
EH=0
FAB COS30+FAR
-9.1COS30=-FAH
FAH=7.88KN[TENSON] 7.88KNTENS
COMPRESSION MEMBER
Rafter and Strut
Effective length, le $=\mathrm{IL}$
$1 * 2.31=2.31 \mathrm{~m}$
Try 100×50 SC6 SECTION
BASIC DRY STRESSES
crc.adrn/z $=12.5 \mathrm{~N} / \mathrm{mm}$ "2
$\mathrm{E} \min =11800 \mathrm{~N} / \mathrm{mm}^{\prime \prime} 2$
(s c, admll $=12.5 * \mathrm{kl} * \mathrm{k} 2 * \mathrm{k} 3 * \mathrm{k} 8 * \mathrm{k} 12$

$$
\text { Slenderness ratio, } \quad=L e / b=2310 / 50
$$

$$
=46.2
$$

CALCULATION

OUTPUT

BS

$5268 \quad$ E rnin/rrc.adm $/ \mathrm{z}=11800 / 12.5=852.29$ From table k12 $=0.196$ [interpolation]

$$
\text { 1J c, admll }=\text { acJ! } * \mathrm{k}, * \mathrm{k} 2{ }^{*} \mathrm{k}, * \mathrm{~kg} * \mathrm{k} 12
$$

$$
12.5 * 1 * 1 * 1 * 1 * 0.196
$$

$$
=2.45 \mathrm{~N} / \mathrm{mm} / \backslash 2
$$

Permissible stress= 2.4 N/mm/ $/ 2$

Actual compression stress FORCEI AREA < 1JC, adrnl1 $9.1 * 10 / 31100 * 50=1.82 \mathrm{Nzmm}$ "Z Applied stress $1.82 \mathrm{~N} / \mathrm{mm} / 2<2.45 \mathrm{Nzmm} /$ '? OK $\quad 1.82 \mathrm{~N} / \mathrm{mm} / \backslash 2$

Provide $100 \times 50 \mathrm{~mm}$

Provide 100*50nun

TENSON MEMBER
 Post and Beam tie

Try 100 x 50
Section properties
FAH=7.88KN
St, , $=7 . \mathrm{S} \mathrm{N} / \mathrm{mm} 2$
Permissible stress
$=8.46 \mathrm{~N} / \mathrm{mm}^{2}$
St, $a d m,=S t, \quad x k 3 \times \mathrm{kg} \times \mathrm{k} 14$

$$
=7.5 \times 1.0 \times 1 \times[300 / 100]^{\circ} \cdot 11
$$

$$
=8.46 \mathrm{Nlmm} 2
$$

BS

$$
\text { St, applied, } \quad=F / A
$$

$$
=7.88 \times 10_{3} 1100 \times 50
$$

Applied stress
$=1.58 \mathrm{Nzrnrrr}^{\prime}$

$$
=1.58 \mathrm{Nlmm} 2
$$

si applied, < St, adm, $1.58 \mathrm{~N} / \mathrm{mm} 2<8.46 \mathrm{~N} / \mathrm{mm} 2$

 Provide 100×50Tie beam and post

PrOvide 100×50 tie beam

NOTE

Wind load is neglected in this study because
-it effect is horizontal [un necessary] while dead and live load is vertical [important on structure under study]
-Where the structure is situated wind load obtained from the local wind speedis negligible.

CHAPTER FOUR

41.1

REF	
BS 8110	CALCULATION

$$
=0.024<0.156
$$

BS $810 \quad \mathrm{Z}=\mathrm{Lad}$, where $\mathrm{La}=$ lever arm table $=0.95$

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{Lad}=0.95 * 119=113.05 \mathrm{~mm} \\
& \mathrm{As}=\mathrm{M} 1[0.87 \mathrm{FyZ}= \\
& 8.55 * 1061 \quad[0.87 * 400 * 113.05] \\
& =217.33 \mathrm{~mm}=\mathrm{Z}
\end{aligned}
$$

Provide

ProvideY12@300 C/C=377mm
At edge

$$
\begin{aligned}
& 1.75-0.087 \\
& 1.52-\mathrm{x} \\
& 1.5-0.078 \\
& =[1.75-1.52 / 1.75-1.5] \\
& =[0.087-X I 0.087-0.078] \\
& \mathrm{X}=0.079, B s x=0.079
\end{aligned}
$$

$$
\begin{aligned}
\text { Msx } & =0.079 * 12.06 * 3.466 \sim \\
& =1145 \mathrm{KNM}
\end{aligned}
$$

$$
=11.45 \mathrm{KNM}
$$

> Reinforcement

$$
\mathrm{K}=\mathrm{MuI}[\mathrm{bd} 2 \mathrm{Fcu}]
$$

$$
=11.45 * 10 \wedge 6 /[1000 * 119 / 22 * 25
$$

$$
=0.024<0.156
$$

$\mathrm{Z}=$ Lad where La=lever arm table $=0.95$

$$
\mathrm{Z}=\mathrm{Lad}=0.95 * 119=113.05 \mathrm{~mm}
$$

$$
\begin{aligned}
\mathrm{As} & =\mathrm{M} /[0.87 \mathrm{FyZ}] \\
& =11.45 * 106 /[0.87 * 400 * 113.05] \\
& =291.04 \mathrm{~mm} 2
\end{aligned}
$$

ProvideY10@200c/top=393mm 2
Provide Y10@200 c/c T

$$
\begin{aligned}
& \text { Fs }=5 / 8 \mathrm{FY} \quad \mathrm{Ar} / \mathrm{Ap} * \text { IIfJ } \\
& \text { BS } 810 \quad \mathrm{Fs}=5 / 8 * 400 *[217.33 / 377]^{*} \\
& =144.12 \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{Mf}=0.55+[477-\mathrm{Fs}] / 120[0.9+0.6] \\
& \text { M.F }=0.55+[477-144.12] / 180] \\
& =2.4>2 \\
& \text { M.F=2 } \\
& \text { Basic span ratio for continuous slab } \\
& =26 \\
& \text { Limiting span/depth } \\
& =2 * 26=52 \\
& \text { Actual span/depth } \\
& =3466 / 119=29.13 \\
& \text { Actual deflection<limiting deflection } \\
& \text { The deflection is ok } \\
& \text { @midspan } \\
& \text { Msy=0.034 * } 12.06 \text { *3.4662 } \\
& =4.93 \mathrm{KNm} \\
& \mathrm{~d}=-150-6-25-12=107 \\
& =0.017 \\
& \mathrm{Z}=\mathrm{Lad} \text { where } \mathrm{La}=\text { lever arm table } \\
& =0.95 \\
& \mathrm{Z}=\mathrm{Lad}=0.95 * 107=101.65 \\
& \text { As }=\mathrm{M} / 0.87 * \mathrm{Fy} * \mathrm{Z} \\
& =4.93 * 106 / 0.87 * 400 * 101.65 \\
& =139.33 \mathrm{~mm}^{\prime} \\
& \text { As min=0.13bh/100 } \\
& 0.13 * 1000 * 1501100=195 \mathrm{~mm} 2 \\
& \text { Provide y10 300c/c=262mm2 } \\
& \text { YiO@300 c/c B }
\end{aligned}
$$

BS
8110

$$
\begin{aligned}
& \text { @ Edge } \\
& \text { Msy }=0.045 * 12.06 * 3.4662 \\
& =6.52 \mathrm{KNm} \\
& \text { Reinforcement } \\
& \mathrm{K}=\mathrm{Mlbd} 2 \\
& =6.52 * 106 /[1000 * 1072 * 25] \\
& =0.023<0.156 \\
& \mathrm{Z}=\mathrm{Lad} \text { where la=lever aim table } \\
& =0.95 * 107=101.65 \\
& \text { As }=M J O .87 F y Z \\
& =6.52 * 106 /[0.87 * 400 * 101.65] \\
& =184.32 \mathrm{~mm}^{\prime} \\
& \text { As } \min =0.13 \mathrm{bh} / 100 \\
& =0.13 * 150 * 1000 / 100 \\
& =195 \mathrm{~mm}^{\prime} \\
& \text { Provide } \\
& \text { yl0@300c/top=262 mm }
\end{aligned}
$$

SLAB PANEL 2

BS 8110

$$
\begin{aligned}
& 5273 \\
& \sim \quad 3460 \\
& 1 y / 1 x=527313460=1.52<2 \text { Two ways slab } \\
& \text { ULTIMATE MOMENT } \\
& \text { Msx }=\{3 s x n / x 2 \\
& \text { Msy }=\{3 \text { synlx2 } \\
& \text { Short sQan;flsx or } \\
& \text { 1.5-0.055 } \\
& 1.52 \text { - x } \\
& \text { 1.75-0.062 } \\
& (1.75-1.5) /(1.75-1.52)=(0.062-0.055) / \\
& \text { (0.062 - x) } \\
& \mathrm{x}=0.056 ; \quad\{3 s \mathrm{x}+=0.056
\end{aligned}
$$

Mid span

Msx $=\{3 s x n / x 2$
$=0.056 \times 12.06 \times 3.462$
$=8.09 \mathrm{KNm}$

Reinforcement;
$\mathrm{K}=\mathrm{MuI} \mathrm{bd}_{2}$ feu $=8.09 \times 10_{6} \mathrm{I} 1000 \times 1192 \times 25$
$=0.023<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 119$ (From lever arm table) Y12@275c/c B
$=113.05 \mathrm{~mm}$
As $=\mathrm{M}, I 0.87 \mathrm{fyZ}=8.09 \times 10_{6} I 0.87 \times 400 \times$ 113.05
$=205.64 \mathrm{~mm}^{2}$

Provide Y12@ 275c/c Bottom (As=377mm2)

Continuous Edge ; [3s~

$$
1.75-0.082
$$

1.52 -- -x
$1.5--0.073$
$=1.75-1.511 .75-1.52=0.082-0 _073 / 0.082-\mathrm{x}$
Therefore, $\mathrm{x}=-0.074$; flsx $-\sim-0.074$
Msx- $=-0.074 \times 12.06 \times 3.462$
$=10.68 \mathrm{KNm}$

Reinforcement;
$\mathrm{K}=\mathrm{Mu} I \mathrm{bd}_{2} \mathrm{feu}=10.68 \times 10_{6} I 1000 \times 119_{2} \times 25$
$=0.03<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 119=113.05 \mathrm{~mm}$
As $=\mathrm{M}, I 0.87$ feuZ $=10.68 \times 10_{6} I 0.87 \times 400 \times$
119
$=271.45 \mathrm{~mm}^{2}$

Provide Y12@ 300c/c Top (As = 377mm2)

Provide
Y12@300 c/c T

CHECK FOR DEFLECTION

Mlbd2 $=8.09 \times 10_{6 /} 1000 \times 1192=0.57$
$\mathrm{Fs}=(5 / 8) \times(400) \times(205.631377) \times 1 / \mathrm{x}=$ 136.36 Nlm 2
$\mathrm{M} . \mathrm{F}=0.55+[(477-136.36) /\{120(0.9+0.57)\}]$
$<2 \quad$ M.F=2
$=2.48>2.0$
SayM.F=2
Limiting span I Effective span;
(Allowable span I depth ratio) $=2 \times 26$
$=52$
Actual span I Effective depth $=3460 / 119=$ 29.08

Therefore, actual deflection < limiting deflection The deflection is okay!

Long Span

$f 3 s x^{+}=0.028 ; \quad f 3 s x-=0 .{ }^{\prime} 037$
$\mathrm{d}=150-25-126=107 \mathrm{~mm}$.
since the reinforcement for this span will have a reduce effective depth;
$\operatorname{Msx}+=0.028 \times 12.06 \times 3.462=4.04 \mathrm{KNm}$

Reinforcement
$\mathrm{K}=\mathrm{M}, I \mathrm{bd} 2 \mathrm{feu}=4.04 \times 106 / 1000 \times 1072 \times 25=$ $0.014<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$Z=\operatorname{lad}=0.95 \times 107=101.65 \mathrm{~mm}$
$\mathrm{As}=\mathrm{M}, I 0.87 f y Z=4.04 \times 106 I 0.87 \times 400 \mathrm{x}$
$101.65=114.21 \mathrm{~mm} 2$
As min $=0.13 \mathrm{bhl} 100=195 \mathrm{~mm}_{2}$
Provide YI0@300c/c Bottom $(\mathrm{As}=262 \mathrm{~mm} 2)$

$$
\begin{aligned}
& \text { Continuous edge } \\
& \text { Msx- }=0.037 \times 12.06 \times 3.462=5.34 \mathrm{KNm} \\
& \text { Reinforcement } \\
& \mathrm{K}=\mathrm{M}, I \mathrm{bd} 2 \mathrm{feu}=5.34 \times 10611000 \times 1072 \times 25= \\
& 0.018<0.156 \\
& \mathrm{Z}=\mathrm{Lad} \text { where } 1 \mathrm{a}=\text { lever arm table }=0.95 \\
& \mathrm{Z}=\mathrm{lad}=0.95 \times 107=101.65 \mathrm{~mm} \\
& \text { As }=\mathrm{M}, I 0.87 f y \mathrm{Z}=5.34 \times 106 I 0.87 \times 400 \times \\
& 101.65=150.96 \mathrm{~mm} 2 \\
& \text { Asmin=a3bh/1 } 00=195 \mathrm{~mm} 2 \\
& \text { Provide Y10@ } 300 \mathrm{c} / \mathrm{c} \mathrm{TOP}(\mathrm{As}=262 \mathrm{~mm} 2)
\end{aligned}
$$

SLAB PANEL 3; P3

UL TIMATEiMOMENT

$$
f 3 \mathrm{sx}+=0.029 ; \quad f 3 s x-=0.039
$$

Design load
Slab selfweight $=0.2 \times 24=4.8 \mathrm{KN} / \mathrm{m}^{2}$
DESIGN LOAD

$$
=1.4 \times 11.34+1.6 \times 1.5=11.34 \mathrm{KN}
$$

Midspan

$$
\mathrm{Msx}+=0.029 \mathrm{x} \quad 13.74 \times 5.2662
$$

$$
=11.05 \mathrm{KNm}
$$

$$
\mathrm{d}=200-6-25=169 \mathrm{~mm}
$$

Reinforcement

$$
\mathrm{K}=\mathrm{M}, 1 \mathrm{bd} 2 \mathrm{feu}=11.05 \times 10611000 \times 1692 \times 25=
$$

$$
0.015<0.156
$$

$$
\mathrm{Z}=\mathrm{Lad} \text { where } \mathrm{la}=\text { lever arm from table }=0.95
$$

$$
\mathrm{Z}=\mathrm{lad}=0.95 \times 169=160.6 \mathrm{~mm}
$$

$$
\mathrm{As}=\mathrm{M}, 10.87 f y \mathrm{Z}=11.05 \times 1061
$$

$$
0.87 \times 400 \times 160.6=197.71 \mathrm{~mm} 2
$$

Continuous Edge ; \{isx -

$$
\begin{aligned}
& \mathrm{f3sx}=0.039 \\
& \text { Msx- }=-0.039 \times 13.74 \times 5.2662 \\
& =14.86 \mathrm{KNm}
\end{aligned}
$$

Reinforcement
$\mathrm{K}=\mathrm{M}, I$ bd 2 feu $=14.86 \times 106 / 1000 \times 1692 \times 25=$ $0.021<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 169=160.6 \mathrm{~mm}$
As $=\mathrm{M}, I 0.87 f \mathrm{yZ}=14.86 \times 106 I 0.87 \times 400 \times$ $160.6=265.89 \mathrm{~mm} 2$

Provide Y12@ 275c/c Top (As = 411mm2)

CHECK FOR DEFL~CTION,

Mlbd2 $=11.05 \times 106 I 1000 \times 1692=0.39$
$\mathrm{Fs}=(5 / 8) \times(400) \times(197.71$ 1377) $\times 1 / 1=$ 131.12N/m2
M.F $=0.55+[(477-131.12) I\{120(0.9+0.39)\}]$ <2
$=2.78>2.0$
SayM.F=2
Limiting span I Effective span;
(Allowable span I depth ratio) $=2 \times 26$
= 52
Actual span I Effective depth $=5266$ I $169=$ 31.16

Therefore, actual deflection < limiting deflection
The deflection is okay!

Long Span
$\mathrm{f} 3 \mathrm{sx}+=0.028 ; \quad \mathrm{f} 3 \mathrm{sx}-=0.037$
$\mathrm{d}=200-25-126=157 \mathrm{~mm}$
since, the reinforcement for this span will have a reduce effective depth;

Note: Provide the same reinforcement as above in panel 2

SLAB PANEL 4; P4
3466

$$
\mathrm{Ly} / \mathrm{Lx}=1.6
$$

$\mid y / 1 x=346612166=1.6<2$ Two ways slab

ULTIMATE MOMENT

Msx $=\left.f\right|_{\text {sxnl }} /$
Msy $=$ flsxn1 $\times 2$
Short span; $f 3_{\mathrm{sx}}+$
1.5- 0.043
1.6-x
1.75-0.047
$(1.75-1.5) /(1.75-1.6)=(0.047-\mathrm{x}) /(0.047-$
0.043)
$\mathrm{x}=0.045$

Mid span

$$
\begin{aligned}
& \mathrm{Msx}=p s x n l x_{2} \\
& =0.045 \times 12.06 \times 2,1662 \\
& =2.55 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Reinforcement

$\mathrm{K}=\mathrm{M}, 1 \mathrm{bd}_{2} \mathrm{feu}=2 . S 5 \times 106 / \mathrm{l} 000 \times 1692 \times 25=$ $0.007<0.156$
$\mathrm{Z}=$ Lad where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 119=113.05 \mathrm{~mm}$
As $=\mathrm{M}, 10.87 f y Z=2.55 \mathrm{x} 106 \mathrm{l} 0.87 \mathrm{x} 400 \mathrm{x}$

$$
113.05=64 \mathrm{~mm}^{2}
$$

$$
=A s_{\min }=0.13 \mathrm{bhll} 00=195 \mathrm{~mm}^{2} \prime \prime
$$

Provide Y12@300c/c Bottom $\left\{\mathrm{As}=377 \mathrm{~mm}^{2}\right) \quad \begin{aligned} & \text { Provide } \\ & \text { Y12@ } 300 c / c \text { B }\end{aligned}$
Continuous Edge ; $\left\{J^{\sim} \sim\right.$

$$
1.5--0.058
$$

$$
1.6-- \text {-x }
$$

$$
1.75---0.063
$$

$$
=1.75-1.511 .75-1.6=0.063-0.05810 .063-\mathrm{x}
$$

Therefore, $\mathrm{x}=-0.051 ; B s x-=-0.06$
Msx- $=-0.06 \times 12.06 \times 2.1662$
$=3.4 \mathrm{KNm}$
Reinforcement;
$\mathrm{K}=\mathrm{M}, 1 \mathrm{bd}_{2} \mathrm{fe} \mathrm{u}=3.4 \times 10_{6} 11000 \times 1192 \times 25=$ $0.009<0.156$
$\mathrm{Z}=$ Lad where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 119=113.05 \mathrm{~mm}$

$$
\mathrm{As}=\mathrm{Mu} / 0.87 f y Z=3.4 \times 106 / 0.87 \times 400 \times
$$

$113.05=96.11 \mathrm{~mm}^{2}$
As min $=0.13 \mathrm{bhl} 100=195 \mathrm{~mm}^{2}$
Provide Y10@300c/c Top (As = 262mm2)

Provide
Y10@300 c/c T

CHECK FOR DEFLECTION,
Mlbd2 $=2.55 \times 10611000 \times 1192=0.18$
Fs $=(5 / 8) \times(400) \times(64 / 262) \times 1 / \mathrm{I}=61.07 \mathrm{~N} / \mathrm{m}_{2}$
M.F $=0.55[(477-61.07) /\{120(0.9+0.18)\}]<$

2
$=3.74>2.0$
M.F=2

SayM.F=2
Limiting span / Effective span;
(Allowable span $/$ depth ratio) $=2 \times 26=52$
Actual span / Effective depth $=2166$ / $119=$ 18.20

Therefore, actual deflection <-limiting deflection The deflection is okay!

Long Span ~

$\mathrm{f} 3 \mathrm{sx}+=0.028 ; \quad \mathrm{f} 3 \mathrm{sx}-=0.037$

Note: Provide the same reinforcement as above in span 4

BS8110 Check for shear

$$
\mathrm{V}=108.46 \mathrm{KN}
$$

$$
\mathrm{V}=\mathrm{V} / \mathrm{bd}=108.46 \times 103
$$

$$
225 \times 407
$$

$$
=1.18 \mathrm{~N} / \mathrm{mm}_{2}
$$

$1.18<4 \mathrm{~N} / \mathrm{mm}_{2}$

$$
100 \mathrm{~A}_{\mathrm{s}}=100 \times 804=0.88 \mathrm{~N} / \mathrm{mm}_{2}
$$

$$
\text { bd } \quad 225 \times 407
$$

by calculation

$\mathrm{Vc}=0.79(100 \mathrm{AS}) 1 \mathrm{I} 3(400) 114$

$$
(\mathrm{bd} \quad) \quad(\mathrm{d})
$$

$$
\mathrm{fm} \text { of } 1.25
$$

$\mathrm{Vc}=0.79[0.88 \mathrm{t} 33[0.98125$

$$
=0.75 \mathrm{~N} / \mathrm{mm}_{2}
$$

Shear link
Asv $=\mathrm{b}[\mathrm{v}-\mathrm{vc}]=225$ [1.18-0.75]
S, $\quad 0.87 \mathrm{fyu} \quad 0.87 \times 250$

Asv $=0.44$
Sv
Provide R8 links @ 225mm centers
Asu provided $=0.447$
Provide RIO@2r)5
Su
Check maximum shear stress
Max shear @ support
$\mathrm{Vs}=0.6 \mathrm{f}-\mathrm{Wu}$ * support width
2
$=0.6 \times 180.76-34.28 \times 0.225$
2
$=108.46-3.86=104.6 \mathrm{KN}$
Max $V=V S=104.6 \times 103$
bd 225×407
$=1.14 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \text { SLAB PANEL 5; P5 } \\
& \text { \{ / } 2030 \text { / } \\
& L y / L x=1 \\
& \text {, } \\
& \text { Ultimate ly } / 1 \mathrm{x}=203012021=1<2 \text { Two ways } \\
& \text { slab } \\
& \text { Moment } \\
& \{3 \text { sx } 1=0.03, \quad\{3 \text { sx } 1=0.039
\end{aligned}
$$

Mid span.

$$
\begin{aligned}
& \text { Msx }=\text { Bsxru. } x^{\prime} \\
& =0.03 \times 12.06 \times 2.1212 \\
& =1.63 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Reinforcement;
$\mathrm{K}=\mathrm{M}, I \mathrm{bd} 2 \mathrm{feu}=1.63 \times 10611000 \times 1192 \times 25=$ $0.005<0.156$
$\mathbf{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$Z=1 a d=0.95 \times 119=113.05 \mathrm{~mm}$
$\mathrm{As}=\mathrm{M}, I 0.87 f y Z=1.63 \times 106 I 0.87 \times 499 \mathrm{x}$
113.05
$=40.67 \mathrm{~mm} 2$
As min=0.13bhll00=195mm2

Provide
YI0@300 c/c B

Provide YI0@ 300c/c Bottom (As $=262 \mathrm{~mm} 2$)

> Continuous Edge ; \{3sx -

$$
/ 3 \mathrm{sx}=0.039
$$

$$
\text { Msx- }=-0.039 \times 12.05 \times 21212
$$

$$
=2.1 \mathrm{KNm}
$$

> Reinforcement;
$\mathrm{K}=\mathrm{M}, ~ I \mathrm{bd}_{2} f e \mathrm{u}=2.1 \times 10_{6} / 1000 \times 119_{2} \times 25=$ $0.006<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=1 \mathrm{lad}=0.95 \times 119=113.05 \mathrm{~mm}$
As $=$ M, $/ 0 . S 7 f y Z=2.1 \times 106 / 0 . S 7 \times 400 \times$
113.95
$=53.39 \mathrm{~mm} 2$
As Min=0.13bh/00=195mm2 Provide
Provide Y10@300c/c Top (As = 262mm $)$
Y10@300 c/c T
CHECK FOR DEFLEC̈TION,
Mlbd2 $=1.63 \times 10_{6} / 1000 \times 19_{2}=0.12$
Fs $=(5 / S) \times(400) \times(53.39$ / 262) x 1 II -
50.94N/m2
M.F $=0.55+[(477-50.94) /\{120(0.9+0.12)\}]$
<2
$=4>2.0$
SayM.F=2
Limiting span / Effective span;
(Allowable span I depth ratio)
$=2 \times 26 \quad=52$
Actual span / Effective depth $=2121$ / $119=$ 17.S2

Therefore, actual deflection < limiting deflection The deflection is okay!
$\beta 3 s x+=0.028 ; \quad \beta 3 x-=0.037$

Note: Provide the same reinforcement as above in panel 2

SLAB PANEL 6, P6

The panel can be seen as propped cantilever

$12.06 \mathrm{KN} / \mathrm{m}$

.euom

$\sim 1=f l_{2} / 10=12.06 \times 0.62 I 10=0.43 \mathrm{KNm}$
Reinforcement; "
$\mathrm{d}=150-25-6=119 \mathrm{~mm}$
$\mathrm{K}=\mathrm{M}, I \mathrm{bd}_{2} \mathrm{feu}=0.43 \times 10_{6} / 1000 \times 1192 \times 25=$ $0.001<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=1 \mathrm{ad}=0.95 \times 119=113.05 \mathrm{~mm}$
As $=\mathrm{M}, I 0.87 \mathrm{fyZ}=0.43 \times 10_{6} I 0.87 \times 400 \times$
113.05
$=10.93 \mathrm{~mm}^{2}$
Check for minimum reinforcement
$=0.13 \mathrm{bh} / 100=\mathrm{A}$,
$=0.13 \times 1000 \times 150 / 100=195 \mathrm{~mm}_{2}$

Provide Y12@300c/c Bottom (As=377mm2)

Provide
Y12@300 c/c T / B
Provide the same reinforcement Y12@ 300c/c as
Top and distribution bar for all span

CHECK FOR DEFLECTION,

$$
\begin{aligned}
& \mathrm{Mlbd}_{2}=0.43 \times 10_{6} / 1000 \times 119_{2}=0.03 \\
& \mathrm{Fs}=(5 / 8) \times(400) \times(1951377) \times 1 / /=129 \mathrm{~N} / \mathrm{mm} 2 \\
& \mathrm{M} . \mathrm{F}=0.55+[(477-129) /\{120(0.9+0.03)\}]< \\
& 2 \\
& =3.67>2.0 \\
& \begin{array}{l}
\text { SayM.F }=2 \\
\text { Limiting span } / \text { Effective span; } \\
\text { (Allowable span } / \text { depth ratio }) \\
=2 \times 26 \quad \text { M.F }=2 \\
\text { Actual span } / \text { Effective depth }=600 / 119=5.04 \\
\text { Therefore, actual deflection }<\text { limiting deflection } \\
\text { The deflection is satisfied! }
\end{array}
\end{aligned}
$$

Mosh yand
Bungyy

Oyenuga VO The stair case plan and cross - section are shown 1999

4.1.1 DESIGN OF STAIR CASE (TYPICAL)

in the architectural drawing CASE A

$$
250
$$

Design data;
Waist $=150 \mathrm{~mm}$ Tread $=250 \mathrm{~mm}$
Riser $=150 \mathrm{~mm}, \quad$ cover $=20 \mathrm{~mm}$
Feu $=25 \mathrm{~N} / \mathrm{mm}, \quad \mathrm{Fy}=460 \mathrm{~N} / \mathrm{mm}_{2}$

$$
o m=1.15 \sim
$$

Total length of goings $=8 \times 250$
$=2000 \mathrm{~mm}$
Effective span $=\mathrm{L}+0.5[\mathrm{La}+\mathrm{Lb}]$
$\mathrm{La}=750 \mathrm{~mm}, \mathrm{Lb}=1326$
$=2000+0.5$ (2076)
$=3038 \mathrm{~mm}$
$\mathrm{D}=150-20-12 / 2=124 \mathrm{~mm}$
Loadings
Waist self weight $=0.15 \times 24$

$$
=3.6 \text { KNIM2 }
$$

Weight of steps $=0.5 \times 0.150 \times 24$

$$
=1.8 \mathrm{KN} / \mathrm{m} 2
$$

Finishing (say) $=1.2 \mathrm{KN} / \mathrm{m} 2$
Total dead load $\mathrm{Gk}_{\mathrm{k}}=6.6 \mathrm{KN} / \mathrm{m}_{2}$

Imposes load Qk $=1.5 \mathrm{KN} / \mathrm{m}_{2}$
BS $810 \quad$ Slope factor, $J(2502+1502)$ I 250
$=1.166$
Slope factor= 1.166
$\mathrm{F}=(3.6+1.2) 1.166+1.8\} 1.4+[1.5] 1.6=12.756$
KN/m2
Therefore, design load $\mathrm{n}=12.756 \mathrm{KN} / \mathrm{m}^{2}$
Moment
Case a
$\mathrm{M}=0.125 \mathrm{Fl} 2$
$=0.125 \times 12.756 \times 3.03{ }^{82}$
$=14.72 \mathrm{KNm}$
Reinforcement;
$\mathrm{K}=\mathrm{M}, I$ bd2feu= $14.72 \times 106 / 1000 \times 1242 \times 25=$
$0.038<0.156$
$\mathrm{Z}=$ Lad where $\mathrm{la}=$ lever arm table $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 124=117 . \& \mathrm{~mm}-"$
As $=\mathrm{M}, I 0.87 f y Z=14.72 \times \sim 060.87 \times 400 \mathrm{x}$
117.8
$=359.07 \mathrm{rrun} 2$

Provide Y12@ 200c/c Bottom (As = 566mm2)
CHECK FOR DEFLECTION,
Provide
Y12@ $200 c / c \mathrm{E}$

Mlbd2 $=14.72 \times 10611000 \times 1242=0.96$
Fs $=(5 / 8) \times(400) \times(359.071566) \times 1$ II $=$ 159.44N/nun2
M.F $=0.55+[(477-159.44) I\{120(0.9+0.96)\}]$
<2
$=1.97>2.0$
Limiting span I Effective span;
(Allowable span I depth ratio)

$$
=1.97 \times 20 \quad=39.4
$$

Actual span I Effective depth $=3038 I 124=24.5$
BS 8110 Therefore, actual deflection < limiting deflection Thus, the deflection is satisfied

Second Flight

CASEB

$$
\text { Effective span } d=2000+0.5(1462+750) \quad-
$$

$$
3106 \mathrm{~mm}
$$

Moment

Case $\mathrm{b}=0.10 \mathrm{Fe}$
$\mathrm{M}=0.10 \mathrm{X} 12.756 \mathrm{X} 3.1062$
$=12.31 \mathrm{KNm}$
Reinforcement;
$\mathrm{K}=\mathrm{Mu} / \mathrm{bd} 2$ feu $=12.31 \times 106 / 1000 \times 1242 \times 25=$
$0.032<0.156$
$\mathrm{Z}=\mathrm{Lad}$ where $\mathrm{la}=$ lever arm täble $=0.95$
$\mathrm{Z}=\mathrm{lad}=0.95 \times 124=117.8 \mathrm{rrim}$
As $=\mathrm{M}, I 0.87 \mathrm{fyZ}=12.31 \sim 106 I 0.87 \times 400 \mathrm{x}$
117.8
$=301.9 \mathrm{~mm}^{2}$

Provide Y12@ $225 c / c$ Bottom (As = 502mm2) Provide
'Y12@225 B

CHECK FOR DEFLECTION,

Mlbd2 $=12.31 \times 10611000 \times 1242=0.8$
$\mathrm{Fs}=(5 / 8) \times(400) \times(301.91502) \times 1 \mathrm{II}=$ $150.35 \mathrm{~N} / \mathrm{mm} 2$
M.F $=0.55+[(477-150.35) I\{120(0.9+0.8)\}]$
<2
$=2.15<2.0$

Limiting span 1 Effective span;

BS ~ 110 (Allowable span 1 depth ratio)

$$
=2 \times 20 \quad=40
$$

Actual span 1 Effective depth $=31061124=25.04$
Therefore, actual deflection < limiting deflection Then, the deflection is satisfied

HALF LANDING

Loadings
Span $=750 \mathrm{~mm}$
Self weight $=0.150 \times 24 \times 1.4$

$$
=5.04 \mathrm{KN} / \mathrm{m}^{2}
$$

Finishing (say) $=1.2 \times 1.4 \times 1.4$

$$
=2.4 \mathrm{KN} / \mathrm{m} 2
$$

Flights $=12.756 \times 8 \times 0.25 / 2 \times 1.4$

$$
=3.29 \mathrm{KN} / \mathrm{m} 2
$$

Live load $=1.5 \times 1.4 \times 1.6$;

$$
=12.6 \mathrm{KN} / \mathrm{m} 2
$$

Total load, $\mathrm{W}=23.33 \mathrm{KN} / \mathrm{m} 2$
23.33KN/m2
 5
$\mathrm{M}=\mathrm{w} 1218=23.33 \times 0.75218$
$=1.64 \mathrm{KNm}$

Reinforcement;
$\mathrm{K}=\mathrm{l}^{\prime} 1 \mathrm{lu} / \mathrm{bd} 2 f e u=1.64 \times 10611000 \times 1242 \times 25=$
$0.0043<0.156$
$\mathrm{Z}=\mathrm{Lad}$, lever arm table , $\mathrm{la}=0.95$

BS ~ 110
$\mathrm{Z}=0.95 \times 124=117.8$
As $=\mathrm{M}$, $/ 0.87 f y Z=1.64 \times 106 / 0.87 \times 400 \times$
117.8
$=40.22 \mathrm{~mm} 2$
As min $=0.13 \mathrm{bh} / 100=195 \mathrm{~mm} 2 \quad$ PrOvide
Provide Y12@300c/c Bottom and Top Y12 @ 300 c/c (As $=377 \mathrm{~mm} 2$)

B\&T

CHECK FOR DEFLECTION,

Mlbd2 $=1.64 \times 106 / 1000 \times 1242=0.11$
$\mathrm{Fs}=(5 / 8) \times(400) \times(40.221377) \times 1 / I=$ $26.67 \mathrm{~N} / \mathrm{mm}^{2}$
M.F $=0.55+[(477-26.67) /\{120(0.9+0.11)\}]$
<2
$=4.27<2.0, \quad$ M.F $=2$
Limiting span / Effective span;
(Allowable span I depth ratio)
$=2 \times 20 \quad=40$;
Actual span $/$ Effective depth $=7501124=6.05$
Therefore, actual deflection < limiting deflection
The deflection is satisfied

BS 810
Reyn DIdand
SteedPlan
1994

4.1.2 DESIGN OF ROOF BEAMS

SteedPlan Assumption / Assignment
, F
Fy $=410 \mathrm{~N} / \mathrm{mm} 2$, feu $=25 \mathrm{~N} / \mathrm{mm} 2$
Fyr $=250 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~h}=300 \mathrm{~mm}, \quad 0=16 \mathrm{~mm}$,
Oyenuga V $\quad 0 m=1.15, F_{y d}=400 \mathrm{~N} / \mathrm{mm} 2$
1999 Concrete cover for 1 hr fire resistance $=25 \mathrm{~mm}$
b $225 \mathrm{~mm}, \quad$ Link $=10 \mathrm{~mm}$ (say)
$\mathrm{d}=300-25-16 / 2-10=257 \mathrm{~mm}$

ROOF BEAM

Loadings
Self weight $=0.3 \times 0.225 \times 24 \times 1.4$

$$
=2.27 \mathrm{KN} / \mathrm{m} 2
$$

Load from roof $=7.475 \times 1.4$

$$
=10.471<.: 1^{\prime} l l m 2^{\prime \prime}
$$

Rendering \& Ceiling hanger

$$
=0.28 \times 1.4=0.392 \mathrm{KNim} 2
$$

Total dead load $=13.13 \mathrm{KN} / \mathrm{m} 2 \sim$

$$
\begin{array}{cl}
\text { Live load }=1.5 \times 1.6=2.4 \mathrm{KN} / \mathrm{m} 2 & \text { Designed load } \\
\text { DESIGN LOAD } & =15.532
\end{array}
$$

DESIGN LOAD

DL+LL $=15.532 \mathrm{KN} / \mathrm{m} 2$

From the diagram, it can be seen by inspection that the beam is symmetrical; both hand side (EDCA) is used for the analysis and design

BENDING MOMENT

At 1st interior support
$\mathrm{Mo}=\mathrm{Me}=-\mathrm{O} .11 \mathrm{~F}$
Where $\mathrm{F}=15.532 \mathrm{x} 5.293=82.21 \mathrm{KN}$
Or $15.532 \times 4.920=76.42, \mathrm{KN}$ "
Moment at support
Mo $=-0.11 \times 82.21 \times 5.293$
$=-47.87 \mathrm{KNm}$
$\mathrm{Me}=-0.11 \times 76.42 \times 4.92$
$=-41.36 \mathrm{KNm}$
Moment at midspan
ME-o $=0.09 \mathrm{Fl}$

$$
\mathrm{F}=15.532 \times 2.094=32.52 \mathrm{KN}
$$

Me-o $=0.09 \times 32.52 \times 2.094$
$=6.13 \mathrm{KNm}$
Mo-e $=0.07 \mathrm{Fl}$
$=0.07 \times 82.21 \times 5.293$
$=30.46 \mathrm{KNm}$
$\mathrm{Me}-\mathrm{A}=0.09 \mathrm{Fl}$
$=0.09 \times 76.42 \times 4.92$
$=33.84 \mathrm{KNm}$

SHEAR FORCES

BSI 110

$$
\begin{aligned}
& \mathrm{VE}=0.45 \mathrm{~F}=0.45 \times 32.52=14.63 \mathrm{KN} \\
& V \mathrm{D}=0.6 \mathrm{~F}=0.6 \times 82.21=49.33 \mathrm{KN} \\
& \mathrm{Vc}=0.6 \mathrm{~F}=0.6 \times 76.42=45.85 \mathrm{KN} \\
& \mathrm{VA}=0.45 \mathrm{~F}=0.45 \times 76.42=34.39 \mathrm{KN} \\
& \text { At support D, M=-47.87 } \\
& \mathrm{K}=\mathrm{Mlbd} 2 \mathrm{fcu} \\
& =47.87 \times 106 /[225 \times 2572 \times 25] \\
& =0.13<0.156 \\
& \text { No compression steel required } \\
& \mathrm{Z}=\mathrm{Lad} \text {, } \mathrm{La} \text { from lever arm table } \\
& =0.82 \times 257=210.74 \mathrm{~mm}^{\prime} \\
& \text { As -MlO.87FyZ } \\
& =47.87 \times 106 /[0.87 \times 400 \times 210.74] \\
& =552.74 \mathrm{~mm} 2 \\
& \text { Provide 3Tı6 [603 mm"] } \\
& \text { Provide } \\
& \text { At span, } \mathrm{M}=33.84 \mathrm{KNm} \\
& \text { bF225 , } \mathrm{b}_{\mathrm{w}}=225 \mathrm{~mm} \\
& \text { rectangular beam } \mathrm{b}=\mathrm{b} \text {; } \\
& \mathrm{K}=\mathrm{Mlbd} 2 \mathrm{Fcu} \\
& =33.84 \times 106 /[225 \times 2572 \times 25] \\
& =0.091 \\
& \mathrm{Z}=\mathrm{Lad} \text {, la from lever arm table } \\
& =0.89 \times 257=228.73 \mathrm{~mm} \\
& \text { As }=M 1\left[0.87 F_{y} Z\right] \\
& 33.84 \times 106 /[0.87 \times 400 \times 228.73] \\
& \text { Provide 2T } 16 \text { [402mm2] }
\end{aligned}
$$

CHECK FOR DEFLECTION

AT MIDSPAN

$\operatorname{Mlbd}_{2}=33.84 \times 1$ 06/[225 x 228.732]
$=2.87$
$\mathrm{Fs}=5 / 8 \times$ Fy x $A r / A p \quad I I I$
$=5 / 8 \times 400 \times 425.14 / 603$
M.F=I. 22

$$
=176 \mathrm{~N} / \mathrm{mm}_{2}
$$

$\mathrm{M} . \mathrm{F}=0.55+[477-\mathrm{Fs}] 1120\left[0.9+\mathrm{Mlbd}_{2}\right.$
$0.55+[477-176] / 120[0.9+2.87]$
M.F $=1.22<2$

Basic span ratio for continues beam $=26$
Limiting spanld $=26 \times 1.22=31.72$

Actual spanld $=4920 / 210.74$

$$
=23.35
$$

Limiting $>$ actual deflection is o.k

CHECK SHEAR

$\mathrm{VA}=34.39 \mathrm{KN}$
Shear stress $y=v / b d \quad, \quad '=34.39 \times 103 / 225$
x257

$$
=0.59 \mathrm{~N} / \mathrm{mm} 2<0.89 \backslash f F \mathrm{cu}
$$

$1 O O A s / b d=100 \times 603 / 225 \times 251$ $=1.04$
$\mathcal{V} ;=[0.79[100 \mathrm{As} / \mathrm{bd}] 113[400 / d] 1 / 4] / 1.25$
$=\left[0.79 \mathrm{x} 1.04_{1 / 3 x}[400 / 257] 1 / 4\right] / 1.25$
$\boldsymbol{V} .=0.38 \mathrm{~N} / \mathrm{mm} 2$
$A s v / S v=\mathrm{b}[\mathrm{v}-\mathrm{vc}] / 0.87 \mathrm{Fyv}$
$\mathrm{Fyv}=250$
$A s v / S v=225[0.59-0.38] / 0.87 \times 250$
$=0.22$
Provide Rs 300 rom c/c,
Provide R8@300
$A s v / S v=0.335$

CHECK MAXIMUM SHEAR STRESS at the face of the support

$$
\begin{aligned}
& \text { Vs }=0.6 \mathrm{~F}-\mathrm{Wu} \text { x support width12 } \\
& =0.6 \times 76.42-15.532 \times 0.225 / 2 \\
& =44.10 \mathrm{KN}
\end{aligned}
$$

$$
\mathrm{y}=\mathrm{Vs} / \mathrm{bd}=44.10 / 225 \times 257
$$

$$
=0.76 \mathrm{~N} / \mathrm{mm}<0.8 \mathrm{v}^{\prime} \mathrm{Fcu}
$$

O.K

Bending Moment

Code table 3.6 of BS811 0 if the different between the longest and shortest span is not more than $150 / 0$ or providing the dead load is greater than imposed load

MOMENT

$$
\begin{aligned}
& \mathrm{M}=\mathrm{WL} 2 / 8 \\
= & 26.89 \times 3.462 / 8 \\
= & 40.19 \mathrm{KNm}
\end{aligned}
$$

SHEAR FORCE

$$
\begin{aligned}
& \mathrm{V}=\mathrm{WI} / 2 \\
& =26.89 \times 3.46 / 2 \\
& =46.52 \mathrm{KN}
\end{aligned}
$$

REINFORCEMENT

Section properties
Overall depth $\mathrm{h}=450 \mathrm{mn}$
Web breath $\{\mathrm{bw}\}=225 \mathrm{mn}$
Flange breath $\mathrm{bf}=\mathrm{bw}+1110[0.7 \mathrm{~L}]=225+1110$
(0.7) [3.46]
$=225.24 \mathrm{mn}$
Effective depth $=\mathrm{d}=450-25-(10)-16 / 2=$ 407mn
Concrete cover $=25 \mathrm{mn}$, fen $=25 \mathrm{~N} / \mathrm{mm} 2$, fy $=460$
N/mm2
Partial function steel $\mathrm{fm}=1.15$
\therefore fy $=460 / 1.15=400 \mathrm{~N} / \mathrm{mm} 2$
Durability \& fire resistance 1 hr
Condition of exposure $=$ mild $\mathrm{M}=40.19 \mathrm{KNm}$

$$
\mathrm{K}=\mathrm{M}_{-} \quad=40.19 \times 106
$$

Bd2fcu $225\{407\} 2\{25\}$ $=0.043<0.156$
$\mathrm{Z}=\mathrm{Lad}, \mathrm{La}$ lever arm from table

BS 810 4.1.2
MJ Smith and BJ Bell

DESIGN OF FLOOR BEAM
1971
Assumption
Oyenuga V
$1999 \quad \mathrm{Fy}=460 \mathrm{~N} / \mathrm{mm}_{2} \quad$ steel partial f.s.om $=1.1 \mathrm{~S}$ Fcu $=25 \mathrm{~N} / \mathrm{mm}_{2}$
$\mathrm{b} \quad=225 \mathrm{~mm}, \quad \mathrm{~h}=450 \mathrm{~mm}$,
$(/)=16 m m$
$\mathrm{F} Y D=460 / 1.15=400 \mathrm{~N} / \mathrm{mm}^{2}$
condition of exposure mild concrete cover for 1 hr fire resistance $=25 \mathrm{~mm}$ $\mathrm{d}=450-25-10-16 / 2=409 \mathrm{~mm}$

LOADING ON FLOOR BEAM 1

/26.89KNm

3460 mm

LOADING SPAN
Self weight of beam rib
$0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}^{2}$
From panel $2=113 \times 6.9 \times 3.46$
$=7.96 \mathrm{KN} / \mathrm{m}^{2}$
From wall $=2.55 K N / m 3 \times 3.0$ $=7.65 \mathrm{KN} / \mathrm{m}$
Total dead load $\quad 17.23 \mathrm{KN} / \mathrm{m}$

Imposed load
From slab panel -113 x 1.5 x 3.46 $=1.73 \mathrm{KN} / \mathrm{m}$

DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$1.4 \times 17.23+1.6 \times 1.73$
$=26.89 \mathrm{KN} / \mathrm{m}$

Bending Moment

Code table 3.6 ofBS8110 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

MOMENT

$$
\begin{aligned}
& \mathrm{M}=W L 2 / 8 \\
= & 26.89 \times 3.462 / 8 \\
= & 40.19 \mathrm{KNm}
\end{aligned}
$$

SHEAR FORCE

$\mathrm{V}=W 1 / 2$
$=26.89 \times 3.46 / 2$
$=46.52 \mathrm{KN}$

REINFORCEMENT

Section properties
Overall depth h $=450 \mathrm{mn}$
Web breath $\{b w\}=225 \mathrm{mn}$
Flange breath $\mathrm{bf}=\mathrm{bw}+1110[0.7 \mathrm{~L}]=225+1110$
(0.7) [3.46]

$$
=225.24 \mathrm{mn}
$$

Effective depth $=\mathrm{d}=450-25-(10)-16 / 2=$ 407 mn
Concrete cover $=25 \mathrm{mn}$, fen $=25 \mathrm{~N} / \mathrm{mm} 2, \quad$ fy $=460$
Nzmm'
Partial function steel fin $=1.15$
\therefore fy = 460/1.15 $=400$ N'rnm"
Durability \& fire resistance 1 hr
Condition of exposure $=$ mild
$\mathrm{M}=40.19 \mathrm{KNm}$
$\mathrm{K}=\mathrm{M} \quad=40.19 \times 106$
Bd $2 \mathrm{fcu} 225\{407\} 2\{25\}$
$=0.043<0.156$
$\mathrm{Z}=\mathrm{Lad}, \mathrm{La}$ lever arm from table

$$
=0.95 \times 407=386.65
$$

$$
\begin{aligned}
& \text { By calculation } \\
& \text { AS }=40.19 \times 106 \quad=299 \mathrm{mu}^{2} \\
& \quad 0.87\{400\}[386.65\}
\end{aligned}
$$

Provide 3Y16 clc [603]

PrOvide
3 y16

Check for shear
$\mathrm{V}=46.52 \mathrm{KN}$
$\mathrm{V}=\mathrm{V} / \mathrm{bd}=46.52 \times 10_{3}$ 225×407

$$
=0.51 \mathrm{~N} / \mathrm{rrun} 2
$$

$$
100 \sim \mathrm{~s}=100 \times 402=0.48 \mathrm{~N} / \text { rrun } 2
$$

$$
\text { bd } \quad 225 \times 407
$$

by calculation
$\mathrm{Vc}=0.79(100 A s)) / 3 \quad(400) 114$
(bd) (d)
1.25
$=0.49 \mathrm{~N} /$ run 2
Shear link
Asy/sv=b[v-vc] = 225 [0.51-fl.49]
0.87 fyu $\quad 0.87 \times 250$

R10@300

Asy $=0.021$
Sy
\therefore No shear reinforcement and nominal links is required

DEFLECTION CHECK
$M=40.19 \times 106=1.08$
bd2 225×4072
service stress fs

$$
=5 / 8 \times 400 \times 299 \times 111
$$

$$
=123.96 \mathrm{~N} / \mathrm{rnm}^{\prime}
$$

1S 810

$$
\mathrm{Mf}=0.55+\underset{\sim}{\sim}+477-123.96 \sim(0.9+1.08) ~=2.04>2
$$

$\mathrm{m} . \mathrm{f}=2$
Limiting span $=2 \times 26=52$
d
Actual span $=3460=8.50$
d 407
limiting> actual hence deflection is on transverse steel
transverse steel required $=1.5 \mathrm{hf}$
$=1.5 \times 300=450 \mathrm{~mm} 2$
Provide tin @ 250mm c/c across the top at the flange to prevent cracking.

FLOOR BEAM 2

/26.91KN/m

3466 mm
LOADING SPAN
Self weight of beam rib
$0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}_{2}$
From panel $1=1 / 3 \times 6.9 \times 3.466$
$=7.97 \mathrm{KN} / \mathrm{m}_{2}$
From wall $=2.55 \mathrm{KNfm} \times 3.0$
$=7.65 \mathrm{KN} / \mathrm{m}$
Total dead load \quad 17.24 KN/m
Imposed load
From slab panel $1=113 \times 1.5 \times 3.466$
$=1.73 \mathrm{KN} / \mathrm{m}$
DESIGN LOAD $=1.4 \mathrm{gk}+1.6 q \mathrm{k}$
$=1.4 \times 17.24+1.6 \times 1.73=26.91 \mathrm{KN} / \mathrm{m}$
Code table 3.6 of BS811 0 if the different between
the longest and shortest span is not more than
15% or providing the dead load is greater than
imposed load

BM
 MAXIMUM MOMENT

Mmax=we/8
$=26.91 \times 3.4662 / 8$
$=40.41 \mathrm{KNm}$

SHEAR FORCES

```
V=WI/2
    =26.91 x 3.466/2
    =46.64KN
```


REINFORCEMENT

Section properties

```
Overall depth \(\mathrm{h}=450 \mathrm{mn}\)
Web breath \(\{b w\}=225 \mathrm{inn}\)
Flange breath \(\mathrm{bf}=\mathrm{bw}+1 \mathrm{I} 1 \sim[0.7 \mathrm{~L}]\)
\[
=225+1110(0.7)[3.466]
\]
\[
=225.24 \mathrm{mn}
\]
Effective depth \(=\mathrm{d}=450-25-(10)-(16 / 2)=\)
407mn
Concrete cover \(=25 \mathrm{mn}, \mathrm{fy}=460\) Nhrun 2
Partial function steel \(\mathrm{fm}=1.15\)
\(\therefore\) fy \(=460 / 1.15=400 \mathrm{~N} / \mathrm{mm}^{2}\)
Durability \& fire resistance Ihr
Condition of exposure \(=\) mild
\(\mathrm{M}=40.41 \quad \mathrm{KNm}\)
\(\mathrm{K}=\mathrm{M} \quad=40.41 \times 106\)
Bd2fcu \(225\{407\} 2\{25\}\) \(=0.043<0.15\)
No compression reinforcement
\(\mathrm{Z}=\mathrm{Lad}\), La from lever arm table=0.95
\(Z=0.95 \times 407=386.65 \mathrm{~mm}\)
```

$$
\begin{aligned}
& \text { By calculation } \\
& \text { As }=40.41 \times 106=300.33 \\
& 0.87 \text { \{400\} \{386.65\} } \\
& =300.33 \mathrm{mru} 2 \\
& \text { Provide } 3 \text { y16 c/c [603 mrn"] } \\
& \text { Check for shear } \\
& \mathrm{V}=46.64 \mathrm{KN} \\
& \mathrm{~V}=\mathrm{V} / \mathrm{bd}=46.64 \times 103 \\
& 225 \times 407 \\
& =0.51 \mathrm{~N} / \mathrm{mru}_{2} \\
& 0.51 \mathrm{~N} / \mathrm{mru} 2<4 \mathrm{~N} / \text { mruz o.k } \\
& 100 \mathrm{As}=100 \times 603=0.66 \mathrm{~N} / \mathrm{mru} 2 \\
& \text { bd } \quad 225 \times 407 \\
& \text { by calculation } \\
& \boldsymbol{V} \text {, }=0.79 \text { (} 100 \mathrm{As} \text {) } 1 / 3(400) 1 / 4, \\
& \text { (bd) (d) } \\
& \text { om of } 1.25 \\
& =[0.79[0.66] \quad 1 / 3[0.98] 1 / 4] / 1.25 \\
& =0.55 \mathrm{~N} / \mathrm{mru}_{2}
\end{aligned}
$$

Since Vc > V Shear reinforcement is not required Provide R8@225 other than nominal link
DEFLECTION CHECK
$\mathrm{M}=40.41 \times 106=1.08$
bd2 225.4072
service stress fs
$=5 / 8 \times 400 \times 300.33 \times 1$
603
$=124.51 \mathrm{~N} / \mathrm{rnnr}$

$$
\mathrm{Mf}=0.55+\begin{gathered}
(477-124.51 \sim \\
120(0.9+1.08
\end{gathered}=2.03>2
$$

limiting spanld $=2 \times 2652$

Allowable span $=3466=8.52$
d 407
limiting> actual hence deflection is on transverse steel

$$
\begin{aligned}
& \text { transverse steel required }=1.5 \mathrm{hf} \\
& =1.5 \times 300=450 \mathrm{~mm} 2 \\
& \text { Provide R8@ } 250 \mathrm{~mm} \text { c/c across the top at the } \\
& \text { flange to prevent cracking. } 88 \text { @ } 250
\end{aligned}
$$

FLOORBEAM 3

/31.14KN/m

LOADING SPAN

Self weight of beam rib

$0.225 \times 0.3 \times 24=L 62 K N / m 2$
$\mathrm{w} y=1 / 2 \mathrm{nlx}[\mathrm{I}-113 \mathrm{k}]$
From panel 4
Y2x 6.9×3.46 [1-[113 x 1.6]] $=10.39 \mathrm{KN} / \mathrm{m} 2$
From wall $=2.55 \mathrm{KN} /$ rri3 x $3 . \mathrm{U}$ $=7.65 \mathrm{KN} / \mathrm{m}$
Total dead load $\quad 19.66 \mathrm{KN} / \mathrm{m}$

Imposed load
From slab panel $4=$ $Y 2 \mathrm{x} 1.5 \times 3.46\left[1-\left[1 / 3 \times 1.6^{2}\right]\right]$ $=2.26 \mathrm{KN} / \mathrm{m}$

DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$=1.4 \times 19.66+1.6 \times 2.26=31.14 \mathrm{KN} / \mathrm{m}$

Bending Moment

Code table 3.6 of BS811 0 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

BM

MAXIMUM MOMENT $M M A x=W 12 / 8$
 $31.14 \times 3.462 / 8$
 $=46.60 \mathrm{KNm}$
 SHEAR FORCES

Vmax $=W l J 2$

$$
=31.14 \times 3.46 / 2=53.87 \mathrm{KN}
$$

REINFORCEMENT

Section properties
Overall depth $\mathrm{h}=450 \mathrm{mn}$
Web breath $\{b w\}=225 \mathrm{mn}$
Flange breath $\mathrm{bf}=\mathrm{bw}+1 / 10[0.7 \mathrm{~L}]=225+1110$
(0.7) [3.46]
$=225.24 \mathrm{mn}$
Effective depth $=\mathrm{d}=450-.15-(10)-(16 / 2)=$
407 mm
Concrete cover $=25 \mathrm{mn}, \mathrm{fy}=460 \mathrm{~N} / \mathrm{mro} 2$
Partial factor for steel $8 \mathrm{~m}=1.15$
\therefore fy $=46011.15=400$ N/mro2
Durability \& fire resistance 1 hr
Condition of exposure $=$ mild
Mmax $=46.60 \mathrm{KNm}$
$\mathrm{K}=\mathrm{M} \quad=46.60 \times 106$
$\mathrm{Bd}_{2} \mathrm{fcu} 225\{407\}^{2}\{25\}$

$$
=0.05<0.156
$$

No compression reinforcement
$\mathrm{Z}=\mathrm{Lad}$, la from lever arm table

$$
=0.94
$$

$Z=0.94 \times 407=441.8$ rom
By calculation

Provide 3 y161 IB
$\mathrm{As}=46.6 \times 106$ - 303.1 mm 2
BS ~110 0.87 \{400\} \{441.8\}
Provide 3 y16 c/c [603mm2]
$\mathrm{V}=53.87 \mathrm{KN}$
$\mathrm{V}=\mathrm{V} / \mathrm{bd}=53.87 \times 103$ 225×407 $=0.58 \mathrm{~N} / \mathrm{mm} 2$
$100 \mathrm{As}=100 \times 603=0.66 \mathrm{~N} / \mathrm{mm} 2$
bd 225×407
by calculation
$v ;=0.79(100 \mathrm{AS}) \mathrm{I} / 3(400) 1 / 4$
(bd) (d)
om of 1.25
$\mathrm{Vc}=[0.79[0.66] 113[0.98] 1 / 4] / 1.25$
$=0 . S 4 \mathrm{~N} / \mathrm{mm} 2$
Shear link
$\mathrm{Asv}=\mathrm{b}[\mathrm{v}-\mathrm{vc} 1=225$ [0.58-0.541
Sv $\quad 0.87 \mathrm{fyu} \quad 0.87 \times 250$

Asv $=0.04$
Sv

Provide R8 links @ 225mm centers
Asu provided $=0.447$
Su
Provide
R8@225
Nominal link
$\mathrm{Asv}=O A b=004 \times 225=0.41$
Sv 0.87fyv 0.87×250
Provide R8 links @ 225mm center
Asv $=00447$
Sv
\therefore No shear reinforcement other than the nominal links is required

BS 110 DEFLECTION CHECK

$$
M=46.6 \times 106=1.25
$$

Bd 225 x 4072
service stress fs
$=5 / 8 \times 400 \times 303.1 \times L-$
603
$=125.66 \mathrm{~N} / \mathrm{mm}^{\prime}$
$\mathrm{Mf}^{\prime}=0.55+\sim 477-125.66 \sim=1.91$
$120(0.9+1.25$

Allowable span $=26 \times 1.91=46.66$
d
Actual span $=3460=8.5$
d 407
limiting $>$ actual hence deflection is on transverse steel
transverse steel required $=15 \mathrm{hf}$ $=1.5 \times 300=450 \mathrm{~mm}^{2}$
Provide tin@250mm clc across the top at the flange to prevent cracking.

FLOOR BEAM 4

3466

LOADING SPAN

Self weight of beam rib
$0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{Wy}=1 / 2 \mathrm{nlx}[\mathrm{I}-1 \mathrm{I} 3 \mathrm{k}]$
From panel 4
$=1 / 2 \times 6.9 \times 3.466[1-0.33 \times 1.62]$
$=10.40 \mathrm{KN} / \mathrm{rri} 2$
From wall $=2.55 K N / m 3 \times 3.0$ $=7.65 \mathrm{KNlm}$
Total dead load 19.67 KN/rtl
Imposed load
From slab panel $6=$
$112 \mathrm{x} 1.5 \times 3.466[1-113 \mathrm{x} 1.6]$
2.262 KNlm

DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$=1.4 \times 19.67+1.6 \times 2.262=31.16 \mathrm{KN} / \mathrm{m}$
Bending Moment
Code table 3.6 ofBS8110 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

BM

MAXIMUM MOMENT

$$
\begin{gathered}
M M A X=W e / 8 \\
31.16 \times 3.4662 / 8 \\
=46.79 \mathrm{KNm}
\end{gathered}
$$

SHEAR FORCES

Vmax=WI/2

$$
=31.16 \times 3.466 / 2
$$

$$
=54 \mathrm{KN}
$$MAIN REINFORCEMENT

Section properties
Beam [Beam 3] [panel 4]
Overall depth $=450 \mathrm{~mm}$
Web breath, $\mathrm{bw}=225 \mathrm{mtn}$
Flange breath, $\mathrm{bf}=\mathrm{bw}+1110[0.7 \mathrm{~L}]=225+1110$x 0.7×3.466

$$
=225.24 \mathrm{mrn}
$$

Effective depth, $\mathrm{d}=450-25-\mathrm{t}-\sim$2
$=450-25-10-16 / 2=407 \mathrm{~mm}$
Concrete cover $=25 \mathrm{~mm}$
fy $=460 \mathrm{~N} / \mathrm{mm}$?
partial factor for steel, fin $=1.15$
$\therefore \mathrm{fy}=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2}$1.15
Durability and fire resistance 1 hr
C<;mditionof exposure mild Mmax
$=46.79 \mathrm{KNm}$
$\mathrm{K}=\mathrm{M} \quad=46.79 \times 106=$
Bd $2 \mathrm{fcu} \quad 225 \times 4072 \times 25$

No compression reinforcement
$Z=\mathrm{Lad}$, la from lever arm table= 0.94

$$
Z=0.94 \times 407=382.58
$$

As
$=46.79 \times 106 \quad=351.44 \mathrm{mu}_{2}$
0.87 x 400 x 382.58

Provide 3T/6 [603]
Check for shear
$\mathrm{V}=54 \mathrm{KN}$
$\mathrm{V}=\mathrm{V} / b d=54 \times 10_{3}$ 225×407 $=0.59 \mathrm{~N} / \mathrm{mm} 2$
$100 \mathrm{~A}_{\mathrm{s}}=100 \times 603=0.69 \mathrm{~N} / \mathrm{mm} 2$
bd $\quad 225 \times 407$
by calculation
$\mathrm{Vc}=0.79$ (100 As) $1 / 3$ (400) $1 / 4$
(bd) (d)
OM of 1.25
$\mathrm{Vc}=\left[0.79\left[0.69_{113} \times 0.9814\right]\right] 11.25$
$=0.69 \mathrm{~N} / \mathrm{mm} 2$
Since V = Vc
\therefore No shear reinforcement other than the nominal links is required

DEFLECTION CHECK

$\mathrm{M}=46.79 \times 106=1.26$
bd2 225×4072
service stress fs
$=5 / 8 \times 400 \times 351.44 \mathrm{xl}$
603
$=145.70 \mathrm{~N} / \mathrm{mrrr}^{\prime}$

BS $8110 \quad \mathrm{Mf}=0.55+^{(477-145.70} \boldsymbol{J}=1.83$

$$
120(0.9+1.26
$$

Allowable span $=26 \times 1.83=47.58$

d

Actual span $=3466=8.52$
d 407
limiting $>$ actual hence deflection is on transverse steel
transverse steel required $=1.5 \mathrm{hf}$
R8 @250
$=1.5 \times 300=450 \mathrm{~mm}_{2}$
Provide R8 @ 250 mm c/c across the top at the flange to prevent cracking.

FLOOR BEAM 5

$34.28 \mathrm{KN} / \mathrm{m}$
$/{ }^{\prime}$
209452734920
E b
C A

LOADING SPAN DC

Self weight of beam rib

$$
0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m} 2
$$

Wy=1/2nlx[1-1/3k2]
Frompane13

$$
=1 / 2 \times 6.9 \times 5.273[1-113 \times f]
$$

$$
=12.19 \mathrm{KN} / \mathrm{m} 2
$$

$$
\text { From wall }=2.55 \mathrm{KN} / \mathrm{m} 3 \times 3.0
$$

$$
=7.65 \mathrm{KN} / \mathrm{m}
$$

$$
\text { Total dead load } \quad 21.46 \mathrm{KN} / \mathrm{m}
$$

Imposed load
From slab panel 3
$=112 \times 1.5 \times 5.273[1-1 / 3 \mathrm{xl}]$ $=2.65$
KN/m
Design load
$1.4 \times 21.46+1.6 \times 2.65=34.28 \mathrm{KN} / \mathrm{m}$

Mid spans

BS81 $0 \quad \mathrm{MED}=0.09 \mathrm{fz}$

$$
\begin{aligned}
& =0.09 \times 34.28 \times 2.09^{2} \quad=13.48 \mathrm{KNm} \\
& \operatorname{MDC}[\text { interior span] }=0.7 \mathrm{fL} \\
& =0.07 \times 180.76 \times 5.273-66.72 \mathrm{KNm} \\
& \mathrm{MCA}=0.09 \mathrm{fl} \\
& =0.09 \times 34.28 \times 4.92^{2} \quad=74.68 \mathrm{KNm} \\
& \text { SHEAR FORCES } \\
& \mathrm{Ve}=0.45 \mathrm{f}=0.45 \times 34.28 \times 2.09 \\
& =32.24 \mathrm{KN} \\
& V D=0.6 f=0.6 \times 34.28 \times 5.273 \\
& =108.46 \mathrm{KN} \\
& \mathrm{Vc}=0.6 \mathrm{f}=0.6 \times 34.28 \times 4.92 \\
& =101.19 \mathrm{KN} \\
& \mathrm{VA}=0.45 \mathrm{f}=0.45 \times 34.28 \times 4.92 \\
& =75.90 \mathrm{KN}
\end{aligned}
$$

MAIN REINFORCEMENT

Section properties
L Beam [Beam 5] [panel 3]
Overall depth $=450 \mathrm{~mm}$
Web breath, bw $=225 \mathrm{~m}$
Flange breath,bf= bw + $1110[0.7 \mathrm{~L}]=225+1 / 10$
x 0.7×5273

$$
=594.11 \mathrm{~m}
$$

Effective depth, $\mathrm{d}=450-25-\mathrm{t}-\mathrm{QL}$
2
$=450-25-10-16 / 2=407 \mathrm{~mm}$

Concrete cover $=25 \mathrm{~mm}$
$\mathrm{Fcu} \quad=22 \mathrm{~N} / \mathrm{mm}^{2}$
fy $\quad=460 \mathrm{~N} / \mathrm{mm}^{2}$
partial factor for steel, $\mathrm{fin}=1.15$
$\therefore \mathrm{fy}=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2}$
1.15

Durability and fire resistance 1 hr

BM
At 1st support of span DC, MD

$$
=0.11 \mathrm{FL}
$$

Where $\mathrm{f}=\mathrm{qL}=34.28 \times 5.273$

$$
=180.76 \mathrm{KN}
$$

$$
\mathrm{MD}=-0.11 \times 180.76 \times 5.273
$$

$$
=104.85 \mathrm{KNm}
$$

$$
\mathrm{Me}=-0.11 \times 34.28 \times 4.92 \times 4.92
$$

$$
=-91.28 \mathrm{KN} / \mathrm{m}
$$

$$
\begin{aligned}
& \text { From panel } 3 \\
& =112 \mathrm{x} 6.9 \times 4.920[1-113 \mathrm{x} 12] \\
& =11.37 \mathrm{KN} / \mathrm{m} \\
& \text { From wall } \quad=7.65 \mathrm{KN} / \mathrm{m} \\
& \text { Total dead load } \quad=20.64 \mathrm{KN} / \mathrm{m} \\
& =2.47 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

BS BIO

Condition of exposure - mild
At support D, M
$=-104.85 \mathrm{KNm}$
Ultimate moment of resistance
$\mathrm{M},=0.156 \mathrm{bd} 2 \mathrm{fcu}$$=0.156 \times 225 \times 4072 \times 25=145.37 \mathrm{KNm}$
$\mathrm{Mu}>\mathrm{Mo}$
Single reinforcement, No compressionreinforcement resistance at
$\mathrm{K}=\mathrm{M} \quad=104.85 \times 106=0.11$
Bdfcu $225 \mathrm{x} 4072 \times 25$
$0.11<0.156$
$\mathrm{Z}=$ Lad ,la from lever arm table

$$
=0.86
$$

$\mathrm{Z}=0.86 \times 407=350.02 \mathrm{~mm}$
$\mathrm{As}=104.85 \mathrm{x} 106$
0.87 x 400 x 350.02
$=860.79 \mathrm{~mm}^{2}$
Provide 5 yl6 [1010mm2] Provide
5 yl6 TMid spans
$\mathrm{M}=74.68 \mathrm{KNm}, \mathrm{bf}=594.1$ hum
$\mathrm{K}=\mathrm{M} \quad=74.68 \times 106=$
Dfd2fcu $594.11 \times 4072 \times 25$
$0.03<0.156$
La from lever arm table $=0.95$
$Z=0.95 \mathrm{~d}=0.95 \times 407=386.65 \mathrm{~mm}$
$\mathrm{A}=\mathrm{M} \quad 74.68 \times 106=$
0.87 fyZ 087 x 400×386.65
$=555.02 \mathrm{~mm} 2$Provide
Provide 4y 16 [804mm2] 4 y16 B

$$
1.14 \mathrm{~N} / \mathrm{mm} 2<0.8 .\left[\mathrm{lCu}=4 \mathrm{~N} / \mathrm{mm}_{2}\right.
$$

BS81 0
End support
Shear distance, d from support face is
VA $=0.45 \mathrm{f}-\mathrm{Wu}[\mathrm{d}+$ support widthl2]

$$
=0.45 \times \mathrm{x} 80.76-34.28[0.407+0.125]
$$

$$
=81.34-18.24=63.1 \mathrm{KN}
$$

$$
\mathrm{V}=\mathrm{V}=63.1 \times 10_{3}=0.69 \mathrm{~N} / \mathrm{mm} 2
$$

$$
\text { bd } \quad 225 \times 407
$$

Nominal link

$$
\& \mathrm{~V}=\mathrm{O} .4 \mathrm{~b}=0.4 \times 225=0.41
$$

S, '0.87fyv 0.87×250
Provide R81inks @ 225mm center
Asv $=0.447$
Sv
Shear resistance of nominal link + concrete i.e
$\mathrm{Vn}=[$ Asv 0.87 fyv +bvc] d
[Sv
$=[0.447 \times 0.87 \times 250+225 \times 0.75]407=108.78 \mathrm{KN}>63.1 \mathrm{KN}$ and 108 ". 64 KN\therefore No shear reinforcement other than the nominallinks is required
DEFLECTION CHECK
$\mathrm{M}=34.28 \times 106=0.92$
Bd2 225x4072
service stress fs

$$
=5 / 8 \times 400 \times 555.02 \mathrm{xl}
$$

$$
804
$$

$$
=172.58 \mathrm{~N} / \mathrm{rnm}^{\prime \prime}
$$

$$
\begin{aligned}
& \mathrm{Mf}=0.55+\begin{array}{c}
\sim \\
120(0.9+0.92
\end{array} \\
& \text { Allowable span }=1.94 \times 26=50.44 \\
& \mathrm{~d} \\
& \text { Actual span }=5273=12.96 \\
& \qquad \quad 407
\end{aligned}
$$

4920
LOADING SPAN
Self weight of beam rib
$0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}_{2}$
$\mathrm{Wy}=1 \mathrm{I} 2 \mathrm{nlx}[1-1 \mathrm{I} 3 \mathrm{k}]$
From panel 2
$=1 / 2 \times 6.9 \times 4.92[1-113 \times 1.52]$
$=8.45 \mathrm{KN} / \mathrm{m}^{2}$
From wall $=2.55 \mathrm{KN} / \mathrm{m}_{3} \times 3.0$

$$
=7.65 \mathrm{KN} / \mathrm{m}
$$

Total dead load 17.7ZKNfm
Imposed load
From slab panel 2
$=1 / 2 \times 1.5 \times 4.92[1-1 / 3 \times 1.52]$ $=1.84$
KN/m
DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$=1.4 \times 17.72+1.6 \times 1.84=27.75 \mathrm{KN} / \mathrm{m}$
Bending Moment
Code table 3.6 of BS8110 if the different betweenthe longest and shortest span is not more than15% or providing the dead load is greater thanimposed load

$$
\begin{aligned}
& \text { Maximum moment } \\
& \text { MMAX }=w f / 8 \\
& 27.75 \times 4.922 / 8 \\
& =83.97 \mathrm{KNm} \\
& \text { SHEAR FORCES } \\
& \text { V MAX }=\mathrm{W} 1 / 2 \\
& =27.75 \times 4.92 / 2 \\
& =68.27 \mathrm{KN}
\end{aligned}
$$

MAIN REINFORCEMENT

$$
\begin{aligned}
& \text { Section properties } \\
& \text { [Beam 6] [panel 2] } \\
& \text { Overall depth }=450 \mathrm{~mm} \\
& \text { Web breath, bw }=225 \mathrm{~m} \\
& \text { Effective depth, d=450-25-t-~ } \\
& 2 \\
& =450-25-10-1612=409 \mathrm{~mm}: \\
& \text { Concrete cover }=25 \mathrm{~mm} \\
& \text { feu } \quad=25 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { fy } \quad=460 \mathrm{~N} / \mathrm{mm}_{2} \\
& \text { partial factor for steel, fin }=1.15 \\
& \therefore \text { fy }=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2} \\
& 1.15 \\
& \text { Durability and fire resistance } \mathrm{lhr} \\
& =0.89 \\
& \mathrm{Z}=0.89 \times 407=362.23 \mathrm{~mm} \\
& \text { As }=83.97 \times 106 \\
& 0.87 \mathrm{x} 400 \times 362.23
\end{aligned}
$$

$=666.13 \mathrm{~mm}\llcorner$
BS811P

$$
\begin{aligned}
& 5 \text { y16 } \\
& \text { Check for shear } \\
& \mathrm{V}=68.27 \mathrm{KN} \\
& \mathrm{~V}=\mathrm{V} / \mathrm{bd}=68.27 \times 103 \\
& 225 \times 407 \\
& =0.75 \mathrm{~N} / \mathrm{mm} 2
\end{aligned}
$$

Provide
Provide R8 links @ 225mm centersPrOvide
Asu provided $=0.447$RIO@225
Su:. No shear reinforcement other than the nominallinks is required
DEFLECTION CHECK
$\mathrm{M}=83.97 \times 10_{6}=2.25$
bd2 225x. 4072
service stress fs
$=5 / 8 \times 400 \times 666.13 \mathrm{xl}$
$=164.88 \mathrm{~N}$ Inun 2
BSIII0

$$
\begin{aligned}
& \mathrm{Mf}=0.55+\begin{array}{c}
477-164.88 \mathrm{~J} \\
\sim 120(0.9+2.25
\end{array} \\
& \text { Allowable } \begin{array}{l}
\mathrm{span}=1.38 \mathrm{x} 26=35.88 \\
\mathrm{~d} \\
\text { Actual span }=4920=12.09 \\
\mathrm{~d} \quad 407
\end{array} \\
& \text { limiting }>\text { actual hence deflection is on transverse } \\
& \text { steel } \\
& \text { transverse steel required }=1.5 \text { hf } \\
& =1.5 \times 300=450 \text { nun2 } \\
& \text { Provide tin @ } 250 \text { nun c/c across the top at the } \\
& \text { flange to prevent cracking. }
\end{aligned}
$$

FLOOR BEAM 7
 》>
 $21.43 \mathrm{KN} / \mathrm{m}$

LOADING SPAN

Self weight of beam rib

$$
0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}_{2}
$$

$$
\mathrm{Wy}=112 \mathrm{nlx}[\mathrm{I}-1 / 3 \mathrm{k}]
$$

From panel S

$$
=112 \times 6.9 \times 2.094[1-1 / 3 \times 1
$$

$$
=4.84 \mathrm{KN} / \mathrm{m}_{2}
$$

From wall $=2.55 \mathrm{KN} / \mathrm{m} \sim \times 3.0$.

$$
=7.65 \mathrm{KN} / \mathrm{m}
$$

Total dead load $\quad 14.11 \mathrm{KN} / \mathrm{m}$

Imposed load
From slab panelS
$=1 / 2 \times 1.5 \times 2.094[1-1 / 3 \times 1] \quad=1.05$
KN/m
DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$=1.4 \times 14.11+1.6 \times 1.05=21.43 \mathrm{KN} / \mathrm{m}$

Bending Moment
Code table 3.6 of BS8110 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

$$
\begin{aligned}
& =21.43 \times 2.0942 / 8 \\
& =11.75 \mathrm{KNm}
\end{aligned}
$$

SHEAR FORCES

$$
\begin{aligned}
\mathrm{V}_{\mathrm{MAX}} & =\mathrm{W} 1 \mathrm{I} 2 \\
& =21.43 \times 2.094 / 2 \\
& =22.44 \mathrm{KN}
\end{aligned}
$$

MAIN REINFORCEMENT

Section properties
[Beam 7] [panel 5]
Overall depth $=450 \mathrm{~mm}$
Web breath, bw $=225 \mathrm{~m}$
Effective depth, d
$=450-25-10-16 / 2=407 \mathrm{~mm}$
Concrete cover $=25 \mathrm{~mm}$
Feu $\quad=25 \mathrm{Nzmm}^{\prime \prime}$
:fy $\quad=460 \mathrm{~N} / \mathrm{mm}_{2}$
partial factor for steel, $\mathrm{fm}=1.15$
$\therefore: f y=460 \quad=400 \mathrm{~N} / \mathrm{mm}_{2}$
1.15

Durability and fire resistance 1 hr
Condition of exposure $=$ mild
$M M A X=11.75 \mathrm{KN} / \mathrm{m}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Single reinforcement, } \quad \text { No } \\
\text { reinforcement resistance at }
\end{array} \\
& \mathrm{K}=\mathrm{M} \quad=11.75 \times 10_{6}=0.013 \\
& \mathrm{Bd}_{2} \mathrm{fcu} \\
& 225 \mathrm{x} 4072 \times 25
\end{aligned}
$$

$0.013<0.156$
$\mathrm{Z}=\mathrm{Lad}$, la from lever arm table

$$
=0.95
$$

$\mathrm{Z}=0.95 \times 407=386.65 \mathrm{~mm}$

BS81~O As $=11.75 \times 106$

$$
0.87 \times 400 \times 386.65
$$

$87.33 \mathrm{~mm}_{2}$
As MfrFO.13bhJ100
$=[0.13 \times 225 \times 450] / I 00$
$131.53 \mathrm{~mm}_{2}$
Provide $2 y 16 T / B$
Provide 2 y16 [402 mm²]

Check for shear
$\mathrm{V}=22.44 \mathrm{KN}$
$\mathrm{V}=\mathrm{V} / \mathrm{bd}=22.44 \mathrm{x} 103$
225×407
$=0.24 \mathrm{~N} / \mathrm{mm} 2$
$0.24<4 \mathrm{~N} / \mathrm{mm} 2$ ok
$100 \mathrm{As}=100 \times 402=0.44 \mathrm{~N} / \mathrm{n} 1 \mathrm{~m} 2$
bd $\quad 225 \times 407$
by, calculation
$\mathrm{Vc}=0.79$ (100As)I/3(400) $1 / 4$
(bd) (d)
Om of 1.25
$=[0.79[0.44 t .33[0.98] o .25] 11.25$
$=0.48 \mathrm{~N} / \mathrm{mm} 2$
Since V < Vc
Provide for nominal link
Nominal link
$\& v=0.4 b=0.4 \times 225=0.41$
S, $\quad 0.87 f y v 0.87 \times 250$

Provide R8 links@225mm center
Asv $=0.447$
Sv
:. No shear reinforcement other than the nominal links is required

DEFLECTION CHECK

limiting> actual hence deflection is on transverse steel

$$
\text { transverse steel required }=1.5 \mathrm{hf}
$$

$$
=1.5 \times 300=450 \mathrm{~mm}_{2}
$$

Provide tin @ 250 mm clc across the top at the flange to prevent cracking.

$$
\begin{aligned}
& \mathrm{M}=11.75 \times 10_{6}=0.32 \\
& \text { Bd } 225 \times 4072 \\
& \text { service stress fs } \\
& =5 / 8 \times 400 \times 131.73 \times 1 \text {, } \\
& 402 \\
& =81.92 \mathrm{~N} / \mathrm{mm}^{\prime} \\
& \mathrm{Mf}=0.55+\underset{120(0.9+0.32}{\sim} 477-81.92) \quad 3.25>2 \\
& \mathrm{Mf}=2 \\
& \text { Allowable span }=2 \times 26=52 \\
& \text { d } \\
& \text { Actual span }=2092=5.14 \\
& \text { d } 407
\end{aligned}
$$

5273
LOADING SPAN
Self weight of beam rib
$0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}_{2}$
Wy=1/2nlx[1-1I3k]
From panel 3
$=1 \mathrm{I} 2 \times 6.9 \mathrm{x} 5.273[1-1 \mathrm{I} 3 \mathrm{x}$ 1]
= $12.19 \mathrm{KN} / \mathrm{m}_{2}$
From wall $=2.55 \mathrm{KN} / \mathrm{m3} \times 3.0$
$=7.65$; KN/irt
Total dead load $\quad 21.43 \mathrm{KN} / \mathrm{m}$
Imposed load
From slab panel 3

$$
=1 / 2 \times 1.5 \times 5.273[1-1 / 3 \times 1]
$$

$$
=2.65
$$

KN/m
DESIGN LOAD $=1.4 \mathrm{gk}+1.6 q \mathrm{k}$

$$
=1.4 \times 21.43+1.6 \times 2.65 \quad=34.24 K N / m
$$

Bending MomentCode table 3.6 ofBS8110 if the different betweenthe longest and shortest span is not more than15% or providing the dead load is greater thanimposed load

BS81 $0 \quad \therefore$ No shear reinforcement other than the nominal links is required

DEFLECTION CHECK

$\mathrm{M}=58.76 \times 10_{6}=1.58$
bd2 225×4072
service stress fs
$=5 / 8 \times 400 \times 436.7 \mathrm{x}$]
603
$=181.05 \mathrm{~N}$ /mm ${ }^{2}$
$\mathrm{Mf}=0.55+\begin{gathered}(477-181.05 j \\ 120(0.9+1.58\end{gathered}=1.54$
Allowable span $=1.54 \times 26=40.04$
d
Actual span $=4920=12.09$
d 407
limiting> actual hence deflection is on transverse steel
transverse steel required $=1.5 \mathrm{hf}$
$=1.5 \times 300=450 \mathrm{~mm}^{2}$
Provide tin @ 250 mm clc across the top at the flange to prevent cracking.
CONVERSION OF DROP FLOOR BEAM 8 TO

IN-BEAM

Detail information

De\&ignload $\quad=34.24 \mathrm{KN} / \mathrm{m}$

Maximum moment $=119 \mathrm{KNm}$

Maximum shear force $=90.27 \mathrm{KN}$

Shear stress $\quad=0.99 \mathrm{~N} / \mathrm{mm}^{2}$

MAIN REINFORCEMENT

Section properties
IN- Beam [Beam 10] [panel 3]
Overall depth $=200 \mathrm{~mm}$
Web breath, bw =
Effective depth, d=200~20-t-.§t
$=200-20-10-16 / 2=162 \mathrm{~mm}^{\prime}$
Concrete cover $=20 \mathrm{~mm}$
feu $\quad=25 \mathrm{~N}^{\prime} \mathrm{mm}^{\prime}$
fy $\quad=460 \mathrm{~N} / \mathrm{mm} 2$
partial factor for steel, $\mathrm{fm}=1.15$

$$
\therefore \mathrm{fy}=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2}
$$

1.15

Durability and fire resistance 1 hr
Condition of exposure - mild
As=Area provided=1 Zl Omm"
Lever arm Z $=333.74 \mathrm{~mm}$
$\mathrm{K}=0.024$

$$
\mathrm{K}=\mathrm{M} 2=119 \times 10_{6}=0.024
$$

Bd feu b x 1622x 25

$$
\mathrm{b}=\left[119 \times 10_{6} 10.024 \times 25 \times 162\right. \text { L }
$$

BS8 10

$$
\begin{aligned}
& \mathrm{b}=756.6 \mathrm{~mm} \\
& \mathrm{~b}=0.760 \mathrm{~m} \\
& \text { Area required=1 Oz-1.e'lmm' } \\
& \text { provide } 5 \mathrm{y} 16 \text { @ } 150 \mathrm{c} / \mathrm{c}\left[1010 \mathrm{~mm}_{2}\right]
\end{aligned}
$$

Provide

$$
5 \text { yl6T/B@175 }
$$

FLOOR BEAM 11

$15.57 \mathrm{KN} / \mathrm{m}$

750

LOADING SPAN

Self weight of beam rib

$$
0.225 \times 0.3 \times 24=1.62 \mathrm{KN} / \mathrm{m}^{2}
$$

Rendering $=0.3 \times 0.3$

$$
=0.09 \mathrm{KN} / \mathrm{m}^{2}
$$

From wall $=2.55 \mathrm{KN} / \mathrm{m}_{3} \times 3.0$
$=7.65 \mathrm{KN} / \mathrm{m}_{2}$
Total dead load $\quad 9.36 \mathrm{KN} / \mathrm{m}_{2}$

> Imposed load $=1.5 \mathrm{KN} / \mathrm{m} 2$ DESIGN LOAD $=1.4 \mathrm{gk}+1 . \mathrm{oqk}=15.57 \mathrm{KN} / \mathrm{m}$

Bending Moment
Code table 3.6 of BS8110 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

> BM
> MAXIMUM MOMENT
> $M M A X=w f / 8$
> $=15.57 \times 0.752 / 8$
> $=1.09 \mathrm{KNm}$

Provide 2T16 [402mm²]

BS8 10

$$
\begin{aligned}
& \text { Check for shear } \\
& \mathrm{V}=5.84 \mathrm{KN} \\
& \mathrm{~V}=\mathrm{V} / \mathrm{bd}=5.84 \times 10_{3} \\
& 225 \times 407 \\
& \quad=0.064 \mathrm{~N} / \mathrm{mm} 2 \\
& 0.064<4 \mathrm{~N} / \mathrm{mm}_{2} \quad \\
& 100 \mathrm{~A}_{\mathrm{s}}=100 \times 402=0.44 \mathrm{~N} / \mathrm{mm}_{2} \\
& \mathrm{bd} \quad 225 \times 407
\end{aligned}
$$

by calculation

$$
\begin{equation*}
\mathrm{Vc}=0.79(100 \mathrm{As}) 1 / 3(400) 114 \tag{bd}
\end{equation*}
$$

om of 1.25
$=\left[0.79[0.44]^{\circ} \cdot 33[0.98]^{\circ} \cdot 25\right] / 1.25$

$$
=0.47
$$

Since $V<V c$
Shear link
\therefore No shear reinforcement other than the nominal links is required

DEFLECTION CHECK

$\mathrm{M}=1.09 \times 106=0.029$
bd2 225.x4072
service stress fs

$$
=5 / 8 \times 400 \times 131.63 \times] \text {, }
$$

$$
402
$$

Provide 2 y16 TIB
$=81.86 \mathrm{~N}^{\mathrm{Imm}}{ }^{2}$

$$
\mathrm{Mf}=0.55+\underset{120(0.9+0.029}{\sim} 477-81.86 \sim_{1}^{\sim}=4.09>2
$$

SHEAR FORCES
$\mathrm{Vmax}_{\mathrm{max}}=\mathrm{Wl} / 2$
$=15.57 \times 0.75 / 2$
$=5.84 \mathrm{KN}$

MAIN REINFORCEMENT

Section properties
Beam [Beam 11]
Overall depth $=450 \mathrm{~mm}$
Web breath, bw $=225 \mathrm{~m}$
Effective depth, d=450-25-t-~ 2
$=450-25-10-16 / 2=407 \mathrm{~mm}$
Concrete cover $=25 \mathrm{~mm}$
feu $\quad=25 \mathrm{~N} / \mathrm{mm}_{2}$
fy $\quad=460 \mathrm{~N} / \mathrm{mm}^{2}$
partial factor for steel, $\mathrm{fm}=1.15$.
$\therefore \mathrm{fy}=460=400 \mathrm{~N} /$ Illll $^{2} 1_{2}$
1.15

Durability and fire resistance UIT
Condition of exposure - mild
Mmax $=1.09 \mathrm{KNm}$
$\mathrm{M}=1.09 \mathrm{KNm}, \mathrm{bw}=225 \mathrm{~mm}$
$\mathrm{K}=\mathrm{M} \quad=1.09 \times 106=0.001$
Bd2fcu $225 \times 4072 \times 25$
$\mathrm{Zr}=\mathrm{Lad}$, la from lever arm table $=0.95$
$Z=0.95 d=0.95 \times 407=386.65 \mathrm{~mm}$
$\mathrm{A}=\mathrm{M} \quad=1.09 \times 106=$
0.87 fyZ $087 \times 400 \times 386.65$
$=8.10 \mathrm{~mm}^{2}$
As min $=0.13 \mathrm{bh} / 100$
$=[0.13 \times 225 \times 450] / / 00$
131.63 mm 2
MAXIMUM MOMENT
MMAX $=W l_{2} / 8$

$$
=34.24 \times 5.2732 / 8
$$

$$
=119 \mathrm{KN} / \mathrm{m}
$$

$$
\begin{aligned}
& \text { SHEAR FORCES } \\
& V_{M A X}=W l / 2 \\
& =34.24 \times 5.273 / 2 \\
& =90.27 \mathrm{KN}
\end{aligned}
$$

MAIN REINFORCEMENT

Section properties
Beam [Beam 8] [panel 3]
Overall depth $=450 \mathrm{~mm}$
Web breath, bw $=225 \mathrm{~m}$
Effective depth, $d=450-25-\mathrm{t}-.0_{-}$
$=450-25-10-16 / 2=407 \mathrm{~mm}:$
Concrete cover $=25 \mathrm{~mm}$
feu $\quad=25 \mathrm{~N} / \mathrm{mm} 2$
fy $\quad=460 \mathrm{~N} / \mathrm{mm}^{2}$
partial factor for steel, fin $=1.15$
$\therefore \mathrm{fy}=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2}$
1.15
Durability and fire resistance lhr
Condition of exposure - mild
Mmax $\sim 119 \mathrm{KNm}$
Single reinforcement, No compression
reinforcement resistance at

$$
\mathrm{K}=\mathrm{M} \quad=119 \times 106=0.13
$$

Bd2fcu 225x 4072x25
$0.13<0.156$
Z Lad, la from lever arm table $=0.82$

Allowable span $=2 \times 26=52$

Actual span $=750=1.84$
d 407
limiting> actual hence deflection is on transverse steel
transverse steel required $=1.5 \mathrm{hf}$
$=1.5 \times 300=450 \mathrm{~mm}^{2}$
Provide tin @ 250 mm c/c across the top at the flange to prevent cracking.

Provide
RIO@225

$$
Z=0 . S 2 \times 407=333.74 \mathrm{~mm}
$$

BSS1 0

$$
\text { As }=119 \times 10_{6}
$$

$$
0 . S 7 x 400 \times 333.74
$$

$$
1024.61 \mathrm{~mm}_{2}
$$

$$
\text { Provide } 6 \text { y16[1210] }
$$

Provide 6y 16
Check for shear stress
$\mathrm{V}=90.27 \mathrm{KN}$

$$
\mathrm{V}=\mathrm{V} / \mathrm{bd}=90.27 \times 10_{3}
$$

$$
225 \times 407
$$

$$
=0.99 \mathrm{~N} / \mathrm{mm} 2
$$

$$
100 \mathrm{~A} \sim 100 \times 1210=1.32 \mathrm{~N} / \mathrm{mm}_{2}
$$

$$
\text { bd } \quad 225 \times 409
$$

by calculation
$\mathrm{Vc}=0.79$ (100AS)113(400)1/4
(bd) (d)
OM of 1.25
$\mathrm{Vc}=[0.79[1.32] 0.33[0.9 S] 0.25] / 1.25$

$$
=0.69 \mathrm{~N} / \mathrm{mm}
$$

Shear link
Asv = b [v-vc] $=225$ [0.99-0.69]
S, 0.S7fyu $0 . S 7 \times 250$
Asv $=0.31$
Sv
Provide RS links @ 225mm centersProvideAsu provided $=0.447$
RIO@225
Su
Nominal link

$$
\& v=0.4 b=0.4 \times 225=0.41
$$

S, $\quad 0 . S 7 f y v 0 . S 7 \times 250$
Provide RSlinks @ 225mm center

$$
\text { Asv }=0.447
$$

Sv

:. No shear reinforcement other than the nominal links is required

DEFLECTION CHECK

$$
\mathrm{M}=119 \times 106=3.19
$$

Bd2 225x4072
service stress fs

$$
=5 / 8 \times 400 \times 1024.61 \mathrm{xl}
$$

$$
1210
$$

$=211.70 \mathrm{~N} / \mathrm{mrn}^{\prime}$

$$
\mathrm{Mf}=0.55+\frac{(477-211.70 \sim}{120(0.9+3.19}=1.09
$$

Allowable span $=1.09 \times 26=28.35$ d
Actual span $=5273=12.96$:
d 407
limiting $>$ actual hence deflection is on transverse steel
transverse steel required $=1.5 \mathrm{hf}$
$=1.5 \times 300=450 \mathrm{~mm}_{2}$
Provide tin @ 250mm clc across the top at the flange to prevent cracking.

FLOOR BEATYMRT/M

b 1500 F 3773 C 4920 A

$$
\begin{aligned}
& \text { LOADING SPAN FC } \\
& \text { Self weight of beam rib } \\
& 0.225 \times 0.3 \times 24=1.62 K N / m 2 \\
& \mathrm{Wy}=1 / 2 \mathrm{nlx}[1-1 \mathrm{I} 3 \mathrm{k}] \\
& \text { From panel } 2 \\
& =112 \times 6.9 \times 3.773[1-1 / 3 x 1.6] \\
& =6.14 \mathrm{KN} / \mathrm{m}_{2} \\
& \text { From wall }=2.55 \mathrm{KN} / \mathrm{m}_{3} \times 3.0 \\
& =7.65 \mathrm{KN} / \mathrm{m} \\
& \text { Total dead load } \quad \text { 15.41 KN/m }
\end{aligned}
$$

Imposed load
From slab panel 2 ;
$=1 / 2 \times 1.5 \times 3.773[1-1 / 3 \times 1.6]$
1.34 KN/m

Span CA ~
DEAD LOAD
Self weight of beam $\mathrm{rib}=I .62 \mathrm{KN} / \mathrm{m}$
From pane12
$=112 \times 6.9 \times 4.92[1-113 \times 1.6]$
$=8.01 \mathrm{KN} / \mathrm{m}$
From wall $\quad=7.65 \mathrm{KN} / \mathrm{m}$
Total dead load $=17.28 \mathrm{KN} / \mathrm{m}$

Imposed Load
From panel 2
$=1 / 2 \times 1.5 \times 4.92[1-1 \mathrm{I} 3 \times 1.6]$
$=1.74 \mathrm{KN} / \mathrm{m}$

DESIGN LOAD $=1.4 \mathrm{gk}+1.6 \mathrm{qk}$
$=1.4 \times 17.28+1.6 \times 1.74=26.97 \mathrm{KN} / \mathrm{m}$

Bending Moment

BS811 0 Code table 3.6 of BS811 0 if the different between the longest and shortest span is not more than 15% or providing the dead load is greater than imposed load

BM
At $1_{\text {st }}$ support of span FC, MF
= O.11FL

$$
\begin{aligned}
& \text { Where } \mathrm{f}=\mathrm{qL}=26.97 \times 3.773 \\
& = \\
& =101.76 \mathrm{KN} \\
& \mathrm{f} 1=26.97 \times 4.92=132.69 \mathrm{KN} \\
& \begin{aligned}
\mathrm{MF}=-0.11 \times 101.76 & \times 3.773 \\
& =-42.23 \mathrm{KN} / \mathrm{m}
\end{aligned}
\end{aligned}
$$

$\mathrm{Mc}=-0.11 \times 132.69 \times 4.92$

$$
=-71.81 \mathrm{KN} / \mathrm{m}
$$

Mid spans

MEF= 0.09 fz
$=0.09 \times 26.97 \times 1.52 \quad=5.46 \mathrm{KNm}$

MFc [interior span] $=0.7 \mathrm{FI}$
$=0.07 \times 101.76 \times 3.773=26.88 \mathrm{KNm}$
$\mathrm{MCA}=0.09 \mathrm{fl}$
$=0.09 \times 132.69 \times 4.92=58.76$
KNm

SHEAR FORCES

$$
\begin{gathered}
\mathrm{VE}=0.45 \mathrm{f}=0.45 \times 40.46 \\
=18.21 \mathrm{KN} \\
\mathrm{VF}=0.6 \mathrm{f}=0.6 \times 101.76 \\
=61.06 \mathrm{KN} \\
\mathrm{Vc}=0.6 \mathrm{f}=0.6 \times 132.69 \\
=79.61 \mathrm{KN} \\
\mathrm{VA}=0.45 \mathrm{f}=0.45 \times 132.69 \\
=59.71 \mathrm{KN} \\
=61.57 \mathrm{KN}
\end{gathered}
$$

Section properties
L Beam [Beam 9] [panel 2]
Overall depth $=450 \mathrm{~mm}$
Web breath, bw $=225 \mathrm{~m}$
Flange breath, $\mathrm{bf}=\mathrm{bw}+1110[0.7 \mathrm{~L}]=225+1 / 10$
x 0.7 x 4920

$$
=569.4 \mathrm{~m}
$$

Effective depth, $d=450-25-\mathrm{t}-\mathrm{QL}$ 2
$=450-25-10-16 / 2=407 \mathrm{~mm}$

Concrete cover $=25 \mathrm{~mm}$
Feu $\quad=25 \mathrm{~N} / \mathrm{mm}^{2}$
fy
$=460 \mathrm{~N} / \mathrm{mm}^{2}$
partial factor for steel, $\mathrm{fm}=1.15$
$\therefore \mathrm{fy}=460 \quad=400 \mathrm{~N} / \mathrm{mm}^{2}$
1.15

Durability and fire resistance lhr
Condition of exposure - mild
At support C, M $=-71.81 \mathrm{KNm}$
Ultimate moment of resistance
$\mathrm{Mu}=0.156 \mathrm{bd}_{2}$
$=0.156 \times 225 \times 4072 \times 25=145.36 \mathrm{KNm}$
$\mathrm{Mu}>\mathrm{Me}$
Single reinforcement, No compression reinforcement resistance at $\mathrm{K}=\mathrm{M} \quad=71.81 \times 106=0.08$ Bd'fcu $225 \times 4072 \times 25$
$\mathrm{Z}=\mathrm{Lad}$,la from lever arm table $=0.90$
$Z=0.90 \times 407=366.3 \mathrm{~mm}$

As $=71.81 \times 106$ 0.87 x 400 x 366.3
$563.34 \mathrm{~mm}_{2}$
Mid spans
$\mathrm{M}=58.76 \mathrm{KNm}, \mathrm{bf}=569.4 \mathrm{~mm}$

$$
\mathrm{K}=\mathrm{M} \quad=58.76 \times 106=
$$

$$
\text { Dfd2fcu } 569.4 \times 4072 \times 25
$$

$$
=0.23
$$

$$
\mathrm{Z}=\mathrm{Lad} \text {,la from lever arm table }
$$

$$
=0.95
$$

$$
\mathrm{Z}=0.95 \mathrm{~d}=0.95 \times 407=386.65 \mathrm{mu}
$$

$$
\mathrm{As}=\mathrm{M}_{_}=58.76 \times 106
$$

$$
0.87 \mathrm{fyz} \quad 0.87 \times 400 \times 386.65
$$

436.70 mm 2
Provide 3T16 [603mm2]
Check for shear
$\mathrm{Vc}=79.61 \mathrm{KN}$
$\mathrm{V}=\mathrm{V} / \mathrm{bd}=79.61 \times 103$
225×407
$=0.87 \mathrm{~N} /$ irun 2
$100 \mathrm{~A}_{\mathrm{s}}=100 \times 603=0.69 \mathrm{~N} / \mathrm{mm} 2$bd 225×407
by calculation
$\mathrm{Vc}=0.79$ (100As) $1 / 3$ (400) $1 / 4$(bd) (d)
0 m of 1.25
$=\left[0.79[0.69]^{\circ} \cdot 33[0.98]^{\circ} \cdot 25\right] / 1.25$
$=0.56 \mathrm{~N} / \mathrm{mm} 2$
Shear link
Asv $=\mathrm{b}[\mathrm{v}-\mathrm{vcl}=225$ [0.87-0.56]
S, $\quad 0.87 \mathrm{fyu} \quad 0.87 \times 250$
$\mathrm{Asv}=0.32$
Sv
Provide 3Y16 B
BS81 10 Provide R8links @ 225mm centers
Asu provided $=0.447$
Su
Check maximum shear stress
Mmaxshear @ support
$\mathrm{Vs}=0.6 \mathrm{f}-\mathrm{Wu}{ }^{*}$ support width2
$=0.6 \mathrm{x} 132.69-26.97 \times 0.225 \times 0.5$
$=79.61-3.03=76.58 \mathrm{KN}$
Max $V=V S=76.58 \times$ 103
bd $\quad 225 \times 407$

$$
=0.84 \mathrm{~N} / \mathrm{mm}_{2}
$$

$0.84 \mathrm{~N} / \mathrm{mm} 2<0.8 . \mathrm{ffCU}=4 \mathrm{~N} / \mathrm{mm}_{2}$
End support
Shear distance, d from support face is
$\mathrm{VA}=, 0.45 \mathrm{f}-\mathrm{Wu}[\mathrm{d}+$ support width12]
0.45xI32.69-26.97[0.407+ $0.125]$
$=59.71-14.35=45.3 \mathrm{QKN}$
$\mathrm{V}=\mathrm{V}=45.36 \times 103=0.50 \mathrm{~N} / \mathrm{mm}_{2}$bd 225×407
Nominal link
$\& v=0.4 b=0.4 \times 225=0.41$
Sv 0.87fyv 0.87×250
Provide R8 links @ 225mm center
Asv $=0.447$
Sv
Shear resistance of nominal link + concrete i.e

$$
\mathrm{Vn}=[\text { Asv } 0.87 \mathrm{fyv}+\mathrm{bvc}] \mathrm{d}
$$

[Sv
$=[0.447 \times 0.87 \times 250+225 \times 0.56]$
407
$=90.85 \mathrm{KN}>45.36 \mathrm{KN}$ and 79.61 KN
PrOvideRIO@225

BS811)

4.1.3 DESIGN OF COLUMNS

Oyenu] $a \mathrm{a}$ 1999

Reynold
\& $F_{c u}=25 \mathrm{~N} / \mathrm{mm}_{2}$
Steedman
$\mathrm{b}=230 \mathrm{~mm}$
$\mathrm{h}=450 \mathrm{~mm}$
concrete cover $=25 \mathrm{~mm}$

LOADING

COLUMN 1
[Ground floor to roof level]
Second floor level to roof level

Floor area $=2.5 \times 3=75 \mathrm{~m}_{2}$
Load from rooftruss $=11.213 \mathrm{KN}$
Load from roofbeam=17.5KN
Column self weight
$=0.45 \times 0.23 \times 24 \times 1.4 \times 3$:
$=10.43 \mathrm{KN}$
TOTAL=39.14KN

First floor level-second floor level
Load from the above $=39.14$
Load from slab $=7.5 \times 12.06=90.45 \mathrm{KN}$
Load from beam $=5.5 \times 17.5=96.25 \mathrm{KN}$
Column selfweight $=10.43 \mathrm{KN}$
TOT AL=236.27KN

Ground floor level-first floor level
Load from the above $=236.27$
Load from slab $=7.5 \times 12.06=90.45 \mathrm{KN}$
Load from beam $=5.5 \times 17.5=96.25 \mathrm{KN}$
Column selfweight $=10.43 \mathrm{KN}$
TOT AL=433 . 2 KN
LOADING
COLUMN 2
[Ground floor to roof level]
BS8110 Second floor level to roof level
Load from rooftruss $=11.213 \mathrm{KN}$
Load from roofbeam $=30.156 \mathrm{KN}$
Column self weight
$=0.45 \times 0.23 \times 24 \times 1.4 \times 3$
$=10.43 \mathrm{KN}$
TOTAL=51.80KN
First floor level-second floor level
Load from the above $=51.80 \mathrm{KN}$
Load from slab $\quad=90.45 \mathrm{KN}$
Load from beam $\quad=226.17 \mathrm{KN}$
Load from cantilever $=5.5 \times 15.52$
$=85.36 \mathrm{KN}$
Column selfweight= 10.43~
TOTAL=464.21KN
Ground floor level-first floor level
Load from the above $=464.21 \mathrm{KN}$
Load from slab $=90.45 \mathrm{KN}$
Load from beam=226.1KN
Load from cantilever $=85.36 \mathrm{KN}$
Column selfweight $=10.43 \mathrm{KN}$
TOTAL=876.55KN
Base on the above loading, the followingcolumns are designed as representative been themust critical in each group

Type	Col class	Col ID	Loading $[\mathrm{KN}]$	Height
		NO		
1	biaxial	C,	39.14,	GL
			236.27	RL
			433.2	
2	axial	C 2	51.80	GL
			464.21	RL
			876.55	

COLUMN TYPE 1

This is an unbraced biaxial column. The column is 225×225 square in cross section Check for slenderness

Lexlh =3000/225<10
$=13.33<10[$ not satisfiedl.The '"column can be adjusted as short or be left without adjustment if considered as unbraced ,the loading from practical point of view may necessitate size increment.
fixed end moment
Slab load
Concrete load $=0.15 \times 24=3.6 \mathrm{KN} / \mathrm{m}^{2}$
Finishes $\quad=1.2 \mathrm{KN} / \mathrm{m} 2$
Partition $=1.00 K N / m 2$

$$
\begin{aligned}
\text { TOTAL Gk } & =5.8 \mathrm{KN} / \mathrm{m} 2 \\
\text { QK } & =1.5 \mathrm{KN} / \mathrm{m} 2
\end{aligned}
$$

Design load
$5.8 \times 1.4+1.6 \times 1.5=10.52 \mathrm{KN} / \mathrm{m} 2$

Beam load
Own load=0.45xO.23x24=2.484KN/m
Finishes $=1.00 \mathrm{KN} / \mathrm{m} 2$
Wall $=2.55 \times 3=7.65 K N / m 2$
TOTAL GK= $11.13 \mathrm{KN} / \mathrm{m}$
Factored load
$=1.4 \times 11.13=15.5 \mathrm{SKN} / \mathrm{m} 2$
beam 1 and 6 are incidental to biaxial column 1
floor beam [FEM]
The 4.S2m beam external
$W_{x}=1 / 3 w l_{x}$
$\mathrm{Wy}=1 / 2 \mathrm{wlx}[1-1 / 3 \mathrm{k} 2]$
Slab load $=10.52 x O .5 x 4.92[1-0.231]$
$=19.90 \mathrm{KN} / \mathrm{m}$
Wallibeam load=15.5SKN/m
TOTAL $=35.4 S K N / m$
$\mathrm{FEM}=1 \mathrm{I} 12 \times 4.922 \times 35.4 \mathrm{~S}=71.57 \mathrm{KNm}$
The 4.92 m beam -internal
Slab load $2 \times 19.90=39 . S K N / m$
Beam load $\quad=15.5 S K N / m$
TOTAL $=55.3 S K N / m$
FEM=1I12x4.922x55.3S=111 :71KNm
BSS 10
The 3.46 m beam-external
Slab load= $10.52 \times 0.33 \times 3.46$

$$
=12.01 \mathrm{KN} / \mathrm{m}
$$

Beam load=15.5SKN/m
TOTAL $=27.59 \mathrm{KN} / \mathrm{m}$
$\mathrm{FEM}=1112 \times 3.462 \times 27.59=27.52 \mathrm{KNm}$
The 3.46 m beam internal
Slab load $=2 x 12.01=24.02 \mathrm{KN} / \mathrm{m}$
Beam 10ad=15.5SKN/mTOTAL $=39.60 \mathrm{KN} / \mathrm{m}$$\mathrm{FEM}=1 / 12 \times 3.462 \times 39.6=39.51 \mathrm{KNm}$
ROOF BEAMRoof load $=1.5 \times 1.5=2.25 \mathrm{KN} / \mathrm{m}$
Beam load=2.484xl.4=3 .48KN/m
BS8 10 The 4.92 m beam-external
Roof load=
$2.25 \times 0.5 \times 4.92[1-0.231]=4.26 \mathrm{KN} / \mathrm{m}$
Beam load $=3.48 \mathrm{KN} / \mathrm{m}$
TOTAL $=7.74 K N / m$
$\mathrm{FEM}=1 / 12 \times 4.922 \times 7.74=15.61 \mathrm{KNm}$
The 4.92beam-internal
Roof=2x4.26=8.52KN/m
Beam $=3.48 \mathrm{KN} / \mathrm{m}$
TOTAL $=12 \mathrm{KN} / \mathrm{m}$
$F E M=1 I 12 X 4.922 x I 2=24.21 \mathrm{KN} / \mathrm{m}$
The 3.46 m beam- external'
Roofload=
$2.25 \times O .333 \times 3.46=2.59 \mathrm{KN} / \mathrm{m}$ -
Beam load

$$
=3.48 \mathrm{KN} / \mathrm{rrt}
$$

TOTAL $=6.07 \mathrm{KN} / \mathrm{m}$
$\mathrm{FEM}=1 \mathrm{I} 12 \times 3.462 \times 6.07=6.06 \mathrm{KNm}$
The 3.46 m beam -internal
Roof load $=2.59 \mathrm{x} 2=5.18 \mathrm{KN} / \mathrm{m}$
Beam load $=3.48 \mathrm{KN} / \mathrm{m}$
TOTAL $=8.66 \mathrm{KN} / \mathrm{m}$
$\mathrm{FEM}=1112 \times 3.462 \times 8.66=8.64 \mathrm{KN} / \mathrm{m}$
Column stiffness
$\mathrm{Ie}=b h_{3} / 12=[225 \times 2253] / 12$
$=213574 \mathrm{xl0} 6$

```
Kcol [2nd-Roof]=213574 x 106/3000
    =71.191\times103
Kcol [floor-floor]=213574 x 106/3150
    =67.801 xl03
```

```
\[
\begin{aligned}
& \text { BEAM STIFFNESS } \\
& \text { Roof beam } 1=225 \times 4503 / 12 \\
& =1708.59 \times 106 \\
& \text { Kbeam }[3.46 \mathrm{~m}]=1708.59 \times 106 / 3.46 \\
& =493.812 \times 103 \\
& K_{\text {beam }}[4.92 \mathrm{~m}]=1708.59 \times 106 / 4.92 \\
& =347.274 \times 103 \\
& \text { Floor beams -3460mm } \\
& \text { Flange width }=725 \mathrm{~mm} \text { [external] } \\
& \text { Flange width }=1255 \mathrm{~mm} \text { [internal]: } \\
& \mathrm{Ht} / \mathrm{h}=150 / 600=0.25 \\
& B w / b=0.31 \text { [external] }=0.184[\text { inte" } \mathrm{mal} \text { ] } \\
& 1=0.136[225]\left[600_{3}\right]=6609.6 \times 106 \mathrm{E} \\
& =0.163[225]\left[600_{3}\right]=7921.8 \times 1061
\end{aligned}
\]
```

BS81,0

Floor beam -4920mm

Flange width $=825 \mathrm{~mm}$ [external]
Flange width $=1455 \mathrm{~mm}$ [internal]
Htih $=150 / 600=0.25$
$\mathrm{Bw} / \mathrm{b}=0.273$ [external] $=0.158$ [internal]
$1=0.143[225]\left[600_{3}\right]=6949.8 \times 106 \mathrm{E}$
$=0.170[225]\left[600_{3}\right]=8262.0 \times 1061$
MOMENT ON COLUMNS
COLUMN 1
Roof level moment
Mx_x=6.06KNm My_v=15.61KNm
Kcol=71.191
$L \quad K$ Beam $=3417+284.8=626.5$
Mco1[x_x]=[6.06x71.191]171.19+626.5
$=1.62 \mathrm{KNm}$
MCo1[y_y]=0.62x15.6116.06
$=1.98 \mathrm{KNm}$
Second floor level
Mx_x=15.58KNm My_y=71.57KNm
Kcol=71.191,67.801
Kbeam=1322,1168
Moment on foot of column
Mco1[x-x]=
[15.S8x71.191]
$71.191+61.8+1322+1168$
$=1.42 \mathrm{KNm}$
Moment on top of column
Mco1[y-y]=0.42x67.801171.191

$$
=1.4 \mathrm{KNm}
$$

First floor level
In the $\mathrm{x}-\mathrm{x}$ direction moment on foot and top of
column are the same
Mco1[x-x]=
15.58×67.801
$67.801+61.80+1322+1158$
$=1.34 \mathrm{KNm}$
Moment in y-y direction
Mt on roof of col second floor
$\mathrm{M}=0.42 \times 71.57115 .58=1.93 \mathrm{KNm}$
Others $=1.34 \times 71.57 / 1 \mathrm{~S} .58=1.56 \mathrm{KNm}$

According to the standard, design moment on column
$\mathrm{M}=0.4 \mathrm{M}]+0.6 \mathrm{M} 2$
MJ is the smaller of the two moment
BS8 $10 \quad$ M2 is the higher foot and top

$$
\begin{aligned}
\text { 2ndroofMxx } & =0.4 \mathrm{x} 1.62+0.6 \mathrm{xl} .42 \\
& =1.492 \mathrm{KNm} \\
\mathrm{Myy} & =0.4 \mathrm{xl} .6+0.6 \mathrm{xl} .56 \\
& =1.58 \mathrm{KNm} \\
1_{\text {st_2 }} \mathrm{ndMxx} & =\text { Myy } \\
0.4 \mathrm{xl} .4 & +0.6 \mathrm{x} 1.34=1.364 \mathrm{KNm}
\end{aligned}
$$

COLUMN 2
This is a truly central column in which all the opposite beams have their moments balancing out

The desig n summary

COL	Design parameter	Roof level	2 floor	1 floor
ColI	LoadKN	39.14	236.3	433.2
	$\mathrm{M}[\mathrm{x}-\mathrm{x}]$	1.4	1.42	1.34
Col 2	load	51.8	464.2	876.6
	$\mathrm{M}[\mathrm{x}-\mathrm{x}]$	1.4	1.422	1.34

4.1.3 DESIGN OF FOUNDATION

Based on the column with similar loadings, the following foundations basis are design as representative being the most critical in each
BS8110 group

Partl~2\&3

1997	Base type	Col. No	ID	Loads (KN)
Oyenuga V	1	CL 1 classific		
	2	CL2	433.2	Square Pad
	276.55	Square Pad		

DESIGN DATA

$f y=460 \mathrm{~N} / \mathrm{mm}_{2}, \quad$ feu $=25 \mathrm{~N} / \mathrm{mm}_{2}$
$\mathrm{b}=230 \mathrm{~mm} \quad \mathrm{pb}=150 \mathrm{KN} / \mathrm{m} 2$
BASE TYPE-1
$\mathrm{N}=433.2 \mathrm{KN}$ @ Ultimate limit st~te
$\mathrm{h}=400 \mathrm{~mm}$
column size $=225 \times 450$
$\mathrm{d}=400-50-10=340 \mathrm{~mm}$
For serviceability limit state;
Design axial load $=433.211 .46$
$=296.71 \mathrm{KN}$

Allowing for 10% of design load as the self weight of the base.

Therefore, self weight of base $=296.71 \times 10 \%$ 29.67 KN

Therefore, total load - $296.71+29.67$ $=326.38 \mathrm{KN}$

Required base area $=$ Axial load $1 p b=326.381$ $150=2.18 \mathrm{~m}_{2}$
1st_2ndfloor level, $\quad \mathrm{N}=464.21 \mathrm{KN}$
shear reinforcement Provide 6y 16
Provide 6-y16,RIO@150mm c/c RIO@150mm
Ground floor-I st floor $\mathrm{N}=876.55 \mathrm{KN}$
Asc $=\mathrm{N}-0.35 \mathrm{Fc}$ cubh
$0.7 \mathrm{Fy}-0.35 \mathrm{Fcu}$
$876.55 \times 103-0.35 \times 25 \times 225 \times 225$
$0.7 \mathrm{x} 410-0.35 \mathrm{x} 25$
$\mathrm{Asc}=1652.68 \mathrm{~mm} 2$
Provide 6-y16 bars[1884mm2] Provide 6 y16
Provide RIO@200mm c/c RIO@200mm
BS8 10

$$
\text { Areq }=2.18 \mathrm{~m}
$$

Provide $1.5 \times 1.5 \times$ OAm, $($ Area $=2.25 \mathrm{~m} 2)$
For the ultimate limit state,
Design axial load $=326.38 \mathrm{KN}$
Earth pressure $=$ axial load 1 area provided -$326.38 / 2.25=145.06 \mathrm{KN} / \mathrm{m} 2$

CHECK FORPUNCHITNGSHEAR

$$
\begin{aligned}
& \text { Critical perimeter }= \\
& (\text { column perimeter })+(8 \times 1.5 \mathrm{~d}) \\
& =(1350)+(8 \times 1.5 \times 340) \\
& =5430 \mathrm{~mm} . \\
& \text { Area within perimeter }=(450+3 \mathrm{~d}) 2 \\
& =(450+1020 i \\
& =2.2 \times 106 \mathrm{~mm} 2 \\
& \text { Punching Shear force, } \mathrm{V}= \\
& 145.06(\text { Base Area }+ \text { Area within per.] } \\
& =145.06(1.5 \times 1.5-2.2) \\
& =7.25 \mathrm{KN}
\end{aligned}
$$

Therefore, punching shear stress, $\mathrm{v}=\mathrm{V}$ Iperimeter xd
$=7.5 \times 10_{3} 1(1350 \times 340)$
$=0.016 \mathrm{~N} / \mathrm{mm} 2$

Comparing this value with the permissible shear of $0.34 \mathrm{~N} / \mathrm{mm} 2$ of table 3.9 of BS 8110; part 1; 1985 (Assuming the minimum 0.15% steel), shows that the base is safe against punching shear with a depth of 400 mm

J
BS8110
b)-~ we: -:P

1')..(50
2211-0. ||fsti| $|f| t!/ \sim \sim\}^{\prime}$

\vdots	0	l's.!.!
6	III	

MOMENT

Wf; ;jjl ! !

Moment
At the column face, span $=1.45 \mathrm{~mm}$
$M=w L 2 / 2=145.06 \times 1.452 I 2=152.49 \mathrm{KNm}$ per mrun

Reinforcement

$\mathrm{K}=\mathrm{M} \operatorname{lbd} 2$ feul $=152.29 \times 10_{6} / 1000 \times 3402 \times 25$
$=0.053<0.156$
$Z=0.94 d=0.94 \times 340$ (from table of lever arm) $=319.6 \mathrm{~mm}$

As $=$ MI 0.95 fZ
$=152.49 \times 10 ? 10.95 \times 460 \times 319.6$
BS8110 $=1091 \mathrm{~mm}^{2}$
Minimum steel $=0.13 \%$ bh
$0.0013 \times 1000 \times 400=520 \mathrm{~mm} 2$
$\begin{array}{ll}\text { Provide Y16@ 150 P bottom }(\mathrm{As}=1340 \mathrm{~mm} 2) & \begin{array}{l}\text { Provide } \\ \text { y16 @ } 150 \mathrm{~B}\end{array}\end{array}$
FINAL CHECK OF PUNCfllNG SHEAR
$100 \mathrm{As} / \mathrm{bd}=100 \times 1340 / 1000 \times 340=0.39$
$\mathrm{Vc}=0.63 \mathrm{~N} / \mathrm{mm} 2$ (by interpolation)
Punch shear stress was $0.016 \mathrm{~N} / \mathrm{mm} 2$; therefore, a 400 mm thick pad is adequate.

SHEAR STRESS

At critical section for shear, 1.0d from the column face.
$\mathrm{V}=145.06 \times 0.75=108.8 \mathrm{KN}$
$\mathrm{N}=\mathrm{V} / \mathrm{lbd}=108.8 \times 10_{3} / 10_{3} \times 340=0.32 \mathrm{~N} / \mathrm{mm} 2$
Therefore, $0.32 \mathrm{~N} / \mathrm{mm} 2<0.63$
The section is adequate in shear

BASE TYPE - 2

$\mathrm{N}=876.55 \mathrm{KN}$ @ Ultimate limit state
$\mathrm{h}=400 \mathrm{~mm}$
Column size $=450 \times 225$
$\mathrm{D}=400-50-10=540 \mathrm{rmn}$
For serviceability limit state;
BS8110 Design axial load $=876.55$ I 1046
$=600.37 \mathrm{KN}$
Allowing for 10% of design load as the self weight of the base.

Therefore, self weight of base $=600.3 \times 10 \%$
$=60.04 \mathrm{KN}$
Therefore, total load $=660041 \mathrm{KN}$
Required base area $=$ Axial load $/ \mathrm{pb}$
$=660041$ I $150=404 \mathrm{~m} 2$
Provide $2.1 \times 2.1 \times$ Oo4m, (Area~4041m2)
For the ultimate limit state, Earth pressure=

Design axial load I area provided $=660041$ I 4.41
$=149.75 \mathrm{KN} / \mathrm{m} 2$
At the column face, shear stress
$=$ NICol. Perimeter x d <0.8-1 1 feu
$=660041 \times 10_{3} 12(450+225) \times 340<0.8-125$
$=1044<4 \mathrm{~N} / \mathrm{mm} 2$

CHECK FORPUNCfITNG SHEAR

Critical perimeter $=($ Column Perimeter $)+(8 \mathrm{x}$ 1.5 d)
$=[2(450+225)+(8 \times 1.5 \times 340)$
$=5430 \mathrm{~mm}$.
Area within perimeter $=(450+3 \mathrm{di}$
$=(450+1020)$
$=2.2 \mathrm{x} 106 \mathrm{~mm}^{\prime}$
Punching Shear force,
$\mathrm{V}=149.75$ (Base Area + Area within p
= 149.75[4.41-2.2]
$=330.95 \mathrm{KN}$
BS8110 Punching shear stress $v=$
V/perimeter x d
$=330.95 \times 10_{3} 11350 \times 340$
$=0.72 \mathrm{~N} / \mathrm{mm} 2$

Comparing this value with the permissible shear of $0.34 \mathrm{~N} / \mathrm{mm} 2$ of table 3.9 of BS 8110; part 1; 1985 (Assuming the rmrumum 0.15% steel), shows that the base is safe against punching shear with a depth of 400 mm
|l||| 17|| ||ll| /

MOMENT
 SHEAR

$$
\sim / \cdot 17
$$

Moment

At the column face, span $=1.5 \mathrm{~mm}$
$M=w L 2 / 2=660.41 \times 1.12 I 2=363.23 \mathrm{KNm}$ per mrun

Reinforcement
$K=M / b d 2 \quad$ feu $=$
$363.23 \times 106 / 1000 \times 3402 \times 25$
$=0.13<0.156$
$\mathrm{Z}=0.95 \mathrm{~d}=0.95 \times 340$ (from table oflever arm)
$=323 \mathrm{~mm}$
$\mathrm{A} 8=\mathrm{M} / 0.95 \mathrm{fyZ}=$
$363.23 \times 106 / 0.95 \times 460 \times 323$
$=2573.34 \mathrm{~mm}$
Minimum steel $=0.13 \%$ bh
$0.0013 \times 1000 \times 400=520 \mathrm{~mm} 2$
Provide Y20 @ 125 P bottom (As = 2510mm2) Provide
FINAL CHECK OF PUNCHING SHEAR
$100 \mathrm{As} / \mathrm{bd}=100 \times 251011000 \times 340=0.74$
$\mathrm{v}_{\mathrm{c}}=0.72 \mathrm{~N} / \mathrm{mm}_{2}$ (by interpolation)
from table
Punch shear stress was $0.72 \mathrm{~N} / \mathrm{mm} 2$; therefore, a 400 mm thick pad is adequate.

SHEAR STRESS
At critical section for shear, 1.0d from the column face.
$\mathrm{V}=660.41 \times 0.19=125.48 \mathrm{KN}$
$\mathrm{v}=\mathrm{V} / \mathrm{lbd}=125.48 \times 10_{3} / 10_{3} \times: 340=0.36 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, $0.36 \mathrm{~N} / \mathrm{mm} 2<0.72$
The section is adequate in shear

CHAPTER FIVE

5.0 ANALYSIS AND DISCUSSION OF RESULTS

. 1 ANALYSIS OF RESULTS

5.1.1 ROOF

The critical dead and impose loads on the roof is $1.5 \mathrm{KN} / \mathrm{m}$ which is the higher force in the roof members governs the design. This load is acting on member $A B$ and number of trusses is 6

The reaction at AB members is 5.175 KN with magnitude of permissible stress of $2.4 \mathrm{~N} / \mathrm{mm} 2$ and applied stress of $1.82 \mathrm{~N} / \mathrm{mm}^{2}$

However, the critical load that governs the design of strut is 12.213 KN acting on members. Similarly the uniform moment acting on the roof beam 5.66 KNm . provision of $100 \times 50 \mathrm{~mm}$ strut was made

Meanwhile the effect of wind load was not taken into consideration as the slope angle calculated is $28.3^{\circ}<30^{\circ}$. Satisfy the condition of not determine the wind ~~e~d

5.1.2 TYPICAL FLOOR SLAB

All the slabs are design typically as two - ways spanning slab except the propel cantilever slab spanning 2 m as P6, slab with PI having ly/lx $=4.5 / 4=1.13$ and the mid span moment for short and long span of 13.18 KNM and 10.18 KNM respectively.

Continuous edges have moment of 17.37 KNM and 13.48 KNM respectively. This implies that the moment in longer direction is move critical than in longer direction. Also slab panel P2 with ly/lx = $514=1.25$ have mid span moment of 13.48 KNM and $8,39 \mathrm{KNM}$ continuous edges have moment of 17.67 KNM and 11.08 KNM hogging respectively which also indicates that the moment in shorter
direction is greater than that in longer direction. This behavior is similar to that of o her slab panels while that of cantilever slab is 7.488 KNM running through the s ab panel as uniform distributed load (udl).

5r1.3 ROOF BEAM

The critical roofbeam - 5 is two-span continuous beam but symmetrical and hence assumed simply supported. It has the maximum span moments 14.60 KNM , 47.87 KNM and 34.94 KNM at span AC, CD and DE respectively while the maximum shear force at each span are; $26.02 \mathrm{KN}, 22.53 \mathrm{KN}$ and 19.31 KN for span AC, CD and DE respectively.

However, because the critical beam which is roof beam 5 is nominal reinforcement, other roof beam members are generally taken to be nominal reinforcement

5.1.4 FLOOR BEAMS

Floor beam - 1 is a three-span continuous beam but symmetrical and hetee assumed simply supported. The maximum span moments for spans, AC, CD d DE are $171.47 \mathrm{KNM}, 318.20 \mathrm{KNM}$ and 605.90 KNM respectively. Shear force and bending moment at supports A, C, D and E are $87.70 \mathrm{KN}, 284.24 \mathrm{KN}, 304.46 \mathrm{KN}$, $161.95 \mathrm{KN}, 0,91.36 \mathrm{KNM}, 201.92 \mathrm{KNM}$ and 0 respectively.

Floor beam -2 is also a three-span continuous beam having maximum span moments for spans AC, CD, and DE as $218.88 \mathrm{KNM}, 384.77 \mathrm{KNM}$ and 698.02KNM respectively.

The shear force and bending moment at support is such that, at A, C, D and E are $110 \mathrm{KN}, 349,8 \mathrm{KN}, 355.94 \mathrm{KN}, 185.03 \mathrm{KN}$ 0, $118.35 \mathrm{KNM} 234.55 \mathrm{KNM}, 0$ respectively.
imilarly roof beam 3 is a two span continuous beam. The maximum span oments for span $1-4,4-S$, are 188.42 KNM and 102.49 KNM respectively. Shear 'orces and bending moment at support, (1), (4), and (S) are; IS8.S9KNM $24.89 \mathrm{KN}, 16 \sim .96 \mathrm{KN}, 100.44 \mathrm{KNM}$ and 0 respectively.

Floor beam - 4 and 7 are typical two-span continuous beam. The maximum span moment that governs the design for span $1-4$ and $4-S$ are $2 S 1.08 \mathrm{KNM}$ and 136.S6KNM respectively. Shear force and bending moments at support (1), (4) and (S) are $2 \mathrm{I} 1.32 \mathrm{KN}, 166.41 \mathrm{KN}, I S S .8 S K N, \quad \mathrm{I} 33.84 \mathrm{KNM}$ and 0 respectively.

For floor beam - Sand 6 are typical two-span continuous beams having the maximum span moments that governs the design for span respectively. The shear forces and bending moment at support (1), (4) and (S) are 244.23 KN,] 92.33 KN , $180 . \mathrm{I} 2 \mathrm{KN}, l S 4.68 \mathrm{KNM}$ and 0 respectively.

However, the floor beam - 8 also a two-span continuous having the maximum span moments governs the design for span 1-4 and 4-S as 172.0SKNM and 93.44KNM respectively. The shear forces and bending moment vat support (1), (4), and (5) are $144.7 \mathrm{KN}, 113.76 \mathrm{KN}, 106.64 \mathrm{KN} ; 91.58 \mathrm{KNM}$ and 0 respectively.

5.1.5 COLUMNS

Column Al starts from foundation and extends to the roof floor level. The bi xial loaded at the loads acting on the column are $84.16 \mathrm{KN}, 210.62 \mathrm{SKN}, 157.0 \mathrm{KN}$, 193.SSKN respectively. (third floor level to roof level, second floor level tofirstl floor level).

Column C2 is axially loaded and starts from foundation and terminates at roof level. The axial loads acting on the column are $101.986 \mathrm{KN}, 164.892 \mathrm{KN}$, 227.798 KN , and 290.740 KN respectively, (third floor level to roof level, second floor level to third floor level, first floor level to second floor level, ground floor level to first floor level to second floor level, ground floor level to first floor level).
olumn Al is biaxial and starts from foundation and terminates at roof level. The a ial loads and moments acting on the column are $84.16 \mathrm{KN}, \mathrm{Mxx}=79.00 \mathrm{KNM}$, yy $=86.42 \mathrm{KNM}$ (third floor to roof level), 120.625 KN and MXX $=59.60 \mathrm{KNM}$, yy $=63.13 \mathrm{KNM}$ (first floor to second floor level), 290 KN , and $\mathrm{Mxx}=$ $59.60 \mathrm{KNM}, \mathrm{Myy}=63.13 \mathrm{KNM}$ (ground floor to first floor level) respectively. Similarly column G1 is also biaxial and starts from foundation and terminates at roof level. The axial loads and moments acting on the column are 96.50IKN, Mxx $=91.34 \mathrm{KNM}, \mathrm{Myy}=91.65 \mathrm{KNM}$ (third floor to roof level), $135.182 \mathrm{KN}, \mathrm{Mxx}=$ $59.60 \mathrm{KNM}, \mathrm{Myy}=59.80 \mathrm{KNM}$ (first floor level to second floor level), 212.54 KN , Mxx $=59.60 \mathrm{KNM}, \mathrm{Myy}=56.80 \mathrm{KNM}$ (ground floor level to first floor level) respectively.

5.2.0 DISCUSSION OF RESULTS

I was observed from the above floor analysis that the combination of dead and imposed loads is more critical as the wind load is not considered. This may be as result of difference in the magnitude of the force acting on the truss. Then, the dead and impose load is used in the design analysis.

For the analysis of roof beam, it was observed that there is comparatively large difference in moment which may be due to significant difference in span. Therefore, each span was designed separately.

For the floor beams analysis of a continuous beam, the differences in moments may be due to difference in loads as well as in span. While some have a very close span moment value, the latter was used for the design of reinforcement in the span and some are design separately because of large difference in moment.

However, for the column design, for the axially loaded column, it was observed that the difference in axial loads may be due to the member of floors the incidental beams are carrying. For the biaxial type column. The difference in axial loads may also be due to the member of floor \sim the incidental beams are carrying.

5.3 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

A structure is designed to perform a certain function. To perform this function satisfactorily it must have sufficient strength and rigidity. Certain-factors must, therefore, ne taken into consideration when designing structure if any kind, especially a public structure. These factors are safety, economy, durability, fire resistance etc. it is against this background that all these factors are exclusively and strictly bear in mind when the design aspect of this project thesis was been done.

However, detailed structural drawing of various structural elements such as roof, slabs, beams, columns, and foundations were successfullyproduced for use by the construction team such as contractor responsible for the supply of steel (reinforcement), iron fixer (or bender) quantity surveyor in the production of biII of quantities etc.

Therefore, if this proposed residential building structure given the architectural and structural drawings specifications is translated into physical structure, will stand the test of time.

RECOMMENDATIONS

1though this thesis effectively dealt with the analysis and design of both super nd substructures, it does not include detailed analysis of the nature of the soil strata in the project site with a view to determing the bearing capacity of the soil, I therefore, recommend that this area should be greatly improved upon by students willing to do any project work on design of structure of any kind.

The bearing capacity of the soil used for this design was assumed to be $150 \mathrm{KN} / \mathrm{m}_{2}$. For further study, I hereby recommend that adequate soil analysis should be carried out before preliminary assumption of the bearing capacity of the proposed site.

For economical factor, I hereby recommend that the roof design can be carried out using timber material.

REFERENCES

BS8110 part 1,2 \& 3; (1997) British Standard Structural use of concrete. Code of practice for Design and Construction.

M. J. Smith and B. J. Bell (1971): Theory of structure second edition, E. L. P. S. Macdonald and Evans Limited.

Mosley W. H. Bungey J.H and Hulse R, (1999) Reinforce Concrete Design.. Fifth edition Palgrave (publisher).

Oyenuga V. O. (1999). Simplified Reinforced Concrete Design (A
Consultant / computer Based Approach) Second Edition. Ascros Ltd. Surulere Lagos.

Reynolds C.E. and Steedman J.C. (1994). Reinforced Concrete Designers Handbook. Tenth edition. T. J. Press (Padstow) Ltd, Cornwall (Publishers) Theory of structure
W. Bates, B. O. Allwood, D. T Williams et al: Steel designers Manual Fourth Edition prepared for the Construction Steel Research and development Organization

APPENDIX

 A.BASIC: $\sim \sim \sim f,\{$,

Concrete specific $\mathrm{W} \sim \operatorname{ig} \sim \mathfrak{f}^{\prime}$! $!,-$:

Light - weight concrete:,

225 mm block work $I_{1}, 1,1$,

150 mm block work
Wall finishes - both;sides'
13 mm rendering$3 / 7 \mathrm{~mm}$ screeding
Terrazko paving ,1...;1//... ,
Roof g felt.and screed'-, $\therefore \therefore . . .,-" '$
Roof I've lo $\sim d^{\sim} \sim \sim^{\prime}$ 'Necces' $\Phi^{\sim}, i ; \sim \sim i^{\prime \prime}$. $0.25 \mathrm{kN}\} \mathrm{m} 2$
$24.0 \mathrm{kN} / \mathrm{m}$ ।
$7.0-18.0 \mathrm{kN} / \mathrm{mı}$
$2.87 \mathrm{kN} / \mathrm{m}_{2}$
$2.15 \mathrm{kN} / \mathrm{m}_{2}$
$0.60 \mathrm{kN} / \mathrm{m}_{2}$
$0.30 \mathrm{kN} / \mathrm{m} 2$
$0.80 \mathrm{kN} / \mathrm{m}_{2}$
$0.022 \mathrm{kN} / \mathrm{in} 2$ per mm .
$2.0 Q$ ktI/m2
Woodl(averagej'j-]-]
$8.00 \mathrm{kN} / \mathrm{mı}$
Asbestos roofingsheet, sheeting rails and nails $0.40 \mathrm{kN} / \mathrm{m} 2$
Amiatus and nails $0.30 \mathrm{kN} / \mathrm{m}_{2}$
B. REINFORCEMENTS
B. 1 Reinforcement Stresses
High yield
deformed bars 215
Cold worked, 21
bars 215
\sim Note: It is 'ad~i'~a~le to adopt the following characteristic stresses for steel in this country, based on experience.

$$
\text { ence. } \text { Mild }^{\prime} \text { St~el } \because,,^{\prime \prime \prime}{ }^{\prime} \sim, \text { fy }=250 \text { Nzrnnr' }
$$

-. High \}ensile':~~- '~,~: fy $=410 \mathrm{Nzmm}$!

n 2 Reinforcement Properties

$\begin{array}{lllllllllllll}\text { Area (mlI~n::8f } & 50.3 & 78.5 & 113.1 & 201.1 & 314.2 & 490.9 & \text {-804.2 } & 1257\end{array}$
 $\begin{array}{llllllll}\text { Weights }(\mathrm{kg} / \mathrm{m}) \text {) d! ! }) \sim f .0 .395 & 0.616 & 0.888 & 1.579 & 2.466 & 3.854 & 6.313 & 9.864\end{array}$

	$178{ }^{\prime}$		68	44	28	
Lengths n~1tqpn,~i 206 \therefore.High tensile	132	92	52	33	21	

:. High tensile _,., \sim $206-132$

92
52
21 lfn"i'~ ,f.,k~j(II.
B. 3 Areas for spacing bar spacing - slab, foundation

	100	"125;	.150 ~ 'f 'fi1175		200	22S ... $\sim \cdot 12 \sim 9 \% \sim 41 \sim 300$			
8	503	402	335^{\prime}	287	252	223	201	182	16.8,
10	785	628	523	449	393	349	314	285	262::;
12	1130	905	754	646	56.6	502	452	14:	! 377 ;
16	2010	1610	1340	1150	1010	893,	804	731	67.0i
20	3140	2510	2090	1800	1570 '	1396	1260	1142	1050
-1	4910	3930	3270	2810	2450	:2181	1960	1784	1640
	NR	6430	5360	4600	4020	3574	3220	2924	2680
	NR	NR	8380	7180	0280	5585	5030	4569	4190

Note: Intermediate values can be pro-rated
N.R - Spacing not recommended
B. \sim Areas for specific bar groups - beams Columns-

Bar size			${ }^{4}$		J) b	of b				fis
(111111)	.r	2	;3	. ${ }^{\prime}$	5	. > $6_{1 / 1}$	\%	7	9	'10'
8	50	101	151	201	252	302	352	. 402 -	453	'503
. to	78	157	236	314	393	471	550	: 628	707	785
12	113	226	339	452	566.	679	792	905	1020	1130
16	201	402	60~ (804	1010	$1210{ }^{\prime}$	1410	1610	1810.	2010
20	314	628	943.	1260	1570	1890.	2700	2510	28~0	3140
2S	491	982	1470	1960	2450	2950	3440	$3930{ }^{\prime}$	4420	4910
32	804	1610	2410	3220	4020	4830	5630	$64 \mathrm{JOI}$	7240	8040
$40^{\prime \prime}$	1260	2570	3770	5080	6280	7540	8800	,10100	11300	12600

'ote:- \sim Mean 1 conti $\sim u O U S$ edge
hort Spanning:(J.s'y

Spanning '(J.sy।
$\begin{array}{lll} & 0.046 & 0.037 \\ 0.029\end{array}$
ote: ~1l Moments here \sim e Po~itlve.
" \ ।

E3. Column Design Chart 3

C. S. mean ~ Increase the section of the column.

$$
\begin{array}{ll}
\text { Asc } \text { (Mild Steel Bars) } & =, 0.0042 \mathrm{a} \text { fcubh. } \\
\text { Ass (High Tensile Bars) } & =0.0026 \mathrm{u} \text { fcubh }
\end{array}
$$

