STRUCTURAL DESIGN OF.A PROPOSAL 3- STOREY OFFICE COMPLEX.

BY

AL-AMIN ADAM
(PGD/CE/OS/056)

DEPARTMENT OF CIVIL ENGINEERING FEDERAL UNIVERSITY OF TECHNOLOGY MINNA - NIGER STATE, NIGERIA.

FEBRUARY, 2011

CERTIFICATION

I, hereby testify that this work has been supervised, read and has met part of the requirement for the award of post graduate diploma(PDG) in the Department of Civil Engineering, Federal University Of Technology, Minna, Niger State. Nigeria.

> ENGR.S .F . ORiTOLA (project supervisor)
PROF. SADIKU Date
(Dean SEET)

Dean PG School Date

DEDICATION

I, gladly dedicate this project to ALLAH THE ALMIGHTY for HIS GRACE, MERCY and STRENGTH given me in writing it.

I acknowledge the grace of ALLAH in my life for given the opportunity to be one of the students of the Federal University of Technology (FUT) Minna and for His guidance in the course of writing this project. I appreciate the support of my Head of Department of Civil Engineering; Prof. Sadiku who has his doors open at all time to anybody for advice. My sincere appreciation goes to my project supervisor Engr. S. F Oritola for his contributions and directions towards accomplishing this project. This acknowledgement will be in conclusive if the support and contribution of all my lecturers are not mentioned. They are distinguished: Engr. Prof. O.D Jimoh, Engr. Dr. F. Agunwa, Engr. Dr. P.N Ndoke, Engr. Dr. A Amadi, Engr. Dr. E.Y Tsado, Engr. Dr. S.M Auta, Engr. Dr. M. Abdullai, Engr. M.A Mustapha, Engr. S.S Kolo, Engr. James Olayemi, Engr. R. Adesoji, Engr. Mrs AD Gbadebo, Engr. Busari Hafiz, Engr. I. Jimoh, Engr. I. Abdulkadiri, Engr. T.Y Adejumo and a host of others.

Appreciation equally goes to my wives, Hajiya Kafeelat, Hajiya Saratu, my children and brothers for their support throughout my stay in the University. ~ay Allah bless you all. (Amin).

Abstract

This project covers the analysis, design and detailing of a proposed office complex for the State Security Services In Abuja. The project was prepared based on the standard and' principle set out by the structural use of concrete B58110 parts 1,2 and 3 to achieve the desired objectives. The roof members, beams slabs, stair-case, columns and the foundations were analysed and designed in accordance to BS8110. The results were used to produce simple and neat structural detailed drawing to ease estimation and construction of the proposed project.

NOTATIONS

As.pro.	area of tension reinforcement provided
As.req	area of tension reinforcement required
Asv.	cross - sectional areas of the two legs of a link
b	width of section
bw	breadth of web or rib of a member
d	effective depth of tension reinforcement
dı	dept to compression reinforcement
tbs	bond stress
feu	characteristic concrete cube strength
fy	characteristic strength of reinforcement
fyl	characteristic strength of longitudinal
fyf	characteristic strength of link reinforcement
Ok	characteristic dead load
g	distributed dead load
gk	characteristic dead load per unit area
hf	, thickness of flange
hmax	larger dimension of section
I	second moment of inertia
Ie	effective height of column or wall
lex	effective height for bending about major axis
ley	effective height of bending about the major axis
10	clear height of column between end restraint
M	bending moment
Madd	maximum additional moment

Mi	Maximum initial moment in a column due to ultimate load (but not less than O.ONI)
Miy	Initial moment about minor axis of slender column
Mt	Total moment in a column due to ultimate loads
Mtx	Total moment about the minor axis of a slender column
Mty	Total moment about the minor axis of a slender column
Mu	Ultimate moment of resistance
N	Ultimate axial 1'0ad at a section
Nuz	Axial load capacity of a column ignoring all bending
n	Total ultimate load per unit area
Qk	Characteristics imposed load
q	Distributed line load
qk	Characteristic imposed load
Sv	Spacing of link along the member
T	Torsional moment due to ultimate load
U	Perimeter
V	Shear force due' to ultimate load
Vc	Ultimate shear stress in concrete
X	Neutral axis depth
Xi	Smaller dimension of a link
Yi	Larger dimension of a link
Z	Lever arm
Zo	Lever arm factor Z / d
red	Ratio of reduction in resistance
Us	Sum of effective perimeter of the tension reinforcement
0	Bar size

Title page i-ii
Declaration iii
Certification iv
Dedication v
Acknowledgement vi
Abstract vii
Notations viii - ix
Contents x-xi
Chapter One
1.0 Introduction 1
1.1 Aim 1
1.2 Objectives 2
1.3 Justification 2
Chapter Two
2.0 Literature Review 3
2.1 '/'. Introduction 3
2.2 Composition of Reinforced Concrete 4
2.2.1 Cement 4.7
2.2.2 Aggregate 7-8
2.2.3 Water 8-9
2.2.4 Steel 9-10
2.3 Properties of Reinforced Concrete 10-11
2.4 Design Methods of Reinforced Concrete 11-13
2.5 Characteristics Strength and Load 13-14
2.6 Reinforced Concrete Design to BS 8110 14
2.7 Design of the Structural Elements 14
2.7.1 Reinforced Concrete Slab 15
2.7 .2 Simplification of load arrangement 15-18
2.7 .3 Reinforced Concrete Beams 18-22
2.7.4 Reinforced Concrete Columns 22-26
2.7 .5 Reinforced Concrete Foundations 26-32
2.7 .6 Reinforced Concrete Staircase 32-35
2.8 Analysis and Design of Reinforced Concrete Frames 35-36
Chapter Three
3.0 Structural analysis and Design 42
3.1 Analysis and Design of Slabs and Beams 42-124
3.2 Column Design 149-164
3.3 Foundation Design 164
4.0 Discussion of results 165+
5.0 Conclusion/Recommendation 166

CHAPTER ONE

1.0 INTRODUCTION:

The security office is an office where security is the watch-word. This project of the office complex is to house the state security services (SSS) for their movement from Lagos to Abuja. The design recognizes this fact of security and as a result, basement is introduce as a detained room for any support for a period of 48-hours before prosecution.

1.1 AIM

To design a structurally and functional office complex for state security service (SSS) in Abuja.

1.2 OBJECTIVES

(a) To determine the appropriate quality of reinforcement in a member, so as to make member serviceable for the intended period of life.
(b) To ensure that, the structure is safe under the worst condition of load application.
(c) To ensure that the deformation of the structure is not impairing the appearance, durability and performance of the structure, under the working load (serviceability).
(d) To ensure that, the structure is economical"
(e) To ensure that the structure can comply with future functional and structural requirements.
(f) To achieve an aesthetically pleasing and structurally gratifying structure.

CHAPTER ONE

1.0 INTRODUCTION:

The security office is an office where security is the watch-word. This project of the office complex is to house the state security services (SSS) for their movement from Lagos to Abuja.

The design recognizes this fact of security and as a result, basement is introduce as a detained room for any support for a period of 48-hours before prosecution.

1.1 AIM

To design a structurally and functional office complex for state security service (SSS) in Abuja.

1.2 OBJECTIVES

(a) To determine the appropriate quality of reinforcement in a member, so as to make member serviceable for the intended period of life.
(b) To ensure that, the structure is safe under the worst condition of load application.
(c) To ensure that the deformation of the structure is not impairing the appearance, durability and performance of the structure, under the working load (serviceability).
(d) To ensure that, the structure is economical
(e) To ensure that the structure can comply with future functional and structural requirements.
(f) To achieve an aesthetically pleasing and structurally gratifying structure.

REFERENCE

British Standard (BS 8110) Part I and II (1989) structural use of concrete.

British Standard (BS) 5268 Part (1988).

Musley W.H, J.H Bungey 4th Edition Reynolds Reinforced combats Designers Hand Book by
Charles .e. Reynolds, James C. Steadman and Anthony

Simplified Reinforced concrete design by Victor . O. Oyenuga

: Clay pots of size $2000 \times 200 \times 400 \mathrm{~mm}$ are used with a weight of

$$
0.0077 \text { kN }
$$

: Cover is 20 mm
: Concrete topping is reinforced with R8 @ 300×300 mesh for anticracks

Beams : Cover of 20 mm is used

Concrete : Concrete grade of C- 30 (i.e fcu $=30 \mathrm{~N} / \mathrm{mm} 2$) is recommended for all the members having a characteristics strength of
$7 \mathrm{~N} / \mathrm{mm} 2$ at 3 days
$14 \mathrm{~N} / \mathrm{mm} 2$ at 7 days
$30 \mathrm{~N} / \mathrm{mm} 2$ at 28 days

Reinforcement: High yield steel of strength are used for $410 \mathrm{~N} / \mathrm{mm} 2$ at the tensile and compressive members

- Mild steel are used as stirrups except some exceptional cases as indicated in the design

Foundations: 500 mm cover is used

50mm blinding of strength $7 \mathrm{~N} / \mathrm{mm} 2$ (grade $\mathrm{C}-7$)

Allowable bearing pressure of $300 \mathrm{kN} / \mathrm{m} 2$

Fire Resistance ------- $\quad 1 \underset{2}{\sim} \sim$ rs.

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

(History of the use of Reinforced Concrete),
Reinforced concrete was invented in France 1850, and now one of the most important materials used in building construction. It is a combination of concrete and steel, Concrete (which can resist very high compressive forces, but has little resistance to the tensile, Shearing, twisting and other forces to which the parts of a structure are subjected) and steel, which has a high resistance to tensile forces and other force imposed on the structures by their own weight, the loads they carry, and by other forces, such as the wind. Reinforced concrete is designed so that, generally, the compressive forces are resisted by the concrete and the tensile forces by the steel reinforcement. The reinforcement is generally in the form of mild steel round bars up to 40inm in diameter, but square, Indented, and twisted bars are used. The development of high tensile steel has increased further the Load-bearing capacities of reinforced concrete. An advantage of the steel reinforcement is that it also resists the tensile stresses induced in the concrete -when the alter shrinks during the setting and hardening process. Another is that concrete at steel expand and contract at the same rate with changes of temperature. A further advantage of reinforced concrete is its resistance to fire. The use of reinforcement has made possible the erection of large cantilevers, thin domes long spans, and shapes that would be impossible or uneconomical in any other material. It has also made possible reinforced concrete beams, transmission line poles. Lamp and fence posts and many other products
which can be made in a factory away from the Site of erection with a consequent reduction of the amount of labour required on the site.

2.2 COMPOSITION OF REINFORCED CONCRETE

Reinforced concrete is a man made composite of the major constituent of which is cement, aggregates water, and steel.
2.2.1 Cement: can be describe as a material with adhesive and cohesive properties, which makes it capable of binding mineral fragment into a compact whole. It can also be explained as a materials which is added iin an appropriate form to a non-coherent assemblage of particles, will subsequently hardened by physical or chemical means and bind the particles into a coherent mass. Thus therefore, allows such diverse material like bitumen, lime to be grouped under the umbrella of cement. For construction purposes the term cement is restricted to binding materials used with stones, sand, bricks, building blocks etc.

The cement of interest is that for making concrete and similar building materials which have the property of setting and hardening in the presence of water (mixture) by virtue of chemical reactions called hydration. Cement which is the most expensive ingredient in concrete making and the most reliable as it provide greater percentage of the concrete strength. The principal requirement is tht the cement should be able to produce strong dense and durable concrete with defmite setting and harden characteristic.

Cement is manufactured from basic raw materials of calcium carbonate found in calcareous rocks such as Limestone or chalk, silica, alumina, and Iron oxide found in argillaceous rocks such clay or shale. It is prepared by first intimately grinding and mixing the raw constituents in certain
proportion (wet or dry process) and subsequently burning this mixture at very high temperature $(14500 \mathrm{C})$ in a rotary or shaft kiln to produce clinker. The cooled clinker is finally ground with addition of 1-50/0gypsum to the required fineness. The gypsum retards the hydration of the aluminates Component of the cement to avoid what is called flash set. The most common cement used is the Portland cement which was developed in 1824 AD and derives it name from Portland limestone in Doreset UK.

Gengeral, the Oxide composition of a typical Portland cement is presented in TABLE 2.1

TABLE 2.1 COMPOSITION OF PORTLAND CEMENT

OXIDE010 COMPOSITION
Lime, CaO- 64.7
Silica, SiO - 21.20
Alumina, Ah 03- 5.22
Iron Oxide, fe-O 3.08
Magnesia MgO 1.04
Sulphur trioxide, S03 2.01
Soda, Na20- 0.42
Loss on ignition, LOI 1.45
Insoluble residue, IR 0.66100.00
Free line, CaO- 1.60

The insoluble residue which is determined by treating the cement with hydrochloric acid is a measure of cement adulteration arising horn impurities in gypsum. The BSI2, (1958) and NIS 11. (1974).

Fineness:- The ordinary Portland cement should have an average specific Surface of not less than $2.500 \mathrm{~cm} 2 / \mathrm{g}$..
Settings:- (a) Initital setting time should not be less than 45 minutes (b) Final Setting time should not be less or equal to 10 hours.

Soundness: Should not have an expansion more than 10 mm and of aerated less or equal to 5 mm .

TYPES OF CEMENT

The deliberate variation on the proportions of the four main compounds Ordinary Portland cement (OPC) with their hydrates added with chemicals/admixtures enable cements with different properties to be produce, to suit different circumstances of construction, such cement types includes:
(1) Ordinary Portland cement (OPC). This cement is the most common and has a medium rate of hardening, making it suitable for most concrete work. It has a low resistance to chemicals and has a final setting of 10 hours.
(2) Rapid hardening Portland cement: is in many ways similar to ordinary Portland cement but produce. a much higher early strength. The increased rate of hydration is accompanied by a high rate of heat development which makes it unsuitable for large massess concrete.
(3) Low heat Portland cement: has a limited use but is suitable for very large structures, such as concrete dams, where the use of ordinary
cement would result in unacceptably large temperature gradients within the concrete.
(4) Portland blast furnace cement is,produced by mixing up to 65 percent granulated blast furnace slag with ordinary Portland cement.
(5) Hydrophobic 'cement: Made by grinding the cement clinker with Small amount of film forming water repellent material sprayed into the mill.
(6) Other types of cement are:

Sulphate resisting Portland cement
Extra-rapid hardening Portland cement
Ultra-high early-strength Portland cement
Water proof and water repellent Portland cement
Air-entrianing Portland Cement
Super sulphated cement
Pozzolanic cement
2.2.2 Aggregate: It is much cheaper than cement and maximum economy is obtained by using as much aggregate as possible in concrete. Its use also considerable improves both the volume, stability and the durability of the resulting concrete. The commonly held view that aggregate is a completely inert filler in concrete is not true, its' physical characteristics and in some cases its chemical composition affecting to a vary degree the properties of concrete in both plastic and hardened states.'
~. Types of aggregate
In the previous sections, discussion has been mainly confined to rock aggregates. Although other types of aggregate are use for making
concrete their contribution is very small m companson with rock aggregates.
~ Heavyweight aggregate: Provide an effective and economical use of concrete for radiation shielding' by giving the necessary protection against x-rays gammarays and neutrons. The effectiveness of heavyweight concrete, with a density from 400 to $5500 \mathrm{kgm}-3$-, depends 'on the aggregate type, the dimensions, and the degree of compaction. It is frequently difficult with heavyweight aggregate to obtain a mix which is both workable and not prone to segregation.
~ Normal aggregate: These aggregates are suitable for most purposes and produce concrete with a density in the range 2300 to $2500 \mathrm{kgm}-3 \sim$ Rock aggregates are obtained by crushing quarried rock to the required particles size or by extracting the sand and gravel deposits formed by alluvial or glacial action. Some sands and gravels are also obtained by dredging from sea and river bed. Aggregates, in particular sands and 'gravels, should be washed to remove impurities such as clay and site. In the case of river and marine aggregates the chloride content should generally be less than 1 percent if these are to be used for structural concrete.
~ Lightweight aggregates: find application in a wide variety of concrete products ranging from insulating screeds to reinforced or pre-stressed concrete although their greatest use has been in the manufacture of precast concrete blocks.
'Concretes made with lightweight aggregates have good fire resistance properties. The most commonly used lightweight aggregates in the UK are expanded slate (solite), expanded clay (aglite and leca), clinker,
foamed sky and sintered pulverized fuel ash (Lytag). They are highly porous and absorb considerabley greater qualntities of water than do normal aggregates.
2.2.3 Water: Water used III concrete, in addition to reaction to reacting with cement and thus causing it to set and harden, also facilitates mixing, placing and compacting of the fresh concrete. It is also used (or washing aggregates and for curing purposes. In general wter fit for drinking such as tap water is acceptable for making concrete. The impurities that are likely to have an adverse effect when present in appreciable quantities include silt, clay, acids alkalis and other salts, organic matter and sewage. "The use of seawater does not appear to have any adverse effect on the strength and durability of Portland cement concrete but it is known to cause surface dampness efflorescence and staining and should be avoided where concrete where concrete with good appearance is required. Seawater also increases the risk of corrosion of steel and its use in reinforced concrete is not recommended; When suitability of mixing water is in question, it is desirable to test for both the nature and extent of contamination as prescribed in BS3148.

The quality of water may also be assessed by comparing the setting time and soundness of cement pastes made with. water of known quantity and the water whose quality is suspect.

The use of impure water for washing aggregates can adversely affect strength and durability, if it deposits harmful substances on the' surface of the water. In general the presence of impuriites in the curing water does not have any harmful effect, although it may spoil the appearance of concrete.
, Water containing appreciable mounts of acid or organic materials should be avoided.
(Jackson 1977)
2.2.4 Steel: This can be describe as the most efficent and certainly one of the most used structural material it'can be formed in various structur ~ 1 shapes, such as wide flange beams, sheet by rolling and plates. It can be cast into complex shapes like those of bridge bearing; it can be bolted riveted or welded. It can be alloyed with other metals such as chromium, nickel and copper to obtain an iricrease resistance to corrosion.
Steel: is one of the few structural materials, which demonstrate a welldefined field (i.e strips above which yield or flows with almost no increase in stress).

The module of elasticity of steel is measured by the scope of the elastic portion of its stress - strain curve, the change from elastic, to plastic appears linear initially but changes abruptly for mild steel and gradual for high yield steel. Because of this variation in the shape of the curves idealized curves which give safe result must be used.

Steel is a dense structural material and its weight is $7850 \mathrm{Kg} / \mathrm{m}_{3}$, its coefficient of thermal expansion is approximately $1 \times 10 _5{ }^{\circ} \mathrm{CIC}$ but its $1 \sim$ sses it strength rapidly above $400{ }_{0} \mathrm{C}$ and become brittle at $34_{0} \mathrm{em}$.
Concrete reinforcment: Concrete has low tensile and bending strengths and a high compressive streghth. Steel reinforcement overcomes the deficiencies in the tensile and bending strengths.

The reinforcing steel must have adequate tensile properties and form a stong bond with the concrete since the concrete transmits load to the steel by shearing stresses. The bond is purely mechnicial and arises from surface

TABLE 2.2

CONCRETE

Stregth in tension
Stregth compression Strength in shear , Fair

Durability
Fire resistance

Good
Good

STEEL

Good
Good, but slender bars will buck

Good
Corrodes if unprotected
Poor - suffers "rapid loss of strength at high temperature

It can be seen from this list that the materials are more or less complementary. Thus, when they are combined, the steel is able to provide the tensile strength and probably some of the shear strength while the concrete, strong in compression, proetects the steel to give durability and fire resistance. (Bungey, 1990).

2.4 DESIGN METHODS OF REINFORCED CONCRETE

The design of an on engineerring structure must ensure that:

1. Under the worst loading the structure is safe.
2. During normal working condidtions the deformation of the members does not detract form the appearance, durability, or performance of the structure. Despite the difficulty in assessing the precise loading and variations in the strength of the -concrete and steel, these requirements have to be met. Three basic methods using factors of safety to achieve safe, workable structures have been developed. They are as follows:-
2.4.1. the permissible stress method in which ultimate strengths of the materials are divided by a factor of safety to provide design stresses which are usually within the elastic range. This method has proved to be a simple and useful method but it does have some serious inconsistencies. Because it is based on an elastic stress distribution, it is not really applicable to a semi-plastic material such as concrete, nor is it suitable when the deformations are not proportional to the load, as in slender columns. It has also been found to be unsafe when dealing with stability of structures subject to overturning forces.
2.4.2 The load factor method in which the working loads are multiplied by a factor of safety. As this method does not apply factors of safety to the material stresses. It cannot directly take account of the variability of the materials and also it cannot be used to calculate the deflections or cracking at working loads.
2.4.3 The limite state method which multiplies the working loads by partial factor of safety and also divides the materials, ultimate strenghts by further partial factors of safety. This method of design overcomes many of the disadvantages of the previous methods. This is done by applying partial factors of safety, both to the loads and to the material strengths the magnitude of the factors may be varied so that they maybe used either with the plastic conditions in the ultimate state or with the more elastic strength range at working laods. This flexibility is particularly important if full benefits are to be obtained from development of improved concrete and steel properties.

The purpose of design is to achieve acceptable probabilities that a structure will not become unfit for its intended use, that is, that it will not reach a limit state. Thus, any way in which a structure may cease to be fit for use will
constitute a limit state and the design aim is to avoid any such condition being reached during the expected life of the structure.
(a) Ultimate $\lim \mathrm{I})$ stater- This requires that the structure must be able to withstand with an adequate factor of safety against collapse, the loads for which it is designed. The possibility of bucking or overturning must also be taken into account, as must the possibility of accidental damage as caused, for example by an internal expolsion.
(b) Serviceability limit states:- Generally the most important serviceability limit states are:-

1. Deflection: The appearance or efficiency of any part of the structure must not be adversely affected by deflections.
2. Cracking.- Local damage due to cracking and spalling must not affect the appearance, efficiency or durability of the structure.
3. Durability: This must be considered in terms of the proposed life of structure and its conditions of exposure. Other limit states that may be reached include:-
4. Excessive vibration: This may cause discomfort or alarm as well as damage.
5. Fatigue: Must be considered if cyclic loading is likely.
6. Fire resistance: This must be considered in terms of resistance to collapse, flame penetration and heat transfer.
7. Special circumstacnes:- Any special requirements of the structure which are not covered by any of the more common limit states, such as earthquake resistance, must be taken into account.
roughness and friction. Mild steel with a maximum carbon content of 0.25 percent is suitable and it's supplied in three conditions. There are hot rolled (BS 4449), cold rolled (BS 4461) and hard drawn (BS 4482) which give tensile tensile strength between 250 and 485MNm-2~

Reinforcing steels are supplied as plain, indented or twisted round or square bar in a variety of sectional shapes in straight lengths or bent shapes and woven or electrically welded mesh. Protection against corrosion is provided by the highly alkaline environment of the Portland cement hudrates within the concrete. Carbonation that is the reaction of the hydrates with carbon dioxide can, however, break down this protection if it penetrates as far as the steel. (Jackson, 1977).

2.3 PROPERTIES OF REINFORCED CONCRETE

Reinforced concrete is a strong durable building material that can be formed into many varied shapes and sizes ranging from a simple rectangle column to a slender curved dome or shell its utility and versatility is achieved by combining the best features of concrete and steel. Consider some of the widely differing properties of these two materials that are listed below:
2.5.1 Characteristics Strength:- This is referred to as strength of concrete cube (feu) at 28 days, or the yeild or proof stress of reinforcement (fy), below which not more than 5% of the test result fall. It is found that the difference in strength in the actual structure may be greater than the strength derived from tests.

This is due to local variation and deterioration in transit. These efforts are allowed for design' by dividing the characteristic strength by a partial safety factor for strengthfYg) Design strength $=$ characteristics strength (fk)/partial factor of safely (Ym). In general the partial safety factor adopted fro concrete is 1.50 while that for steel is 1.15 . The characteristics strength of concrete is given in BS 5328 and that of reinforcement is given in BS 8110, table 3.1.

2.5.2 Characteristics Load

This is defined as the load above which not more than 5% of loads on the structure fall within its working life.

1. Dead Loads: The weight of the structural elements, permanent partitions and finishes.
2. Impose load: Due to furniture, occupants machinery, vehicles impact, snow etc, the characteristics imposed load for all types of building are in BS 6399 (1984) and other hand books.
3. Wind Loads: The loads on structure based on statistical analysis of the meteorological data usually obtained from the gust speed that it is estimated would be exceeded only once in 50 years.

Ideally these loads should be considered statistically but because complete statistical information on loads is not available. The
characteristic' load selected for design should be that which produces the worst effect. (i.e. loads that produce most severe stress). BS 8110 cl 2.4.31 gives a guide on the load combinations for ultimate limit state for the design of the whole or any part of a structure.

2.6 REINFORCED CONCRETE DESIGN TO BS8 110

In the analysis of a cross section to determine its ultimate moment of resistance, the following assumptions set out in clause 3.4.1. 1 should he made.
a. The strain distribution in the concrete in compression and the strain in the reinforcement whether in tension or compression are derived assuming that plane section remain plane.
b. The stresses in the concrete in compression may he derived from the stress curve.
c. The tensile strength of the concrete is ignored.
d. The stresses in the reinforcement are derived from the stress strain curve.

2.7 DESIGN OF THE STRUCTUAL ELEMENTS

A reinforced concrete structure is a combination of beams, columns, slabs and walls, rigidly connected together to form a monolithic frame. Each individual member must be capable of resisting the forces <1 :ctingn it ; so that. the determiantion of these forces is an essential part of the design \sim ocess. The full analysis of a rigid frame is rarely simple, but simple, but simplified calculations of adequate precision can often be made if the action of the structure is understood.
2.7.1 Reinforced Concrete Slabs: are plate elements forming floor, roofs and walls of building arid as the decks of bridges, the flour system of a structure can take various forms such as in-situ: solid slabs, ribbed slabs', flat slabs or pre-cast units.

The generally carry distributed loads; Slabs may simply supported or continous over one or more supports and are classified according to the method of support.
a. Spanning one way between beams
b. Spanning two ways between beams
c. Flat slabs carried on columns with no beams

Stairs with various support conditions' form a special case of sloping slabs. The following analysis-idealization into strips or beams, elastic plate theory and finite element analysis.
a. Elastic analysis - idealization into strips or beams, elastic plate theory and finite element analysis.
b. Semi-empirical design using moment coefficients base on yeild line analysis given in clause 3.5.2.4 and 3.5.3. - 3 BS 8110
c. Yield Line and. Hillerberg strip. method, concrete slabs, behave primarily as flexual members and the design is similar to that of Beams although it is some what simpler because:

1. The breadth of the slab is already fixed and a unit breadth of 1 m is used in the calculation.
2. The shear stresses are usually low in a slab except when there is hwavy concentrated load.
3. compression reinforcement is seldom required.

2.7.2 Simplification of load arrangement:

In principle a slab should be designed to withstand the most unfavourable arrangement of design loads but there are greater opprunities by the use of a single load case of maximum design load on all spen or panels provided the following condition are met as stated in clause 3.5.2.3 B S8 110. In one way spanning slab the area of each bay exceeds 30 mm 2

The ratio of the characteristic imposed load to the characteristic dead load does not exceed 1.25 .

The characteristics imposed load does not exceed $5 \mathrm{KN} / \mathrm{m} 2$ excluding partitions.

One way spanning slabs: The slabs are design as if they consist of a series of beams of 1 m wide spanning between s:upports. It can he simply supported or continous slab. The effective span of simply supported slab is the clear span L plus effective depth d for the continuous slab L is the distance between centers of supports.

The code stipulated that conditions of clause 3.5.2.3 are met the moments and shear in continuous. One way spanning stabs may be calculated using the coefficient given in table 3.13 (BS 8110).

The main reinforcement spans between the supports or over the interior support of the continuous slab.

Simply supported slabs: The design of simply supported slabs without adequate provision to resist tension at cOlpers and to prevent the comers from lifting, the code gives the following equations for the maximum moment per unit width at mid span for 1 x and 1 y respectively.

Msx Bsn1x 1 eqn 2.1
Msy By NIx 2 eqn 2.2

These equations corresponds to equation 11 ofBS 8110
Where Bsx and Bsy are given in table 3.14 BS 8110
(1.4gk+ 1.6qk)

Lx = length of shorter span
$L y=$ Length of longer span

TWO WAY SPANNING SLAB AT RIGHT ANGLES

When floor slab are supported on four sides. Two ways spanning action occurs. In a square slab the action is equal in each direction. In long narrow slab where the length is greater than twice the breadth, the action is effectively one way, though the end beams carry some slab loads. The edge conditions must be defined for slabs, these are:
a. Simply supported slabs where the comers can lift away from the support.
b. One - panel slab that is held down on four sides edge beams. The stiffness of the beam affect the result.
c. Slabs with all edges continuous over support.
d. Slabs with one, two or three edges continuous edge(s) may be simply supported or held down to the edge beam.

Under the two ways spanning slabs are the restrained slabs. Restrained slabs can be classified as:-

1. Restrained slabs where the comers are prevented from lifting and adequate provision is for torsion.
2. Restrained slabs with unequal conditions at adjacent panels.
ultimate limit state and serviceability limit state of deflection may be checked. In most buildings beam sizes are dictated by the architectural drawings but must be confirmed by the structural Engineer. Since wall width is generally 225 mm , most beams have webs 225 mm wide and usual depths include $450,600,750$ and 900 mm .

Generally, for guidance purpose only, beams not exceeding 6.0 m can be designed for a depth of 450 mm ; while between 6.00 m and 7.50 m , a depth would be appropriate.

Beams are either rectangular or flanged beams, flanged beams on the other hand are either L or T _ beams. Effective width of L or T _ beams must be determined and the standard recommends as follows:
a. For T _ beam: web width plus one ': fifth of span or the actual flange width smaller holds.
b. For L - beam: web width plus one'- tenth of the effective span or actual flange with smaller holders.

Beam effective span is actual span that is' from centre of bearing or clear span plus one _ half of the effective depth. In general, effective span can be taken as centre of the bearings for continuous beam and for simple supported beams as clear span plus 225 mm . in addtion, beams can be assumed to have satify serviceability limit state of deflection if the span/effective depth ratio enunciated in clause 24.6 of the standard is followed. This is presented in table 2.3 basic span/effective depth ratios fro rectangular or flanged beam.

TABLE 2.3

Support conditions	Rectangular sections	Flange beam $\mathrm{bw} / \mathrm{b}<\mathrm{O} .3$	
Cantilever		5.6	
Simply supported	20	16.0	
Continuous	26	20.6	

The values in the table are for beams of 10 m span or less. Linear interpolation is allowed for flanged beams with bw / b greater than 0.3 for beam span in excess of 10 m , the value in table 2.2 should be multiplied by 10/span.

The above notwithstanding, there may be the need to carryout simple check for deflection since deflection is influenced by the quantity of steel at both the tensions and compression 'zone, values in table 2.2 may be modified as follows:
a. Modification of tension reinforcement:
modification factor $=\quad 0.55+(477-\mathrm{Fs}):: ; 2.0$

$$
120\left(0.9+\text { Mlbd }_{2}\right)
$$

Where M is the design ultimate moment
Andfs 2 fy Asreq x 1
3 Asprov B
Asreq $=$ Calculated As required
Asprv $=$ Actual As Provided and
$\mathrm{Bb}=\mathrm{Re}-$ distribution ratio which should be assumed as I ifnone.
b. Modification for compression reinforcement:
modification factor $=1+(100$ Aspro/bd $)$

$$
\text { 3+ (} 100 \text { AS prov/bd) ::; i. } 5
$$

Table 3.10 and 3.11 of BS 8110 part 1:1997, give values of modification factors for tension and compression reinforcement respecitively.
Simply supported beams
a. Continuous beams
b. Beams Subjected to torsion and
c. Arcate beams

The following steps are carried out in the design of beams

1. Choice of section
2. Analysis of the beam
3. Design of the beam for tensile and comprhensive reinforcments, if any and
4. Design of shear, local bond and torsion if any.

Beam procedures:
a. Choose or estimate member width (generally, 225mm), and depth (usually, $450 \mathrm{~mm}, 600 \mathrm{~mm}$ or 750 mm).
b. Estimate the flange width of non-rectangular beam.
c. Analyze the b,eam to obtain imposed moments, shearing forces and tensional moments (if any).
d. Design for einforcements as follows:

Mement of resistance $\mathrm{Mu}=0.156$ fubd $_{2}$
When applied moment M is less or equal to Mu , design for tension reinforcement, As only.
$\mathrm{K}=\quad$ Mand $\quad \mathrm{Z}=\mathrm{d}(0.5+\mathrm{V}(0.25-\mathrm{klO} .9)$
Fcubd 2
When M exceeds Mu design for As.and As as follows
${ }^{\prime} \mathrm{As}_{1}=\quad \mathrm{M}-\mathrm{Mu} \mathrm{d}{ }^{1}$ can be taken as 50 mm

$$
\mathrm{As}=\mathrm{Mu}
$$

$\mathrm{O}^{\prime} .95 \mathrm{fy} 0.78 \mathrm{~d}+\mathrm{ASl}$
$=\mathrm{Mu}+\mathrm{Asl}$
0.74 fyd
e. Design for stirrups (shear) as follows
from V shearing force, calculate
$\mathrm{V}=\mathrm{VN} / \mathrm{mm}_{2}$
bd
to obtain Vc and design for stirrups viz.-

1. When $<\mathrm{v}: \because ; 0.5 \mathrm{vc}$ provide minimum stirrups e.g 10 mm bars at 0.75 d maximum
2. $0 . .5 \mathrm{vc}: \mathrm{Sv}: \mathrm{s}(\mathrm{vc}+004)$

$$
S v=0.95 f y v \text { Asv <: } 0.75 d
$$

OAB
III. When (vc +004) $\because: ; \mathrm{v}: \because ; 0.8$ vfcu or $5 \mathrm{~N} / \mathrm{mm}_{2}$ provide limits with the spacing calculated from:
calculated from: "
Sv $=0.95 f y$ Asv mm $<0.95 d$

$$
b(v-v c)
$$

when Sv is less than 125 mm , it is better to double the spacing and double the legs of the stirrups. In example, 2 legs R 10 mm @ 1OOmmcentres is better replaced by 4 legs R 10 mm @ 200 mm centres. Note also that Asv is the total area of the stirrups. For example, 2 legs RIOmm has Asv as 157 mm 2 and fyv is the stirrups charactristic strength which may be the same with that of the main reinforcement or different. To reduce cost, mild steel round bars

Restrained slabs:
In this slab, the comers are prevented from lifting and provision is made for torsion. The maixmum moments of Msx and Msy at mid span on strips of unit width for spans 1 x and ly are given by:

Msx	BsxnIx2
Msy	BsynIx2

Where Bsx and Bsy are coefficient from table 3.15 ofBS 8110
Wquation 2.1 and 2.2 represent equation 14 and 15 ofBS 8110
With unequal conditions at adjacent panels the support moments calculated from table 3.15 may differ significantly to adjust then, the following procedures set our in BS8110 clause 3.5.3.5 may be use. They include>
a. Calculate the sum of the moments at mid - span supports (neglecting signs).
b. treat the values from table 3.15 ofBS8110 as fixed end moments (ferns).
c. Distribute of FEM across the supports according to the relative stiffness of adjacent spans, given new support moments.
d. Adjust mid span moments: (this should be such that when it is added to the support moments from neglecting signs) the total should be equally to that from (a).

2.7.3 REINFORCED CONCRETE BEAMS

Beams are horizontal members of a building frame receiving loads from the slab and transmitting same through the columns to the foundations. Beams are mainly used in frames or in large openings. Doors and window lintels are beams not exceeding 2. 1m. Any lintel more than 2.1 m in length should be regarded as a beam and designed as such. Beams are designed mainly at
may be used. However, when heavy shear is experienced, high yield high tensile bars may be used to advantage.
f. When beams are subjected to torsional moments such as roof gutter beams or balcony beams, the following additional design is required.

1. Calculate the imposed torsional moment, T and the torsional stress vt from $\mathrm{Vt}=2 \mathrm{~T} \mathrm{~N} / \mathrm{mm}_{2}$ b2 (h-b/3)
2. Check if $(v+v t)$ exceeds $0.8 v$ feu or $S N z m m$ ", if so, increase beam dimensions most probably the $\mathrm{d} \sim \mathrm{pth}, \mathrm{h}$.
111.. Calculate additional links from

Asv=T mm use closed links typ \sim
$0.8 x \operatorname{lm}$ (0.95fyv)
Iv. Calculate additional longitudinal reinforcements from
$\mathrm{ASl}=\operatorname{Asv}\left(\mathrm{X},+\mathrm{Y}_{\mathrm{I}}\right)$ fyymm 2
Sv Fy
Where:
$\mathrm{T}=$ Torional
Sv - Spacinf of links along the .member
V. Shear force

V - Shear stress
Vc - Ultimate shear stress in concrete
Asv Cross sectional area' of shear reinforcement in the form of links
Fy - Characteristic strength of reinforcement
b - Width of section
d effective depth of tension reinforcement

2.7.4 REINFORCED CONCRETE COLUMNS

A column is a vertical load-bearing member with the ratio of its internal dimensions less or equal to $4: 1$, that is, the greatest lateral dimension not more than four times its least lateral dimension. When this is violated, the column is said to be wall. The primary function of a column or wall is to act as a vertical support to suspended members and to transit loads from t fundation below.

COLUMN CLASSIFICATIONS:

a. Short or slender: A column is said to be short when the effctive length is not more than 15 times its least internal dimensions for braced columns or 10 times for un-braced columns otherwise the column is said to be slender. Slender columns, in addition any axial load and moments, are subjected to moments due to slenderness. These are usually added to the imposed moments on the column and slenderness should be checked on both axis and vice versa.

Effective length of a column is defined as B 10 , where 10 is the actual length of the column and B is a function of the end restraints of the column and whether or not the column is braced. Values of B as advised in tables 3.19 and 3.20 of the standard.

Clause 3.8.1.5 of the standard defmes braced columns as those laterally supported by wall buttressing etc. designed to resist all internal forces in that plane. It should otherwise be considered as unbraced.

Clauses 2.5 of BS 8110: part 2 (1985), discussed the analytical method of calculating the effective height of columns as follows:

1. Framed structures and braced columns. Effective height is caluclated from the lesser of: ,
ie

$$
\begin{aligned}
& 10(0.7+0.05(\% 11+\% 12): S 10 \text { and } \\
& 10(0.85+0.05 \% \min)<10
\end{aligned}
$$

11. Un-braced columns, the lesser of:

$$
10(1.0+0.15 \quad(\% 11+\% 12) \text { and } 10(2.0+0.32 \% \mathrm{~min})
$$

where:
O1011: , 'ratio of the .sum of the column stiffness to the beam at the stiffness at the lower end of a column.

9012:- ratio of the sum, of the column stiffness to the beam at the stiffness at the lower end of a column.
\%min= \quad Lesser of\%11 and \%12
$\%$ min $=\quad$ lesser of $\% 11$ and $\% 12: ' f$

In additonal clause 2.5 .4 of part 2 BS 8110 , discusses the rigorous analysis method of calculating column relative stiffness.
b. Axial, un-axial mid Bi-axial: In terms of load disposition, a column can be categorized as Axially loaded, uni-axially load and Bi-axially loaded.

An axially loaded is subjected to a concentric axial load. That is moments, in both x and y axes are practically insignificant. The total load is then supported by the comprehensive action of both the concrete and steel counterpart of the column, e.g a truly central column.

A uni-axially loaded column is subjected to an axial load and a moment in one direction (x or y axis). The moment in the other direction is assumed to be pracitically insignificant e.g most side column, but not all.

A bi-axially loaded column is a comer column is fact all coner columns are bi-axially loaded while side columns can be bi-axially or uni-axially loaded.

DESIGN PROCEDURES

a. Axially loaded columns: the axial force in a column at the ultimate limit state may be calculated in the absence of any other rigorous analysis like shear from beam calculation on the assumption that beams and slabs transmitting force into it are simply supported. The design procedures for axially loaded columns are as follows

1. Estamating the total axial load at the ultimate limit state
a. Choosing a trial size using this table as guides.

TABLE 2.4

	Size (Hxb) in mm
$\mathrm{N}:: ; 500$	$225+225$
$500:: ; \mathrm{N}<700$	$300+225$
$700:: ; \mathrm{N}: \because ; 950$	$300+300$
$950:: ; \mathrm{N}<1050$	$450+225$
$1050:: ; \mathrm{N}<1400$	$450+225$

(Oyenuga, 2000)
111. Checking for slenderness
iv. Calculate area of steel required from

Asc N-0.35fcu bh
0.7 fy- 0.35 fcu

When Asc returns negative value, mnumum steel of 0.4% bh must be provided. This should however, not be less than $4-12 \mathrm{~cm}$ diameter bars for rectangular columns or $6-12 \mathrm{~mm}$ diameter bars for round columns.
v. Providing links which should be a minimum of Y4of the size of the largest compression bar at a spacing of not more than 12 times the size of the smallest compression bar. It is unusual to adopt 100 mm bars as links at a spacing of 200 mm for 225 by 225 mm columns. it is also advisable not to use less 4 No . 16 mm diameter bars for any column except the columns load is purely nominal in which case 4 nos. 12 mm diameter bars can be considered.
b. Uni-axialloaded columns: The design procedures are as follows:
i. Estimate load on the columns as in axially loaded and chose size.
ii. Estimate the imposed moment on column from

Mcol-M Kcol
$3 \mathrm{Kcol}+3 \mathrm{~K}$ beam.
111. Check whether column is short or slender and calculate Maddf found slender Add Maddo the approriate memont or moments Iv. Calculate Nand M

Fcubh Fcubh2
v. Use the charts in 25 to 29 to pick area of steel required
vil. Provide links as appropriate and detail your design
c. Biaxially loaded column: the column is converted to uniaxially loaded column and design as converted. The design procedures are:

1. Calculate loads and moments on column as before and choose column size
2. Covert Column to uniaxially loaded column of calculating increased moment from:

Mx Mxx + BhbMyy: when Mxx/b> Myy/b
Or
$\mathrm{My}=\mathrm{Myy}+\mathrm{B}=1.0-1.6440$ and $0=\mathrm{N}$
Fcubh
Subject to a minimum of 0.3 when $0>0.6$
111. Calculate N/fcubh2 and Ml x Ifcubh2~M'y/fcubh/ and choose Reinforcements from appropriate chart.
iv. Choose links and detail your design.
(OYENUGA, 2000)

2.7.5 REINFORCED CONCRETED FOUNDATION

All structures must be founded on one form of foundation or the other, depending on the nature of the founding soul and the load to be supported.

Foundations vary from the simple strip footing to complex and more reliable pile foundation. Single storey (bungalow) buildings on average to good soil can be founded on strip foundations.

Three story buildings and more on poor soils require foundations ranging from simple pad to pile foundations. Must multistory buildings (6-storys and above) are founded on pile foundations.

Types of foundations:
a. Strip Foundation: Strip foundation provides a continuous ground bearing under the load bearing walls. This type of foundation is placed centrally under the walls and is generally composed of plain concrete often to a mix of 1:3:6 by volume with the thickness, being note less than the projection of the' foundation and in no case less than 150 mm . in this country, a mix of 1:2:4 by volume is recommended and for walls of 225 mm , the width of the strip should be 3 B , where B is the wall width and the thickness should in no case be less than B.:
b. Wide stripe foundations: Where the load bearing capacity of the ground is low for example, in marslay ground, soft clay or made up ground, wide strip foundations may be used to spread the load over a large area ,of soil. It is usual to provide traverse reinforcement to withstand the tensile stresses that will arise. The depth below the ground level should be the same as for ordinary strip foundation.

All reinforcement should be lapped at comers and functions should be any danger of the foundation failing as a beam in the longitudinal direction, it may be necessary to use a reinforced inverted T beam.
c. Pad foundations: These are isolated foundations to support columns. The area of foundation is determined by dividng the column load plus the weight of the foundation, at serviceability limit state, by the allowable bearing pressure. The thickness of foundation may be less than the projection from the column provided the various criteria governing the design of such foundation are met. Pad foundations include the isolated pad footing combined footing and strip footing supports a row of columns.

Strap Foundations: Strap footing is similar to combined footing, except that a strap beam is constructed to link the two columns. Straps foundation is used when one of the columns is close to either the property line or on obstruction to the extent that projection of the footing beyond the column face.becomes practically impossible.
d. Raft foundation: these cover the Whole area of the building and usually extend beyond it. They consist primarily of a reinforced concrete slab up to 300illm thick, which is often thickened under load bearing colums or walls. Raft foundations are best suited for use on soft natural ground or fill, or on ground that is liable to subsidence observable in mining area. Design of the raft involved the calculation of the loads to be carried and careful assessment of the disposition and distribution of these loads. The primary advantage over strip foundations is the ability of the raft foundation to act as a single unit, thus eliminating differential settlement. However they are expensive.
e. Piled foundations: These are frequently used with multi-storey buildings and in cases where it is necessary to transmit the building loads through weak

Abstract

and unstable solid conditions to a lower stratum of sufficient bearing capacity. Piles may be classified in several ways with end-bearing piles, the shaft passes through soft deposits and the base or point rests on bedrock or penetrates dense sand or gravel, and the pile acts as a column.

A friction pile embedded in cohesive soil (often firm clay) and obtains its support mainly by'the adhesion or skin friction of the soil on the surface of the' shaft. Another method of pile classification relates to displacement poles where soil is forced out of the wall as the pile is driven, and 'replacement' piles where the hole is bored and excavated in the soil and the pile is formed by casting concrete or cement grout in the hole. Preformed solid piles of timber or reinforced concrete, and concrete or steel tubes or shells with the lower and closed are examples of displacement pile.

Abstract

The choice of pile depends on ~hesite and soil conditions, economic considerations and structural requirements. Sometimes, piles are linked by beams to carry load bearing walls.

The foundation type to be chosen for a particular structure or building as earlier on mentioned depends largely on the loads to be transmitted and the receiving soil strata, and must satisfy the following two fundamental and independent requirements.
~ The factor of safely against shear failure of the supporting soil must be adequate and; the settlement should neither cause any unacceptable damage nor interfere with the function of the structure.
~ Thus, the bearing capacity of the soil must be determined through the process of soil/geotechnical investigations prior to the design of the foundation. However, for a relatively small building (a bungalow or two storey building) to be built on a relatively firm soil, the structural engineer may use his experience to choose foundation type.

TABLE 2.5

Soil type	Bungalow	2-storey	3 to 5 story	Medium rise	High rise
Good soil> 100	Strip	Strip	Pad	Pad	Pile
KN1M2					
Average soils	Strip	Wide strip	Pad	Pile	Pile
75					
100KN/m2					
Poor soil 40 75 KN/m2	Wide strip	Wide strip	Raft	Pile	Pile
$\begin{aligned} & \text { Bad soil < } \\ & 40 \mathrm{KN} / \mathrm{m}_{2} \end{aligned}$	Slab raft	Beam \& raft	Beam \& slab raft	Pile	Pile

Note:

1. It is assumed that the walls of the bungalows and the two-storey buildings are load bearing walls. Where this is not applicable, the building should be framed and pad foundation or raft foundation used as appropriate.
2. When pad or raft foundations are involved, the building must necessarily be framed so as to provide a rigid structure.
3. The two-storey building is assumed to be for residential purposes, where it is to be used as office complex, it should be framed and pad or raft foundation used depending on the soil bearing capacity.

DESIGN PROCEDURES OF STRIP FOUNDATION

a. Determine maximum width of slab/roof to be carried by the wall. That is study the architectural plan and select a wall supporting the widest area.
b. Determine the loads due to slab and or roof statically.
c. Determine wall loads including the section below the ground floor slab.
d. Allow 1.0 wide as ground floor interactive load widths.
e. Sum up all the loads and convert to service loads. A factor of 1.47 to 1.49 may be used for residential occupancy,' 1.47 is more appropriate.
f. Divide the service load by the soil bearing capacity.

2. WIDE STRIP FOUNDATION

Design procedure
a. Repeat step (a) to f above
b. Should the width obtained to less or equal to $3 T$, design as simple strip foundation otherwise proceed as follows .

1. Determine the net pressure from:

Fnet $=\mathrm{w} x 1.10-24 \mathrm{~T}(1.4) \mathrm{KN} / \mathrm{m}_{2}$
Pprov
11. Calculate the moment from:

M $=0.5 \times$ PprovFnet KN.m
111. Design for base like a slab using $\mathrm{d}=\mathrm{T}-60 \mathrm{~mm}$
iv. Detail the design

3. t.PADFOUNDATIONS:

Design procedure:
a. Determine the column load at ultimate limit state KN
b. .Calculate area of base required from:

$$
\text { Areq }=\text { W X } 1.10 \mathrm{~m}^{2}
$$

$1.47 \times \mathrm{Pb}$
(b) , Calculate area of base requiredfrom:

$$
\begin{gathered}
\text { Areq }=W \times 1.10 \mathrm{~m}^{2} \\
1.47 \times \mathrm{Pb}
\end{gathered}
$$

(Note: 1.47 is the converting factor to SLS, the range is 1.47 to 1.49)
(c) Select base size such Aprov: Areq,Aprov Area of Base provided
(d). Calculate net pressure at ultimate limit state from

$$
\text { 'Fnet }=\mathrm{W}=\mathrm{x} 1.1-24 \mathrm{~h}(1.4) \mathrm{KN} / \mathrm{m}_{2}
$$

Aprov

(e) , Cheek for punching shear from:

$$
\text { Perit }=(\mathrm{Za},+\mathrm{a} 2)+3 \mathrm{~h}
$$

Acrit $=(\mathrm{a},+3 \mathrm{~h}) \quad(\mathrm{a} 2+3 \mathrm{~h})$
Where al and a2 are column dimensions and h is depth of base
V punch $=$ fnet (Base area - Acrit)
Vpunch=Vpunch Nzmm", d=h- (1.5h) Perit

Obtain Vc from table 3.9 BS8110 should V punch> Vc, increase depth by 50 mm .
(f) Design for reinforcements from

Moment $=0.512 \mathrm{x}$ fnet and 0.512 y fnet KN.m
Where Lx, Ly are the spans of base
As $=\mathrm{M} \mathrm{mm}$, as in beam or slab design

0.95 fylad

g. Check for shear stress from

V	-	LsfnetKN
V	$\mathrm{Vx} 103 \mathrm{~N} / \mathrm{mm}_{2}$	

1000d
V should be less than Vc from table 3.9 BS8110 otherwise increase h by 500 mm or increase the area of reingorcements provided and calculate for Vc agam.

For continuous or combined footing, there may not be the need to check for punching shear. Moments and direct shear analysis may follow that of continuous beam analysis.
(Oyenuga, 2000)

2.7.6 REINFORCE CONCRETE STAIRCASE

The primary function of a stair is to provide access from one floor to another. It is therefore a set of steps comprising treads (horizontal part) and risers (vertical part.) Going is defined as the distance of the tread paralled to the flight direction while rise is the vertical distance of the riser. A step consists of a riser and a tread. The height difference between the floors divided by the rise gives the numer of steps required between the floors. Height of risers should be the same as much as possible as well as the going of the treads. For comfortable usage the best proportions of step is When:

Going +2 times riser $=580$ to 600 mm .

For public building, thebest step is achieved when the going is 300 mm and the rise is 150 mm . The riser of a private dwelling stair can be increased to 175 mm but value higher than this are not recommended. Going or treads should be equal and should be able to take \sim man's foot conveniently, that is not less than 25 mm . 'a going of 250 mm to 275 mm is recommended for private dwellings.
A vertical headroom of at least. 2.0 m must be provided above the line of nosing. The pitch line is the imaginary line joining the finishing nosing of the steps. A maximum total of 18 steps is recommended without any itnervening landing, A flight that will involve more than, $18 n 6$ steps should be broken with an intervening landing to provide a "resting place" for the users. Public stair should have a width not less than 1500 mm while that of domestic dwelling can be a minimum of 90.0 mm .stair must be provide with guides known as balustrades. The vertical members are called balustrades while the top-slanting member is called the handrail. The standard heigh of balustrades is 840 mm above the line of nosing.

Type of stairs:
Stairs can be constructed of reinforced concrete, steel and timber. Timber stairs are becoming obsolete and can, only be seen in old buildings while steels stairs are some how restricted to spiral stairs. Hence, most stairs in common use today are constructed of reinforced concrete. Irrespective of the materials for construction.
a. Straight flight stair two flights between the two floors to accessed
b. Half tum $\left(180^{\circ}\right)$ stair two flights between the two floors

With an intermdiate landing known as half landing. This stair is also known as dogleg stair.
c.;: Quarter tum (or open well) stair' three flights between the two floors with two intervening landings. This creates' a big opening between flights 1 and 3 and hence the name open well stair.
d. Free standing or scissors stair similar to half tum but with suspended half landing. That is the half landing is supported by the two flights. This calls for a more rigorous design for torsion at the two ends of the stair. Such stairs are mainly reinforced top and botton and with heavy " ${ }^{\prime \prime}$ t reinforcements in the region of Y20@ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ depending on the span and loading configuation.
e. Helical stair: This is usually common in building of the affluent, occupies less space than straight flight and the shape looks a helix from floor to floor. It is always a straight flight but turning as it rises. Torsion at the ends of the stair must be adequately taken care of. For dometic ubildings, reinforcements should not be less than Y 16 mm @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ top and bottom, and if possible, the top and of the stair should be received by a beam.
f. Cantilever stair - in this type of stair, there is a central reinforced concrete wall and each step cantilevers out of this wall. The various Iandings are designed as double cantilever about a beam that in tum cantilevers out of the central cove wall.

In most cases this type of stair is used as external escape stair. This type of stair is elegant and do no occupy space. It gives perfect finish to the steps are pre-cast bolted to the horizontal portion (tread) of the spine
beam. The steps can be constucted of steel. Timber or reinforced concrete.
g. Spiral Stair: this is the most economical in terms of space utilization and cost. It consists of several cantilever steps jotting out like leaves from a 'central column. The' final landing spans between this column and the adjoining walls. Each of the steps is designed as a simple cantilever and it is customary to taper the step, being wider at the free end. The steps are pre-cast with a central hole of the same diameter (with some clearance) as the central column. The steps are arranged to form a spiral around the central column. There are attempts to construct spiral stairs in site but they generally appear rough after finishing.

DESIGN OF STAIRS

Stairs are designed either traverse or longitudianlly." Traverse design involves the design of each individual step and such is common with spiral, cantilever stair and steps spanning between two raked beams or $\sim \cdot$ alls. In this case, the loading is for each steps including the live load and the step is designed as a rectangular beam with width, be, equal to the going of the state and depth, h. on the other hand, longitudinally designed stair are design like slab with the waste as the depth, h. these stairs include the straight flight stair, half rum and quarter tum stairs, helical stair and scissors stair etc.

Since the truly horizontal distance will be used, the load must be converted by multiplying all inclined loads (waist own weight and fmishes)
by: VR2+T2
-T
Where R is the rise of the step and T the going. When such flight pans between two beams, the moment is cualculated as $\mathrm{M}=0.125 \mathrm{WL} 2$, where, W $=$ the flight uniformly distributed load and L the span.

2.8 ANALYSIS AND DESIGN OF REINFORCED CONCRETE FRAMES

 In-situ reinforced concrete structures behave as rigid frames, and should be analyzed as such. They can be analyzed as a complete space frame or be divided into a series of plane frames. Bridge deck types of structures can be analyzed as an equivalent grillage, whilst some form of finite element analysis can be utilized in solving complicated shear-wall buildings. All these methods lend themselves to solution by the computer, but many frames can be simplified for solution by hand calculations.The general procedure for a building frame is to analyze the slab as a continuous members supported by the beams or structural walls. the slabs can be either one-way spanning or two-way spanning. The columns and main beams are considered as a series of rigid plane frames, which can be divided into two types.

1. Braced frames supporting vertical loads only
2. Frames supporting vertical and lateral loads.

Type 1 frames are in building where none of the lateral loads, including wind, are transmitted to the columns and beams but are carried by shear walls or other forms of bracing.

Type 2 frames are designed to carry the lateral loads, which cause bending, shearing and axial forces .in the beams and columns. for both types of frame the axial forces due to the vertical load in the columns can normally be calculated as if the beams and slabs were simply supply supported. (Bungey 1990).

CHAPTER THREE

STRUCTURAL ANALYSIS AND DESIGN

GROUND FLOOR SLAB

$$
\begin{aligned}
& \text { 3.1 Ribbed slab OS-1 (Gs }-1 \mathrm{~A}=\mathrm{L} \text { varied) load } \\
& \text { Partitions-a) } 230 \mathrm{~mm} \text { thick hollow concrete block stone } \\
& \text { aggregate. } \\
& 2.87 \times 21_{-}=3.30 \mathrm{kN} / \mathrm{m}^{2} \\
& 20
\end{aligned}
$$

BS CP3

Reinforced codesign hand h book Reynolds
ta table 2.2
b) 100 m thick hollow concrete block
$2.87 \times \operatorname{lQ} \quad=1.5 \mathrm{kM} 1 \mathrm{~m}_{2}$
20

Fl

Deadload - per rib of $520 \mathrm{mrn} \quad \begin{array}{r}\mathrm{q} 2=47.43 \mathrm{kN} / \mathrm{m}^{2} \\ \mathrm{q} 2=47.43 \mathrm{kN} / \mathrm{m}^{2}\end{array}$
Finished floor layer - 0;05 x $20-1.00 \mathrm{kNl} \mathrm{m} 2$
Slab - 0.1×24 i 2.40 "
Ribs - $0.12 \times 0.20 \times 24=\quad 1.11 \mathrm{kNl} \mathrm{m}_{2}$
0.52

$$
\begin{array}{r}
15 \mathrm{~mm} \text { concrete.plaster=- } 0.015 \times 22=0.33 \mathrm{kN} / \mathrm{m}\llcorner \\
\text { Pots }-0.077= \\
\\
\\
\\
1.4 \mathrm{x} \quad 5.74 \\
\\
=7.8 \mathrm{kN} / \mathrm{m}_{2} 2
\end{array}
$$

Live load (Lobby, stores)

$$
\begin{array}{rll}
\mathrm{Qk}=1.6 \times 5.0= & 8.00 \mathrm{kNI} \mathrm{~m} 2 \\
\mathrm{q},=\mathrm{Gk}+\mathrm{Qk} & \\
=7.8+8.00= & 15.81 \mathrm{kNl} \mathrm{~m} 2 \\
\mathrm{Q}, 15.81 \times 0.52= & 8.22 \mathrm{kN} / \mathrm{m} \\
\mathrm{~F},=(1.5+0.53) \times 2.85 \times 1.4 \times 0.52= & 4.21 \mathrm{kN}
\end{array}
$$

Height of wall.

Moments

$$
\begin{array}{rl}
\mathrm{Ml} & =\mathrm{q}, \mathrm{t}+\mathrm{E}+\mathrm{El} \\
8 & 4 \\
= & 8.22 \times 6.32+4.21 \times 6.3 \\
& 8 \quad 8 \quad 8 \\
& =40.78+6.63 \\
& =47.41 \mathrm{kNm}
\end{array}
$$

BS8110

Reynulds Hlbook

$$
\begin{aligned}
& \mathrm{b}=520 \mathrm{~mm}, \mathrm{~d}=300-20-8-8=264 \mathrm{~mm} \\
& \text { few }=30, \text { fy }=410 \mathrm{~N} / \mathrm{mm}_{2} \\
& =\mathrm{M} \quad=47.41 \times 106=0.04<0.156 \\
& \mathrm{bd} 2 \text { feu } \quad 520 \times 2647 \times 30 \\
& =\mathrm{z} / \mathrm{d}=0.946: .7=0.946 \mathrm{~d} \\
& \text { As }=\mathrm{m} \quad=47.41 \times 106 \quad=530 \mathrm{~mm} 2 \\
& \quad 0.87 \mathrm{fyz} \quad 0.87 \times 410 \times 0.946 \times 246
\end{aligned}
$$

3.2 Ribbed slab, Gs - $2 \mathrm{~L}=6.000$

BS CP3
ıReynolds RIB table 2.3

Os - 2 a Gs - 2 b Gs - 2 c Gs - 2d Gs - 2 e
LOADS
a) Dead load - From above 7.81kN/m2
b) Live load $-\mathrm{PI}=-5.0 \times 1.64 .00 \mathrm{kNm} 2$
c) $\quad-\mathrm{P} 2=-5.0 \times 1.6 \quad 8.00 \mathrm{kNm} 2$
d) Partitions - (equivalent uniformly distributed load

BSCP3
IOr
Reynolds's ConI. Delyor Hlbook table 2.2
(Bs. Cpg)
Unknown position $\mathrm{We}=0.33(1.5+0.53) \times 2.80 \times 11.4=2.63 \mathrm{kNI} \mathrm{m} 2$
e) partition parallel to rib (100mmthick) $(1.5+0.52) \times 2.8 \times 1.4=$
$7.96 \mathrm{kN} / \mathrm{m}$
(f) partition perpendicular to rib (100 m)

$$
\mathrm{FI}=(1.5+0.53) \times 2.80 \times 1.4 \times 0.52=4.14 \mathrm{kN}
$$

(g) = partition parallel to rib (230 mm thick)

$$
\begin{aligned}
\mathrm{f} 2 & =(3.3+0.53) \times 2.85 \times 1.4 \times 0.52 \\
& =7.95 \mathrm{kN}
\end{aligned}
$$

h, - partition paralled to rib (230 mm thick)

$$
(3.3+0.53) \times 2.801 .4
$$

$$
\mathrm{F} 3=\mathrm{i} 5.28 \mathrm{KN} 1 \mathrm{~m}
$$

For worst loading conditions, consider the following.
Alt $1-\mathrm{a}+\mathrm{c}+\mathrm{d}$

$$
\begin{aligned}
& \mathrm{ql}=(7.8+8.00+2.56) \times 0.52=9.6 \mathrm{kN} / m \\
& \mathrm{~m}, \begin{array}{c}
\mathrm{L} . \mathrm{G}= \\
8
\end{array} \frac{9.6 \times 62}{8}=43.2 \mathrm{kN} \\
& 8
\end{aligned}
$$

Alt 2 - $a+b+e+f$

$$
\begin{aligned}
\mathrm{q} 2= & .921+\mathrm{Ed}=17.85 \times 62+4.1 \mathrm{x} 6 \\
& 848 \\
& =86.5 \mathrm{kwm}>42.3 \mathrm{kN}
\end{aligned}
$$

Alt 3

$$
\begin{aligned}
q^{3} & =\mathrm{a}+\mathrm{b}+\mathrm{g} \\
= & (7-85+4.0) \times 0.52+9
\end{aligned}
$$

3.4 Ribbed Slab (Gs-4) \& (Gs -4 a)Gs-4b
$\mathrm{ql}=15.8 \times 8.22 \mathrm{kNI} 25.81 \times 0.52=8.22 \mathrm{kN} / m \quad$ 106lines \&
corridors
1 J
$\mathrm{m}=\mathbf{i} . _=8.22 \times 3.82$8
As $=2 \mathrm{Y} 12$ (180 mm 2)
3.5 Ribbed slab (Gs-5) 1.5m
Provide 2YI0 (157 mm 2)
GROUND' FLOOR BEAMS
3.6 GB-1: L $=8048+8 \mathrm{~m}$, Beam size $=400 \times 600 \mathrm{~m}$
$\mathrm{ql}=47.74 \mathrm{kN} / \mathrm{m}$
~ ..J:ftgmarıow $\mathrm{q} 2=47.43 \mathrm{kN} / \mathrm{m} 2$
RA Rb
8480

LOADS

From slab Gs - 2b

$$
\begin{array}{r}
230 \mathrm{~mm} \text { blockwall- }(3.30+.0 .53) \times 265 \times 14=14-21 \\
\text { Beam slab weight }-O A x O .30 \times 24 \times 1.4= \\
\mathrm{ql}= \\
4.03 \\
\hline
\end{array}
$$

from slab Gs - 2 b

$$
\begin{gathered}
q 2=15.81 \times 6 \times Y 2=47.43 \mathrm{kNm} \\
\mathrm{~b}=400 \mathrm{~mm}, \mathrm{~d}=600-20-8-10=562
\end{gathered}
$$

```
K= M = 598*106 = 0.158> 0.156
30*400*5622
Provide Compression reinforcement
A1s= M - 0.156 fcubd2
    0.89fy(d - d l) d' =20 + 8 + 10=38mm
= (598-591)*106 = 37mm2
1 8 6 9 1 1
Provide minimum reinforcement (0.2%*400*600mm=480mm1) 3Y16Top
As}=0.156 fcubd2+ A1s
    0.87fyZ
= 591*106 + +37
    0.87*410*0.775*562
=3841mm
Provide 5Y32 Bottom (4020mm1)and 3Y16 Top
SHEAR
Max V=RA=335kN
v}=335*103=1.49N/mm
    400*562
100As = 100*4020 = 1.79
bd 400*562
v c = 0.81N/mm2 by interpolation
v; + 0.4 S > < 0.85fcu
```

$$
\mathrm{m},=6-16 \times 36+7.95 \times 9
$$

0
4
$27.72+11.93$.
$39.6<86.5 \mathrm{kNm}$
Alt $4 \quad a+b+h$

$$
\begin{aligned}
\mathrm{q}, & =(7-85+4.00) \times 0.52+15.28 \\
& =6.16+15.28=21.44 \mathrm{kwl} \\
\mathrm{M} 4 & =\underset{8}{\mathrm{~g} 1 _\mathrm{f}}=\underset{\substack{21.44 \\
!}}{21} \times 36=96.48 \mathrm{kNm}
\end{aligned}
$$

$$
96.48 » 86.5 \mathrm{kNm}
$$

Hence Alt 4 is the worst condition

$$
\mathrm{K}=\mathrm{m}_{-}=96.48 \times 106=0.09
$$

bd 2 fcu $\quad 520 \times 26 \times 42 \times 30$

$$
\begin{aligned}
\mathrm{z}= & 0.887 \mathrm{~d} \\
\mathrm{As}= & 96.48 \times 106 \\
& 0.87 \times 410 \times O .887 \times 264
\end{aligned}
$$

$$
\text { As }=96.48 \times 10_{6} \quad 1155 \mathrm{~mm}_{2}
$$

Provide 4Y20 (1260mm2)

B BS 8110
Ta table 3.14
R Reynold BIB

$$
V_{4}=21.44 \times 6=64-32
$$

$\mathrm{V}=\mathrm{y}_{-}=64.32 \times 103=2.03<500 \mathrm{~N} / \mathrm{mm} 2$
bd $\quad 120 \times 264$
$\mathrm{vc}=1.08 \times 1.66=1.14$
3.3 Ribbed Slab Gs - $3(\mathrm{~L}=$ Varries from 5.00 m per rib of
$520 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
LOADs
From slab- ql $=15.81 \times 1 \times 0.52$

$$
=8.2^{\prime} 2 \mathrm{kN} / \mathrm{m}
$$

$8.22 \mathrm{kN} / \mathrm{mm}$

B BS8110
,_J/T table 3.30
R Reynolds
HlB book

$$
\begin{gathered}
\mathrm{MI}=g l X=8.22 \times 52=25.69 \mathrm{kN} / \mathrm{m} \\
8 \quad 8 \\
\mathrm{As}=2_{1} \mathrm{Y} 16 \quad\left(40_{2 \mathrm{~mm} 2)}\right.
\end{gathered}
$$

$$
\mathrm{VI}=8.22 \times 5 / 2=20.55 \mathrm{kN}
$$

$$
\begin{aligned}
\mathrm{RA}= & 47.74 \times 8.482+(8.48 \times 46.43) \times 1 / 3 \quad(8+8) \\
& 8+8 \times 2 \quad 8.48 \\
= & 296.88 \mathrm{kN} \\
\mathrm{RB} & =12 \mathrm{ql}(+2 / 3 . \mathrm{q} 21=Y z 47.74 \times 8+8 \\
& =403.5 \mathrm{kN}
\end{aligned}
$$

Position of BMmax

$$
\begin{aligned}
& \text { RA }-47.43 \text { X } 12-47.74 \mathrm{X} \\
& 8+8 \\
& 270 \quad 2.80 \mathrm{X} 2-47.71 \mathrm{X} \\
& \mathrm{X} 2-17.05 \mathrm{X}-96 \\
& -\quad 17.05+17.05-4 \mathrm{X} 1.96 \\
& 2 \mathrm{Cl} \\
& \text { 2 } \\
& =+386
\end{aligned}
$$

4.48M
4.48X270-47.74X4.482 -

Yz(5.59) X4.48X4.48
X 113 4~48
1209.0-479-84

647

Provide R8 @ 150\% (353mm2/m)

$$
\mathrm{K}=\mathrm{JJI}=647 \times 106=0.23>0 .] 56
$$

Bd2fev $400 \times 5622 \times 30$

Compression reinforcement in ratio

$$
\begin{aligned}
& \mathrm{AI})=\mathrm{m}-0.156 \text { fevb d2 d1 }=20+8+10=38 \mathrm{~mm} \\
& \\
& \quad 0.87 \text { fy }(\mathrm{d}-\mathrm{dl}) \mathrm{d}=38 \mathrm{~mm} \\
& =(647-595.48) \times 106=51.52 \times 106 \\
& 0.47 \times 410 \times(562-38) \quad 186910.8 \\
& 276 \mathrm{~mm} 21446 \mathrm{~mm} 2 \\
& \mathrm{~A})=0
\end{aligned}
$$

```
    RA=47.74\times8.48 + (8.48\times46.43)xI/3 (8+8)
    8+8x2 8.48
    296.88kN
    RB 12ql (+ 2/3. q2 1 = 1247.74 x 8+8
                        = 403.5kN
Position of BMmax
RA - 47.43 X 12-47.74X
        8+8
    270 = 2.80X2 - 47.71X
        X2 -17.05X -96
            17.05 + 17.05 -4X1.96
                                    2Xl
                                    = +386
                                    4.48M
4.48X270 - 47.74X4.482 -
            12(5.59) X4.48X4.48
        X 1/3 4~48
        1209.0 - 479-84
            6 4 7
Provide R8 @ 150\% (353mm2/m)
\[
\mathrm{K}=\text { ill }=647 \times 106=0.23>0.156
\]
\[
\text { Bd'fev fl. } 00 \times 5622 \times 30
\]
Compression reinforcement in ratio
\[
\begin{aligned}
& \mathrm{AI} 3=\mathrm{m}-0.156 \text { fevb d2 dl}=20+8+10=38 \mathrm{~mm} \\
& \quad 0.87 \text { fy }(\mathrm{d}-\mathrm{dl}) \quad \mathrm{d}=38 \mathrm{~mm} \\
& =(647-595: 48) \times 106=51.52 \times 106 \\
& 0.47 \times 410 \times(562-38) \quad 186910.8 \\
& 276 \mathrm{~mm} 2 \quad 1446 \mathrm{~mm} 2 \\
& \mathrm{~A} 3= \\
& 0.156 \text { fcubd" }+\mathrm{A} 12 \\
& \quad 0.87 \mathrm{fyz}
\end{aligned}
\]
```

$$
\begin{aligned}
= & 595.18 \mathrm{xlO}_{\mathrm{b}}+276 \\
& 0.17 \mathrm{x}^{\prime} 410 \mathrm{xO} .775 \mathrm{~d} \\
= & 3833+6276 \\
& 4109 \mathrm{~m}_{2} \quad=100 \text { As Ibh:s } 40 \sim 0.13
\end{aligned}
$$

SHEAR

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{Max} \mathrm{v}=404.5 \mathrm{kN} \\
\mathrm{~V}=\mathrm{v} / \mathrm{db}=\quad 403.5 \times 103=1.79 \mathrm{~N} / \mathrm{mm} 2 \\
\\
\quad 400 \times 562
\end{array} \\
& \begin{aligned}
100 \mathrm{As}= & 100 \times 5630=2.50 \mathrm{~N} / \mathrm{mm} 2, \quad \mathrm{ve}=0.91 \mathrm{~N} / \mathrm{m} 2
\end{aligned} \\
& \mathrm{bd} \quad 400 \times 562
\end{aligned}
$$

$$
(\mathrm{Ve}+0.4)<\mathrm{V}<0.8 \text { fey }
$$

$$
\text { Asv }=\mathrm{b}(\mathrm{v}-\mathrm{V} \sim=400 \mathrm{x}(1.79-0.9)=532=162
$$

$$
\begin{array}{llll}
\text { Sv } & 0.87 \mathrm{fyv} & 0.87 \mathrm{x} 250 & 217.5
\end{array}
$$

$$
\mathrm{As}=1.62
$$

Provide RB@125\% in pairs i.e double.

Loads

From slab $05-1-(15.81+\mathrm{tl}) \mathrm{x}$| $6.3=$ |
| :---: |
| 6.3 |
| 2 |

| Self weight $\quad 0.4 \times 0.3 \times 24 x \mathrm{l} .4$ | $4.03^{\prime \prime}$ |
| :--- | :--- | :--- |
| | q, $-\quad 55.88^{\prime \prime}$ |

From slab $05-4 \mathrm{a}\left(15.81 _\mathrm{I}\right) \mathrm{x} \quad 312=24.90 / w / m$

$$
.8 \quad 2
$$

Bmmax occurs where shear force is

$28.95 \mathrm{kN} / \mathrm{M}$

R. $=3.55 \mathrm{kN}$

R. $=276 \mathrm{kN}$

zero

By similar triangle47.43/8.48=y/x

$. y=5.59 x$
SF is zero at section $\mathrm{N}-\mathrm{N}$, Xm from RB to find x
276-55.88x-1/2(x*5.59x)
276-55.88x-2.8r
.x2+19.96x-98.5
$. . \mathrm{x}=[-\mathrm{b} \pm>\mathcal{(}(\mathrm{b} 2-4 \mathrm{ac})] / 2 \mathrm{a}$
$X=\left[-19.96 \pm>J(19.96) 2-4^{*} 1^{*}(-98.57)\right] 2^{*} \quad 1$
$X=[-19.96 \pm 28.15] / 2$
$X I=[-19.96+28.15] / 2$
$\mathrm{Xl}=4.10 \mathrm{~m}$

$$
B \operatorname{m}_{\max }=276 * 4.1-55.88 * 4.12-5.59 * 4.1 * 4.1 * 1 * 4.1
$$

$$
\begin{aligned}
& 598 * 106 \quad=0.158>0.156 \\
& 30 * 400 * 5622
\end{aligned}
$$

Provide Compression reinforcement

$$
\mathrm{A} 1 \mathrm{~s}=\mathrm{M}-0.156 \mathrm{kubd}_{2}
$$

$0.89 f y(d$-d I)

$$
\mathrm{d}^{\prime}=20+8+10=38 \mathrm{~mm}
$$

$$
=(598-591) * 106 \quad=37 \mathrm{~mm} 2
$$

186911
Provide minimum reinforcement $(0.2 \% * 400 * 600 \mathrm{~mm}=480 \mathrm{mni}) \quad 3 Y 16 \mathrm{Top}$

$$
\mathrm{As}=0.156 \mathrm{kubd} 2+\mathrm{A} 1 \mathrm{~s}
$$

$$
0.87 \mathrm{fyz}
$$

$$
=591 * 106 \quad+37
$$

$0.87 * 410 * 0.775 * 562$
$=3841 \mathrm{~mm} 2$
Provide 5 Y32 Bottom (4020mmz) and $3 Y 16$ Top

SHEAR

$$
\text { Max } \mathrm{V}=\mathrm{RA}=335 \mathrm{kN}
$$

$$
\mathrm{v}=335 * 103=1.49 \mathrm{~N} / \mathrm{mm}_{2}
$$

$$
400 * 562
$$

$$
100 \mathrm{As}_{\mathrm{s}}=100 * 4020 \quad=1.79
$$

$$
\text { bd } \quad 400 * 562
$$

$\mathrm{vc}=0.81 \mathrm{~N} / \mathrm{mm} 2$ by interpolation
$\nu,+0.4 \sim \mathrm{U}<0.85 \mathrm{fcu}$

$$
\begin{gathered}
\mathrm{ASv}=\mathrm{b}(\mathrm{v}-\mathrm{Vc})=400(1.49-0.85) \quad=628=1.24 \\
0.87 \mathrm{fyv} \\
0.87 * 250
\end{gathered}
$$

Provide Stirrup R8 double links @J60c/c
3.8 BEAM GB-9; L $=4.00 \mathrm{~m}$, Size $=400 \times 300 \mathrm{~mm}$

LOAD
from slab Gb-5 $=0.5 * 15.81 * 1.5=11.86 \mathrm{kN} / \mathrm{m}$
From slab Gb-2 $=0.5 * 15.81 * 6.0=47.43 \mathrm{kN} / \mathrm{m}$
$59.29 \mathrm{kN} / \mathrm{m}$

REACTIONS

$$
\mathrm{RA}=\mathrm{RB}=59.29^{\prime \prime} \quad 4 / 2=119 \mathrm{Kn}
$$

3.9 BEAM Gb-3, L $=6.8 \mathrm{~m}$ size (0.4 xO .6 m)

q. $=47.43 \mathrm{kN} / \mathrm{M}$

q. $=27.7 \mathrm{SkN} / \mathrm{M}$

X

By similar triangle
$47.47 / 4.68=y / x$
\mathcal{V} - 10.13 x ! ।

LOADS
From slab Gs- $4 \mathrm{~b}=15.81^{*} \sim(3)=23.72 \mathrm{kN} / \mathrm{m}$
Self weight $=0.4 * 0.3 * 24 * 1.4=4.03 \mathrm{kN} / \mathrm{m}$

$$
\text { .ql= } 27.75 \mathrm{kN} / \mathrm{m}
$$

From Slab Gs-2b; q2 $=15.81 * 112(6.00)=47.43 \mathrm{kN} / \mathrm{m}$
:'

$$
. \mathrm{q} 2=47.43 \mathrm{kN} / \mathrm{m}
$$

From Slab Gs - 5; q3 $=15.81 * \sim(1.5)=11.86 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}=119=$ from beam $\mathrm{Gb}-9$

REACTIONS

$\mathrm{I}: \mathrm{Ms}=0$

$$
\begin{array}{rl}
6.8 \mathrm{RA}=27.75 & * \\
\sim(6.62)+12\left(2.12{ }^{*} 11.86\right)(1.41+4.68)+12\left(4.68{ }^{*} 47.43\right) \\
& +2 / 3(4.68)+119{ }^{*} 4.68
\end{array}
$$

```
\[
=641.58+76.56+346.28+556.92
\]
\[
\mathrm{RA} \quad=238.43 \mathrm{kN}
\]
\[
\begin{aligned}
\mathrm{RA}+\mathrm{RB} & =27.75{ }^{*} 6.8+119+12(2.120)^{*} 11.86+12\left(4.68^{*} 47.43\right) \\
& =188.7+119+12.57+11.69=432 \mathrm{kN}
\end{aligned}
\]
\[
\mathrm{RB}=432238.43=194 \mathrm{kN}
\]
\[
\text { Position of } \mathrm{Bmmax}=\mathrm{SF}=0
\]
\[
R B-q \cdot x-(47.43 x 2) / 4.68^{*} 2=0
\]
\[
194-27.75 \times 47.43 \sim \quad=0
\]
\[
4.68 * 2
\]
```

$. \mathrm{x} 2+5.47 \mathrm{x}-38.26$

```
\[
. x=-5.47 \pm--J\left(5.472-4^{*} 1 * 38.26\right)
\]
\[
2 * 1
\]
\[
x=(-5.47+13.5) * 0.5=\sim .03 m
\]
Bmmax
```

```
\[
\begin{aligned}
& \mathrm{RB} * 4.03-12(4.03) *(10.13 * 4.03) * 2 / 3(4.03)-\mathrm{ql} *(4.03 \mathrm{iI} 2=0 \\
& =194 * 4.03-10.13 *(4.033) / 3 \quad-27.75 * 6.802 / 2 \\
& =781.82-221.01-94.35 \\
& =466 \mathrm{kNm} \\
& \mathrm{~K}=\mathrm{M}=466^{*} 106 \quad=0.13<0.156 \\
& \mathrm{f}_{\text {cubd } 2} \quad 30 * 400 * 5622 \\
& z=d[0.5+--J 0.25-\mathrm{k} / \mathrm{O} .9] \\
& \mathrm{z}=\mathrm{d}[0.5+--J 0.25-0.12 / d .9] \\
& \mathrm{z}=0.84 \mathrm{~d}=562 \mathrm{~mm} \\
& \mathrm{As}=\mathrm{M} \quad=\quad 466^{*} 106 \quad=2767 \mathrm{~mm} 2
\end{aligned}
\]
```


q2 - $28.93 \mathrm{kN} / \mathrm{m}^{\prime \prime}$

```
From slab G5 - 2b
        ' 15.81 '+__Q_ - 47.43kN/m
RA = 28.9x8.482+(55.88 -28.95)x(8.48-2.4)2+ 47.43x8.48x2 8.48
    8
= 1041 +498+ 1P7=335kN
RB=47.43x 8.48+28.95x8.48+(55.8628.95)x6.08
        2
    =201+245.5 + 164-335
    =276kN
```

0.87 fy z $0.87 * 410 * 0.84 * 562$
Provide $5 Y 25$ + 1 Y20 (2769mm2) Bottom Provide 5Y25 + 1 Y20
SHEAR
$\operatorname{Max}(\mathrm{V})=238.43 \mathrm{kN}$
$\mathrm{u}=\mathrm{Vlbd}=236.43 * 10_{3}=1.06 \mathrm{~N} / \mathrm{mm} 2$
400 *562
$100 \mathrm{As}=100 * 2769=1.23$
Bd 400 *562
Mosley Table $5.1 \mathrm{uc}=0.71 \mathrm{~N} / \mathrm{mm}^{2}$
uc $+0.4=1.12$
$\mathrm{u}<\mathrm{Vc}+0.4<0.85 \mathrm{fcu}$

$$
\mathrm{Asv}=\mathrm{b}(\mathrm{~V}-\mathrm{VC})=400(1.06-0.71)=0.63
$$

$$
0.87 \text { fyv } \quad 0.87 * 250
$$

```Provide R8@275clc doubled
3.10 BEAM GB-4; \(1=6.750 \mathrm{msize}=400 * 600 \mathrm{~mm}\)
f L\\, A \(7^{\prime} \mathrm{SM} \mathrm{Mn}^{\mathrm{c}>}\).~ ..... ^. /'"'),

\section*{LOADS}

From Gs-4b; \(\quad 15.81 * \sim(3.80)=30.00 \mathrm{kN} / m\)
From Gs-2e; \(\quad 15.81 * \sim(6.08)=48.06 \mathrm{kN} / m\)
\[
=78.06 \mathrm{kN} / \mathrm{m}
\]
3.11 BEAM GB - 5; L ::;6.30m, 400x600mm

\section*{LOADS}

From Slab GB- \(4 \quad 15.81\) *3.6/2::;: \(30.04 k N / m\)
Self weight of beam \(0.4 * 0.3 * 24 * 1.4=4.03 \mathrm{kN} / \mathrm{m}\)
.Q2 = from 9" wall parallel to beam
\[
\begin{aligned}
&:: ;(3.3+0.53) * 2.65 * 1.4=14 . .21 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~F}=(3.3+0.53) * 2.65 *(0.4 / 0.52) * 1.4=11.8 \mathrm{kN}
\end{aligned}
\]

\section*{REACTIONS}
```

RI= [34.03*(6.32)/2+ 11.8*3.15 + 14.21*3.15*4.725]/6.3
R1= [675.53 +37.17+211.50]/6.3
R2 = 34.03*6.3 + 14.21*3.15 +11.6-147

```

Position of the Bm!!11!1§:
\[
\begin{aligned}
& \text { Self weight of Beam }=0.4 * 0.3 * 24 * 1.4=4.03 \mathrm{kN} / \mathrm{m} \\
& \qquad \mathrm{ql}=82.09 \mathrm{kNm} \\
& \mathrm{RA}=(82.09 * 6.752) / 2=\mathrm{RB}=277 \mathrm{kN} \\
& \mathrm{Bmmax}=\mathrm{ql} 12 / 8=(82.09 * 6.752) / 8=468 \mathrm{kNm} \\
& \mathrm{~K}=\mathrm{M}=468 * 106=0.12 \\
& \sim \mathrm{ubd} 2
\end{aligned}
\]

Provide same reinforcement as beam Gb-3

\section*{SHEAR}
```

V=227kN
v = V/bd= (277*103) 1(400*562) = 1.23N/mm2
100As = 100*2769 = 1.23
Bd 400 *562
U}=0.71\textrm{N}/\mp@subsup{\textrm{mm}}{2}{
Asv = b (v-vc) = 400 (1.23-0.71) = 0.95
0.87*250

```
```

147-34.03x-14.21x = 0
X = 147/48.24 = 3.05m
Bmrnax = 147*3.05-34.03*(3.052)/2 - 14.21*(3.052)/2
= 448-158.3 - 66.10
=224\textrm{kNm}
K=M 224*106 =0.06
~ubd2 30*400*5622
z = d [0.5 + "-i(0.25-k/0.9)]
z= 0.93d= 522rnm
As=M = 466*106 = 1203mm2
0.87fy z 0.87*410*0.84*522
Provide 4Y20 (1260mnl)

```

\section*{SHEAR}

Vrnax \(=147 \mathrm{kN}\)
\(\mathrm{v}=\mathrm{V} / \mathrm{bd}=\left(147^{*} 10_{3}\right) /\left(400^{*} 562\right) \quad=0.65 \mathrm{~N} / \mathrm{mm}_{2}\)
\(100 \mathrm{As}=100 * 1260=0.56\)
Bd \(\quad 400\) *562
By interpolation
\(=2665+2929=5594 \mathrm{~mm} 2\)

Provide \(8 Y 25+6 Y 20\) (5820mm1)

\section*{SHEAR}

\section*{\(\mathrm{V}=285 \mathrm{kN}\)}

Provide R8@225mm double as in Gb-4

\section*{3-13 BEAM GB-7; \(1=6.00 \mathrm{~m}\) Size \(=600 \times 300\)}

\section*{\(47.43 \mathrm{kN} / \mathrm{M}\)}

LOADS
\[
\begin{aligned}
& \text { Gs-2, } \quad 15.81 * 6 / 2=47.43 \mathrm{kN} / m=q l \\
& \mathrm{G},-2 \mathrm{c}, \quad 15.81 * 612=47.43 \mathrm{kN} / m \\
& \begin{array}{c}
\text { (RA }=[47.43 *(62) / 2+47.43 * 6 * 112 * .2 / 3 * 6] * 116=237 \mathrm{kN} \\
\mathrm{RB}=47.43 *(6 / 2)+47.43 *(6 / 2)-237=94.71 \mathrm{kN} \\
\mathrm{Bmmax}=
\end{array} \\
& =[(2 q t 2) / 9 " 3]=0.125 \mathrm{qt} 2 \\
& = \\
& =219.04+213.44=432.49 \mathrm{kNm}
\end{aligned}
\]
\[
\mathrm{vc}_{\mathrm{c}}=0.55 \mathrm{~N} / \mathrm{mm} 2
\]
\[
\mathrm{Asv}=\mathrm{b}(\mathrm{v}-\mathrm{vc})=400(0.65-0.56)=0.18
\]
0.87 fyv ..... \(0.87 * 250\)Provide R8@300clc

\subsection*{3.12 BEAM GB-6; L= 6.00m, 600x300mm}
\[
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=(\mathrm{qll}) / 2=(94.83 * 6) / 2=284.5 \mathrm{kN}
\]
\[
\mathrm{Bm}_{\max }=(\mathrm{q} 1 \mathrm{e}) / 2=427 \mathrm{kNm}
\]
\[
\mathrm{K}=\mathrm{M} \quad=\quad 427 * 106 \quad=0.37>0.156
\]
~ubd2 \(30 * 600 * 2622\)

\section*{A1s \(=\) M-0.156fcubd2}
\[
=(427-193) * 106 \quad=2929 \mathrm{~mm} 2
\]

79901
Provide \(6 Y 25\) (2950mm2) Top Provide \(6 Y 25\) (2950mm2) Top
\(\mathrm{As}=0.156\) fcubd \(2+\) A1s
0.87 fyz
\(=193 * 106+2929\)
```

K= M = 432.49*106 :. = 0.35>0.15
~ubd2 30*600*2622
Compression reinforcement is required; ;}=20+8+10=38\textrm{mm
A1s = M - 0.156fcubd2
0.87 fy (d - d')
=(432.47-192.75)*106 =3000mm2
79900.8
Provide 6Y25 (2950mnr) Top
0.87 fyz
= 192.75*106 +3000
7 2 4 2 8
= 5661.3mm2
Provide 7Y32 Bottom (5630mml)

SHEAR

```
\(\mathrm{V}=237 \mathrm{kN}\)
```

```
v=237*103 = 1.51N/rrun2
```

v=237*103 = 1.51N/rrun2
600*262
100As=100*5630 = 3.58
bd 400 *262
v<< = 0.97
Asv = b (v-vc) = 600 (1.51-0.97) = 1.49
Sy ~?87fyv 0.87 *250

```

\section*{3-14 BEAM GB -7a 600*300mm}

\section*{From Slab Gs - 2a and Gs - 2 b}

\section*{LOADS}
\[
\begin{aligned}
& . \mathrm{qi}=1 \sim .81 *(6 / 2) * 2=94.86 \mathrm{kN} / \mathrm{m} \\
& \mathrm{RA}=2 / 3 \mathrm{ql}=2 / 3(94.86 * 6)=379.44 \mathrm{kN} \\
& \mathrm{Rs}=1 / 3 \mathrm{ql}=1 / 3(94.66 * 6)=189.72 \mathrm{kN} \\
& \mathrm{Bmmax}=2 \mathrm{q} 12 /(9-\mathrm{Y} 3)=438 \mathrm{kNm}
\end{aligned}
\]
\(6 Y 25\) Top, \(7 Y 32\) Bottom

Stirrups R8@120C/c doubled

3-14 BEAM GB -8 and GB \(-8 \mathrm{~b} ; \mathrm{L}=5.945-(1.770 / 2)=5.06 \mathrm{~m}\), Size \(=500 \times 300 \mathrm{~mm}\)


\section*{LOADS}

From Slab Gs - 4 and Gs - 4b
\[
. .=15.81 * \sim(3+3.8)=53.8 \mathrm{kN} / \mathrm{m}
\]

Self weight \(=0.5 * 0.3 * 24 * 1.4=1.2 \mathrm{kN} / \mathrm{m}\)
\[
\begin{gathered}
0.74+2.4+1.11 \\
. q,=(53.8+1.2) \mathrm{kN} / \mathrm{m}=55.00 \mathrm{kN} / \mathrm{m}
\end{gathered}
\]
\[
\mathrm{Rl}=[55 *(5.062) / 2] / 5.06=139 \mathrm{kN}=\mathrm{R} 2
\]
\[
M \max =55 *\left(5.06_{2}\right) 18
\]
\[
=176 \mathrm{kNm}
\]
\[
\mathrm{K}=\mathrm{M} \quad=\quad 176^{*} 106 \quad=0.17>0.156
\]

Compressionreinforcement is required
\[
\mathrm{A} 1 \mathrm{~s}=[176-0.156 * 30 * 500 * 2622] /\{0.87 * \quad 410 *(262-38)\} \quad \mathrm{d} 1=20+8+10=38 \mathrm{mln}
\]
\[
\mathrm{As}=[154.4 * 106] /(087 * 410 * 0.775 * 262)+270
\]
\[
=2131.77+339=2471 \mathrm{~mm} 2
\]
\(=2131.77+339=2471 \mathrm{~mm} 2\)
\[
\mathrm{z}=0.7750
\]

\section*{SHEAR}
\[
\mathrm{v}=\mathrm{Vlbd}=(139 * 103) /(500 * 562)=1.06 \mathrm{~N} / \mathrm{mro} 2
\]
\[
100 \mathrm{As}=100 * 2588=1.98
\]
bd \(500 * 262\)
By interpolation \(\mathrm{U}_{\mathrm{c}}=0.90\)
\(\mathrm{Vc}+0.4=1.23>1.06\)
\(\mathrm{Asv}=\mathrm{b}(\mathrm{v}-\mathrm{vc})=500(1.06-0.90)=0.367\)
0.87 fyv \(\quad 0.87 * 250\)

Provide R8@300c/c doubled
Provide R8@300c/c doubled
3.15 GB - 8c \(L=5.6 \mathrm{~m} \quad 600 X 300 \mathrm{~mm}\)

RA~


By similar triangle
\(y=(32.5 / 5.6) x=5.8 x\)

\section*{LOADS}

From Gs - 4c, \(15.81 * 3.96 / 2=31.30 \mathrm{kN} / \mathrm{m}\)
From Gs - \(4 \mathrm{a}, 15.81 * 3.15 / 2=24.94 \mathrm{kN} / \mathrm{m}\)
```

From Gs - $1(15.81+2.73) * 6.3 / 2=58.09 \mathrm{kN} / \mathrm{m}$
Self weight $=1.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{qJ}=31.30+1.2=32.5 \mathrm{kN} / \mathrm{m}$
. $\mathrm{q} 2=24.94+1.2=26.14 \mathrm{kN} / \mathrm{m}$
$. \mathrm{q},=58.09+1.2=59.29 \mathrm{kN} / \mathrm{m}$
$5.6 \mathrm{Ra}=12(5.6 * 32.5) * 2 / 3(5.6)+26.14 * 1.8 * 4.7+59.29 * 3.722 / 2$
$\mathrm{Ra}=(339.7+221+410) / 5.6=173 \mathrm{kN}$
$\mathrm{RA}=12(5.6 * 32.5) * 2 / 3(5.6)+26.14 * 1.88 * 4.7+59.29 * 3.722 / 2-173$
$R A=91+221+49.1-173=188 \mathrm{kN}$
Position ofBmlI!M
RA - 59.29x - $5.80 x * 112 x=0$
188-59.29x-2.9x2
$\mathrm{x} 2+20.44 \mathrm{x}-64.8=0$
$=\{-20.44 \pm "[20.442-4 * 1 *(-64.8 i]\} / 2 * 1$
$=\{-20.44 \pm " 418+259.2\} / 2$
$=\{-20.44+26\} / 2=2.79 \mathrm{~m}$
Bmmax $=188 * 2.79-59.29 * 2.792 / 2-5.80 * 2.792 / 2 * 113$ (5.6)
$=524.52-231.42==252 \mathrm{kN} / \mathrm{m}$
$\mathrm{K}=\mathrm{M}=252 * 106 \quad=0.24>0.156$

```

Compression reinforcement required
\[
\mathrm{A} 1 \mathrm{~s}=(252-154.4) 10_{6}=1222 \mathrm{~mm} 2
\]
\[
79901
\]
Provide \(4 Y 20\) (1260mml Top
\(\mathrm{As}=\left\{\left(154.4^{*} 10_{6}\right) /(0.87 * 410 * 224)\right\}+1222\)
\(\mathrm{As}=3154 \mathrm{~mm} 2\)
Provide 4 Y25 + 4Y20 (3220mm2) Bottom
SHEAR
\(\mathrm{V}=188 \mathrm{kN}\)
\(\mathrm{v}=\mathrm{Vrbd}=(188 * 103) /(500 * 562)=1.44 \mathrm{~N} / \mathrm{mm} 2\)
1OOAs::::100*3220 \(=2.46\)
Bd 500 *262
By interpolation UC \(=0.97\)
Vc+ \(0.4=1.37\)
Vc+ \(0.4<\mathrm{U}<0.85 \mathrm{fcu}\)
Asv = b (v-vc) :::500 (1.44-0.97) \(=0.86\)
0.SZr; \(\quad 0.87\) *250
ProvideR8@230c/c doubled
```

3.16 Beam GB - 9

```
\(\mathrm{L}=4.00 \mathrm{~m}\), size \(=400 \times 300 \mathrm{~mm}\)
. .


From Slab Gs \(-5,15.81 * 1.512=11.86 \mathrm{kN} / \mathrm{m}\)
" I Gs - 2, \(15.81 * 6.012=47.43 \mathrm{kN} / \mathrm{m}\)
\[
\begin{aligned}
\text { Selfweight } & =1.20 \mathrm{kN} / \mathrm{m} \\
\mathrm{q} & =60.49 \mathrm{kN} / \mathrm{m}
\end{aligned}
\]

\section*{REACTION S\& MOMENTS}
\[
\begin{aligned}
& \mathrm{RA}=\mathrm{Rs}=\mathrm{ql} / 2=60.49 * 412=121 \mathrm{kN} \\
& \sim \mathrm{mmax}=q l 2 / 8=60.49 * 42 / 8!:: 121 \mathrm{kN} \\
& \mathrm{~K}=\quad \mathrm{M} \quad=\quad 121 * 106 \quad=0.15<0.156 \\
& \mathrm{z}=\mathrm{d}\left[0.5 \text { 中 }^{\prime \prime}(0.25-0.15 / 0.9)\right] \\
& \mathrm{z}=205 \mathrm{~mm} \\
& \mathrm{As}=\mathrm{M} \\
& 0.87 \mathrm{fyz} \\
& 0.87 * 410 * 205
\end{aligned}
\]

\section*{SHEAR}
```

V = 121kN
v = V/bd= (121 *103)/(400*262) = 1.15N/mm2
100As = 100*2098 = 2
bd 400 *262
By interpolation vc = 0.91N/mm2
Asv = b (v-vc) = 400 (1.15-0.91) = 0.44
0.87fyv 0.87*250
Provide R8@300dc doubled
3.17 GB -10
L=3.67, 450x450mm

```

LOADS
From Slab Gb -1, \(\quad 15.81 * 6.3 / 2=49.80 \mathrm{kN} / \mathrm{m}\)
Self weight \(=0.45 * 0.45 * 2.65 * 1.4=1.60 \mathrm{kN} / \mathrm{m}\)
\[
0.74+2.41+1.11
\]
\[
9 " \text { wall- }(3.3+0.53) * 2.65 * 1.4=15.28 \mathrm{kN} / \mathrm{m}
\]
\[
\mathrm{q}=66.68 \mathrm{kN} / \mathrm{m}
\]

Bmmax \(=\mathrm{qt} 2 / 8=66.68 * 3.672 / 8=112 \mathrm{kN} / \mathrm{m}\)
\(\mathrm{K}=\mathrm{M}=112 * 106 \quad=0.05\) ..... \(d=450-20-8-10=412)\)
tubd2 \(30 * 450 * 4122\)
\(\mathrm{z}=\mathrm{d}\left[0.5+{ }^{\prime}(0.25-0.05 / 0.9)\right]=388 \mathrm{~mm}\)
\(\mathrm{As}=\mathrm{M} \quad=\) \(=809 \mathrm{~mm} 2\)
0.87 fy Z \(0.87 * 410 * 388\)
Provide 3 Y20 (943mm2) Bottom
Provide \(3 Y 20\) (943mm2) Bottom
REACTION
\(\mathrm{V}=66.68 * 3.672 / 2=122 \mathrm{kN}\)
\(100 \mathrm{As}=100 * 943=0.51\)
Bd \(450 * 412\)
\(\mathrm{V}=\mathrm{Vlbd}=(122 * 103) /(450 * 412)=0.66 \mathrm{~N} / \mathrm{mm} 2\)
By interpolation \(\mathrm{UC}=0.51 \mathrm{~N} / \mathrm{mm} 2\)
Asv \(=\mathrm{b}(\mathrm{v}-\mathrm{vc})=400(0.66-0.51)=0.31\)
S, 0.87fyv ..... \(0.87 * 250\)
ProvideR8@300cJclinks

\section*{LOAD}

From Slab Gb-4 \& Gb - 4 b
\[
=15.81(3.8+3.0) * 1 / 2=53.75 \mathrm{kN} / \mathrm{m}
\]

Self weight \(=0.25 * 0.3 * 24^{*} 1.4=0.59 \mathrm{kN} / \mathrm{m}\)
\[
0.74+2.41+1.11 \quad 54.34 \mathrm{kN} / \mathrm{m}
\]
\[
\begin{aligned}
& \mathrm{Bm} \max =w I 2 / 8=54.34 * 3.032 / 8=62.4 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~K}=\mathrm{M}=62.4 * 106 \quad=0.12<0.156 \\
& \mathrm{z}=\mathrm{d}\left[0.5+{ }^{\prime} ;(0.25-0.12 / 0.9)\right]=262(0.65)=222 \mathrm{~mm} \\
& \mathrm{As}=\mathrm{M}-2 \\
& \begin{array}{c}
\text { ——— } \\
0.87 \mathrm{fy} \mathrm{z}
\end{array} \\
& 0.82 .4 * 106
\end{aligned}
\]

Provide 4Y16 (804mml) Bottom

\section*{SHEAR}
\[
\begin{aligned}
& \mathrm{V}=0.5 * 54.39 * 3.03=82.4 \mathrm{kN} \\
& \mathrm{v}=\mathrm{V} / \mathrm{bd}=(82.4 * 103) /(250 * 222)=1.48 \mathrm{~N} / \mathrm{mro} 2 \\
& 100 \mathrm{As}=100 * 804=1.45 \\
& \text { bd } \quad 250 * 222
\end{aligned}
\]

By interpolation \(v\); \(=0.7 \mathrm{SN} / \mathrm{mm} 2\)
\[
\begin{gathered}
\text { Asv }=\mathrm{b}(\mathrm{v}-\mathrm{vc})=250(1.484-0.75)=0.837 \\
0.87 \mathrm{fyv} \\
0.87 * 250
\end{gathered}
\]

Provide R8@120cJc
```

From slab Gb-2, $\quad 15.81 * 6 / 2=47.43 k N / m$
Self weight $=0.225 * 0.3 * 24 * 1.5=0.53 \mathrm{kN} / \mathrm{m}$
$0.74+2.4+1.11$
Weight of9" wall $=(3.3+0.53) * 2.85 * 1.4=28.07 \mathrm{kNm}$

$$
\mathrm{ql}=47.43+0 . \mathrm{S} 3+28.07=76.03 \mathrm{kN} / \mathrm{m}
$$

$$
. \mathrm{Q} 2=\mathrm{IS} .81 * 1.5 / 2=11.86=12 \mathrm{kN} / \mathrm{m}
$$

$$
. . \mathrm{q} 3=15.81 * 1.5 / 2=11.86 \mathrm{k} 12 \mathrm{kN} / \mathrm{m}
$$

$$
\mathrm{F}=9 \mathrm{\prime} \mathrm{\prime} \text { wall, } 15.68 * 1.5 / 2 * 0.9=10.76 \mathrm{kN}
$$

```

\section*{REACTIONS}
```

3.85RA= 7.6 *3.85*1.53+ 10.76*1.27 + 12*2.58*2.56 +!h(1.27)*12*2/3(1.27)

```
3.85RA= 7.6 *3.85*1.53+ 10.76*1.27 + 12*2.58*2.56 +!h(1.27)*12*2/3(1.27)
RA= 142.4kN
RA= 142.4kN
RB=7.6 *3.85+ 10.76 + 12* 2.S8+ '12(1.27)* 12-142.4
RB=7.6 *3.85+ 10.76 + 12* 2.S8+ '12(1.27)* 12-142.4
RB= 199.54=200kN
```

RB= 199.54=200kN

```

\section*{Position ofBmmax}
\[
\begin{aligned}
& \text { RA- q1X- q2X=0 } \\
& 142.4(76+12) \mathrm{x}=0 \\
& \mathrm{x}=1.65 \mathrm{~m} \\
& B_{m} \text { max }=\mathrm{RAx}-\mathrm{Q} 1 \mathrm{X} 2 / 2 \mathrm{Q} 2 \mathrm{x} 2 / 2 \\
& =142.4 \mathrm{x} 86 * 1.62 / 2 \\
& =142.4(1.65)-86(1.28) \\
& =235-110 \\
& \text { Bmmax }=125 \mathrm{kNm} \\
& \sim \text { ubd2 } 30 * 225 * 2622 \\
& \text { Compression of reinforcement } \\
& \mathrm{A} 1 \mathrm{~s}=(125-73.9) 106=632 \mathrm{~mm} 2 \\
& 80614.2 \\
& \text { Provide } 4 Y 16 \text { Top (804mm2) } \\
& \text { As }=0.156 \text { fcubd } 2+\text { A1s } \\
& \text { 0.87fyz } \\
& =73.9 * 106+671==1691 \mathrm{~mm} 2 \\
& 0.87 * 410 * 0.775 * 262 \\
& \text { Provide } 3 Y 25+\text { lY2O (1764mm1) }
\end{aligned}
\]

\section*{SHEAR}
```

V=200kN
v}=\textrm{V}/\textrm{bd}=(200*103)/(225*226)=3.9N/mm
100As= 100*1764=3.51
Bd 225 *226
By interpolation UC = 1.04N/mm2
Asv = b'(v-vc) = 225 (3.9-1.04)=1.87
0.87fyv }0.87*41

```

Ribbed slabs Is-1, Is-2 same on Gs-1, Gs-2
\begin{tabular}{llcl} 
Ribbed slabs & Is-3 & \(\mathrm{II}=3.8 \mathrm{~m}\), & \(=\) same as Gs-4 \\
& Is-3b & \(\mathrm{h}=3.0 \mathrm{~m}\), & same as Gs-4b \\
& Is-Jc & \(13=3.0 \mathrm{~m}\), & same as Gs-4c \\
& Is-Sa & \(14=3.15 \mathrm{~m}\), & same an Gs-4a
\end{tabular}

Ribbed slab Is-4 same as G-s5

Edge Rib \(1 \mathrm{~s}-2 \mathrm{~d}(\mathrm{e}, \mathrm{f})\) and slab I-s2 \(\mathrm{q} 2=15.5 \mathrm{kN} / \mathrm{M}\)

Loading pattern
As Ib-2d
Pillars of block wall \(\mathrm{F} 2=(3.3+0.53) \times 2.85 \times 1.4 \times \mathrm{OO} .323=3.51 \mathrm{kN}\)
\(\mathrm{FI}=100 \mathrm{~mm}\) partition perp. to span
\[
(1.5+0.53) \times[(0.45-023)+0.23 / 2) \times 1.4 \times 2.85=2.71 \mathrm{kN}
\]

For slab Gs-ls-1 \({ }^{\prime}\)
Dead - From Ground floor 7.81kN/m
Live
Ground floor (Offices) 4.00 "
\(11.8 \mathrm{kN} / \mathrm{m}\)
\[
\begin{aligned}
\text { PI - load from slab Gs }-1= & 11.6 \times(0.45-0.023)=2.60 \mathrm{kN} / \mathrm{m} \\
\text { Self-weight of rib }= & 0.23 \times 0.3 \times 24 \times 1.4=0.55 \mathrm{kN} / \mathrm{m} \\
& 2.4+0.74+1.11
\end{aligned}
\]
\[
\begin{aligned}
\text { Weight of LOrn 9" wall under window }= & 3.51 \quad=5.35 \mathrm{kN} / \mathrm{m} \\
& 0.23 \times 2.85 \\
& \mathrm{q}=8.50 \mathrm{kN} / \mathrm{M}
\end{aligned}
\]
\[
(3.3+0.53) \times 2.85 \times 1.4 \quad 18.3 \mathrm{KN} / \mathrm{M}
\]

\section*{REACTIONS ।}
\[
\begin{aligned}
6 \mathrm{RA}= & 8.5 \times 62 / 2+3.51 \times 4.762+15.3 \times 3.45 \times 2.63+2.71 \times 3.45+3.51 \times 2.13 \\
& 153+16.71+138.82+6.64+7.51, \mathrm{RA}=53.5 \mathrm{KN} \\
\mathrm{RD}= & 8.5 \times 6+3.51+2.71+3.51+15 \times 2.63-53.8=97.17 \mathrm{KN}
\end{aligned}
\]
\[
\text { Position of BMmax (where } \mathrm{SF}=0
\]
\[
53.8-8.5 x-3.51-15.3 x+19=0
\]
\[
23.8 \mathrm{x}=69.29, \quad: \mathrm{x}=2.91 \mathrm{~m}
\]
```

 - । 15.3 ex- 1.24il2
 = 56.8 x 2.91- 3.51(1.67)- 8.51\times4.23-15.3 (1.67f12
157-5.86-36-21.34
= 94KNM
K _M_M = 94 x 106 = 1 (at section B-C).
fcubd2 30 x 450 x 2622
0.10<0.156
Z
As । 94xl061 0.87x410xO.87x262

```

1156 mm 2

Provide 4Y20 (1260mm2) bottom
AT SECTION AB AND CD
Point B, Bm \(=\) RA \(\times 1.24^{2}-8.51 .24^{2}\)
\[
=53.8 \times 1.24-8.5 \times 1.24212=\quad 60 \mathrm{kN} / \mathrm{m}
\]

Point \(C, B m=R A \times 2.14-8.5^{75} \times D^{2} 12\)
\(82 \mathrm{kNm}>60 \mathrm{kNm}\), use \(82 \mathrm{kN} / \mathrm{m}\) for 230 mm section
\[
\begin{aligned}
& \mathrm{b}=230, \mathrm{~d}=262 \\
& \mathrm{~K}=\quad=82 \times 10_{6} \\
& 0.17>0.156 \\
& 30 \times 230 \times 2622 \\
& \text { Compression reinforcement } \\
& \text { A's }=(82-73.9) \times 106=98 \mathrm{~mm} 2 \\
& 0.87 \mathrm{x} 410 \times(262-34) \\
& \text { Provide 2Y12 Top (113mm2) } \\
& \mathrm{A}^{\prime} \quad=73.9 \mathrm{x} \quad 106+98 \\
& 72428 \text {. } \\
& =11118 \mathrm{~mm} 2 \\
& \text { Provide 4Y20 (1260mm2) Bottom } \\
& \text { 100AS } \quad \text { Cl0 x } 1260=2.11 \\
& \mathrm{Bd}=230 \times 262 \\
& \mathrm{Vc}=0.99 \mathrm{~N} / \mathrm{mm} 2 \\
& \text { Nominal links is required } \\
& \mathrm{ASv} \quad=0 A b \quad=004 \times 230=00423 \\
& \text { Sv } \\
& 0.87 \mathrm{fyv} \\
& 0.87 \times 250 \\
& S v \max =0.75 \mathrm{~d}=197 \mathrm{~mm}
\end{aligned}
\]

\section*{Hence Provide R8@190\%}

Anchorage into slab against torsion
\[
\mathrm{e}=225-] 15=110 \mathrm{~mm}
\]
```

T=(15.3+0.225XO.3X24X104) X 0.11 = 1.936kNMlm X 0.11
AT=M = 1.93 x 106 = 34mm2/m
0.87fyvd 0.87x2.50x262

```

Provide R8 @ 300 ( \(167 \mathrm{~mm} 2 / \mathrm{m}\) )
Hence R8 @ 15 ' \(0 \%\) controls both the nominal links reinforcement and torsion

LOADS
\[
\begin{aligned}
& \text { From slab s-2b:11.81×6/2=35.43KN/M=ql selfwt } \\
& \text { From slab s-3c:11.81×3/2+1.19=18.91kN/M = q2 } \\
& \text { REACTIONS } \\
& \mathrm{RI}=18.91 \times 4.242+\mathrm{Y} 215.43 \times 4.24 \times 2 / 3(4.24) / 4.24 \\
& =170+212 / 9.24 \\
& \mathrm{R} 2=\mathrm{Y} 235.43 \times 4.24+18.91 \times 4.24-90 \\
& \mathrm{Bm}_{\text {max }}=\text { where } \mathrm{SF}=0 \\
& 65-\mathrm{Y} 25.43 / 4.24 \mathrm{x} \text { X x'- 18.91x }= \\
& \text { 65-4.18x2 - 18.91x }=0 \\
& \mathrm{X} 2+4.52 \mathrm{x}-15.6 \quad 0 \\
& \mathrm{X}=-4.52 \sim, j L 5 i \sim-4 \mathrm{x} 1 \mathrm{x}(-15.6) \\
& 2 \mathrm{x} 1 \\
& =-4.52+9-10 / 2 \quad 2.29 \mathrm{~m} \\
& B_{m} \text { max }=65 \times 2.29-4.18 \times 2.293 \times 1 / 3-18.91 \times 2.232 / 2
\end{aligned}
\]


\section*{LOADING}
\[
\text { From slab } 1 \mathrm{~s}-2: 11.81 \times 6 / 2=35.43 \mathrm{kN} / M
\]
\[
\text { From slab } 1 \mathrm{~s}-2: 11.81 \times 1.5 / 2
\]
\[
\text { Selfwt: } \quad 0.33 \times 0.3 \times 24 \times 1.4 / 2.4+1.11+0.74
\]
\[
\mathrm{q}=45.0 \mathrm{kN} / \mathrm{M}
\]
\[
\mathrm{m}=q l 2 / 8=45 \times 4218 \quad=\quad 90 \mathrm{kN} / M
\]
\[
\mathrm{k}=90 \times 106 \times 106 / 300 \times 300 \times 2622 \quad 0.014<0.156
\]
\[
\mathrm{z}=0.95 \mathrm{~d}
\]
\[
\text { .. } \mathrm{AS}=90 \times 106 / 0.87 \times 410 \times 0.95 \times 262 \quad=\quad 1014 \mathrm{~mm}_{2}
\]

Provide 4Y20 ( 1260 mm 2 )

\section*{SHEAR}
\[
\begin{array}{lll}
\mathrm{R}_{\mathbf{I}}=\mathrm{V}=\mathrm{q} i l 2=45 \times 4 / 2 \\
\ldots=90 \times 103 / 300 \times 262
\end{array}=\quad=\quad 90 \mathrm{kN}
\]
\[
100 A S l b d=100 \times 12601300 \times 262
\]

By interpolated
\(\mathrm{Vc}=0.85 \mathrm{~N} / \mathrm{mm} 2 \boldsymbol{V},+0.4=1.25<1.60\)
Mosley Shear rtf in required
table \(6.5 \quad \mathrm{AsvlSv}=\mathrm{b}\left(\mathrm{V}-V_{c}\right) / 0.87 f y \quad-00(1.15-0.85) / 0.87 \times 250=\quad 90 / 218\)
Provide \(Y: 225 c / c\) links

Provide 5Y16(10 Omrrr') Bottom Provide 3Y12
\[
\text { IB-9 } \quad \mathrm{L}=3.5 \mathrm{~m} 230 \times 300 \mathrm{~mm}
\]
4.9


\section*{LOADING}
\begin{tabular}{lcc} 
From slab Is - 4: \(11.81 \times 1.5 / 2\) & \(8.86 \mathrm{kN} / \mathrm{M}\) \\
From 230 mm wall : & & \(15.38 \mathrm{kN} / \mathrm{M}\) \\
Selfwt & \(0.7110 .3 \times 0.23\) & 0.54 \\
& q & \(24.78 \mathrm{kN} / \mathrm{M}\) \\
\(\mathrm{m}=0.3125 \times 3.5 \sim \times 24.78\) &, \(38 \mathrm{kN} / \mathrm{M}\) \\
\(\mathrm{k}=38 / 30 \times 230 \times 2622 \times 106\) & 0.08 \\
\(\mathrm{Z}=\mathrm{d}(0.5 \sim .25-0.08 / 0.9)\) & 0.9 d \\
As \(=38 \times 10610.87 \times 410 \times 0.9 \times 262\) & 451 mm 2
\end{tabular}

Provide 3Y16 (603mm2)

SHEAR
\[
\begin{array}{ll}
\mathrm{V}=q I / 2=24.378 \times 3.5 / 2 & 43 \mathrm{kN} \\
\mathrm{v}=43 \times 103 / 230 \times 262 & 0.171 \mathrm{~N} / \mathrm{mm}^{2} \\
I O O A s / b d=100 \times 603 / 230 \times 262 & = \\
1.0
\end{array}
\]

From table
\[
\mathrm{vc}=0.72 \mathrm{~N} / \mathrm{mm}_{2}
\]

Provide nominal rtf
\[
\text { Asv ISv=- OAb/0.87fyv }=0.4 \times 23010.87 \times 250=D 2 / 218=0.4223
\]

Provide R: @ 200c/c \((S v=0.75 d=197 m m)\)
\[
3.670 \quad \mathrm{t} .40^{\prime} \text { । }
\]
Provide some reinforcement as in bean IB ..... 11
Span6Y20
Support 4Y20
Link Y:@150c/c
4.15 1B-15 ..... 230 x 450mm
\(\mathrm{L}=4.24+0.57=4.813\)
\(\mathrm{F}=21 \mathrm{KN} / \mathrm{M}\)
\(2=18.60 K N / M\)700
LOADING
Loadsfrom slab IB - 3B : 11.81 x 3.15/2 ..... \(=18.60\)
From slab wall ..... \(=15.28\)
Selfweight of beam : \(0.55+24+1.4 \times .23 \times .15=1.71 \mathrm{KN} / \mathrm{M}\)\(\mathrm{ql}=35.59 \mathrm{KN} / \mathrm{M}\)
from slab s- 3 a , \(11.81 \times 3.15 / 2=18 .(\mathrm{iOKN} / \mathrm{M}\) ..... q2
\(\mathrm{F}=\) reaction from IB - Ila ..... \(=21.0 \mathrm{KN}\)
AS \(=51 \times 10_{6}\) \(=682 \mathrm{~mm}_{2}\) Bottom
0.87 x \(410 \times 0.8 \mathrm{~d}\)
Provide 2y16 + ly20 (716mm2)
From hanger bars provide 20\% of both bars \(0.2 \times 716=143\) ..... Top
Provide 2Y12
SHEAR
\(V=40.75 \times 3.15=64.2 \mathrm{kn}\)
2
\(\mathrm{V}=64.2 \times 103=1.07 \mathrm{~N} / \mathrm{mm} 2\)
\(230 \times 262\)
100AS ..... \(=100 \times .716\) ..... \(=1.19\)
Bd ..... 230 x 262
By interpolation ..... \(v, \quad 0.76\)
Reymyds \(v ;+0.4=1.16\)
H/brok. ..... \((\mathrm{Vc}+0.4)<\mathrm{V}<0.87 \mathrm{f} \sim\)
table \(3.33 \quad 0.5 \mathrm{Vc}<\mathrm{V} \sim . . \mathrm{vc}+0.4 \quad\).. become of the don may in

\[
\text { ASV }=230 \times 0.4=0.4230
\]
SV \(0.87 \times 250\)
R: @ 200\% in R: @ 200\%
4.17 (Balustrade), \(150 \times 1700 \mathrm{~mm}\)
\(<=13500 \mathrm{~mm}\) ..... \(q=28.18\)900 RA I
500 \(d=1700-20-2-20 . .10\)
\[
=1700-58=1642 \mathrm{~mm}
\]
LOADS
From slab: s- 3a: \(11.81 \times 3.15 / 2=18.60 \mathrm{KN} / \mathrm{M}\)
Self wt : \(7 \times 10.15 \times 24 \times 1.4+0.03 \times 22 \times 1.4=9.58 \mathrm{KN} / \mathrm{M}\).,
\[
q \quad=28.18 \mathrm{KN} / \mathrm{M}
\]
\(=642 \mathrm{KN} / \mathrm{M}\)
\(k=6842 \times 106 / 30 \times 150 \times 16422=0.05<0.156\)
\(z=(0.5+-J .25-0.05 / 0.9) d\)
    = 0.94d
As \(=642 \times 106 / 0.87 \times 410 \times 0.94 \times 1642=1169\)
Provide \(2 \mathrm{Y} 25+2 \mathrm{Y} 12\) (1208mm2)
SHEAR
\(V=28.18 \times 13.5 / 2=190.2 \mathrm{KN}=\mathrm{R} \quad 2 \mathrm{Y} 25\)
\(Y=190.2 \times 103 / 150 \times 1642=0.77 \mathrm{~N} / \mathrm{mm}_{2}\)
100AS/bd \(=100 \times 1208 / 150 \times 1642=0.49\)
By interpolation \(\quad \mathrm{Yc}=0.526 \mathrm{~N} / \mathrm{mm} 2\)
\(0.5 \mathrm{Vc}<\mathrm{Y} \sim . \mathrm{vc}+0.4\)
ASV \(=0.4 \times 150,0.87 \times 250=0.276\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Provide links at spacing 0.75d \(=0.75 \times 16.421\)} \\
\hline \multicolumn{3}{|l|}{Provide R: @ 300 c/clinks} \\
\hline \multicolumn{3}{|l|}{1b-19 1= 2.00M, \(230 \times 300 \mathrm{MM}\)} \\
\hline ..._-_-_":;>"..........- q \(=54.33\) & & \\
\hline \multicolumn{3}{|l|}{\[
\text { RA } \text {..-----":;>"""::: }
\]} \\
\hline \multicolumn{3}{|l|}{2.00} \\
\hline \multicolumn{3}{|l|}{From slab 1s-2:11.81 \(\times 6 / 2+11.81 \times 0.052 / 2=38.50 \mathrm{KN} / \mathrm{M}\)} \\
\hline \multicolumn{3}{|l|}{Self wt of slab \(=0.55\)} \\
\hline \multicolumn{3}{|l|}{Wt of 9.of blockwall \(\quad=15.28\)} \\
\hline ql & \(=54.33 \mathrm{KN} / \mathrm{M}\) & \\
\hline \multicolumn{3}{|l|}{\[
\mathrm{m}=54.33 \times 22 / 8 \quad=27.2 \mathrm{KN} / \mathrm{M}
\]} \\
\hline \multicolumn{3}{|l|}{\(\mathrm{Z}=0.95 \mathrm{~d}\)} \\
\hline AS \(=27.2 \times 106 / 0.87 \times 0.95 \times 262 \times 410\) & \(=306 \mathrm{~mm} 2\) & \\
\hline \multicolumn{3}{|l|}{Provide 3Y12 botton (339mm2)} \\
\hline \multicolumn{3}{|l|}{Top - pm 20\% (332) = 68mm2} \\
\hline \multicolumn{3}{|l|}{SHEAR} \\
\hline \(V=54.33 \times 2 / 2\) & \(=54.33 \mathrm{KN} / \mathrm{M}\) & \\
\hline \(V=54.33 \times 103 / 230 \times 262\) & \(=0.90 \mathrm{~N} / \mathrm{mm} 2\) & \\
\hline 100AS/bd \(=100 \times 339 / 230 \times 2 \mathrm{E}\) ? & \(=0.56\) & \\
\hline \multicolumn{3}{|l|}{By interpolation \(V \mathrm{Vc}=0.59\)} \\
\hline \multicolumn{3}{|l|}{\(0.5 \mathrm{Vc}<\mathrm{V}<\mathrm{Vc}+0.4\)} \\
\hline - \(\mathrm{ASV} / \mathrm{SV}=230 \times 0.4 / 0.87 \times 250\) & \(=0.4230 \mathrm{~mm} 2\) & \\
\hline \multicolumn{3}{|l|}{Provide R8@230c/c} \\
\hline \multicolumn{3}{|l|}{REACTION} \\
\hline \multicolumn{3}{|l|}{\(4.7 R A=35.59 \times 4.72 / 2+18.6 \times 1 \times(3.7+0.5)+21 \times 3.7\) Provide} \\
\hline \multicolumn{2}{|l|}{\(=393.1+78.12+77.7\)} & 2 YIO \\
\hline . . \(\mathrm{RA}=549 / 4.7\) & \(=117 \mathrm{KN}\) & \\
\hline \multicolumn{3}{|l|}{\(\mathrm{RB}=18.6 \times 1+21+35.59 \times 4.7 \times 4.7-117=90 \mathrm{KN}\)} \\
\hline \multicolumn{3}{|l|}{Position of Bmmax} \\
\hline \multicolumn{3}{|l|}{RB- 35.9x} \\
\hline \multicolumn{3}{|l|}{-. \(\mathrm{x} 90 / 35.59=2.53 \mathrm{~m}\) from \(B\)} \\
\hline \multicolumn{3}{|l|}{Bmmax \(90 \times 2.53-35.59 \times 2.53{ }^{2 / 2}\)} \\
\hline \multicolumn{3}{|l|}{\(227.6-114=114 \mathrm{KN} / \mathrm{M}\)} \\
\hline \multicolumn{3}{|l|}{\(K=4 \times 106 / 30 \times 230 \times 4122=0.10 \quad d=450-20-8-10=\)} \\
\hline \multicolumn{3}{|l|}{412mm2} \\
\hline \(\mathrm{Z}=\mathrm{d}(0.5+. . £ 125-0.1 / 0 . \mathrm{D})\) & \(=0.88 \mathrm{~d}\) & \\
\hline
\end{tabular}
```

 AS = 114\times106/0.87\times410\times0.88\times412 = 885mm2
 Provide 3Y20 (94~mm)
 Hanger bars- provide 20%=0.2 x 943=187
 Provide 2Y12(226m2)
 SHEAR
 V 117KN," = 117 }\times103/230\times412=1.23N/mm
 100/bd = 100 x 943/230 x 412 = 11.00
 From table, "c = 0.67N/mm
 Vc+ 0.4 = 1.07 < 1.23
 ASV/SV=230(1.23-0.67)/0.87 x 250 =0.592
 4.16 Provide Y8 @ 250c/c
Beam lB -'16 L = 3.15m, 230 x 300m
RAt 3.15
| | |

```

\section*{LOADING}
```

From slab ls - $3: 11.81 \times 3.8 / 2 \quad=22.44 \mathrm{KN} / \mathrm{M}$
From slab Is - 3c: $11.81 \times 3.0 / 2=17.7_{2}$ 40.20KNLM
Self weight
$=0.55$
$\mathrm{m}=40.75 \times 3.152 / 8$
$=40.75 \mathrm{KNLM}$
Bottom
= 51 KNM
$\mathrm{k}=51 \times 106 / 30 \times 230 \times 2622$
$=0.11<0.156$
$z=(0.5+\sim 25-0.11 / 0.9)$
$=0.86 \mathrm{~d}$

```
7.0. 3RD FLOOR SLABS AND BEAMS

Must of slabs are repeated from 1st floor ~dditional Slabs
\(7.13 \mathrm{~s}-2\) : additionally in the areas M - L115-16 \& I - II 129-30 (reinforcem stair case) - L \(=6.000 \mathrm{~m}\) as for Is - 2)
7.2 \(3 \mathrm{~s}-2 \mathrm{~g}\) - is as above, but with variable length from 6.0 m to 3.50 m
7.3 3s -s3c -in area \(A-B / 5-6 \& 9-10\)
7.4 \(3 \mathrm{~s}-3 \mathrm{~d}\) - is as above with span around \(1.5 \mathrm{~m} . \mathrm{K}-J / 5-6 \& 9\) to 10 (re

2YIO)
3RD FLOOR BEAMS

Mostly beams are repeated from 1 st floor.
8.1 beam 3B-IlbL=LOOm, \(150 \times 300 \mathrm{~mm}\)

r
1.000

Loads
From slab \(3 \mathrm{~s}-3 \mathrm{~d}: 11.81 \times 1.5 / 2 \quad=8.86 \mathrm{KN} / \mathrm{M}\)
Selfwt. of beam: \(0.15 \times 0.3 \times 24 \times 1.4 \quad=1.51 \quad "\)
RIC. wall- \((0.15 \times 24+0.03 \times 22) \quad \times 2.8 \times 1.4 \quad=16.7\)
\(25.92 \mathrm{KN} 1 \mathrm{M} \quad \mathrm{q}=26 \mathrm{KN} / \mathrm{M}\)
\(\mathrm{M}=26 \times 1218=3.25\) KNIM
\(\mathrm{V}=26 \times 1 / 2=13 \mathrm{KN}\)
\(\mathrm{As}=3.25 \times 106 / 0.87 \times 410 \times 0.95 \times 262\)

Min rft by code \(=0.13 \% \mathrm{bh}=\sim .13 \mathrm{x} \quad 150 \times 3001100=59 \mathrm{~mm} 2\)
Provide 2YI0 (157 \(\mathrm{mm}_{\mathrm{I}} \mathrm{m}^{\text {( }}\). bottom
2 Y 10 bottom

Shear:
\[
\mathrm{V}=13 \mathrm{KN} \text { proved R } 8 \text { @ 250c/c } \mathrm{R} 8 @ 250 \text { c/c }
\]
8.2 beam 3B-11 C
\(\mathrm{L}=1.5,1150 \times 300\)
\(\sim \mathrm{F}=13 \mathrm{KN} \quad \mathrm{R} ' \sim \mathrm{O} .13 \quad K N / M\)
\(1.5-0\)
Loads
From slab 35-3d: \(\quad 11.8 \times 0.52 / 2 \quad 3.07\)
RIc. + selfwt.: 17.06
\(\mathrm{F}=\) load from beam \(3 \mathrm{~b}-11 \mathrm{~b} \quad 13 \mathrm{KN}\)
\(\mathrm{M}=. \quad\). \(\quad(13 \times 1 . \sim \sim 0.13 \times 1.52 / 2) \quad=-42 \mathrm{KN} / \mathrm{M}\)
\(\mathrm{K}=\quad 42 \times 106 / 30 \times 150 \times 262{ }_{2}=0.133<0.156\)
\(\mathrm{Z} \quad=\quad(0.5+,(\mathrm{J} .25-0.136 / 0.9) 262-212.2\)

\section*{SHEAR}
\(V=\quad 13+20.13 x \quad 1.5 \quad=43 \mathrm{KN}\).
\(V=\quad 43 \times 10_{3} / 150 \times 262=1.09 \mathrm{~N} / \mathrm{mm}_{2}\)
\[
100 \mathrm{As} / \mathrm{bd}=\quad 100 \times 628 / 150 \times 262=1.60
\]

By interpolation \(\mathrm{vc}_{\mathrm{c}}=0.85 \mathrm{~N} / \mathrm{mm}_{2}\)
\(0.5 \mathrm{vc}<\mathrm{v}>(0.4+\mathrm{vc})\)
\(:-\mathrm{Asv} / \mathrm{sv}=\mathrm{O} .4 \mathrm{~b} / \mathrm{O} .87 \mathrm{fy},=\) OAx 150/0.87x250 \(=0.276\)

Provide R 8 @ 300 C/c
R 8 @ 300 C/c

From the 3b-3c-varies - \(11.81 \times\) Yz \(3.15=\) Selfwt. of beam - \(0.25 x 0.3 \times 24 x l A / 2 A+1.11+0.74\) RIC wall - as in \(3 b-11\)
\[
\mathrm{RA}=13 \times(3.357-1.5)+Y z 18.6 \times 3.357 \mathrm{x} 1133.357+
\]
\[
\text { 17.06X3.3572/2 } \quad ?>57 \quad=46.23 \mathrm{KN}
\]
\[
R B=13+Y_{z} 3.357 \times 18.6+17.06 \times .057-46.23
\]
\[
=55.26
\]
... ofBmm
RB-17.06u-17.06u-18.6/3.357 x Yzu \(---+46.23-17.06 u-2.77 \mathrm{u} 2\)
\[
\mathrm{U}_{2}+6069=0
\]

\(10.5 \mathrm{Vc}<\mathrm{Vc}<\mathrm{Vc}\) to .4
\(:-\mathrm{Abv}=0.4 \times 2501 \quad=0.460\)
Sv O.8'1x250
Proved R8 @ 220 C/c
B cam 3B-13 L= 2.4 . \(230 \times 300\)
\(=35.84 \mathrm{KN} / \mathrm{m}\)

Loads


Position of beam
\(97.4-35.84 x=0\), :- \(\quad\) x:h \(2.22 m\)
'BM \({ }_{\max }=79.4 \times 2.22-46.23 x(2.22-0.7)-35.84 \times 2.222\)
- 18.60/1.7x (2.27-0.7) x 1I2(2.22-0.7)x113(2.22-0.7) \(=10.84 \mathrm{KNM}\)

Provide same reinfmt. as \(1 \mathrm{~B}-13\) ( 2 Y 16 bottom), links \(=\mathrm{R} 8\) at \(230 \mathrm{C} / \mathrm{c}\).
Beam 3b-12 \& 3b-14 L = 6.88M, 450m
\(\mathrm{F}=88.66 \mathrm{~m}\)
\[
\begin{aligned}
& \text { ~ ....----40.67(m) n = } 92 \quad 60 \mathrm{kN}=\mathrm{q} 2
\end{aligned}
\]
\(2.00 \mathrm{~m} \times 4.88 \mathrm{n} 11\)
4.00

Load
From slab 3b-1: \(11.81 \quad 6.3 / 2 \quad=37.20 \mathrm{KN} / \mathrm{m}\)
230 mm wall
100 wall tr to slab: 4.14/6:3 \(=0.66\)
Selfwt of beam \(452 \times 24 \times 1.4=6.80 \quad 59.94 \mathrm{KM} / m\)
```

F = re of Beam 3b-11 55.26 KN = 55.26KN
RIC wall as a callion: 16.7(1+1) : 33.40
8\cdot-;:-8.-::-66=KN~-
Reaction R. = 609.98+ 1420/6.88
From slab 35- C : 11.81 x 3.15/2 = 18.59
Self wt of beam . = 6.90
block wall }=40.67\textrm{KN}/\textrm{m}\mathrm{ q2
reaction
4.88Rc = 60x4.88=40.67 x 22/2-88.6x2
714.43-81.34-177.2
:: R2= 93.42 KN
Rl = 88.67+ 40.67\times2+60x488- 93
=370KN
Provide ofBM Mix
R2x 1.56-60x1.562
= 93.42 x 1.56-60x 1.52=73 KN m
$\mathrm{K}=73 \times 106$
30x 450x 4122

$\mathrm{Ab}=73 \times 10 \mathrm{~b}$	
0.87 x 410 xO .95 x 412	544

```

Provide
3Y16(bottom)
```

Provide 4 y16 Bottom (603mm2)
Support Mt = mount at A
$=88-66 \times 2+40-22 / 2=259 \mathrm{KN}$
$\mathrm{K}=259 \mathrm{x} 106=$
$30 \times 450 \times 9122 \quad 0.11<0.156$
$\begin{aligned} 7 & =\text { 【. }^{5+} \text { v-25-0.11 } \\ & =.0 .85 \mathrm{~d}\end{aligned}$
As=259x 106
0.87x410xO.83x412 Provide
$=2067 \mathrm{~mm} 2 \quad 3 \mathrm{Y} 15+2 \mathrm{Y} 20^{\prime}=\quad 3 \mathrm{Y} 25+2 \mathrm{Y} 20$
Provide (2098)tw

Shear

```
V=370v= 370x103
            V = 350x412
                = 2-OON/mm2
100 As = 100x 603 = 033
    bd 450x 412
:- Vc}=0.45N/mm
(O.4+Vc)<v}< 0.~/~4/Nrmm
0.87fyv 087x410
= 1.955
Y8@120 Yc doubled
```

Asv $=\mathrm{b}(\mathrm{V}-\mathrm{Vc})=450(2.0-0.455) \quad$ Stirrups

```
4.77RA = 425.02 = 214.64 128.06+32.92
RA=800.64 = 168 KN
    4.77
RB=I8.6x2+37.36x4.77+46.23+8.58x2.77 - I6B
=37.2+178.21+46-23+23.77-168
= 1I7.41KN
```

Position of BMmax
RB - $37.36 u-8.58 u=0$
II7.45.94u $8 . \mathrm{u}=2.55 \mathrm{~m}$
BMmax $=$ RB'x 2.55 - ($8.58 \times 37.35) \times 2.56$
117.41×2.56 - (45.93) x2.56

- (1 1'7 II 1 l II" 01'lv') '\h= v Iln KN2

```
K= 183x1 =0.156
    30x230x4122
```

Provide minimal compression reinforcement.
Provide 2Y12 as A's (226mm2) top

$$
\begin{gathered}
\mathrm{As}=0.156 \mathrm{fcvubd} 2+\mathrm{A}^{\prime} \mathrm{s} \\
0.87 \mathrm{fy} 7
\end{gathered}
$$

$=0.156 \times 410 \times 6.775 \mathrm{x} \quad 412$,
$=16004 \mathrm{mrn} 2$ provide $(2 \mathrm{Y} 25+2 \mathrm{Y} 20)(1610 \mathrm{mrrr})$

Top bar $=0.2 \% \times 230 \times 450=207 \mathrm{mrrr}$ provide 2 Y 16 top $(402 \mathrm{~mm} 2)$

```
V}=168\textrm{KN
v=168\times103=1.77N/mm2
    230x412
vc}=0.79N/mm
(0.4+Vc)<v<0.8
:- Asv = b (V-VcM3-0(1-77-0.97)
SV D87fYv V.87x410
                        =0.632
```

Provide Y8@150 C/c
8.2 Beam 3B-20

$$
C=230 \times 310
$$

$17.60 \mathrm{KN} / \mathrm{m}$

A

Load
(i) 230 mm beam wall:Selfwt: $0.23 \times 0.3 \times 24 \times 1.4$
....: :.. $1=5.28 \mathrm{KN} / \mathrm{m}$ 2.32 " $Q=17.60 \mathrm{KN} .60 \mathrm{KN} / \mathrm{m}$

RA $=17.6 \times 32 / 2 \quad 17.6 \times 1.521$
$79.2-19.8 / 3=$ u 20 KN
$R B=17.6 \times 4.5-20=59 \mathrm{KN}$
$\operatorname{Max}(=\mathrm{m})=17.6 \times 3218=19.8 \mathrm{KNm}$
Max-m $=17.6 \times 1.52 / 2=19.8 \mathrm{KNm}$
$\mathrm{K}=19.8 \times 106 \quad 10.87 \times 410 \times 0.95 \times 262=223 \mathrm{~mm} 2$
Provide 3Y12 top \& Bottom (336mm2)
Shear
$\mathrm{V}=59, \mathrm{v}=59 \times 103 / 230 \times 262=0.98 \mathrm{~N} / \mathrm{mm}_{2}$

```
100 Ab Ibd= 100\times3391230\times262 = 0.56
Vc _ = 0.60 N/mm2
0.5 Vc = 0.60 N/mm2
0.5VC<V<0~
Asv = 0.4 x 230 = 0.56
SV 0.87x250
An change Wall
For
...... ... ... .amount T = 17.6xO.23
= 18.22KNm
```

$3 B-19 \mathrm{I}=3.000,250 \times 300$
loads
from slab 35-29: $11.81 \times 6 / 2=35.43 \mathrm{KN} / \mathrm{m}$
self of beam: $0.25 \times 0.3 \times 24 \times 1.4=2.52$
.37-. $9 \sim 2-: 1: K=N h^{\prime \prime} 1$

$$
R A=Y 237.92 \times 3-18.96=37.92 \mathrm{KN}
$$

Position of Bm Max

$$
\begin{aligned}
& 18.96=\mathrm{Y} 2 \mathrm{v} 37 \ldots . \text { ?v } 0 \\
& 3 \\
& \mathrm{~V}=1.73 \mathrm{~m}
\end{aligned}
$$

```
BMmax = 18.96x1.73-Y2 v x 37.92 v x 1/3 v
```3
\[
=32.80-1.733 \times 12.46
\]
O-
21.90 KNm v 22 KNm
\(\mathrm{K}=22 \times 106=0.04<0.156=238 \mathrm{~mm} 2\) 087x410x0.95x262
Proved 2Y16 (402rnm2) Bottom
Proved \(20 \% \times 150 \times 360=90\) provide 2 Y 10 top
Shear
\(\mathrm{V}=33.84 \mathrm{KN} . \mathrm{V}=33.84 \times \mathrm{x} 03=1.37 \mathrm{~N} / \mathrm{mm} 2\) \(150 \times 262\)
] \(00 \mathrm{Ab}=100 \times 40_{2}\)
\(\mathrm{B} \sim\) interpolation \(\mathrm{Vc}=0.69 \mathrm{~N} / \mathrm{mm} 2\)
Vc + O.4:Sv:s O~
Asv \(=150(1.37-0.69)=0.469\)
Tv \(0.87 \times 250\)
Proved R8 @ 220 C/c \(i^{\prime}\)
8.15 beam 3B -IIe \(\quad 1=1.575,250 \times 300 \mathrm{~mm} 2\)
\(\mathrm{F}=33.84 \mathrm{KN}\)
\[
\mathrm{q}=21.28 \mathrm{KN} ? \mathrm{~m}
\]

\section*{Loads:}

From slab: \(35-3 \mathrm{~d}=11.81 \times \mathrm{x} .26=3.07 \mathrm{KN} / \mathrm{m}\)
RIC wall + self wt: \(\quad=18.21\) "
\[
\mathrm{q}=21.28 \mathrm{KN} / \mathrm{m}
\]

F = load from beam \(3 \mathrm{~b}-\mathrm{Ild}=33.84\)
Moment at the support (M support) \(=33.84 \times 1.582 / 2\)
\[
=7 \mathrm{v} 75 \mathrm{KNm}
\]
\(\mathrm{K}=75 \times 106=0.146<0.156\) 92 \(2 \mathrm{y} 20+2 \mathrm{Y} 16\)
As \(7=0.80 \mathrm{~d}\)
As \(75 \times 106\) I003mm2 (Top)

Proved 2Y20+2Y16 (1030mm2) top
Bottom \(=20 \%(250 \times 300)=150 \mathrm{~mm} 2\)
Proved \(2 \mathrm{yl} 0(157 \mathrm{~m})\) bottom

Shear
V2 \(33.8+21.28 \times 1.5=66 \mathrm{KN}\)
\(\mathrm{V}=66 \times 103-1.0 \mathrm{KN} / \mathrm{mm}_{2}\) \(250 \times 262\)
\(100 \mathrm{As}=100 \times 1030=1.37\)
Bd 250x300
\(\mathrm{Vc}=0.80 \mathrm{~N} / \mathrm{mm}_{2}\)
\(0.5 \mathrm{Vc}<\mathrm{v}<\mathrm{O} . \sim / \mathrm{cu}\)

Asv \(=0.4 \times 250\)
Sv \(\quad 0.87 \times 250\)
\(=0.460\)

Proved R8@200 C/c
_-- \(=8=.1: . .:: .6\) beam 3B-11a \((=3.35 ? m)\)
\(18.60 \mathrm{KN} \sim \quad \mathrm{F}=33.8\)

\author{
\(18.21 \mathrm{KN} / \mathrm{m}\)
}

\subsection*{3.36 m}

Loads
From slab 35-3a: \(11.81 \times 3.15=18.60 \mathrm{KN} / \mathrm{m}-\mathrm{ql}\)
Selfwt + RC wall: \(: \prime \quad=18.21 \mathrm{KN} / \mathrm{m}-\mathrm{ql}\)
\(\mathrm{F}=\) reach of beam \(36-11 \mathrm{~d}=33.84 \mathrm{KN}\)
\(\mathrm{Rb}=18.2 \times 3.36212+33.8 \times 3.36 / 2+1123.36 \times 18.6\)
X \(2 / 3 \quad 3.36=0\)
\(102.7+56.7+56.78+70 / 3.36\)
\(=68.30 \mathrm{KN}\)
\(R A=33.8+18.21 \times 3.36+1218.6 \times 3.36-68.30\) \(=57.93 \mathrm{KN}\)

\section*{Position Max}
\(\mathrm{RB}-18.21 \mathrm{v}-18.60 \mathrm{vx} 112 \mathrm{ux}=0\)
3.36
\(68.30-18.21 u-2.77\) v2
-_., \(\quad V_{2}+6.57 v-24.6\)
\[
\begin{aligned}
\mathrm{R}-6.57 & \sim \\
\sim & =--2 \mathrm{xl}
\end{aligned}
\]
\(=6.57+: \mathrm{v}=2.66 \mathrm{~m}\)

Prove R 8 @ \(220 c / c\)
\begin{tabular}{|c|c|}
\hline । & \(=2.50\) \\
\hline Weight of self 9 wall 1:1 & \\
\hline \(\mathrm{RA}=\mathrm{RB}=219.71 \times 3.5 \mathrm{R}^{\prime} / 2=52 \mathrm{KN}\) & = 29.71 \\
\hline Mmaxx \(=29.71 \mathrm{x} 6.52\) & \(=54 \mathrm{KN} / \mathrm{m}\) \\
\hline \[
\begin{array}{r}
\mathrm{K}=45.5 \times 106 \\
30 \times 230 \times 2622
\end{array}
\] & \(=0.08\) \\
\hline \(\mathrm{Z}=\mathrm{a} .90 \mathrm{~d}=236\) & \\
\hline \[
\begin{gathered}
\text { As }=45 \times 106=541 \mathrm{mrrr} \\
\\
0.87 \times 236 \times 410
\end{gathered}
\] & \\
\hline Provide 3Y16 (603 mrrr') bottom ~ & \\
\hline Shear & \\
\hline \(\mathrm{V}=54 \mathrm{KN}\) - proved same stirrups 1B-9 & \(00 \mathrm{C} / \mathrm{c}\) \\
\hline
\end{tabular}
```

Loading from slab $I S$ - 31-11.8xO.S2/2 $=3.07$
Selfwt: $0.3 \times 0.3 \times 24 \times 1.4=3.02$
$\mathrm{Q}=1 \mathrm{~S} .67 \mathrm{KN} / \mathrm{m}$
$\mathrm{q} 2=3.07+3.02 x l . S 7 S+J \backslash 12 X 9 . S 8-I S .67 \mathrm{KN} / \mathrm{m}$
03
$3.07+1 S .89+I S .0 S=18.31 \mathrm{KN} / \mathrm{m}$
Em=O
$3 \mathrm{R})=\mathrm{y}$; 18.31xl.S $(2+1)+16.67 \times 3211$
$\mathrm{Rl}=38.7 \mathrm{KN}$
$\mathrm{M}=38.7 x 1 . S-18.31 x 1 . S x 2 / 3 \quad$ (1.S)- 16.67xl.S212
S8.0S - $27.47-18.7 S=11.83 \mathrm{KN} / \mathrm{m}$
Provide 3Y12 (339mm2) hanger $=0.2 \times 300 \times 300$
Shear - R-8@ $2 S 0$ C/c provide 2YI0 top
Beam IB - 19
$\mathrm{L}=2.8 \mathrm{~m} 230 \times 230$
The same on beam 3B-19 1.3Y 12 both Stirrups R 8 @ 220 C/c

```
8.18
\(3 B-91=9 \mathrm{~L}=3 . S m, \quad 230 \mathrm{x}, 300 \mathrm{mrri}\)
3.Sm
```

2 3 3 0
if
2 3 3 0
2 3 3 02330
Loading
From slab: $0.15 \times 24 \times 1.4=5.04$
Improve load: $=5.0 \times 1.6=8.00 \quad "$

$$
\mathrm{q},=13.04 \mathrm{kN} / \mathrm{m} 2
$$

$$
\text { Reinforcement: } d=150-20-5 \quad=152 \mathrm{~mm}
$$

$$
\operatorname{Mmax}=0.125 \times 13.04 \times 2.332 \quad=8.85 \mathrm{kNm}
$$

$$
\mathrm{M} / \text { feubl }=8.85 \times 106 / 30 \times 1000 \times 2552=0.02
$$

$$
\mathrm{Z}=0.95 \mathrm{~d}=119
$$

$$
\text { As }=8.5 \times 106 / 0.87 \times 410 \times 119
$$

```

\section*{Bottom}

Distribution bar \(=0.13 \times 100 \times 150 / 100=195 \mathrm{~mm} 2\)

At the supports
Provide 50\% (252) = 126 mm 2
Provide Y8@250c/e
Deflection:
\(\mathrm{Fs}=5 / 8 \times 410(208 / 252)=212 \mathrm{~m} . \mathrm{f}=0.55+(4777-212) / 120(0.9+0.57): \mathrm{S} 2\)
The slab thickness is O.k.
\[
\begin{aligned}
& 7_{120}^{10}-1
\end{aligned}
\]

\section*{LOADING}
120 mm slab; \(0.12 * 24^{*} 1.4=4.03 \mathrm{kN} / \mathrm{m} 2\)
Cement Screed
Bitumen \(=2.88 \mathrm{kN} / \mathrm{m} 2\)
Conc. PlasterLive load for roof \(=0.75^{*} 1.6=1.20 \mathrm{kN} / \mathrm{m} 2\)
(without access) 8. llkN/m2
\begin{tabular}{ll}
\(a m y=0.070\) & fixed edges \\
\(a m x=0.022\) & Span \\
amy \(\sim 0.032\) & Span
\end{tabular}

\section*{Span Moments}
```

'm~= 0.022*8.11 *3.142 = 3.10kN/m
my=0.032*8.11*3.142 = 4.50kN/m
d= 120-20-4=96mm
Longitudinal bending
k= (3.10*106) 1 (30*1000*962),= 0.01.
z = 0.954 = 91.2
As= (3.10*106)1 (0.87*410*91.2) = 95.3mm2
As min =(0.13*120*1000)1100 = 156mm2
Y10@300c/c both ways
Max spacing = 3d = 3*96 = 288mm
Hence, provide yl0@250e/c (314mni)
Traverse bending
d = 97-10 = 86mm
k= (4.50*106)1 (30*1000*862) = 0.02
Z = 0.95d = 81.7
As}=(4.50*106)1 (0.87*410*81.7) = 154mm2/m<156mmz/
Provide Y10@250 c/c
At Support
Mmy= 0.070*8.11 *3.142 =6.0kNmlm
As = (6.0*106) 1 (0.87*410*86) = 196mm2(Top)
Provide Y10@250 cle (262mmz)

```

\section*{Deflection}
\(\mathrm{m} /\left(\mathrm{bd}_{2}\right)=(3.10 * 106) 1\left(1000^{*} 962\right)=0.34\)
\(\mathrm{mf}=1.68\)
Limiting; span/effective depth \(=26^{*} 1.68=43.7\)
Actual; span/effective depth \(=3140 / 96=32.7\)
Therefore 43.7 > 32.7
The thickness (120 mm) is okay
10.18 TANK BEAM

L-B3 (230x450mm)
Tank size \(=3.66 * 2.44 * 1.22\) rh
Empty ofbraith wate tank \(=1.626 \mathrm{~kg}\)
Density of water \(=1000 * 9.81=9.81 \mathrm{kN} / \mathrm{m} 3\)
LOADING
Live load from water: \(\{(3.66 * 2.44 * 1.22 * 9.81) 1 \quad(3.66 * 2.44)\} * 1.6=19.2 \mathrm{kN} / \mathrm{m}_{2}\) Live load from tank: \(\{(1.626 * 9.81) 1(3.66 * 2.44)\} * 1.6=2.86 \mathrm{kN} / \mathrm{m} 2\)

Self weight of beam: \(0.23^{*} 0.33 * 24^{*} 1.4=2.55 \mathrm{kNm} 2\)
Load from slab: \(8.11 * 1 / 4 \quad=2.03 \mathrm{kN} / \mathrm{m}^{2}\),
\[
\mathrm{ql}=36.45 * 3.14=114.45 \mathrm{kN} / \mathrm{m}
\]
```

M =(114.45*3.142)/8 = 141.06kNm
D = 450-20-8-8 = 414mm
RA=Rs=(141.06*3.14)/2 = 179.7kN
k=(141.06*106)1 (30*230*4142) = 0.12<0.156
z=0.76d=317
As}=(141.06*106)1 (0.87*410*317) =.1248mm2

```

\section*{Provide 4 Y20 (1260mmz) Bottom}

For top bars, provide \(2.0 \% 1260=250 \mathrm{~mm} 2>0.13 \mathrm{bh} / 100\)
Provide 3 Y12 (339mm2) Top

\section*{SHE 4 R}
\[
\begin{aligned}
& \mathrm{V}=180 \mathrm{kN} \\
& \mathrm{v}=180 * 1031(230 * 414)=1.89 \mathrm{~N} / \mathrm{mm}_{2}
\end{aligned}
\]
\[
100 \mathrm{As}=100 * 1260=1.32
\]
\[
\text { bd } \quad 230 * 414
\]

By interpolation \(\boldsymbol{v},=0.73 \mathrm{~N} / \mathrm{mIn}^{2}\)
Asv \(=b(v-v c)=230(1.89-0.73)=1.228\)
0.87 fyv \(\quad 0.87 * 250\)

Asv=R8@l80 cle double links

\section*{Deflection:'}
\[
\begin{aligned}
& \text { Fs }=(5 / 8) \text { fy }(\text { Asreqd/Asprov, }) \\
& \text { F;:= }(5 / 8) * 410 *(1248 / 1260) \quad=\mathrm{j} 254 \mathrm{~N} / \text { irun } 2 \\
& \text { M.f }=0.55+(477-\mathrm{fs}) / 120(0.9+\quad \mathrm{M} / \mathrm{db} 2) \quad \text { S } 2.0 \\
& =0.55+(477-254) / 120 \quad(0.9+3.58)=0.88<2.0
\end{aligned}
\]
Basic Span/effective depth ratio \(=0.86 * 26=22.40\)
limiting Span/effective depth ratio \(=22.4 * 0.88=19.7\)
Actual Span/effective depth ratio \(=3143 / 414=7.60<19.6\)
Deflection is satisfied
1.1.13DESIGN OF SLAB S- L2

\section*{LOADING}

Slab load: Item \(10.17=8.11 \mathrm{kN} / \mathrm{m} 2\)
Span reinforcement
\(\mathrm{M}=8.11 * 2.3302 / 8=5.50 \mathrm{kNm}\)
\(\mathrm{As}=\left(5.5^{\prime} 0^{*} 106\right) 1\left(0.87 * 410 * 96^{*} 0.95\right)=169 \mathrm{~mm} 2\)
Provide Yl0@250 e/c (314mm2) Bottom
Distribution \(=(0.13 * 1000 * 120) 1100=156 \mathrm{~mm} 2)\)
Provide Y8@300 cle (168mm~) Bottom :
At the Support
Provide 50\% (314mni) \(=157 \mathrm{~mm} 2\)
Provide YIO@250 cle Top
Design Of Slab S- I,
\(\mathrm{M}=5.50 * 3.012 .33=7.08 \mathrm{kNm}\)
Provide same reinforcement as in S-h
Provide Yl0 @250 cle (314mni) Bottom -main bar t
Distribution- Provide Y8@30,0cle (168mm2) Bottom

Deflection:
```

!. Fs=(5/8)fy(Asreqd/Asprov,)
Fs = (5/8)*410*(280/314)=229N/mm2
M.f= 0.55 + (477-fs)/120(0.9+ M/db2) S 2.0
=0.55+(477-229)/120(0.9+5.70)=1.41<2.0
Basic Span/effective depth ratio $=1.41 * 26=21.10$
Actual Span/effective depth ratio $=3000 / 96=31.25<36.6$
Deflection is satisfied

```

\section*{DESIGN OF COLUMN R-C1}
```

Column $\mathrm{R}-\mathrm{Cl}=225 \times 630 \mathrm{~mm}$

```

\section*{LOADS}
```

From beams L-b3 (item 10.18) $=179.7 \mathrm{kN}$
From beams L-b3 (item 11.14) $=54.1 \mathrm{kN}$
Self weight col: $0.225 * 0.63 * 2.3 * 24 * 1.4=11.0 \mathrm{kN}$

$$
\mathrm{N}=244.8 \mathrm{kN}
$$

$=0.02 * 245=4.9 \mathrm{kNm}$
Le.zb $=(0.75 * 2300) / 230=7.5<15$
Leylh $=\left(0.75^{*} 2300\right) / 630=2.7<15$
The colmnn is short column
$\mathrm{N} / \mathrm{bh}=\left(245^{*} 10_{3}\right) /(230 * 630)=1.69$
$\mathrm{Mlbh} 2=\left(4.9^{*} 10_{6}\right) /\left(230^{*} 630_{2}\right)=0.05$

```

Provide minimum reinforcement
\[
\text { Asc }=(0.4 * \text { bh }) / 100=(0.4 * 225 * 630) 1100=567 \mathrm{~mm} 2
\]

\section*{Provide 6Y12 (679mm2)}

\section*{DESIGN OF COLUMN R-C3,}

Column \(\mathrm{R}-\mathrm{C} 1=225 \mathrm{x} 225 \mathrm{~mm}\)

LOADS

From (item 11.14) \(\mathrm{RA}=\mathrm{Rs}=(54.113 .495)^{*} 3.637=56.3 \mathrm{kN} \quad\) !

From (item 11.14) RA \(=\operatorname{Rs}=(54.1 / 3.495) * 3.637=56.3 \mathrm{kN}\)

Self weight col: \(0.225^{*} 0.225^{*} 2.3 * 24^{*} 1.4=3.9 \mathrm{kN}\)
\[
\mathrm{N}=116.5 \mathrm{kN}
\]
\(\mathrm{M}=0.02 * 245=4.9 \mathrm{kNm}\)
Le. \(\mathrm{zb}=\) Ley \(/ \mathrm{h}=(0.75 * 3200) / 225=7.7<15\)

Design as short column
\(\mathrm{M} / \mathrm{bh} 2=(117 * 0.02 * 106) 1 \quad(225 * 2252)=0.21\)

Provide minimum reinforcement

Asc \(=(0.4 *\) bh \() 1100=(0.4 * 225 * 225) / 100=203 \mathrm{~mm} 2\)
Provide 4Yl0 (314mm2)

\section*{\(11.0 \mathrm{c} / \mathrm{c}\) COLUMNS}
11.1 Cols. E,Hl4, 11 C-1 (600 x 600)
From beam: RB-1 item 3.7 276 kN
450 x 450 mm RB-3 item 10.2 97 KN
\{Roof Beam \}
RB - 5 item \(10.3 \quad 134 \mathrm{kN}\)
RB - 10 item 4.10 49 KN
From beam: 3B-1 item 4.1 "| 276 kN
450 x 450 mm 3B-3 item 4.3 161KN
\{3rd floor\}
3B-5 item 4.5 143 kN
3B - 10 item 4.10 49 kN
From beam: 2B - 1 item 4.1 276 kN
\(600 \times 600 \mathrm{~mm}\) 2B-3 item 4.3 161KN
\{2rdfloor\}
2B-5 item 4.5 143 kN
2B - 10 item 4.10 49 kN
From beam: B-1 item 4.1 276 kN
\(600 \times 600 \mathrm{~mm}\) B-3 item 4.3 161 KN \{1st floor\}
B-5 item 4.5 143 kN
B - 10 item 4.10 ' ~9kN
From beam: GB - 1 item 3.6 270 kN
\(600 \times 600 \mathrm{~mm}\) GB - 2 item 3.7 276 KN
\{Grd floor\}
GB - 5 item 3.11 147 kN
GB-7 item 3.13 237 kN
```

11.14 DESIGN OF BEAM (Lb-1 \& Lb-2)
Size = 230x300mm
d=300-20-8-8 = 264mm
LOADING
From slab: 8.11*2.330 = 18.90kN/m
Selfweight of Beam: 0.23*0.18*24*1.4 = 1.39kN/m
q}=20.3\textrm{kN}/\textrm{m
Rf:~GG/~~\mp@subsup{r}{}{\prime\prime}-,~~~
$\operatorname{Mmax}=(20.3 * 3.4952) / 8=31 \mathrm{kNm}$

$$
R A=R B=20.3 * 3.495 * 0.5=54.1 \mathrm{kNm}
$$

$$
\mathrm{k}=(31 * 106) 1(30 * 230 * 2642)=0.06
$$

$$
\mathrm{z}=0.93 \mathrm{~d}=245
$$

$$
\mathrm{As}=(31 * 106) / 0.87 * 410 * 245=355 \mathrm{~mm} 2
$$

Provide 2 Y16 (402mml) Bottom
For top bars provide $(0.13 b h) / 100=90 \mathrm{~mm} 2$
$20 \%(402)=80 \mathrm{~mm} 2<(0.13 \mathrm{bh}) 1100=90 \mathrm{~mm} 2$
Hence,provide 2 Y10 Top (157mm1)
At the Support, $(31 * 8) / 12=20.7 \mathrm{kNm}$

```

\section*{SHEAR}
\[
\begin{aligned}
& \mathrm{V}=54 \mathrm{kN} \\
& \mathrm{v}=(54 * 103) /(230 * 264)=0.89 \mathrm{~N} / \mathrm{mm} 2 \\
& 100 \mathrm{As}=100 * 402 \quad=0.66 \\
& \text { bd } 230 * 264
\end{aligned}
\]

By interpolation \(\mathrm{Vc}_{\mathrm{c}}=0.68 \mathrm{~N} / \mathrm{mm} 2\)
\[
\text { Asv }=\mathrm{b}(\mathrm{v}-\mathrm{vc})=230 * 0.4 \quad=0.423
\]
\[
0.87 \mathrm{fyv} \quad 0.87 * 250
\]

Asv=R8@230 c/c
At the Support
As \(=(402 / 31) * 20.7=268 \mathrm{~mm} 2\)
Provide 3 Y12 (339mm)
Deflection:
\(\mathrm{M} / \mathrm{db} 2=(31 * 106) /(230 * 2642)=1.93\)
Fs \(=(5 / 9) f y(A s r e q d / A s p r o v\),
\(\mathrm{Fs}=(5 / 9) * 410 *(355 / 402)=201 \mathrm{~N} / \mathrm{mm} 2\)
M.f \(=0.55+(477-\mathrm{fs}) / 120(0.9+\mathrm{M} / \mathrm{db} 2): S 2.0\)
\(=0.55+(477-201) / 120 \quad(0.9+1.93)=0.81<2.0\)
Basic Span/effective depth ratio \(=0.81 * 26=21.10\)
Actual Span/effective depth ratio \(=3000 / 264=11.4<21.1\)
Deflection is satisfied

Self weight of column:
Roof \(\quad 2.85 \times 24 \times 0.45 \times 0.45 \times 1.4\)

\section*{Ditto'}

Ditto
Ditto
\[
\text { Grd } \quad 3.30 \times 24 \times 0.6 \times 0.6 \times 1.4
\]

Basement \(4.2 \times 24 \times 0.6 \times 0.6 \times 1.4\)
At the Top (4thfloor)
\[
\begin{aligned}
\text { Total load } \mathrm{v} & =558+\text { self weight. } \\
& =556+19.39=575.1 \mathrm{kN}
\end{aligned}
\]

Self ~eights of columns
(a) Roof - 3rd floor, \(\mathrm{ht}=3.15-0.6=2.55 \mathrm{~m}\)

Self weight \(\quad=2.55 \times 0.45 \times 0.45 \times 24 \times 1.4=17.40 \mathrm{kN}\)
(b) 3 rd floor -2 nd floor \(=2.55 \times 0.6 \times 0.6 \times 24 \times 1.4=30.8 \mathrm{kN}\)
(c) 2nd floor= 1 " floor \(=2.55 \times 0.6 \times 0.6 \times 24 \times 1.4=30.8 \mathrm{kN}\)
(d) 1st- Grd floor \(\mathrm{ht}=3.6-0.6=3.0 \mathrm{~m}\)

Self weight \(\quad=3 \times 0.6 \times 0.6 \times 24 \times 1.4=36.3 \mathrm{kN}\)
(e) Grd Basement: \(\mathrm{ht}=4.15-0.6=3.55\)

Self weight \(\quad=3.55 \times 0.6 \times 0.6 \times 24 \times 1.4=3.55 \mathrm{kN}\)

\section*{Design of Column C1}
(1) At the basement.
\(10=4.15-0.6=3.55 \mathrm{~m}\)
Effective length \(\mathrm{Ie}=\mathrm{Blo}\)
\[
\begin{aligned}
\operatorname{Nmax} & =556+3(629)+930+17.4+2(30.8)+36.3+43 \\
& =556+1887+61.6+1009.3 \sim 3452.3 \mathrm{kN},
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{C-1,4 Nos,} & \multicolumn{2}{|l|}{C-2b} & \multicolumn{2}{|l|}{2 Nos,} \\
\hline \multirow[t]{2}{*}{Floor} & N & M & N & M & 100ASe & ASc & \\
\hline & kN & KVM & bh & \(\mathrm{Bh}_{2}\) & Bh & rnm ' & \\
\hline Roof & \multicolumn{6}{|l|}{556} & \multirow[t]{2}{*}{\[
4 S^{450} 0^{5}
\]} \\
\hline \(u / s\) & 17.4 & & 1.6 & 0.053 & Min=0.4 & \% & \\
\hline 3rd Floor & 57.4 & \multicolumn{5}{|l|}{11.5} & 6716 \\
\hline \(u / s\) & \multicolumn{6}{|l|}{629} & (1210mm2) \\
\hline 2nd Floor & \multicolumn{7}{|l|}{30.8} \\
\hline tIs & 1233.2 & 25.0 & 3.4 & 0.16 & 0.4 & 11440m & 8 y 16 \\
\hline \(u / s\) & \multicolumn{6}{|l|}{629} & GOOid \\
\hline \(i^{\prime \prime}\) floor & \multicolumn{2}{|l|}{30.8} & & & & & 600 \\
\hline tis & 1873 & 36.0 & 5.3 & 0.18 & 04 & 1140m & 8 y 16 \\
\hline \(u / s^{\prime}\) & \multicolumn{3}{|l|}{629} & & & & \\
\hline \multirow[t]{3}{*}{Grd/floor} & \multicolumn{3}{|l|}{36.3} & & & & \multirow[t]{3}{*}{8716} \\
\hline & 2556.3 & 51.0 & 7.1 & 0.24 & 04 & 1440 mm & \\
\hline & \multicolumn{2}{|l|}{930} & & & & & \\
\hline & & & & & & & 8716 \\
\hline Basement found & \[
\begin{aligned}
& \underline{43} \\
& 3531.3
\end{aligned}
\] & 71.0 & 9.8 & 0.33 & 04 & 1440 mm & (1610M2) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ABC \(=~\)
BH \(\times 0.4\)
100}} & \multicolumn{3}{|r|}{\(600 \times 600 \times 0.4\)} & & & \\
\hline & & & ' 100 & & & & \\
\hline \multirow[t]{2}{*}{\(A B C 2=450\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{cc}
\times 450 \times 04 & 240 \\
100 & 14
\end{array}
\]}} & & & & & \\
\hline & & & \(1440 \mathrm{~m}_{2}\) & & & & \\
\hline LINKS & \multicolumn{3}{|l|}{\(=\)} & & & & \\
\hline Min Size & \multicolumn{3}{|l|}{\(\mathrm{X} 0=.1 \times 16=4 \mathrm{~mm}\)} & & & & \\
\hline & & A & upt R8 & & & & \\
\hline
\end{tabular}
```

Max sputing = 12 x Omin
= 12 x 16 = 192mm2
Provide R8 @ 17Syc
11.2 C- 3, E3a
Cys E, H/I, 13; 5/18,0/21, y/24, v/27
From beam: Rs- 5 item 10.3 134.4kn
Rs- 5 Ditto 134.4kn
Roof
Rs- 5 Ditto 134.4kn
403.2kn
Self Wright: }0.452\times24\times1.4\times(3.15-0.03)=19.4k
From beam 3B-5 Item 4.5 143kn
3B-5 „ 143kn 3rd Floor
3B-5„ „ 143kn
429kn
Self Not }\quad0.602\times24\times1.4(3.15-0.3)=345k
From beam 2B-5
2B-5 Ditto = 429kn 2nd Floor
2B-5
Self not: }0.62\times24\times1.4\times2.85=34.5\textrm{kn
From beam B- 5
B-5 Ditto = 429kn 1st Floor
B-5
Self Not-0.62 x 24 xl .4 X 3.3 = 40kN
From beam GB-6 Item 285kn
GB-7Item 237kn
522kn
Self not = 0.62 x 24 x 1.4 x (4.15-0.3)= 47kn
(Basement)

```

At the basement
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{10-4.15-0.3 \(=3.85 m\)} \\
\hline \multicolumn{8}{|l|}{\(N \max =40.32+(429 \mathrm{x}+3)+10.4+34.5+2+522+40+47=2388 \mathrm{kn}\)} \\
\hline Floor & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{kN}
\end{gathered}
\] & \begin{tabular}{l}
M \\
KVM \\
ExN
\end{tabular} & \[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{bh}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{Bh} 2
\end{gathered}
\] & 100Abc Bh & \[
\begin{aligned}
& \mathrm{ABC} \\
& \mathrm{~mm} 2
\end{aligned}
\] & \\
\hline Roof u/s & 403.2 & & & & & & \\
\hline 3rd Floor u/s & \[
\begin{aligned}
& +19.4 \\
& 422.6 \\
& 429.0
\end{aligned}
\] & 8.5 & 2.1 & 0.039 & Min & 810 & 6716 \\
\hline 2nd Floor t/s' u/s & \[
\begin{aligned}
& 34.5 \\
& 886.1 \\
& 429.0
\end{aligned}
\] & 17.7 & 2.5 & 0.082 & 0.4 & 144'0 & \\
\hline 1st floor t/s u/s & \[
\begin{aligned}
& 34.5 \\
& 1349.6
\end{aligned}
\] & 27 & 3.8 & 0.13 & & 1440 & 8716 \\
\hline Grd/floor tiS u/s & \[
\begin{aligned}
& 40.00 \\
& 1818.6 \\
& 522
\end{aligned}
\] & 36.4 & 5.1 & 0.17 & & 1440 & \\
\hline Fdn & \[
\begin{aligned}
& 47 \\
& \underline{2} \underline{3} 88
\end{aligned}
\] & 47.8 & 6.6 & 0.22 & & 1440 & \\
\hline
\end{tabular}
11.3 col. F/M G/16/ F/29, G/ll
 1273
 (-5

Self not: \(\quad Y_{z} 0.9_{2} \times 24 \times 1.4 \times(4.15-0.3)=53 \mathrm{kN}\)
```

$M=$ Nemin $d=900-40-8-10$
h 900

```


\section*{Links}

Min size \(=4 \mathrm{~mm}\)

Max sputing \(=120=12, x 16=' 192\)

Provide R8 @ 175

\subsection*{11.15 DESIGN OF SLAB S-L3}

\section*{LOADING}

From slab item 10.17 - \(8.11 \mathrm{kN} / \mathrm{m} 2\)

Span Reinforcement
\(\mathrm{M}=8.11 * 32 / 8=9.12 \mathrm{kNm}\)
\(\mathrm{z}=\mathrm{O} .95 \mathrm{~d}=91.2\)

As \(=(9.12 * 106) 1 \quad(0.87 * 410 * 91.2)=280 \mathrm{~mm} 2\)
Provide Yl0@250c/c (314mm2)

Distribution \(=(0.13 * 1000 * 120) / 100=156 \mathrm{~mm} 2)\)
Provide Y8@250 c/c (201mm2) Bottom

At the Support provide \(50 \%\) (314 mm 2)
Provide Yl0@250c/c (314mm2)
11.5 provide same ret for colour on
GL F, G/ 3, 12- C- 6a
FG/l, 14-C-6c
15/m, P, R, S
L/16, 19, 20, 21,
11/2425, 26, \(29 \mathrm{M} / 22, \mathrm{~T} / 16\) C-6
30/V, W, V, V, I U/29, 1/23.
AKL/6,9
T/15, L/22, 11/23,K/30 C-6b
Col. N/15, L/17, 2/28 Z/30-450 X 1430 C-7
From beam: RB- 8 item 4.8 90kN
Rb- 2c item \(9.3 \quad 56.4 \mathrm{kN}\) Roof
RB-2c 56.4 kN 202.8kN
Selfnet: \(\quad 0.45 \times 1.43 \times 24 \times .85 \times 1.4=61.6 k N\)
3B-8 item 4.8 90kN
3B 2c item 3.23 53.7 kN
3rd Floor 143.8 kN
2B-8 B2-2C

nd Floor

1st Floor S-2C
Gb-1261.6 kN142.4 kN14.4kN

Foundah- \(71.4 \times 3.83=82.8 \mathrm{kN}\)
3.3

11.6 Columns A, K/4, 11 C-8
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \(\sim\) & & & \multicolumn{3}{|l|}{\(\mathrm{d}=300-40-870\)} \\
\hline 132 & & \(\sim\) & 225 & \multirow[b]{2}{*}{450} & h & 300 & \(=0.8\) \\
\hline & \(\sim\) & & & & & & \\
\hline 318 & 318 & \(\sim\) & 225 & & & & \\
\hline
\end{tabular}
Substituted section: h = 450 + 318 + 132 = 300
b = 450
from beam:
RB- 1 item 3.7 276kN
RB- 5 item 10.343.2.4. \(\left.{ }^{2}\right\}\)45-2f item 3.2353.8 kN511.4 kN
Self net 06 beam \(0.3 \times 45 \times 24 \times 1.4 \times 2.85=12.92 \mathrm{kN}\)
3B- 1 item 3.7 2766kN
3B- 5 item 4.5 143kN
35-2f 47.23rd Floor
35-2d 53.8520 kN
22nd 520kN
Selfnet 12.92 kN
2nd floor
1 st floor
Selfnet
520kN12.92 kNFrom beam GB-335 kN
Self net \(12.92 \times 3.315 \mathrm{kN}\)3.85'
Basementfundat self net \(15 \times 3.85=17.5 \mathrm{kN}\) 3.3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Floor & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{kN}
\end{gathered}
\] & \[
\begin{gathered}
\text { M } \\
\text { KVM } \\
\text { NXO. } 02
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{bh}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{Bh}_{2}
\end{gathered}
\] & 100Abc Bh & \[
\begin{aligned}
& \text { ABC } \\
& \text { rnrn" }
\end{aligned}
\] & \\
\hline Roof u/s & 511.4 & & & & & & \\
\hline 3rd Floor & 12.9 & & 3.9 & 0.36 & 0.4 & 0.4X300X450 & Provide \\
\hline ill & 524.3 & 10.5 & & & & 100 & 5 y 12 \\
\hline \multirow[t]{2}{*}{\(u / s\)} & 520.0 & 21.1 & 7.8 & 0.5 & 0.4 & \(=540\) & 566 \\
\hline & & ' & & & & & Provide \\
\hline 2nd Floor & 12.9 & 31.8 & 11.8 & 1.0 & 0.4 & 540 & 6y20 \\
\hline tis & 1057.2 & & & & & & (1800) \\
\hline \(u / s\) & 520.0 & & & & & & \\
\hline i" floor & 12.9 & & & & & & Provide \\
\hline tis \({ }^{\prime}\) & 1590.1 & & & & & & 7y25 \\
\hline \(u / s\) & 520.0 & 42.2 & 15.6 & 1.0 & 1.2 & \[
\begin{gathered}
0012 \text { X300X450 } \\
1620
\end{gathered}
\] & (1890) \\
\hline \multirow[t]{4}{*}{Grd/floor tis \(u / s\)} & 15.0 & & & & & & \\
\hline & 2125.1 & & & & & & Provide \\
\hline & 335.0 & 50.0 & 18.4 & 1.2 & 2.4 & 0.012 X300 X & 7y25 \\
\hline & & & & & & \(450=2340\) & (3440) \\
\hline \multirow[t]{3}{*}{Fdn} & 17.5 & & & & & & \\
\hline & 2377.6 & 50.0 & 18.4 & 2.4 & 2.4 & 0.024X300X450 & \\
\hline & & & & & & 32400 & \\
\hline
\end{tabular}

Max \(120=\)

Links

Provide R8 @250
```

Leu= 3200 = 10.7 < 15
300
short Column
Ley= 3200=7.1< 15
H 450

```

\subsection*{11.7 Column A, K/5, \(10 \mathrm{C}-9230 \times 450 \mathrm{~mm}\)}
From beam RB- 13 item 10.9
45- 2F item 3.23
Proof
Selfnet: \(\quad 0.23 \times 0.45 \times 24 \times .85 \times 1.4=9.9 \mathrm{kN}\)
From beam 3B-13 item 8-y 79.50
3b-2f 47.20
126.70kN
Self net 9.90kN
From beam 2B-13 item 4.13 50.09
2nd Floor 2B-2f items 3.23 47.20
Self net 9.90kN
AB-13 1st FloorAS-2F
Fdn: self net: 11.5 '0x \(3.85=12.5 \mathrm{kN}\)
firl.3.3\(\operatorname{Max} \mathrm{N}=472 \mathrm{kN}\)ground floor

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Floor} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(N\) M}} & \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{M} & \multirow[b]{2}{*}{100Abc} & \multirow[b]{2}{*}{ABC} & \\
\hline & & & & & & & \\
\hline & kN & \[
\text { NXO. } 02
\] & bh & Bh2 & Bh & Mm2 & \\
\hline \multirow[t]{3}{*}{Fdn} & \multirow[t]{3}{*}{472} & \multirow[t]{3}{*}{9.4} & \multirow[t]{3}{*}{4.6} & \multirow[t]{3}{*}{0.2} & \multirow[t]{3}{*}{Min 0.4} & \(0.4 \times 450 \times 230=\) & Provide \\
\hline & & & & & & 414 mm 2 & \(4 y 16\) \\
\hline & & & & & & & (80mm2) \\
\hline
\end{tabular}

Column C- \(10450 \times 600 \mathrm{~mm}\)

In comparison to the above provided

ALCAMIN \(=0.004 \times 450 \times 600\)
\(=1080 \mathrm{~mm} 2\)

Provide 6y716 (1206)

Links R8 @ 200yc
11.8 Columns E, H/6,,9 C- i3
\(450 \times 600 \mathrm{~mm}\), h=450b-600
Fro'mbeams RB-12 Item 10-7
RB- 18 item 10.11
Self net: \(\quad 0.45 \times 1.2 \times 2.85 \times 24 \times 1.4=\)
3B-12 item BI5 370kN
3rd floor
2B-12 item 4.12 246kN
2 floor
B-12 item 4.12 246
Self net 26
GB- Bitem 3.14b 139kN
Ground floor self net: \(0.45 \times 0.6 \times 3.3 \times 24 \times 1.4=30 \mathrm{kN}\)
Basementfdn 30 x \(3.85=35 \mathrm{kN}\)
3.3
Max N 638kN
\[
\mathrm{M}=1630 \mathrm{X} 0.02=33 \mathrm{kN}
\]
\[
N=1638 \times 1036.1
\]
\[
\text { bh } 450 \times 600
\]
\[
\text { M }=33 \times 10_{6}
\]
\[
\text { bh2 } 6000 \times 450_{2}=0.3
\]
\[
\text { but } \min \text { asi }=0.4
\]
\[
\mathrm{rF}=\mathrm{O} .4 \mathrm{bh}=0.004 \times 600 \times 450
\]
\[
100=1080 \mathrm{~mm}_{2}
\]

Provide 6y16 (1210mm2)

Links:
11.9 Colum \(i / 6,9\) C- , 11\(450 \times 1200\)
From beam AB- 3 item 10.297 kN Roof
RB- 12 item 10.884 kN
Self: \(0.45 \times 1.2 \times 24 \times 2.85 \times 1.4\) 52 kN
3B- 3 item A. \(3 \quad 161 \mathrm{kN}\)
3B- 12 item \(8.5 \quad 93.4 \mathrm{kN}\) 3RD floor
3B-17 item 4.7
2B-3 item 4.3 161kN
2b-12 item 4.12 115 kN
2b-17 item 4.7
Self net
B-3 item 4.3 161kN
B-12 item 4.12 115kN 1st floor
B-17 item 4.7190 .2
Self net 52 kN
GB- 4 item 3.10 277 kN
GB- 5 item 3.11 112kN
GB- 8b item 3.146 139 kN
Self net \(0.45 \times 1.2 \times 3.33 \times 24 x \mathrm{l} .460 \mathrm{kN}\)
Basementfdn \(60 \times 3.85=70 k N\)
3.3
MAX N = 2372kN
```

    N =
    Bh M = 2372 x 0.02 = 47.4kN
    N
    Bh 2372 x 103
        1200 x 450
    M = 47-4 x 106 = 0.2
    bh2 1200 x 450=0.2
    hence provide min reft = 0.004bh
    =0.00 4 x 1200 x 450
    = 2160mm2
    ```
/-Provide 8yzo
 Links
 Provide R8 @200 c/o
 Column 1/6,9450 x 800
"'~ C-12
Treat as C- 13
Provide 6716
Links ~8 @ 200c/c
11.10 Column J/7, 8 C-14
\(600 \times 800 \mathrm{~mm}\)
\[
\text { h = } 800
\]
\[
b=(500
\]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{fdn grad grand 1 st 2 nd} & & 4.15 m \\
\hline & & 3.60 m \\
\hline & & 3.15 m \\
\hline 2nd_3rd & & 3.15 m \\
\hline \multirow[t]{4}{*}{3 rd _ 4th} & & 3.15 m \\
\hline & & 17.75 \\
\hline & Dot & 40 \\
\hline & & 17.35m \\
\hline \multicolumn{3}{|l|}{Le \(=0.9 \times 17-35=26>15\)} \\
\hline \multicolumn{3}{|l|}{h 6} \\
\hline \multicolumn{3}{|l|}{Ley \(=0.9 \times 17.35=19.5>15\)} \\
\hline b 0.8 & & \\
\hline
\end{tabular}
\(\mathrm{Me}=\mathrm{mi}+\) madd
\(<\mathrm{Mi}+\mathrm{Nau}\)

When
\(\mathrm{Mi}=\) initial moment in the column
Madd = moment caused by the deflect of the column
\(A u=\) deflection of the column
```

Bx= 1. (le)2
200
= 1 x (Cl.g x 17.35)2
2000 0.6
= 0.339
au= Bx kh value K=1
= 0.339 x 1 x 0.8=0.27
Madd = Nau h2
From beam RB- 18 Item 10.11 227kN
RB- 18a Item 10.11 114kN
341kN
Selfnet: }17.35\times0.6\times0.8\times24\times1.4=280k
Nmax=341 + 280=62ikN
Madd = 621 x 0.27
Madd = 168kNm
Mi= Nxem= 621\times0.02=12.4 kNm
Mi = 12.4 + 168 = 180kNm
N=621\times103 = 1.3
Bh 600 x 800
M=170\times106 = 0.47
bh2 600 X8002
d 800-40-8-10=0.9=0.9
h 800
from the chart
provide min rfl
0.004 bh = 0.004 x 600 x 800= 1920mm2

```

Provide 8 y20 (25YOmm 2)
Links: R8 @200yc

\section*{ROOF FLOOR SLAB AND BEAMS}

\subsection*{9.0 CC ROOF FLOOR RIBBED SLABS}

Some parts of the roof floor serve as a roof (without access):
5 cm gravel ballast \(\quad 0.5 \times 20 \times 1.4 \quad=1.4 \mathrm{kN} / \mathrm{m}_{2}\)
Cement screed to slope (max. 9 cm) \(\quad=2.77 \mathrm{kN} / \mathrm{m} 2\)
4mm bituminous felt :(0.4)/20 x \(4 \times 1.4=0.11 \mathrm{kN} / \mathrm{m} 2\)

Ribbed Slab:
Slab: \(0.1 \times 24\)
\(=2.4 \mathrm{kN} / \mathrm{m} 2\)
Ribs: \(\{(0.1 \times 0.2) / 0.52\} \times 24=1.11 \mathrm{kN} / \mathrm{m}_{2}\)
15 mm cone. Plaster \(=0.0015 \times 22=0.33 \mathrm{kN} / \mathrm{m} 2\)
Pots (0.077) \(10.2 \times 0.52=0.74 \mathrm{kN} / \mathrm{m} 2\)
\(=4.58 \mathrm{kN} / \mathrm{m} 2\)
\(1.4 \times 4.58 \quad=6.412 \mathrm{kNm} 2\)
Live Load: \(0.75 \times 1.6 \quad=1.20 \mathrm{kNm}_{2}\)
11.89kN/m2
9.1 SLABS:

Rs-1, Rs-2, Rs-2a, Rs-2b, Rs-3, Rs-3a, Rs-3b, Rs-3c are just the same
as Is-I, \(1 \mathrm{~s}-2,1 \mathrm{~s}-2 \mathrm{a}, 1 \mathrm{~s}-2 \mathrm{~b}, 1 \mathrm{~s}-3 \mathrm{c}--------r e s p e c t i v e l y\)
9.2 SLAB Rs-3d

Span L varies from 3.00m to 0
Reinforcement- the same as for Rs-3c.
9.3 EDGE RIBS OF SLABS 4S-2
9.3.1 Edges rib Rs-2d:- reinforcement provided as for \(1 \mathrm{~s}-2 \mathrm{~d}\). i.e 4 y 20
9.3.2 Edge rib Rs-2c:- in comparison to 1 s -2d. Provide reinforcement

\section*{4Y20 bottom}

\section*{Links R8 @ 230 c/c}

\section*{Anchorage reinforcement against torsion}

R8 @ 300c/c (as in Is-2d)
\(\stackrel{\circ}{0}\)
\[
\mathbf{o}^{Q_{1}}
\]

\section*{Loading}

Weight ofwall-0.15 x \(1.5 \times 241.4\)
Form slab- \(\quad 11.89 \times \mathrm{Y}(1.5)\)
\(8.92 \mathrm{kN} / \mathrm{m}\)
\(7.56 \mathrm{kN} / \mathrm{m}\) \(2.32 \mathrm{kN} / \mathrm{m}\)
18.8kN/m2
\[
\begin{aligned}
& \mathrm{RA}=18.8 \times 6=56.4 \mathrm{kN}=\mathrm{RB} \\
& 2 \\
& \mathrm{BMmax}=\mathrm{We}=18.8 \times 62 \quad 5 \mathrm{kN} \\
& 8 \quad 8 \\
& \mathrm{~K}=\quad .85 \times 106=0.18>0.15 \text { (compression reinforcement required) } \\
& 30 \times 230 \times 2622
\end{aligned}
\]
\[
\mathrm{d}=20+8+8=36 \mathrm{~mm}
\]

\subsection*{9.4 RIBBED SLAB RS - 4}
\(550 \quad 550\)

20

Wooden Box
\(\mathrm{b}=550 \mathrm{~mm}, \mathrm{~d}=400-20-8-10=362\)

\section*{LOADS}

Finished layer \(0.05 \times 20 \times 1.4\)
100 mm slab \(0.1 \times 24 \times 1.43 .36 \mathrm{kN} / \mathrm{m}_{2}\)
\[
0.55 \times 0.23
\]
Plaster \(0.015 \times 22 \times 1.4 \quad 0.46 \mathrm{kN} / \mathrm{m}_{2}\)
Ribs \(\quad 0.15 \times 0.30 \times 24 \times 1.4 \quad 2.75 \mathrm{kN} / \mathrm{m}_{2}\)

II 0.55

Wooden box \(=0.1 \times 0.4 \times 4 \times 1.4 \quad-\quad 0.41 \mathrm{kN} / \mathrm{m}_{2}\)
0.55

Live load \(\quad 0.75 \times 1.6\)
Scm Gravel ballat, cement screed to
Slope and 4 mm bituminous felt \(\quad=\quad 4.28 \mathrm{kN} / \mathrm{m}_{2}\)
\(\mathrm{q} \quad=\quad 14.61 \mathrm{kN} / \mathrm{m} 2\)
\(\mathrm{ql}=14.61 \times 0.55\)
\(=8.04 \mathrm{kN} / \mathrm{m}\)
\(\mathrm{F}=230 \mathrm{~mm}\) block work \(=(3.3+0.53) \times 2.85 \times 1.4 \times 0.55=8.40 \mathrm{kN}\)
\(\mathrm{Fl}=7.56 \mathrm{kN} / \mathrm{m}\)
Als \(=\) M-O. 156 fcubd \(_{2}=(85-74) \times 106=136 \mathrm{~mm}_{2}\)
\[
0.87 \times(262-36) \times 410
\]
```

As $=0.156$ fcubd $_{2}+$ AI S $=\quad 74 \times 106 \quad+136$

```
 \(0.87 \mathrm{fyz} \quad 0.87 \times 410 \times 0.775 \times 262\)
 \(=1158 \mathrm{~mm} 2\) provide 4 Y 20 (Bottom)

\section*{SHEAR}
\[
\mathrm{V}=56.4 \mathrm{kN}
\]
\[
\mathrm{v}=\quad 56.4 \times 10_{3}=0.94 \mathrm{~N} / \mathrm{mm}_{2}
\]
\[
230 \times 262
\]
\[
100 \mathrm{AS}=100 \times 1158=1.92
\]
\[
\text { bd } \quad 230 \times 262
\]

By interpolation vc \(=0.9\)
Asv \(\quad=0.4 \times 23010.87 \times 250=0.4230\)
Sv
Provide R8@230c/c
Anchorage into slab against torsion
\[
\mathrm{e}=115-75=40 \mathrm{~m} 2
\]
\[
\mathrm{T}=(7.56+2.32) \times 0.04=0.35 \mathrm{kN} / \mathrm{m}
\]

\[
\begin{gathered}
8.05 \mathrm{RA}=5.68(8.05+1.4) 2 \times 0.5+7.56(8.04+1.4) \\
R \mathrm{RA}=253.1+71.37 \quad=40.6 \mathrm{kN}
\end{gathered}
\]
\[
8.06
\]
\[
\mathrm{RB}=7.56+53.62-40.6 \quad=20.6 \mathrm{kN}
\]
\[
\text { Position ofBMmax }=20.6-5.68 \mathrm{x}=0
\]
\[
\mathrm{x}=3.62 \mathrm{~m}
\]
\[
\begin{aligned}
B M \max & =R B x-(5.68 \times 2) / 2 \\
& =20.6^{*} 3.62-(5.68 \times 3.622) / 2 \\
& =74.57-37.22=37.4 \mathrm{kNm}
\end{aligned}
\]

At the cantilever,
\[
\mathrm{M}=7.56 \times 1.4+5.68!\{1.42 / 2=-16.2 \mathrm{kNm}
\]

Positive moment
\[
\begin{array}{lc}
\mathrm{K}= & 37-4 \times 106 \quad=0.02 \\
& 30 \times 550 \times 3622 \\
\mathrm{z}= & 0.95 \mathrm{~d}=344 \\
\mathrm{As}= & 37-4 \times 106=305 \mathrm{~mm} 2 \\
& 0.87 \times 410 \times 344
\end{array}
\]

At support A
Negative moment
\(\mathrm{M}=-16.2 \mathrm{kNm}\)
\(K=16.2 \times 106=0.03\)
\(30 \times 150 \times 3622\)
\(\mathrm{Z}=\) \(0.95 \mathrm{~d}=344\)
As \(=16.2 \times 106=132 \mathrm{~mm}^{2}\)
\(0.87 \times 410 \times 344\)
Provide 2 Y10 (157mm2) Top
2 Y10 Top
SHEAR
\(\mathrm{V}=\quad 40.6 \mathrm{kN}\)
\(\mathrm{v}=40.6 \times 103=0.75 \mathrm{~N} / \mathrm{mm}^{2}\)
\(150 \times 362\)
\(100 \mathrm{AS}=100 \mathrm{x} 402\) \(=0.74\)
bd \(150 \times 362\)
For table \(v \ll=0.60 \mathrm{~N} / \mathrm{mm} 2\)
\(\operatorname{Asv}=0.4 \times 150=0.276\)
Sv \(\quad 0.87 \times 250\)
Provide R8@300 c!e
Deflection: \(\quad \mathrm{fs}=5 / 9 \times 410 \times 305 / 402=173 \mathrm{~N} / \mathrm{mm} 2\)
\(\mathrm{M}=. \quad 37.4 \times 106 \quad=0.52\)
\(\mathrm{bd}_{2} \quad 550 \times 3622\)
\(\mathrm{m} . \mathrm{f}=0.55+(477-173) / 120(0.9+0.52)=2.33\)
Basic span/effective depth \(=2 \times 26=52\)
Actual span/effective depth \(=(8050) / 264\) \(=30.5\)
10 CC ROOF FLOOR BEAMS
10.1 BEAMS:RB-1, RB-2, RB-3, RB-4, RB-40
RB-5, RB-6, RB-7, RB-8, RB-9,RB-:10,
4B-16, 4B-17, 4B-19, are just the same
as \(1 \mathrm{~B}-4 \mathrm{~A}, 1 \mathrm{~B}-5,1 \mathrm{~B}-6,1 \mathrm{~B}-7,1 \mathrm{~B}-8,1 \mathrm{~B}-9,1 \mathrm{~B}-10\),
1B-16,3B-10,respectively.
10.2 BEAMS
\(\mathrm{L}=6.3 \mathrm{~m}, 500 \times 300 \mathrm{~mm}\)
Loading
For AS-I: \(11.89 \times 3.0 / 2=22.59 \mathrm{kN} / \mathrm{m}\)
RS-1: \(11.89 \times 0.52 / 2=3.00\)
Self weight of beam \(=5.04\)
\(\mathrm{q}=30.74 \mathrm{kN} / \mathrm{m}\)
\(R A \sim R B=30.74 \times 6.3 \times 1 / 2=96.77 \mathrm{kN}\)
Bmmax \(=\quad 30.74 \times 6.32 \times 1 / 8=152.51 \mathrm{kNm}\)
\(\mathrm{K}=\quad 152.51 \times 106=0.148, \mathrm{Z}=0.79 \times \mathrm{d}\)
\(30 \times 500 \times 2622\)
\(\mathrm{As}=152.51 \times 106 \quad=2060 \mathrm{~mm} 2\)
\(0.87 \times 410 \times 0.79 \times 262\)
Provide 3Y25+2Y20 bottom (2098m2)
\[
\sim \text { Hanger bars } \quad 0.25(500 \times 300)=300 \mathrm{mmm}=339 \mathrm{~mm} 2
\] 3Y12(339)

\section*{SHEAR}
\[
\mathrm{V}=97 \mathrm{kN}, \mathrm{v}=97 \times 10_{3} \quad=0.74 \mathrm{~N} / \mathrm{mm} 2
\]
\[
500 \times 262
\]
\[
100 \mathrm{As}=100 \times 2098=1.60
\]
\[
\text { bd } \quad 500 \times 262
\]

By interpolation \(\mathcal{V} \ll=0.85 \mathrm{~N} / \mathrm{mm} 2\)
\(\mathrm{ASv} / \mathrm{Sy} \quad=0.4 \times 500=0.920\)
\[
0.87 \times 250
\]

Provide R8@195 c/c stirrups.
10.3 RB-5

From slab R-S2: \(11.89 \times 6 / 2=23.78 \mathrm{kN} / \mathrm{m}\)
\[
\left.\begin{array}{l}
\text { " } \begin{array}{rl}
11.89 \times 0.52 / 2 & =3.09 \mathrm{kN} / \mathrm{m} \\
& =38.76 \mathrm{kN} / \mathrm{m}
\end{array} \\
\text { Selfweight:- } 6 \times 3 \times 24 \times 1.4=6.05 \mathrm{kN} / \mathrm{m} \\
\mathrm{q}=44.81 \mathrm{kN} / \mathrm{m}
\end{array}\right] \begin{array}{r}
\text { RA= RB= } 44.81 \times 6 / 2=134.4 \mathrm{kN} \\
\mathrm{Mmax}=44.81 \times 6 / 8=202 \mathrm{kNm} \\
\mathrm{~K}=\quad 202 \times 106=0.16 \text { compression reinforcement required } \\
30 \times 600 \times 262
\end{array}
\]
\(\mathrm{A} 1 \mathrm{~s}=\mathrm{M}-\mathrm{O} .156 \mathrm{fcubd} 2=(202-193) \times 106=112 \mathrm{~mm} 2\)
\(0.87 \times 410(\mathrm{~d}-\mathrm{dl})\) 80614
Provide 2 Y12 Top (226mnl).
As \(=0.156 f c u d 2 / 0.87 \times 410 \times 0.775+\mathrm{A} 1 \mathrm{~s}=2777 \mathrm{~mm} 2\)
Provide iY25 + 3 Y20 (290mm2)
SHEAR
\(\mathrm{V}=134.4, \mathrm{~V} .=134.4 \times 103=0.85 \mathrm{~N} / \mathrm{mm} 2\)
\(600 \times 262\)
\(100 \mathrm{AS}=\) \(100 \times 2903=1.85 \mathrm{~N} / \mathrm{mm} 2\)
bd \(600 \times 262\)
\(\mathrm{vc}=0.89 \mathrm{~N} / \mathrm{mm} 2\)
Provide min reinforcement.
Asv \(O A \times 600\) \(=1.103\)
Sv \(0.87 \times 250\)
Provide double R8@l60 C/C double links.
10.4 RB-9
RB-9 same as 3B-9
4B-1ld

\section*{LOADING}

From slab RS-3d: \(11.89 \times 1,575 / 2=9.36 \mathrm{kN} / \mathrm{m}\)
For parapet wall: \(0.15 \times 1.5 \times 24 \times 1.4=7.56 \mathrm{kN} / \mathrm{m}\)
" self weight: \(0.23 \times 0.3 \times 24 \times 1.4=2.32 \mathrm{kN} / \mathrm{m}\)
\[
\mathrm{q}=19.24 \mathrm{kN} / \mathrm{m}
\]
\(R A=R B=19.24 \times 2.5=24.1 \mathrm{kN}\)
2

2
\(\mathrm{K}=\)
\(=\)
\(30 \times 230 \times 262\)
Provide same as reinforcement as \(3 B-9\) i.e \(3 Y 12\) Bottom (339mmz)
SHEAR
Provide R8 @230 C/C asfor 3B-9.

\subsection*{10.5RB-1lc \& 4B-1le}

\section*{\(\mathrm{F}=24.1 \mathrm{kN}\)}

\section*{hA.L~:AAA.}

\section*{LOADING}

Same Loading as \(4 \mathrm{~B}-11 \mathrm{~d}=19.24 \mathrm{kN} / \mathrm{m}\)
\(\operatorname{Mmax}=24.1 \times 1.58+19.2 \times 1.582 / 2=62 \mathrm{kNm}\)
Provide some reinforcement as \(3 B-l l e \quad(2 Y 20+2 y 16)\) Top (1030mni)
10.6RB-ll curve

\section*{LOADING}

For slab AS-3d, AS-3c (average): (11.89 x \(1.5 / 2 \times 0.5) \times 2 \cdot=9.24 \mathrm{mmm}\)
For parapet \& self weight
\(=9.88 \mathrm{kN} / \mathrm{m}\)
\(=19.12 \mathrm{kN} / \mathrm{m}\)
\(\operatorname{Mmax}=19.12 \times 3.357_{2}+24.1 \times 1.575 \times 1.762=26.93+20.15=47.08 \mathrm{kNm}\)
\[
\begin{array}{ll}
8 & 3.357
\end{array}
\]

Alternatively,
\[
R A=24.1 \times 1782+19.12 \times 3.336=44.90 \mathrm{kN}
\]
3.357
\[
\begin{array}{ll}
\text { Rs }=24.1 \times 19.12 \times 3.36-44.9 & =43.44 \mathrm{kN} \\
\text { Position ofBMmax }=\text { Rs- } 19.12 \times & =0
\end{array}
\]

\[
\mathrm{x}=43.44 \quad=2.27 \mathrm{~m}
\]
\[
19.12
\]
\(B M \max =\mathrm{RBX} \quad-19.12 \mathrm{X}_{2} / 2 \quad=49.35 \mathrm{kNm}\).
\(K=49.35 \times 106 \quad=0.10\)
\(30 \times 250 \times 2622\)
As \(=591 \mathrm{~mm} 2\) provide \(3 Y 16\) Bottom (605mm2)
Hanger bars- \(0.2(603)=121 \mathrm{mni}\)
Provide 2 Yl0 Top (157mm2)
i.e. Reinforcement same as \(3 B-l l\) (a)
Stirrups same as 3B-lla
i.eR8@220 clc.
\(107 \mathrm{RB}-\mathrm{IIb} \quad \mathrm{L}=1.00,230 \times 300 \mathrm{~m} 2\)
Reinforcement same as in \(4 B\)-lld.
i.e 3 Y12 Bottom.
Stirrups R8@230 clc.
10.8RB-12 \& \(14 \mathrm{~L}=450 \times 400 \mathrm{~mm}\)

\section*{LOADING}

From slab RS-1: \(11.89 \times 6.3 / 2 \quad=37.45 \mathrm{kN} / \mathrm{m}\)
\[
\text { " RS -4c: } 10.33 \times 0.55 / 2 \quad=2.69 \mathrm{kN} / \mathrm{m}
\]

Self weight of beam: \(0.45 \times 0.4 \times 24 \times 1.4 \backslash=6.05 \mathrm{kN} / \mathrm{m}\)
\[
\mathrm{q}=46.19 \mathrm{kN} / \mathrm{m}
\]

For slab \(4 b-4 c: 10.33 \times 0.55 / 2\)
\[
45-3 \mathrm{c}: 11.89 \times 3.15 / 2
\]
\[
\begin{aligned}
& =2.84 \mathrm{kN} / \mathrm{m} \\
& =18.73 \mathrm{kN} / \mathrm{m} \\
& =6.05 \mathrm{kN} / \mathrm{m} \\
& =27.62 \mathrm{kN} / \mathrm{m}
\end{aligned}
\]

Self weight of beam
\(4.88 R A=46.19 \times 4.88212-27.62 \times 2212-43.44 \times 2\)
\(R B=83.38 \mathrm{kN}\).
\(\mathrm{RB}=46.19 \times 4.88+27 . \sim 62 \mathrm{x} 2+43.44-83.58=241 \mathrm{kN}\)

Position of beam:

RA-46.19x \(=0 \quad:-x=83.58=1.81 \mathrm{~m}\)
46.19
\(B M_{m a x}=83.58 \times 1.81-46.19 \quad x 1.8 f=76 \mathrm{kNm}\)
Provide same reinforcement as \(3 B-12 \& 14(3 Y 16)\) Bottom-titlsmm'

At the support \((3 Y 16+2 Y 20)\) Top-2067mm2
Links Y8@200clc

Deflection:
10.9RB-13 L \(=2.4 \mathrm{~m}, \quad 230 \times 300 \mathrm{~mm}\)

RA
[M
2.4 M
\[
R_{B}
\]

\section*{LOADING}

From slab RS - 3b- 11.89 x \(3.15 / 2=: 18.73\)

Selfweight of beam \(0.23 \times 0.3 \times 24 \times 1.4=2.31\)
From slab RS - 3C \(11.89 \times 3.1 S 0 / 2=18.73 \mathrm{kN} / \mathrm{mq} 2\)
From slab RS - 3C1 \(11.89 \times 3.1 \mathrm{~S} 0 / 2=18.73 \mathrm{kN} / \mathrm{m}\)
\(R A=2.4^{2} \times 21.04^{2} 12+18.75 \times 0.7^{2} 12 \times 2.0 S+\sim \times 1.7 \times 18.73 \times 1 / 3 \times 1.7 / 2.4\)\(60.60+4.58+9.02 / 2.4=30.91 \mathrm{kN}\)
\[
\mathrm{RB}=18.73 \times 0.7+\sim(18.73) \times 1.7+21.07 \times 2.4-119.88
\]
\[
=13.11+l S .92+S O . S 7-30.91=48.69 \mathrm{kN}
\]
Position of BMm
R.tl \(-21.04 \mathrm{x}-18.73 \mathrm{x}=0\)
\(\mathrm{x}=30.91 / 39.77=0.70 \mathrm{~m}\)
\(B M \max =30.91 \times 0.7-18.73 \times\) O.i \(12-21 . Q 4 x 0.82 / 2\)
\(=21.64-4 . S 9-S .1 S=11.90 \mathrm{kNm}\)
Provide 2 Y16 Bottom.
Links Y8@230 cle.
10.10 RB-15 \(\mathrm{L}=4.77,300 \times 300 \mathrm{~mm}\).
\(\mathrm{F}=44.90 \mathrm{kN}\)
IS.73kN/M
\(9.36 \mathrm{kN} / \mathrm{M}\)2.00M
4.77MRB

\section*{LOADING}

From slab RS-3b- \(\quad 11.89 \times 3.1 \mathrm{~S} / 2=18.73 \mathrm{kN} / \mathrm{m}\)
\[
\text { Self weight }=2.31 \mathrm{kN} / \mathrm{m} \quad \text { q2 }
\]
\[
\mathrm{q} 2=21.04 \mathrm{kN} / \mathrm{m}
\]

From slab RS - 3d - \(11.89 \times 1 . S 7 S / 2=9.36 \mathrm{kN} / \mathrm{m}=\mathrm{Q} 1\)
From slab RS - 3c- \(\quad=18.73 \mathrm{kN} / \mathrm{m}=Q 3\)
\[
\begin{aligned}
\begin{aligned}
\mathrm{RA}=21 . & .04 \times 4.77212+18.73 \times 2 \times 3.77+44.9 \times 2.77 / 4.77 \\
& +9.36 \times 4.77212=239.36+141.22+124.37+35.91 \\
\mathrm{RA}_{\mathrm{A}} \quad & =113.4 \mathrm{kN} \\
\text { Rs }= & 18.73 \times 2+44.90+9.36 \times 2.77+21.04+4.77-113.4=95.1 \mathrm{kN} \\
\text { RB } \quad= & 95.1 \mathrm{kN}
\end{aligned}
\end{aligned}
\]

\section*{Position of BMmax}
\[
\begin{aligned}
& \text { Rs }-(21.04+9.36) \mathrm{x}=0 \\
& \mathrm{x}=3^{\prime} 13 \mathrm{~m}
\end{aligned}
\]

Mmax \(95.1 \times 3.13-21.04 \times 3.134 .7 i \quad 12 / 2-9.36 \times 2.77 \times(3.13-2.77)-44.9 x(3.13-2.77)\)
\[
=297.7-103.06-9.33-16.16
\]
\[
=169 \mathrm{kNm}
\]
\[
K=\quad 169 \times 106 \quad=0.36
\]
\[
30 \times 230 \times 2622
\]

Increase breadth to 300 mm .

\section*{Hence, beam size \(=300 \times 300\)}
\[
K=169 x 106 \quad=0.27
\]
\[
30 \times \prime 300 \times 2622
\]
A1S \(=\) M-0.156fcubd 2 \(\mathrm{d} 1=20+8+8=36 \mathrm{~mm}\)
\(0.87 \mathrm{fy}(\mathrm{d}-\mathrm{d} 1)\)
\(A_{1 s^{\prime}}=(169-96.38) 106=901 \mathrm{~mm}^{2}\)
\(0.87 \times 410 \times(262-36)\)
Provide 3 Y20 Top (943 mm2)
\[
\begin{aligned}
& \text { Als }=\quad 96.38 \times 106+901 \\
& 0.87 \times 410 \times 0.775 \times 262 \\
& =2331 \mathrm{~mm} 2
\end{aligned}
\]

\section*{SHEAR}
\[
\begin{aligned}
& \mathrm{V}=113 \mathrm{AkN} \\
& \mathrm{v}=113 \mathrm{~A} \times 10_{3}=1 \mathrm{~A} 4 \mathrm{kNi} \mathrm{~mm} 2 \\
& 300 \times 262 \\
& 100 \mathrm{As}=100 \times 2450=3.11 \\
& \text { bd } \quad 300 \times 262 \\
& \text { rsv = btv-v. })=300(1.44 r: 1.04) \quad=0.5517 \\
& 0.87 \text { fy } \quad 0.87 \times 250 \\
& \text { Provide RS@lSOcic }
\end{aligned}
\]

LOADS

From slab RS-4c: \(14.61 \times(8.0512+1.0)=73.41 \mathrm{kN} / \mathrm{m}\)
Self weight of beam: \(0.8 \times 004 \times 24 \times 1 . .4=10.70 \mathrm{kN} / \mathrm{m}\)
\(=84.11 \mathrm{kN} / \mathrm{m}\)
RA:: : \(84.11 \times 504 / 2=227 \mathrm{kN}=\mathrm{Rs}\)
\(\mathrm{M}=84.11 \times 50402 / 2 \quad=307 \mathrm{kNm}\)
\(b=800, d=400-20-8-12.5=359.5=360 \mathrm{~mm}\)
\[
=0.10 \quad \mathrm{z}=0.87 \mathrm{~d}=315
\]
\(30 \times 800 \times 3606\)
\(307 \times 106=2733 \mathrm{~mm}^{2}\)
\(0.87 \times 410 \times 315\)

Provide \(6 Y 25\) (2950) bottom
\(20 \%(2950)=590 \mathrm{mni}\)
Provide 3 Y16 (603mm2) Top

\section*{SHEAR}
\[
\mathrm{V}=227 \mathrm{kN}, \mathrm{v}=227 \times 106 \quad=0.79 \mathrm{~N} / \mathrm{mm} 3
\]
\[
800 \times 360
\]
\[
100 \mathrm{AS}=\quad 100 \times 2950 \quad=1.02
\]
bd \(\quad 800 \times 360\)
By interpolation
\(\mathcal{V}<=0.675 \mathrm{NI} \mathrm{mnr}{ }^{\prime}\)
\(\mathrm{Asv}=0.4(800) \quad=1.4713\)
\[
0.87 \times 250
\]

Provide doubled R8@l35c!c
Deflection:

\section*{LOAD ESTIMATION}

\section*{WALLA}
1. From Upper Roof - Col. RG-245 \(=490 \mathrm{KN}\)

RG-117 X 1-117KN
ii. G Wall- 3.82 X 1.4 X 1.3 X 6.99-49KN
iii. 6 mm Platform Slab-13.04X 2.33 X 6.99-106KN

2
iv. Power Roof Slab RS - 4C: 10:44 X 8.36 X 6.99-305KN

2
v. 1a- 3 rd Flr. Slab (S - 3a, 25-3a, \(35-3 a)\) : 11.89X 3.8 X. 6.99 X \(3-471 \mathrm{KN}\)
|ri. Groud Floor: GS - 4b: 11.89 X 3.8 X 6.99-160KN
2
vii. SelfWt Of Wall: \(0.23(17.35+1.3) X 24\) X 6.99 X 1.4)- 1007 KN \(2,708 \mathrm{KN}\)
\(1 \mathrm{Y} \sim\)
~elfWeyin: 1067 X \(2.1=303 .!>-\)-;
6.99

\section*{WALL')}

From Slab: Roof- Ground Floor (Rs - 4d, S-2c, 25- 2c, 35-2c, Gs-4c) \((11.89 \mathrm{X} 3.14) \mathrm{X} 5 \mathrm{X} 3.14=147 \mathrm{KN}\)

4
From 9" Wall- 3.82 X 1.4X 1.3 X \(3.143=22 \mathrm{KN}\)
SelfWt: 303 X \(3.143=453 \mathrm{KN}\)
2.1 622KN

WALL 4
Wt Of Wall \(3+0.26\) X 11.89 X 3.143 X \(5=671 \mathrm{KN}\)

\section*{WALL 5}

From Slab: Grd - 3rd Fir (Gs - 4, S-3a, 25-3a, 35-3a)
\[
11.89 \times 3.8 \times 3.143 \times 4=284 \mathrm{KN}
\]

From Lower Roof Slab 455-4:5
\[
=10.89 \mathrm{X} 8.36 \mathrm{X} 3.143=143 \mathrm{KN}
\]

FrQ,~9" Wall 2
\(\sim \mathrm{S} \sim \mathrm{el} \sim \mathrm{f} \sim \mathrm{W} \sim \mathrm{t} \sim:============\sim\) \(=22 \mathrm{KN}\)

Load Summation:
Wall 1-2,708 X \(2=5,416 \mathrm{KN}\)
Wall 2-302X2 \(=604 \mathrm{KN}\)
WaJl3 - 622 X \(2=1244 \mathrm{KN}\)
Wall 4-671 X \(2=1342 \mathrm{KN}\)
Wall 5-1082 X \(4=4328 \mathrm{KN}\)
\(\mathrm{IN}=12,934 \mathrm{KN}\)
Ar
\(12934 \times 1.1\)
\(1.47 \times(300-0.55 \times 20)\)
Provide base \(13.90 \times 3.54 \mathrm{~m} \times 0.4=49.2 \mathrm{~m} 2\) qc (Earth pressure) \(\quad 12934=\)

```

$\mathrm{ly}=1$ for both $\mathrm{a} \& \mathrm{~b}$

```
lu
Panel a - case 7

Panel a
\[
\mathrm{x}=0.043 \text { Span }
\]
\[
\mathrm{y}=0.043 \text { Span }
\]
\[
x y=0.058 \text { support }
\]
\(m x=0 . Q 43 \times 263 \times 3.1432=\)
\(m y=0.043 \times 263 \times 3.1432=112 K N m / m\)

At the continious edge
\(\mathrm{m} \kappa \mathrm{Y}=0.058 \times 263 \times 3.1432=-151 \mathrm{KNm}\)
\(\mathrm{d}=400-50-10=340 \mathrm{~mm}\)
\(\mathrm{k}=\underset{\mathrm{m}}{\mathrm{m}} \quad 112 \times 106 \quad 0.03\)
feubj' \(\quad 30 \times 1000 \times 3402\)
\(7=0.950=323\)
As \(=\quad 112 \times 106 \quad 972 \mathrm{~mm} 2 / \mathrm{m}\)
\(0.87 \times 410 \times 323\)
Provide yI6@200c/c (1010mm2)
Bothways

At support
\(\mathrm{As}=151 \times 972=1310 \mathrm{~mm} 2\)
112
Provide 16@150\% (1340rnm2)
(under walls)

Provide
Y16@200 cle
i.e. mid-
span top bothways

Provide Y16@150 "t, bottom at support (i.e. continious edge)

\section*{PANEL B}

"Runners for the bottom bar
Provide V.13bh \(=0.13 \times 1000 \times 400=520 \mathrm{~m} 2\)
=YI6@300mm
Checks
1. Punching shear: punching shear cannot be checked since the critical perimeter
11. 1.5 d from the wall face \((1.5 \times 340=\) 510 mm) lies outside the base.
iii. Shear: lies outside base

\title{
22/CC FOUNDATIONS \\ PAD FOUNDATION FOR COLUMNS C1\&: C-26
}
22.1
\[
\mathrm{N}=3531.3 \mathrm{KN} \quad \mathrm{~F}-2
\]

Allowed bearing pressure of soil \(=300 \mathrm{KN} / \mathrm{m}_{2}\)
.. \(\mathrm{AF}=3531.3 \times 1.1\)
1.46 (300-(0.55 x 20)
provide3.Ox30
\[
\begin{gathered}
\text { Provide footing }: 3.0 \times 3.0 \times 0.7 \mathrm{~m} \\
\mathrm{qc}(\text { Em1 hpressure })=367.51 \quad 3.12=392.4 \mathrm{kn} 1 \mathrm{~m} 2
\end{gathered}
\]

At the col. face of the critical section: \(b=3000 \mathrm{~mm}\)
\[
\begin{aligned}
& \mathrm{M}=367.5 \times 3 \times 1.22 / 2=1367 \mathrm{kN} / \mathrm{m} \\
& \mathrm{Min} . \mathrm{d}=700-50-2-10=520 \mathrm{mn} \\
& \mathrm{~h}=700 \mathrm{~mm} \\
& \mathrm{k}=847 \times 106 / 30 \times 300 \times 620 \\
& \mathrm{z}=0.95 \times 620 \quad 80=637=6025 \mathrm{~mm} 2 \\
& \mathrm{As}=847 \times 106=0.87 \times 410 \times 494
\end{aligned}
\]

Provide 13Y25both ways
bar spacing \(>750\) or 3d whichever is smaller
0) Check for min reinforcement
\(100 \mathrm{As}=\quad \begin{aligned} & 100 \times 6025 \\ & 3000 \times 700\end{aligned} \quad=0.29>0.13\)
bh \(3000 \times 700\)

Max spacing \(=750 \mathrm{~mm}\). therefore the reinforcement provided meets the requirement specified by the code for minimum area and maximum bar spacin In a slab
(ii) Check for punching shear

Critical perimeter \(-\mathrm{u}=\mathrm{col}\). Perimeter \(+8 \times 1.5 \mathrm{col}\).
\[
0.6 \times 4+8 \times 1.5 \times 0.670 \quad=\quad 10.44 \mathrm{~m}
\]

Area with perimeter \(==(0.6+3 x 0.620 i=6.81 \mathrm{~m} 2\)
Punching shear force \(\mathrm{v}=367.5(32-(6.81 / 4) 2=2242 \mathrm{kN}\)

Punching shear stress \(\mathrm{v}=2242 \times 103 \quad=0.35 \mathrm{~N} / \mathrm{mm} 2\)
\(10440 \times 620\)
by interpolation \(\quad v \ll=0.47 \mathrm{~N} / \mathrm{mm} 2\)
:. \(0.35<0.47\), hence the chosen depth 700 mm is okay
Check for shear
\(1.2-.671 .0 \mathrm{~d}=670 \mathrm{~mm}\)
\(1.2-0.62=0.48, \quad 1.0 x 0.620=0.620 \mathrm{~m}\)
shear
At the critical section for shear, 1.0d from the column face
\[
\mathrm{V}=367 \times 3 \times 0.48 \quad=529 \mathrm{kN}
\]
\[
\mathrm{v}=529 \times 10_{3} \quad=0.28 \mathrm{~N} / \mathrm{mm} 2
\]
\[
3000 \times 620
\]
\(100 \mathrm{As} \quad=0.32\)
bd
Shear stress \(\mathrm{Vc}=0.44 \mathrm{~N} / \mathrm{mm} 2\)
\(\therefore 0.28<0.44 \mathrm{~N} / \mathrm{mm} 2\), hence the section is adequate i.e \(3000 \times 3000 \times 750 \mathrm{mnl}\) is okay.
\[
\text { N } 2372 \mathrm{KN}
\]

F-3
\[
\mathrm{AF}=2372 \times 11.1
\]
\[
1.47(300-0.55 \times 20
\]
provide base \(2.20 \times 2.80=6.75 \mathrm{~m}^{2}\)
\[
\mathrm{AF}=6.75 \mathrm{~m} 2
\]
\(\mathrm{qc}(\) Earth pressure \()=2372 / 6.75=351.4 \mathrm{~K} . \mathrm{N} / \mathrm{m}^{2}\)
Assume \(\mathrm{h}=6001 \mathrm{mn}\)
\(d=600-50-10=540 \mathrm{~mm}\)
At the face of column \(b=2250 \mathrm{~mm}\)
\[
\mathrm{M}=351.4 \times 2.25 \times 2.8=889.5 \mathrm{kNm}
\]
\[
\mathrm{z}=0.95 \times 540=394 \mathrm{~mm}
\]
\[
\mathrm{As}=889.5 \times 10_{6} \quad=4861 \mathrm{~mm} 2
\]
\[
0.87 \times 910 \times 394
\]

\section*{Provide (16Y20 (S030'm2)}
\[
\mathrm{My}=351.4 \times 3 \times 1.132 \quad=\quad 667 \mathrm{kNm}
\]
\[
\mathrm{d}=600-50-20-10 \quad=520 \mathrm{~mm}
\]
\[
\mathrm{d}=600-50-20-10=52 \mathrm{vmm}
\]
\[
\mathrm{z}=0.95 \times 520=494 \mathrm{~mm}
\]
\[
\mathrm{As}=667 \times 10_{6} \quad=3785 \mathrm{~mm} 2
\]
\[
0.87 \times 410 \times 494
\]

Provide 13 Y 20 (4083 mm 2)
Provide 13Y20

\section*{Checks}
i) Min reinforcement \(\begin{gathered}100 \times 5030 \\ 2250 \times 500\end{gathered} \quad=0.45>0.13 \mathrm{OK}\).

Spacing 750mm max. OK.

\section*{Punching shear}
ii) Critical perimeter \(-\mathrm{v}=\) col. Perimeter \(+8 \mathrm{xl} . \mathrm{Sd}\)
\[
\begin{aligned}
& =2(1 . \mathrm{SxO} . \mathrm{S} 40 \times 2+1.2+1 . \mathrm{SxO} .52 \times 2+0.45) \\
& =9.66 \mathrm{~m}
\end{aligned}
\]

Table S.I mosley
\(\mathrm{V}=351.4(2.25 \mathrm{x} 3-(9.66 / 4) 2) \quad=323 \mathrm{kN}\)
\(\mathrm{v}=323 \times 103 \quad=0.06 \mathrm{~N} / \mathrm{mm}^{2}\)
9660x540
\(100 \mathrm{As}=100 \mathrm{xS} 030=0.3\)
bd \(3000 \times 540\)
\(\mathrm{vc}=0.44 \mathrm{~N} / \mathrm{mm} 2\)
\(0.06<0.44 \mathrm{~N} / \mathrm{mm} 2\), the chosen depth is adequate
(iii) check for shear \(0.90-0.54=0.46 \mathrm{~m}\)
\(\mathrm{V}=351.4 \times 2.25 \times 0.46=364 \mathrm{kN}\)
\(\mathrm{v}=364 \mathrm{x} 103 \quad=0.43 \mathrm{~N} / \mathrm{mm} 2\)

2250x540

By vc from table 5.1 mosley \(=0.43 \mathrm{~N} / \mathrm{mm}_{2}\)
:. \(0.42<0.43 \mathrm{~N} / \mathrm{mm} 2\)
Hence section is OK
i.e 22 S 0 x 3000 xSOO is OK

\subsection*{22.4 PAD FOUNDATION FOR C-2, C-2a C-3, C-3a \& C-4}
\(\mathrm{N}=2388 \mathrm{kN}\)
\(\mathrm{AF}=1.1 \times 2388 / 1.47(300-(0.55 \times 20)=6.18 \mathrm{~mm} 2\)
Provide base \(2.5 \times 2.5 \mathrm{xO} .6 \mathrm{~m}\), Area \(=6.25 \mathrm{~mm}^{2}\)
\(\mathrm{d}=600-50-20-10=520 \mathrm{~d}\)
\(\mathrm{qc}(\) Earth pressure \()=2388 / 6.25 \quad=382 \mathrm{kN} / \mathrm{m} 2\)
At the face of column \(b=2500\)
\(\mathrm{M}=\quad 382 \times 0.952 \times 2.5 / 2^{\prime}=431 \mathrm{kNm}\)
\(\mathrm{Z}=0.95 \times 520=494\)
As \(=431 \times 10_{6}=2446 \mathrm{~mm}^{2}\)
\(0.87 \times 410 \times 494\)
Provide 13Y16(2613mm2) i.e Y16@180 both ways
Provide 13Y16

Checks
(i) Min reinforcement-, \(100 \times 2613=0.17>0.13\)
\(2500 \times 600\)
(ii) Punching shear:-

Critical perimeter \(=\mathrm{v}=(1.5 \mathrm{xO} .52 \times 2+0.6) 4\)
\(=8.64 \mathrm{~m}\)
\(\mathrm{V}=382\) (2.52_ (8.64)2/4)
\(=605 \mathrm{KN}\)
\(\mathrm{v}=605000 \quad=0.13 \mathrm{~N} / \mathrm{mm} 2\)
\(8640 \times 520\)
\(100 \mathrm{As}=100 \times 2613=0.20\).
bd \(2500 \times 520\)
by interpolation \(\quad \mathrm{IlC}=0.4 \mathrm{~N} / \mathrm{mm} 2>0.13\)
hence, the depth is adequate.
Check for shear
\(0.95-0.52=0.43\)
\(1.0 \mathrm{~d}=520\)
\(0.95-0.52=0.43\)
\(\mathrm{I} . \mathrm{Od}=520\)
\(\sim++|-+\sim-++|\)
\[
\mathrm{V}=382 \times 2.5 \times 0.43=411 \mathrm{Kn}
\]
\[
\mathrm{v}=411 \mathrm{xl03}=0.32 \mathrm{~N} / \mathrm{mm}_{2}<\mathrm{Vc}=0.4 \mathrm{~N} / \mathrm{mm}_{2}
\]
\(2500 \times 520\)
Hence, the seetin is okay
i.e \(2.5 \times 2.5 \times O .6\) mis okay
22.5 Combined footings for column C-6a, C-6b
F-6
Loads:
\(2 \mathrm{~N}=1485 \mathrm{x}\) \(=2970\)
\(\mathrm{AF}=2970 \mathrm{xl} .1=7.46 \mathrm{~m} 2\)
\(1.46 \times 300\)
Provide footing \(1.8 \times 4.8=8.64 \mathrm{~m} 2\)
\(\%(\) earth pressure \()=2970=344 K n 1 m_{2}\)8.64
0.9 m 3.0 m 0.9 m
0.9m

\section*{PAD FOOTING FOR ~OLUMNS C-S, C-=6a, C-6b}
F-7 \& F-7a
\[
\mathrm{N}=1800 \mathrm{Kn} \quad: .2 \mathrm{~N}=3600 \mathrm{Kn}
\]
\[
\text { characteristic }=1.1 \times 3600=2694 \mathrm{Kn}
\]
\[
1.47
\]
\[
\mathrm{Ap}=2694 \quad=9.32 \mathrm{nl}
\]
\[
300-(0.55 \times 20)
\]
\[
066 \text { 80 }
\]
\[
\text { Area of the rectangle }=(3+2 x)(2 x)=9.38
\]
By solving for \(\mathrm{x}=0.96 \mathrm{~m}\)
Hence, adopt base area \(2 \times 5=10 \mathrm{~m} 2=\) provide \(2 \times 5 \times 0.6 \mathrm{~m}\)
\(\%(\) earth pressure \()=3600=360 \mathrm{kN} / \mathrm{m}^{2}\)
10
REINFORCEMENT (a) (longitudinal bending)
(i) Cantitever: \(\mathrm{M} \backslash=3600 \times 2.0 x\) (1.oi \(=360 \mathrm{kNm}\)
2
\(\mathrm{b}=2000, \mathrm{~d}=600-50-8=542 \mathrm{II} 1 . \mathrm{J} 11\).
As \(=360 \times 106=1960 \mathrm{~mm} 2\)
\(0.87 \times 410 x O .95 x 542\)
Provide 7Y20(2200mm2) bottom
7Y20@290\% bottom
Transverse bending
\(\mathrm{b}=5.0 \mathrm{~m}, \mathrm{~d}=600-50-20-10=5 \mathrm{comm}\)
\(\mathrm{M} /=360 \times 12 \times 5=900 \mathrm{Knm}\)

\section*{Provide 17Y20(5340rnm2) bottom}

\section*{Provide 17Y20@bottom}

\section*{Min reinforcement - O.13x5000x5340}

100
\[
=3380 \mathrm{rnm} 2<5108 \mathrm{~mm} 2
\]

\section*{Checks}
(i) Punching shear:Critical perimeter u (1.5xO:542x2+0.91z)+ \((1.5 \mathrm{xO} .520 \mathrm{x} 2+0 . \mathrm{dz}) \mathrm{x} 2\)
\(=(2.08+2.01) \times 2=8.18 \mathrm{~m}\)
\(\mathrm{V}=360[2 \mathrm{x} 5-(1.5 \mathrm{xO} .52 \times 2+0.9)(1.5 \mathrm{xO} .520 \times 2+0.9) \times 2]\)
2
2
\(360=(10-[(2.08)(2.01) \times 2]\)
.. \(\mathrm{V}=(10-8.36) 360=589 \mathrm{kN}\)
\(\mathrm{v}=589000 \quad=\quad 0.13 \mathrm{~N} / \mathrm{mm} 2\)
81880x542
by interpolation \(\mathrm{v} .=0.40 \mathrm{~N} / \mathrm{mm}^{2}>0.13 \mathrm{~N} / \mathrm{mm}^{2}\)
the depth is Ok
(ii) Shear
\[
\begin{array}{lll}
\mathrm{V}=360 \times 2 \times 0.458 & = & 330 \mathrm{KN} \\
\mathrm{v}=33000 & & 0.30 \mathrm{~N} / \mathrm{mnl} \\
& 2000 \times 542 &
\end{array}
\]
\[
100 \mathrm{As}=0.2
\]
bd
\(v ;=0.40 \mathrm{~N} / \mathrm{mm}^{2}>0.30 \mathrm{Nm}\)
The chosen section is Ok

shear
At the critical section for shear, 1.0 d from the column face
\[
\begin{array}{ll}
\mathrm{V}=367 \times 3 \times 0.48 & =529 \mathrm{kN} \\
\mathrm{v}= & 529 \times 103
\end{array}
\]
\[
3000 \times 620
\]
\[
100 \mathrm{As} \quad=0.32
\]
bd

Shear stress \(v ;=0.44 \mathrm{~N} / \mathrm{mm}_{2}\)
.. \(0.28<0.44 \mathrm{~N} / \mathrm{mm} 2\), hence the section is adequate i.e \(3000 \times 3000 \times 750 \mathrm{~mm}\) is okay.
22.3 PAD FOUNDATION FOR COLUMN C-11, C-12, \& C-13

N2372KN F-3
\[
\mathrm{AF}=2372 \times 11.1 \quad 6.14 \mathrm{~m} 2
\]
\(1.47(300-0.55 \times 20\)
provide base \(2.20 \times 2.80=6.75 \mathrm{~m} 2\)
\(\mathrm{qc}(\) Earth pressure \()=2372 / 6.75=351.4 \mathrm{KN} / \mathrm{m}_{2}\)
Assume \(\mathrm{h}=600 \mathrm{~mm}\)
\(100 \mathrm{As}=100 \times 5030=0.3\)
bd \(3000 \times 540\)
\(\mathrm{vc}=0.44 \mathrm{~N} / \mathrm{mm} 2\)
\(0.06<0.44 \mathrm{~N} /\) rrun 2 , the chosen depth is adequate
(iii) check for shear \(0.90-0.54=0.46 \mathrm{~m}\)
\(\mathrm{V}=351.4 \times 2.25 \times 0.46=364 \mathrm{kN}\)
\(\mathrm{v}=364 \mathrm{x} 10 \mathrm{~B} \quad=0.43 \mathrm{~N} / \mathrm{mm} 2\)
\(2250 \times 540\)
By vc from table 5.1 mosley \(=0.43 \mathrm{~N} / \mathrm{mm}_{2}\)
\(\therefore 0.42<0.43 \mathrm{~N} / \mathrm{mm} 2\)
Hence section is OK
i.e \(2250 \times 3000 \times 500\) is OK
22.4 PAD FOUNDATION FOR C-2, C-2a C-3, C-3a \& C-4
\(\mathrm{N}=2388 \mathrm{kN}\)
\(\mathrm{AF}=1.1 \times 2388 / 1.47(300-(0.55 \times 20)=6.18 \mathrm{~mm} 2\)
Provide base \(2.5 \times 2.5 \times 0.6 \mathrm{~m}\), Area \(=6.25 \mathrm{~mm} 2\)
\(\mathrm{d}=600-50-20-10=520 \mathrm{~d}\)
\(\mathrm{qc}(\) Earth pressure \()=2388 / 6.25 \quad=382 \mathrm{kN} / \mathrm{m}_{2}\)
At the face of column \(b=2500\)
\(\mathrm{M}=\quad 382 \times 0.952 \times 2.5 / 2=431 \mathrm{kNm}\)
\(V=382 \times 2.5 \times 0.43=411 \mathrm{Kn}\)
\(\mathrm{v}=411 \mathrm{x} 103=0.32 \mathrm{~N} / \mathrm{mm}_{2}<\mathrm{Ve}=0.4 \mathrm{~N} / \mathrm{mm} 2\)
2500x520
Hence, the seetin is okay
i.e \(2.5 \times 2.5 \mathrm{xO} .6 \mathrm{~m}\) is okay
22.5 COMBINED FOOTINGS FOR COLUMN C-6A, C-6B
F-6'
Loads:
\(2 \mathrm{~N}=1485 \mathrm{x}\) \(=2970\)
AF \(=2970 x 1.1\) \(=7.46 \mathrm{~m} 2\)
1.46x300
Provide footing \(1.8 \times 4.8=8.64 \mathrm{~m} 2\)
\(\%(\) earth pressure \()=2970=344\) Kn1m \(_{2}\)
8.64
0.9m 3.0 m O.9m
0.9m1.80.9m
4.8 m
\(100 \mathrm{As}=0.2\)
bd
\(\nu ;=0.40 \mathrm{~N} / \mathrm{mm} 2>0.30 \mathrm{Nm}\)
The chosen section is okay

\section*{22/CC FOUNDATIONS \\ PAD FOUNDATION FOR COLUMNS C1 \& C-26}
22.1
\[
\mathrm{N}=3531.3 \mathrm{KN} \quad \mathrm{~F}-2
\]

Allowed bearing pressure of soil \(300 \mathrm{KN} / \mathrm{m} 2\)
\[
\begin{aligned}
. . & \\
\mathrm{AF}= & 3531.3 \times 1.1 \\
& 1.46(300-(0.55 \times 20) \\
& =9.21 \mathrm{~m}^{2}
\end{aligned}
\]
\[
\begin{gathered}
\text { Provide footing }: 3.1 \times 3.1 \times 0.7 \mathrm{~m} \\
\mathrm{qc}(\text { Earth pressure })=367.51 \quad 3.12=392.4 \mathrm{kn} 1 \mathrm{~m} 2
\end{gathered}
\]

At the col. face of the critical section: \(b=3000 \mathrm{~mm}\)
\[
\begin{aligned}
& \mathrm{M}=367.5 \times 3 \times 1.22 / 2=1369 \mathrm{kNm} \\
& \text { Min. } \mathrm{d}=700-50-20-10=620 \mathrm{mn} \\
& \mathrm{~h}=700 \mathrm{~mm} \\
& \mathrm{k}=847 \times 106 / 30 \times 300 \times 620 \\
& \mathrm{z}=0.95 \times 620 \quad=637 \\
& \text { As= } \quad 1369 \times 106=6025 \mathrm{~mm} 2 \\
& \quad 0.87 \times 410 \times 637
\end{aligned}
\]

\section*{PAD FOOTING FOR COLUMN C6 \& C8}
\begin{tabular}{|c|c|c|c|}
\hline re-cs & N & 2478kn & \\
\hline AF & & \(2478 \times 1.1\) & 6.42 m 2 \\
\hline
\end{tabular}
1.47 (3 N vcbv v vcv vc vc b bv b db b vb bvc BN BN BBN BBNB BN NNB N BN/ NB NN B ? - 0.55 x 20)

Provide base \(2.6 \times 2 ¥ 6 \times 0.5=6.76 \mathrm{~m} 2\)
q, (Earth Pressure) \(\quad=\quad 247 \sim=366.6 \mathrm{kn} / \mathrm{m} 2 \quad 0.55\)

At the face of column, \(\quad b=2600 \mathrm{~mm}\)
Moment M, \(=366.6 \times 2.6 \times 1.082 \times 0.5\).- 55 Iknm d:: 480 mm
\(\mathrm{d}=550-50-20=4 \sim 0 \mathrm{~mm}\)
7 r c. (I.Q5)(430; 4\%
As= \(551 \times 106 \quad=\quad 3388 \mathrm{~mm}\)
fr \(\ll\) ide 11 Y20
both ways

Provide 11 Y 20 (3454 mm 2) both ways
Checks
1. Min. reinforcement \(=0.13 \times 2600 \times 400+100\)
ii. Punching shear.

Critical perimeter \(\quad(1.5 \times 0.48 \times 2+0.45) \times 4\)
\(=\quad 6.96 \mathrm{~m}\).
\(\mathrm{V} \quad=\quad 366.6\) (2.62-7.56f)
\(=\quad 1368 \quad 1169 \mathrm{kN}\)

At the column face
Shear stress, vil \(=2478 \times 10_{3}==\quad 2.22<\) O.g-feu \(2.22<4.38\) \(2600 \times 480\)

Punching shear stress \(=\mathrm{v}=1169 \times 103=0.32 \mathrm{~N} / \mathrm{m} 7\). \(7560 \times 480\)
\(=\quad 100 \times 3768 \quad=\quad 0.30\)
\(2600 \times 480\)
by interpolation, \(\quad V_{0} \quad 0.44>0.32 \mathrm{~N} / \mathrm{mm}\)
Depth 550 mm is okay.
Shear force \(v=367.5 \times 3.1 \times 0.610\)

\[
=\quad 695 \mathrm{KN}
\]

\[
\mathrm{v} \quad=\quad 698.4 \times 103=0.35 \mathrm{~N} / \mathrm{mm}^{2}
\]

\[
3100 \times 640
\]

\[
\text { 100As } \quad=\quad 0.3, \mathrm{vc}=0.44 \mathrm{~N} / \mathrm{mm} 2
\]

v, \(\quad>\quad 0.35 \mathrm{~N} / \mathrm{mrn} 2\)

The chosen section is okay
22.3 PAD FOUNDATION FOR COLUMN C-11, C-12 \& C-13 h=700mm
\begin{tabular}{ll}
N \\
\(\mathrm{AF}=\) & 2372 KN \\
2372 XIJI & \(\mathrm{F}-3\)
\end{tabular}
\(\mathrm{AF}=2372\) XI.I
1.47 (300-0.55 x 20)
\(\mathrm{b}=3100 \mathrm{~mm}\)
Provide base \(2.25 \times 3.00=6.75 \mathrm{~m} 2\)
4.10 IB -10
\(\mathrm{L}=3.8 \mathrm{~m}\)
\(300 \times 300\)
\(\mathrm{d}=637 \mathrm{~mm}\)

\section*{t}

\section*{Loading}
From slab 15-2b: \(11.81 \times 6 / 2==35.44 K N / m \quad\) Provide
From slab \(15-3: \quad 11.81 \times 0.52 h=2.99 K N / m \quad 13 Y 25\)
Sub rnfllobean 0.71
\(\mathrm{Q}=39.14 \mathrm{KN} / \mathrm{m}\)
both ways
Reinforcement okay
\(3.8 \mathrm{R},=\quad\) ' \(23.8 \times 39.14 \times\) 't, 3.8
R) \(=25 \mathrm{KN}\)
\(\mathrm{R} 2=\quad=1239.14 \times 3.8-25\)
\(=49 \mathrm{KN}\)
Post ofBMM.AX
\(25-39.14 X x Y 2 x=0\)
\(5.15 \mathrm{x}^{2}=25\)
\(\therefore \mathrm{x}=25\)
\(=\)
5.15
BMM.AX
\(25 x-39.14\) xlxlx
\(3.8 \quad 2 \quad 3\)
\(25 \times 2.2-1.7 \times 2.23\)
\(55-18.28=37 \mathrm{KNM}\)
\(\mathrm{h}=700\) okay
Hence
Provide \(50 \%\) of the reinforcement of beam IB-8.

Provide 13Y25both ways (6380 mm)
bar spacing \(>750\) or 3 d whichever is smaller
(i) Check for min reinforcement
\(100 \mathrm{As}=\quad 100 \times 6025=0.29>0.13\)
bh \(\quad 3000 \times 700\)

Max spacing \(=750 \mathrm{~mm}\). therefore the reinforcement provided meets the
requirement specified by the code for minimum area and maximum bar spacing in a slab
(ii), Check for punching shear

Critical perimeter \(-\mathrm{u}=\mathrm{col}\). Perimeter \(+8 \times 1.5 \mathrm{col}\). ,
\[
0.6 \mathrm{x} 4+8 \mathrm{x} 1.5 \mathrm{xO} .670=10.44 \mathrm{~m}
\]

Area with perimeter \(==(0.6+3 x 0.620) 2=6.81 \mathrm{~m} 2\)

Punching shear force \(\mathrm{v}=367.5(32-(6.8114) 2=2242 \mathrm{kN}\)

Punching shear stress \(\mathrm{v}=2242 \times 10_{3}\)

10440x620
by interpolation \(\mathrm{vc}=0.47 \mathrm{~N} / \mathrm{mm}_{2}\)
\(0.35<0.47\), hence the chosen depth 700 mm is okay

Check for shear \(\quad 1.2-.671 .0 \mathrm{~d}=670 \mathrm{~mm}\)
M1Y \(=360 x i x 5=900 \mathrm{Knm}\)
 2
As \(=900 \times 106=5108 \mathrm{rnm} 2\)
0.87 x 410 xO .95 x 520
Provide 17y20(5340rnm2) bottom

\section*{Provide 17y20@bottom}
Min reinforcement \(-0.13 \times 5000 \times 5340\)
100
\(=3380 \mathrm{rnm} 2<5108 \mathrm{rnm} 2\)
Checks
(i) Punching shear:-
Critical perimeter u (\(1.5 \times \mathrm{O} .542 \times 2+0.9 \mathrm{~h})+\)
(1.5xO.520x2+0.9h)x2
\(=(2.08+2.01) \times 2=8.18 \mathrm{~m}\)
\(\mathrm{V}=360[2 \mathrm{x} 5-(1.5 \mathrm{xO} .52 \mathrm{x} 2+0.9)(1.5 \mathrm{xO} .520 \mathrm{x} 2+0.9) \mathrm{x} 2]\)
2
\(360=(10-[(2.08)(2.01) \times 2]\)
\(\therefore \mathrm{v}=(10-8.36) 360=589 \mathrm{KN}\)
\(\mathrm{V}=589000=0.13 \mathrm{~N} / \mathrm{rnm} 2\)
81880x542
by \(\mathrm{u},=0.40 \mathrm{~N} / \mathrm{rnm} 2>0.13 \mathrm{~N} / \mathrm{rnm} 2\)
the depth is okay
(ii) Shear
\[
\begin{aligned}
& \mathrm{V} \sim 360 \times 2 \times 0.458=330 \mathrm{KN} \\
& \mathrm{U}=33000 \quad=0.30 \mathrm{~N} / \mathrm{rnm} 2
\end{aligned}
\]
22.6 PAD FOOTING FOR COLUMNS C-S, C-=6a, C-6b
\[
\begin{aligned}
& \text { F-7\&F-7a } \\
& \mathrm{N}=1800 \mathrm{Kn}: .2 \mathrm{~N}=3600 \mathrm{Kn}
\end{aligned}
\]
\[
\text { characteristic }=1.1 \times 3600=2694 \mathrm{Kn}
\]
\[
A F \cdot=2694 \quad=9.32
\]

300-(0.55x20)

Area of the rectangle \(=(3+2 \mathrm{x})(2 \mathrm{x})=9.38\)
By solving for \(\mathrm{x}=0.96\)

Hence, adopt base area \(2 \times 5=10 \mathrm{~m} 2=\) provide \(2 \times 5 \times O .6 \mathrm{~m}\)
\(\%(\) earth pressure \()=3600=360\) Knlm \(_{2}\)
10
REINFORCEMENT (a) (longitudinal bending)
(i) Cantitever: \(\mathrm{M} \backslash=3600 \times 2.0 \mathrm{x}(1.0) 2=360 \mathrm{Knm}\)

2
\(\mathrm{b}=2000, \mathrm{~d}=600-50-8=542 \mathrm{~mm}\)
As \(=360 \times 106 \quad 1960 \mathrm{~mm} 2\)
0.87x410xO.95x542

Provide 7Y20 (2200mm2) bottom

7y20@290\% botton
Tranverce bending
\(\mathrm{b}=5 . q m, \mathrm{~d}=600-50-20-10=5 \mathrm{comm}\)
```

Z= 0.9SxS20 = 494
As= 431x106 = 2446mm2
0.87x410x494

```

Provide 13Y16(2613mm2) i.e Y16@180 both ways

\section*{Checks}
(i) Min reinforcement - \(100 \times 2613=0.17>0.13\)
\(2 S 00 \times 600\)
(ii) Punching shear:-

Critical perimeter \(=\mathrm{v}=(1 . \mathrm{SxO} .52 \times 2+0.6) 4\)
\[
=8.64 \mathrm{~m}
\]
\(\mathrm{V}=382\) (2.S2_(8.64)2/4)
\(=60 S K N\)
\(\mathrm{v}=60 \mathrm{~S} 000 \quad=0.13 \mathrm{~N} / \mathrm{mm} 2\)
\(8640 \times 520\)
\(100 \mathrm{As}=100 \times 2613=0.20\)
bd 2500xS20
by interpolatin \(\mathrm{uc}=0.4 \mathrm{~N} / \mathrm{mm} 2>0.13\)
hence, the depth is adequate.
Check for shear
\[
0.9 S-0.52=0.43
\]
\[
1.0 \mathrm{~d}=S 20
\]
\[
\begin{aligned}
& 0.9 S-0.52=0.43 \\
& 1.0 \mathrm{~d}=\mathrm{S} 20 \sim \mathrm{I}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{d}=600-50-10=540 \mathrm{~mm} \\
& \text { At the face of column } b=2250 \mathrm{~mm} \\
& \mathrm{M}=351.4 \times 2.25 \times 2.8=889.5 \mathrm{kNm} \\
& \mathrm{z}=0.95 \times 540=394 \mathrm{~mm} \\
& \text { As }=889.5 \times 106 \quad=4861 \mathrm{~mm} 2 \\
& \text { 0.87x910x394 } \\
& \text { Provide (16Y20 (5030m2) } \\
& \mathrm{My}=351.4 \times 3 \times 1.132=667 \mathrm{kNm} \\
& d=600-50-20-10 \quad=520 \mathrm{~mm} \\
& \mathrm{~d}=600-50-20-10=52 \mathrm{vmm} \\
& \mathrm{z}=0.95 \times 520=494 \mathrm{~mm} \\
& \text { As }=667 \times 106 \quad=3785 \mathrm{~mm} 2 \\
& 0.87 \mathrm{x} 410 \mathrm{x} 494 \\
& \text { Provide 13Y20 (4083mm2) } \\
& \text { Checks } \\
& \text { i) Min reinforcement } 100 \times 5030 \quad=0.45>0.13 \text { OK } \\
& \text { Spacing 750mm max. OK } \\
& \text { Punching shear } \\
& \text { ii) Critical perimeter }-\mathrm{v}=\text { col. Perimeter }+8 \mathrm{x} 1.5 \mathrm{~d} \\
& =2(1.5 \mathrm{xO} .540 \mathrm{x} 2+1.2+1.5 \mathrm{xO} .52 \times 2+0.45) \\
& =9.66 \mathrm{~m}
\end{aligned}
\]

Table 5.1 mosley
\[
\begin{array}{ll}
\mathrm{V}=351.4(2.25 \times 3-(9.66 / 4) & 2) \\
=323 \mathrm{kN} \\
\mathrm{v}=323 \times 103 &
\end{array}
\]
\[
\begin{array}{llll}
\mathrm{V} & = & 366.6 \times 2.6 \times 0.6 & 572 \mathrm{kn} \\
\mathrm{v} & = & 572000 & 0.46 \mathrm{~N} / \mathrm{mm} 2
\end{array}
\]
\[
2600 \times 480
\]

\section*{EXTERNAL R/W AT CORNER WELLS}

PI
```

Assuming surchange load of $2.5 \mathrm{KN} / \mathrm{m}^{2}$ \& $85=$
he $=\sim \quad=2.5 \quad=0.125$
r, 20
PI X, = 1-Sin"Q $=1-\operatorname{Sin} 33^{\circ} \quad 0.295$
1+Sin'Q 1-Sin $33^{\circ}$
PI $=$ Karhe $=0.295 \times 20 \times 0.125=0.74 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{P}_{2}=$ Ka.rH $=0.295 \times 20 \times 3.65=21.5 \mathrm{KW} / \mathrm{m} 2$
MA $\quad=\quad 0.74 \times 3.652 \times 0.5+21.5 \times 3.652 \times 1 \_-3.5 \times$
/23
$0.62 \times 0.5 \mathrm{xL}=4.929+47.739-0.2$
3
$=\quad 52.5 \mathrm{KNm} / \mathrm{m}$
$\mathrm{h}=1000 \mathrm{~mm}, \mathrm{~d}=230-30-10 \quad=190 \mathrm{~mm}$
k $52.5 \times 106 \quad 0.05$
$30 \times 1000 \times 1902$
$\therefore: 6=0.95 \mathrm{~d}=180.5$
$\mathrm{m}=52.5 \times 106=8.15 \mathrm{mmz} / \mathrm{m}$
$0.87 \times 410 \times 180.5$
Provide proviye y12@135 't,- External N.F
Provide min. reinforcement for Runners
$=\begin{gathered}0.13 \times 1000 \times 230 \\ 100\end{gathered}=299 \mathrm{mmz} / \mathrm{m}$
Provide y10@280 \%
Mo $=52.5+(0.74 \times 3.65+21.5 \times 3.65 \times 0.5-3.5 \times 0.65 \times 0.5) \times$
$0.4+3.65 \times 20 \times 0.25=59.2 \mathrm{KNm} / \mathrm{m}$
$\mathrm{N} \quad 1.1 \times 3.65 \times 20.0+0.27 \times 0.6 \times 20+0.23 \times 3.65 \times 24.0+1.6$
x $0.4 \times 24$
1115.7 KN
e
$59.2 \quad 0.5 \mathrm{Im}>. \mathrm{LQ}=0.267$
$115.7 \quad 6$
$\max =2 \times 115.7=266 \mathrm{KN} / \mathrm{m} 2<300 \mathrm{KN} / \mathrm{m} 2$
$3 \times 1.0$ (L. $\left.\S_{-}-0.51\right)$

```

\section*{FOUNDATIONS}

\section*{22/CC PAD FOUNDATION FOR COLUMN £1 \& C6b F-2}
22.1 N 3531.3 KN
A footiy \(=3531 \mathrm{xLI} \quad=9.21 \mathrm{~m}^{2}\)
\[
1.47(300-0.55 \times 20)
\]

Provide base \(3.10 \times 3.10=9.61 \mathrm{~m} 2\)
a \(=3000-600=2500 / 2=1250\)
\(\mathrm{h}>0.5 \mathrm{a}=0.5 \times 1250=625 \mathrm{~min}\)
Hence provide \(\mathrm{h} \quad=\quad 700\)

Earth pressure qc \(\quad=\quad 3531.3 \quad=\quad 367.5 \mathrm{KN} / \mathrm{M} 2\) 3.12

At the face of column which is critical

Hence depth 750 mm is okay
\begin{tabular}{lll}
i11. & Shear: & \((\mathrm{a}-1 . \mathrm{Od})\) \\
\(=\) & 0.64 \\
Shear perimeter & \(=\) & \(1.25-(1 \times 0.637)\) \\
& \(=\) & 0.610
\end{tabular}

\section*{CHAPTER FOUR}

\subsection*{4.0 DISCUSSION OF RESULTS}

This project revealed the advantages of ribbed slab over the solid slab. The design of the 300 mm thick ribbed slab with the ribs spaced at 520 mm center - center would have taken an equivalent of 200 mm thick solid slab and is considered being uneconomical.

\section*{CHAPTER FIVE}

\subsection*{5.0 CONCLUSION AND RECOMMENDATION}

\subsection*{5.1 CONCLUSIONS}

The aim of structural design is to have a safe and economical design and detailing of this project, it can be said that the aim of this project has been achieved. The building was designed as reinforced concrete structure with ribbed slab of300mm thick (200~ clay pots with 100 mm thick topping). The stair cases and lift walls are introduced as shear walls to neutralize the effect of wind.

\subsection*{5.2 RECOMMENDATION}

Specifications should be strictly adhere to, qualified and experienced professionals should be commissioned to execute the project. The structural engineers should be allowed free hand to exercise his discretion in the execution of any projects.

\section*{REFERENCE}

British Standard CBS8110) Part I and II (1989) structural use of concrete.

British Standard (BS) 5268 Part (1988).

Musley W.H, J.H Bungey 4th Edition Reynolds Reinforced combats Designers Hand Book by

Charles .e. Reynolds, James C. Steadman and Anthony

Simplified Reinforced concrete design by Victor .0. Oyenuga```

