JOURNAL 4

International Journal of Engineering and Science Invention

Editorials Board Members

Name : Dr. Moinuddin Sarker
Qualification : PhD and Post Doctoral Speccalization : Chemistry Affiliation : Natural State Research, Inc., USA Experience : 22 Country : USA Paper Published : 65

TW, Wer	Name : Dr. ahmed nabih zaki rashed Qualification : Ph.D Specialization: Optics Comunications, Wireless Communications Affiliation : Dr. in MENOUFLA UNIVERSITY, Egypt Experience : 10 Country : Egypt Puper Published : 55
Name: Dr. Lalan Kumar Qualification : Pb,D Specinlization : SKientist, I.T. Affiliation : Central Institute of Mining and Fuel Research (CIMFR), Dhanbad Experience: 25 Country : India Paper Published : 50	

Name: Dr. Nadhir Al-Ansari
Qualification : Ph.D
Specialization : Civil, Enviroumental and Natural Resources Engineering
Affiliation: Lulen University of Technology, Sweden
Experience : 35
Country : Sweden
iu) $=0 \rightarrow 2$ Paper Published: 152

[^0]

| Name: Dr. M. Rizwan |
| :--- | :--- |
| Qualification : Ph.D |
| Specialization : Electrical Engineering |
| Affiliation : Delhi Technological University (Formaly Delhi College of Engineering) |
| Experience : 10 |
| Country : India |
| Paper Published : 27 |

Name : Dr. Vuda Sreenivasarao
Qualification : Ph.D
Specialization: Computer Science
Affiliation : Defence University college, Deberzeit, ETHIOPIA
Experience : 13
Country : Ethopia
Paper Published : 28

| Name : Dr. Abdul Mutalib Leman |
| :--- | :--- |
| Qualification: Ph.D |
| Specialization : Mechanical Engineering |
| Affiliation : Universiti Tun Hussein Onn Malaysia |
| Experience : io |
| Country : Malaysia |
| Paper Published : 75 |

| Name: Dr. Salawu .O.W |
| :--- | :--- |
| Qualification : Ph.D |
| Specialization : Inorganic Chemist |
| Affiliation : Federal University of Agriculture Makurdi, Benue State Nigeria |
| Experience : O3 |
| Country : Nigeria |
| Paper Published : 17 |

Name : Prof. Dr, GYV Victor
Qualification: PhD, CEng (UK)
Specialization : Environmental Engineering
Affiliation: AMET Maritime University
Experience : 22
Country i India
Paper Published : 20

Cost Modelling Of Mechanical and Electrical Services in Institutional Building Projects in Lagos State of Nigeria Using Selected Design Variables

*A. A. Shittu ${ }^{1}$, A. D. Adamu ${ }^{2}$ \& M. A. Shehu ${ }^{3}$
${ }^{1 \& 2}$ (Deparment of Quantity Surveying, School of Envt. Tech.,Federal University of Technology, Minna, Nigeria)
${ }^{3}$ (Department of Building Technology, School of En Polylechnic, Bida, Nigeria)

Abstract

This research of formulating predictive models for our ostudy the problem of ineffective cost control technique in the process information resulting to cost overrun. The of Mechanical and Electrical (M\&E) services due to inadequate information for the necessary analysis are need for this research thus focused on the collection of suitable relationship benveen $M \& E$ services and buideling of $M \& E$ services cost. This paper therefore examined the simple and multiple regression anatyres. Oing forms (design variables) for institutional building projects using any given institutional building project can be the findings of the research was that the cost of M\&E services of Almits. This provided a basis for developing several passed from the building form descriptars with 95% confidence projects. Recommendations from the siudy included predive models for M\&E services cosr of institutional building environmental circumstances by any user of the modeis, regular review of the models in the light of changing Keywords: Building Form, Cast Morls, for the models to stand a lest of time.

Keywords: Building Form, Cost Modeling, Design Variables, Institutional building, Mechanical/Electrical Services.

A client is very much conerned with quality, cost and
constructed at a reasonable cost and within a specified period of time. As a sants the building to be soundly Architect who may be supported by a Quantity Surveyor to exercise a grea result of this it is incumbent upon the within desired cost checks.

According to Seeley ${ }^{11 \prime}$ (1993) and lbironke ${ }^{|2|}$ (2004) the costs of buildings are infuenced by a factors, some of which are inter-related. Among the factors that make up design variables which have influence of the overall construction cost of the building project are: size of building, plan shape, circulation space, storey height, total building height, and perimeter to floor area ratio.

Seeiey ${ }^{11}$ (1993) pointed out that costs related
$10-15 \%$ of the initial capital cost and a substantial amount ochanical and Electrical (M\&E) Services may represent the services constitute above 50% of the initial cost. A por cost in-use and in some buildings such as laboratories, studies were directed towards comparing alternative methon comparisons of material costs, the most usual cost involve different compromises between capital costs and running heating, ventilation, and air-conditioning and buildings make both the provision of air-conditioning and its maine cosis. If is imporant to note that long thin Seeley (11) (1993) added that the significant varible inenance much more expensive. sanitary appliances. The total costs of installation may vary in plumbing installation is the number and rype of costs are a critical factor in the economic factor of some multi-storey buildineen low and high quality fittings. Lift additional landing involves an extra wire rope, a set of ropes ad floors it may be necessary to increase the speed and capacity of some wiring. With an increase in the number of increase cost of this element. However, the cost of lifts is in which will Seeley ${ }^{\prime \prime \prime}$ (1993) concluded that when the traffic necessitates the provis proportional to the height of the building. of liff per floor to double, but as further floors are added is and and aditional lift, it may cause the cost In some classes of buildings such as multi-storey low-rental flats lift costs to fall again until a third floor is added. of the flat.

1.1 Classification of Buildings

The Nigerian National Building Code ${ }^{[3]}$ (2006) classified buildings in to two major categories - Building Design classification and Building Construction Classification. Each of these classes of buildings is sub-divided in to various groups According to the National Building Code ${ }^{(1)}$ (2006) every building or structure whether existing or hereafter erected shall be as classified (under Building Design Classification) in the code according to its use or character of its occupancy in to one of the following of the Use Groups listed below:
(i) Use Group A - Assembly
(vii) Use Group G - Mercantile
(ii) Use Group B - Business and Professional
(viii) Use Group H - Residential
(iii) Use Group C - Education
(ix) Use Group I - Storage
(iv) Use Group D - Factory and Industries
(x) Use Group J - Mixed Use and Occupancy
(v) Use Group E - High Hazard
(xi) Use Group K - Doubtful Use Classification
(vi) Use Group F - Institutional
(xii) Use Group L - Utility and Miscellaneous

The code added that all buildings and structures shall also be graded in accordance with the degree of fire hazard as contained in Part I, Section 7 of the National Fire Code.

1.2 Classification of Building/Construction Cost

Construction cost embraces the total costs, direct and indirect, associated with transforming a design plan for material and equipment in to a project ready for operation. Okafor ${ }^{\mid 41}$ (2003) classified Construction Cost in to Direct Cost and Indirect Cost. Okafor ${ }^{[4]}$ (2003) explained further that direct costs are predominantly the cost of all plant equipment as well as materials and labour involved in the actual installation and erection of the process plant and indirect costs are associated with the support of direct construction required for an orderly completion of a project.

1.3 Mechanical and Electrical services in Residential Buildings

According to Fadamiro \& Ogunsemi ${ }^{(5)}$ (1996), the starting point for the electrical system is the services entrance and distribution board. This equipment may be of the circuit breaker or switch and fuse type. Chudley ${ }^{[6]}$ (1999) reported that a building receives the single phase electricity supply from an area electricity grid at a rating of 240 volts and a frequency of 50 hertz. These electricity grid from which the electricity supply is taken consist of four lines, three lines each carrying a 240 volts supply with the fourth serving as the common return or neutral. The line usually connected to the earth at the transformer or sub-station for safety precautions in time of fault from any electrical appliance. Each line or phase is tapped in turn together with the neutral to provide the single phase of 2400 supply.

Hall \& Greeno ${ }^{[7]}$ (2003) divided Mechanical Services in Residential Buildings into the following categories:
$\begin{array}{ll}\text { i. } & \text { Cold Water Supply System } \\ \text { ii. } & \text { Hot Water Supply System }\end{array}$
iii. Heating System
iv. Ventilation System
v. Air-Conditioning
vi. Discharge and Waste System
Hall \& Ger that cold water supply system is supplied as Direct and Indirect system. Hall \& Greeno
In the direct system, pipework is minimal and the storage cistern supplying the hot water cylinder need only have 115 litres capacity with drinking water being made available at every draw-off point. The indirect system of cold water supply has only one drinking water outlet al the sink and it has a minimum capucity of 230 litres, for a location in the roof space.

The hot water supply system was also categorized as direct and indirect according to Hall \& Greeno ${ }^{[7]}$ (2003). In the hot water direct system, the hot water from the boiler mixes directly with the water in the cylinder and the system is not suited to hard water, typically of those extracted from boreholes in to chalk or limestone strata. The indirect hot water system is used in hard water areas to prevent scaling or furring of the boiler and primary circuit is not drawn off through the taps and the same water circulates continuously throughout the boiler, primary circuit and heat exchange coil inside the storage cylinder.

According to Martin \& Oughton ${ }^{[8]}$ (1989), the main function of services in a building is to provide comfort to the occupants. The ancient taught that man had seven senses, but it is no more than coincidence that the principal influences which affect human comfort are also seven in number - temperature, humidity, radiation, air volume, air movement, air purity and ionization.

Oforeh ${ }^{|9|}$ (1997) contributed that conduit in mechanical installations functions mainly to provide protection to the cables drawn in them, thereby making the building occupants safe from construction sites to provide lighting to Chudley ${ }^{10}$ (1999) purported that a supply of electricity is usually reqide the power to drive small and large items of the various units of accommodation and may also be needed to provide in power 2 Page
plant. Chudley ${ }^{[61}$ (1999) added that for efficiency of work on site, two sources of electrical supply to the site are possible, namely:
i. Portable Self-powered generator.
ii. Metered supply from the local area electricity company.

1.4 Cost Modeling

Morenikeji ${ }^{199}$ (2006) defined a model as an abstraction from reality and can be expressed in the form of hardware like the architect's model of a dream house or as a mathematical equation or a theory, which helps to simplify complex situation. Willis \& Ashworth ${ }^{\text {(11) }}$ (1987) defined cost modeling as a modern technique to be used for forecasting the estimated cost of a proposed construction project. Ferry \& Brandon ${ }^{(12)}$ (1991) gave a more detailed definition of cost modeling as the symbolic representation of a system expressing the content of that system in terms of the factors which influence its cost.

Jagboro ${ }^{[131}$ (1995) reported that the application of advanced cost modeling techniques depends on the utilization of a highly interactive simulation of actual situation with the aid of a computer program. Jagboro ${ }^{[13]}$ (1995) added that construction costs are practically derived from a number of variables which are either structural or economic in nature. Strictural variables are those that bear relationship to the structural design of the building and they include the following:
(a) Gross floor area of the building
(b) Area of suspended floor
(c) Number of floors
(d) Height of building
(e) Storey height
(f) Number of lifts
(g) Number of stair cases
(h) Perimeter of rypical floor

Economic variables, according to Jagboro ${ }^{[13]}$ (1995), comprise of factors which have economic bearing on the construction; among these are:
(a) Wages of skilled and unskilled labourers
(b) Cost of basic material inputs such as cement, reinforcing bars, form work, aggregate etc.
(c) Geographical location of the project
(d) Level of interest rate prevailing in the national economy
(e) Level of inflation in the national economy which may be assessed using the consumer price index.

1.5 Factors Affecring Building Design and Components

Seeley "11 (1993) reported that as a general rule the simpler the shape of building, the lower will be its unit cost. As a building becomes longer and narrower or its outline is made more complicated and irregular so the perimeter/floor area ratio will increase, accompanied by a higher unit cost. Building shape has its major impact on the areas and sizes of the vertical components such as walls, windows, partitions, etc., as well as the perimeter detailing such as ground beams, fascias and eaves of roof and these have important effects on cost. Different plans can be compared by examining the ratio of enclosing walls to floor area in square metres (known as wall/floor ratio). Seeley ${ }^{(11)}$ (1993) further stated that the lower the wall/floor ratio, the more economical will be the proposal.

Ferry \& Brandon ${ }^{[12]}$ (1991) gave some simple example in measuring the cost efficiency of a building shape as thus:
i. wall/floor ratio

This is a very familiar method but it can only be used to compare buildings with a similar floor area and does not have an optimum reference point such as those below;
ii. length/Breadth index $=p+V(p 2-16 a) / p-\sqrt{ }(p 2-16 a)$

Where $\mathrm{P}=$ Perimeter of building
$a=$ Area of building.
In this index any right angled plan shape of building is reduced to a rectangle having the same area and perimeter as the building. Curved angles can be dealt with by a weighting system. The advantage here is that the rectangular shape allows u quick mental check for efficiency.
iii. Plan/Shupe index $=\mathrm{B}+\sqrt{ }\left(\mathrm{g}^{2}-16 \mathrm{r}\right) / \mathrm{g}-\sqrt{ }(\mathrm{g} 2-16 \mathrm{r})$-awner of floors, and
Where $\mathrm{g}=$ sum of perimeters of each floor divided by the number
$\begin{aligned} \text { Where } \mathrm{g} & =\text { sum of perimeters ofed by the number of floors, } \\ \mathrm{r} & =\text { gross floor area divided by }\end{aligned}$
$\mathrm{f}=$ gross floor area divided by the number of floors. This is a development of the give a guide as to the overall plan shape efficiency.

1.6 Aim and Objectives of the Study

The aim of the study is to examine the cost relationships between Mechanical and Electrical (M\&E) Services and building forms in residential building projects, based on existing models of Swaffield \& Pasquire ${ }^{[14]}$ (1999),

In order to achieve the aim, the following are the objectives of the study:
(i) To determine the relationship between the total cost of buildings and the cost of M\&E Services of the buildings.
(ii) To determine the relationship between the forms of buildings and the cost of M\&E Services of the buildings. (iii) To proffer recommendations with respect to properly ascertaining cost of services in institutional buildings.

The following null hypotheses were postulated for this research work:
Hol: There is no significant relationship between the total cost of buildings and the cost of M\&E Services of the buildings.
Ho2: There is no significant relationship between the forms and functions (shape factors) of buildings and the cost of M\&E Services of the buildings.

1.7 Scope and Limitation

This paper studied institutional building projects of bungalow and storey designs. The study adopted the following building form descriptors: gross floor area, wall/floor ratio, average storey height, floor to floor height, plan/shape index, percentage of glazed area and internal perimeter length, based on the existing model of Swaffield \& Pasquire ${ }^{[14]}$ (1999). The building projects used are of different designs ranging from office blocks to laboratories/classrooms in bungalows and one to four storey designs.

Out of the 50 different kinds of projects investigated, only 30 were found useful because some of these projects bills do not have drawings and even those with drawings lack some essential details of M\&E services cost. Some of the government parastatals approached claimed that the needed information was confidential and could not be fully released.

II. METHODOLOGY

The source of data collection for this research work was the secondary source of data collection, that is, from contract drawings and priced/unpriced Bills of Quantities of previously executed projects handled by reputable construction firms, government establishments/ministries and specialist contractors in Lagos State, between 2006 and 2011. Lagos State was chosen because of the high rate at which construction activities are going on there continuously, as it is the former capital of Nigeria and also the commercial capital of Nigeria which could be used as a basis for predicting the situation of construction activities in Nigeria.

The relationships between the variables in the data collected were determined using both Simple and Multiple Regression Analyses, the Correlation coefficient (R), coefficient of determination (R^{2}) and the test of significance (F-test and P-test). The regression analyses are also used to formulate predictive models with the variables (dependent and independent) tested which are observed simultancously in relation to one another (i.e. bivariate data). This paper assures 5% significance test as probability test of significance. Hence for any value of P from 0.00 to 0.05 there is significance in the test but for values greater than 0.05 there is no significance in the test.

III. DATA PRESENTATION

The data used in statistical analysis are given in TABLES 1-4 presented in the Appendix section. TABLES 3 and 4, also presented in the Appendix section, show the percentage of M\&E services cost out of the total cost of each of the building projects for the bungulow and storey buildings respectively and these were $5-15 \%$ and $5-25 \%$ respectively.

rv. RESULTS AND DISCUSSIONS

4.1 Results of Institutional Bungalow Buildings Analyses Out of the five building form descriptors (independesing Wall Area, Gross Floor Area and Perimeter Length cost of M\&E Services (dependent variable) $61.9 \%, 72.9 \%$ and 24%, F-calculated values of $29.19,48.441$ and with coefficient of determination (han the value of F-tabulated of 4.41 and Probability values of $0.000,0.000$ and 5.68 which were in each case greatestively. These show a strong and statistically significant relationship in each 0.028 at 5% level of signiticer Length which shows weak relationship with cost of M \& E Services) and the null case (except for Perimeter Length is no significant relationship between cost of M\&E services and building forms is hypothesis which states that there is no sies that 61.9% variation in cost of $\mathrm{M} \& \mathrm{E}$ services is explained by Enclosing Wall rejected. The result of this test implies that 61.9% variation in cost ormae services is
www.ijesi.org
4 | Page

Area. 72.9% variation in cost of M\&E services is accounted for by Gross Floor Area and only 24% variation in cost of M\&E services is accounted for by Perimeter Length.

On the other hand the relationships between cost of M\&E services and Wall/Floor Ratio and Percentage of Glazed Wall Area were weak and statistically not significant with R^{2} values of 13.4% for M\&E services and Wall/Floor Ratio and 14.3% for M\&E services and Percentage of Glazed Wall Area. The values of F-calculated observed were 2.784 for M\&E services and Wall/Floor Ratio and 3.011 for M\&E services and Percentage of Glazed Wall Area. The Probability values observed were 0.112 and 0.100 respectively for the relationships between cost of M\&E services and Wall/Floor Ratio, and Percentage of Glazed Wall Area. The null hypothesis in each of the cases was therefore accepted.

A very strong relationship exists between Contract Sum and Cost of M\&E Services with R^{2} value of 81%. This implies that 81% variation in contract sum is accounted for by cost of M\&E services. The relationship is significant because the value of F -calculated of 76.877 is greater than F -tabulated value of 4.41 and the Probability value of 0.000 was less than 0.05 . The null hypothesis was therefore rejected.

There exists a very strong and statistically significant relationship between Cost of M\&E Services and Combination of all the Building Form Descriptors with a relatively high R^{2} value of 74.3%, F -calculated value of 9.61 which is greater than the value of F -tabulated (3.03) and a Probability value of 0.001 at 5% level of significance. The null hypothesis which states that there is no significant relationship between cost of M\&E services and building forms was therefore rejected. The result of this multiple regression analysis implies that 74.3% variation in cost of M\&E services is expluined by the combined effects of the Building Form Descriptors.

The following regression equations were formulated from the analyses:

Test $1 a$.

$Y_{1}=-115086+4904.509 \mathrm{X}$ (3); $Y_{2}=132832.7+3121.1 \mathrm{X}_{2}$
$\mathrm{Y}_{3}=2016987-1237683 \mathrm{X}_{3}$ \qquad $(5) ; Y_{4}=3070483-346257 \mathrm{X}_{4}$. $Y_{5}=13068.181+12281.016 \mathrm{X}_{5} \ldots \ldots \ldots \ldots . .(7) ; \mathrm{Y}_{6}=852154.4-0.355 \mathrm{X}_{6} \ldots \ldots \ldots \ldots . .(8)$ Where $Y_{1}-Y_{0}=$ Cost of M\&E services (Melnsb); $X_{1}=$ Enclosing Wall Area (Ewalnsb); $X_{2}=$ Gross Floor Area (Gfaresb); $X_{3}=$ WalL/Floor Ratio (Wfresb); $X_{4}=$ Percentage of Glazed Wall Area (Pgwalnsb); $X_{5}=$ Primeter Length (Perilnsb); and $X_{0}=$ Cost per m-sq. (Cpminsb).
Test $1 b-I d$.
$\mathrm{Y}_{\mathrm{o}}=211962.2+1.464 \mathrm{X}_{\mathrm{w}}$ \qquad (9): $Y_{r}=190877+0.651 X_{r}$ (10);
$Y_{c}=1598887.10+7.02 \mathrm{X}_{c}$
Where $\mathrm{Y}_{-}=$Cost of W all (Cwallnsb); $\mathrm{Y}_{\mathrm{f}}=$ Cost of Floor (Cflinsb); $\mathrm{Y}_{\mathrm{c}}=$ Contract Sum (Csinsb) and $X_{w}-X_{c}=$ Cost of M\&E services (Melnsb).
Test le.
 Xiii $=$ Enclosing Wall Area (Ewalnsb); Xiv $=$ Wall/Floor Ratio (wflnsb); X5 $=$ Percentage of Glazed Wall Area (Pgwalnsb).
4.2 Results of Institutional Storey Buildings Analyses

There exists a statistically significant relationship between only two of the Building Form Descriptors ($\mathrm{g}=$ sum of perimeter of floors divided by totsl number of floors and Floor to Floor Height) and the Cost of M\&E Services with strong R values of 84.6% and 50%, F-calculated value of 43.872 and 7.98 , which are greater than the value of F-tabulated (5.32) and Probability values of 0.000 and 0.022 respectively at 5% level of significance. The null hypothesis was therefore rejected in each of the two cases. This implies that 84.6% variation in cost of M\&E services is accounted for by the independent variable (g) und 50% variation in the cost of M\&E services is accounted for by Floor to Floor height.

The Relationship between Cost of M\&E Services and each of the other Buiding Form Descriptors ($\mathrm{g}^{2}, \mathrm{r}$, $16 r$, Plan/Shape Index, A verage Storey Height and Percentage of Clazed Wall Area) is weak and not significant with R^{2} values of $0.2 \%, 38.6 \%, 38.6 \%, 7.6 \%, 15.3 \%$ and $21.5 \%, F$-calculated values of $0.02,5.02,5.03,0.65,1.45$ and 2.19 and Probability values of $0.89,0.06,0.06,0.44,0.26$ and 0.18 at 5% level of significance respectively. The null hypothesis in each of these cases was therefore accepted. MdE The null hypothesis is rejected in the analysis of the relationship between total building cosi and cost of value of 97.7% F-calculated value of 337.371 and Probability value of 0.000 at 5% level of significance.

The relationship between Cost of M\&E Services and Combination of all the Building Form Descriptors was also discovered to be very strong and statistically significant with a relatively high R^{2} value of 99.9%, F calculated value of 143.475 which is greater than the value of F-tabulated (19.35) and a Probability value of 0.007 at 5% level of significance. The null hypothesis was therefore rejected.

The following regression equations were formulated from the analyses:
Test $2 a$.
$Y_{1}=-6230472+120910.9 \mathrm{X}_{1} \ldots \ldots \ldots .$. (13); $\mathrm{Y}_{2}=4259401+78.503 \mathrm{X}_{2} \ldots \ldots \ldots \ldots .$. (14);
$Y_{1}=-1521031+14122.676 \mathrm{X}_{3} \ldots \ldots \ldots \ldots \ldots \ldots($ IS $) ; Y_{4}=-1522653+882.833 X_{4} \ldots \ldots \ldots \ldots \ldots$ (16);

$\mathrm{Y}_{1}=100000000-40000000 \mathrm{X}_{7} \ldots \ldots \ldots \ldots(19) ; \mathrm{Y}_{\mathrm{s}}=-3514408+1198887 \mathrm{X}_{8} \ldots \ldots \ldots \ldots \ldots . . .(20) ;$
$\mathrm{Y}_{9}=3230608+38.712 \mathrm{X}_{9} \ldots \ldots \ldots \ldots . . .(21)$
Where $\mathrm{Y} 1-\mathrm{Y} 9=$ Cost of $\mathrm{M} \& \mathrm{E}$ services (MerInsSt); $\mathrm{X} 1=\mathrm{g}(\mathrm{GInsSt}) ; \mathrm{X} 2=\mathrm{g}-\mathrm{sq} .(\mathrm{G} 2 \operatorname{lnsSt}) ; \mathrm{X} 3=\mathrm{R}(\mathrm{RInsSt}) ; \mathrm{X} 4=$ 16R (SrlnsSt); X5 = Plan Shape Index (PsilnsSt); X6 = Average Storey Height (AshlnsSt); X7 = Floor to Floor Height (FftinsSt); X8 = Percentage of Glazed Wall Area (PgwalnsSt); and X9 $=$ Cost per m -sq. (CpminsSt).
Test $2 b-2 d$.
$\mathrm{Y}_{s}=1748770+0.461 \mathrm{Xw} ; \mathrm{Y}_{f}=-1865200+2.004 \mathrm{X}_{6} \mathrm{Y}_{\mathrm{c}}=4382940+4.619 \mathrm{X}_{\mathrm{c}} \ldots \ldots \ldots \ldots \ldots \ldots . . .(22)$
Where $\mathrm{Y}_{\mathrm{s}}=$ Cost of Wall (CwallnsSt); $\mathrm{Y}_{\mathrm{f}}=$ Cost of Floor (CfllnsSt); $\mathrm{Y}_{\mathrm{e}}=$ Contract Sum (CsinsSt) and $\mathrm{X}_{\mathrm{w}}-\mathrm{X}_{\mathrm{e}}=$ Cost of M\&E services (MelnsSt).
Test $2 c$.
$\mathrm{Y}=972356+992.54 \mathrm{Xi}-4912.71 \mathrm{Xii}+3839.17 \mathrm{Xiii}-637852 \mathrm{Xiv}-26537.7 \mathrm{Xv}$.................. (23)
Where $\mathrm{Y}=$ Cost of $\mathrm{M} \& E$ services (MerinsSt); $\mathrm{Xi}=\mathrm{g}$ (GlnsSt); $\mathrm{Xii}=\mathrm{g}-\mathrm{sq}$. (G2res); $\mathrm{Xiii}=16 \mathrm{R}$ (SrlnsSt) $\mathrm{Xiv}=$ Enclosing Wall Area (EwalnsSt); $\mathrm{Xv}=\mathrm{Plan}$ Shape Index (PsilnsSt); $\mathrm{Xvi}=$ Average Storey Height; $\mathrm{Xvii}=$ Floor to Height (FfhlnsSt); and Xviii = Percentage of Glazes Wall Area (PgwalnsSt),
The research findings from the results discussed above and the regression models (equations) are summarized in TABLES 5 and 6 which are presented in the Appendix section.

V. CONCLUSIONS

It can be concluded from the research findings that there is a significant and positive correlation between the cost of M\&E services and the building form descriptors in institutional building projects. The linear relationship shows that the cost of M\&E services of any given institutional building project can be accessed from the building form descriptors with 95% confidence limits using multiple regression models and this provided a basis for developing several regression models for the institutional building projects in Lagos State of Nigeria. This is in line with the findings of Shittu et al ${ }^{[5]}(2008)$ and Shittu \& Izam ${ }^{[16]}(2011)$ where $i t$ was discovered from the building services of any given residential and commercial building projects can models in Abuja and Niger Stare. Nigeria. form descriptors with 95% confidence limits using offering information on cost implication of architectural design

This study contributes to know descriptors) on the prediction of the cost of M\&E services in institutional parameters (based on the building form especially the government which is the largest initiator and financier of building projects in Nigeria, to clients esp
building and construction works in Nigeria.

IV. RECOMMENDATIONS

This paper recommends that consultants should consider all the building forms adopted by this research when estimating total cost of building during the pre-contract stage in order to get a more accurate forecast it was discovered from the study that the combination of the building form descriptors are better descriptors of M\&E services cost.
2. The design of a building should incorporate a floor and walling type which will suitably accommodate building services so as not to cause increase in labour effort during services installation because there exist a significant relationship between the cost of M\&E services and wall and floor costs from the research results.
3. The research also recommends a review of the models formulated in this study at regular intervals in the light of changing environmental circumstances by any user or the models for the mols time.

ACKNOWLEDGEMENT

We do sincerely acknowledge the assistance rendered by Innovators of Tomorrow's Grant (Number 4303 UNI), STEP-B Programme of the World Bank at the Federal University of Technology, Minna, for sponsoring this research.

REFERENCES

[1]. I. H. Seeley, Building Economics (London: Macmillan Publishers Lid, $3^{\text {nd }}$ Edition, 1993).
[2]. O. T. Ibironke, Building Economics (Bimin Kebbi, Nigeria: Timlab Quanticost, 2004).
13). National Building Code, (Federal Republic of Nigeria, Johannesbury/Nigeria: Lexis Nexis Butterworths, First Edition, Pant I, Sections 4 and 5, 2006).
[4]. O. P. Okafor, Cost Estimating and Control of Industrial Engineering Projects. In A. A. Ndanusa (Ed.). The Quantity Surveyor. A Journal of The Nigerian Institute of Quantity Surveyors. Vietoria Island, Lagos. April - June, 2003, 43(2).9-13.
[5] J. A. Fadamiro \& D. R. Ogunsemi, Fundansental of Building Design, Construction and Aaterials (Ile-Ife: Fancy Publication Limited, 1996).
[6]. R Chudley, Advanced ConsIruction Technolog' (London: Pearson Education Group Limited, $3^{\text {nd }}$ Edition, 1999)
[7]. F. Hall, \& R. Greeno, Building Services Handbook. (Lendon: Elsevier Butterworth - Heinemann. Burlington, Second Edition, 2003).
[8]. P. L Martin \& D R Oughton, Faher \& Kell's Heatiag and Air-Conditioning of Buildings (London: Butterworth \& Co. Publishers Limited, $7^{\text {h }}$ Edition, 1989).
[9]. E. C. Oforeh, Installanon and Measurement of Electrical Works in Buildings (Lagos: Cosines Nigeria Limited, 1997).
[10]. W. Morenikeji, Research and Anaiytical Meihods (for Social Scientiss, Planners and Environmentalists) (Jos Jos University Press Limited, 2006).
[11]. C. J. Willis \& A. Ashworth, Practice and Procedure for Quantity Surveyor (Great Britain: Crosby Lockwood and Sons Lid., 9 ${ }^{\text {a }}$ Edition, 1987)
[12]. D. J. Ferry \& P. S. Brandon, Cost Planning of Buildings (Great Britain: Crosby Lockwood and Sons Lid. $6^{\text {th }}$ Edition, 1991).
[13] G. O. Jagboro, Techniques and Procedures of Euilding Economics (Lagos: Fancy Publications Limited, 1995).
[14] L. M. Swaffield \& C. L. Pasquire, Examination of Relationships between Building Form and Function, and the Cost of Mechanical and Electrical Services, Consirucrion Managemem and Economics, E \& FN Spon, London, 17: 483, 1999, 492.
[15] A. A. Shittu, Y. D. Izam \& N. A. Anigbogu, Modelling of Cost of Mechanical and Electrical Services in Selected Residental Building Projects in Abuja and Niger State using Selected Design Variables. \ln Z. A. Uji (Ed.). Journal of Emviranmental Sciences. Faculty of Environmental Sciences, University of Jos, Jos, Nigeria, I2(I), 2008, 41-53.
[16] A. A. Shittu \& Y. D. Izam, Modelling of Cost of Mechanical \& Electrical Services between Residential \& Commercial Building Projects using Selected Building Form Deseriptors: A Case Study of Selected Building Projects in Abuja and Niger State, Nigeria. In A. L. Che-Ani (Ed.). Journal of Euilding Performance. Architecture Department, Faculy of Engineering and Built Environment, Universiti Kebangsann Malaysia, 43000 UKM Bangi, Selangor Darul Ehsan, Malaysia, 2(i), 2011, 46-58. htip.J/pkukmweb.ukm,my/-jsb/jbp/index.himl

Cost Modelling Of Mechanical And Elecirical Services In Institutional

AFPENDI
Iable 1- C ontruct Sum and Cost of NISE for Institutional Buidding Projects with shape Factors

$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & \text { CONTRACI } \\ & \operatorname{sum}(\mathrm{N}) \end{aligned}$	$\operatorname{Cos} 7 / m^{\prime}$ (N)	GROSS FLOOR ARLS (ma^{1})	COST OF MSE SERVICZS (N)	COST WALL (N)	COST FLOOH (N)	HETIM ETER LEVGT 11 (b)	ENCEOSIN G WALL. AHEL (m)	WaI L. TO FLO OR RATI 0	$\begin{aligned} & \text { W DF } \\ & \text { GLAZE, } \\ & \text { D } \\ & \text { WALL } \\ & \text { AREA } \\ & (\%) \end{aligned}$
$\frac{1}{2}$	5,221,1880, 60	26, 5, 5 . $\times 0$	198	543, 10 6\% 60	623, 512.49	364.914.60	45	170	016	6
2	6,515, 012440	105,653,60	64		1.641,606 00	764,984.40	25	30	133	5
3	$4,217,11640$	20,557.20	211	215,760.00	6661,506.09	593,762.80	61	183	0.87	7
4	4,119.297.60	57,488.40	110	\$65,(140,00	1.002 .80760	306,134.40	42	125	1.14	6
5	4,466, 400.60	35,485.000	126	600, 5000,00	474,080,03	309,0001,00	45	136	1.08	7
6	3,656.523.00	24,376.80	150	576, (1060,60	345,600,07	219,000.063	50	81	0.54	6
$\frac{7}{8}$	3,480,716.40	26.368 .80	132	160,000,00	415,628.43	243,276,00	47	157	1.19	5
8	$2,725,636.80$	$2 \mathrm{~h}, 2118.80$	104	276, 000.00	247,413.20	$194,562.06$	40	108	1.04	6
5	$5,621354.40$	21.292.80	264	T81,446, 181	1,038,600, 00	415,716.00	164	442	1.67	5
10	2.525,527,20	$16,162.80$	175	204.462.00	459,600.019	223,692.00	136	305	1.74	5
11	+.200,00000	$20,095.20$	209	7201,554.00	636,696.06	159,885.64	58	120	0.58	8
12	13.036 .048 .80	119.596 .80	109	$736,656.00$	3,283,200,00	1,529,968, 30	45	135	1.24	7
13	13,036,048.00	115, 99200	109	$736,656.00$	1,617,768.00	1,702,890,00	43	128	1.17	5
14	1.469376 .00	14.171.20	43	94,278.00	471.134 .00	122.400.00	27	48	1.17	7
15	1,777.510.80	11,344.80	43	112,818.164	76.4 .1080 .018	128,400, 010	17	46	1.07	8
16	13.720,12.00	49.891.29	275	3,267,903,60	2,877,022.80	1,625,959.20	63	240	0.57	7
17	5.96 .155 .20	20.41200	282	291,600.00	$882,056.40$	791,710.80	68	205	0.72	8
15	7,756,680.00	26,749.20	281	1,124, 046.00	1.105,162.80	889,926.00	146	174	0.62	6
19	42.453.201.60	25.378.50	1,497	4,694,400.060	8,604,200,40	3,659,954.43	160	860	10.58	4
20	6.337380 .00	46,944.00	135	583,200.30	1,542,780.00	470,976.00	50	140	1.04	1

Source: Authors' Field Work (2012)
Table : Contract Sum and Cost of NIXE for Institutional storey Building Projects with Sbape Factors

5/NO	CONTRACT	$\cos 5 \mathrm{~m}^{2}$	COST OF		COST OF FLOOR	I (m)	$\begin{aligned} & e^{3} \\ & \left(i^{2}\right) \end{aligned}$	${ }^{r}\left(m^{\prime}\right)$	$\begin{aligned} & 16 r \\ & \left(\mathrm{~m}^{2}\right) \end{aligned}$	PLA N / SH	510 REY	FLO	$O F$	N O
	(V)		SERVICES	(N)	(v)					Al'E	HEI	TO	GLA	
			(1)							120	CHT	FLO	2E0	0
										El		OK	IV +1	F
												HEI	L	F
												GH	AKE	L
												T	A	R
													(\%)	S
1		53.136	2.1.25.474.64	2.400.908, 308	2484, 2108160	10.5	5012.6	310	tand	1:3	\bigcirc	\}	3	1
2	25,826,406, 49	15,776	4,112,214.60	1,570,144,00	6. $2511,68800.60$	vs	V604	600	5600	1.04	4	3	$\stackrel{ }{+}$	3
3	21,000,000.60	65,506	5,250,000.06	6, $404,574.40$	7,672,860.06	67	4480	272	4352	1.42	11.2	2.5	1	4
4	25,080,000 160	24.224	5,616, 1800.64	6, 324,012.60	8,683,0085.09	12.5	15625	968	15488	1.21	12	3	5	4
5	6,778, 748.819	10.526	1,021,446 06	1,138,600.60	535,716.00	94	8836	540	8640	1.35	6	3	5	1
$\frac{5}{6}$	9,645,624,60	13,582	1,5097816.00	$616,5600.06$	1,601,796.64	74	5470	296	4736	2.15	5.6	2.8	12	1
7	110,670,898.00	43, 180	22,576,86.360	11, 177, 590.40	44,041,100 (60	115	5120	S5.4	136069	1.12	8.7	2.7	10	3
8	13,720,122.00	41,576	3,267,271), 6, 01	2,n77,072 k0	1625, 259.20	6.1	3064	27 b	+416	1	${ }^{6}$	3	\dagger	2
9	$14.236,04 \mathrm{~N} .80$	53,924	1,002,324,00	3,251, 206 66	1529, 5 /65.80		16010	120	1520	1.15	6	3	4	2
10	$13 \times 43.120 .89$	\$2,917	$976,656.60$	1,792, \%v0. ai	1.702, 890.00	41	1704	110	1760	1.21	6	3	5	2

Source: Authors' Field Work (2012)
KEY
$\mathrm{g}=$ sum of perimeter of floors divided by number of floors
$r=$ Gress Floor Area divided by number of floor

Table 3: MaE as a Percentage of Tutal Cost for Institutional Bungalow Building Projects

S/NO.	$\begin{aligned} & \text { CONTRACL } \\ & \text { SUM }(N) \end{aligned}$	COST OF M\&E SERVICES (N)	Percenfage M\&E from Total Cost
1	5,221,080,00	$540,000,00$	10\%
2	6,518,024.40	368,328.00	6\%
3	4,317,116,40	218,700.00	5\%
4	4,119,297.60	365,040.00	9\%
5	4,466,400.00	600,000.00	13\%
6	3,656,523.00	576,000.00	16\%
7	3,480,716.40	360,000.00	10\%
8	2,725,636.80	276,000.00	10\%
9	5,621, 354.40	781,446.00	14\%
10	2,828,527.20	294,462.00	10\%
11	4,200,000.00	720,954.00	17\%
12	13,036,048.80	736,656,00	6\%
13	13,036,048.00	736,656.00	6\%
14	1,469ヶ376.00	94,278.00	6\%
15	1,777,810.80	112,818.00	6\%
16	13,720,122.00	3,267,903.60	24\%
17	5,756,155.20	291,600,00	5\%
18	7,756,680.00	1,124,046.00	15\%
19	42,483,201.60	4,694,400.00	11\%
20	6,337,380.00	583,200.00	9\%

Source: Authors' Field Work (2012)
Table 4: M\&E as a Percentage of Total Cost for Institutional Storey Building Projects

S/NO	CONTRACT SUM (N)	COST OF MIAE SERVICES (N)	Percentage M\&E from Total Cost
1	19,800,000.00	2,225,874.00	11\%
2	25,826,400.00	4,132,224,00	16\%
3	21,000,000.00	5,250,000.00	25\%
4	28,080,000.00	5,616,000.00	20\%
5	6,778,348.80	1,021,446.00	15\%
6	9,648,624.00	1,509,816.00	16\%
7	110,670,89K.00	22,576,863,60	17\%
8	13,720,122.00	3,267,905,60	24\%
9	14,236,048.80	1,002,124.00	7\%
10	13,843,120,80	976,656.00	7\%

Source: Authors' Field Work (2012)

Table 5: Summary of Results for Institutional Bungalow Building Projects Experiments

Test No.	Variables		Type of	Observations					Inferences		
	λ	Y		Regression Equation	$\begin{aligned} & \mathbf{R}^{2} \\ & (\%) \end{aligned}$	$\mathrm{F}_{\text {tal }}$	$\mathrm{F}_{\text {tut }}$	$\mathbf{P v a t a r}$	Strength of Relations hip	Rem ark	Action On Hypothes i
(a)i.	$\begin{aligned} & \text { Ewaln } \\ & \text { sb } \end{aligned}$	Mel usb	Linear	$\begin{aligned} & \mathrm{Y} 1= \\ & -115086+4904.509 \mathrm{X} 1 \end{aligned}$	61.9	28.	4.41	0.00	Strong	Ss	Reject Ho_{0}
ii.	Gfalns b	$\begin{aligned} & \text { Mel } \\ & \text { nsb } \end{aligned}$	Linear	$\begin{aligned} & \mathrm{Y}_{2}=132832.7+3121.1 \\ & \mathrm{X} 2 \end{aligned}$	72.9	48.	4.41	0.00	Strong	SS	Reject Ho_{0}
iii.	Wfrlos	Mel nsb	Linear	$\begin{aligned} & \mathrm{Y} 3=2016987 \\ & 1237683 \times 3 \end{aligned}$	13.4	2.7	4.41	0.11	Weak	NS	Accept Ho
iv.	$\begin{aligned} & \text { Pgwal } \\ & \text { nsb } \end{aligned}$	Mel nsb	Linear	$\begin{aligned} & \mathrm{Y} 4 \\ & 346257 \mathrm{X4} \end{aligned}$	14.3	3.0	4.41	$\begin{aligned} & 0.10 \\ & 0 \end{aligned}$	Weak	NS	Accept Ho
v.	$\begin{aligned} & \text { Perilns } \\ & \text { b } \end{aligned}$	Mel usb	Linear	$\begin{aligned} & \mathrm{Y} 5=13068.181+ \\ & 12281.016 \times 5 \end{aligned}$	24	5.6	4.41	0.02	Weak	SS	Reject H_{0}
vi.	$\underset{\text { sb }}{\substack{\text { Cpmin }}}$	Mel nsb	Linear	$\begin{aligned} & \mathrm{Y} 6=852154.4-0.355 \\ & \mathrm{X} 6 \end{aligned}$	0.0	0.0	4.41	$\begin{aligned} & 0.96 \\ & 6 \end{aligned}$	Weak	NS	Accept Ho
1 b .	MeIns b	$\begin{aligned} & \text { Cwa } \\ & \text { IIns } \end{aligned}$	Linear	$\begin{aligned} & \mathrm{Y}_{\mathrm{w}}=211962.2+1.464 \\ & \mathrm{Xw} \end{aligned}$	78.1	64.	4.41	0.00	Strong	SS	Reject Ho
1.	$\begin{aligned} & \text { Melas } \\ & \mathrm{b} \end{aligned}$	$\begin{gathered} \text { CnI } \\ \text { asb } \end{gathered}$	Linear	$\mathrm{Yf}=190877+0.651 \mathrm{Xf}$	74.5	52.	4.41	0.00	Strong	Ss	Reject H_{0}
1 d.	$\begin{aligned} & \text { MeIns } \\ & \text { be } \end{aligned}$	$\begin{gathered} \text { CsI } \\ \text { asb } \end{gathered}$	Linear	$\begin{aligned} & \mathrm{Y}_{\mathrm{c}}=1598887.10+7.02 \\ & \mathrm{X}_{\mathrm{c}} \end{aligned}$	81	76.	4.41	0.00	Strong	SS	Reject Ho
1.	(i) Gfalns	$\begin{aligned} & \mathrm{MeI} \\ & \text { nsb } \end{aligned}$	Linear (multip (e)	$\begin{aligned} & \mathrm{Y}=972356 \\ & +992.54 \mathrm{Xi} \\ & -4912.71 \mathrm{Xii} \\ & +3839.17 \mathrm{Xiii} \\ & -637852 \mathrm{Xiv} \\ & -26537.7 \mathrm{Xv} \end{aligned}$	74.3		3.03	$\begin{aligned} & 0.00 \\ & 1 \end{aligned}$	Strong	SS	Reject Ho
	$\begin{aligned} & \text { b (ii) } \\ & \text { Perilns } \end{aligned}$										
	b (iii)										
	Ewaln										
	sb (iv)					$\begin{aligned} & 9.6 \\ & 1 \end{aligned}$					
	Pgwal nsb										

Source: Authors' Analysis of Data (2012)

Key:
 $\overline{S S}=$ Statistically Significant
 NS $=$ Not Significant

	Variabies		$\begin{aligned} & \text { Type } \\ & \text { Madel } \end{aligned}$	Observations					Inferenes:		
	X	Y		Hegrrssion Equation	$\begin{aligned} & \hline \mathbf{k}^{2} \\ & 104 \\ & \hline \end{aligned}$	$F_{\text {cot }}$	Ftev	Foute	Strengith of Kelationship	Rema rk	Action On Hypothesis
($\mathrm{a}_{\text {) }}$)	$\begin{aligned} & \text { Gins } \\ & \text { St } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mtin } \\ & \Delta: t \end{aligned}$	Linear	$\begin{aligned} & V I= \\ & -6230472+120910.9 \times 1 \end{aligned}$	84.6	43.872	5.32	0.000	Strang	SS	Mejeet Itw
ii.	$\begin{aligned} & \text { G21ns } \\ & \text { St } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mtln } \\ & : 51 \end{aligned}$	Linear	$17-4259401+78.503 \times 2$	0.20	0.0119	5.32	0.894	Weak	NS	Accept Hin
iii	$\begin{aligned} & \text { R1m } \\ & S t \end{aligned}$	$\begin{aligned} & \text { Mteln } \\ & \mathrm{sit} \\ & \hline \end{aligned}$	Linear	$\begin{aligned} & \mathrm{Y} 3=-1521031+14122.676 \\ & \mathrm{XJ} \end{aligned}$	$3 \times .6$	5.1122	5.32	6.855	Weak	N8	Areept Ho
iv.	Srias Si	$\begin{aligned} & \text { Mrin } \\ & \mathrm{sit} \\ & \hline \end{aligned}$	Lincar	$\begin{aligned} & \mathrm{V} 4=-1522653 \\ & +582.833 \mathrm{X4} \end{aligned}$	38.6	5.628	5.32	0.055	Weak	NS	Accept Ha
v.	$\begin{aligned} & \text { Psilne } \\ & \mathrm{St}_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & \text { Melin } \\ & \text { st } \end{aligned}$	Linear	$V 5-10006000-5495648$	1,6	0.654	5.32	0.442	Weak	NS	Acrepi Ho
vi.	$\begin{aligned} & \text { Ashl } \\ & \text { usSt } \end{aligned}$	$\begin{aligned} & \text { Meln } \\ & \text { sis } \end{aligned}$	Lincar	Y5 $=.332764 Y+1156936 \mathrm{X6}$	15.3	1.45	5.32	0.163	Weak	NS	Arcept Hm
Viti	Fmin S_{t}	$\begin{aligned} & \text { Melo } \\ & \text { sit } \end{aligned}$	Libear	$\begin{aligned} & 17-100000000 \\ & 40000000 \times 7 \end{aligned}$	50	7.98	5.37	0.022	Strone	SS	Rejeet Ho
Viii.	Prwa Inss	$\begin{aligned} & \text { Meln } \\ & \text { st } \end{aligned}$	Lincar	18--3514408 +1198887 X8	21.5	2.191	5.32	0.177	Weak	NS	Actept Ho
is.	$\begin{aligned} & \text { Cpmi } \\ & \mathrm{nsSi} \end{aligned}$	$\begin{aligned} & \text { Mrle } \\ & \mathrm{sit} \\ & \hline \end{aligned}$	Linear	19 - 3230608 + 38.712X9	1.2	0.1	5.32	0.764	Weak	NS	Accept He
2t.	vtela Si	$\begin{aligned} & \text { Cmal } \\ & \text { Inssi } \end{aligned}$	Lisear	$\mathrm{Vm}=1748770+0.461 \mathrm{Xw}$	35.3	46.527	5.32	0.000	Strung	SS	Reject Ho
3 c .	Mele $\checkmark 5$	$\begin{aligned} & \mathrm{CnIn} \\ & \& \mathrm{Si} \end{aligned}$	Limar	YT $-1865200+2.004 \mathrm{Xf}$	98.9	$\begin{aligned} & 746.79 \\ & 5 \end{aligned}$	5.32	0.000	Strong	55	Reject Ho
2d.	$\begin{aligned} & \text { Mkia } \\ & \& \mathrm{Si} \end{aligned}$	$\begin{aligned} & \text { Celas } \\ & \text { Si } \end{aligned}$	Linesr	$\mathrm{Yc}=4382940+4.619 \mathrm{Xc}$	97.7	$\begin{aligned} & 317.37 \\ & i \end{aligned}$	5.32	0.000	Strone	55	Rejeci Ho
2 e	(i) GInt St (ii) G2las St (iii) Srias 5 Fr (iv) Pailns St (v) Ashl mast (vi) Finlo St (vii) Pgwa tusht	Mels ≈ 5	Lincar (multipie)	$\begin{aligned} & y-779792 \mathrm{II} \\ & -3566.4 .576 \mathrm{Xi} \\ & -1691.068 \mathrm{Xil} \\ & -1495.182 \mathrm{Xim} \\ & -855513 \mathrm{Xiv} \\ & +6326720.8 \mathrm{Xv} \\ & -1214013 \mathrm{Xvi} \\ & -315536.2 \mathrm{Xvii} \end{aligned}$	99.9	$\begin{aligned} & 143.47 \\ & 5 \end{aligned}$	19.35	0.007	Strong	53	Reject Ho

Source: Authors' Analysis of Data (2012)
Key:
SS $=$ Statistically Significant
NS $=$ Not Significant

[^0]: Name : Prof. Kolo, Stephen Sunday
 Qualification : M.Eng
 Specialization : Civil Engincering
 Specializan : FUT Minna, Niger State, Nigerin
 Affiliation
 Experience : 10
 Country : Nigeria
 Puper Published : 07

