DETERMINATION OF SOME PROPERTIES OF FRESH TOMATO FRUITS AS RELATED TO DAMAGE DURING HANDLING

BY

OLAREMU LINDA OLUBUNMI PGD/AGRIC ENGR/2003/ /175

IN PARTIAL FULFILLMENT OF THE CONDITIONS FOR THE AWARD OF POST GRADUATE DIPLOMA IN

THE DEPARTMENT OF AGRICULTURAL ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY MINNA,

MARCH 2005

CERTIFICATION

This is to certify that this project was carried out by Olaremu Linda Olubunmi in the Department of Agricultural Engineering, Federal University of Technology, Minna; in partial fulfillment of the requirements for the award of Post Graduate Diploma in Agricultural Engineering.

Ĺ

Engr. P. A. Idah

22/54/05 Date

Engr. (Dr.) D. Adgidzi

Date

::

ACKNOLEDGEMENT

To God infinite, eternal, and unchangeable I give glory, honour and adoration to Almighty God for His love and mercy upon me through out this program.

I express my profound gratitude to my supervisor, Engr. P. A. Idah who directed, instructed and encouraged me towards the accomplishment of this research work

I appreciate the cooperation of the head of Agriculture Engineering Department Engr. (Dr.) Adgidzi and I am also grateful to my lecturers who have impacted knowledge in me, may God reward you all.

I can not but thank my colleagues for their moral support and encouragement, which carried me along successfully. I am grateful to my father, Chief S. F. Olaremu for his support; and also to my brother and sisters who have contributed in one way or the other towards my education: I love you all.

I thank all my friend and relatives that have been showing concern to me.

ABSTRACT.

This project involves the determination of some engineering properties of three tomato varieties namely roma, cherry and local at green and fully ripe stage of maturity of about 50% pink and 80 - 100% red skin respectively, and also grouped into small and big. A standard compression-testing machine, the Testometic Universal Testing machine (UTM) was used for applying force from which modulus of elasticity, force-determination curve, firmness, energy at different stages of deformation and other parameters were obtained. Each of these was subjected to the compression test and the result were automatically plotted and printed out via the computer accessories attached to the equipment. The result show that the average natural frequencies of the three varieties (Local, roma and cherry at ripe stage of maturity were (23.03, 23.92 and 23.65) Hz respectively for big samples, while for small local, roma and cherry, the values (22.90, 26.21 and 17.21)Hz respectively. For the unripe local roma and cherry the mean value were (27.10, 27.93 and 26.63) Hz for big samples. However, for small unripe local, roma and cherry the values were (28.53, 31.99 and 23.38) Hz respectively. It was observed that at both stages of maturity roma varieties has the highest natural frequency of vibration when compared with cherry and local. This shows that roma is most suitable for long distances handling. The knowledge of these data will assist handlers, designers of containers and managers of most harvest handling of these fruit to reduce damage during handling and ensure quantity of fruit.

TABLE OF CONTENTS

Title Page	i
Certification	ii
Dedication	iii
Acknowledgement	iv
Abstract	v
Table of Contents	vi
List of Tables	viii
List of figures	viii

t,

Chapter One

	Introduction	1
1.1	Handling Problem	2
1.2	Objective	4
1.3	Justification	4

Chapter Two

Literature Review

2.1 Tomato Fruit Handling	6
2.2 Vibration Damage	9
2.3 Mechanical Damage in Fruits and Vegetable	9
2.4 Determination of Natural Frequency of Vibration of Tomato	
Fruits	13
2.5 Application of Hertz Contact Theory	15
Chapter Three	
Methods	19
3.1 Equipment and Materials	19
3.2 Method and Procedure	20
3.3 Design and Techniques of Analysis	23

Chapter Four

	Results and Discussion	24
4.1	Analysis of Results	28

Chapter Five

5.1	Conclusion	49
5.2	Recommendation	49

A Contraction of the second	and an an install				
n in	eferences		the second		
K K	eterences				
		·	2		
A	ppendix A				
	- F			 • • • • • • • • • • • • •	• • • • • •

Appendix B.....

.

ie ji

......

List of figure

The graphs of force-deformation curve of ripe local tomato fruits (small)...i The graph of force-deformation curve of unripe local tomato fruits (small)...iii The graph of force-deformation curve of ripe roma tomato fruits (small)...iii The graph of force-deformation curve of unripe roma tomato fruits (small)...v The graph of force-deformation curve of ripe cherry tomato fruits (small)...v The graphs of force-deformation curve of unripe cherry tomato fruits (small)...v The graph of force-deformation curve of unripe cherry tomato fruits (small)...v The graph of force-deformation curve of ripe local tomato fruits (big)......vii The graph of force-deformation curve of unripe local tomato fruits (big)......vii The graph of force-deformation curve of ripe roma tomato fruits (big)......ix The graph of force-deformation curve of unripe roma tomato fruits (big)......ix The graph of force-deformation curve of ripe roma tomato fruits (big)......ix The graph of force-deformation curve of unripe roma tomato fruits (big)......ix The graph of force-deformation curve of unripe roma tomato fruits (big)......ix

List of Table

Table 3.1	Experimental Layout of Natural Frequency Determination22
Table 4.1a	Natural Frequency of Vibration for mass of the Ripe Big25
Table 4.1b	Natural Frequency of Vibration for mass of the Ripe Small25
Table 4.2a	Natural Frequency of Vibration for mass of the Unripe Big26
Table 4.2b	Natural Frequency of Vibration for mass of the Unripe Small26
Table 4.3a	Big Ripe Mean27
Table 4.3b	Small Ripe Mean27
Table 4.4a	Big Unripe Mean27
Table 4.4b	Small Unripe Mean27
Table 4.4c	ANOVA Table
Table 4.5a	Analysis of Variance for the Ripe Samples
Table 4.5b	summary of the Duncan Multiple Range Text for the Mean
	of the unripe samples44
Table 4.6a	Analysis of Variance for the Unripe Samples46
Table 4.6b	summary of the Duncan Multiple Range Text for the Mean
	of the ripe samples
Table 4.7a	Summary of analysis of Variance (ANOVA) for variety
	interactive effects
Table 4.7b	Summary of the Duncan Multiple Range test for the Mean of
	the output for the variety interactive effects

*

- Table 4.7cThe mean values of the elastic young modulus N/mm²of thesamples at maturity stages
- Table 4.7dThe mean values of the deformation at peak (mm) of thesamples at maturity stages
- Table 4.7e The mean values of the energy at break N/m of the samples at maturity stages
- Table 4.7f The mean values of the energy at yield (N/m) of the samples at maturity stages
- Table 4.7g The mean values of the stress at yield N/mm² of the samples at maturity stages
- Table 4.7h
 The mean values of the stress at break (N/mm²) of the samples

 at maturity stages
- Table 4.7i
 The mean values of the energy at peak N/m of the samples at maturity stages
- Table 4.7j The mean values of the stress at peak (N/mm²) of the samples at maturity stages
- Table 4.7kThe mean values of the deformation at break mm of the samplesat maturity stages
- Table 4.7L The mean values of the load at break (N) of the samples at maturity stages

vi

 Table 4.7m
 The mean values of the deformation at yield (mm) of the samples at maturity stages

 Table 4.7n
 The mean values of the load at yield (N) of the samples at maturity stages

CHAPTER ONE

INTRODUCTION

The botanical name for tomato is lycopersicon esculentum. It is native to central and South America, but it is today grown all over the world, both in temperate and tropical countries. The very large numbers of different cultivated types are adapted to different geographical regions.

The tomato plant is an annual or short-lived perennial, although it is always cultivated as an annual. The seedling has a taproot, but later on a fibrous root system develops. Adventitious roots are also produced from the base of the stem.

The stem is weak and herbaceous. It is green in colour and is covered by yellowish hairs, some of which secrete a smelly yellow juice. The leaves are alternately arranged and pinnately compound. The leaflets on each leaf are of different sizes, and the number of leaflets per leaf is variable. Flowers are borne at the internodes instead of at the nodes. Inflorescence is cymose (arising from side shoots). (William 1998).

The tomato fruit is a berry. The unripe fruit is greenish in colour, while the ripe is reddish or yellowish. Fruit shape is most commonly spherical but pear-shaped and ovoid types of tomato also exist. William (1998). Most of the tomatoes grown in West Africa are local cultivars whose yields and fruits quality are generally poor, But whose resistance to diseases is usually good. Many of them have fruits that are wrinkled, crack easily and are too acidic. Several improved cultivars have been produced in West Africa through plant breeding efforts, while other cultivars have been introduced from other parts of the world. Improved cultivars now grown in West Africa include Marzanimo, Ife No.1, Marglobe, Money-maker Ronita, Harvester, RomaVF and enterpriser.

1.1 Handling Problem

Tomato is highly susceptible to mechanical damage caused by external loading. This causes mechanical injuries and skin cracks on the fresh fruits. These external loadings are forces under static and dynamic conditions. Researches based on properties of tomatoes which give information or data, are being carried out. Technique for evaluating and assessing tomato damage are also in progress such as deformation test (plastic and elastic deformation), compression test, strain and stress tests, detection of mechanical load and subsequent damage, the use of nondestructive quality evaluation e.t.c. These will help in developing scale and equipment for such study and also provide ways or means of reducing the mechanical damage on tomato, which influence infection, defects and thus affect the quality of the product.

Proffering solution to the problems in fresh fruits and vegetables deterioration in fruits like tomato requires establishing the relationship between the load applied and its destructive effects. This is based on the influence of minimum stress in the mechanical properties of tissues, which, requires the detection, and evaluation of such damages using special technique and instrumentation.

Assessing the impact and compression loads on tomato fruits can provide significant results and data. Such assessments could further give basic data that can be used to bring about concepts that will help in developing appropriate handling devices that will minimize the damages during handling. A proper understanding of some of these basic properties of fresh produce under load is crucial in the maintenance of good quality (Okpala 2003), during handling and distribution.

The distribution of fresh tomatoes involves packaging in containers in the vehicle. The load which the fresh fruits (especially those at the bottom of the containers) are subjected to do greatly affect their keeping quality. Apart from that, the vibration and impact received by the fresh produce during transportation is crucial. Understanding the properties of these fruits

3

is therefore important if prevention of the damage incurred is to be effected. The physical and mechanical properties of fresh produce such as tomatoes are located specific and even differ for different varieties. It is therefore important to generate such data or information which could be used by designer, and managers of horticultural produce during handling. Such information are also important in other post harvest processes of produce.

1.2 OBJECTIVES

The main objectives of this project are to reduce losses in fresh tomatoes fruit from mechanical damage in transit.

- To determine the natural frequency of vibration, of some tomato varieties common in Nigeria.
- To determine the modulus of elasticity, energy, stress, bio-yield point and maximum load under compression with the view to generate basic data.

1.3 JUSTIFICATION

This project is aimed at providing some basic information that can be used to prevent or reduce damages during handling. Most of the damages result from compression load, due to applied pressure. Other factors responsible for the damage are vibration and impact. If during transport the resonance frequency of fruits column packed into a container coincides with the excitation frequency of the road or vehicle, then the acceleration of the fruit will increase and it will be damaged by impact.

It is possible to reduce the damage by avoiding resonance vibration; this condition can be avoided by letting the natural frequency of the container of fruits to be away from the range of frequency of the excitation force while in transit. This study is aimed at generating these basic properties of the popular varieties that are grown in Nigeria which are hitherto very scarce to come across.

CHAPTER TWO

LITERATURE REVIEW

2.1 Tomato Fruit Handling

Tomatoes are highly perishable. If they are to be stored, they should be picked while still green and kept in cool, dark, moist place. Since the fruits bruise easily, they should not be piled on top of each other. If there is no space to spread them out, put some protective materials between each layer. Raw materials and finished goods from farm and agro-allied industries have to be transported from one location to the other.

This can be intra-city or inter city depending on the circumstances. A number of service industries are involved in this business, ensuring that the food products are transported safely to their destinations. Handling and transporting of tomato (Lycopersicon esculentum L. Mill) fruits from the producing to the consuming center is one of the major sources of mechanical damage which may initiate infestation by both fungi and worms and reduce the economic value of the fruit considerably. In most countries and in Nigeria the fruits are transported in trailer trucks. In Nigeria the fruits are loaded into trapezoidal shaped basket (narrow at the base) and pilled up in the trailer.

Usually, several of the fruits get crushed or cracked by the time they reach the distributing center. Such centers are usually infested with flies, which breed worm in the crushed or cracked fruits, which might have been attacked by fungi before they get to the center. Several times the damaged and infested fruits had to be removed in order to enhance better market price and increase the storage life of the rest of the fruits. Mechanical damage does reduce farmers' income and also lower the profit margin for the traders.

Tomato fruits, like many agricultural produce, display characteristics of both elastics bodies and viscous fluids when mechanically loaded and are therefore described as viscoelastic. The epidemics has been identified as the single most important component of the tomato as related to mechanical strength (Voisley and Lyall, 1965). When the epidermis ruptures, there is usually loss of juice and exposure of the internal cells.

The study of mechanical strength and viscoelastic behavior of agricultural produce has been carried out, under two modes of loading, viz: thermal loading and mechanical loading agricultural produce has been carried out mainly to predict stresses developed during drying or in cold storage. The cells expand when heat is applied during drying and as moisture is removed the cells contract. This alternate expansion and contraction set-up stresses which may result in failure in the produce. The stresses have been investigated by several researchers such as (Rao, Hammerle, Floyd et al, 1975). The conventional approach to the study of mechanical and viscoelastic behavior under externally applied load has been to adopt the phenomenological theories of linear isothermal elasticity and viscoelasticity (Mohsenin, 1978).

The physical distribution of fresh produce such as tomatoes is affected by several factors which usually combine to determine the state of the final product. The properties of tomatoes just like any other agricultural product influence the quality of the produce during handling. Damages suffered by such produce are normally influence by their properties. It has been observed that knowledge of the properties of food and their responses to process conditions is pertinent to the preservation and shelf life of such produce (Nwanekezi and Ukagu, 1999).

Fruit firmness is considered very important during handling because it shows how strong the produce is under certain load (Jain et al, 1997, Batu, 1998). The damaging load usually occur in several ways and so it is important to review some of these mechanical damage nad the ways they occur during handling.

2.2 VIBRATION DAMAGE

Little work has been reported in relation to vibration damage during transport of agricultural products. Transit injury to fruits has been investigated by O'Brien et al (1960). According to these investigators transport damage in fruits referred to as "roller bruising" is an important factor affecting the quality of fresh and processed fruit. The cause of damage is stated to be fatigue due to repeated forces of vibration on the fruit resulting in cell rupture beneath the skin. The intensity and duration of vibration will determine the severity of damage. In an attempt to determine the cause of in-transit fruit damage, accelerometers and the appropriate readout and recording system were employed in simulated transport tests.

Since vibration damage is due to the motion of the fruit in the pack (bin or in boxes), the magnitude of acceleration measured in gram was considered as the criterion for evaluating the intensity of vibration.

2.3 MECHANICAL DAMAGE IN FRUITS AND VEGETABLES

Transportation is a major cause of mechanical damage in fruits and vegetables (O'Brien et al, 1960). It is reported that fruit bruising on trucks has long been a problem and that about 12-40% of peaches were bruised during a journey of 160 miles on trucks having different types of suspension systems. Coursey and Proctor report transport losses of 15% for tomatoes and increased shearing of bananas from 1%-25.1% after a 45 miles lorry

journey. There is clearly a need to understand the factors affecting these produce during transport and the damages thereafter.

The effects of speed, vehicle load and road surface profile were investigated and it was shown that the most drastic increase in bridge response resulted from abrupt changes in road profile. Further, it was found that the magnitude of the vertical rise was the major factor in producing this response. This work has obvious implications for the transport of fruits and vegetables; the factors generating bridge response as the vehicle transverses a pot hole or bump will also be experienced in modified form by the load the truck is carrying.

The damage takes place when the road conditions are bad and the suspension systems of the trucks are either soft or too hard. The damaged to the fruits are bruising and tearing of skin and internal damage (Kaynap et al, 1989; Kaynap et al, 1990; Mohsenin, 1970; Olorunda and Tung, 1985). The damage naturally reduces the value of the fresh fruit. Mechanical damage is significantly affected by the stage of tomato maturity, container type, vibration and compressive load in the simulated transit study (Olorunda and Tung, 1985). There is significant amount of damage to the fruits and vegetables during transportation.

The damage is always greatest on top layer of fruit, and under severe transport conditions. Understanding the behaviour of the produce under static and dynamic loads can provide useful information in reducing mechanical damage and enhancing quality of the fresh produce during transportation. This is so because damage to fresh produce due to mechanical forces is among the most important causes of losses of quality (Peters, 1996, Jones et al 1991, Roudot et al., 1991; Jan et al., 1997, Dewulf et al., 1999). Several researches have been carried out on mechanical properties of food materials generally but most of these properties are product and local specific, and so can not generally be applied every product. A review of some of the basic principles used in assessing the behaviour of biomaterials under load is given briefly.

(Bata et al, 1970) studied the relationship between stress- strain properties of tomato skin to cracking of the fruit. They suggested that the percentage increase in length until failure, along with the ultimate force at failure might be related to cracking resistance. The value of elastic modulus determined at a selected value of force from the stress-strain curve was said to be totally unrelated to cracking. Voisey et. al., (1965) used bursting test, puncture test, and tensile test respectively to relate tomato skin strength to the fruit cracking and concluded that puncture test be used as an index to cracking resistance.

Close relationship has been found to exist between tomato fruit cracking and water absorption Fraizer, (1934). Chaney and koziloski, (1971) reported that water absorption cause increased turgor pressure in cells and results in cell expansion. This cell increase results in fruit expansion that might lead to fruit cracking.

Murase and Merva, (1977), studied the static elastic modulus of tomato epidermis as affected by water potential using instron device. From their results they suggested a value of 5000kpa as the actual static elastic modulus of tomato epidermis. They also felt that it might be necessary to allow the relaxation component of the elastic modulus to disappear in order to improve correlations between experimental results. They concluded that the fact that water is instrumental to development of stress and also affects the mechanical properties of the epidermis which is the only protection against cracking, complicated the problem and calls for more research to improve knowledge on the topic.

Experience has shown that the mechanical strength of the epidermis decreases as the fruits get ripe. Thus when the ultimate strength of the epidermis is low the stress developed by tugor pressure might be high enough to result in cracking of the fruit under little external load.

Some assumptions were made:

- 1. Tomato epidermis is the main protector against cracking.
- The fruit juice exerts pressure on the epidermis under load thus behave like thin –walled pressure vessels.

2.4 Determination of Natural Frequency of Vibration of Tomato

Fruit

Determining the natural frequency of the tomato fruits involves the determination of modulus of elasticity which can be obtained from compression test. In this study, the natural frequency of the fresh tomato fruits of two varieties would be determined. In order to facilitate the computation of elasticity modulus from the experiment that will be conducted, the following assumptions were made

- a. The fruits are spherical.
- **b.** Very small expansion in the horizontal plane occurred with compression in vertical plane.
- c. Each side of the fruit in contact with the flat plates will have equal deflection.

Under the above conditions and based on ASAE standards (American Society of Agricultural Engineers, 1998), the apparent modulus of elasticity for parallel plate contact is given by:

$$\mathbf{E} = \frac{\left(0.388F\left(1-\mu^{2}\right)\right)}{D^{\frac{3}{2}}} \left[k_{\upsilon}\left(\frac{1}{R_{\upsilon}}+\frac{1}{R_{u}}\right)^{\frac{1}{2}} + K_{\iota}\left(\frac{1}{R_{\iota}}+\frac{1}{R_{\iota}}\right)^{\frac{1}{2}}\right]^{\frac{3}{2}} \quad ----(3.1)$$

where

E = Modulus of elasticity (Pa)

D = Deformation (m)

F = Force(N)

 μ = Poisson's ratio = 0.22

- R_u , $R_u^1 =$ minimum and maximum radii of curvature respectively at the point of contact for upper convex surface (m).
- R_L , $R_L^1 =$ minimum and maximum radii of curvature respectively at the point of contact for lower convex surface (m)

 R_u and R_L = constants, they are determined from equation 3.1 using $\cos\theta$ is given as

$$COS\theta = \frac{\frac{1}{R_{L}} - \frac{1}{R_{L}}}{\frac{1}{R_{L}} - \frac{1}{R_{L}} + \frac{1}{R_{L}} + \frac{1}{R_{L}}} - 3.2$$

For K_u, Cos θ , is calculated using the radii of the upper surface where R₁ = R, R₁¹ = R_u¹, while R₂ = R₁¹ = ∞ given R₂⁻¹ + R₂¹⁻¹ = 0

For K_L , $\cos\theta$ is calculated using the radii of curvature for the lower surface, where $R_1 = R_L$, $R_1^1 = R_L^1$ while

$$R_2 = R_2^1 = \infty$$
 giving $R_2^{-1} + R_2^{1-1}$.

From the computed elasticity modulus; the natural frequency of the tomato fruit varieties was calculated from the relationship

$$F_n = (\frac{1}{4\lambda})\sqrt{E^*g_p} -----3.5$$

Where

Fn = Natural frequency

 $g = Acceleration due to gravity = 9.8 ms^{-2}$

 ρ = Density of fruit

 λ = Depth of the column of fruit (m) = 0.01m.

2.5 APPLICATION OF HERTZ CONTACT THEORY

A fruit is a physical body that continuously changes its properties when subject to various conditions. The response of fruits to contact loading very much depends on the type of loadings. There are many types of loading, impact, compression, shearing, twisting, bending, vibration, and puncture e.t.c. These loadings cause stress and strain to the internal tissues of the produce. The stress is the force per unit area and strain is the deformation from the initial length to the final length. A measure based on the stress / strain ratio is the modulus of elasticity.

Hertz theory of contact provides a good description about force deformation relationship or stress- strain relationship of elastic bodies. This theory could be employed to examine the collision of elastic bodies. This force deformation law of Hertz was combined with Newton's second law of motion (Goldsmith, 1960) as reported in Mohsenin (1978), to determine the maximum deformation, time of contact and maximum contact stress or pressure for two spheres of radii, R_1 and R_2 using the relationship below:

$$D_{\text{max}} = \left[5v_1^2 Am_1 m_{2/1} 6(m_1 + m_2) \right]^{2/5} \left[R_1 + R_2 / R_1 R_2 \right]^{1/5} ----2.1$$

t =4.53Am_1 m_2 / [(m_1 + m_2)] ^{2/5} [R_1 + R_2 / V_1 R_1 R_2]^{1/5} ----2.2

 $S_{max} = 0.2515 \left[\prod^4 v_1^2 / A^4 \left[m_1 m_2 / m_1 + m_2 \right] \left[R_1 + R_2 / R_1 R_2 \right]^3 \right]^{1/5} -2.3$ For a sphere of radius R₁ and a massive plane surface,

 $D_{max} = \left[\frac{15v_1^2 Am_1 m_2}{16\sqrt{R_2}} \right]^{2/5} ----2.4$ $t = 4.53 \left[\frac{Am_1}{1} \sqrt{R_1 v_1} \right]^{2/5} ----2.5$ $S_{max} = 0.2515 \left\{ \prod^4 V_1^2 m_1 / A^4 R_1^3 \right\}^{1/5} ----2.6$ Where D_{max} is approach or maximum combine deformation, t is contact time, V₁ is the initial relative velocity, m₁ and m₂ are masses of the two bodies and A is given as

 $A = 1 - \mu^2 / E_1 + 1 - \mu^2 / E_2$ Where E = Modulus of elasticity and μ = Poisson's ratio.

The Hertz theory has however yielded much information on many fruits especially those referred to as hard or rigid (Altisent 1991).

The elastic contact problem describes the internal stresses and strains created in and below the contact area between fruits and the impacted of elastic, rigid and semi- infinite bodies. It states that bruising can be initiated at a certain depth below the skin, where the maximum shear stresses and strain appear. Also a finite element analysis of contact stresses elastic as well as viscoelastic spherical bodies in contact and subjected to static and also impact load had been developed.

This method is most appropriate for calculating internal stresses caused by elastic or impact loading. This is because material properties vary within the body and they are heterogeneous in nature. It was observed that result from the analytical method used in measuring stresses is not different from the finite element procedure. However, it is noted that these theoretical approaches for the calculation of internal stresses resulting from static contact and impact are only applicable for very small strains. Thus their application to solve problems where large strains occur especially in agricultural products is questionable (Altisent 1991). But all the same, the theoretical description of the stresses and strains distribution as a result of loading gives useful information when compare with empirical observation.

CHAPTER THREE

METHODS

Fresh tomatoes of three varieties at two maturity stages (green and ripped) were harvested. The samples were weighed using the electronic weighing balance to determine their masses and were sorted into two groups (small and big) based on their masses. The groups were ranges from M_1 (masses < 30.00 to 55g) and 126 to 75 respectively. Then the diameters (minor, intermediate and major) were measured using the vernier calipers. The volumes were measured using the measuring cylinder on a platform (Mohsenin, 1979).

3.1 Equipment and Materials

The apparatus used are;

- Apparatus for compression test.
- An electronic weighing balance, venier calipers, measuring cylinders and oven.
- The electronic weighing balance To determine the tomato masses.
- The venier caliper To measure the minor, major and intermediate diameters.
- The measuring cylinders To measure the volume of tomatoes.
- The oven To dry sliced tomato fruits in order to determine the moisture content.

3.2 Method and procedure

Fresh tomato of three varieties Local, Roma and Cherry were obtained from the market and were sorted for reasonable uniformity in size of groups (small and big). The small sizes were of the range 3cm to 4.5cm in diameter while the big sizes were about 5cm in diameter. The fruits were purchased when at two stages of ripening, which were designated as ripe and unripe. The unripe stage was the green pink stage, consisting of the first point of skin colour change from complete green to 50% pink. This represented the usual stage at which subsequent ripening of tomatoes is assured during marketing. The ripe stage consisted of 80 to 100% red skin but still firm.

A standard compression testing machine the Testometric Universal Testing Machine (UTM) was used for applying force. The deformation and other parameter of interest, force deformation curves (load-deflection) were obtained from the machine. The equipment was installed in the UTM laboratory of the National Center for Agricultural Mechanization, Ilorin. The machine, which was manufactured by the Testometric Co, Ltd. UK, has a force exerting capacity of 50kN and its functional parts include a load frame, cross head, load cell, printer and control console. The moisture content of the tomato varieties was determined. This was slicing the tomato fruit samples (green and ripped), determining their masses, then placing them in an oven and allowing them to dry at a temperature of about 105°c for two hours. Samples of fresh tomatoes from each of the varieties and each maturity stage were subjected to the compression test using a loading rate of 2.5mm per minute. The results of the various parameters were printed out from the machine.

3.3 Design and Techniques of analysis

The experimental design was a completely randomized design. There were three factors, variety, maturity and size of fruits. That is, we have variety (3), maturity (2), and size (2), and 5 replicates were used hence we have a 3*2*2*5 treatments.

ariety	Small	Big	Small	Big
local	Y _{L1} rMs	Y _{1.2} rMb	Y _{L1} uMs	Y _{L1} uMb
	Y _{L2} rMs	Y _{L2} rMb	Y _{L2} uMs	Y _{L2} uMb
	Y _{L3} rMs	Y _{L3} rMb	Y _{L3} uMs	Y _{L3} uMb
	Y _{L4} rMs	Y _{L4} rMb	Y _{L4} uMs	Y _{L4} uMb
	Y _{L5} rMs	Y _{L5} rMb	Y _{L5} uMs	Y _{L5} uMb
Roma	Y _{R1} rMs	Y _{R1} rMb	Y _{R1} uMs	Y _{R1} uMb
	Y _{R2} rMs	Y _{R2} rMb	Y _{R2} uMs	Y _{R2} uMb
	Y _{R3} rMs	Y _{R3} rMb	Y _{R3} uMs	Y _{R3} uMb
	Y _{R4} rMs	Y _{R4} rMb	Y _{R4} uMs	Y _{R4} uMb
	Y _{R5} rMs	Y _{R5} rMb	Y _{R5} uMs	Y _{R5} uMb
herry	Y _{C1} rMs	Y _{C1} rMb	Y _{C1} uMs	Y _{C1} uMb
	Y _{C2} rMs	Y _{C2} rMb	Y _{C2} uMs	Y _{C2} uMb
	Y _{C3} rMs	Y _{C3} rMb	Y _{C3} uMs	Y _{C3} uMb
	Y _{C4} rMs	Y _{C4} rMb	Y _{C4} uMs	Y _{C4} uMb
	Y _{C5} rMs	Y _{C5} rMb	Y _{C5} uMs	Y _{C5} uMb

Table 3.1 Experimental Layout of Natural Frequency Determination

For each test run the machine was loaded with the test materials and the electronic computing unit of the UTM was set to measure selected mechanical properties of the tomato samples. Measured parameters were deformation at peak (mm), stress at peak (N\mm), energy at peak (N\m), load at break (N\mm), energy at break (N\m), load at yield (N), deformation at yield (mm), energy at yield (Nm), and young's modulus (N\mm). All values were read or recorded directly from data sheets. The results were printed out from the printer with their respective graphs of Force Deformation (or load-deflection.)

The analysis of statistic variance will be used to analyze the data.

CHAPTER FOUR

RESULTS AND DISCUSSION

The results of the compression test carried out to determine the selected properties of the fresh tomatoes are shown in tables 4.7c to 4.7n. The maximum, minimum and the mean values of these properties are presented with the values of standard deviation. These results were printed out directly from the machine during the tests. The samples of force-deformation curve showing the behaviour of the samples under test are given in figure 4.1 to 4.12. The details of the results are presented thus.

The results of the young's modulus of the tomato samples at various stages are presented in table 4.7c The average values of this modulus of elasticity (N/M^2) for the three varieties of ripe stage were local 0.0721 (big) and 0.1214 (small), roma 0.0869 (big) and 0.1160 (small) while for cherry the values were 1.006 (big) and 0.1134 for (small) samples. For the unripe samples the values were 0.1207 (big) and 0.1774 (small) while for cherry the values were 0.1132 (big) and 0.1593 (small).

24

These shows the maximum, minimum and mean values which each sample can withstand when subjected to compression or load before deterioration.

Table 4.7d Deformation at peak (mm) gives the maximum, minimum and mean values showing the peak values at which each sample can reach before deformation under compression The mean values of deformation at peak for samples were local (ripe) 12.086 (big) and 7.898 (small) and roma 18.958 (big) and 13.372 (small) while for cherry were 9.905 (big) and 8.874 (small). For the unripe samples the values were local 14.190 (big) and 8.715 and roma (small) 14.171 (big) and 15.165 (small) for cherry were 13.459 (big) and 9.738 (small).

Table 4.7e Energy at break (NM) showing the maximum, minimum and mean values so, in this table we can deduce that the samples(s) subjected to load or applied force will break at these levels. The mean values energy at break for the sample were local (ripe) 0.2727 (big) and 0.1295 (small)) and roam 0.5138 (big) and 0.3080 (small), for the values of cherry 0.1178 (big) and 0.0476 (small) for the unripe local 0.5601 (big) and 0.1045 and roma 0.5326 (big) and 0.5033 for the values of cherry were 0.1806 and 0.101 (small).

25

Table 4.7f Stress at peak these values shows the peak at which each sample can be stressed during transportation so that they can still maintain their quality before getting to final point. The mean values of stress at peak for the values of the samples were local 0.0227 (big) and 0.0273 (small) and roma 0.0239 (big) and 0.0329 (small) while for cherry were 0.0191 (big) and 0.0237 (small). For the unripe values, were local 0.0362 (big) and 0.0514 small and roma 0.027 (big) and 0.0309 (small).

Table 4.7g Deformation at break these values shows the points at which deformation will occur when the tomato samples are under compression, therefore at these points during transportation the samples will be ruptured. The mean values of deformation at break (mm) for the samples were local (ripe) and 13.148 (small) and roma 20.146 (big) and 13.785 (small) while cherry were 12.039 (big) and 9.744(small), for the values of unripe samples were local 15.006 (big) and 8.939 (small) and roma 15.511 (big) and 15.884 (small), for values of cherry were 13.988 (big) and 10.575 (small).

Table 4.7h Load at break, the results at this table shows the maximum and minimum loads that can be applied to each tomato samples under compression before break. This means

that the tomato samples transporting at these mean values will experience break and also the quality has been deteriorated. The mean values of load at break (N) of the samples were local (ripe) 47.380 (big) and 33.0202 (small), and roma 37.960 (big) and 31.380 while values for cherry were 9.24 (big) and 4.0400 (small). For the values of unripe samples were local 81.28 (big) and 52.520 small and roma 54.675 (big) and 59.860 (small) while values for cherry were 15.525 (big) and 9.250 (small).

Table 4.7i Deformation at yield the values shows the yielding point at which tissue of the tomatoes samples will fail. The mean values of deformation at yield for the samples were local (ripe) 3.6442 (big) and 2.8432 (small) and roma 0.48620 (big) and 3.9320 (small) while for the values of cherry were 2.3364 (big) and 1.5980 (small) for the unripe samples the values were local 3.8592 (big) and 2.9066 (small) and roma 3.1597 (big) and 3.7676 (small) while for the values of cherry were 3.2998 (big) and 2.6610 (small).

Table 4.7j Energy at yield (Nm) the values shows the force that will be applied to the tomatoes samples when is under compression or during transportation, at these points the quality is still maintained and any value exceed this value will result in breakage. The mean absorbed energy at yield for the

samples were local (ripe) 0.016 (big) and 0.0084 (small) and roma 0.016 (big) and 0.022 (Small) while for cherry the values were 0.003 (big) and 0.001 (Small). For the unripe samples the values were local (0.032) (big) and 0.012 (small) and roma 0.020 (big) and 0.0100 (small) while for cherry the values were 0.006 (big) and 0.003 (small).

Table 4.7k Stress at yield (N/m^2) these values shows that any further load at these points will result in deformation of the tomatoes samples. These are the limit for which the samples can stressed under compression. The mean values of stress at yield for the samples were local (ripe) 0.0046 (big) and 0.0055 (small) roma 0.0049 (big) and 0.0064 (small) for the value of cherry were 0.0040 (big) and 0.0048 (small). For the unripe samples for local 0.073 (big) 0.9103 (small) and roma 0.028 (big) and 0.0100 (small) while for cherry the values were 0.0061 (big) and 0.0062 (small).

Table 4.7L Stress at break the values shows the points at which the tomatoes sample will break when stressed under compression. The mean values of stress at break for the samples were local (unripe) 0.0351 (big) and 0.047 (small) and roma 0.022 (big) and 0.0466 (small) for the values of cherry were 0.0165 (big) and 0.148 small for the ripe values of samples were local 0.021 (big) and 0.0239 (small) and roma 0.164 (big) and 0.0203 (small) white for cherry were 0.0091 (big) and 0.0091 (small).

Table 4.7m Energy at peak (Nm) these values shows the peak at which the tomatoes samples can no longer withstand other load or force when under compression. The average values of energy at peak for local (ripe) 0.2670 (big) and 0.1225 (small) and roma 0.4694 (big) and 0.2920 (small) while for cherry were 0.984 (big) and 0.0437 (small), for the values of unripe local 0.5133 (big) and 0.2088 (small) and roma 0.4499 (big) and 0.4734 (small).

Table 4.7n Load at yield these results shows the load that can be applied to the tomatoes sample at various stages when subjected to compression. The mean values of load at yield (N) for the sample were local (ripe) 10.320 big) and 7.480 (small) and roma 11.60 (big) and 9.840 and 2.100 (small). For the unripe samples the values were local 16.980 (big) and roma 12.950 (big) and 12.880 (small) while for cherry values were 5.625 (big) and 3.9000 (small).

These parameters show the properties of fresh tomato fruits at which they can withstand or resist load. And at every stages it was observed that roma has the highest resistance to deformation or crushing while local varieties can easily deformed. And Table 4.1a, 4.10, 4.2a and 4.2b shows the result of the experiment on natural frequency of vibration determination and the average natural frequency of vibration of fresh tomato varieties at their green or unripe stages of maturity table 4.3a, 4.3b, 4.4a and 4.4b. The natural frequencies of vibration of tomato at fully ripe stage of maturity are as shown in table 4.5a and 4.5b respectively.

The analyses of results for unripe samples used are given in table 4.6a & 6b respectively. Table 4.7a and 4.7b shows the summary of analysis of variance for variety interactive defects. The forcedeformation graphical result of the three varieties at both stages of maturity sorted into small and big are presented.

Table 4.1a Ripe Big

Natural frequency of	LOCAL	ROMA	CHERRY
vibration for mass 1	19-39	24.05	23.08
Natural frequency of vibration for mass 2	23.28	22.03	28.23
Natural frequency of vibration for mass 3	23.72	23.19	30.18
Natural frequency of vibration for Mass 4	26.52	25.60	20.17
Natural frequency of vibration for Mass 5	22.21	24.75	16.59

Table 4.1b Ripe Small

Natural frequency of	LOCAL	ROMA	CHERRY
vibration for mass 1	17.73	19.07	21.90
Natural frequency of vibration for mass 2	24.67	25.64	15.64
Natural frequency of vibration for mass 3	26.70	29.95	18.98
Natural frequency of vibration for Mass 4	18.73	28.87	15.66
Natural frequency of vibration for Mass 5	26.67	27.53	13.86

31

vibration for mass 1	19.14	26.76	26.61
Natural frequency of vibration for mass 2	25.46	26.96	32.75
Natural frequency of vibration for mass 3	19.96	27.20	24.95
Natural frequency of vibration for Mass 4	42.82	30.79	22.21
Natural frequency of vibration for Mass 5	28.12	-	-

Table 4.2b Unripe Small

Natural frequency of	LOCAL	ROMA	CHERRY
vibration for mass 1	27.55	33.63	20.91
Natural frequency of vibration for mass 2	29.59	33.85	22.06
Natural frequency of vibration for mass 3	30.65	35.71	26.38
Natural frequency of vibration for Mass 4	24.02	25.35	24.16
Natural frequency of vibration for Mass 5	30.82	31.40	-

Result of the determined the Mean Natural frequency of vibration for the

ripe and unripe stages sorted into Big and small respectively.

Table 4.3a

The mean Natural frequently of vibration for masses at the maturity stages

Big Ripe Mean					
Local	Roma	Cherry			
23.02	23.92	23.65			

Table 4.3b

Small Ripe Mean					
Local	Roma	Cherry			
22.90	26.21	17.21			

Table 4.4a

Big Unripe Mean				
Local	Roma	Cherry		
27.10	27.93	26.63		

Table 4.4b

Small unripe Mean					
Local	Roma	Cherry			
28.53	31.99	23.38			

Table 4.40	ANOV	A TABLE		
Source of	Degree of	Sum of Squares (Ss)	Mean Square	F
Variation	Freedom		(Ms)	
Tomatoes (Treatment)	<i>t</i> – 1	$\frac{\sum_{i} y_{i}^{2}}{t-1} - \frac{\left(\sum_{i} \sum_{j} y_{2j}^{2}\right)^{2}}{n-1}$	$\frac{ss_t}{t-1}$	$\frac{MS_{i}}{MS_{\varepsilon}}$
Error	n-t	$\left(\sum_{i}\sum_{j}y_{2j}^{2}\right)-\frac{\sum_{i}y_{i}^{2}}{t-1}$	$\frac{SS_{e}}{n-t}$	
Total	<i>n</i> -1	$\frac{\sum_{i} y_{i}^{2}}{t-1} - \frac{\left(\sum_{i} \sum_{j} y_{2j}^{2}\right)^{2}}{n-1}$		

Where t = no of tomatoes

y_{ij=}each of the readings

Analysis of the result

Analysis of variance (ANOVA) was used to analysed data obtained statistically to the effects of the three factors namely variety and maturity of the samples of their natural frequency of vibration. The results are presented below

Table 4.5aRipe Samples

ANALYSIS OF VARIANCE FOR THE RIPE SAMPLES.

ANOVA

		Sum of Squares	df	Mean Square	F	P-value
HEIGHT	Variety	3589.871	5	717.974	32.594	.000
	Error	528.670	24	22.028		
	Total	4118.541	29			
DIAMETER	Variety	3137.722	5	627.544	37.102	.000
	Error	405.934	24	16.914		
	Total	3543.656	29			
LOADYL	Variety	335.462	5	67.092	6.976	.000
	Error	230.832	24	9.618		
	Total	566.294	29			
DEFYL	Variety	34.674	5	6.935	6.424	.001
	Error	25.909	24	1.080		
	Total	60.583	29			
LOADBR	Variety	7120.390	5	1424.078	6.477	.001
	Error	5276.500	24	219.854		
	Total	12396.890	29			
DEFBR	Variety	433.798	5	86.760	8.257	.000
	Error	252.181	24	10.508		
	Total	685.979	29			
STRESSPK	Variety	.001	5	.000	.805	.557
	Error	.003	24	.000		
	Total	.004	29			
ENERGYPK	Variety	.625	5	.125	8.042	.000
	Error	.373	24	.016		
	Total	.998	29			
STRESSBR	Variety	.001	5	.000	2.040	.109
	Error	.002	24	.000		
	Total	.003	29			
STRESSYL	Variety	.000	5	.000	.655	.660
	Error	.000	24	.000		
	Total	.000	29			
ENERGYYL	Variety	.002	5	.000	6.149	.001
	Error	.001	24	.000		
	Total	.003	29			
ENERGYBR	Variety	.722	5	.144	8.542	.000
	Error	.406	24	.017		
	Total	1.128	29			
DEFPK	Variety	405.802	5	81.160	7.384	.000
	Error	263.783	24	10.991		
	Total	669.585	29			
YOUNGSMD	Variety	.009	5	.002	1.824	.146
	Error	.024	24	.001		
	Total	.033	29			

35

varie ties	Height	Diamete r	Load YL	Def YL	Load BR	DefB R	Str PK	Ener PK	Str BR	Str YL	Ener YL	Ene r BR	Def PK	YM D
1	29.38a	41.77c	7.48b c	2.84ab c	33.02b	8.15a	0.03a	0.12ab	0.02a	0.006a	0.008ab	0.13 ab	7.90 a	0.12 b
2	45.37b	44.41c	9.84c	3.93cd	31.38b	13.79b	0.03a	0.29bc	0.02ab	0.006a	0.015bc	0.31 c	13.3 7b	0.12 ab
3	45.12b	23.80a	2.10a	1.60a	4.24a	9.74ab	0.02a	0.04a	0.01a	0.005a	0.001a	0.5a	8.87 ab	0.11 ab
4	34.35a	5237d	10.32 c	3.64bc d	47.38b	12.20a b	0.02a	0.27bc	0.02ab	0.005a	0.019c	0.27 bc	12.0 9ab	0.07 a
5	6202d	53.99d	11.06 c	4.86d	37.96b	20.15b	0.02a	0.47d	0.02ab	0.005a	0.02c	0.51 d	18.9 6c	0.09 ab
6	53.42c	35.74b	4.06a b	2.34ab	9.24a	12.04a b	0.02a	0.10ab	0.01a	0.004a	0.003a	0.12 ab	9.90 ab	0.10 ab

.

Table 4.5b Summary of the Duncan Multiple Range test for the Mean of the unripe samples. Subset for (a,b,c,d&d) = .05

Uses Harmonic Mean Sample Size = 4.444-5.000

. 37

TABLE 4.6a ANALYSIS OF VARIANCE FOR THE UNRIPE SAMPLES.

ANOVA

		Sum of Squares	df	Mean Square	F	P-value
HEIGHT	Variety	3067.543	5	613.509	33.570	.000
	Error	383.790	21	18.276		
	Total	3451.333	26			
DIAMETER	Variety	2718.479	5	543.69 6	65.313	.000
	Error	174.814	21	8.324		
	Total	2893.293	26			
LOADYL	Variety	531.055	5	106.211	4.604	.005
	Error	484.445	21	23.069		
	Total	1015.501	26			
DEFYL	Variety	5.142	5	1.028	1.590	.206
	Error	13.581	21	.647		
	Total	18.723	26	Sector Contractor		
LOADBR	Variety	16742.587	5	3348.517	5.463	.002
	Error	12872.233	21	612.963		
	Total	29614.820	26			
DEFBR	Variety	194.154	5	38.831	5.003	.004
	Error	162.977	21	7.761		
	Total	357.131	26			
STRESSPK	Variety	.002	5	.000	1.212	.338
	Error	.006	21	.000		
	Total	.008	26			diaman and
ENERGYPK	Variety	.736	5	.147	4.681	.005
	Error	.660	21	.031		
	Total	1.396	26			
STRESSBR	Variety	.005	5	.001	3.584	.017
	Error	.006	21	.000		
	Total	.010	26			
STRESSYL	Variety	.000	5	.000	2.242	.088
	Error	.000	21	.000		
	Total	.000	26			
ENERGYYL	Variety	.002	5	.000	3.904	.012
	Error	.003	21	.000		
	Total	.005	26			
ENERGYBR	Variety	.918	5	.184	5.855	.002
	Error	.659	21	.031		
	Total	1.577	26			
DEFPK	Variety	166.574	5	33.315	3.977	.011
	Error	175.898	21	8.376		
	Total	342.472	26	0.010		
YOUNGSMD	Variety	.018	5	.004	1.254	.320
	Error	.018	21	.003	1.204	.020
	Total	.076	26	.005		

From the table above, shows that the effect of variety are significant since varieties at height, diameter, load at yield, load at break, deterioration at break, energy at peak, stress at break, energy at yield, energy at break deformation at peak are value of P ranges from (0.000 to 0.005) < 0.05 while variety on the natural frequency of vibration has no significant difference since varieties at deformation at yield, stress at peak, stress at yield and young modulus are P (0.206, 0.338,0.088 and 0.320) > 0.05 respectively. Table 4.6b Summary of the Duncan Multiple Range test for the Mean of the ripe samples. Subset for alpha

(a,b,c,d&d) = .05

Variet ies	Height	Diameter	Load YL	Def YL	Load BR	DefBR	Str PK	Ener PK	Str BR	Str YL	Ener YL	Ener BR	DefPK	YMD
1	26.15a	37.03ab	11.66bc	2.91a	52.52b	8.94a	0.04a	0.21	0.05c	0.011b	0.012ab	0.22a	8.72a	0.18a
2	48.68b	40.32c	12.88c	3.77a	59.86b	15.88c	0.05a	0.47c	0.05c	0.010ab	0.020bc	0.50b	15.16c	0.17a
3	44.82b	27.86a	3.90a	2.66a	9.25a	10.58ab	0.03a	0.09a	0.01a	0.006ab	0.003a	0.10a	9.74ab	0.16a
4	44.14b	54.61d	16.98c	3.86a	81.28b	15.01c	0.04a	0.51c	0.04a b	0.007ab	0.031c	0.56b	14.19c	0.13a
5	62.11c	55.78d	12.98c	3.16a	54.68b	15.51c	0.03a	0.45bc	0.02a b	0.005a	0.020ab c	0.53b	14.17c	0.12a
6	48.46b	34.48b	5.63ab	3.30a	15.53a	13.99b	0.03a	0.17a	0.01a	0.006ab	0.006ab	0.18a	13.76bc	0.11a

Uses Harmonic Mean Sample Size = (4.444 -5.000)

41

" h

Analysis of the result for green or the unripe samples If P < 0.05, then there is a significant difference, in the readings of the machine on the various types of tomato.

TABLE 4.7 a Summary of analysis of variance (ANOVA) for variety interactive effects.

		Sum of Squares	df	Mean Square	F	Sig.
HEIGHT	Tomatoes	6657.579	11	605.234	29.848	.000
	Error	912.460	45	20.277		
	Total	7570.038	56			
DIAMETER	Tomatoes	5856.285	11	532.390	41.253	.000
	Error	580.748	45	12.906		
	Total	6437.033	56			
LOADYL	Tomatoes	1044.784	11	94.980	5.975	.000
	Error	715.277	45	15.895		
	Total	1760.061	56			
DEFYL	Tomatoes	39.957	11	3.632	4.139	.000
	Error	39.490	45	.878		
	Total	79.446	56			
LOADBR	Tomatoes	29794.236	11	2708.567	6.716	.000
	Error	18148.733	45	403.305		
	Total	47942.969	56			
DEFBR	Tomatoes	633.692	11	57.608	6.244	.000
	Error	415.158	45	9.226		
	Total	1048.850	56			
STRESSPK	Tomatoes	.004	11	.000	1.890	.067
	Error	.009	45	.000		
	Total	.013	56			

ANALYSIS OF VARIANCE (ANOVA) OUTPUT

ANOVA

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
ENERGYPK	Tomatoes	1.535	11	.140	6.079	.000
	Error	1.033	45	.023		
	Total	2.568	56			
STRESSBR	Tomatoes	.009	11	.001	4.719	.000
	Error	.008	45	.000		
	Total	.017	56			
STRESSYL	Tomatoes	.000	11	.000	2.891	.006
	Error	.000	45	.000		
	Total	.001	56	Second Second	1000	
ENERGYYL	Tomatoes	.005	11	.000	4.658	.000
	Error	.004	45	.000		
	Total	.009	56	6.0		
ENERGYBR	Tomatoes	1.868	11	.170	7.179	.000
	Error	1.064	45	.024		
	Total	2.932	56			
DEFPK	Tomatoes -	580.099	11	52.736	5.397	.000
	Error	439.680	45	9.771		
	Total	1019.780	56			
YOUNGSMD	Tomatoes	.056	11	.005	2.758	.008
	Error	.083	45	.002		
	Total	.139	56			

al.

 $\alpha = 0.05$ level of significant, the interactive effect between the two varieties is highly significant on the natural frequency of vibration since P(0.000) < 0.05 except on stress at peak with no significant difference since P(0.067) > 0.05.

Variet ies	Height	Diamet er	Load YL	Def YL	Load BR	DefBR	Str PK	Ener PK	Str BR	Str YL	Ener YL	Ener BR	DefP K	YM
1	29.38ab	41.77d e	7.48abc	2.84abc	33.02a bc	8.15a	0.027a b	0.123a b	0.024ab	0.006a b	0.008a bcd	0.129ab	7.90a	0.1 1ab
2	26.15a	37.03b cd	11.66cd	2.91abc	52.52c	8.94a	0.042b c	0.209a b	0.048c	0.011c	0.012a bcd	0.219ab	8.72a	0.1 7c
3	45.37c	44.41e	9.84bc	3.93cd	31.38a bc	13.70abc d	0.033a bc	0.293a bc	0.020ab	0.006a b	0.015b cd	0.308bc	13.3 7bcd	0.1 6ab
4	48.68cd	40.32c de	12.88cd	3.77cd	59.86c d	15.88d	0.050c	0.473c d	0.047c	0.01bc	0.021d e	0.503cd	15.1 6de	0.1 3c
5	45.12c	23.80a	2.10a	1.60a	4.24a	9.74ab	0.024a b	0.044a	0.010a	0.005a	0.001a	0.047a	8.87a b	0.1 3ab
6	44.82c	27.86a	3.90a	2.66abc	9.25ab	10.58abc	0.031a bc	0.089a b	0.015a	0.006a b	0.003a b	0.101ab	9.74a bc	0.1 9bc
7	34.35b	52.37f	10.32bc	3.64bcd	47.38c	12.20abc d	0.023a b	0.267a bc	0.021ab	0.005a	0.019c de	0.273ab	12.0 9abc	0.0° 2a
8	44.14c	54.61f	16.98d	3.86cd	81.28d	15.01cd	0.036a bc	0.513d	0.035ab	0.007a bc	0.031e	0.560d	14.1 9cd	0.12 9ab
9	62.02e	53.99f	11.06bc	4.86d	37.96b c	20.15e	0.024a b	0.469c d	0.016ab	0.005a	0.022d e	0.514cd	18.9 6e	0.03 7a
10	62.11e	55.78f	12.95cd	3.16bc	54.68c d	15.51cd	0.027a b	0.450c d	0.023ab	0.006a b	0.020c de	0.533d	14.1 7cd	0.1 1ab
11	53.43d	35.74b c	4.06a	2.34ab	9.24ab	12.04abc d	0.019a	0.098a b	0.009a	0.004a	0.003a b	0.118ab	9.90a bc	0.1 1at
12	48.46cd	34.48b	5.63ab	3.30bc	15.53a b	13.98bcd	0.030a bc	0.171a b	0.017ab	0.006a b	0.006a bc	0.181ab	13.4 6bcd	0.1 3ab

Table 4.7b Summary of the Duncan Multiple Range test for the Mean of the output for the variety interactive effects Subset for alpha (a,b,c,d & e) = .05

Uses Harmonic Mean Sample size = 4.706

The Group sizes are unequal. The Harmonic Mean of the group sizes is used. Type 1 error level are not guaranteed

			F	lipe							Un	ripe			
	Si	mall		Big					Sr	nall			В	lig	
Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev
0.0708	0.1800	0.1214	0.0437	0.0552	0.0877	0.0721	0.0142	0.1131	0.2422	0.1774	0.0555	0.0544	0.02939	0.1289	0.095
0.0627	0.1564	0.1160	1.0347	0.0720	0.0958	0.0869	0.0093	0.1064	0.2082	0.1729	0.0399	0.1073	0.1472	0.1207	0.0182
0.0615	0.1596	0.1134	0.0398	0.0640	0.1338	0.1006	0.0318	0.1468	0.1713	0.1593	0.0106	9,9762	0.1401	0.1132	0.0246
	Ta	ble 4.7d		The r	nean val	lues of De	formatio	on at Pe	ak (mm)	of the sa	mples at	maturity	stages		
				Big											
4.177	10.404	7.898	2.379	7.987	15.124	12.086	3.062	5.441	11.554	8.715	2.834	10.758	18.526	14.190	2.901
9.689	17.743	13.372	3.098	15.424	24.543	18.958	3.604	10.224	17.780	15.165	2.956	12.047	16.379	14.171	2.011
3.543	11.639	8.874	3.172	4.784	16.419	9.905	4.273	4.109	12.796	9.738	4.231	11.685	15.807	13.459	1.763
		Tab	ole 4.7e	Th	ne mean	values of	Energy	at Brea	k (N/m)	of the sar	nples at r	naturity	stages		
	Small	l		Big						Small		1	Big		
0.0112	0.2341	0.1295	0.0840	0.0750	0.4918	0.2727	0.15666	0.0542	0.3891	0.1045	0.1507	0.3787	0.9947	0.5601	0.2510
0.0858	0.4671	0.3080	0.1505	0.3368	0.8104	0.51380	0.1873	0.1408	0.6093	0.5033	0.2930	0.3890	0.8203	0.5326	0.1993
0.0053	0.0799	0.0476	0.0343	0.0264	0.2883	0.1178	0.1045	0.0165	0.1586	0.1010	0.0639	0.0926	0.2652	0.1806	0.0811
	Min 0.0708 0.0627 0.0615 4.177 9.689 3.543 0.0112 0.0858	Min Max 0.0708 0.1800 0.0627 0.1564 0.0615 0.1596 Ta 4.177 10.404 9.689 17.743 3.543 11.639 Small 0.0112 0.2341 0.0858 0.4671	Min Max Mean 0.0708 0.1800 0.1214 0.0627 0.1564 0.1160 0.0615 0.1596 0.1134 Table 4.7d 4.177 10.404 7.898 9.689 17.743 13.372 3.543 11.639 8.874 Table 5.000000000000000000000000000000000000	Small Min Max Mean Std Dev 0.0708 0.1800 0.1214 0.0437 0.0627 0.1564 0.1160 1.0347 0.0615 0.1596 0.1134 0.0398 Table 4.7d 4.177 10.404 7.898 2.379 9.689 17.743 13.372 3.098 Small Small 0.0112 0.2341 0.1295 0.0840 0.0112 0.2341 0.3080 0.1505	Min Max Mean Std Dev Min 0.0708 0.1800 0.1214 0.0437 0.0552 0.0627 0.1564 0.1160 1.0347 0.0720 0.0615 0.1596 0.1134 0.0398 0.0640 Table 4.7d The r Big 4.177 10.404 7.898 2.379 7.987 9.689 17.743 13.372 3.098 15.424 Table 4.7d Max Table 4.7e The r 9.689 17.743 13.372 3.098 15.424 Small 3.172 4.784 Small 0.1295 0.0840 0.0750 0.0112 0.2341 0.1295 0.0840 0.0750 0.0858 0.4671 0.3080 0.1505 0.3368	Small Big Min Max Mean Std Dev Min Max 0.0708 0.1800 0.1214 0.0437 0.0552 0.0877 0.0627 0.1564 0.1160 1.0347 0.0720 0.0958 0.0615 0.1596 0.1134 0.0398 0.0640 0.1338 Table 4.7d The mean val Big 4.177 10.404 7.898 2.379 7.987 15.124 9.689 17.743 13.372 3.098 15.424 24.543 3.543 11.639 8.874 3.172 4.784 16.419 Table 4.7e Small 0.0112 0.2341 0.1295 0.0840 0.0750 0.4918 0.0129 0.0840 0.0750 0.4918 0.0858 0.4671 0.3080 0.1505 0.3368 0.8104	Small Big Min Max Mean Std Dev Min Max Mean 0.0708 0.1800 0.1214 0.0437 0.0552 0.0877 0.0721 0.0627 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0615 0.1596 0.1134 0.0398 0.0640 0.1338 0.1006 TBUE 4.7d The mean values of Data Big 4.177 10.404 7.898 2.379 7.987 15.124 12.086 9.689 17.743 13.372 3.098 15.424 24.543 18.958 3.543 11.639 8.874 3.172 4.784 16.419 9.905 Small O.0112 0.2341 0.1295 0.0840 0.0750 0.4918 0.2727 0.0858 0.4671 0.3080 0.1505 0.3368 0.8104 0.51380	Small Big Min Max Mean Std Dev Min Max Mean Std Dev 0.0708 0.1800 0.1214 0.0437 0.0552 0.0877 0.0721 0.0142 0.0627 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0093 0.0615 0.1596 0.1134 0.0398 0.0640 0.1338 0.1060 0.0318 The HAC The mean values of Determation The Name of Determant of	Big Min Max Mean Std Dev Min Max Mean Std Dev Min 0.0708 0.1800 0.1214 0.0437 0.0552 0.0877 0.0721 0.0142 0.1131 0.0627 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0939 0.1064 0.0615 0.1596 0.1134 0.0398 0.0640 0.1338 0.1006 0.0318 0.1064 0.0615 0.1596 0.1134 0.0398 0.0640 0.1338 0.1006 0.0318 0.1064 THUT THUT THUT Std DEV 4.177 10.404 7.898 2.379 7.987 15.124 12.086 3.062 5.441 9.689 17.743 13.372 3.098 15.424 24.543 18.958 3.604 10.224 3.543 11.639 8.874 3.172 4.784 16.419 9.905 4.273 <	Nin Max Mean Std Dev Min Max 0.0700 0.1800 0.1214 0.0437 0.0552 0.0877 0.0721 0.0142 0.1134 0.2422 0.0627 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0038 0.1064 0.2482 0.0615 0.1566 0.1134 0.0398 0.0640 0.1338 0.1060 0.0318 0.1064 0.2082 0.0615 0.1564 0.1134 0.0398 0.6640 0.1338 0.1060 0.0318 0.1645 0.1713 1.177 10.404 7.898 2.379 7.987 15.124 12.086 3.604 10.224 17	Nin Max Mean Std Dev Min Max Mean 0.0708 0.1800 0.1240 0.0437 0.0552 0.0877 0.0720 0.0142 0.1130 0.2422 0.1774 0.0615 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0093 0.1064 0.2082 0.1720 0.0615 0.1564 0.1160 1.0347 0.0720 0.0958 0.0869 0.0093 0.1064 0.2082 0.1720 0.0615 0.1564 0.1140 0.398 0.0640 0.1338 0.1060 0.0188 0.1648 0.1713 0.1593 0.1617 True True True True Std Tu 1.5154 1.2086 3	Note that is the image of the image.Image of the image of the image.Image of the image of the image.Image: Image of the image.Image: Image of the image.Image: Image of the image.Image: Image of the image of the image of the image of the image. <t< td=""><td>Note the state of the state o</td><td>Image: Normal State St</td><td>Note the series of the series</td></t<>	Note the state of the state o	Image: Normal State St	Note the series of the series

Table 4.7c The mean values of Elastic Young Modulus (N/mm²) of the sample at maturity stages

4-12

qq

 Table 4.7f
 The mean values of Energy at Yield (N/m) of the sample at maturity stages

				F	Ripe							Un	ripe			
		S	mall			E	Big			Sn	nall			В	lig	
Variet y	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev
Local	0.000	0.016	0.008	0.007	0.003	0.033	0.016	0.011	0.002	0.025	0.012	0.010	0.011	0.060	0.032	0.020
Roma	0.002	0.036	0.016	0.009	0.016	0.030	0.022	0.006	0.0043	0.0129	0.0100	0.0033	0.013	0.031	0.020	0.008
Cherry	0.000	0.003	0.001	0.001	0.000	0.013	0.003	0.005	0.000	0.006	0.003	0.002	0.003	0.010	0.006	0.003
			Table	4.7g	The mean	n values	of Stres	s at Brea	k of the s	amples a	t maturit	y stages	N/mm	2		
Small					Big						Small			В	lig	
Local	0.0021	0.0089	0.0055	0.0032	0.0029	0.0054	0.0046	0.0010	0.0040	0.0152	0.0108	0.0046	0.0040	0.0128	0.0073	0.0036
Roma	0.0022	0.0089	0.0064	0.0026	0.0038	0.0060	0.0049	0.0010	0.0043	0.0129	0.0100	0.0033	0.0041	0.0074	0.0054	0.0015
Cherry	0.0019	0.0076	0.0048	0.0026	0.0017	0.0084	0.0040	0.0026	0.0038	0.0079	0.0062	0.0020	0.0043	0.0084	0.0061	0.0019
			Tabl	e 4.7h	Т	he mean	values of	Stress at	Break o	f the sam	ples at m	aturity s	tages N	$/ \mathrm{m m}^2$		
	1	Smal	11	·×.	Big						Small			Bi	g	
Local	0.0054	0.0370	0.0239	0.0143	0.0098	0.0268	0.0210	0.0065	0.0185	0.0745	0.0476	0.0256	0.0177	0.0613	0.0351	0.0179
Roma	0.0056	0.0322	0.0203	0.0121	0.0101	0.0204	0.0164	0.0039	0.0162	0.599	0.0466	0.0173	0.0173	0.0347	0.0226	0.0081
Cherry	0.0011	0.0239	0.0096	0.0103	0.0015	0.0166	0.0091	0.0062	0.0049	0.0275	0.0148	0.0098	0.0099	0.00218	0.0165	0.0049
			Tab	ole 4.7i	T	he mean	values of	Energy	at Peak o	f the sam	ples at n	naturity	stages (N	N/m)		
	Small				Big		Ener	gy at	Peak		Small			Bi	g	
Local	0.0079	0.2297	0.1225	0.0822	0.0708	0.4694	0.2670	0.1507	0.0518	0.3813	0.2088	0.1464	0.2964	0.9763	0.5133	0.2714
Roma	0.0780	0.4585	0.2930	0.1480	0.3280	0.7385	0.4694	0.1720	0.0983	0.5807	0.4734	0.2099	0.3154	0.0596	0.4499	0.1569
Cherry	0.0043	0776	0.0437	0.0324	0.0154	0.2819	0.0984	0.1061	0.0140	0.1435	0.0888	0.0555	0.0859	0.2563	0.1709	0.0822

				R	lipe							Un	ripe			
		S	mall							Sn	nall			F	Big	
Variety	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std De
Local	0.0036	0.0440	0.0273	0.0163	0.0142	0.0271	0.0227	0.0042	0.0200	0.0745	0.0514	0.0221	0.0189	0.0624	0.0362	0.0177
Roma	0.0124	0.0449	0.0329	0.0127	0.0189	0.0295	0.0238	0.0047	0.0199	0.0639	0.0496	0.0171	0.0202	0.0382	0.0271	0.0080
Cherry	0.0092	0.0378	0.0237	0.0135	0.0080	0.0400	0.0191	0.0126	0.0182	0.0390	0.0309	0.0095	0.00198	0.0399	0.0297	0.0105
10	asle L	4.7K				Defo	rmatio	on at B	reak ((m m)						۹,
Local	4.703	10.487	8.148	2.206	8.200	15.440	12.202	3.067	5.895	11.653	8.939	2.745	10.942	18.674	15.006	2.887
Roma	10.250	17.887	13.785	2.880	16.303	26.079	20.146	3.973	12.301	18.018	15.884	2.245	13.878	18.323	15.511	2.110
Cherry	4.995	12.701	9.744	2.889	6.709	16.680	12.039	4.044	4.830	14.447	10.575	4.407	12/518	16.219	13.988	1.604
T	able L	+.7L					Load	a t Brea	nk (N)							
Local	4.900	47.100	33.020	18.279	15.900	57.400	47.380	21.028	17.900	79.00	52.520	29.862	40.30	123.70	81.28	39.39
Roma	9.400	53.600	31.380	19.360	19.700	47.600	37.960	10.743	20.00	76.600	59.860	22.693	40.800	79.300	54.675	16.937
Cherry	0.5000	7.6000	4.0400	3.8220	1.500	17.200	9.240	6.332	2.300	16.300	9.250	5.923	8.300	19.000	15.525	4.943
	Table	- 4·7~	1			1	Deformat	tion at Yi	eld (mm	1)						
Local	1.7730	3.8090	2.8432	0.9568	2.5730	4.7290	3.6442	0.8970	1.9960	3.8660	2.9066	0.7902	3.0560	5.4250	3.8592	0.9466
Roma	2.6260	5.5440	3.9320	1.2217	4.0400	5.6580	4.8620	0.6909	3.2370	4.2750	3.7676	0.4221	2.4320	2.9000	3.1597	0.6365
Cherry	0.4260	2.7840	1.5980	0.9686	0.6890	4.0320	2.3364	1.3597	1.0460	4.0730	2.6610	1.3041	2.8390	3.7600	3.2998	0.3957

Table 4-7;Mean Values of Stress at Peak of the Samples at Maturity Stages N/m2

11	.	L 8	-	- A -	,546	¥		
- 16	6.31	ma		4	- 1	n	ъ.	
	6 B I	U.98	-	- 20	1	я	а.	

The mean values of Load at Yield (N) of the sample at maturity stages

				R	lipe							Unr	ipe			
		Si	mall		Big					Sr	nall]	Big	
ariet y	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev
ocal	1.9000	12.00	7.480	4.026	4.700	15.100	10.320	4.128	4.900	16.100	11.660	5.477	8.300	25.200	16.980	7.910
oma	3.700	12.700	9.840	3.754	9.300	12.800	11.060	1.656	5.300	16.500	12.880	4.355	10.700	16.900	12.950	2.886
nerry	0.8000	3.30000	2.10000	1.1023	1.6000	8.1000	4.0600	2.5304	1.8000	5.2000	3.9000	1.4989	4.1000	7.3000	5.6250	1.4818

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

From this study, it can be concluded that there is implication in tomato transportation affected by vehicular vibration which reduce load at break more in the ripe fruits or tomatoes than the unripe ones. The unripe fruit is lightly affected by vibration caused from vehicle movement. But in other words to reduce damage in transit the natural frequency of vibration of the vehicle should be away from that of produce so as to avoid resonance.

From this study, it enables the producer to select which of the vehicle can be used to transport tomato in order to reduce damages and also to select the produce for long distance travel.

5.2 RECOMMENDATION

For better result on this a experiment

- Different containers should be used to know which of containers will be best for packaging tomato
- 2 Temperature of the environment where tomatoes is being transported should also be taking into consideration, so as to use refrigerated van or vehicle

Gradients Transporting of ASAE. Pp. (15, 960).

 Idah P. A, J. S Adeoti and K. Oje (1996) Assessment of Packaging and Transport device in Inter – State Fresh Tomato Transport in Nigeria. Survey, Proceedings of the 18th Annual Conference,
 Nigerian Society of Agricultural Engineers, Proceedings of the 18th Annual Conference. Nigeria Society of Engineers Ile-Ife.

- Jones C.S, J. E Holt and D. Schrool (1991); A model to Predict Damage to Horticultural Produce During Transportation. Journal of Texture Studies Vol 15 No.6, Department of Mechanical Engineering, University of Queens land, Australia.
- Karen B. G. (1991); Post Harvest Management of Commercial Crops,
 Containers and Packaging; Kansas State University, Agricultural
 Experimental Station and Cooperation Extension Services, U.S.A
- Mohsenin N. N. (1978) Physical Properties of Plants and Animals Materials, 3rd Edition. Gordon and Breach Science Publishers, New York.
- Mohsenin. N. N. (1970); Physical Properties of Plants and Animals Materials Vol. 1, Gordon and Breach; Science Publication New York.
- Murase H, and G.E. Merva. (1977); Static Elastic Modulus of Tomato Epidermis as Affected by Water Potential. Transport of ASAE Publishers (Pp 20, 594 -597)

Okpala O. (2003); Determination of Natural Frequency of Tomato Department of Agricultural Engineering Federal University of Technology Minna, Nigeria

Oladapo M.A. (1995); Controlling Post Harvest Losses in Tomatoes and Peppers, Journal of Tropical Post Harvest Vol. 13, Pp 136 – 142.

Ogut H, A. Peter and C. Ayidin (1999); Simulated Transit Studies on Peaches Effects of Containers, Cushion Materials and Vibration on Elasticity Modulus. Journal of Agricultural Mechanization for Asia, Africa and Latin America Vol. 30, No.5.

Olorunda O.A and K. Tung (1985); Reducing Damage in Tomato by Proper Handling after Harvest. Horticultural Crops Research Programme, Institute for Agricultural Research, Ahmadu Bello University Zaria, Nigeria.

Roa, V.N.M, D.D Hamann and J.R. Hammerle (1975); Stress Analysis for a Viscoelastic Sphere Subjected to Temperature and Moisture

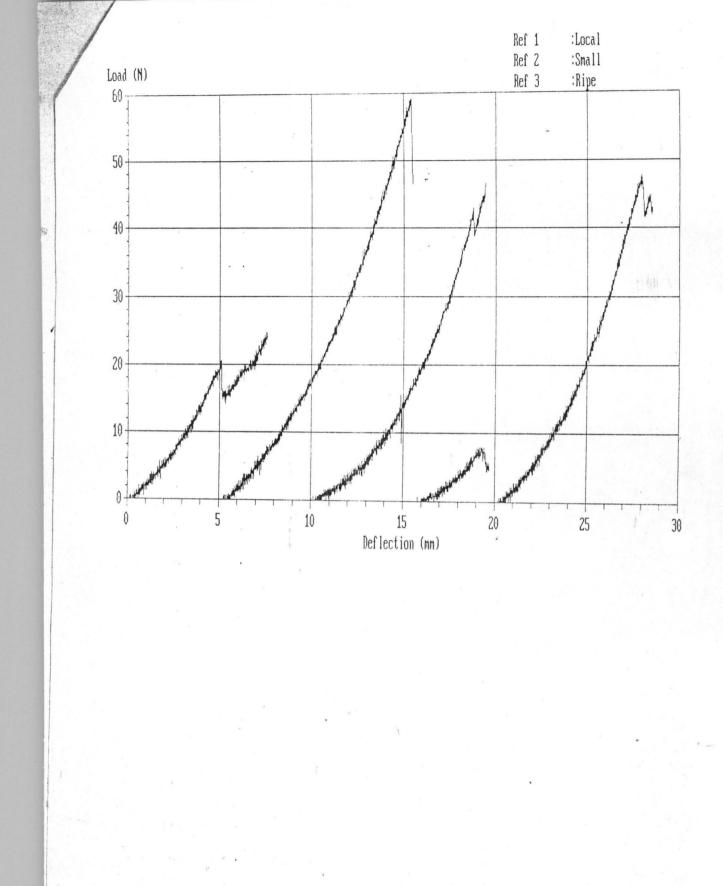
Gradients Journal of Agric Engineering Research Vol.3, (Pp 283 - 293)

Roudot A. C, F. Duprat and C. Wenian (1990); Modeling the Response of
Apples to Loads. Journal of Agricultural Engineering Research.
Vol.48, No.4. Hacettepe University, Faculty of Engineering,
Department of Physics Engineering, Accra, Ghana.

Voisey P. W and D. C MacDonald, (1965); An Instrument for Measuring

The Puncture Resistance of Fruits and Vegetables. Proceeding American Society of Horticultural Science (Pp 597 – 609)

- Voisey P.W, L.H Lyall, (1965); Methods for Determining the Strength of Tomato Skins in Relation to Ffruit Cracking. Proceeding American Society of Horticultural Science Vol. 86 Pp (307 – 310)
- Voisey P.W, L. H Lyall and M. Kloak (1970); Tomato Skin Strength, its Measurement and Relation to Cracking. Journal America Society Of Horticultural Science. Vol. 4 (Pp. 485 -488).
- Williams J. O. (1998); Post Harvest Handling of Tomato (Lycopersicon Esculentum). Paper Presented at the NSPRI Monthly Seminal Ilorin, Nigeria.


TESTOMETRIC UNIVERESAL TESTING (UTM)

1 : Local 2 : Small 3 : Ripe

4 :

Test : TOMATOES Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0015.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

	Height	Diameter	Load @	Def.	Load @	Def. ·	Stress	Energy	Stress	Stress	Fiz.
	mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	@ `*
			N	nun	Ν	mm	N/mm²	N.m	N/mm ²	N/mm ²	71 •
	30.260	50.900	4.900	1.7730	24.200	7.589	0.0121	0.0866	0.0119	0.0024	0.002
	31.370	41.430	12.000	3.6860	47.100	10.487	0.0440	0.2297	0.0349	0.0089	0.016
	30.140	44.390	9.300	3.8090	46.500	9.442	0.0300	0.1528	0.0300	0.0060	0.012
	28.950	33.890	1.900	1.9260	4.900	4.703	0.0086	0.0079	0.0054	0.0021	0.000
	26,.180	38.220	9.300	3.0220	42.400	8.518	0.0415	0.1355	0.0370	0.0081	010
	26.180	33.890	1.900	1.7730	4.900	4.703	0.0086	0.0079	0.0054	0.0021	0 000
	29.380	41.766	7.480	2.8432	33.020	8.148	0.0273	0.1225	0.0239	0.0055	0.008
	31.370	50.900	12.000	3.8090	47.100	10.487	0.0440	0.2297	0.0370	0.0089	016
	1.984	6.423	4.026	0.9568	18.279	2.206	0.0163	0.0822	0.0143	0.0032	0.007
	Energy	Def.	Youngs								
	@ Break	@ Peak	Modulus								
	N . m	mm	N/mm ²			2					
	0.0877	7.541	0.0708	. l.							
	0.2341	10.404	0.1392	1							
1	0.1528	9.442	0.1309								
	0.0112	4.177	0.0861					ξ			
	0.1615	7.924	0.1800								
	0.0112	4.177	0.0708								
	0.1295	7.898	0.1214							•	
	0.2341	10.404	0.1800								
	0.0840	2.379	0.0437								

1 : Roma 2 : Small 3 : Ripe 4 :

N.m

0.0858

0.4671

0.3647

0.2318

0.1907

0.0858

0.3080

0.4671

0.1505

tr

. 11:

1 7

21

1

11. 11.15

0.150 0.065

0.1541

0.112:

0.1191

0.0627

0.1160

0.1561

0.0147

mm

9.689

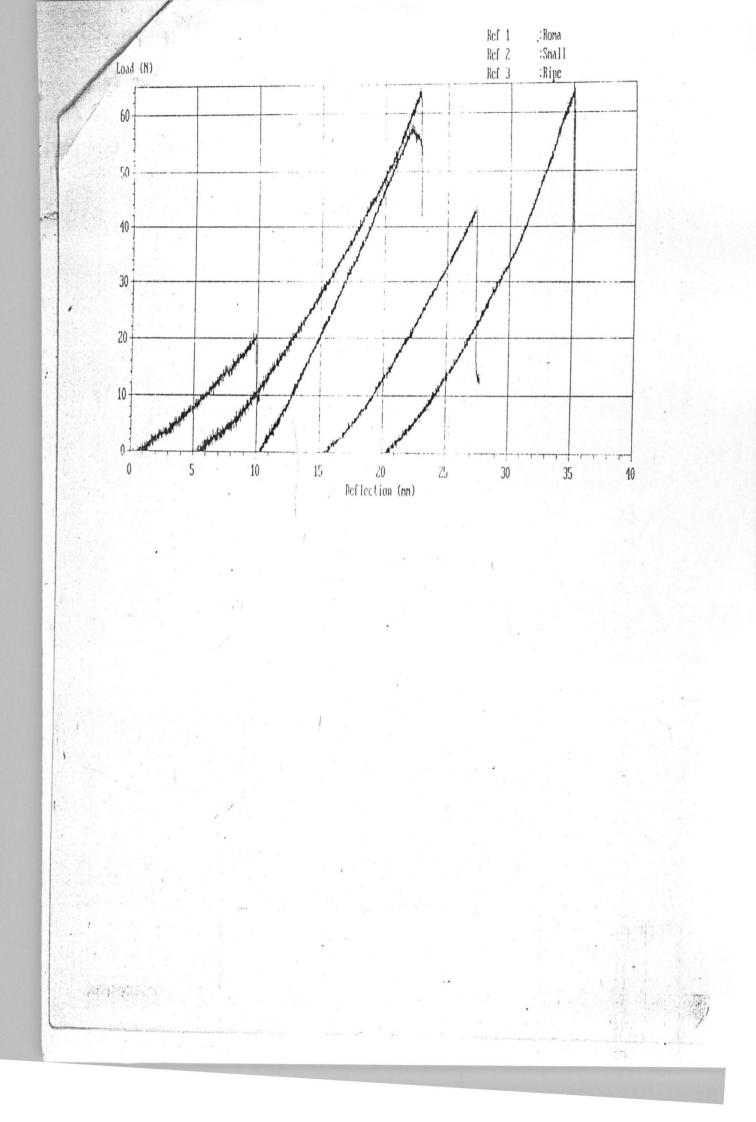
17.743

12.067

15.066

9.689

13.372

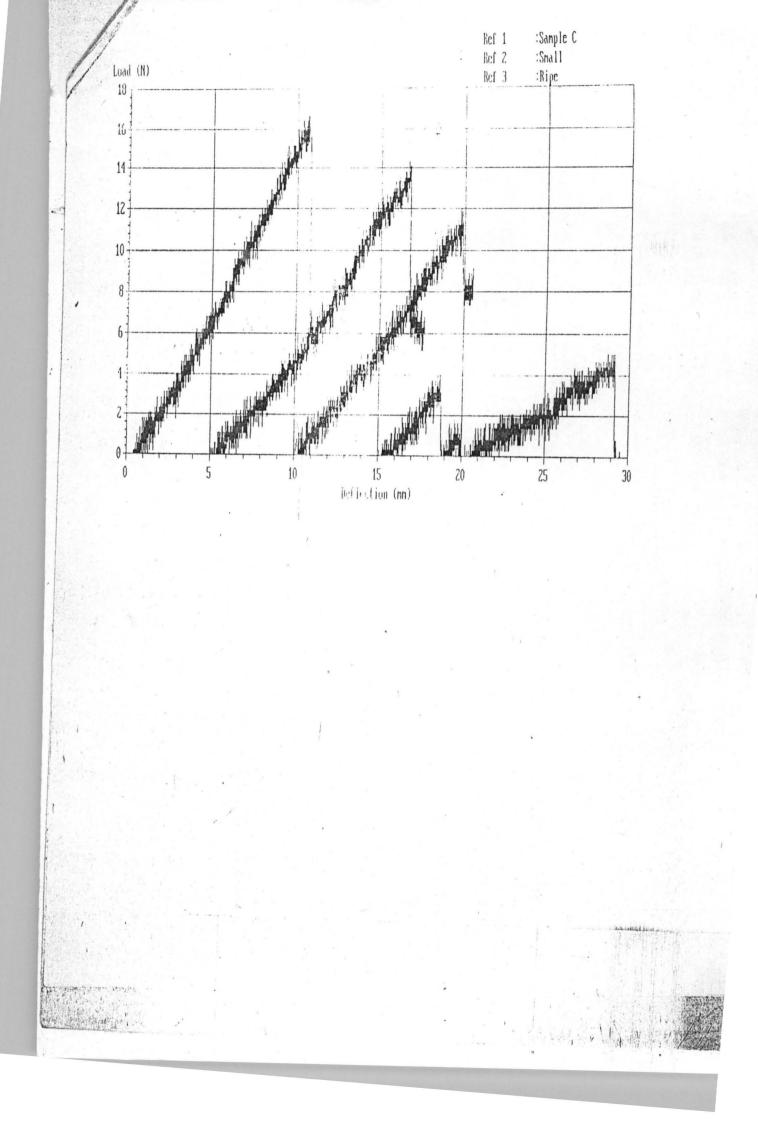

17.743

3.098

· Arris

Test : TOMATOES -Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0018.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre Load : OFF

	· No	Height	Diameter	Locard	1	tead or	1 - 1	51,1088	Energy	Stress	Stress	En
i.		n-m	1	. Victor	13.001	1. oak	5 P	· Peak	· Peak	· Break	@ Yield	re .
	•. •			n	1.30	u u	H	11,′mm	N . m	N/mm ³	N/mm ²	1
•	1	46.220	45.330	3,700	2 621.0	9.400	10.200	0.0124	0.0780	0.0056	0.0022	0
	2	42.670	44.420	12.200	, 1, 1-1	41.900	11,000	0 0415	0.4585	0.0270	0.0079	0
	1	50.510	46.070	, 11. 0	10 g - 19 - 1	" 2, COO	12.000	0.0349	0.3181	0.0322	0:0071	r
	1	46.790	42.620	g gen	· agen ?	12,700	12.219	0.0306	0.2245	0.0089	0.0062	17
		10.680	42.540	12.000	1. 19. 3 1 1	14.300	15.172	0.0449	0.3860	0.0276	0.0089	0.0
	1.00		r	4 <u>}</u>								
•••	110	10.580	4.1.590	1 200	1.1.11.11	9.400	100	0 01.24	0.0780	0.0056	0.0022	0
11		45.374	44.406	9,840	1.01.00	11 140	1.1 2005	0.0128	0.2930	0.0203	0.0064	υ.
	:110	50.510	45.330	12.76 -	+ 1 1 1	1.1,600	$1 < \dots < d <$	0 0149	0.4585	0.0322	0.0089	
		3.822	1.800	3.		13.160		9.6127	0.1480	0.0121	0.0025	24
							4		• • • • • •		siere inter	
	· Not.	Energy	Def.	Y								
		· Dieak	? Peak	M. Birle								



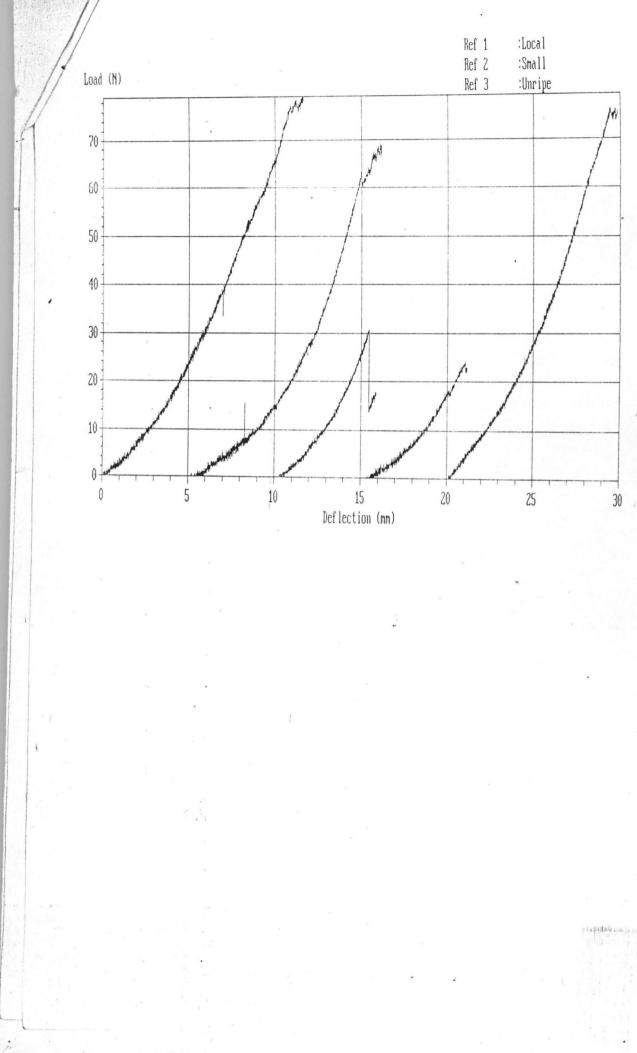
F: 1 : Sample C
 2 : Small
 3 : Ripe
 4 :

Test : TOMATOES Test Type : Compression Date : 17-02-05 File : C:TOMATOES\TST0021.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

No	. Height	Diameter mm	Load @ Yield	Def. B Tield	Load @ Break	Def. @ Break	@ Peak	Energy @ Peak	Stress @ Break	Stress @ Yield	Energ © Yie
			N	mm	N	mm	N/mm'	` N.m	N/mm'	N/mm ²	N . m
1	40.300	24.180	3.3000	2.7840	6.5000	10.942	0.0368	0.0776	0.0142	0.0072	0.003
2	49.710	27.810	2.9000	2.1970	6.3000	12.701	0.0235	0.0701	0.0104	0.0048	0.001
1 3	42.810	20.110	2.4000	1.7530	7.6000	10.534	0.0378	0.0506	0.0239	0.0076	0.001
. 4	38.510	23.170	0.8000	0.4260	0.3000	4.995	0.0092	0.0043	0.0007	0.0019	0.000
5	54.270	23.720	1.1000	C.8100	0.5000	9.545	0.0113	0.0162	0.0011	0.0025	0.000
um	38.510	20.110	0.8000	0 4260	0.5000	4.995	0.0092	0.0043	0.0011	0.0019	0.000
	45.120	23.798	2.1000	1.5280	4.0400	9.744	0.0237	0.0437	0.0096	0.0048	0.001
ev.	54.270 6.653	27.810	3.3000	2.7840	7.6000	12.701	0.0378	0.0776	0.0239	0.0076	0.001
No	. Energy	Def.	Youngs	•••••••				•••••			
	@ Break	Peak	Modulus								
	N . m	mm	N/mm'								
	· · · · · · · · ·										
1	0.0799	10.712	0.1462								
2	0.0777	11.639 9.762	0.1056								
4	0.0053	3.545	0.0941	1							
5	0.0180	8.713	0.0615								
•	0.0053	3.545	0.0615								•••••
	0.0476	8.874	0.1134			-					
um	0.0799	11.639	0.1596			-					
um ev						-					
1	0.0799	11.639	0.1596		•	*					
1	0.0799	11.639	0.1596		•	•					
1	0.0799	11.639	0.1596		•						
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596		• 						
1	0.0799	11.639	0.1596	i i i i i i i i i i i i i i i i i i i	°						
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596		* 						
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596								
1	0.0799	11.639	0.1596							有限 201	
1	0.0799	11.639	0.1596						iju kade ij	群 副 (4)	
1	0.0799	11.639	0.1596						June de maio	精制(1)	
1	0.0799	11.639	0.1596						iyu kada	郑 副 	
1	0.0799	11.639	0.1596						June de autorité		
1	0.0799	11.639	0.1596							和副子	10.00

Š

Ref 1 : Local Ref 2 : Small Ref 3 : Unripe Ref 4 :

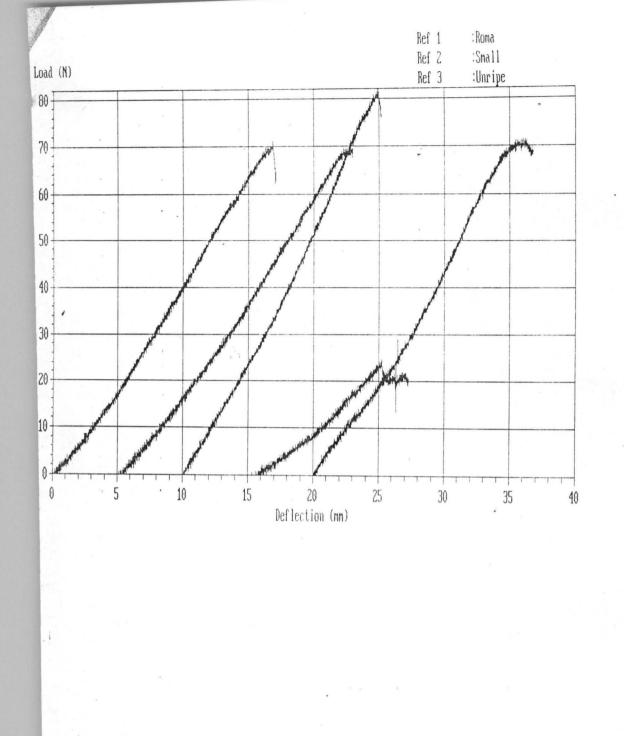

5

Test : TOMATOES Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0016.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

~

Test No.	Height	Diameter	Load @	Def.	Load @	Def.	Stress	Energy	Stress	Stress	Eller.
	mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	с. ·
			N	mm	N	mm	N/mm ²	N . m	N/mm ²	N/mm²	
1	25.340	36.740	16.100	3.8660	79.000	11.653	0.0745	0.3813	0.0745	0.0152	0.03
12	24.180	37.250	15.400	3.2630	67.900	11.168	0.0633	0.2706	0.0623	0.0141	0 0
3	24.610	32.160	6.500	1.9960	17.900	5.895	0.0378	0.0593	0.0220	0.0080	0.0
4	26.550	39.250	4.900	2.1850	22.400	6.156	0.0200	0.0518	0.0185	0.0040	0
5	30.050	39.730	15.400	3.2230	75.400	9.825	0.0613	0.2808	0.0608	0.0124	0 . D
Minimum	24.180	32.160	4.900	1.9960	17.900	5.895	0.0200	0.0518	0.0185	0.0040	0 00
Mean	26.146	37.026	11.660	2.9066	52.520	8.939	0.0514	0.2088	0.0476	8010.0	0
Maximum	30.050	39.730	16.100	3.8660	79.000	11.653	0.0745	0.3813	0.0745	0.0152.	0.0
Std Dev	2.360	3.003	5.477	0.7902	29.862	,2.745	0.0221	0.1464	0.0256	0.0046	0.01
Test No.	Energy	Def.	Youngs							•••••	
	@ Break	@ Peak	Modulus								
	N.m	mm	N/mm²						•		
1	0.3891	11.554 -	0.1996								
2	0.2743	11.113	0.1259								
3	0.0665	5.441	0.2062	1							
4	0.0542	6.049	0.1131								
5	0.3112	9.418	0.2422								
Minimum	0.0542	5.441	0.1131								
lean	0.2191	8.715	0.1774								
laximum	0.3891	11.554	0.2422								
Std Dev	0.1507	2.834	0.0555								

,湖南建设。4.月1日, 1


Ref 1 : Roma Ref 2 : Small Ref 3 : Unripe Ref 4 :

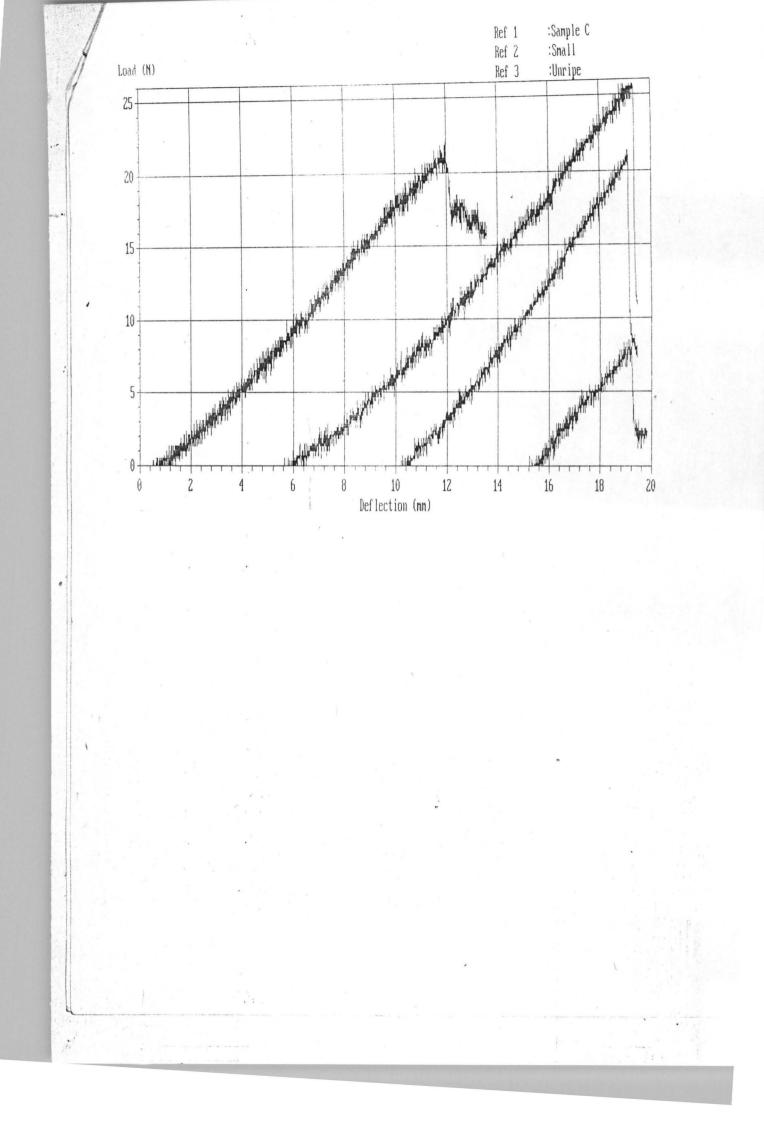
;

Test : TOMATOES Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0017.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

Test No	Height	Diameter	Load @	Def.	Load @	Def.	Stress	Energy	Stress	Stress	1.	
	mm	mm	Yield	@ Yield	Break	() Break	@ Peak	@ Peak	@ Break	@ Yield	a.	
			N	nin	N	mn	$N/\pi am^2$	N.m	N/mm ²	N/mm ⁻		
1 .	51.210	40.210	14.300	4.1010	64.700	17.090	0.0559	0.5625	0.0510	0.0113		02
2	54.040	40.750	14.000	4.2750	69.400	18.018	0.0534	0.5807	0.0532	0.0107		024
3	45.030	40.360	16.500	3.5280	76.600	15.204	0.0639	0.5689	0.0599	0.0129		02
4	47.660	39.630	5.300	3.2370	20.000	12.301	0.0199	0.0983	0.0162	0.0043	0	00
5 ·	45.640	40.630	14.300	3.6970	68.600	16.806	0.0550	0.5565	0.0529	0.0110	Q.,	026
Minimum	45.030	39.630	5.300	3.2370	20.000	12.301	0.0199	0.0983	0.0162	0.0043		005
Mean	48.716	40.316	12.880	3.7676	59.860	15.884	0.0496	0.4734	0.0466	0.0100		02
Maximum	54.040	40.750	16.500	4.2750	76.600	18.018	0.0639	0.5807	0.0599	0.0129		025
Std Dev	3.832	0.439	4.355	0.4221	22.693	2.245	0.0171	0.2099	0.0173	0.0033		005

lest No.	Energy	Def.	Youngs									
	@ Break	@ Peak	Modulus							Ĩr		
	N.m	mm	N/mm ²									
1	0.5783	16.855	0.1873	j								
2	0.5970	17.780	0.1798									
3	0.5914	14.920	0.2082									
4	0.1408	10.224	0.1064						1			
5	0.6093	16.045	0.1827									
• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • •		***				-,				
linimum	0.1408	10.224	0.1064									
lean	0.5033	15.165	0.1729									
laximum	0.6093	17.780	0.2082									
Std Dev	0.2030	2.956	0.0388									

- and a must be transfer


Ref 1 : Sample C Ref 2 : Small Ref 3 : Unripe Ref 4 :

į.

Test : TOMATOES Test Type : Compression Date : 18-02-05 File : C:TOMATOES\TST0023.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

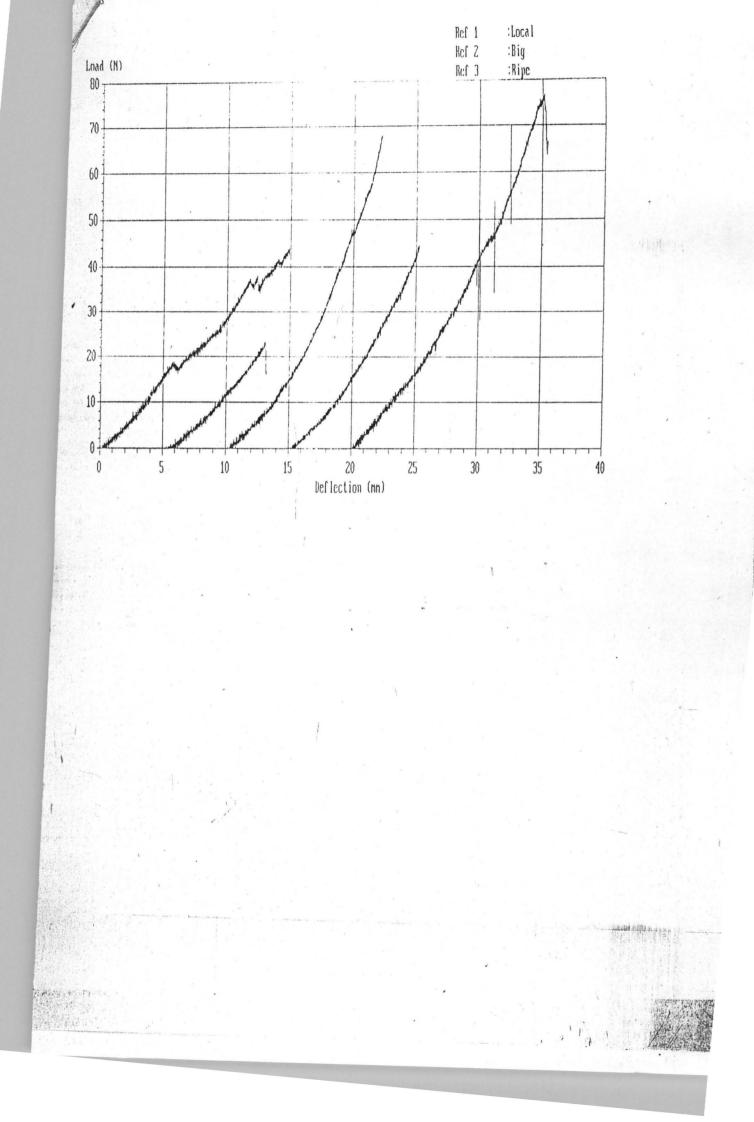
Test No.	Height	Diameter	Load @	Def.	Load @	·Def.	Stress	Energy	Stress	Stress	Energ
	mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	@ Yie
			N	mm	N	mm	N/mm²	N.m	N/mm ²	N/mm ²	Ν. τε
1	49.810	27.470	4.7000	3.2520	16.300	13.576	0.0373	0.1139	0.0275	0.0079	0.001
2	45.930	28.960	5,2000	4.0730	11.100	14.447	0.0390	0.1435	0.0169	0.0079	0.006
3	47.700	30.590	3.9000	2.2730	7.300	9.447	0.0290	0:0837	0.0099	0.0053	0.003
4	35.850	24.400	1.8000	1.0460	2.300	4.830	0.0182	0.0140	0.0049	0.0038	0.000
Minimum	35.850	24.400	1.8000	1.0460	2.300	.4.830	0.0182	0.0140	0.0049	0.0038	0.000
Mean	44.823	27.855	3.9000	2.6610	9.250	10.575	0.0309	0.0888	0.0148	0.0062	0.00
Maximum	49.810	30.590	5.2000	4.0730	16.300	14.447	0.0390	0.1435	0.0275	0.0079	0.005
Std Dev	6.188	2.632	1.4989	1.3041	5.923	4.407	0.0095	0.0555	0.0098	0.0020	0.002
Test No.	Energy	Def.	Youngs								
	@ Break		' Modulus		*						
	N.m	mm	N/mm ²								
1000											
1	0.1411	11.991	0.1713								
2	0.1586	13.796	0.1468								
3	0.0879	9.057	0.1637					1. I			
4	0.0165	4.109	0.1556								

Minimum Mean	0.0165	4.109	0.1468								
Maximum	0.1010	9.738	0.1593								
	0.1586	13.796	0.1713								
Std Dev	0.0639	4.231	0.0106								г
											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

a mirefatikan da

Ref 1 : Local Ref 2 : Big Ref 3 : Ripe Ref 4 :

1

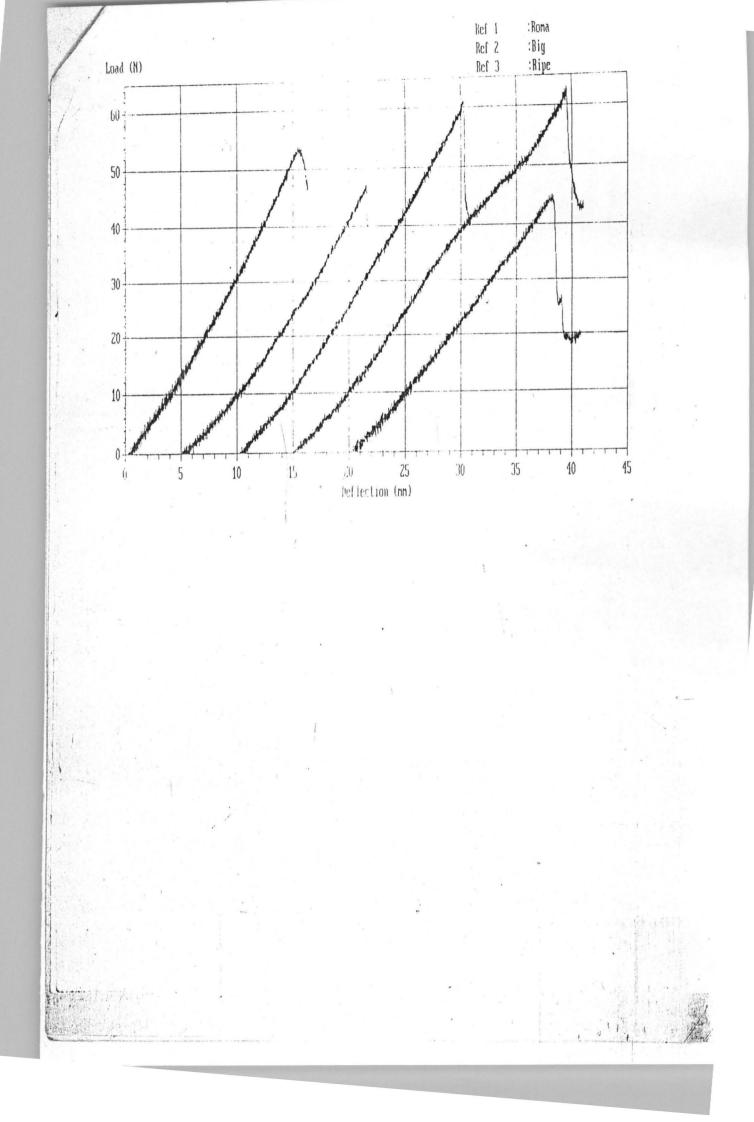

1

Test : TOMATOES Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0013.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

1000											
Test No.	Height	Diameter	Load 1	tert .	Load @	Def.	Stress	Energy	Stress	Stress	Enet
	mm	mm	Yield	2 field	Break	🕫 Break	@ Peak	@ Peak	@ Break	@ Yield	@ Yi
			11	m n	и	. mm	N/mm*	N.m	N/mm'	N/mm'	Ú.
											0.01
1	36.670	50.000	9.100	3.2230	44.000	14.910	0.0224	0.3155	0.0224	0.0046	0.01
2	36.990	45.540	4.700	2.5730	15.900	8.200	0.0142	0.0708	0.0098	0.0029	0.00
3	32.420	56.540	13.600	4.1110	67.400	12.203	0.0271	0.3011	0.0268	0.0054	0.02
1 4	32.910	49.520	9.100	2.2850	43.500	10.256	0.0231	0.1783	0.0226	0.0047	0.03
5	32.770	60.250	15.100	4 22.90	66.100	15.440	0.0269	*0.4694	0.0232	0.0053	0.03
Minimum	32.420	45,540	. 4.700	2.5734	15.900	8.200	0.0142	0.0708	0.0098	0.0029	0.00
llean	14.17 2	52,170	10.120	1.1.1.1	47,380	- 12.202	0.0227-	0.2670	0.0210	0.0046	0.01
Maximum	36.990	60.250	15.100	1. 2000	67.400	15.440	0.0271	0,4694	0.0260	0.0054	0.01
Sta Dev	2.272	5.913	4.126	0.8979	21.028	3.067	0.0052	0.1507	0.0065	0.0010	0.011
Test No.	Energy	Def.	Youngs		•••••		• • • • • • • • •		·····		
rest no.	@ Break	@ Peak	Modulus								
	N.m	mm	N/mm								
	14.10	nun	14 / Irdh								
1	0.3157	14.906	0.0552								
2	0.0750	7.987	0.0751								
3	0.3013	12.199	0.0877								
4	0.1802	10.212	0.0830								
5	0.4913	15.124	0.0597								
Minimum	0.0750	7.987	0.0552		• • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	•••••			
Mean	0.2727	12.086	0.0721				s				
Maximum	0.4913	15.124	0.0721								,
Std De"	0.1566	3.062	0.0142								
		5.006									
										1	
),						
14.				1			×				
				·							
a training											
		1.									
		1									
									1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1
and a second										Ser al	12
											de la
	Sec. 1									12 19	
P. C. N			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			en en en la		1 - 1		Brank -	
A. Friday											
							•				
AT LAND											
		•						1.1.5			
RANKS ALL ALL ALL ALL ALL ALL ALL ALL ALL AL										ant marine	
and the second	1. A.					•	1		1	"马马"的"金	

and the second second second second

ł.



1 : Roma 2 : Big 3 : Ripe 4 :

1

Test : TOMATOES Test Type : Compression Date : 17-02-05 File : C:TOMATOES\TST0019.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

- 414 · · ·											
t No.	Height	Diameter	Load @	· · · (,	Load @	Def.	Stress	Energy	Stress	Stress	Ener
A 19	mm	min	Yield	· Viell	Break	# Break	@ Peak	@ Peak	@ Break	, @ Yield	# Y1+
			Ν	nuti	N	mto	N/mm²	N . m	N/mm'	N/mm*	N
1	64.030	58.600	10.900 -	1 1400	47.600	16.303	0.0199	0.3630	0.0176	0.0040	0.01
12	55.970	56.380	9.600	4.6190	39.000	16.656	0.0189	0.3280	0.0156	0.0038	0.01
3	56.110	53.050	12.800	5.4990	40,100	20.882	0.0276	0.5433	0.0181	0.0058	0.0.
4	67.450	52.070	12.700	5.6580	43.400	26.079	0.0295	0.7385	0.0204	0.0060	0.030
5	66.520	49,830	.9.300	4 4540	19.700	20.808	0.0231	0.3740	0.0101	0.0048	n.01/
imun	55.970	49.830	9,100	1 0100	19,700	16,303	0.0189	0.3280	0.0101	0.0038	a.61
n	62.016	53.986	11.060	1_86.24	37,960	20.146	0.0238	0.4694	0.0164	0.0019	".01
ximum	67.450	58.600	12.800	5.6580	47.600	25.079	0.0295	0.7385	0.0204	0.0060	0.03
d Dev	5.597	3.494	1.656	0.4909	10.743	3.973	0.0047	0.1720	0.0039	0.0010	0.00
est No.	Energy	Def.	Youngs	· · · · · · · · · · · · · · · · · · ·							• • • • •
eat. 140.		@ Peak	Modulus								
Section 1	@ Break										
12.2.2	N . m	mm	N/min								
1	0.4079	15.424	0.0916	1							
2	0.3368	16.459	0.07.00				2				
3	0.5767	20.165	0.0840								
4	0.8104	24,543	0.0958								
5	0.4369	18.200	0.0910				3				
inimum	0.3368	15.424	0.0720								
lean	0.5138	18.958	0.0869								
in S 1 Bitan	0.8104	24.543	0.0958								
td Dev	0.1873	3.604	0.0093								
	•••••		********					•••••		•••••	
				,							
1111				1							
the second											
1											
			8 (F)							10.00	
			×								
		1									
	÷ 1	· * .									
Contract of the											
1											
	. 3										
Here and an		×.									
			Ör en								
a far a ser a									1.	Bell Balance	
	1.0.0										
Pier -									1810		
ineria di Contesta di Anglia. Anglia										1. Column	
									1 1100	1 1 1	
									· July ·		
										12	

 $\left|\right|$

1 : Sample C

0.1344

0.2883

0.0959

0.0264

0.0438

0.0264

0.1178

0.1045

1

2

3

4

5

imum

imum

Dev

٤

n

9.224

8.194

4.784

10.903

4.784

9.905

4.273

0.2883 16.419 0.1338

.....

16.419

0.1009

0.1338

0.0738

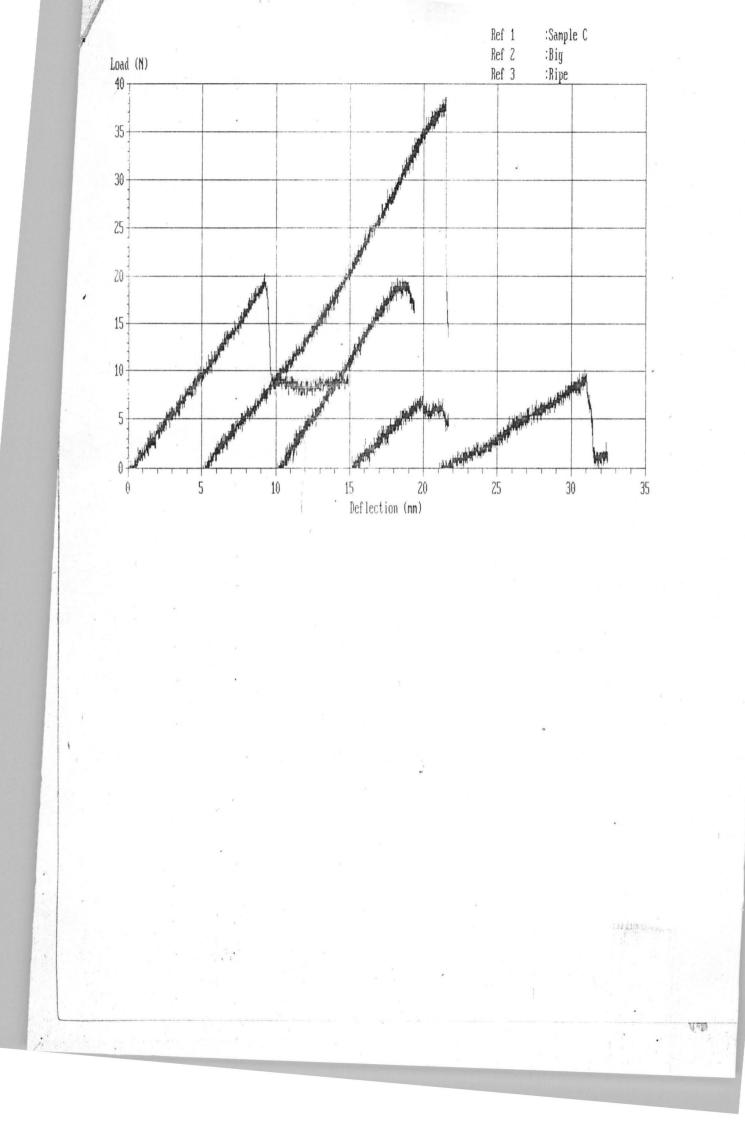
0.0640

.

0.0640

0.1006

0.0318


0.1304

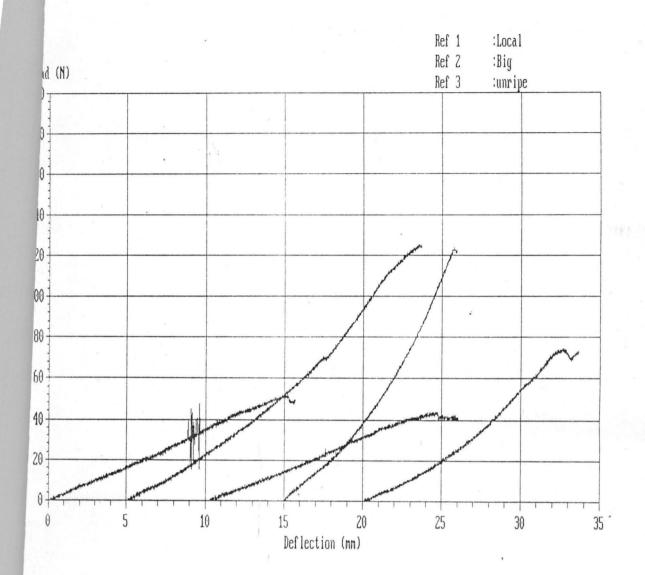
- 2 : Big 3 : Ripe
- 4 :

Test : TOMATOES Test Type : Compression Date : 17-02-05 File : C:TOMATOES\TST0020.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

No.	Height	Diameter	Load @	Def.	Load @	Def.	Stress '	Energy	Stress	Stress	Energ
	mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	@ Yie
			N	mun	N	mm	N/mm^2	N.m	N/mm^2	N/mm ²	N:
1 ,	52.740	38.020	4.4000	1.9700	8.900	14.932	0.0178	0.0825	0.0078	0.0039	0.602
2	48.680	35.040	8.1000	4.0320	13.600	16.680	0.0400	0.2819	0.0141	0.0084	0.015
3	56.600	36.340	3.9000	1.5950	17.200	9.411	0.0191	0.0735	0.0166	0.0038	0.000
4	47.620	34.120	1.6000	0.6890	5.000	6.709	0.0080	0.0154	0.0055	0.0017	0.000
5	61.470	35.180	2.3000	3.3960	1.500	12.461	0.0104	0.0388	0.0015	0.0024	0.000
	47.620	34.120	1.6000	0.6890	1.500	6.709	0.0080	0.0154	0.0015	0.0017	0.000
122	53.422	35.740	4.0600	2.3364	9.240	12.039	0.0191	0.0984	0.0091	0.0040	0.00
aum	61.470	38.020	8.1000	4.0320	17.200	16.680	0.0400	0.2819	0.0166	0.0084	0.013
Dev .	5.733	1.499	2.5304	1.3597	6.332	4.044	0.0126	0.1061	0.0062	*0.0026	0.005
t No.	Energy	Def.	Youngs								
	@ Break	@ Peak	Modulus					,			
	N.m	mm	N/mm²								

計算 植物部、短点、

Local Big unripe Test : TOMATOES Test Type : Compression Date : 18-01-05 File : C:TOMATOES\TST0014.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF 6

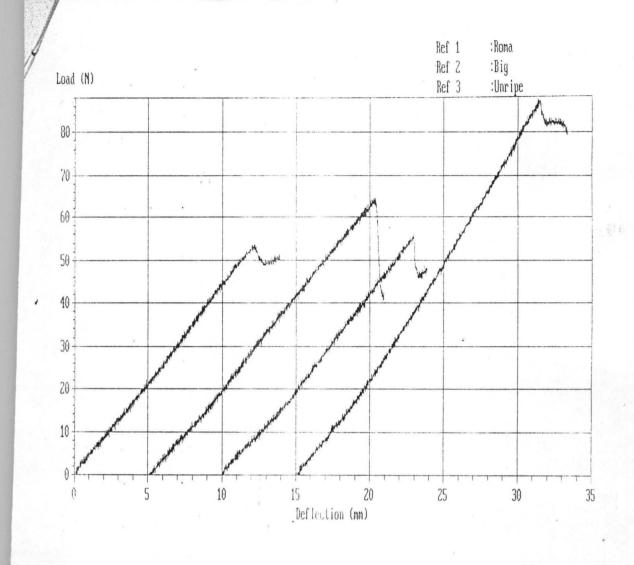

Height	Diameter	Load @	Def.	Load @	Def	Stress	Energy	Stress	Stress	Car .
mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	
		N	mm	N	mm	N/mm²	N.m	N/mm^2	N/mm*	N . 19
41.120	59.250	10.900	3.2460	48.80	15.712	0.0189	0.3795	0.0177	0.0040	0.016
41.120	60.160	25.200	5.4250	123.70	18.674	0.0440	0.9763	0.0435	0.0089	0.060
42.560	50.160	8.300	3.0560	40.30	16.039	0.0222	0.2964	0.0204	0.0042	0.014
55.120	50.160	25.200	3.5610	121.20	10.942	0.0624	0.5244	0.0613	0.0128	0 043
40.770	53.320	15.300	4.0080	72.40	13.663	0.0334	0.3899	0.0324	0.0069	0.026
40.770	50.160	8.300	3.0560	40.30	10.942	0.0189	0.2964	0.0177	0.0040	0.011
44.138	54.610	16.980	3.8592	81.28	15.006	0.0362	0.5133	0.0351	0.0073	0. 32
55.120	60.160	25.200	5.4250	123.70	18.674	0.0624	0.9763	0.0613	0.0128	0.060
6.178	4.837	7.910	0.9466	39.39	2.887	0.0177	0.2714	0.0179	0.0036	0.020
Energy	Def.	Youngs								
@ Break	@ Peak	Modulus								
N.m	mm	N/mm ²								
0.4158	14.979	0.0544								
0.9947	18.526	0.0928	,							
0.3787	14.063	0.0724								
0.5468	10.758	0.2939								
the Contraction of the State	and the second second second	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -								

0.4644 12.623 0.1313 0.3787 10.758 0.0544 0.5601 14.190 0.1289

0.9947 18.526 0.2939 0.2510 2.901 0.0965

.

いい 一日 日本



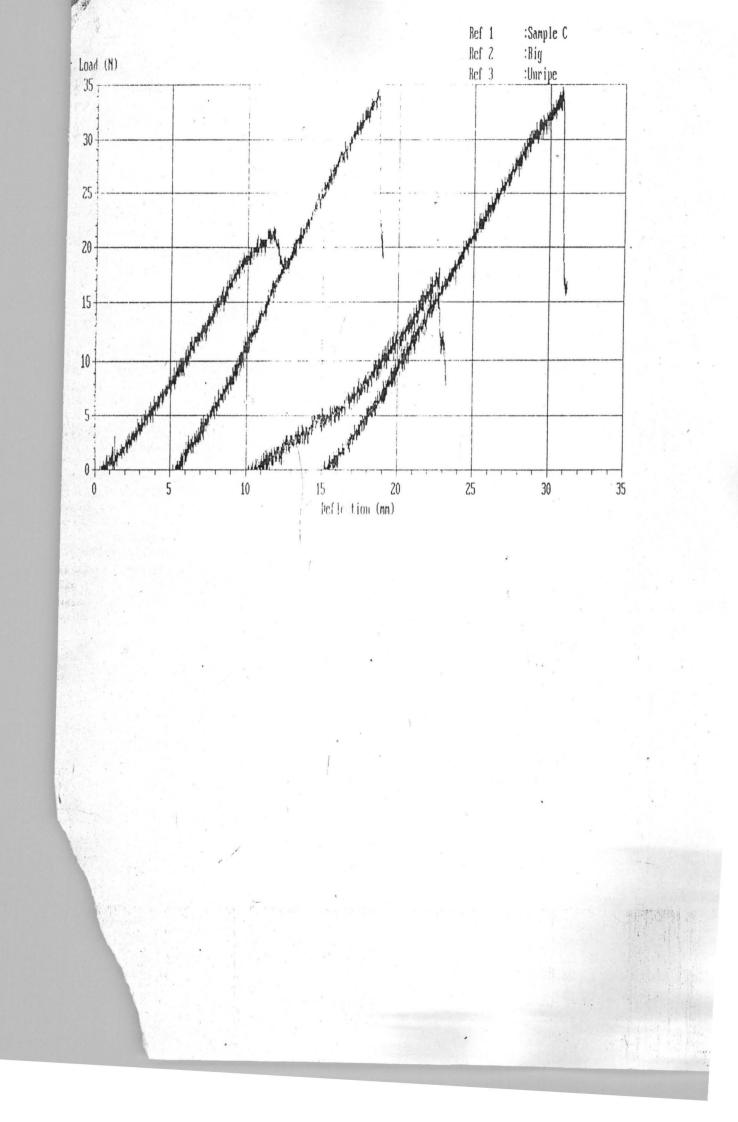
海口等自由制度的

- 1 : Roma
- 2 : Big 3 : Unripe
- 4 :

Test : TOMATOES Test Type : Compression Date : 18-02-05 File : C:TOMATOES\TST0024.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

st No.	Height	Diameter	Load @	Def.	Load @	Def.	Stress	Energy	Stress	Stress	Energ
	mm	mm	Yield	@ Yield	Break	@ Break	@ Peak	@ Peak	@ Break	@ Yield	@ Yie
10.00			N	mm	N	mm	N/mm²	N.m	N/mm ²	N/mm²	N . m
1	62.750	58.180	10.900	2.4320	50.700	13.900	0.0202	0.3154	0.0191	0.0041	0.013
1	60.210	54.810	13.300	3.4160	40.800	15.944	0.0274	0.4795	0.0173	0.0041	0.020
3	64.950	56.140	10.700	2.8910	40.800	13.878	0.0274	0.3452	0.0194	0.0043	0.015
	60.520	53.980	16.900	3.9000	47.900	13.878	0.0227	0.3452	0.0194		0.031
4	60.520	/	10.900	3.9000	19.500	10.323	0.0302	0.0390	0.0347	0.0074	0.011
nimum	60.210	53.980	10.700	2.4320	40.800	13.878	0.0202	0.3154	0.0173	0.0041	0.013
dil	62.108	55.778	12.950	3.1597	54.675	15.511	0.0202	0.4499	0.0226	0.0054	0.020
ximum	64.950	58.180	16.900	3.9000	79.300	18.323	0.0271	0.6596	0.0220	0.0074	0.031
d Dev	2.207	1.832	2.886	0.6365	16.937	2.110	0.0080	0.1569	0.0081	0.0015	
u bev	4.40,	7.025	2.000	0.0505	10.00,	2.110	0.0000	0.1305	0.0001	0.0015	0.000
'est No.	Energy	Def.	Youngs								
	@ Break	@ Peak	Modulus								
12.1	N. m	mm	N/mm ²								
1	0.4087	12.047	0.1073								
2	0.5125	15.301	0.1105								
3	0.3890	12.958	0.1179					3			
4	0.8203	16.379	0.1472								1
linimum	0.3890	12.047	0.1073								
lean	0.5326	14.171	0.1207								100
laximum .	0.8203	16.379	0.1472								1
		2.011									

1 : Sample C 2 : Big 3 : Unripe


4 :

Test : TOMATOES Test Type : Compression Date : 17-02-05 File : C:TOMATOES\TST0022.DAT Test Speed : 002.50 mm/min Sample Type : CIRCULAR Pre-Load : OFF

No.	Height	Diameter	Load the	terf.	Load @	Def.	Stress	Energy	Stress	Stress	Energ
1400	mm	mm	Yield	$2 = 1.1 \pm 1.1$	Break	@ "Break	③ Peak	@ Peak	@ Break	@ Yield	¢ 7' .
12			Ν	mm	И	mm	N/mm'	N . m	N/mm'	N/mm*	N . m
i	50.440	37.500	4.7000	2.8390	18.400	12.518	0.0198	0.1171	0.0167	0.0043	0.003
2	45.050	33.330	7.3000	3.1490	19.000	13.985	0.0399	0.2242	0.0218	0.0084	0.003
3	47.620	32.730	4.1000	3.4510	8.300	13.228	0.0215	0.0859	0.0099	0.0049	0.003
4	50.740	34.370	6.4000	3.7600	16.400	16.219	0.0375	0.2563	0.0177	0.0069	0.019
)					
สนาย	45.050	32.730	4.1000	2.8390	8.300	12.518	0.0198	0.0859	0.0099	0.0043	0.003
	48.463	34.482	5.6250	1.2098	15.525	13.988	0.0297	0.1709	0.0165	0.0061	0.006
mum	50.740	37.500	7.3050	1.2600	19.000	16.219	0.0399	0.2563	0.0218	0.0084	0.010
Unv	2.674	2.123	1.4818	n (957 -	1.913	1.504	0.0105	0.0822	0.0049	0.0019	0.003
t No.	Energy	Def.	Youngs			1				<i>.</i>	
1.1	@ Break	@ Peak	Modulus								*
N. St.	N . m	mm	N/mm*							Yest.	
1	0.1333	11.685	0.0983							an an	
2	0.2312	13.671	0.1401								
3	0.0926	12.673	0.0872	1						ан. 1	
4	0.2652	15.807	0.1272	1							
imun	0.0926	11.685	0.0872								
n	0.1806	13.459	0.1132				±				
imum	0.2652	15.807	0.1401								
Dev	0.0811	1.763	0.0246								

141.177

山山麓四南山

