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ABSTRACT 

A study on the application of Markov and Semi-Markov modeling for the 

control of Catarrh and leprosy diseases have been reported in this thesis. The 

models incorporate the concept of preventive/curative treatment and also the 

effect of seasonal variation on the catarrh disease. Exponential and Wei buill 

probability distribution functions were used to describe the time a leprosy 
~ . . 

patient stays in each state uf ine models. -The models were considered also 

for the both the discrete and continuous times. The minimum cost of control of 

the diseases was obtained through the Markov reward model. It was found 

that catarrh disease is not seasonal. The continuous time models for Semi-

Markov performed better than the discrete time. A contrast of the two 

probability functions showed that the exponential function is bet~er and it is 

easily handled. The cost model showed that it is cheaper in the long run to 

visit a medical doctor and to use"high priced drugs' than self-care andtlow 

priced drugs? 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 BACKGROUND TO THE STUDY 

It is a popular saying that health is wealth; in other words, good health is 

wealth. This statement perhaps may not have much meaning to a man that is 

in a good condition of health until he falls sick and becomes ill, it is then and 

only then he can realise the usefulness of good health. Lack of good health is 

." . 
a state of ill health. Poor health fs:o.caused by a disease. A disease is an illness, 

a disorder of the body and/or of the mind, Macqueen (1985). 

The main causes of disease are small organisms. They are so small that 

we cannot see them with the naked eye. These organisms include viruses, 

bacteria and parasitic worms. Many diseases exist in the human world. Some 

diseases are common to people that live in the tropical part of the world and 

they are called tropical diseases. 

Catarrh and Leprosy are some of the diseases that are common in the 

tropics. Catarrh is one of the diseases that many people do not take seriously. 

This is because they believe that Catarrh is not an independent disease on its 

~~;. -~ 
own. Thus, they think that Catarrh is a sign or a symptom of some other 

diseases. Consequently, Catarrh does degenerate to one or two other 

diseases in many patients, because, it has not been given the desired 

recognition and attention. 

Leprosy disease means different things to many people including some 

of the elites. To some people, Leprosy is a hereditary disease. That is, parents 

1 



simply pass it on to their off-spring at birth. But, to some other people, the 

disease is not only hereditary; it ,also cannot be treated or cured . 
. " ' ::') __ :-~J 

It is very important not only to be aware of these diseases but also to be 

able to exercise the God-given power and authority to cure them. There are 

two ways by which a man can control these diseases. It is often said that 

prevention is better than cure. A man can be given a preventive treatment so 

that he does not become infected with a disease. It is also an important 

practice that a man is given curative treatment so that he can reCOV0r from a 

disease with which he has become infected. 

1.2 MARKOV AND SEMI - MARKOV PROCESSES 

Andrei Andreivich Markov (1856 - 1922) a Russian Mathematician, is 
b::, ~= . ~ 

recognized as the 'inventor of Markov chains. The basic concept of Markov 

processes is that of "state " of a system and state "transition". It is a process 

that runs in time. A Markov process in discrete state and time is called a 

Markov Chain. When the particular set of states have been specified it is 

necessary to record the probability of change from one state to another during 

a unit of time. This information can be shown in a 'directed graph' called 

transition diagram and recorded in ' the transition matrix which is a stochastic 

matrix. 

The Markov chain requires the process to change state or remain in the 

same state at the appropriat~e units. The!'9fore, we consider a situation 

where transition occurs at several units of time. 

This leads to the general form of Markov process called the semi-

Markov process. Simply put, ·a semi-Markov process is that process ~hat 
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depends on the transition probability matrix PIj and holding time matrix h(t) 

(where, i,j = 1,2,3 ..... ... denote states). These two parameters form the input 

data for the interval transition probabilities QIJ(n) where n = 0,1,2 .. . ..... .. . 

representing time. 

1.3 JUSTIFICATION 

Mathematical models can be categorized broadly as being probabilistic 

or deterministic. Among situations where probabilistic models are more 

suitable, very often a better representation is given by considering a collection 

or a family of random variables instead of a single one. A collection of random 

variables that are indexed by a parameter such as time and space is 'known as 

stochastic process (or 'random' or 'chance' process). Markov processes form a 

sub-class of stochastic processes with highly simplified assumptions and a 

wide range of applications including recovery, relapse and death due to 

diseases. 

Catarrh and leprosy diseases have been used to provide illustrations to 

these models. We also wish to create a greater awareness on the readers 

about these diseases by modeling. 

These models can be used as a predictive device for studying the health 

status of catarrh and leprosy patients. The predictions will be useful to the 

doctors, hospital administrators, policy makers and the general public. 

1.4 THE OBJECTIVE OF THE STUDY 

(i) The primary objective of the study is to develop a mathematical 

model uSing-'b'le '~~~iples of Markov chain and semi - Markov. 
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processes for the control of catarrh and leprosy diseases. The 

other objectives are: 

(ii) To model the seasonal effect on the catarrh disease using 

the two major seasons in Nigeria. 

(iii) To determine specifically the degree of effectiveness of the 

treatment using the models on the sensitivity analysis 

(optimal degree of effectiveness). 

(iv) To make a comparison of the discrete and the continuous 
~ ) -~ 

time cases as well as the two distribution functions; the 

exponential and the Weibull. 

(v) To educate the general public on diseases used in the 

models and to further impress and inspire the possible 

application of Markov process to other fields of study. 

(vi) To determine the optimal costs of control analytically using 

the principle of Markov decision processes. 

1.5 PROBLEM OF THE STUDY 

The existing mo~~s d_o.D9t help us to determine the control of leprosy in 

the future on the basis of the present level of control. We therefore intend to 

develop a model to predict the control of disease in the future on the basis of 

present level of control. 

As for the catarrh disease there is no quantitative result as for whether 

or not catarrh disease is seasonal. These are the fundamental problems these 

models are designed to solve. 
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1.6 SIGNIFICANCE OF THE STUDY 
"~"") - _:.J 

The models are predictive tools for studying the progression of catarrh 

and leprosy diseases. These results are important information to the patients, 

Government and non - governmental organizations that are concerned about 

the control of these diseases. 

1.7 SCOPE OF THE STUDY 

Although, the models have ' potential for general application to diseases 

and the related processes, we have limited our study to catarrh and leprosy 

diseases 

.~ __ -.J 

1.8 LAYOUT OF THESIS 

The work presented in this thesis covers the research carried out by the 

author and it is presented as follows: 

A discussion of the background to the study, including the justification 

and the objectives is followed by a review of related literature consisting of the 

application of simple mathematical techniques to the study of diseases with the 

epidemic of the Hippocrates (459-377BC). Later development in this area of 

research resulted in the more complex deterministic equations, the chain-

binomial and the stochastic techniques or the simulations. Catarrh, Leprosy 

and the major seasons ii~::-!i~~~ are then presented. 

One of the important simplified assumptions of Markov and Semi-

Markov techniques is that, the time the process stays in a state should be 

described by a function of probability distribution. The exponential and Weibull 

probability distributions are the probability functions for this process. .They 
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have been discussed, including the introductory materials in the theory of 

Markov and Semi-Markov processes. 

Markov and Semi-Markov techniques constitute the tools for the 

." . 

formulation and developmenf'ofthi{ 'models. . These models are simple 

theoretical frameworks to study Catarrh and Leprosy cases. They are 

subjected to verification or illustrations using data, be it live data or hypothetical 

data, for a better understanding and clarity. 

The conclusions and summary of the work as well as the areas that 

require further investigation are finally presented. 

6 



CHAPTER TWO 

2.0 REVIEW OF LITERATURE 

2.1 MODELLING FOR THE CONTROL OF DISEASE 

In this chapter, we pr'~se~t 13-'JDrief historical account of modelling for the 

control of diseases, the growth and development of mathematical theories of 

the spread of diseases is given. We also present the deterministic and 

stochastic analytic models. The most recent scientific approach of simUlation 

modelling is presented. We also discuss the modelling approach used in this 

project. The leprosy and catarrh diseases were also discussed including the 

seasonal variations in Nigeria. 

2.2 THE BEGINNING OF THE MATHEMATICAL MODELLING OF 

DISEASES. 

The modelling of diseases started as far back as the ancient Greeks, with 

the epidemics of Hippocrates (459 - 377 Be), Bailey (1975). John (1620 -1674) 

and William Petty (1623 - 1687) could be considered as pioneers of medical 

statistics and the understanding of large-scale phenomena connected with 

disease and mortality, but the time was not ripe for anything approaching a 
I 

connected theory of epidemics. This was because the requisite mathematical 

techniques were themselves only then in the process of development. Another 

reason was the insufficient knowledge about the spread of disease. A good 

start was made in the field of mechanics and astronomy more than 200 years 

before any real progress -~~s'~Mieved in the Biological Sciences (Bailey, • 
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1975). Daniel Bernoulli in 1760 used mathematical methods to assess the 

effectiveness of inoculatior.;@g'ainst small pox, w~!b a view to influencing public 
-> ,~~ 

health policy. 

The major feature of the beginning of modern scientific achievement in 

this field was the rise of the science of bacteriology in the 19th century. The 

work of Pasteur) and Koch involved mainly the statistical appraisal of records 

showing the incidence and locality of known cases of diseases, Bailey (1975). 

The work of Farr was mathematically sophisticated. He fitted a normal 

curve to quarterly data on deaths from smallpox. Brownlee used a similar 

method to predict the course of outbreak of rinderpest amongst cattle. The 

curve was fitted to four rising successive monthly totals and extrapolated 

values used for prediction ~~.!tR~~'1 observed and predicted curves were both 

bell-shaped, agreement in detail was not very good. 

The work of Farr and Brownlee involved more of curve fitting and 

prediction. Deterministic and stochastic models were developed in the early 

part of the 20th century Bailey(1975) Generally, there are three modelling 

approaches for disease control: Deterministic, Analytical stochastic, and 

Simulation, usually stochastic. 

2.3 DETERMINISTIC MODELLING 

Ross(1911) presente9 amathematical model for malaria, which attempted 
~~ - -=-..-,;::.. ...... 

to take into account a set of measures describing various aspects of 

transmission. The study of respiratory disease using a deterministic approach 

to the heterogeneity of spread of infection was provided by Becker and Hopper 

8 
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in 1983. An epidemiological application of sophisticated control theoretic model 

was provided by Hethcote (1983). 

The age-dependent immunisation model was designed to predict 

appropriate strategies for disease control. Hethcote utilised data on measles 

and rubella to determine vaccination strategies appropriate for their control at 

various levels of immunisation coverage. 

2.4 STOCHASTIC MODELLING 

Deterministic models soon lost their popularity because of their inability to 

accurately describe recurrent cycles of disease (Bailey 1982). When data 

became more extensive and much smaller groups were considered, elements 

of "chance and variation" became more prominent. Mckendrick (1926) was the 

first to construct stochastic models of epidemic processes. Greenwood gave 

an alternative probability treatment five years later (Bailey, 1975) 

"Continuous infection" and "chain binomial" stochastic models were 

introduced next. These probability models were more appropriate 'for dealing 

with smaller groups in which random variation would play a larger role. 

Although these models achieved popularity they are usually mathematically 

and computationally more complex than the simple deterministic models. 

Stochastic models now appear more freql:!ently in the study of diseases 
'S-."':) _ ~::> • 

(Bailey, 1975). Kimber and Crowder (1984) proposed a model to analyse 

resistance times to infection under treatment. A general stochastic model was 

proposed by Hillis (1979). 

Several stochastic models have been presented to describe distributions 

of infectious disease over time and space. Goldacre (1977) attempted an 
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analysis of meningitis using space-time clustering techniques introduced by 

Knox (1964) to detect the existence of factors associated with infection. 

Trend surface analysis, a polynomial regression technique developed for 

use in geology, was applied to small pox data from Brazil Angulo( 1977) to 

determine if general trends in what appeared to be random spatial patterns 

could be detected. A centrifugal pattern emerging from the center of a city and 
.~ , 

spreading outwards was deteCfe'd. Box-Jenkins models, variants of the ARIMA 

(Autoregressive Integrated Moving Average) models utilized in economics, 

were applied to infection of Chickenpox. Time-series data also provided the 

data base for models of epidemic velocity proposed by Cliff and Haggett 

(1982). 

The etiology of disease is of primary concern to many epidemiologists and 

can be seen either in a determin,istic or stochastic framework. A deterministic 

perspective is one in which factor x causes y if (all other factors being held 

constant) a change in the value of x results in a change in the values of y, in a 

completely prescribed way tracing out a mathematical function of some form. In 

practice, probability theory and statistical techniques are used to assess 

evidence regarding causality. In any causal analysis of data, the goal is to 

account for variation in the dependent variable. 

Several models of this sort have been utilized to analyze data in studies of 

infectious diseases, including most commonly linear regression, log-linear 

analysis, . logistic .regression, discriminant analysis, and proportional hazards 

modelling. An example is the work of Stevens and Lee (1978) who used a 

generation effect model to assess the impact of anti-tubercular chemotherapy 

on mortality. The generation effect model assumes that the mortality patte:rn for 
" .- .... 
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each cohort is set early in life; rates vary only according to birth cohort. This 

model was used to project current mortality experience using past cohort data. 

The large differences noted by Stevens and Lee (1978) between the expected 

and the observed rates were ascribed to the effect of intervention with 

chemothe'rapy. 

Discriminant analysis was used to study chronic obstructive pulmonary 

disease (Lebowitz and Burrows, 1977). Linear regression models were utilized 

for analysis of risk asso'tibt6d~th influenza mortality (Clifford et ai, 1977). A 

model of risk factors in a non-infectious disease, skin cancer, has been 

constructed using logistic regression (Vitaliano, 1978). The following year, log-

linear models were used to analyze data from cohort study of acute respiratory 

illness (Melia et ai, 1979). 

Markov chain models have been applied to study the progression of , 

disease. Fix and Neyman (1951) constructed a simple stochastic model of 

recovery, relapse, death and loss of patients. They are concerned with the 

difference in effect either of the same treatment applied to different categories 

of patients or of different treatments applied to a specified category of patients. 
-"'- , ~ 

In all cases the criterion forcomparison was the frequency of surviving 

specified periods of time. That model was used to study the effects of treatment 

of cancer of the breast. Marshall and Goldhammer (1955) applied Markov 

processes to study the epidemiology of mental disease. Markov chain models 

have also been constructed to study the effect of weather on asthma (Jains, 

1986 and Jain R. K. 1988). Similar studies have been reported in Roberts et al 

(1990), Sacks et al (1977), Sargert (1991), Schenzled et al (1979), Anderson 

et al (1991), Shahani et al (1987) and Shahani (1981). 

11 
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Many disease models have yielded valuable information and more 

information is still being sought to meet the demand of dynamics of diseases 

and complexities. However, Mathematical modelling is more suitable for very 

simple systems that allow high simplifying assumptions and not 'for systems 

that involve uncertainty, complexity and scarce resources. In such cases 

simulation models are often appropriate and preferable. 

2.5 SIMULATION MODELLING 

Simulation is a process for studying or finding a solution for a problem, or 

calculating the effect of a course of action, by representing it in mathematical 

terms, especially using the computer, (Readers' Digest Universal Dictionary, 

1989). A simulation model is an abstract model which represents some system 

in the real world. Simulation methods have developed since the 1960s and may 

well be the most commonly used of all the analytical tools of management 

science (Pidd, 1992). 

Complete fade-out of infection may occur in sufficiently small communities 

,'" . 
if fresh cases are not I ,trocioced, where-as, In communities above a certain 

critical size it will merely happen that infection reaches a low level before 

building up again for a fresh out break (Anderson and May, 1982). These 

conclusions are in agreement with observed data and with the results of 

empirical investigations using Monte Carlo methods in conjunction with the 

electronic computer. A computer simulation study was conductedl in the area of 

recurrent epidemics and endemicity with special reference to the interpretation 
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of real public health measles data, Bartlett (1961). This perhaps marks the 

beginning of the use of computer simulation. 

Computerized simulations have been extremely valuable in elucidating the 

properties of multi-state models of disease and in shedding light on proposed 

intervention strategies. Extensive studies of this type have been made in 

tuberculosis control by Waaler, Ge.ser and Anderson (1962). 

Another area of some public health consequence is the interference and 

interaction phenomena that may occur between different disease organisms. 

Lila Elveback and her co-workers have developed a series of six fundamental 

models of increasing complexity that can be used for the study (by 

computerised simulations) of public health control of poliomyelitis by means of 

live polio vaccine, including the situation where effect of the vaccine is inhibited 

by enterovirous infections. The chief reference is (Elveback, Fox, and Varma, 

1964). 

Simulation modelling is a very attractive powerful method for Jealing with 

the complications of a variety of diseases including asthma. A Simulation model 

for managing asthma has been reported in Shahani et al. (1994). 

The evolution of modern (more powerful, less expensive and easier to 

use) computers and high level languages has popularized (Zeigler, 1979) the 
~ . = - ~ ~ 

application of simulation for solving real-life problems 'in several descriptions, 

and the expected advances in computer technology indicate that this trend will 

continue. 

.r 

" 

13 



__ .J 

2.6 A REVIEW OF LEPROSY MODELS 

There has been a widespread use of statistical techniques in clinical trials 

and in attempting to determine variables which are relevant to the epidemiology 

of leprosy, but the application of Operational Research techniques to the study 

of leprosy has been minimal. 

Bechelli adopted the kinship coefficient in his study of the correlation 

between leprosy rates in villages different distances apart, Bechelli (1973). 

According to him, given n villages VI (i = 1, 2, - - - - - -, n) the ith village having 

population Wi and a gene frequency PI for one genetic marker, the kinship 
.~) ~ ~~ 

coefficient between all villages at distance x from each other is estimated by 

where P is the average gene frequency for all villages separated by distance x, 

and the summation is extended over all village pairs VI and V; that-distance 

apart. This indicator may be interpreted as a coefficient of intra class correlation 

between the gene frequencies for all the pairs of villages separated by the 

same distance. The kinship coefficient is expected to decrease with distance 

and its estimate may be fitted. by a monotonically decreasing function of the 

type: 

ae-bx 

Ij/(x) = ( )C 
_ l+x 

where a is the mean coefficient to kinship for local population (equivalent 

to the coefficient of inbreeding as a result of subdivision of a population). b is a 

function of the standard deviation of the- distribution of distance J between -
a /, ... 

;-"., ' 4 
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villages and of the sysful~atl6-4Jressure on the genetic marker, and c is a 

coefficient measuring the dimensionality of migration. 

8echelli concluded that "if we consider that the biological and 

environmental factors and the socio economic condition in the different villages 

were fairly uniform, the relation between prevalence rates and the distance 

between villages would be primarily a function of the number of leprosy and 

other infectious cases. An untreated Lepromatous patient exposes those in 

close contact with him to a high risk of infection, and the risk decreases with a 

decrease in contact" . 

In a similar study of how the incidence of Leprosy does relate to 
~~ ::') . --: - . 

prevalence, Lechat (1981) observed that if such a quantitative relationship can 

be established, it could become possible to 

(1) predict future incidences under present conditions of control. 

(2) simulate how changes in the control measures affect incidence. 

The mathematical model employed was as follows: 

(incidence)t = f(prevalence )t-j 

where annual incidence is consiger~d as dependent on past prevalence and j 

corresponds to the duration of the incubation period. 

The model was run on a twenty-year time period in order to achieve (1) 

and (2) above. Of all the control measures he used, the specific vaccination for 

leprosy comes out by far as the most effective measure. With a 100% vaccine 

coverage, incidence of new cases was predicted to reduce to zero in 11 years. 

He concluded that leprosy cannot bring results overnight. Long term 

planning and sustained efforts are required . The message is of special 

importance for international agencies and non-governmental organ~z~tioJls! .~ • 
, 
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which at times display a tendency to expect short term results and get 

discouraged when the so-called eradication is not soon materializing. 
'0, -= 

Leprosy is a chronic disease caused by infection with mycobacterium 

leprae. Susceptibility to leprosy is influenced by both genetic and non-genetic 

factors and the disease is known to cluster in families. One measure of genetic 

effect is the relative recurrence risk ratio AR. Estimate of this parameter can be 

inflated if environmental risk factors which also cluster in families, such as 

household contact, are not properly accounted for. They presentea the result 

of fitting a cross ratio model that allows estimation of the odds ratio of disease 

conditional on disease or no disease in a given relative, given measured 

covariates. From the model , they could predict fitted values for AR that 

represent familiar risk not-.qccounJed for by other covariates including observed 
-~ 

household contact. If all the covariates could be measured, this would be the 

"genetic relative risk ratio". They found that AR > 1 for all relative pairs except 

grandparent-grandchild, and AR > 2 for siblings Chris Wallage et al (2003). 

In a related study Roy (2003) in a letter to the Editor titled "What is the 

actual male/female sex ratio in Leprosy patients?, stated that during a period 

of 30 years, carrying out leprosy treatment in North Eastern Nigeria, ending in 

1982, they noted a puzzling pattern of male/female ratio in the out patient and 

inpatient population. A study done in 1969 of 6,691 patients revealed that 

74.3% of patients were male.· 32.6% female. Thus there is a preponderance of 

male of 2/3. The conchJ'S!orrifam the study~ is · that leprosy infects men more 

severely. 

Continuous Time Markov process model for the spread of AIDS 

Epidemic has been discussed lwunor (2001). A continuous time Markov ,- ~ 
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Process model with four transient and two absorbing states was developed to 

be used as a framework for analyzing the spread of AIDS. In the model 

presented, individuals in a population are classified according to their condition 

with respect to HIV infection into six states, namely: Murray (1989) . 

S(Susceptible, Silnfectives, S3: Seropositive non-infectives, S4: AIDS Patients 

S5: Natural (non-AIDS induced) deaths, S6: AIDS induced deaths. 

States S1 to S4 are transient while S5 and S6 are absorbing. The paper 

presented a theoretical result relating to the application of the continuous time 

Markov process model in studying the spread of AIDS epidemic. The results 

are expected to have pra&~8e! ~-efulness in tracking the spread of this 

menacing epidemic in situations where the relevant data could be generated. 

Several attempts have been made in the past few years at developing 

models for studying aspects of human reproduction process. Iwunor (2001) in 

the paper titled "A Semi-Markov Process Model in human reproduction" 

discussed the application of the Semi-Markov process model in studying the 

human reproductive process. 

The model considered the reproduction pattern of a married female 

known to be non-pregnant and fecundable at the time of marriage. At any time 

after marriage (and before the occurrence of menopause or secondary sterility) 
.:--... . -

this woman can be in one, arro o'nlrz,ne, of the following states with respect to 

reproductivity. 

So = non-pregnant, fecundable state. 

= pregnant state. 

= postpartum sterile period associated with abortion or foetal loss. 

= postpartum sterile period associated with still birth. 
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= Postpartum sterile associated with live birth. 

It follows that the reproductive history of a female is characterized 

completely by the knowledge of the sequence in which these states are visited 

and of the length of time spent in each state at each visit. 

Some parameters provided in the model include: 

1. The First Passage and re-occurrence times. 

2. The Conception rate and Birth rate. 

3. The limiting state protfu::;iHti&~ 

The model thus provides a very important theoretical framework for 

understanding the fertility behavior of women by tracking the actual fertility 

performance of a cohort of women. 

The Semi-Markov Process model provides an important tool for 

assessing the impact of different direct fertility interventions such as 

Contraceptive use, abortion, breastfeeding, abstinence etc.,on fertility 

reduction. It was observed that the result presented will be of great value to 

population programme designers and implementers. 

Markov and Semi-Markov processes have been applied to manpower 
.~ . 

system in recent years. Iwunor (20cf1) in his paper titled "Forecasts of the 

grade sizes in a manpower system assessed on the Markov and Semi-Markov 

process models" discussed the forecast of the mean grade sizes in a Markov 

manpower system with Poisson recruitment based on the Markov and Semi-

Markov process models. 

In that paper, forecasts of the mean grade sizes for a five,-grade 

universities faculty manpower system are obtained by applying the theories of 

the continuous time homogeneous Markov process and Semi-Markov process 



models with Poisson recruitment. The limiting grade sizes are obtained based 

on each of the models. The reliability of the forecasts are tested and the 

relative performance of the two models were compared. 

The models considered a five grade faculty manpower system namely: 

S1 - Assistant Lecturer, S2 - Lecturer, S3 - Senior Lecturer, S4 - Reader and 

Ss - Professor. The absorbing state S6 is the state of having departed the 

system. It was assumed that recruitment is allowed into any of the grades and 

wastage (retirement, resignation, dismissal and death) is possible from any of 

the grades. 

It was concluded that by incorporating information on the length of stay 

in each grade before moving to the next, a Semi-Markov process model yields 

better forecast of the mean grade sizes compared with a Markov process 

model, although, in terms of information requirement and computational ease, 

the latter model has some merit. A related study by the same author cited in 

Iwunor (2001) is Iwunor (1987). 

In a related study Uche (2001) provided a number of models in his work 

titled" Stochastic Models in Education and Manpower" . The Markovian Model 

of Graded Systems (Education) considered the hierarchical concept in 
,"- . 

education, such as the "'-grade'? of the system, movement between grades in 

hierarchy, movement within the system and out of the system and partition of 

grades into absorbing and non-absorbing states. 

The models also considered the homogeneous and heterogeneous 

classes. That is, a class of students may be made of fast movers and slow 

movers. If transition is considered for this class with the two tYRes of movers 

lumped together, we have a heterogeneous class. If the fast movers are 
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separated and treated separately, we have homogenous sub-classes out of the 

class. 

The models further explain the use of the fundamental matrix P in ,the 

aspect of educational planning. Such as the probability of going from one grade 

to another in a given year, the probability that a student in a given grade will still 

be in the University after a number of years and also the average number of 

years of schooling left. 

Other graded systems discussed are:-

(1) the models discussed above can be applied to any other graded or 

hierarchical sY~~:-ToF example a career progressions. 

(2) the Health Sector - for any living organism, the state of being in 

good health (G), Sick (S) or Death (D). An explanation was offered 

for the transition between these states, the absorbing state (D) and 

the expected transition times. 

Generally, the models provide a framework for specific res~arch work in 

any identified area of the graded system. Related studies by the same author 

have been reported in Uche (1987, 1988, 1991). 

2.7 THE MODELLlN~~AP!~OACH IN THIS PROJECT 

The analytical stochastic approach of applied mathematics has been 

employed in this project. Following Abubakar(1995), the process of leprosy is 

considered as a semi-Markov process. Four states of the disease were 

specified. The states are finite, mutually exclusive and exhaustive. The first 

three states are transient states and the fourth state is an absorbing state and it 
1 

is the state of death due to leprosy. The effectiveness of treatment on the .~ .. . ' 
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interval transition probabilitie-~ islh~-Jmajor result 8btained from the model .This 

model was considered for discrete state and discrete time unit. 

In this work in addition to the discrete state and time the model 

incorporates the discrete state and continuous time unit. This will enable us to 

obtain information about the leprosy patient at any point in time and provide a 

basis for comparison. 

A three state Markov chain model was also considered for catarrh 

disease with respect to the two seasonal variation in Nigeria. This model also 

incorporates the discrete state and continuous time which enables us to obtain 

information about the catarrh patient at any given point in time. These 

stochastic analyses could be used as a predictive device to study the health 

status of leprosy and catarrh patients. 

Stochastic models have been employed to explain the uncertainties, 

which are intrinsic features of dynamic economic systems. The central purpose 

of theories of economic growth is to understand the factors behind long-run 

growth of economies, and explain differences in growth performances of 

economies. 

Hongliang (2002), discussed the dynamic implications of the stochastic 

growth and trade model with the savings rate depending on capital-labour ratio 

and the policy parameters .They extended the trading two-sector economy with 
... ~) ---::;J _ ...... 

uncertainty and analysed the d iffusion process for the capital labour ratio, 

moreover, the crucial boundary conditions of the diffusion process were 

examined and the steady-state probability distribution of the capital-labour ratio 

was derived. Some other related studies are contained in Barro et al (1995), 



HEK (1999) , Gandolfo (1997), Grossman (1996) , Jensen et al (1997), Jensen 

(1999), and Joshi (1998) to m~}:'ltiqn ildst a few. 

Markov models have been extensively applied to the management of 

forestry. Acevedo et al (1995) and his colleagues have described and applied a 

correspondence between two major modeling approaches to forest dynamics: 

Transition Markovian models and gap models or JABOWA-FORET type 

simulators. According to them, a transition model can be derived from a gap 

model by defining states on the basis of species, functional roles, vertical 

structure or other convenient cover types. A gap-size plot can be assigned to 

one state according to the dominance of one of these cover types. A semi-

Markov framework is used for the transition model by considering not only the 

transition probabilities amortg tRc-~states but also the holding times in each 

transition. The holding times are considered to be a combination of distributed 

and fixed time delays. Extensions in spatial are possible by considering 

collections of gap-size plots and the proportions of these plots occupied by 

each state. The advantages of this approach include; reducing simulation time, 

analytical guidance to the simulations, direct analytical exploration of 

hypothesis, and the possibilities of fast computation from closed-form solutions 

and formulae. A preliminary application to the H.J. Andrew forest in the Oregon 

cascades was presented for demonstration. 

In a related application of Markov models, Rajulton (1992) reviewed 

some types of analysis that arepossible using life history information that 

includes data on the timing, sequence, and a number of occurrences of specific 

life events; the paper aims at bringing out relevant points regarding two 

fundamental assumptions in life history analysis (a) that a specific stochastic 
" ...~ ~ 

.' 
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process generates events, which can be appropriately analyzed and (b) that 

certain characteristics of individuals, as well as of context, affect change 

processes. 

The application of M~~o\;ia.=r assumptions to the study of the theory of 

queues has a long history. This gave rise to the classification of Queues 

generally into the Markovian and non- Markovian Queues. The Markovian 

queues are the most popular, and are easily handled. Some of the most recent 

studies in this field include Hiroyuki et al (2003). This paper considers a work 

conserving FIFO single-server queue with multi batch Markovi~n arrival 

streams governed by a continuous time finite-state Markov chain. A particular 

feature of this queue is that service time distributions of customers may be 

different for different arrival streams. After briefly discussing the actual waiting 

time distributions of customers from respective arrival streams, they derived a 
~~ . 

formula for the vector generaffng function of the time-average joint queue 

length distribution in terms of the virtual waiting time distribution. Further 

assuming the discrete phase-type batch size distributions, they developed a 

numerically feasible procedure to compute the joint queue length distribution. 

Similar work has been reported in Soohan et al (2003) titled Fluid Flow 

Models and Queues. A connection by stochastic coupling, Guan-lin eb al (2003) 

in the paper B-Invariant measures .for transition matrices of GIIMII type. In 

another development, a new type of discrete self-composability and its 

application to continuous-time Markov processes for modeling count data time 

series, has been reported in Rong et al (2003), and Qi-Ming (2003) has also 
:~ .~:;::. "'-

published a related work he titled, A fixed point approach to the classification of 

Markov chains with Tree State. 
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Lawrence (2003) and his colleague in the study titled, Statistical Signal 

Processing with Nonnegativity Constraints, observed that, Nonnegaivity 

Constraints are frequently in statistical learning and pattern recognition, that, 

multiplication updates provide natural solutions to optimization involving these 

constraints. One well known set of multiplicative updates is given by the 

expectation maximization algorithm for hidden Markov Models, as used in 

automatic speech recognition. Recently, they derived similar algorithm for 

nonnegative deconvolution and nonnegative quadratic programming. These 

,-:-,. . 

algorithms have applicatiO'ris'-tcri6w-level problems in voice processing, such as 

the training of large margin classifiers. 

In the maximum likelihood estimation, they begin by reviewing 

multiplicative updates and nonnegativity constraints in a familiar context. 

Maximum likelihood (ML) estimation in discrete hidden Markov Models (HMMS) 

also cited in Baum (1972). They considered an HMM with n h!dden states 

SE(1,2, ........ ,n) and in observations OE(1,2, ...... .. ,m). The parameters of the 

HMM are the transition matrix aiJ = P(St+1 = i'I St == i), the emission matrix 

biJ=P(Ot = jiSt = i), and the initial distribution TTk = P(S = k). These parameters 

obey simplex constraints. They are nonnegative, and the distributions they 

represent must be properly rtormalised. The goal of ML estimation s to 

maximize the log-likelihood L=log P(a1, a2, .... , aT) of one or more observation 

sequences. 

Specific models used in current research include Markov decision 

processes, semi-Markov decision processes hidden Markov models, partially 

observable Markov decision processes; reinforcement learning, in particular 

hierarchical and memory-based methods. The applications involve compli?~ted 
' ... /' ~ .. '" ot" 

24 



models of learning and sequential decision-making under uncertainty in single-

agent and multi-agent domains and their application to real world problems in 

robotics and industrial processes. These results have been extensively 

reported in the publications, Ghavamzadeh (2003), Ali (2001) and Ali (1996) 

respectively. 

Similar results have also been presented in the conference papers by the 

same author in Ghavamzadeh (2003), (2002) and (2001) respectively. 

2.8 LEPROSY DISEASE 
'~) 'L~ 

DEFINITION OF LEPROSY 

Many definitions of leprosy exist but Hunter (1966) defined leprosy as a 

chronic infectious disease primarily of the skin and nerves caused by 

Mycobacterium /eprae. It is one of the least infections of all the infectious 

diseases. The incubation period varies from less than a year to mar}y years, but 

probably averages three to five years. 

TYPES OF LEPROSY 

Several variants of the disease are demonstrable, but the disease can be 

divided generally into ·~o~RoJar types;- tL!berculoid and lepromatous. A 

transitional or demorphous type may show a variable degree of similarity to the 

tuberculoid or the lepromatous types depending upon which pole it 

approximates. 

The non-lepromatous cases exhibit resistance to the infections evidenced 

by paucity of bacilli in the lesions and their tissue response. In the lepromatous 
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type there is obvious lack of resistance with an abundance of bacilli in the 

lesion. 

TUBERCULOID 

Tuberculoid and the non-lepromatous types have a small number of bacilli 

limited to the intracellular locations and ordinarily have no means of exit from 

the body, Job (1981). In other words, this group of leprosy is not responsible for 

the spread and transmission of leprosy on a large extent. 

LEPROMATOUS 

Lepromatous types are so baccilliferous to such an extent that organisms 

overflow from them into the environment. The patients of lepromatous and the 

borderline lepromatous discharge Mycobacterium leprae into the surrounding 
.~ ~ ~ ~ ~ 

through Nasal secretions, saliva, exudate from ulcer on the lepromatous skin 

and the normal secretions of the sweat, and mammary glands, Job, (1981). 

The traditional and the simplest explanation of the spread of leprosy is by 

close and pro-longed contact of the susceptible individual with infectious case. 

The source of infection is often not known. Susceptibility is important in the 
. . 

understanding of the epidemiology, natural history and clinical classification of 

leprosy, probably all cases go through an indeterminate phase, whether the 

point of entry is through the broken or unbroken skin. 

DISTRIBUTION 

Leprosy is widely distributed in the tropical and sub-tropical regions. This 

constitutes the top 25 countries that have nearly 94% of the world cases, 

Noordeen et al (1992). From the mid-sixties to the mid-eighties global 

~ ~r ,,' 
estimates appeared to be constant at between 10 and 12 million.-- The 
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introduction of multi-drug therapy (MDT) in many countries and the consequent 

reduction of prevalence of the disease has necessitated a re-assessment of the 

global estimate. Based on the available data and its interpretation, the number 

of leprosy cases in the world in 1991 had been estimated at 5.5 million. The 

number of individuals with deformity due to leprosy had been estimated as 

between 2 and 3 million. The following table summarizes the regional 

distribution of leprosy cases. 

Table 1: The estimated and Registered cases of Leprosy in the (WHO) 

regions 1991 (x1,OOO) 

REGION ESTIMATED REGISTERED 

1. Africa 735 280 

2. South East Asia 3,744 2,273 

3. America 327 295 

4. East Mediterranean 152 57 

5. West Pacific 207 89 
~ 

'" ~5.fE>5 2,994 Total (top 25 countries) 

Total (all countries) 5.511 3,162 

Source: Noorden (1992) 

The top 25 countries have the largest number of estimated leprosy cases 

and contributes 93.7% of the total estimated cases in the world. 
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DIAGNOSIS AND TREATMENT 

Diagnosis 

The cardinal diagnostic signs are the presence of anaesthetic macular 

lesion or thickening and tenderness of peripheral nerve trunKs and the 

demonstration of bacilli. Search should be made for suspicious macules or 

infiltrations of the skin and for the thickening of ear lobes and the eye brows. 

The peripheral nerves should be palpated carefully. The patient should be 

examined in bright sunliqht · to appreciate fully even to find certain lesions of '- . . 
::;,.') "-- ~-~ 

leprosy. 

Smears should be made from several sites, skin lesion, earlobes and the 

nasal septum. Since bacilli are usually obtainable only from lepromatous and 

the demorphous lesions, many cases should be diagnosed on the basis of 

clinical appearance and the presence of anaesthesia in simple macular or 

tuberculoid lesion. In such lesions, loss of sensitivity to light touch and absence 

of pain on pin prick justify the diagnosis. Test for instamine flare and for 

sweating afford .Confirmatory evidence. 

TREATMENT 

.~} '---=-............ -:. 
General treatment, including personal and environmental hygiene, a well 

balanced diet and the correction of concomitant conditions is important. With 

such measures even severe lepromatous cases may show some degree of 

amelioration, at least for a time, Hunter (1966). 

Ideally, the most promising drugs for use in combination with dapsone or 

for the treatment of patients with dapsone resistant leprosy are: ! Rifampicin, 

clofazimine, ethionomide, prothionamide and thiacethazone, Ellard (1981). 
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DURATION OF TREATMENT 

Dapsone treatment of paucibacillary leprosy is still of long duration; 2 - 5 

years. Lowe recommended 24 months treatment, Wheate and Pearson 

suggested 2 years to 5 years and the third and fourth WHO expert Committee 

reports recommended that tuberculoid patients should continue treatment for 

18 months after all activities has ceased and the lesions have become 

quiescent, which means a total of 24 - 36 months (See Warndorff, 1982). 

It was observed that Rifampicin (RMP) is highly bactericidal for 

mycobacterium leprae, Warndorff (1982). Based on previous studies it was 

thought that it should b~, P9s~le to cure p~tients with short regimen of 8 

weekly doses of 900 mg Rifampicin. Nevertheless, treatment of paucibacillary 

leprosy should be aimed at two objectives. The killing of bacilli and stopping the 

allergic reaction. Evidently, Rifampicin can realise the first objective rapidly and 

efficiently, since in the present series, no relapses were observed after 8 

weekly doses of 900 mg of Rifampicin. The second objective will have to be 

taken care of by other drugs. 

RELAPSE RATE 

For a long term treatment with dapsone, several cases of relapse had 

been reported. A follow up study of (3 months to 4 ye~n~ on 69 pRtlent~ 
-~ . ~ 

observed 11 .6% relapses, LO~~1954) cited in Waaldttk (1989). Seven of the 

eight relapses occurred within 3 - 12 months after treatment ceased and one at 

28 months. Three of the 7 patients had been treated for less than a year, 3 for 

between 1. and 2 years and 2 for 2 - 2.5 years. 

, . r -: 
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NATURAL HISTORY OF LEPROSY 

Leprosy is a common disease that may begin at any age but due to long 

incubation period of Mycobact~rium /eprae (2 - 5 years), its appearance during 
c;....::::::::: . 

infancy and childhood is minimal. For the greater part of leprosy patients, there 

is a history of leprosy in members of the immediate family. Perhaps, this is the 

reason why some people think that leprosy is hereditary. 

There is no spontaneous recovery without treatment and usually all latent 

cases develop overt disease except if dying in the meantime. Resistance to 

leprosy is not uncommon be it genetic or immunological. 

It is generally accepted that Mycobacterium /eprae (Hansen, 1874), cited 

in Hunter (1966) is the etiological agent of leprosy. Deformities in fingers, feet 

(toes), eye brows, nose and earlobes is not uncommon with leprosy patients. 

Death due to leprosy itself i&- ·nfreOl.!ent. Pulmon2ry' tuberculosis and nephritis 

are common terminal events, although the frequency of tuberculosis has 

greatly diminished since the advent of sulfone treatment, Hunter (1966). 

2.9 CATARRH DISEASE 

Catarrh otherwise known as common cold ' Oterion Anoma catarrhdis 

Rhinitis', is caused by the influenza virus . The incubation period is from 24 

hours to 48 hours. It is an air-borne disease resulting from breathing in infected 

air through the nostril tube. This develops into the inflammation of a mucus 

membrane usually accompanied by excess secretion of mucus. 

Other types of cat8}~h ~ hay fever, -~;-onchial catarrh, gastriC and 

intestinal and vesical catarrh, the inflammation of the bladder. The catarrh of 

interest in this paper is the one in which the mucus membrane is at first 
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congested swollen, hot and dry and then subsequently produces a free mucoid 

or watery discharge , which may become purulent before drying up as the 

inflammation abates. 

TREATMENT 

The treatment involves the application of Nasal decongestants (Ollivirin 

Nospamin) and Prolachic antibiotic (septrin) in addition to analgesic 
.;~ l '- _____ ~ 

(paracetamol). 

2.10 THE SEASONAL VARIATIONS IN NIGERIA 

Generally, two seasonal variations can be identified in Nigeria. The wet 

seasons wind and rainfall (April to October); the full effect of the tropical 

maritime air mass as the main factors which bring rainfall is felt in this season. 

Dry season wind and rainfall (November to March). This is the dry season 

when rainfall is least. 

The mathematical formulations on the epidemiology of leprosy are not 

new. These in several occa~iori~ .n~e been u~ed to study the transmission and 

spread of the disease side by side with the past prevalence and incidence of 

new cases. Leprosy is the least infectious of all the contagious diseases. The 

cases of leprosy may be found anywhere in the world but much more in the 

tropical and subtropical countries. The disease is not hereditary as some 

people may want to believe and Leprosy patients can be treated and cured. 

The model developed in this project incorporates uncertainty and variability. 
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CHAPTER THREE 

3.0 STOCHASTIC PROCESSES, FORMAL DEFINITIONS AND THEORY 

3.1 STOCHASTIC PROCESSES 

The family of random variables {X(t), t,::O} indexed by the time parameter 

t. The values assumed by the process are called 'states' and the set of possible 

values are called the state space. The set of possible values of the indexing 

parameter is called the 'parameter space' which can be either continuous or 

discrete. In the discrete case~ ~he ~ess is represented as {Xn n=O,1 ,2, .... .. .. }. 

3.2 MARKOV PROCESSES 

The stochastic process occurring in most real-life situations are such 

that for a discrete set of parameters t1 , t2, .. .... .. tn t, T, the random variables 

X(t1), X(h), .... X(tn) exhibit some sort of dependence. The simplest type of 

dependence is the first-order dependence underlying the stochastic process. 

This is called Markov dependence, which may be defined as follows; 

Consider a finite (or countably infinite) set of pOints (to, t1, ... .. tn, t), to < t1 

< b ... . < tn < t and t, tr ET (r = 1, 2, ..... n) where T is the parameter space of the 
'0. . _ 

process {X(t)}. The dependeflce'--extlibited by the process {X(t)}, tE T is called 

"Markov - dependence" if the conditional distribution of X(t) for given values of 

X(t1), X(h) ..... X(tn) depends only on X(tn) which is the most recent known value 

of the process. 

that is, if 

P[X(t) ~ x I x(tn) = xn, X(tn-1) = Xn-1 •... .. x(to) = xo] 

= P[x(t) ~ x I x(tn) = Xn] 

= F(xn• x: tn, t) (1.0) ~ .~ ., 
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The stochastic process exhibiting this property is called a 'Markov 

Process'. In a Markov process, therefore, if the state is known for any specific 

value of the time parameter t, that information is sufficient to predict the next 

behavior of the process beyond that point. 

As a consequence of the property given by (1.0), we have the following 

relation: 

F(xo, x: to, t) =fYES F (y, x, 1:, t) dF(xo, y, to,t) (1 .1 ) 

where to < 1: < t and s is the st~te 'spaee of the process x(t) . 

When the stochastic process has a discrete state space and a discrete 

parameter space, (1 .0) and (1 .1) take the following forms: for n>n1 >n2> ...... > nk 

and nand n1, n2 ..... nk belonging to the parameter space. 

= p(Xn = JIXn1 = i1) 

Using this property, for m < r < n we get 

P .. (m, n)= P(Xn = jlxm = i) 
IJ 

= I P(xn = jlxr ~k)~~= kl Xm = i) -
kES 

= I P. (m, r) P .(r, n) 
kES lk kJ 

where we have again used S as the state space of the process. 

(1 .2) 

(1 .3) 

Equations (1.1) and (1.3) are called the "Chapman-Kolmogorov 

equations" for the process. These are basic equations in the study of Markov 

processes. They enable us to build a convenient relationship for the transition 



probabilities between any points in T at which the process exhibits the property 

of Markov - dependence. 

Another statement of the Chapman - Kolmogorov equation and the 

proof is given below: 

Pg(t+s) = P(X(t + S) = llX(o) = i) (definition) 

= LP(X(t + S) = j ,X(t) = kIX(O) = i) 
k 

(marginal from joi!1t) 

It. = L P(X(t + s) = j IX(t) = k, X(O) = i)P(X (t) = IX(O) = i) 
k ~ 

= L P(X (t + s) = jIX(t) = k)P(X(t) = kIX(O) = J (Markov assumption) 
k 

= L P(X (s) = j IX(O) = k)P(X(t) = kIX(O) = U (Stationarity) 
k 

= "'" D (~) D (t) L_/-, r ;k 
k 

(definitio n) 

This is the Chapman-Kolmogorov equation in general form 

We shall use it in the special form of 

~j (t t At) = L ~k (t) p~ (At) 
Il.. 

This equation requires the Markov assumption to permit a 

multiplication of the probabilities referring to events during t and to events 

during 6t. it also requires stationarity to permit use of the same 

probability functions for the interval t and for the later interval 6t. 
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Depending on the nature of the state space and the parameter space, 
." ' ,., -- --

we can divide Markov processes TnfOJ four classes, which are given here in the 

form of a table. Wherever the parameter and state spaces are discrete the 

Markov process is called Markov chain. Otherwise the process is simply 

referred to as a Markov process. 

Table 2: Classification of Markov processes 

PARAMETER SPACE STATE SPACE., 

Dis<:;rete Continuous 

Discrete Markov Chain Markov Process 

Continuous Markov Process Markov Process 

3.3 MARKOV CHAINS 

A Markov chain is the Markov process with discrete time and parameter 

spaces whose state space could be finite or countably infinite. 

Let {Xn, n = 0, 1, 2" .. } be a Markov chain with a state space 

s C Y = {0,1 ,2, .,.}. While discussing a finite m-state chain, we shall idantify the 

state space S to be given by the set '(1 , 2, ... m). The element Pij, means the 

probability that X1 = j if you know that Xo = L It is a conditional probability 

Pij, = P(X1 =jIXo=i). 

In the time homog~!;e~~ Markov C?haiQ the n - step transition 

probabilities are defined Pi/n) = p(Xn=jl(Xo= i) 

The conditional probability P(Xn=jlXn-1 =i) is referred to as the one step 

transition probability from i to j at time n. If for all m and n, 
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P(Xn=jp<n-1=i) =P(Xm=jIXm-1=i), the Markov chain is said to be stationary. 

Stationary and time homogeneous are synonymous. 

~") .- -::-~ -

The stationary assumption is one of 'constancy' over time. It suggests 

stability of the process, although, of course, it does not imply that the process 

remains in fixed state or even that there is a sluggishness in the rate at which 

transition occurs. It is the probability mechanism that is assumed stable. 

"n-step' refers to the time interval between observations. In matrix form, 

POO POI ·P02 •• •• 

P= [Pji ]= PlO Pll P12 ••• • 

. 
-~0 --:-.....;:> 

and 

pnoo pnO! pn 02 ... . 

p(D)=[Pjt]= pD10 pD
jJ PD12 .. .. 

we have 

~ p .. (n)_l 
~ IJ -
jES 
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3.4 THE n- STEP TRANSITION PROBABILITY MATRIX 

Let P be the transition probability matrix of a Markov chain and let pt) 

be the probability that the process is in state j after n transitions (unconditional 

probability), denoted by the row vector of probabilities pt), jES. 

The n-step transition probabilities PifnJ 
and the unconditional 

probabilities Pj (n) , i, j, ES are determined by the following. 

Theorem 3.1 p (n)= pn 1.4 

and p(n) = p(O)pn 1.5 

For the proof, see Bhat (1984) pages 38 and 39. 

3.5 FIRST - PASSAGE AND RETURN PROBABILITIES 

The probabilities treated so for answer questions of the general form that 

is, what is the probability of ~~in..9 _iQ a certain stgte at a time? One other 

important question of interest is how long will it take to reach a certain state? 

The answer involves probabilities, but the random variable is the number of 

transitions that occur before a specified state is reached rather than the state 

after a specified number of transitions. 

When we speak of the number of steps required to reach state j for the 

first time, we mean the number of steps required to reach state j for the very 

first time. 

Definition (1 ):- A state i is said to be recurrent if and only if starting from state i, 

eventual return to this state is certain. In terms of probabilities (ii , this implies 

that the state i is recurrent if arr,:, On!)-~~ (ii = 1 

A recurrent state can be further classified either as null recurrent or 

positive recurrent. 
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(1) A recurrent state i is said to be null recurrent if, and only if, the mean 

recurrence time is 00, that is, if mjj = 00 

(2) A recurrent state is said to be positive recurrent if, and only, if the mean 

recurrent time is finite, that is, mjj < 00 

For a finite Markov chain ml, i Egis always finite. Therefore null recurrence is 

possible only when the state space is countably infinite. 

We therefore consider tns fir..st~assage probability flj(n) defined thus 

Hence the fit) can be obtained iteratively if the Pij(n) are' kn'bwn clearly 

The above definition assumes that i and j are distinct. If they are not, the 

formal definition would be exactly the same but we would speak of 'first return' 

rather than first passage so that 

f (n) - P ( - ' . . . I - .) ii - Xn - I, Xn-1 7:- I, Xn-27:- I, . . .... X17:- I Xo - I 

3.6 ERGODIC MARKOV CHAINS 

When the process is irreducible, recurrent-positive and aperiodic, (see 

definitions 1,3, and 6). We call the Markov chain ergodic. When the mo<:lel is 

ergodic, several additional quantities, other than the transition probabilities ,can 

easily be calculated. ' Two of the most important of these are steady-state 

probabilities and mean first passage times. 



Mathematically, p(n) and p(n+1) are essentially the same for large n, . 

p(n) = p(n +1) p 

And 
I 

I lim pen) = lim p(n+l) p I' 
n~ao n~ao 

I ~~ ..- -_ ...... 

1[1 1[2 '![ ••• 
3 1[1 1[2 1[ .•• 

3 

1[1 1[2 1[ ••• 
3 1[1 1[2 1r ... 

3 P 

1[ = 1[p 

Let Nij represent the random variable for the number of Epoch to reach j for the 
" 
j 

first time starting from i, then 

P (Nij = n) = fit) 

Because the flj(n) give the distribution of Nlj , the passage time from i to j, 

denoted mij is given by 

m .. = E(N .. )= \' nf.(n) 
~ ~ ~ ~ 

n=1 

In this case i = j, Mij would be called the mean recurrence time. 
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3.7 MARKOV CHAINS AND CLASSIFICATION OF STATES 

The value of Xn for a specific realization of the process is called the state 

of the process. 

Definition (2): State j is said to be accessible from state i if j can be re.ached 

from i in a finite number of steps. If two states i and j are accessible to each 

other, then they are said to communicate. Probabilistically, these definitions 

imply 

i 7 j U accessible from i) if for some n ~ 0 Pit) > 0 

j 7 i (i 
" " j) " " " " 

i ~17 j(i and j communicate)" " 
" " 

" " rl 

Conversely, 

i +> j U is not accessible from i) if for some n ~ 0 Pij(n) = 0 

j +> i (i " " " " j)" " " 

i ~17 j (i and j do not communicate)" " 
" 

" 

" 

P .(n) - 0 
jl -

P (n) - P (n) - 0 Ij - jl -

It has been shown Bhat(1984) that all the states that communicate in a 

finite Markov chain form an equivalence relation. 

Definition (3): If a Markov chain has all its states belonging to one equivalence 
~.,.;") - ~-:::> 

class, it is said to be irreducible. 

Definition (4): A state i is said to be transient if, and only, if starting from state, 

there is a positive probability that the process may not eventually return to this 

state. This implies that t"ii < 1 

Definition (5): A state i is said to be an absorbing state if and only if PII = 1. 

When i is absorbing t"ii(1) = Pli = 1 and hence t"ii = 1 and ml = 1, showing that i 

is positive recurrent. 
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Definition (6): The period of a state i is defined as the greatest common divisor 

of all integers n ~ 1, for which p jj(n) > O. When the period is 1, the state is 

referred to as aperiodic. 

3.8 DISCRETE STATE AND CONTINUOUS TIME PROCESSES 

A continuous time stochastic process is similar in many respects to a 

discrete time stochastic process. However, complexity does occur because 

each infinitesimal time is available as a possible transition time. 

A continuous time stochastic process {x(t)} is an infinite family of random 

variables indexed by the contir.~ous rw l variable · t. That is, for any fixed t, x(t) 

is a random variable, and the collection of all of these (for all t) is the stochastic 

process. 

We think of t as time, so we may expect X(t1) , the random variable at 

time t1 to be dependent on x(to), where to < t1 but not upon x(b), where t2 > t1. 

We refer to the value of X(t1) as the state of the process at time t1 . we 

assume x(t) are discrete - state, continuous - time stochastiq processes. 

If for all tn, tn-1, .... .. .. to satisfying tn > tn-1 > .. . ...... > tp, we have that 

the process has the Markov property or is a (continuous time) Markov process. 

Definition (7): A Markov proces~s' s~ to be time homogeneous or stationary if 

P(x(b) = j I X(t1) = i) = P(X(t2 - t1) = j I x(o) = i) . 

For all i, all j, all t1 and t2 such that t1 < b. 

In words, the process is stationary if these conditional probabilities 

depend only on the interval between the events rather than on absolute time. 
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A stationary Markov process is completely described by its transition 

probability functions, denoted Pij(tl-,whe~~,,,Pij(t) = P(x(t) = j I x(o) =i) 

Note: Pij(t) functions are probabilities, for all t. they are non negative, bounded 

functions because they must lie between 0 and 1. 

Pij(O) = P (x (0) = j I x (0) = i). Clearly, for i different from j, 

Pij(O) = 0 and for i equal to j, Pij(O) = 1. if we fix i and vary j over all states,. the 

sum of the Pi](t) must equal 1 (for all t). 

I Pi/t) = I P(x(t)= jlx(O)= i) 

= P (x (t) · ~any of"1i~1'5SSible states I x (0) = i) 

=1 

Under the assumption that the Pij(t) are continuous functions of time, we 

can express PI] for small ~t by the use of Maclaurin's series. 

Where O(~t )'-represents all terms of the order of (~t)2 or higher. If we consider 

this expression for i ;t: j, and 

let Aij = p,f(O), we obtain 
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We may think of this as a linear approximation to Pij(t) which is a good 

approximation as long as Llt is small 

The Aij is called the transition rate frd-,~ it,=,_; _"O-

Since Pij(O) = 0 and this is the minimum value, we should be certain that Aij is 

non negative. 

For i = j, the Maclaurin's series expansion yields 

And if let All = Pll(O), we get the linear approximation 

Since we know that P'ij (0) = 1 ah-~ tg~t--~s the maximum value, we may be 

certain that All is non - positive. 

If we now consider the Chapman - Kolmogorov equation 

For small M, and substituting linear approximation, we get 

Pij(t + ,1t) = Pij(t) [1 + All,1t + 0(,1t)2] + L Pik(t) [AkjM + 0(,1t)2] 
" .. j 

and 

P;j (I + ,1/) - P;j (I) Pij (t)O( M) 2 L [ . p;" (/)O( I'lt) 2 ] -'---------'- = P (t)X . + + P" (t)JJg + ---"'----
AI '] I] ,11 . I ,11 
Ll " .. ] 
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Taking the limit as L1t ~ 0 

The terms of the order (large order) (L1t)2 go to zero faster than L1t so these 

terms drop out. 

The result is an exact (not approximate) differential equation for Pij(t) in terms of 

the Pik(t). it is a linear, first -order differential equation with constant 

coefficients A~'S . 

Recognising the above sum as matrix multiplication, we may express all of the 

differential equations at once in the matrix form 

dP(t) = P(t)A 
dt 

Where dP(t) I dt is the matrix whose (i,j)th element is dPij(t)/dt, P(t) is the matrix 

whose (i,j)th element is Pij(t),and A is the matrix whose (i,j)th element isAij. 

The elements of A may be further related by extending the properties of P(t). 

In particular, since for each i 
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d 
I -p (t)1 =0 

d ·· t=O . t IJ 
J 

~A .. =O 
~ IJ 

J 

In words, each row of A must sum to zero. Since every off-diagonal element 

is non negative, the diagonal element A.ii, must be equal in magnitude and 

opposite in sign to the sum of others in the same rows. That is'T 

A .. =-~A .. 
11 1..J IJ 

J*1 

3.9 SEMI - MARKOV PRo"Cl=S5~S 

A semi - Markov process is a process in which changes of state occur 

according to a Markov chain and for which the time interval between two 

successive transitions is a random variable whose distribution may depend on 

the state from which the transition takes place. 

Proposition (1): Let {Xn, n = 0, 1, .... } constitute a Markov chC!in with 

state space E and transition probability matrix P = (PJk). A continuous 

parameter process Y(t) with state space E defined by Y(t) =Xn on tn ~ t ~ tn-lo. 
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is called a semi - Markov proces.,. T:-=;~ Markov chain {Xn} is said to be an 

embedded Markov chain of the semi - Markov process. Xn refers to the state of 

the process at transition occurring at epoch Xn and Y(t) that of the process at its 

most recent transition. 

WAITING TIME 

Let the time spent by the process in state j before its next 

transition, given that the next transition is state K be a random variable Tjk 

having distribution function 

Wjk(t) = P [Tjk ~ t] = P (tn +1 - tn ~ t I Xn = j, Xn + 1 = K) j, K = 1, 2, ..... m. 

The random variable Tjk, IS called the Surjourn time or waiting depends on the 
::z 

state Xn being visited and the state ::-Xn + 1 to be entered in the very next 

transition. 

INTERVAL TRANSITION PROBABILITY 

Theorem(3.2): for all i, j and for t ~ 0 

I 

¢yCt) = Olj hi(t)+ LPKj f itk (x)¢kj' (t-X)dx 
K 0 

where hi(t) =1-L¢ik (t) 
k 

=l-W;(t) 

=P(I; >t) 

and olj = {~ ::;J" ' ,~ :~'" is the Kronec kerf s delta function. 

In summary, suppose that a process can be in anyone of N states 1, 2,., ...... N 

and that each time it enters state i, it remains there for a random amount of 

time having mean Mi and then makes a transition into state j with probability Pij. 

Such a process is called a semi - Markov process. We note that if the amount 

of time that the process spends in each state before making a transition is 
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identically 1, then the semi - Markov process is just a Markov chain . Thus a 

.~:"") ...... - ---.;:, 

Markov process is a semi - Markov process but the converse is not true. 

3.10 THE EXPONENTIAL AND THE WEIBULL DISTRIBUTIONS 

We shall briefly discuss the exponential and the Wei bull distributions as 

they relate to the duration of stay in a disease state. They have been used in 

this project for distributions of holding times in states. We end the discussion 

with some comparisons of the two distribution functions. 

3.11 THE EXPONENTIAL DISTRIBUTION 

The probability density function of the random variable T having the exponential 

distribution is given by 

t>O 
elsewhere 

Where A>Q 

The distribution has A as a parameter.A also determines the shape of the 

distribution. The mean !l of the exponential distribution is 

Substituting w = At => t = WIA and dw = Adt in the integrand gives 

1 

A 
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Thus Jl = 1/). 

Let W = At =:> t =w/). and dw = Adt 

The variance (32 of the exponential distribution is therefore given by 

Definition (7): The survivor function S(t) is given by 

. S( t) = P( T > t) 

and it is the probability that an individual has survived up to time t. 

Suppose F(t) is the distribution function of the random variable T. Then 

S(t) = 1 - F(t) 

For the exponential distribution 

Therefore 

F(t) = peT ~ t) = tf(S)ds 

= r J..e -J.s ds 
o 
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To interpret h(t) we consider the conditional probability P(t < T < t + .1. tiT> t) . 

That is, the probability that the individual will die during the next .1. t time units, 

given that he survived at time t. Using the definition of conditional probability, 

we have 

P(t < T < t + .1. tiT> t) = P( t < T < t + .1. t ) 

P(T> t) 

~-'"') f 
- ___ OJ IjCs)ds 

_.-:..1 __ 

peT> t) 

Mf(~) 
= 

set) 

'WI1ere t < « t + ~t 

The failure rate or the hazard rate, "It assodated with the random variable T is 

given by 

h(t) = f(t)/S(t) 

This failure rate is a constant in the case of the exponential distribution. 

That is, the hazard rate is given by h(t) =-1. 

PARAMETER ESTIMATION 

It is clear that the exponential distribution has a simple probability density 

function. It is specified by a single parameter f.... This parameter is estimated by 

specifying the mean of the distribution. Thus if the mean I-l is specified then the 

parameter is estimated using 

A. = 11p 
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ILLUSTRA TION 

The mean holding time Jl12 in the state of treatment (State 1) see page 

104., is 3 years. If the holding time in the state follows the exponential 

distribution, then the parameter ~ is estimated thus:-

A = 11J1 =1/3 =0.33 (corrected to 2 dp). 

Hence f(t) = AEf}.t=O.33e-O·33f 

This is illustrated in figure 1. 

F(t) 

A. = 0.33 

Figure 1: The graph of an exponential distribution. 

The exponential distribution is a prominent statistical measurement model. 

It has the advantage of being speCified by one parameter. Most applications 

are based on its 'memoryless' property, when the measurement variable T has 

a time dimension. This property refers to the phenomenon in which the history 

of the past events does not influence the probability of occurrence or future 

events/present events. The appiicafi6n of the exponential model arises in the 

theory of queues in conjunction with the Poisson and Erlang models. From the 

waiting time interpretation of Erlang variable T, it follows that f(t) = A e-)J is the 

waiting time model to the first Poisson event. But the exponential model is 

'memoryless' as mentioned earlier. Consequently, the waiting time to the first 

Poisson event is the same random variable as the waiting time between any' ~. 
j 

50 

I 
I 
I 
I 
I 



two adjoining Poisson events. The exponential distribution is a special case of 

both the Gamma and the Weibull distributions. 

Despite the above advantages of the exponential distribution", it has the 
'-~ ......... --:::---==-

weakness of the measure of hazard rate which is constant . Thus it does not 

accurately define the holding time in the states of a disease which changes with 

time. 

3.12 THE WEIBULL DISTRIBUTION 

The probability density function of a random variable T having' the three 

parameter Wei bull distribution is given by 

J(t) = t >= c 

o t < 0 

a,/J,c> 0 

The scale parameter is a.. It is the characteristic life that specifies the 

100 (1 - e-1
)th distribution percentile of (t - c) . The parameter J3 determines the i 

shape of the distribution and it is therefore called the 'shape parameter'. The 

'location parameter' is c, it shows the position along the t-axis . where the 

distribution should lie. It is also called the threshold parameter, because, if C is 

the failure time, the probability of failure before time C is zero. 

We can always reduce the distribution to a two parameter Weibull by 

putting t1 = t - c, thus "" 
'-' .., 

a,jJ> 0 
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The distribution function is given by 

The mean J.l of the two - parameter Weibull distribution is given as 

Jet) ret) ~ t )/3-1 ( t )/3 
J.l = £(1) = tf(t) = 1 t - exp- - dt 

-<Xl 0 aa a 

Substituting w = (t/a)pthen dw = j!la(t/a}f3-1dt 

so that 

1 

J.l = r a w/3 ( ,,) 

expx - dw 

ret) (1+1//3)-1 _ 
~ = a J w exp ( w) dw 
-s..--, ~.-=-~ 

= ar(1 +1/(3) 3.2 

Where Fdenotes the Gamma function . By definition f{a)=(a-1)1 

The variance of the two parameter Wei bull distribution is given by 

but 

Put (t/a;P=w then dw =j!la(t/a)f3-1dt and t = aw11fJ 

In the integrand gives 

Thus E(T2) - (E(T))2 = cl F( 1 + 2IfJ)-( a1T1 +1IfJ/ 

=a2[r(1+2/13) - (r(1+1/13))2] 

(12 = a 2[r(1 +2113) - (r(1 +1113)2] 3.3 
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The failure rate function for the Weibull is as defined for the exponential 

distribution. Nevertheless, the failure rate function is an increasing function if 

the failure time is describe~bya ~!.eibull distribL!t!on with shape parameter ~>1 

For this case we have 

h(t) = ~/a(Ua)~-1 

t ~ 0 

PARAMETER ESTIMATION 

One method through which the parameters can be estimated is by use of 

percentile. This is the method used in this project. Dubey (1967) proposed 

percentile estimators for both the shape (a) and the scale (~) parameters of the 

distribution based on two sample percentiles. 

For any given p, O ~-, p _<~.;J the 100th pp.rcent percentile of the Weibull 

population is defined as the value t = tp such that 

F(tp) = 1- exp-(tp/a)jJ = p 3.4 

The 100 percent percentile of the sample is denoted by Yp. From 3.4, 

log (1 - p) = -(tp/a)jJ 

and 

log (-log (1-p)) = ~(Iogtp -log a) 3.5 

so that for any two real numbers P1 and P2 with 0 < P1 < P2 < 1 we have 

log (-log (1-P1)) = ~(logtp1 - log a) 

and log (-log (1-P2)) = ~(Iog tp2 -log a) 

~ ~ =: log - (log(1-Pd) -log (-log (1-06)) 
log tp1 - log tp2 

. . ~. =: log - (log( 1-Pl)} - log (- log (1-02)) 
log YP1 - log Yp2 
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where f3* is the percentile estimator of f3 based on two ordered sample 

observations from a Weibull population. 

From expression (3.5) the percentile estimator for a can be obtained in 

the following three ways 

1. a* = exp/log Y1 - log (-log(1-p1lL 
." ' (3* 
'S-~ ~ _____ ;:> 

2. a* = expllog Y2 - log (-log(1-p2)/ 

3. 
1 

a* = exp/-
2 

f3* 

2 

Llogyj -Iog (-log(1-PilL 
j=1 

f3* 

The above three are identi,cal and can be written as Dubey (19£:?7) 

Where 

a* = exp/w log Y1 + (1 - w) log Y2/ 

w = 1 -log K1 
K 

K = log (-log(1 - P1)) -log (-log(1 -P2)) and 

ILLUSTRATION 

We shall now give some examples to demonstrate step by step, the 

procedure for obtaining the numerical values for the shape and scale 

parameters discussed in the last section. 

1. P1 = 40% P2 = 60% 

t1 = 7 years t2 = 10 years 

Now f3* = log (-log(1 - P1) -log (-log(1 - 02) 
log Y1 - log Y2 

= log (-log(1 - 0.6) -log (-log(1 - OA) 
log 7 -:- log 10 

.~"" .:.----::::;:.. 
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= - 0.6717269 - (-0.0874215) 
1.944459101 - 2.3025851 

= 1.6382016 

a* = exp 1 w log Y1 + (1 - w) log Y21 

but w = 1 -log K1 = 1 - - 0.6717269 
K -0.5843054 

= 1 - 1.1495205 = -0.1495205 

a* = exp 1 -0.1495205 x 1 :94591 01 + 1.1495205 x 2.302585 1 
.~ . 
'S::> _-:-~ 

= exp 12.35591521 

= 10.54778 

f(t) 

20% 

~o 7year l{;o lOyears' 

Figure 2: Graph for iIIus\r~ii~ for the estimated values of a and P 

2. P1 = 50% P'). = 70% 

t1 = 2 years t2 = 3 years 

fJ = log (- log(0.5) - log (- log(0.3) 
log 2 -log 3 

= 1.3617438 

a = exp I 0.3361952 x 0.6931471 + 0.6638047 x 1.09861231 

= exp 1 0.96229681 

= 2.6177021 

= 55 - ~ ~ 

. " -< 
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f{t) 

20% 

t50 t 70 

2years 3 years 

Figure 3: Graph for illustration for the estimated values of a and f3 

3. P1 = 60% P2 = 80% 

t1 = 2 years t2 = 4 years 

f3 = log (- 10g(O.4) - log (- 10g(O.2) 
log 2 -log 4 

= 0.8126794 

a. = exp 1 0.8448065 x 0.6931471 + 0.1551934 x 1.38629441 

= exp 1 0.8007191 1 

= 2.2271419 
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20 % 

1M tRo 
2years 4years 

Figure 4: Graph for illustration 3 for the estimated values of a and J3 

The percentile pOints (P1 and P2) and the corresponding times (t1 and t2) 

for illustrations 1, 2, 3 and the estimated values for a and ~ are summarized in 

table 3. 

Table 3: The percentile points and estimated values of the Weibull 

parameters 

Time % of Time '" % of Time % of 

people people people 

7 40 2 50 2 60 

10 60 3 70 4 80 
-~~~ 

a 10.5 a 2.7 a 2.2 

~ 1.6 ~ 1.4 ~ 0.81 

It must be noted that we have that c = o. Thus the graphs lie on the origin 

as shown in figures 2, 3 and 4. 
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The Weibull distribution is prominent in applied sciences, mainly in the 

analysis of extreme value phenomena and in the field of reliability engineering. 

Karl (1975) The failure rate for the Weibull is not constant for ~ :;:. 1. Therefore, 

it accurately measures the holding times in the states of a disease which 

changes with time. 

The exponential and the Weibull ,distributions are prominent probability 

distributions. The relative advantage of the exponential distribution is that, it is 

specified by a single parameter and can be easily estimated from the mean. It 

also has the 'memoryless' proper:ty as explained in the previous section. The 

exponential distribution is a special case of the Weibull distribution when the 

shape parameter (~) is one. However, the failure rate function of the 

exponential distribution is constant, this does not accurately measure the 

holding times in the state of some diseases. For instance, the probability of an 

HIV positive individual to develop AIDS in 15 years (say) should be more than 

the probability of the individual developing AIDS in 3 years (say). According to 

the exponential distribution these probabilities are the same, hence the beauty 

of the Weibull distribution emerges. It defines an increasing function for the 

failure rate thereby taking care of the weakness of the exponential distribution. 

3.13 MARKOV DECISION PROCESSES 

Bhat in 1984 summarizes the definition of Markov decision processes 

thus; Markov decision processes bring together the study of sequential decision 

problems of statistics, and the dynamic programming technique of applied 

mathematics and operations research . 
.... 
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Consider a process that is observed at discrete time points to be in any 

one of m possible states, which we number by 1,2,3, ... m. After observing the 

state of the process, an action must be chosen, and we let 0, denote the set of 

all possible actions, we assume 0 is finite. 

If the process is in state i at time n and action k is chosen, then the next state 

of the system is determined according to the transition probabilitieS<pij . 

Following Ross (1989), let Xn denote the state of the process at time nand Kn 

the action chosen at time n, then the above is equivalent to stating that 

P(Xn+1=jIXO,Ko,X1,K1, ... .. Xn=i,Kn=k) = KPij 

Thus the transition probabilities ~':are ~ependent on the present state and 

subsequent action. 

Definition (8): A policy; by a policy we mean a rule for choosing actions. A 

policy is a sequence of decisions, one for each state of the process. 

Definition (9): Dynamic programming is an approach for optimizing multistage 

decision processes. It is based on Bellman's principle of optimality. 

BELLMAN'S PRINCIPLE OF OPTIMALITY 

An optimal policy has the property that regardless of the decisions taken 

to enter a particular state in a particular stage, the remaining decisions must 

constitute an optimal policy for leav.ing the state. 

Consider a Markov chain with state space S. Suppose with every state 

we associate a decision to be chosen out of a set D. 

Let KplJ be the probability of the one step transition from i to j. i,j E Sunder 

decision KE D. 

~Also we associate a reward KRIJ with decision K and transition i to j . 

Knowing the set of alternatives in the decision set and the corresponding 
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transition probabilities and rewards, the objective of the process is to select the 

optimal decision under certain criteria. When we associate rewards with every 

decision, maximization of expected reward over a given time horizon is the 

natural criterion. 

If costs are associated with decisions; costs are essentially negative 

rewards and so minimization of expected costs is called for. 

Let !<Yj( n) be the expected total earnings , in n future transitions if decision K is 

made when the process is in state i. For the optimal decision K= 0 if it exists; 

we have 

(), ,.(n)_ 
V, -

This is a functional equation satisfied by the expected reward. 

3.14 MARKOV REWARD PROCESSES 

3.5 

Consider an aperiodic, irreducible Markov chain with m states (m< 00 ) and 

the transition probability matrix 

With every transition i to j associate a reward R lj. If we let Vj(n)be the expected 

total earnings (reward) in the n~~t n 1ransitions, given that the system is in state 

i at present . A simple recurrence relation can be given for 

follows: 

m 

V(n) "p. [1} V (n-1) ] • = 
i =~ L...J i j .. 'i j + j • I 1,2,3, .. ... ,m.n = 1,2 ... 

j=1 
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m 

Let 'LP;/\ j = Qi 
j=1 

Equation 3.6 can now be written as 

m 

V; (0) = Qi + 'L P;jV
j 
( II- I ) 

3.7 

j=1 

~~J 

setting n= 1,2, .... We get 

m 

V;(I) = Qi + 'LP;jV(O) 

j=1 

m m 

v: (2) = Q. + ~ P [Q . + ~ P v. (0) 
I I ~ /J J ~ jlct 

j=1 t=1 

m m Iff 

=Q + LPifQj + LLPq.PjlV/O) 
j=1 t=1 j =1 

'" '" = Q. + L ~.Qj + L P.z-(:}J t ((I) 

j=1 l=1 

Where Pit) is the (i,j)th element of the matrix pn 

r .,.:(11 ) l -" "[Ql l 
'-'" rIfT 

v. l n) 
2 Q3 

Let V(n)= 
V. (II) 

3 Q= 

Qm 
V (II) m 

Equation (3.7) can be put in matrix notation as 

Extending this to a general n, we have 

~V(") = Q + PQ + p 2Q + .... .. + p (rt-I)Q + pnV(O) 

.<. , '-
/ ' ~ - -'(' ..... : 
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but P (n) = TI + e . .<n) 
o j U 

Where {rr j t l is the limiting distribution of the Markov chain and 

with c>O and O<r<1. therefore, as n ~ 00, eij ( n) ~ 0 geometrically. 

TIl TI2 TIm 
And IT = TIl TI2 TIm 

In Matrix notation, we can write pn as 

Pn IT ( n ) = +7] 

Substituting this in (3.7) we get 

TT(n) [ ~' ~--(i I (klp (n (n)TT(Q) Y ' = l-rLI +7] + +7] Y ' 

k=l 

3.8 

In deriving (3.8), we have noted that 7](0) = 1- TI 

Now consider the sum 

n-I ~ 00 

~ L7](k) = L7](k) - L7](k) 3.9 
1<=0 1<=0 I<=n 
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I; 
! rt should be noted that ea1:fi term'1 n '7" ) is less than or equal to cr" (c>O, O<r< 1 ) 

in absolute value, and hence for large n the second term on the right hand side 

1'-. of (3.9) approaches an m x m matrix with zero elements. For the same reason 

. ~ 

!J 

the last term in (3.8) approaches a null matrix for large n. 

Thus asymptotically we have 

co 

~(n) = IlV (O) + L77 k Q+nTIQ 
k=O 

which gives 

m m m 

~ (n) = LIl jV/) + Lrij Qj +nLIT j Q j 3.10 
j =1 j=1 j=1 

where we have written f '~~) =lir:~ 1\ 

k=O 

writing 

m m 

"IT . V.(O)+ " r ··Q · = /3. 
L.J " L..J ", ' 
j =1 j=1 

m 

IITj Qj = q 
j =1 

so that (3.10) can be put in the form 

V; (n) = /3; + nq 

which shows that for large n, V;( n) is a linear function of q for every i. Further, for 

different values of i I V ( n) ar~ repre.s_ented by par3!lel straight lines with slope q J ,:') __ .. ~"; 

and intercept /3; (i = 1,2, .. .m) 

So far, we have considered the transition probability matrix P and the reward 

matrix R as given. 

Instead, suppose that the decision maker has other alternatives and so is able 

1 to alter elements of P and R. To incorporate this feature, define 0 as the 
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decision set, and under decision KE Diet KPij and KRij be the probability of the 

transition from i to j and the corresponding reward respectively for ~i(n) . The 
~> -- -;--~ 

expected total earnings in n transitions under decision K; we have the 

recurrence relations (K=O represents the optimal decision) 

o (n) k k 0 (n-I) . m [ 1 V; = maxkeD z= P;j R;j+ Yj n = 1,2, ... ,1 = 1,2, ... m 
j=1 

giving 

o (n) k k 0 (n-I) . 

[ 

m ] V; = maxkeD Q + L P;, Vj .1 = 1,2, .. .m;n = 1,2 
J =I 

m 

where we have written L~j k R;j=kQj 
j=1 

3.11 

Recursive relation (3.11) gives an iteration procedure to determine the optimum 

. . n) . '~0 . , --

decIsion di ED. For 1=1 ,2 .. . m~ana fl21 ,2 ... 

This is a Standard technique in Dynamic programming and it has been 

shown Bhat(1984) that this iteration process will converge on best alternative 

for each state as n -+ 00 . 

Since the procedure is based on the value of the policy (total eaming) for 

any n, it is called the Value Iteration Method (VIM). 

The method is based on recursively determining the optimum policy for 

every n, that would give the maximum value. 

One major drawback of the method is that, there is no way to say when 

the policy converges into a . stable policy; therefore, the value iteration 

~~ ---::::..;:> 

procedure is useful only when n, is fairly small . This is the reason why it is 

appropriate for our diseases model as indicated in the following section. 
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CHAPTER FOUR 

4.0 THE DEVELOPMENT OF THE MODELS 

4.1 A THREE STATE MARKOV CHAIN MODEL FOR CATARRH DISEASE 
I 

A finite Markov chain is a discrete time parameter stochastic process in " 

which the future state of the system is dependent only on the present state and 

is independent of the past history and the number of states are finite or 
I 

countably infinite. " 

Suppose an individual has mild catarrh sometimes or severe catarrfl some 

other time and most often has no symptoms of catarrh. We have the following 

three states if we should consider the disease catarrh as a Markov process. 

State 1: No catarrh 

State 2: Mild catarrh 

State 3: Severe catarrh 

It is assumed that the possibility of death due catarrh is very small and 

could be neglected. The classification of states for a Markov model is 

dependent on the nature of the process involved and the intended use of the 

model. 

The transition diagram for this process is shown in the figure below 

STATE 1 

STATE 2 STATE 3 

Figure 5: The state transition diagram for the process. 
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The transition between the states is described by the following transition 

probability matrix. 

Pll P12 P13 

p== P21 P22 P23 
P31 P32 P33 

Thus we define a Markov chain as a sequence Xc, X1,... of random 

variables with the property that the conditional probability distribution of Xn + 1 

given Xc, X1, ... Xn depends only on the value of Xn but not further on Xc, X1, ... Xn 

_1 .that is, for any set of values h, i ... j in discrete state space P(xn + 1 = j/xo = h 

... Xn = i ) = P(xn + 1 =jlXn = i ) = Plj i ,j = 1,2,3. 

Let 

denote the probabilities of finding the patient in any of the states 1,2,3 

respectively on day n. then'~' . - ~~ 

4.1 

on iteration, we have 

pn = pOpn , n = 0,1,2,3 ... 

where pO is any starting vector of probabilities. 

The Markov chain analysis requires that the process be considered at 

discrete uniformly spaced intervals of time. It is assumed that the time between 

transitions is one day. 
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The fundamental assumption of Markov chain is that the probability of 

making a transition from state i to the j in the next time interval is a function of 

i and j and not of any history of the process before its arrival in state i. 

4.2 THE LIMITING STATE PROBABILITIES 

The state - occupation probabilities is independent of the starting state 

of the process if the number of time of the 'state transition' is large. Thus the 

process reaches a steady st~e after _a sufficiently IBrge period of time. This is 
) ~-~ 

the equilibrium probability distribution II = (II1,II2• IIJ and letting n-+ 00 in 

equation (4.1) 

we have 

II = IIP 

and sum of the components of II must be unity i.e. 

we use these last two equations to find the limiting state probabilities for the 

process. 

4.3 MODELLING THE EFFECT OF PREVENTIVE TREATMENT 

A good measure of the effectiveness is obtained by defining 

where k is a positive real number in the interval [0, 1). Then 

4.2 
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where j = 2 and 3 and the transition matrix is P with the first row replaced by 

EJf , j = 2 and 3. 

4.4 MODELLING THE SEASONAL EFFECT 

Suppose that the probable course and outcome of the catarrh disease 

changes with the seasons. We may consider two seasons as the transition 

times. 

(1) The wet season (April - October) 

(2) The dry season (November - March) 
'X0 ~ -;-_~ 

Each season has its own transition count and transition probability matrices. 

We denote these as follows. 

Let 

M1: Transition count matrix for Wet season 

M2: Transition count matrix for Dry season 

P 1: Probability transition matrix for Wet season 

P2: probability transition matrix for Wet season 

M k = f ij (k), i , j = 1,2 ,3 and k = 1,2 . 

and P k = P ij (k), i , j = 1,2 ,3 and k = 1, 2 . 

f . (k) denotes the transition · count from state f to state j for the season 
IJ .~~ ......... --::::::...-.;:> 

k. P
ij 

(k ) is ~he transition probability from state i to state j for the season 

k. 

Accordingly, 
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Accordingly, 

A 

P if (k) = k = 1,2 and i, j = 1,2,3. 

3 

where f i = L fi/'_(~ t -:;0- 4.3 
j = I 

4.5 TEST FOR STATIONARITY OF THE PROBABILITY MATRICES PK. 

To test for independence of PK on K. the Null hypothesis is stated thus 

Ho : P if (k ) = P if. for all i , j = 1,2,3 

H1: Pj,j (k) depends on K. 

The likelihood ratio Test for the above ~ypothesis, is 

4 .4 
Ie = I 

2 

where f ii = L fij(k) 
k = I 

The maximum likelihood estimate of the stationary transition probability matrix 

is 

4.5 

3 

where fi = L fij 
j = I 

The A, the likelihood ratio criterion is given by 

[ ] 

r·· (10) 
3 2 P U 

IT IT 
.. 

A = 'J 

i.j= 1 k=1 Pij (k) 

According to Bhat (1984) 

- 21n A. 2 
= X m(m-IXT-l) 
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" 

where m is the number of states and T is the time parameter. We evaluate 

A, and calculate - 2 In A. We then get the critical value of X 2 at a 

significance level and compare it with - 2 In A. It is then decided to accept or 
.~ '_-0-.» 

reject the Null hypothesis. With the acceptance of Ho, we have a homogeneous 

Markov chain model. The model is represented by a single transition count 

matrix in (4.4) and the Pi]' S are estimated from (4.5). Otherwise we have the 

non- homogenous Markov chain model. 

4.6 NON - HOMOGENEOUS MARKOV CHAIN MODEL 

Following Howard (1971), the stochastic matrix P can be written as 

P = P1P2 and the Fij s are estimated from (4.3). 

The limiting state probability vector n I and n 2 for the two seasons 

are then obtained from the i~l!o't'l~ 

n , = n oP, 

n 2 = n ,F 2 

it is observed that n 0 = n 2 

4.7 DISCRETE STATE AND CONTINUOUS TIME MARKOV 

MODELLING FOR CATARRH DISEASE. 

In the previous section we considered the catarrh disease as a Markov 

process in discrete state and time. We shall now consider the three state model 

of the disease in continuous time, which will enable us to obtain information 

about the patient at any giv"1::1i Pcm-ir in time. -

Following the work of Howard in 1960, we let a lj represent the transition 
( . 

rate of the patient from state i to state j I i ~ j. In a short time interVal 

70 



(I , 1 + ,1 1 ) , the patient currently in state i will make a transition to state j 

with probability a ;j ,1 t , i * j. if Xt is the state of the process at time t, then we 

have 
, 

P(Xt+,1 = j I Xt = LJ = 8ljilt. 

The probability of two or more state transitions is of order (,1 1 Y or more 

and it is negligible if ,1 t is sufficiently small. 

Suppose that the transition rates do no change with time (a ij 's are constants). 

and 

a jj = -:La j;, 
; '1' j 

i , j = 1,2 ,3 4.6 

We describe the process by a transition - rate matrix A with components a ij . 

Suppose Pj (I) is the probability that the patient is in the state i at time t after 

the start of the process and let P j (t + ,1 t) be the probability that the patient 

.-,... . 

will be in state j a short tirfi~ !:s n~ter. 

Then, 

Pj(t + M) = Pj (t)( l- z:aij M] + z:p;(t)aij ,1t j = 1,2,3 
I7- J 17- ) 

4.7 

Equation (4.7) can be explained thus: There are basically two mutually 

exclusive ways in which the patient can be in state j at time (t + . ,1 t) first, 

he could have been in state j at th.e time t and make no transition during the 

interval. (t, t+,1t) These events have probabilities Pj(t) and 1 - :L a ji ,1 1 since 
;'1' j 

the probability of multiple transition is of the order higher than ,1 t and is 

71 



negligible. The probability of making no transition in (I, 1 + 11 I ) is 1 .minus 

the probability of making a transition in (I, t + 11 I ) to some i ~ j 

Another way that the patient could be in state j at time t + 11 t is to have 

been in state i ~ j at time t and then make a transition from i to j during 

the time 11 t . 

Equation (4.7) is obtained by multiplying the probabilities and adding 

over all i that are not equal to j because the patient could have entered j 

from any other state i putting (4.6) in (4.7) and rearranging terms gives 

3 

P j V + 11 t) - P j (t) = L Pi (t)a ij 11 t 
i = ! 

Thus we have 

3 dP j V) 
dt 

= L Pi (t)a ij j = 1,2 ,3 
i= ! 

in matrix form, we have 

d -pet) 
dl 

= P (t)A . 

P(t) is a row vector of state probabilities at time t. 

To obtain the solution to (4.8), the initial condition 

Pi (0), i = 1,2 ,3 ; must be specified. 

Taking the Laplace transform of (4.8) we have 

pes) = P(O)(SI - At ! 

Thus P(t) is obtained as the inverse transform of P(s) . 
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In fact, equation (4.8) is an exact (not approximate) differential equations for 

Pjj(t) in dPtt) = L Pik(,) akj (Chapman Kolmogorov equation). It is a linear, first-
t . 

order differential equation with constant coefficients - the ajk's. in this particular 

case, they are simple enough to solve directly. Making use of whatever 

manipulations or solution technique we find most convenient (apart from the 

one proposed above) and using the initial conditions Pj' (0) = 0 for i 1: j and 
"- -, _ - 0_ J 

Pjj (O) = 1 for i = j 

4.8 MODELLING THE EFFECT OF PREVENTIVE TREATMENT 

Following Korve(2000), suppose the catarrh patient is in state 1 at time 

t , then he has probabilities of a 12 ,1 t and a 13 !1 t of making a transition to 

state 2 and state 3 respectively. This means that the times taken for the patient 

to make a transition from state 1 to states 2 and 3 are exponentially distributed 

with mean _1_ and _1_ respectively. 
a l 2 a l 3 

.~ -~;:> 

When preventive treatment is given these mean times are increased to 
bl2 

and _1_ , respectively. And the probabilities of making transition from state 1 
b13 

and 3 in (t, t + !1 t) are reduced by bl 2 !1 t and bl 3 !1 t respectively. 

The measure of this effectiveness is obtained from the following expression 

1 (1 + k)-, j = 2,3 = 
a!i 

where k is a positive real number. If k = 0, the treatment has no effect and if k > 

o the treatment has effect. 

-=-;::> 
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We let 

b 21 = a 21 and = 

and the b iJ s are obtained from (4.6) and in (4.8) we have 

d -pet) 
dt 

= P (/)B . 

The matrix 8 has components bi}' i,j = 1,2,3. 

4.9 A SEMI-MARKOV MODEL FOR LEPROSY DISEASE 

4.9 

In this chapter we considered leprosy as a disease where the transition of 
.~ ----=....;:> 

people from one state of the disease to another may not necessarily occur at 

discrete time instants. We therefore look at a situation where the time between 

transitions may be in several units of time interval , and where the transition 

time can depend on the transition being made. This leads us to a generalization 

. 
of a Markov process called the semi-Markov process (Howard, 1971). In other 

words we shall consider the disease leprosy as a semi-Markov process running 

in discrete time and continuous time respectively. 

One other mathematical definition of a Markov chain is a sequence Xo, 

Xl , - - - - of discrete random variables with the property that the conditional 

probability distribution of Xn + 'f~giv~Xo, X1, - - - - Xn depend only on the value 

of Xn but not further on Xo, X1, - - - - Xn _ 1. That is for any set of values, h, i, - - -

j in the discrete state space, 

P(Xn + 1 = j I Xo = h, - - - - -, Xn = /) = P(Xn + 1 = j I Xn = I) = Pij . i, j =1 , 2, 3, 4 

The matrix P whose entries are the Pij's is called the transition probability 

matrix for the process. The above chain is a first order Markov chain: In this 

process, the probability of making transition to a future state does not depend 
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on the previous states but only depends on the present state. In other words, 

the probability of making a transition to a future state does not depend on the 

past history. 

The matrix P and the initial state transition probabilities completely specify 

the process. If the transition probabilities depend on time, then the Markov 

chain is non-homogeneous, otherwise, it is homogeneous. In this project we 

shall only consider the Markov chain that does not depend on time. Thus we 

have stationary transition probabilities. 

The Markov process discussed above has the property that state changes 

can only occur at the appropriate time instants. However, given the nature of 

the disease leprosy, transition may not actually occur at these time instants. 

We therefore consider a 'situati9"n' where the time between transition may be 
, -:"') ........ -:;:;. 

several of units of time and where the transition time can depend on the 

transition that is being made. This leads to a general form of Markov process 

called a semi-Markov process . (Howard, 1971). In section 4.2 we use the 

characteristics of a semi-Markov process to develop a model for the control of 

leprosy. 

4.10 THE DEVELOPMENT OF THE MODEL 

In this section we shall develop a semi-Markov model for leprosy. The 

assumptions of the model are ~dejn~ection 4.11 , ·the model is formulated in 

section 4.12. Interval transition probabilities are given in section 4.13 and 

effectiveness of treatment is considered in section 4.14. 

... 
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4.11 MODEL ASSUMPTIONS 

Leprosy is considered as a disease that runs in time. Some suitable 

states of the disease are specified and the description of the manner in which 

the patient moves from one state to another is given. The states of the disease 

are finite. It should be readily observed that there is no unique set of states and 

the progress of the people througn th§%tates can be described in a variety of 

ways. The choice of states should therefore be governed by the intended use 

of the model and the availability of data. 

The basic assumption in developing the model is that the transition from 

one state to a different state should not occur at time t = 0 (year 0) and that the 

basic unit of time is one year. 

A leprosy patient that dies during treatment is assumed to die of leprosy. 

Natural death is not considered. 

A patient that fails to recover from treatment after completing a session of 

treatment has developed a resistance to the drug and is consequently 

considered to develop a relapse from the state of treatment. 

4.12 FORMULATION OF THE MODEL 

We consider a leprosy patient. Let us assume that each year the leprosy 

patient is under treatment or has recovered from the disease or has relapsed or 

has died from the disease. We therefore have a four state process. 

State 1 - Under treatment 

"-
State 2 - Recovery 

State 3 - Relapse 
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--------------- - - ---------: 

State 4 - Death due to leprosy. 

These states are assumed to be mutually exclusive and exhaustive. The 

transition from one state to another is indicated in the transition diagram shown 

in figure 6. 

I--------------------------->~I 2 

Figure 6: Transition diagram for leprosy. 

We observe that states 1, 2 and 3 are transient states and state 4 is an 

absorbing state. In other words, all possible transitions of the process are made 

between states 1, 2 and 3 but once a transition is made to state 4 the process 

terminates. We would like a transition to occur at a time the duration of stay in a 

state is completed, even if the new state is the same as the old. Such a 

transition is called virtual transition, and are represented by loops in the 

transition diagram. 

From the above transition diagram we can record the transition probability 

matrix 'P for the process as shown below. 

I ~I ~2 ~3 ~4l 
P J 0 P22 P23 0 I 

I P31 P32 ~3 0 I 
L 0 0 0 P44 J 

We use the semi-Markov process technique to analyse the process with 

the above set of, states. The transitions can be readily identified from the 

transition diagram shown in figure 5 or from the transition probability matrix P. < • 
~ 
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To study this process, we have to specify the probabilistic nature of the 

transition. We shall think of this process as a process whose successive state 

occupancies are governed by the transition probabilities of a Markov chains, 

but whose stay in any state is described by a random variable that depends on 

the state to which the next transition is made. 
'"..., ~ :::::.;::. 

In precise terms, let Pij be the probability that the leprosy patient who is in 

state 'I' on his last transition will enter state 'j on his next transition, i, j =1 , 2, 3, 

4. The transition probabilities must satisfy the following 

Pq c. 0, i,j =1, 2, 3, 4. 

4 

and LPij = 1, i = 1, 2, 3, 4. 
1=1 

whenever the patient enters state 'I' he remains there for a time "Tij in state 

i before making a transition to state 'j. 7jl is called the 'holding time' in state i. 

The holding times are positive integer valued random variables each governed 

by a probability distributioQ function ~j ( ) called the holding time distribution 
'S..~ ......:....~.:::;. 

function for a transition from state i to state j. 

Thus P(7jj = m) = ~j (m). m = 1,2,3, ... 

i, j = 1, 2, 3, 4. 

We assume that the means Illj of all holding time distribution are finite and 

that all holding times are at least one year in length. That is, 

~dO) = ° 
To completely describe the s"emi-Markov process we must specify four 

holding time distribution functions in addition to the transition probabilities. For 

a fixed value of i "Tij is the same for each value of j, (i, j = 1, 2, 3, 4). 
, 

Figure 7 shows a po~on 01 § possible trajectory for the leprosy patient. 
---...>0' 
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Figure 7. A possible trajectory for the process 

Let Fij ( ) be the probability distribution of 7ij. 

·'-Fij (nf~ P(7ij ~ n) = !fij (m) 
m=¢ 

-
and Fi} ( ) be the complementary probability distribution of 7iJ. 

<Xl 

Fif (n) = 1 - Fld n) = P(7ij > n) = L !;/m) 
m= n+l 

Suppose the patient enters state i. Let Yi be the time he spent in state i 

before moving out of the state i. Then YJ is called the waiting time in' state i. 

We let Wi ( ) be the probability distribution function of YJ. Then 

4 

Wi (m) = P(Y1 = m) = L P;j!;j{m) 
j = l 

The probability distribution Wi ( ) and the complementary cumulative 

probability distribution ~ ( ) for the waiting times are given as follows 

n 

Wt (m) = P(YJ ~ n) = L yy; {m) 
m=l 

m=l j=l 

4 

= L~i;;j(n) 
j=l 

and 

<Xl 

wdn) =i.. P(YJ > n) = 1 - Wi (n) = L wj{m) 
m=n+l 

- ----;::.. 
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<r> 4 

= L LPy.fij (m) 
m=n+1 j=1 

4 _ 

= LP;j F ij (n) 4.9 
j=1 

4.13 INTERVAL TRANSITION PROBABILITIES 

We define t!>ij (n) to be the probability that the patient will be in state j in 

year n given that he entered state i in year zero. This is called the interval 

transition probability from state i to state j in the interval (0, n). Then 

_ 4 n 

¢ij (n) = Oij ~dn,L+ L ~k L hk (m )¢kJ (n - m) 
k =l m=l 

s: _ {li=J Vij - ·Oi:t: J 

i, j = 1, 2, 3, 4, 

W; (n) is as defined in (4.9). 

4.14 EFFECTIVENESS OF TREATMENT 

n = 1, , 3, .... 

When the leprosy patient undergoes treatment, it is expected that this 

treatment should have an effect on the disease. This effect should be noticed in 

the increase in probability of recovery, a decrease in the probabilities of death 

and having a relapse. An ap:proe!i9~ measure of this treatment effectiveness is 

obtained from the following expressions. 

E1J = (1 - k)P1J, j = 3, 4 

when k is a positive real number in the interval [0, 1). Then 

< • 
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4 

Ell = 1-2:Elj 

j=2 

and the transition matrix is P with the first row replaced by E1j. J = 1, 2, 3, 4. 

4.15 SEMI - MARKOV MODEL IN CONTINUOUS TIME 

In the last section we have considered the disease leprosy in discrete 

states and time. We should think of the same process in discrete state but in 

continuous time. 

The continuous time case has essentially the same properties ;;lS the 

discrete time in respect to the transition. probabilities of the Markov chains, the 

holding times and their probability distribution functions. 

Let f ij ( ) be the probability distribution of continuous random variable T ij 
. ..~> ----:--~-:. 

= 
m=o 

And F ij ( ) be the complementary cumulative probability distribution of T i,j' 

= 
m=n+l 

Suppose the patient enters state i. Let ~ be the time he spent in state i before 

moving out of the state i. Then Y; is called the waiting time in state i. 

we let Wi ( ) be the probability distribution function of 1';. 

Then W i (m) -~ . f_ ) 
'= -Fpi = m 

4 

"P.f. .(m) L... 1) 1) = = 
j=l 
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The probability distribution Wi () and the complementary probability 

distribution Wi ( ) for the waiting times are given as follows 

n 

Wi (n) = = fW i(m)dm 
m=1 

4 

= "LPijF;j (n) 
j = I 

and ~i (m) = p(Y; > n) 

00 

= f w(m)dm 
m=n+1 

4 _ 

= "LP; j.Fi j(n) 
j =1 

4.16 INTERVAL TRANSITION PROBABILITY 

The interval transition probabilt..~ is~ned thus: 

+ 
4 n 

L~k f h k(m) (jJkj (n - m )dm 
k = 1 1 

i=j 

i '# j i,j = 1,2,3,4 , n = 1,2,3, .. ...... _ .... 

, 
This is the interval transition probability from state i to state j in the interval 

(D,n]. 

< • 
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4.17 OPTIMAL MARKOV MUL TIDRUG DECISION PROCESSES FOR THE 

CONTROL OF CATARRH AND LEPROSY DISEASES 

FORMULATION OF THE DECISION MODEL 

So far, we have not taken into account the possible cost of control 

(treatment) of the diseases (catarrh and leprosy) considered in this project. 

However, we shall introduce the concept of Markov decision process as it may 

affect the patients or the medical personnel's in the choice of drug for 

administration. 

At any given point in time .and state of the process. The patient has an 

opportunity or a privilege to make a choice of the possible combination of 

drugs. 

The choice of drugs may however be dependent on: 

(1) Availability of the drugs 

(2) Resources available to the patient 

(3) The state or severity of the disease. 

For the sake of simplicity let us divide the drugs into two groups as follows: 

(1) Low priced drugs 

(2) high priced drugs 

From every day experience, it is known that low priced drugs are less 
~ -:') '-- -::::::;::; 

costly and are often administrated for longer duration of time. Whereas, the 

high priced drugs are usually more costly and are often administered for a 

shorter period of time. 

Suppose that the following alternatives exist for the three states: 

State 1: 

Alternative 1: Self medication/self care 

83 



Alternative 2: Go to see a doctor 

State 2: 

Alternative 1: Low priced drugs 

Alternative 2: high priced drugs 

State 3: 

Alternative 1: Continue without change of drugs 

Alternative 2: Change drugs 

Costs are usually associated with each of these alternatives. 

Our objective is to obtain the policy or alternative that minimizes the costs 

of the control of the diseases at any given state and time in the control process 

of the diseases. 

Thus instead of considering the cost of individual drug to be administered, 

we shall consider the cost of a combination of drugs to be administered at any 

given state and time of the diseases. 

4.18 ASSUMPTIONS 

Markov reward process requires that the Markov chain to be a periodic 

irreducible and positive recurrent. (ergodicity). We thus assumed that the three-

state Markov chain for catarrh diseases is ergodic. '] 
For the four-state model for the leprosy disease, records have shown that 

death due to leprosy is uncom:;non, although not im!)ossible. The usual terminal 
~- -- -..:.:> 

event is the deformity of fingers, toes etc or tuberculosis. 

On the basis of that, we assume th.at death due to leprosy is rare and could be 

neglected. Thus we have a three state model for leprosy. 

< • 
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4.19 MODEL IMPLEMENTATION 

Let the transition probabilities (Pij) and the corresponding reward (Rij) be 

given as follows: 

[
~1 ~2 

P = (P;) = ~1 ~2 

1;1 1;2 

~3] 
P23 i,j,= 1,2,3 

1;3 

and 

~2 ~3l Rz2 ~ i , j = 1,2,3 ' 

R 32 R 33 

Let 0 be the decision set as defined in the previous section so that in every 

state of the diseases we have two alternative decisions available to the patient. 

That is, Alternative 1; and Altern~~e 2;_1.hus in eve~ _state we have k=1,2E D. 
~.----,"", 

We shall nqw determine the best policies for every n using 

0v;(n) = min
kED 

f k ~Ak R,j+oV/n
-

1
)] 

j=l 

Let 0v.(O) = afor i=1,2,3. Then for n=1, we have 
I 

We shall now implement the second alternative for the three states. Thus, we 

get 

r 



2Q 2p 2 l) 2p 2 l) 2p 2R )= 11 ~'11+ 12 ~'12+ 13 13 = a 4 

The value of ai,i = 1,2,3,4,5:-0 wrl1 >-"determine which of the alternatives 

minimizes our cost for n=1 . Since we are concerned about minimizing the costs 

of drugs to be administered; the alternative that yields least value of 

ai,i = 1,2,3,4,5.6 constitutes the best policy for n=1 , that is, if the least value 

occurs between a i,i = 1,2,3. then alternative 1 constitutes the best policy thus 

Now let OV1(1) and OV2(1) be the minimum cost/reward corresponding to d1(1) and 

d2(1 ) respectively. 

For n = 2 we have 

OT/ (2) = nu'n lko. + ~ kp ov(J)J " J' 
y i 1,2 _I L..J 1 J J t 

And the iteration continues for n = 3,4,5 ... 

The successful use of these models developed here would require joint 

work by the medical personnel and applied mathematician. The problem of 

communication between these two groups of people is greatly reduced ~y not 

using advanced mathematics. 
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CHAPTER FIVE 

5.0 APPLICATION OF THE MODELS, RESULTS AND DISCUSSIONS 

5.1 APPLICATION OF MARKOV CHAIN MODELS . 

. , ..... --
The following transition caunts were recorded for forty-seven individuals 

during the wet season and dry season respectively. Since the Markov chain 

requires the process to change at a given unit of time interval. Our unit of time 

is one day. 

TABLE 4. Transition count for wet season 

ACTUAL DAY 

" STATE 1 STATE 2 STATE 3 

>-« 
0 

STATE 1 19 1 2 22 

C) 
z STATE 2 2 9 4 15 
0 
w 
u STATE 3 _:-- 1 2 7 10 w 
0::: "I' ---:-;:::. 
a. 

TOTAL 47 

TABLE 5. Transition count for dry season 

ACTUAL DAY 

STATE 1 STATE 2 STATE 3 

~ STATE 1 12 
0 

2 3 17 

<.9 
STATE 2 6 6 7 19 z 

0 
w 

STATE 3 1 2 8 11 u 
w 
0::: 
a. TOTAL 47 

- ~ ~ .,. 



[19 1 

n M 1 = ~ 9 0.600 

2 0.200 

[12 2 n [0706 0.118 0176] 
M - 6 6 P2 = 0.316 0.316 0.368 2-

1 2 0.091 0.182 0.727 

Therefore 

31 
3 5l 0.795 0.077 0.128 

M= 8 1~ 11 , p= 0235 0.441 0.324 

2 4 ~-, 15]= 0.095 0.190 0.714 

"I _ 3 2 [p ~ (k)]fij(k) 
/\,- 7t 7t "" "" 

""lkl IJ IJ I,J= = 

-(P {p (1))fll(l) (P fP (1))f12(I) (P (p (l))f13(I) (P IP (2))fll (2) (P Ip (2))f12(2) (P IP (2))f13(2) 

- 11 11 12 12 13 13 11 11 12/1 12 13 13 

(p VD (1))f31 (1) (P (P (l))f32(I) (P Ip (l))f33(1) (P IP (2))f31(2) (P /p (2))f32(2) (P JP (2))f3/
2
) 

31P"31 32P32 33~ 33 31 31 32 32 33 33 

= (0.798718110.863636)19 (0.7692308/0.4545455)1 (0.12820513/ 

0.090909090909)2 (0.7948717810.70588235)12 (0.769230810.11767706)2 

(0.12820513/0.17647059)3 (0.235241210.133333)2 (0.44117647/0.6)9 
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(0.32352941) 0.2666667f (0.4411764) 0.31578949)4 (0 .3235529411 

0.36842106f (0.095238095/0.1)1 (0.19047619} 0.2)2 (0.714285714/0.7)7 

(0.095238095/0.9090909)1 (0.1904761910.18181818)2 (0.7142857141 

0.72727273)8 

A. = 0.10205577 

Here m = 3, T = 2 

Therefore 

-2 In A. = 4.564867465 = X2
6 

the critical value of X2
6 at a = 0.05 is 12.59 

Therefore the null hypothesis of constant transition probability matrix cannot be 

rejected. 

The test statistic as shown above indicates that the two seasons from 

which the data were obtained are stationary. That is to say that the occurrence 

of catarrh disease in the two seasons is fairly uniform. 

It is therefore very important to mention at this point that catarrh disease 

is Not Seasonal. We shall now proceed to obtain the result for the model using 

this preliminary result. 

The model can be represented by a single transition count matrix. 

Thus the maximum likelihood estimate of the transition probability matrix is 

given thus: 
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[ 0.795 0.077 0128] 
P = 0.235 0.441 0.324 corrected to3dp 

0.095 0.190 0.714 

calculating pn, we have 

[0575 0.145 0.280J 
p3 = 0.359 0.223 0.419 

0.259 0.226 0.515 

'" --- -=:.::, 

[0455 0.179 0.366J -' 
p6 = 0.395 0.196 0.409 

0.363 0.204 0.432 

[ 0416 0.190 0.394] 
p lO = 0.405 0.193 0.402 

0.399 0.195 0.407 

[ 0.409 0.192 0.399] 
p13 = 0.406 0.193 0.401 

0.404 0.193 0.401 

[ 0.408 0.192 
0.4°°1 p16 = 0.407 0.193 0.401 

0.406 0.193 0.401}',.."" .~ --::;:, 

[0.41 0.19 040J 
= 0.41 0.19 0.40 corrected to 2do 5.1 

0.41 0.19 0.40 

and for n > 16, we find that pn gets closer and closer to exactly (5.1) that is, as 

n increases. 
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[041 0.19 040J 
(po pO pO) 0.41 0.19 0.40 = 1 2 3 0 .41 0.19 0.40 

= (0.41 0.19 0.40) 

Again as n increase this approximation becomes more and more accurate. 

That is 

pn ~ (0.41 0.190.40) 

The limit state probability vector is given by 

TC = np = (0.41 0.19 0.40) 

This shows that in the long run 41 % oltl:1p. individual wi! ! have no catarrh. 19% 

will have mild catarrh and 40% will have severe catarrh. 

5.2 OPTIMAL EFFECT OF PREVENTIVE TREATMENT 

Suppose treatment is given to prevent an individual from developing mild 

or severe catarrh. That is, the probabilities of making transitions from state 1 to 

state 2 or state 3 is reduced. This reduction of course depends on the 

effectiveness of the preventive treatment. The results are summarized in the 

table below when the treatment is assumed to be 50%, 90% and 99% effective 

respectively. 

Table 6: A summary result: .. i-t~.::effective of preventive treatment. 

K P11 P12 P13 

o 0.79 0.08 0.13 

50 0.90 0.04 0.06 

90 0.98 0.01 0.01 

99 1.00 0.00 0.00 

" ~ .,.. - , !. 
I 
I 
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It can see from the above table that the probabilities oft no catarrh' 

increased by 12%, 19%, and 21 % respectively when the treatment is assumed 

." . 
to be 50%, 90% and 99% effective respectively. 

Conversely, the probabilities of an individual to develop a mild catarrh 

uced by about 4%, 7% and 8% respectively when the treatment is assumed to 

50%,90% and 99% effective respectively. 

Similarly, the probability of an individual to develop a severe catarrh has 

uced to 7%, 12% and 13% respectively when the treatment is assumed to .be 

'0 , 90% and 99% effective respectively. 

The fore-going analysis shows that it is possible to maximize the probability of 

individual not to develop the symptoms of catarrh by 99 percent and at the 

1e time minimize the probability of an individual to develop mild or severe 
.~ ~~;:> 

arrh by at most 99 percent. It is clear from the above table that the probability of 

having catarrh has been maximized to unity. 

Conversely, the probability of developing mild or severe catarrh has been 

limized to zero. However, these optimal results are dependent on the 

~ctiveness of th.e preventive treatment. Hence, collaboration with medical 

ctors, Pharmacologists, Pharmacists and Nurses is crucial (medical personnel) and 

st be carried along for effective and optimal prevention of catarrh. 

THE NON· HOMOGENEOUS CASE 

It is possible that the assumption of constant transition probabilities may not 

appropriate. In this case, we consider the non- stationary Markov chain. 

.-
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Suppose the null hypothesis is not accepted at the significance level 

hown in the previous illustration. The maximum likelihood estimate of the 

ansition probability P,: and P2 are as follow: 

[

0.864 

PI = 0.133 

0.100 

0.45 0.091J 

Q.~o~ ;--0} 67 
0.200 0.700 

[

0.706 

P2 = 0.316 

0.091 

0.118 0.176J 
0.316 0.368 

0.182 0.727 

[

0.632 0.133 0.235J 
P = p}P2 = 0.308 0.254 0.439 

0.197 0.202 0.600 

[

0.487 0.165 

p 2 = 0.359 0.194 

0.306 0.199 

0.348J 
0.447 

0.496 

[

0.403 .~~.1~ 0::o:>0.416J 
p 4 = 0.381 0.186 0.416 

Q372 Q187 Q441 

[

0.386 

p8 = 0.385 

0.385 

0.185 

0.185 

0.185 

[

0.386 0.185 

p lO = 0.385 0.185 

0.386 0.185 

0.429J 
0.430 

0.431 

0.43 OJ 
0.430 

0.430 

[

0.39 0.19 0.43] 
= 0.39 0.19 0.43 corrected to2 dp 

0.39 0.19 0.43 

7to = 1tap = (0.39 0.19 0.43) 

7t1= 1taP1 =(0.40 0.21 0.39) 

7t2 =1t1P2 = (0.39 0.19 0.43) 
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,If , 

observe that 'lt~ = 'lt2 numerically as earlier stated. 

It is understood that the severity of catarrh increases from about 39% during 

wet season to about 43% during the dry season. 

Also the probability of not having catarrh reduced from 40% in the wet 

season to 39% in the dry season. This result confirms the seemly belief that 

the individual develops catarrh more often in the dry season than in the wet 

season or vice versa. We observe for the sake of emphasis that this seemly 
"» ~- ~~ ::.. 

belief has been proved wrong in our earlier result. The algorithm and the 

computer program in Fortran is presented in the appendix A. 

5.4 APPLICATION OF THE CONTINUOUS TIME MARKOV MODEL 

The problem of continuous time Markov process is to find the probability 

( 

that the individual will be in state i at time t given that he was in state j at time t o 

The differential equation in matr·ix form is dP(t) = P(t)A where P(t) is a row 
dt 

vector of state probabilities at time t. To obtain the solution to the above 

differential equation, the initial .condition PI(O) , i = 1, 2, 3 must be specified. 

The development of the equations that determine the PI](t) functions for 

this process can be simplified if the following assumptions are made: 

(1) The process satisfies the Markov property 

(2) The process is stationary 

(3) The probability of a transition from one state to a different state in a 

short time interval is proportional to L1t. 

(4) The probability of two or more changes of state in a short interval L1t 

is zero. 
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We shall consider the transition count matrix of the stationary Markov chain 

discussed in the previous seB.t!or\ . ~ 

[

31 3 8 J 
M = 8 15 11 

2 4 15 

Normalizing this matrix using ajj = -Laij , we have 

Thus, the matrix A can be interpreted as the reciprocals of the 'mean times' of 

the negative exponentially distributed random variable having the cumulative 

distribution 1-e -At and meaQ,",va~u~ .J IA.. 

The above matrix indicates that if the individual is in state I, the time he 

takes to make a transition to state 3 is exponentially distributed with mean 5 

days. 

1 
That is to say that if the individual is in state 1, he has a probability -!:It 

3 

of making transition to state 2 and a probability of .!. M making transition to 
5 

state 3 in the time interval (t, t + i1t). 

Similarly, if the catarrh patient is in the state 2 he has a probability of ~ 

lit and probability of 1/11 i1t of making transition to state 1 and state 3 

respectively in the interval (t, t + i1t) 

And if the patient is in the state 3, he has probability of % i1t and a 

probability of ~ i1t of making a transition to state 1 and state 2 respectively in a 

short interval (t, t + dt). 
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Table 7: The values of P12(t) for t = 0, 1 ..... 12 

T P12(t) 

0 0.00000000 

1 0.05864984 

2 0.14598341 

3 0.213049294 

4 0.25630439 

5 '.,. .... ~ ::::..:::; 0.28206333 

6 0.29674701 

7 0.30489939 

8 0.30934997 

9 0.31175269 

10 0.31304009 

11 0.313726298 

12 0.31409075 
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Table 8: The values of P13(t) for t = 0, 1 .. ... 12 

t P13(t) 

0 0.00000000 

1 0.05235628 

2 0.09323153 

3 0.11975316 
." :"') c..- . ~ 

4 0.13559574 

5 0.14464284 

6 0.14967139 

7 0.1524186 

8 0.15390246 

9 0.15469777 

10 0.15512179 

11 0.15534703 

12 0.15546636 

." 

These results is as illustrated in figures 8 and 9. 
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Fig. 8: Graph of P12(t) for t = 0,1 ..... 12 
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5.5 COMMENTS 

P12(t) is the conditional probabil ity that an individual will develop mild 

catarrh at time t given that the patient had no symptoms of catarrh at time zero. 

P13(t) is the conditional probability that an individual will have a severe 

catarrh at time t given that the patient has no symptoms of catarrh at time zero. 

We have obtained the values for these functions for t = 0, 1, .... .. 12 that 

is, for 12 days since our basic unit of time is a day. 

We observe that the limit of each function as t goes to infinity or fairly 

large is immediately apparent, both in the functions themselves' and in the 

graphs of the functions. The convergence is smooth and monotonic, as 

opposed to discontinuous, o5~j}ating or both. 

P11 (t) is the conditional probability that an individual will not have catarrh 

at time t given that the individual has not symptom of catarrh at time O. This is 

the complement of P12(t) and P13(t). 

When this result is contrasted with the discrete time case, we see that 

the discrete time case gives a higher accuracy for the optimal effectiveness of 

preventive treatment which is unity for not having catarrh and zero for mild and 

severe catarrh respectively. 

5.6 THE CONTRAST OF DISCRETE TIME AND CONTINUOUS TIME 

" ~-
MARKOV CHAINS-FOR CATARRH DISEASE 

P12 for the discrete time Markov chain for the first day is 0.077. 

P12(t) for the continuous time Markov chain for the first day is 0.059 

P13 for the discrete time Markov chain for the first day is 0.128 and 

P13(t) for the continuous time Markov chain for the first day is 0.052. 

101 



LPg' = 1 i,j = 1,2,3 
j 

3 

: . LP~i = PII + PI2 + P13 
j=l 

= PII + 0.077 + 0.128 

= PII + 0.205 

:. PII = 1- 0.205 

= 0.795 

Similarly for the continuous time case we have 

:: F fX(t) -:::: Any. of its possible states/x(O)=i) = 1 

3 

:. I P;j (x(/) = Jlx(O) = D 
j=1 

= P11(1) + P12(1) + P 13(1) 

= P1d1) + 0.059 + 0.052 

= P11(1) + 0.111 

.. P11(1) = 1-0.111 

= 0.889 

For t=1 

From the above analysis, we see that the probability of not having 

catarrh for the discrete time is 0.795 and for the continuous time is 0.889. 
..... ~ 

We therefore conclude that the co-ntinuous time case · provides a higher 

accuracy than the discrete case. The discrete time converge to 0.41,0.19 and 

0.40 respectively for states 1, 2 and 3 at the sixteenth day or step, whereas the 

102 



continuous time stabilised to 0.54, 0.31 and 0.15 respectively for states 1, 2 

and 3 at t = 10. 

5.7 AN ILLUSTRATION OF THE SEMI-MARKOV MODEL 

Suppose the following data were collected on a single leprosy patient for 

24 years as shown below in taoie 9. ' .. 

Table 9: Transition count for leprosy 

Actual year 

State 1 State 2 State 3 State 4 Total 

State 1 5 3 2 1 11 

State 2 0 3 2 0 5 

Preceding State 3 4 2 1 0 7 

Year State 4 0 0 0 1 1 

24 

The transition probabilities are then estimated from this data using relative 

frequencies. Thus 

10.4 OJ 0.2 O.l l 

-' 0 
0.6 0.4 o I 

I P- 10.6 OJ 0.1 o I 
l 0 0 0 1 J 

5.8 EXPONENTIAL HOLDING TIMES IN STATES (DISCRETE) 

Suppose that the holding times in each state before making a transition 

to another state follows the exponential distribution with parameter A... This 

implies that the mean holding time in each state is 1/A (in years). The mean 

" ---~ holding time in each state is shown in table 10. 

103 



Table 10: Exponential holding time in states 

Mean holding time 

State 1 State 2 State 3 

3 2 2 

The results for the model using these mean holding times are shown in 

.ables 11 - 13 and in figures 10 - 12. Using: 

4 n 

<D 12(n)= L Plk L !;k(m)rPk2 (n - m) 
k=1 m=1 

n n n 

= P II L/II (m'j/J1 2(n - m) + P12 L!;2 (m)rP22 (n - m) + P13 L !;3(m)rP32 (n - m) 
ml m=1 m=1 

n 

= P12 L 0.33e-033 m
. 

m=1 

Similarly 

n 

rPJ3 (n) = PJ3 LO.33e-O.33m d 
m=1 an 

rPI4 (n) = PI4LO.33e-
033 m 

m=1 

The algorithm ,the computer·program in Qbasic, and the program output 

are presented in the appendix C. 
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able 11: Interval transition probabilities from state 1 to state 2 

¢'2 

fI K=O K = 0.50 K = 0.99 

1 0.0711734593 0.1067601815 0.1416351795 

2 0.1223417446 0.1835126132 0.2434600741 

3 0.1591278315 0.2386917472 0.3166643977 

4 0.1855742335 0.2783613503 0.3692927361 

5 0.2045871764 0.3068807721 0.4071284831 

6 0.2182560414 0.3273840547 0.4343295097 

7 0.2280829102 0.34/1-243429 0.4538449890 

8 0.2351476699 0.3527214825 0.4649438472 

9 0.2402267000 0.3603400290 0.4780511260 

10 0.2438781261 0.3658171892 0.4853174686 

11 0.2465032190 0.3697548509 0.4905414283 

12 0.2483904809 0.3725857139 0.4942970574 

Table 11 presents the interval transition probability from state 1 to state 2. 

b (n) for n = 1 2 3 - - - 12. A. (n) is the probability that a leprosy patient will 
12 ' , , Y' 12 

)e in state of recovery in year n given that he was under treatment in year zero. 

n other words, ¢'2 (n) is the proba~~!ity ~~-fecovery fro~ treatment at time n 

iven that the patient started treatment at time zero. 
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Table 12: Interval transition probabilities from state 1 to state 3 

rPI3 (n) 
"- ~::- -:... 

f( K=O K= 0.50 K= 0.99 

1 0.0474489704 0.0237244852 0.0004744892 

2 0.0815611631 0.0407805815 0.0008156108 

3 0.1060852185 0.0530426092 0.0010608512 

4 0.1237161532 0.0618580766 0.0012371604 

5 0.1363914460 0.0681957230 0.0013639132 

6 0.1455040276 0.0727520138 0.0014550389 

7 0.1520552635 0.0760276318 0.0015205512 

8 0.1567651033 0.0783825517 0.0015676495 

9 0.1601511240 0.0800755620 0.0016015097 
"- , ~~ 

10 0.1625854224 0.0812927112 0.0016258527 

11 0.1643354744 0.0821677372 0.0016433533 

12 0.1655936539 0.0827968270 0.0016559350 

Table 12 shows the interval transition probabilities rP13 (n) for n = 1,2, 3, --

- 12. rP I3 (n) is the probability that a leprosy patient will be a relapse in year n 

given that the patient was under treatment in year zero. It also represents the 

probability that a leprosy patient will develop a resistance to the treatment. 
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Table 13: Interval transition probabilities from state 1 to state 4. 

rPl4 (n) 

11 K=O K=·0.50 K = 0.99 

1 0.0237244852 0.0118622426 0.0002372446 

2 0.0407805815 0.0203902908 0.0004078054 

3 0.0530426092 0.0265213045 0.0005304256 
" 

4 0.0618580766 0.0309290383 0.0006185802 

5 0.0681957230 0.0340978615 0.0006819566 

6 0.0727520138 0.0363760069 0.0007275195 

7 0.0760276318 0.0380138159 0.0007602756 

8 0.0783825517 0.0391912758 0.0007838248 

~. 9 0.0800755620 0.0400377810 0.0008007549 

10 0.0812927112 0.0406463556 0.0008129263 
I) 

11 0.0821677372 0.041 0838686 0.0008216766 

12 0.0827968270 0.0413984135 0.0008279675 

II 

'- ~- i 
i 

Table 13 presents the interval transition probabilities rPI4 (n) n = 1, 2, - - - -, 12. 

¢14 (n) is the probability that a leprosy patient will die in year n given that the 

patient was under treatment in year zero. 

,I 
The above results are illustrated in figures 10- 12. 
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5.9 WEIBULL HOLDING TIMES IN STATES (DISCRETE) 

The results for the model using a = 10.5 and ~ = 1.6 (see table 3 in page 

51) are presented in tables 15-17 and figures 13-15 using: 

4 n 

tAj(n) = L Pli L°.152380952(m Il O.5)06 exp- (mIlO .5/ 6 
j=2 m=l 

Table 14: The interval transition probabilities from state 1 to 2. 

rP I2 

n K=O "- K= Q50 K = 0.99 

1 0.0095754713 0.0143632062 0.0190551877 

2 0.0220378209 0.0330567323 0.0438552648 

3 0.0356860533 0.0535290837 0.0710152462 

4 0.0496131815 0.0744197667 0.0987302288 

5 0.0632850900 0.0949276388 0.1259373277 

6 0.0763817355 0.1145725995 0.1519996524 

7 0.0887717359 0.1330755502 0.1765469015 

8 0.1001924053 0.1502885967 0.1993828863 

9 0.1107673943 0.1661510915 0.2204271257 

10 0.1204402894 O .. j 800004415 0.2396761775 

11 0.1292348504 0.1938522607 0.2571773529 

12 0.1371911019 0.2057866454 0.2730102837 

HI 
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Table 15: The interval transition probabilities from state 1 to 3 ti 
.... ' . . l ~ rPl3 (n) 

n K=O K= 0.50 K = 0.99 
to;; 

1 0.0063836472 0.0031918236 0.0000638364 

2 0.0146918809 0.0073459405 0.0001469187 

3 0.0237907022 0.0118953511 0.0002379068 

4 0.0330554519 0.0165377259 0.0003307542 

5 0.0421900600 0.0210950300 0.0004219002 , 

6 0.0509211533 0.0254605766 0.0005092110 
I 

7 0.0591446869 0.0295723435 0.0005914463 I ~ I 

8 0.0667949319 0.0333974659 0.0006679487 It 

"- ~-~ 
! ~ 

~ 9 0.0738449320 0.0369224660 0.0007384486 
, ; 

i 
10 0.0802935287 0.0401467644 0.0008029345 ~ 

r-
. t; 

11 0.0861565620 0.0430782810 0.0008615648 Ii i 
i [1 

12 0.0914607272 0.0457303636 0.0009146064 ~ 
~ 
I~ 

, . 
,,-'I I 

!'l . 

/! 

.... -~ 
1 I.' 

, [1 

: 
1 

J . 

f~:.: ':' 

I~ 
I.~ ; " 

- 112 
I ri 
~; 

I II 



Table 16: The interval transition probabilities from state 1 to 4 

¢14 (n) 

n K=O K = 0.50 K = 0.99 

1 0.0031918236 Q.,OOc1 ~959118 0.0000319182 

2 0.0073459405 0.0036729702 0.0000734593 

3 0.0118953511 0.0059476756 0.0001189534 ~, 

4 0.0165377259 0.0082688630 0.0001653771 

5 0.0213950300 0.0105475150 0.0002109501 

6 0.0254605766 0.0127302883 0.0002546055 

7 0.0295723435 0.0147861717 0.0002957231 

8 0.0333974659 0.0166987330 0.0003339743 

9 0.0369224660 0.0184612330 0.0003692243 

10 0.0401467644 0.0200733822 0.0004014672 

11 0.0430782810 0:0210'591405 0.0004307824 

12 0.0457303636 0.0228651818 0.0004573032 

These results are illustrated in figures 13 - 15. 
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.......... ---------------
5.10 COMMENTS 

The values of the interval transition probabilities <pij(n)1 j =2,3 and 4, n=O, 

1,2 .... Presented in the previous tables shows a low degree of variability in the 

sensitivity analysis (i .e. the optimal modeling) for both the exponential and 

Weibull distributions when the time is . measured discretely. The behaviour of 

the probabilities that are evident in the graphs is quite interesting especially in 

the case of treatment effectiveness. 

THE EXPONENTIAL DISTRIBUTION 

For the exponential distribution,<P12(n) increased by about 3% and 7% for 

the first year. It also increased by about 12% and 24% for the twelfth year 

when the treatment is about 50% and 99% effective respectively 

When the mean holding time in the states is negative exponentially 

distributed, <P13(n) for the first year decreased accordingly by 2% and 4%. A 

corresponding decrease of about .~.ro··~an~_ 16% are indicated respectively for 

the twelfth year period when the treatment is assumed to be 50% and 99% 

effective 

. <P14(n) for the exponential decreased by about 1 % and 2% for the first 

year. It further decreased by about 4% and 8%for the twelfth year period when 

the treatment is assumed to be 50% and 99% effective. 

THE WEIBULL DISTRIBUTION 

When the holding time in the state takes Weibull distribution there is little 

variation (increase) of about 0.4% and 0.9% for the first year for the interval 

transition probabilities<p12(n) when th~ trGatrrlent is assumed to be 50% and 99% 
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effective respectively. However, an increase of about 6% and 13% is obtained 

for the twelfth year when the treatment is assumed to be 50% and 99% 

effective respectively. 

~13(n) was minimized by about 0.3% and 0.6% when the treatment is 

assumed to be 50% and 99% effective respectively for the first year. For the 

twelfth year period a minimum of about 5% and 9% is obtained when the 

treatment is assumed to be 50% and 99% effective. 

¢14(n) for the first year"was mi!limized by abuut 0.2% and 0.3% 

respectively when the treatment is assumed to be 50% and 99% effective. 

This is further minimized by about 2% and 5% respectively for the twelfth year 

per!od when the treatment is assumed to be 50% and 99% effective. 

5.11 EXPONENTIAL HOLDING TIMES IN STATES (CONTINUOUS TIME) 

Here we assume that the holding time in the state follows the exponential 

distribution shown in previous section; 

The interval transition probabilities obtained for the continuous random 

variables are presented in Tables 18 - 20. Using: 

4 II 

m (n)=" I I" ( ) m ""---l n _ .... ·\r.:'-m '+'12 L..,.Plk 11k m '+' k:C:," . .. ~I 
k =1 0 

II II II 

= PII I/;I (m}P1 2(n - m)dm + PI2I /;2 (m)¢22 (n - m)dm + PI3I /;J(m)¢J2 (I1- m)dm 
o 0 0 

II 

+ PI4 f.h4 (m)¢42 (n - m)dm 
o 
II II 

= PI2f .h2(m)¢22 (O)dm = PI2f .h2(m)dm 
o 0 

n 
- fO 33 -O.33

m d = -P e -0.33ml" - PI2 . e m 12 0 

Y 

r -0.33 11 0] _ [ 033" + 1] = - P12 le + e - PI2 - e 
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Table 17: Interval transition probabi!!~y- from state 'i to state 2 

¢I}n) 

tV K=O K = 0.50 K = 0.99 

1 0.0843228847 0.1264843345 0.1678025424 

2 0.1449446082 0.2174169123 0.2884397507 

3 0.1885270029 0.2827905118 0.3751687407 

4 0.2198594362 0.3297891319 0.4375202656 

5 0.2423850298 0.3635775447 0.4823462069 

6 0.2585792542 0.3878688812 0.5145726800 

7 0.2702216506 0.4053324759 0.5377410650 

8 0.2785916328 
"-

O.4f78874493 0.5543973446 

9 0.2846090198 0.4269135296 0.5663719177 

10 0.2889350653 0.4334025979 0.5749807954 

11 0.2920451462 0.4380677342 0.5811698437 

12 0.2942810655 0.4414216280 0.5856193304 

Table 17 presents the interval transition probability from state 1 to state 2. 

¢12 (n) for n = 1, 2, 3, - - - 12. ¢12 (n) is the probability that a leprosy patient will 

be in state of recovery in year n given that he was under treatment in year zero. 

In other words , ¢1 2 (n) is the probability of recovery from treatment at time n 

given that the patient started treatment at time zero. 
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Table 18: Interval transition probabilities from state 1 to state 3 

¢!3 (n) 

: ~-::.--.-

I'f K=O K = 0.50 K= 0.99 

1 0.0562152565 0.0281076282 0.0005621520 

2 0.0966297314 0.0483148657 0.0009662964 

3 0.1256846637 0.0628423318 0.0012568455 

4 0.1465729475 0.0732864738 0.0014657282 

5 0.1 615900248 0.0807950124 0.0016158987. 

6 0.1723861545 0.08(?1930773 0.0017238599 

7 0.1801477522 0.0900738761 0.0018014759 

8 0.1857277602 0.0928638801 0.0018572757 

9 0.1897393316 . 0.0948696658 0.0018973915 
'- ~.-

10 0.1926233619 0.0963116810 0.0019262319 

11 0.1946967691 0.0973483846 0.0019469658 

12 0.1961873770 0.0980936885 0.0019618720 

Table 18 shows the interval transition probabilities ¢13 (n) for n = 1, 2, 3, - -

- 12. ¢!3 (n) is the probability that a leprosy patient will be a relapse in year n 

given that the patient was under treatment in year zero. It also represents the 

probability that a leprosy patient will develop a resistance to the drug. 
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Table 19: Interval transition probabilities from state 1 to state 4. 

rP l4 (n) 

n K=O K = 0.50 K = 0.99 

" 
1 0.0281076282 0.0140538141 0.0002810760 

2 0.0483148657 0.0241574328 0.0004831482 

3 0.0628423318 0.0314211659 0.0006284228 

4 0.0732864738 0.0366432369 0.0007328641 

5 0.0807950124 0.0403975062 0.0008079493 

6 0.0861930773 0.0430965386 0.0008619300 . 
I 

7 0.0900738761 0.0450369380 0.0009007379 

8 0.0928638801 0.0464319400 0.0009286379 

9 0.0948696658 0.0474348329 0.0009486958 

10 0.096311681 0 . 0.0481558405 0.0009631159 
" 

11 0.0973483846 0.0486741923 0.0009734829 

12 0.0980936885 0.0490468442 0.0009809360 

Table 19 presents the interval transition probabilities rPl4 (n) n = 1, 2, - - --

, 12. rP l4 (n) is the probability that a leprosy patient will die in year n given that 

the patient was under treatment in year zero. 

The above results are illustrated in figures 16 - 18. 
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5.12 WEIBULL HOLDING TIMES IN STATES 

Here we assume that the holding time in the state follows the Weibull 

distribution with parameters a and /3. Percentile points are used to estimate the 

parameters of the distribution as in discrete case. 

The interval transition probabilities are presented in Tables 20 - 22 and figures 

19-21 . Using: 

¢1/n) = P1j(l - exp- (nIlO .5)L6 

j = 2,3,4. 

Table 20: The interval transition probabilities from state 1 to 2. 

¢rfl) 
12 

If K=O K = 0.50 K = 0.~9 

1 0.0424016714 . 0.0636025071 0.0843793303 

2 0.0788103342 0.1182154939 0.1568325609 

3 0.1100730374 0.1651095450 0.2190453410 

4 0.1369170994 0.2053756565 0.2724650204 
"-

5 0.1599670649 0.2399505824 0.3183344603 

6 0.1797591746 0.2696387470 0.3577207625 

7 0.1967538744 0.2951308191 0.3915402293 

8 0.2113465667 0.3170198500 0.4205796719 

9 0.2238767594 0.3358151317 0.4455147386 

10 0.2346359193 0.3519538641 0.4669254720 

11 0.2438744158 0.3658116162 0.4853100777 

12 0.2518071532 0.3777107298 0.5010962486 
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Table 21: The interval transition probabilities from state 1 to 3 

¢13 (n) 

't1 K=O K = 0.50 K= 0.99 

1 0.0282677803 0.0141338902 0.0002826775 

2 0.0525402203 0.0262701102 0.0005254017 

3 0.0733820200 0.0366910100 0.0007338195 

4 0.0912780687 " 8-.0456390344 0.0009127798 

5 0.1066447049 0.0533223525 0.0010664461 

6 0.1198394448 0.0599197224 0.0011983933 

7 0.1311692446 0.0655846223 0.0013116912 

8 0.1408977062 0.0704488531 0.0014089757 

9 0.1492511630 0.0746255815 0.0014925102 

10 0.1564239413 0.0782119706 0.0015642379 

11 0.1625829339 0.0812914670 0.0016258279 

12 0.1678714305 0.0839357153 0.0016787127 
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Table 22: The interval transition probabilities from state 1 to 4 

¢14 (n) 

n K=O K = 0.50 K = 0.99 

1 0.0141338902 0.0070669451 0.00014133eS 

2 0.0262701102 0.0131350551 0.0002627008 

3 0.0366910100 0.0183455050 0.0003669097 

4 0.0456390344 0.0228195172 0.0004563899 

5 0.0533223525 0.0266611762 0.0005332230 
'. 

6 0.0599197224 0.0299598612 0.0005991966 

7 0.0655846223 0.0327923112 0.0006558456 

8 0.0704488531 0.0352244265 0.0007044878 

9 0.0746255815 0.0373127908 0.0007462551 

10 0.0782119706 0.0391059853 0.0007821189 

11 0.0812914670 0.0406457335 0.00081291 39 

12 0.0839357153 0.0419678576 0.0008393563 

These results are illustrated in figures 19 - 21 . 
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Figure 19: The Graph of interval transition probabilities from state 1 to 2 and the effectiveness of treatment 

for Weibull distribution in Continuous Time. 
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Figure 20: The Graph of interval transition probabilities from state 1 to 3 and the effectiveness of treatment 

for Weibull distribution in Continuous Time. 
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5.13 COMMENTS 

In the last section we discussed the interval transition probabilities for 

the exponential and the Wei bull distributions when the time is measured 

discretely. We shall now examine the interval transition probabilities for the 

same probability distributions but the time is considered on a continuous scale. 

EXPONENTIAL DISTRIBUTION 

<P12(n) increased by 'ti tC'-it 4% and 8% for the first year when the 

treatment is assumed to be 50% and 99% effective respectively. An increase 

of about 14% and 29% is obtained for the12 year period when the treatment is 

assumed to be 50% and 99% effective respectively. 

<P13(n) on the other hand witnessed a decrease of about 3% and 5% for 

the first year, about 10% and 19% for the 1 ih year when the tre.atment is 

assumed to be 50% and 99% effective respectively. 

Like the <P13(n), the <P14(n) is minimized by about 1 % and 3% for the first 

year and about 6% and 10% for the 1 ih year when the treatment is assumed to 

be 50% and 99% effective respectively. 

WEIBULL DISTRIBUTION 

<P12(n) was maximized by about 2% and4% for the first year, about 14% 

and 26% for the 1 ih year when the treatment is assumed to be 50% and 99% 

effective respectively. 

<P13(n) was reduced by about 1 % and 3% for the first year, about 8% and 

17% respectively for the 1 ih year, when the treatment is assumed to be 50% 

and 99% effective. 
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However, a reduction of 3% and 5% for the first year, about 10% and 

19% is obtained from the negative exponential distribution. <P13(n) for the Weibull 

and continuous time case witnessed a decline of about 1 % and 3% for the first 

" J 

year, and about 8% and 11% respectively for the twelfth year when the 

treatment is assumed to be 50% and 99% effective respectively. 

The exponential distribution for the <P14(n) for the discrete time case 

reduced by about 1 % and 2% for the first year, about 4% and 8% for the twelfth 

year. The Weibull distribution also has a reduction of about 0.2% and 0.3% for 

the first year, about 2% and 5% for the twelfth year at 50% 'and 99% 

respectively. 

For the continuous time case, <P14(n) is reduced about 1 % and 3% for the 

first year and about 6% and 10% for the twelfth year, when the treatment is 

assumed to be 50% and 99% effective respectively for the exponential 

distribution. 

<P14(n) for the Weibull is minimized by about 0.7 and1 % for the first year, 

about 5% and 9% for the twelfth year respectively when the treatment is 

assumed to be 50% and 99% effective. 

Thus, we conclude that <P1t), j=2,3 and 4 have consistent predictive 

power even at the zero level (k=O). This could be explained in terms of low 

degree of variability for the 50% and 99% treatment effectiveness respectively. 

These results are summarized in the tables 23.,. 24and 2:.fbelow. 

133 



II 

A summary of the Results of the comparison of the Discrete and 

Continuous Time for the Exponential and the Weibull Distributions: from state 1 

to state 2. 

<1>12 (n) 

Exponential 
I 

Weibull 
"- :. 

Time 50% 99% Time 50% 99% 

151 yr 3 7 1st yr 0.4 0.9 

Discrete 12'h yr 12 24 12'h yr 6 13 

151 yr 4 8 1Sf yr 2 4 

Continuous 12'h yr 14 29 12'h yr 14 26 

Table 24 

A summary of the Results of the comparison of the Discrete and Continuous 

Time for the Exponential and the Weibull Distributions: from state 1 to state 3 . 

.. <1>13 (n) 
"-

Exponential Weibull 

Time 50% 99% Time 50% 99% 

151 yr 2 4 1 sf yr 0.3 0.6 

Discrete 12'h yr 8 16 12th yr 5 9 

151 yr 3 5 1 Sf yr 1 3 

Continuous 12'h yr 10 19 1ih yr 8 11 

- -- -
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Table 25 

A summary of the Results of th~ C'o~~~rison of the iJiscrete and Continuous 

Time for the Exponential and the Weibull Distributions: from state 1 to state 4. 

<1>14 (n) 

Exponential Weibull 

Time 50% 99% Time 50% 99% 

1 st yr 1 2 1 st yr 0.2 0.3 

Discrete 1ih yr 4 8 1ih yr 2 5 

1 st yr 1 3 1s t yr 0.7 1 

Continuous 1ih yr 6 10 1ih yr 5 9 

"'- .-.; 

5.15 AN ILLUSTRATION OF THE MARKOV-MULTIDRUGS DECISION 

PROCESS FOR THE CONTROL OF DISEASES 

In this section, we shall provide the numerical illustration for the Markov-

Multidrug decision algorithm discussed in the last chapter. 

We shall consider the stationary transition probabilities for catarrh disease 

discussed in chapter three. 

0.795 0.077 0.128 0.8 0.1 0.1 

P = 0.235 0.441 0.324 = 0.2 0.5 0.3 to Idp 

0.095 0.190 0.71 4 0.1 0.2 0.7 

Suppose that 

in W 100 is the corresponding rewards (costs) to the transition 

matrix P. 
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We also suppose that when the patient is in state 1 the two alternatives open to 

him/her are: 

Alternative1 : Self-medication/ cares 

Alternative2: Go to see a do~tor 

Let the corresponding transition probabilities and rewards (costs) be given as 

CP11 1P12 1P13) = (0.6 0.2 0.2) 

CR11 1R12 1R13) = (1 1 3) 

And 

ep11 2p12 2P13) = (0.8 0.1 0.1) 

(2R11 2R12 2R13) = (1 2 2) 

When the patient is in state 2, the two alternatives open to him/her are: 

Alternative 1: low priced drugs 

Alternative 2:high priced drugs 

Let the corresponding transit)'t;;"1 p;-vbabilities and cost be given as 

C P21 1 P22 1 P23) = (0.1 0.6 0.3) 

CR21 1R22 1R23) = (2 2 3) 

And 

ep21 2P22 2P23) = (0.6 0.3 0.1) 

eR21 2R22 2R23) = (3 2 4) 

When the patient is in state 3, the two alternatives open to him/her are: 

Alternative 1: continue without change of drugs 

Alternative 2: change drugs 

Let the corresponding transition probabilities and reward be given as 

1 1 1 ". (P31 P32 P33) = (0.1 0.2 0.7) 

CR31 1R32 1R33) = (1 2 4) 
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And 

ep31 2P32 2P33) = (0.5 0.4 0.1) 

eR31 2R32 2R233) = (3 2 1 ) 

We shall use these values to determine the best polices for every n. 

Using 

ev,{") = min· . . r. ¢ I +:t, f':v/"~~ n = 1, 2, 3, 4, 5 and i = 1, 2, 3, k = 1, 2 
/(~[ f= l j 

3 

where k CfJi = L k Pi] KRij 
f=l 

For n = 1, we have 

-'p 1R 1p ' R 1p 1R lCfJI - 11 11 + 12 ' 2 + 13 13 

= 0.6* 1 + 0.2 * 3 = 1.4 

-'P'R 'p 1R 'p 1R 1 CfJ2 - 21 21 + 22 22 + 23 23 

= 0.1 * 2 + 0.6 * 2 + 0.3 * 3 = 2.3 

= 0.1 * 1 + 0.2 .. 2 +0.7 * 4 = 3.3 
" 

=0.8 * 1 + 0.1 * 2 + 0.1 * 2 = 1.2 

2 2R 2p 2R 2p 2R 2 CfJ2 = P21 21 + 22 22 + 23 23 

= 0.6 * 3 + 0.3 .. 2 + 0.1 .. 4 = 2.8 

= 0.5 .. 3 + 0.4 * 2 + 0.1 * 1 = 2.4 

And hence we have 

d,(1) = 2, d2'(1) = 1, d3(1) = 2 with 

°V1(1) = 1.2, OV2(1) = 2.3 and oV3(1) = 2.4 
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The continuation of this computational procedure is contained in appendix D. 

The summary of the results i:s prec;~~ted below: 

TABLE 26: A Summary result of the Optimal Policies and Costs 

A d1(n) d
2

(n) d
3

(n) °v1(n) Ovl 1} °V}r1J 

1 2 1 2 1,200 2,300 2,400 

2 2 2 2 2,850 4,450 4,160 

3 2 2 4,340 6,260 6,020 

4 2 2 2 5,900 7,880 7,680 

5 2 2 2 7,480 9,470 9,270 

2 

5.16 COMMENTS 

The fore-going results indicate the best policies for every n. dj(n) where 

n = 1, 2, 3,4, 5 and i = 1, 2, 3. n represents the time; in the case of catarrh 

model the time frame is a day and for the leprosy model the time is a year. 

dj(n) represents the best policy for each state i at time n. Thus, we have 

obtained the best policies for the three states in five days for the catarrh models 
, 

and five years for the leprosy models. 

In addition to the best policies, the corresponding expected total 

minimum costs are also provided. For instance, d1 (1) = 2 with "V1(1)=1.2 means 

that the best policy for state 1 for the first day/year is to see the doctor and the 

" . ~ 

corresponding expected total cost is-one hundred and twenty Naira (W120.00) 

We can see from the results that except for the d2 (1) = 1 with "V2(1) = 2.3 

the best policy for others is 2. Which means that the best policy for every other 

state and time is the 'Alternative 2'. This is a kind of convergence to a stable 
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policy. This type of convergence is not generally true of this iterative algorithm 

as earlier mentioned. However, it,adds so~me beauty to this result. 

We have earlier indicated that this algorithm despite its weakness for non

convergence for a large n; it is appropriate in our case for the following 

reason(s). 

The iterations signify time and usually the treatment of catarrh disease 

takes at most 7 days depending on the type of drugs. If recovery is not 

achieved, the patient has to be referred for laboratory test for some other 

diseases. 

In the case of leprosy disease, the treatment is in average of 5 years. It 

again depends on the types of drugs. 

In view of the above al;3!y~!~,_-)Ne see that 5 to 7 time units for the 

iteration is small and reasonable. 
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CHAPTER SIX 

6.0 CONCLUSION, SUMMARY AND SUGGESTIONS FOR FURTHER 

STUDY 

6.1 CONCLUSION 

The results obtained from these models are as follows: 

1) The three state models for catarrh disease indicates from the 

available data that catarrh disease does not depend on the 

season. The implication of this result on the part of 

microbiologists is that the influenza virus grows and spreads 

evenly in the two seasons. On the medical point of view drugs 

for the treatment of · catarrh should be readily available 

throughout the seasons. 

2) Although the result is as stated in (1) above, it is possible to 

obtain a cont;:.~ry, re~J.llt hypothetically as provided for in the 

model. 

3) One other important result of the catarrh and leprosy models is 

the determination of the preventive treatment and curative 

treatment on the sensitivity analysis. The result indicates that: 

(i) It is possible to attain 99% preventive treatment to the 

individual not to develop catarrh disease. 

(ii) It is also possible by 99% to maximize the recovery of 

leprosy patient from the disease. 

(iii) It is at the same time possible at the percentage to 

minimize i'-e!ar~9 0r death due to leprosy. 
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4) The comparison of the results obtained for the leprosy model 

for the discrete time and continuous time shows that t~e latter 

provides higher values. Thus for a greater accuracy the 

continuous time model should be adopted. A similar result was 

also obtained for the Markov chain model for catarrh. 

5) When the Weibull and the exponential distributions are 

contrasted we observed that basically they provide the same 

result both for the continuous and the discrete time units. We 

therefore conclude that either one of them is sufficient for the 

distribution function of the holding time in the disease states 

6) The leprosy model enables us to establish quantitatively the 

level of control of leprosy in the near and far future on the basis 

of the present level of control. This is the basis of Markov 

process, given the present; future is independent of the past. 

This result is of great importance to the government and non-

governmental organisations that are involved in the eradication 

of leprosy disease. 

7) We have been able also to determine the optimal costs of 

control of the disease using Markov decision processes. Thus, 

we conclude that it is 'cheaper' to visit a medical doctor and 
I 

make use of 'high priced' drugs instead of self-care and cheap 

drugstrespectively. 
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6.2 SUMMARY 

In chapter one, we presented the research problem(s) thus: the existing 

models do not help us to predict the future control of leprosy based on current 

level of control and whether the catarrh disease is seasonal. The significance 

of the study include~; tr:~>models are predictive tools for studying the 

progression of the catarrh and leprosy diseases. The results are important 

information to the patients, government and non-governmental organizations 

that are concerned about the control of these diseases/eradication of leprosy in 

5-12 years. 

We also gave brief formal definitions and theory of stocha~tic processes; 

a family of a random variables indexed by a time parameter is called a 

stochastic process. 

Markov processes form a subclass of stochastic process with highly 

simplified dependence assumptions and a wide range of applications including 

recovery, relapse and death due to diseases. 

Depending on the nature of the state space and the parameter space, 

we could divide Markov processes into four classes. When the parameter and 

state space are discrete, the Markov process is called a Markov chain . 

Otherwise the process is simply referred to as a Markov process. 

A semi-Markov process is a stochastic process in which the changes of 

state occur according to a Markov chain and for which the time interval 

between two successive transitions is a random variable whose distribution 

may depend on the state from which the transition takes place. 
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The influenza virus causes catarrh, otherwise known as common cold. 

The period of incubation is from 24 hours to 48 hours. The treatment involves 

the application of Nasal decongestants, antibiotics and analgesic. 

Leprosy is defined as a chronic infectious disease primarily of the skin 

and nerves caused by 'mycobacterium leprae' . It is one of the least infectious 

of all the infectious diseases. The incubation period varies from less than a 

year to several years with an average of three to five years. The two main 

types are the tuberculoid and the :epi vrnatous. Leprosy is widely distributed in 

the tropical and sub-tropical regions. Leprosy can be treated and cured even 

without the associated deformities, if it is discovered and treated early. 

The exponential and Weibull distributions have been discussed as they 

relate to duration of stay in a state. They have been used for the distributions 

of holding times in the state. The relative advantage of exponential is that, it is 

specified by one parameter and can be easily estimated. It has property of 

'memoryless'. It is a special case of the Weibull distribution. The: relative 

advantage of the Wei bull distribution is that it provides an increasing function 

for the hazard or failure rate. The percentile points have been used to estimate 

" the two parameters of the Weibull dislFibution. 

We see that the modeling for the control of diseases started as far back 

as the ancient Greeks with the epidemic of Hippocrates (459-377BC). 

Deterministic and stochastic models were developed in the early part of 

the 20th century. The deterministic perspective is the one in which a change in 

the independent factor x results in a change in the value of the depe~dent y, 

leading to a mathematical function of some kind. In the stochastic models, 

probability theory and statistical techniques are used to access evidence 
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regarding causality. In causal analysis of data, the goal is to account for 

variation in the dependent variable. 

It was observed that mathematical formulations on the epidemiology of 

leprosy are not new. In several occasions, models have been used to stL!dy 

the transmission and spread of leprosy side by side with the past prevalence 

and incidence of new cases. 

We presented a three state model for the catarrh disease. The model 

provides for the stationary Markov chain and the non-stationary (Non-

--
homogeneous). The result obtained from the Markov chain indicates that 

catarrh disease does not depend on the season of the year. On the basis of 

this stationary process of catarrh we further considered the model for discrete 

states and continuous time. This will enable us to obtain information about the 

catarrh disease at any given point in time. These models provide illustrations 

for the optimal level of the effectiveness of the preventive treatment. 

A semi-Markov model is presented. We considered leprosy as a 

disease where the transition of people from one state of the disease to another 

may not occur at discrete time instants. We therefore look at a situation where 

the time between transitions can depend on state from which or to which the 

transition is being made. This leads to one form of Markov process called the 

semi-Markov process. In other words we have considered the leprosy disease 

as a semi-Markov process running in discrete and continuous times. The semi-

Markov process requires input data such as the transition probability of the 

Markov chain and mean holding time in the state. Four distinct and mutually 

exclusive states were specified for the process. The model was considered. for 

discrete state and discrete time and also for discrete state and continuous timo. 
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It is in the literature that the exponential and Weibull distributions are the only 

candidates for holding time in the state Howard (1960). It is on this basis that 

we make use of the two functions for the sake of comparison. We observed 

that the two distribution functions produce the similar results. We contrasted the 

discrete and continuous time and we observed that the continuous time gave 

higher values for the interval transition probabilities. The semi-Markov model 

can be used as a predictive device for studying the health status of leprosy the 

patients. The predictions will be useful to doctors, hospital administrators, 

policy makers and the general public. 

The successful use of these models developed here would require joint 

work by the medical personnel and applied mathematicians. The problem of 

communication between these two groups of people is greatly reduced by not 

using advanced mathematics. 

6.3 SUGGESTIONS FOR FURTHER STUDIES 

Three seasons (the wet season, cold-dry season and hot-dry season) 

could be considered for the catarrh model instead of the two overlapping 

seasons proposed by 1I0eje (1981). The leprosy model could be more realistic if 

the following conditions were considered: The state of recovery (state 2) could 

be an absorbing state so that the patient that does not develop a relapse gets 

absorbed and recovered from the disease forever since leprosy can be treated 

and cured. Also, many leprosy patients could be studied using this model. 

These could be basis for further research. 
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APPENDIX A 

The following is the algorithm presented in the flowcharts , and the computer 

programs in the FORTRAN language for the Markov chain (discrete state and 

time) model for Catarrh disease. 
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20 CotlTHIUE 
PRIIIT ., '1'2:' 

DO 22 ROW = 1,ROWSl 
PRINT FORl·I, (P2(RO~I,C()L),COI, = l,COJ.~j2) 

22 COIlTIIIUE 
. PRINT' , P: ' 
DO 2 e ROW .. I, RCMS 1 
PIUIIT FOrn-I, (I.'(HOI'/,CO!.), cor. .• 1, cur.~2) 

26 COIITItIlJE 
REJ\D ( • , .) HHX 
PIUHT ',' PIlODUCT OF H/\TH TCE:; ('HO IlI\IlI 1.1 TY' 
PRWT ., PROD 

PIlOGIV\.H TO CALCUr.J\TE l'HOIlllCT OF T!I~: ('!lOll/\11 I LITY II/\TH1C~: ~; 

CALI, 
HATHUJ. (1'1, 1'2, P, P, p~ , II, HOH!J 1, !l()W~ ~. c~ : : ,: :;. , COl.:;?, :1 I Z I·;, H(M, cr.I., 

IT, HOWS), COLS), C, Il, S, En·) 

READ (',.) 1·1l·IX 
PRIHT ., 'HATllICE9 1'1 I\II/) 1'2' 

P R I NT .. , 'p 1 ' 
DO 37 ROW· I, HOWSI 

PRINT fOlll-l, (Pl(IW W,C O L) , COL u 1.c: () I. ~2) 

37 CONT HIUE 
PRlIlT ','1'2' 

.-, -or 



47 

DO n ROW .. 1, HOvIS 1 

PRINT FOm·l, (P2 (ROW, COL), CO/.= I, cor.s 2 ) 
CONTItIUE " 

pnOG1t1\M TO CI\LCUI.1\TE I' HODUCT ()~. 1-11\'1'111, : 1': ::1 1'1 1\\11) ['2 

C 1\ 1, 1. I·IJ\ T r H IJ ( I> 1 , I' 2 , 1', II , It ("M:; I , C <ll.:; I , 1\ , 1\'1 : ; :' • <: ( lI,:;;~ • Itl lW:; I • <: ( ",:; 1 • 

151ZI::,1'4,'i',Il,I..X) 

E I. ~J E 
THJ\I!. .. TRIIll. I 

rr(TRIIIL .LT. 3) 1'111::11 

GO TO eo 
ELSE 
PlnllT ., 'Uill\UTrrOnI~E liSEn STJ\Y C I.El\n , B~:Y f o n II m l' 

EIID IF 
Elm IF 

EIlO 
, ... , ....... , ............... ,''''', ...... ,'" ................. "., .. " .... , 
• 
• TIllS SUB PROG!U\M IS USED FOR HULTrUCJ\T ION OF I-IJ\TIU XES T /\fID P4 

• 

.. .. " • " .. " • It .. " " .. " .. , " ,. " " .. " " " " , ... &. " .... " " ....... It , . • A .... " " It , " It I ...... '" .. " .. " .. , .. " .. " , .. , .. , 

SlJ nROU'!' I NE DEC I ( 1'1 , T , /), l' , t: n ', I. III I 'r , II( tI-I:; .I • C (J I.S ) , COl.:; \ ) 
IIl'l'EGEn nO~/!J) , COI.S J, CO I,31, HeM, COl. 

II I:: l\ I, T ( I, 11-11 T , I, It I lor) , 1'.\ (I. nil'/' , /. I II I '1') , II ( 1. 11 11 . I. 11-11 T) , 

+ ' [> ( L I HI or, I. 1 H 1'1') , I(!.I, I:: t' r ( 'h ! !! I'!' >- -
SUH .. a 
Ern .. 0 . 0 
J\CCUM - 0.0 

00 21 ROW" I, ROWS) 
DO J 4 COL" J, COl,!)) 

DO 7 K .. I, COl.!:! 1 
SUH" SUM + T(ROH,K) , P1(K,COI,) 

7 COIITIIIUE 
o (ROW, COL) .. SUI,I 
SUM .. 0 

14 CONTINUE 
21 COIlT I HUE 

PRINT • 
PRINT ., 'PREDICT ION I' 

DO 108 ROW .. 1, 1 
PRINT 13, (o(now,cor.) ,cor. 5 \, C(II.~l) 

13 rOIU·IJ\T(lX,20(E'5 . 2, )X)) 

1 a 0 COIIT HlUE 

15 

pnHIT ., , F.lI'n:n O,O . !; , O.9,O .!J 'J F Uf( 'l'1I ~: VlIl.lI~: lH' IC;' 

110 1 7 Z - 1, '1 
l'HUIT ',' EHTI::II VAr.1I 1:: nm IW' 

READ " KS 
DO 16 ROW" 1, 
00 15 COL· 2, eOLS) 

J\CCU!1 - (1.0 - KS) • 1'(ROI'I,COI,) 

EFF(cOL) - J\CCUM 
ErFl - EFFl t J\CClJlI 

prUNT 41/ EFr(CoJ.) 

CONTINUE 

\ 



41 fORHAT(2X,f1.2) 

16 CONTINUE 
EFF2 .. 1.0 - ~FFI 

Ern - 0 
PHII/T 41, r.FF2 

17 COIIT I HUE 
RETURN 

END 

.. , ............... , ......... , ... "', ................ ,, .................. . 
• TillS SUB PROGIU\H IS USEO ron I-IUr.TIl'r.ICJ\Tl o rl T "rill 1'1,1'1 J\rHJ TO 

• T1 NID T2 

,.,., •••••••••• , •••• ,",.,. 0,"'0 I •••••••• , ••••••••••••••• , ••••• ,.,··· 

SUBROUTINE DEC P (P 1, P2, ('1, T, 11, I., X, I. J1.tIT, n o ws J, COI.S J, eOl.31 ) 

IIITEGEn nOWS), COI.S), COLS I, nOH, COL, K, ~I, n 
nEAL T (LIIHT, 1.1110'), P4 (1.1111'1', 1.111['1'), o (r.lIH'I', J.lJ.I[T), 

+L (LIIHT, LIHIT) , X (LlIUT, L HilT) , I'! (I. WI T, LIIHTj , 
~ [>2 (l,HIIT,I.It-IIT), S 1111 , J\WE, W~; J\ 

J\WE - 0 
WEJ\ - 0 
SUI·\ - 0 
DO 21 now - I, nOWs) 
DO 14 COL .. I, eol.S) 

DO 7 K - I, COLS! 
SUM - SUM + T(ROW,K) • 1'1 (K,COI.) 

7 COt/TItIUE 
D(nOW,COL) .. SUI·I 
SUI·j .. 0 

14 COIIT IIIUE 

21 COfITIIIUE 

101 

READ (. I .) '·Il·IX 
PIUIJT ', . 'TO' 
DO 101 how .. l,nOWS) 

PRIIIT 11, (D (now, cal.\, eo!. '" 
COIIT IIIUE 

DO 4 2 now .. . 1, 
00 41 Cal, - 1, COJ.S) 
DO 17 W - 1,· COLS 1 

I, eol.s)) 

AWE - AWE + D(ROVI,W) • PI ("'I,COr.) 

1 7 COIIT HIUE 
L(HOW,COL) .. J\W~ 

AWE - 0 
41 CO/IT HIUE 
42 COIITINUE 

REJ\D ( • , .) HHX 
PRIIIT ·, . 'Tl' 
DO 102 ROH - 1,1 
PRIIIT 11, IL(ROW,CO!.) ,Cor. .. l,COI.S),-

102 COIITItlUE 

DO 49 now • 1, 
00 4J COL" 1, COL!!) 

. - ,. 
10';) 



DO 07 R - I, COI.Sl 

WE1\ • WF:1\ ~ 1,(l\m/,R) • P2 (H, COL) 
87 COIITHllJE 

X (IWW,COL) - WE1\ 

WE1\ - 0 
4) CONTIIIUE 

49 CONTINUE 

REM ( • , .) HHX 
PRIIIT ., 'T2' 

DO 103 HOW - 1,1 
PIUNT II, (X (ROW, COL) ,C Ot. ~ 1, CO I. !l J) 

103 CQtITINUE 

11 fORM1\T()X,20(F,4,2,3X)) 

RETURN 

EIlD 
••••••••• ,,, ............ ,' ,A,."."., i' "'" , •.• It, ,.,' "." ,. , •• ,''''' ..... ,' 

" 
I TillS sun PIIOGRA/1 IS US~D rem ADDIT r o r! or 1·IA'I'Hr X ~ s 11l\T 1 l\1I1l 1·1AT2 

.... ". It"" It"" It" II" It" ., .",."" .. " I> .. , . ,,, .. It." "" .. " ,.." "". "",.,. " , ... , " "" " ,. ... '" "It ,.""" " 

S unROllT 1 liP. 1·IATA\)[) (IH, 1-12 , 1-1, I. Hll T, Ilf M!ll , CO/. S J , ft( IW I 2 , CO I. ~ 2 , l·ll\TCII) 
IllTtGEH HOWgl,C OI.Sl,HOYI~2,COI.~2,1.1/1I'l',I,.J , K,H (M ,C (J 1. 

REAL 1-11 (LUIlT, LIIHT), 1·12 (1.11,11'1', I.II-IIT), 11(I.II·lI T ,I.JI11'l') 

LOGICAL ~IATC" 
IF (ROWSl .EQ, ROWS2) TIIEIJ 
IF (COLSl ,EQ, COl.!l2) TIIW 
H-:\TCII .. ,TRUE, 

DO 30 ROW · '" I,ROI-ISI 
DO 20 cal. • I, COI.!:i2 

H (lWW, COl.) "HI(HOH,COL) I 1-12 (Ill 1\'1 , <:UI.) 
20 cOIn I1lU E 
30 CaNT IIIU E 

EI.SE 

HATCII - ,FALSE. 

EIID If 
EtlD IF 
IU~TlJn!l 

END 

" ..... ,. .... """"",.." It ~ .. " It It It II" "It"" It. It "" It "" " , .. " "" " " '" " , " " " " " ... " ,. " 'II It" " " II " "" " 

I TillS SUD PROGMH IS USED FOR SEI.F 1·\tJJ.TP!.ICI\ '!'I OII Of f./I\ T IlI X P 

ft"'" ,. t. 1\" /I • •• 1\".",,,,.,,,, '" ,,. ,. " ,. ,. ,.,. ,.,. , .. ,. ,. .... , .,. , , ,. , ,. ,. ••• til ,. " .... .. , , , " .... 

SUOROUT IIIE HilTI·1U1. (I' l, 1'2, 1', c:, /, ·1, II. Itt II·n; I , COI.!)l , lt uH ~ ; 2 , CUI.!J 2, r. 11-1\ '1' . 

tROW, COL, T, nows), COl.S), [), I., X, f,; n ' ) 

COHl·IO/l · CII (10,10) 
INTEGER now, COL, K, COlmT, N, ROH3 1 , nOH3 2, eOLS I , COJ.S 2 , L I I-II T, HOIoIS) , 

~COLSJ,Q,BIG 

REAL P (LIHIT, L IHIT), P4 (1,1I-11'f, LlIIIT), C (L III/ T, L 11111') , T ICI·II' I 

' 1 (U 



+T (LIHIT, L IHIT) , D (L IHIT, L I1HT) , PI (LHlf1', I.HIIT) , 1'2 (1.11·11 T, 1.11111') , 
H ( I, I 11 ~ l' , L I HIT) , X ( L HII T, I. HI IT) , E FE' ( I. I 1·1 J l' ) 

DO 191 now· l,nOWSl 
DO 191 COl, - l,C('1.!J2 
CII (now, COL) .. C (IlOH, r;ol.) 

191 COIITIIIUE 

130 

COlHlT .. 1 

Q - 2 
DO 150 now D I,ROWSI 

DO 140 COL - I,COl.92 
TEMP" 0 
DO 130 K • l,COLSl 
TEHP - TEHP + CII(nOW,K) 
CONTINUE 
P4(ROW,COL) - TEMP 

• P(K,COl.) 

1~0 CotlTINUE 
150 COIITIIWE 

151 

99 
57 

DO 151 ROW D I,ROWS! ' 
DO 151 COl. - I,COLS2 
ell (ROW,COL) ;,. l'1(1l0\~,COI.L 
COtlTIIIUE 

HEI\O ( • , .) 1-1l·1l-1 

COUIIT - COVIIT + I 
If (Q .EQ. COllIIT) · "III':11 
('flINT' • P (', Q •• ) , 

DO 5"1 HOW - I, nows 1 
PRINT 99, (1'4 WaH I cal.) ,cal ... 1, eOLS I) 

FaRHAT ( lX,BO(F5.3,3X)) 
CONTHIU~ 

Q - Q + 2 
ENDIF 
IF (COUNT .LT. H) TifF-II 
GO TO 5 
END If 

CALL DEC I ( P4 I T,D I P, E ff I L UHT I ROW~), COl,S 3, CO!.S I) 

RETURII 
EllD 

,tt ... " • " " " " " • " " ,. " " " ....... , •• " " " " A • " • , , " " t " " • " , " " " " " " " " " " .... " , " " •• " " " " ,. 

IIIIS SUO PROGMH IS USED rOH SEI.~· IIlJI.TI'I.ICI\·I' l(l/l or 1 · 1"'I'Hl~; 1') 

11: IS TIIB pnonUC1' Of r 1 I\IW 1' 2 

Ut,.,.". It" .. " " ",. "" "" .. " .. " ... " " , " " " • " • , , " , " " , " , ,. " , " , " " " " " " " A" .. " ,. " " " " " " " " 

SUDnOUTII~E HATHVT (P 1,1'2,1') , C, 1'1, /I, II (MS I, cot.s I , HCM:j;!, cn l.:J 2, 1.11·11'1', 

HlOW, COL, T, flOWS), COLS), [), J., X) 

eO~I!-IOIl CII(IO,IO) 
emll'-ION ell 

INTEGER now, Cal" K, COllNT, II, 1I0\'/!J I , l\(I\V~; 7., r:l)I.S J , CUJ.S 2. I. 1 HIT, filMS J, 

+eOLS), Q, 8IG 
f"tEAL rJ ( LIt-liT, I,TlHT), I'~ (I. HI 1'1' , I. HII T), C (1.111 IT , t. 11 ·11 T) ,1'~'Il', 

+T (LIHIT, LIMIT) , D (LItHT, LUIIT) , P! (L If·1 1 T, 1.11-11 T) , 1'2 (1.11·11 T, Ll III '1') , 

+L (LIIHT, LIMIT) , X IL Ull T, 1.1111'1') 

DO 192 now 0 l,ROWS! 
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c 

DO 192 COl.· I,COI.S? 
CII (rWW, COl,) • C (n {J H, C(lI,) 

192 COIlTIHlIE 
READ(',') HJ.lX 
COUIIT .. 1 

Q - 2 
6 DO 152 ROW - l,ROVIS! 

DO 141 COl, .. l,COl.32 

TEHP - 0 
DO 131 K - I,COLSI 

TEt-IP" TEMP + CII(nOW,I<) • P)(K,COL) 

131 CONTINUE 

P4 (ROW, COL) .. TEI·II' 

141 CONTINUE 

152 COIITINUE 

DO 153 ROW - I,ROWSl 

DO 153 COL" I,COLS2 

CII(nOW,COL) - 1'4 (H OI'I,COI.) 
153 COUTINUE 

109 
50 

REJ\D ( • , .) 1-u·n·1 
COUNT .. COUIIT f 1 

IF (Q .EQ, COUHT) TIIW 

PfllNT', 'P(',Q,')' 
DO 50 ROW .. 1, nm/s 1 

PRIIIT 109, (1'4 (HOH,COI.) ,COl, ... 

fonHJ\T( lX,OO(f5,3,3X)) 

COI/TII/UE 

Q - Q .. 2 
EHDIf 

C (nOW, COl,) .. TEl-It' 

IF (COUrlT .LT. 10) TIIEIJ 
GO TO 6 
END IF 

l,COI.Gl) 

CJ\LL DECP (Pl,' P2, l'1, T, Il, I., X, 1.11·11'1', !l()W!;] , COl.!; J \ ~ ()I.S 1 ) 

RETUfUl 

END 

................. " ............ , ...... ,,.,,,, ...... ,, ...... ,.,.,..".,,.,., 

TIllS SUD pnOGMH IS USED E'on HUI.TI'I.ICI\TIOII or I·II\'I'HIXE !) PI MID 1'2 

•••• , ... , •.•• , •••••••• , ••..• ".,."." .. , .. , It. It' , •• , ,I, ,It A, ", •• ,', ..... 'i' 

SUBROUTINE 
tAT PRO (P I, P2, P 3, H, ROV/Gl, COLS I, HOVI!;2, eOLS?, H u~l!3 J, C()I.!; J, 

f L 111 IT, P 4 , T, 0, I" X) 
. I1/TEGEn ROWS 1, HOwn , COI.S I, COI.S 2, !; T Z~:, K, HUW. COl., HOHJ) , C O LJ J 
REAL P 3 ( L nil T, I. iI-it T) , S lJl-l, L'I (I. 1111'1' , I. Hil '1') , l';> (I. 11-11'1', L ) 111'1') , 

+ P4 (LHlIT ; I,ll-lIT) , T (I. HII T, 1.1111 T) , D ( I. HilT, I. HlI T) , x ( LIII J T, I. II-I) '1') , 

.. L (L 1M 1 T , 1,1111 T) 

DIG - 0 
DO 10 now - l,ROWSI 

DO 20 COL" 1,COL32 
SUM c 0 
DO 3D K - I, eOLSl 

17 ;::> 

\ 



i 

I 

Ii 

i 

I' 

C 

DO 192 cor, at J,C01.S2 "-
clt(nOW,COI,) M C(HUH,COI.) 

192 COIIT IIIl/E 
HEAD ( • , .) HJ.lX 
COUIIT n 1 

Q - 2 
6 DO 152 ROW .. I,HOWSI 

DO 141 COL ~ 1,C01.52 

TEHP - () 

DO 131 K - I,COLSl 

TEHP - TEI-fP CIf(nOW,K)' 1'3(K,COI.) 
131 CONTINUE 

P 4 (ROW, COl.) a n:I-II' 

141 CONT IlIUE 

152 CONT IIWE 

00 15j ROW ~ l,nOWSI 

DO 153 COl, .. I, COl.92 

ell(ROW,COL) .. 1'4 (HOI'/,COL) 
153 CONTINUE 

109 
50 

READ ( • , .) !'-!I·Il·1 
COUNT - COUNT • 1 

IF (Q .EQ, COUIIT) TIfF.N 
PRINT·, 'P(',Q,')' 

DO 50 ROI'I = I, HOHS 1 "-
PRINT 109, (l'4(Hm/,COI.) ,COr. u 1,CnI.Sl) 

FORHAT( lX,OO(F5,3,3X)) 
CONTINUE 

Q • Q + 2 
EIIDH' 

C{ROW,COL) .. TF.HP 

IF (COUNT ,LT. 10) TIIEN 
GO TO 6 
EIIl) IF 

CALL DEC l' f P I, P 2, ['4 , 1', (), L, X, I, 11'11'1', II! M :i I, (;\.1(.:'; J , COL:'; I ) 
RETURJI 

EIID 
.' . 

••••••••••••••• " ••• " •••••• , , ......... , , •••• , It."" , •• , , ... , , ... ,,"" "',.,' 
• 
• TIllS SUD rROGRAH IS USED f'OH ' ·I\J!:rI'I.ICII'I' IO/l Of' I-lflTIlIXF.S 1'1 1II1f) 1'2 
• 
" " " " " " ... " " '" " " , " " " " " " " " " " " " It . " " " " .. " " " , " .. " " .... " " " " " .. " .. " , .. " " " " " " " .. 6: , " , " " " " " 

SUBROUT·INE 

HAT PRO ( PI, P 2, P 3, N, IWH!J 1 , CO LSI, Hf)V/ S 2 , CUI. S 7. , Ilul" :'; J , C (J I. :; J , 
t L 1111 T, P 4 , T, 0, r., X ) ".- J 

IlnEGER ROI'I3 1, HOWS 2, COI.S 1, COl.5 2, :j r u:. K, II( M I COl., H(J\'I:';) , Cm ,S) 
REAl, P 3 ( L I 1·11 T, J. III! 'J') , S til·!, l'1 (I. I J.I I 'J' , I, I J.I 1'1') I I' 2 (I. 11·11 T , J. Jill T) , 

+ P 4 (I. UtI T , L I HIT) , T ( I. I1H 1', 1,11-11 'r) , /) ( I. III [ T , J. HI! '1') , X ( l. 11-1 IT, J. III [ T) , 
iL (LII-IIT, LIMIT) 

DIG .. 0 
DO 10 HOW - I,ROW31 

DO 20 COL" 1,C01.52 
SUI-! n 0 
DO 30 K • I, eOLSl 

173 



APPENDIX 8 

The following is the algorithm presented in the flowcharts, and tile computer 

programs in the VISUAL BASIC and the output of the program for Hle Markov 

chain (discrete state and continuous time) for Catarrh disease. 

I 

" 

,--
I 

, 17'5 



---, ---~~ -- ---J 
ST;\RT 

-_ ..... _- -----_._- - ... - _. .. -. . ._--_._--- --- ----- - --.- - ------

-~-.------ - - IN-I~(~-;--~ · --- ---7 
J . 
t=O J 

'---. .-----

hI = 0.3145 - 0.91 24e-O.6415t + 0 . 5979c~)·9R79t 

112 = O.5899-0 .53 82c-O.26111-0.0S 18e-1.l2671 

--------- - - - ----.---, -
H = 0.1556_0_29704e-o.6-I15t+O. 1414e-o-')')R9t 

t 
'4= 0.1760- 0.11J8e-O·2633t_O_0622e·1.1267t 

J . 
i-

t =t+l 

___________ t_ 
/ PRINT PlI, Pt2, Pt3, Pt4 

YES 

~~-----r-' I-U-I~~-----------J~ 

-

- " 



Sub cmdS Click () 
.SelText ;;; vbTab &' vbTab & "P12(t) .. & vbTab & vbTab & vbTab & "P12(t)" & vbTab & vbTab & 

& vbCrLf 
Rtb. Sel Text = String (60, .. ..) & vbCrLf 
Rtb.SelText = vbTab & "t" &" vbTab & vbTab &"K 0" & vbTab & vbTab & vbTab &"K 0.99" & 
& vbTab & vbTab & vbCrLf 

Rtb.SelText = String(60 , " ") & vbCrLf 
For t = 0 To Val (tx t A.Text ) 

dblPtl = Round(0.3145 - 0 . 9124 '" Exp(-0.6415 '" t) + 0 . 5979 '" Exp( -0 .9879 '" t), 8) 
fu lPt2 = Abs(Round(0.5899 - 0.5382 * Exp( - 0.2633 * t) - 0.0518 '" Exp( - 1.1267 '" t) , 8)) 
Rb.SelText = vbTab & t & vbTab & vbTab & dblPtl & vbTab & vbTab & vbTab & dblPt2 & vbTab & 

& vbTab & vbCrLf 

vbCrLf & vbCrLf 

vbTab & vbTab & "P13 (t)" & vbTab .& vbTab & vbTab & "P13 (t)" & vbTa b & vbTab & 

& vbCrLf 
Rtb.SelText = String(60, " ") & vbCrLf 

Rtb.SelText = vbTab & "t" & vbTab & vbTab &"K 0" (; vbTilb I; vbTab & vbTab (;"K 0.99" 
Tab & vbTab & vbTab & vbCrLf 

Rtb.SelText = String(60, " ") & vbCrLf 
For t = 0 To Val (txtA.Text) 

I dblPt3 = Abs(Round(0.15S6 - 0.29704 '" Exp( -0 .641 S '" t ) + 0.1411 " Exp( ·- 0.99£l9 • t) , 8)) 

fu lPt4 = Round(O.176 - 0.1138 '" Exp( -0 .2633 '" t) - 0 . 0622 • Exp( - 1. 1267 '" t) , 8) 
Rtb.SelText = vbTab & t & vbTab & vbTab & dblPt3 & vbTab & vbTab & vbTab & dblPt4 & vbTab 

ili & vbTab & vbCrLf 
Next t 

Sub 

rte Sub Form MouseUp(Button As Integer, Shift As Integer , X As Single, Y As Single) 
[Button = vbRightButton Then 
U. PopupMenu mnufile 
dIf 

\sub 

te Sub mnuexi t _ Cli ck ( ) 
!nd 
ub 

te Sub mnuprint_Click () 
Error Resume Next 

IIf ABU I s Nothing Then Exi t Sub 

ith CommonDialogl 
.DialogTitle = "Print" 
.CancelError = True 
.Flags = cdlPDReturnDC + cdlPDNoPageNums 
If Rtb.SelLength = 0 Then 

. Flags .Flags + cdlPDAllPages 
Else , 

.Flags .Flags + cdlPDSelection 
End If 
.ShowPrinter 
If Err <> MSComDlg.cdlCancel Then 

Rtb.SelPrint .hDC 
End If 

lnd Wi th 
Jub 
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P12(t) P12(t) 
-----_._- - _.-

K = O K = 0.99 

0 0 · 0.0001 
1 0.05675225 " 0.15949878 
2 0.14447771 0.26659275 
3 0.2122045 0.34385282 
4 0.25588307 0.40159367 
5 0.28186633 0.44543846 
6 0.29665859 0.47896199 
7 0.30486081 0.50466957 
8 0.30933348 0.5244081 
9 0.31174575 0.53957153 
10 0.3130372 0.55122291 
11 0.31372511 0.56017652 
12 0.31409026 0.56705726 
13 0.31428362 0.57234513 
14 0.31438583 0.57640889 
15 0.3144398 0.57953193 
16 \ 0.31446827 0.58193203 
17 0.31448328 0.58377652 
18 0.31449119 0.58519404 
19 0.31449536 0.58628341 
20 0.31449756 0.58712061 
21 0.31449871 0.58776401 
22 0.31449932 0.58825847 
23 0.31449964 0.58863846 
24 0.31449981 0.5889305 
25 0.3144999 0.58915492 
26 0.31449995 0.5893274 
27 0.31449997 0.58945995 
28 0.31449999 " 0.58956182 
29 0.31449999 0.5896401 
30 0.3145 0.58970027 
31 0.3145 0.5897465 
32 0.3145 0.58978204 
33 0.3145 0.58980934 
34 0.3145 0.58983033 
35 0.3145 0.58984646 
36 0.3145 0.58985885 
37 0.3145 0.58986838 
38 0.3145 0.5898757 
39 0.3145 0.58988132 
40 0.3145 0.58988565 
41 0.3145 Q: 5m 42 0.3145 O.S 1 
43 0.3145 0.58989349 
44 0.3145 0.58989499 
45 0.3145 0.58989615 
46 0.3145 0.58989704 
47 0.3145 0.58989773 
48 0.3145 0.58989825 
49 0.3145 0.58989866 
50 0.3145 0.58989897 
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P13(t) . P13(t) 

K=O K = 0.99 

0 0.00064 0 
1 0.05128323 0.06838433 
2 0.09243775 0.10225504 
3 0.11931056 0.12222976 
4 0.13537601 0.13561802 
5 0.14454047 0.14527099 
6 0.14962556 0.15248326 
7 0.15239862 0.15795915 
8 0.15389391 "" " 0.16214579 
9 0.15469417 0.16535625 
10 0.15512029 0.16782125 
11 0.1553464 0.16971489 
12 0.1554661 0.17116994 
13 0.15552936 0.17228808 
14 0.15556276 0.17314736 
15 0.15558037 0.17380772 
16 0.15558966 0.17431521 
17 0.15559455 0.17470522 
18 0.15559713 0.17500495 
19 0.15559849 0.17523529 
20 0.1555992 0.17541231 
21 0.15559958 0.17554835 
22 0.15559978 0.17565291 
23 0.15559988 0.17573325 
24 0.15559994 0.175795 
25 0.15559997 0.17584246 
26 0.15559998 0.17587893 
27 0.15559999 0.17590695 
28 0.1556 0.17592849 
29 0.1556 0.17594505 
30 0.1556 0.17595777 
31 0.1556 0.17596754 
32 0.1556 0.17597506 
33 0.1556 0.17598083 
34 0.1556 0.17598527 

. 35 0.1556 
,," , 

< 1:i:1. 7598868 
36 0.1556 0.1759913 
37 0.1556 0.17599331 
38 0.1556 0.17599486 
39 0.1556 0.17599605 
40 0.1556 0.17599697 
41 0.1556 0.17599767 
42 0.1556 0.17599821 
43 0.1556 0.17599862 
44 0.1556 0.17599894 
45 0.1556 0.17599919 
46 0.1556 0.17599937 
47 6.1556 0.17599952 
48 0.1556 0.17599963 
49 0.1556 0.17599972 
50 0.1556 0.17599978 
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APPENDIX C 

The following is the algorithm presented in the flowcharts, and the computer 

programs in QBASIC and the pro"gram output for ttle Semi - Markov model ~ 

Leprosy disease" 
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Start 

Input K 

N=O 
Sum = () 

~ 
I N = N+I I 

-

D = 33'" E • ~ XJl (-.33'" N) 

Sum = sum + j 

Prod 2 =(I-k)*.2*Sum 

Prod 3 =(l-k)*.l *Sum 

Print S 

181 
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n<=k<1 



= a 
IT "ENTER THE RANGE OF VALUES "; N 
lIT "NUMBER", "EXPONENT SUM"; SPC (7); "EXPONENT SUM * . 3" 
lIT "- - - - - - - ", " - - - - - - - - - - - - "; S PC ( 7); " - - - - - - - - - - - - - - - - " 
k :: 1 TO N 
.33 * EXP{- . 33 * k) 
= sum + j 
i = .3 * sum 
IT k, USING ("#.#########"); sum; SPC(8); prod 
( = 20 OR k = 41 OR k = 62 OR k = 83 THEN PRINT "press any key to contin\ 
r k 
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m = 0 
INPUT "ENTER THE RANGE OF VALUES "; N 

INPUT "enter the value of· k:", k: CLS : PRINT 
LOCATE I, 20: PRINT "FOR \;:"~T,UF. -0P K="; k 

"IT SPC(10); "@12", SPC(12); "@13"i SPC(10); "@14 ": 
FOR s = 1 TO N 

j = (. 152380952 # * (s / 10. 5 ) ~ . 6 ) * ( EX P ( - (s / 10. 5)) ~ 1. 6 ) 
Sum = Sum + j 
prod = (1 + k) * .3 * Sum 
prod2 = (1 - k) * .2 * Sum 
prod3 = (1 - k) + .1 * Sum 

r 
8; USING ("#.#it########"); SPC(4); prod; SPC(4); prod2; SPC(4); prod3 

= 20 OR s = 43 OR s = 66 OR s = 89 THEN PRINT "PRESS ANY KEY TO CONTINUE"; 
B 
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1m = 0 

INPUT "ENTER THE RANGE OF VALUES "i N 
INPUT "enter the value of k:", K: CLS : PRINT 

PRINT "FOR K="; K 
PRINT "s"; SPC(12); "@12", SPC(12); "@13"; SPC(lO); "@14": PRINT 

FOR s = 1 TO N 
j = 1 - EXP ( - .33 * s) " 
prod = (~ + K) * . 3 * j 
prod2 = (1 - K) * .2 * j 
prod3 = (1 - K) * .1 * j 

PRINT s; USING ("#.##########"); SPC(10); prod; SPC(10); prod2; SPC(4); P 

'IF s = 21 OR s = 44 OR s = 66 THEN PRINT "press any key to continue:"; INP 
T 9 
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m 0 

INPUT "ENTER THE RANGE OF VALUES "i N 
INPUT "enter the value of k:", k: CLS 

LOCATE 1, 25: PRINT" FOR K= "i k 
tI'SPC(5)i SPC(10)i "@12", SPC(12)i "@13"i SPC(10)i "@14": PRINT 

FOR s = 1 TO N 
j = (1 - EX P ( - (s / 10. 5)) ~ 1. 6 ) 
prod = (1 + k) * . 3 * j 
prod2 = (1 - k) * .2 * j 
prod3 = (1 - k) * .1 * j 

rr s; USING ("# .lIffU ltffHtI###"); SPC(10); prod; SpeC10); prod2; SPC(il); prod3 
1 = 20 OR s = 43 OR s = 65 O~ s = 07 THEN PRINT "press any key to continue:" 
OCT s ' 

1:85 



EXPONENTIAL STARTS FROM THE NEXT PAGE 
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APPENDIX D 

The computational Procedures for the illustration of the Markov-Multi 

drugs decision processes for the Control of diseases . 



We shall use these values to determlfle the best policies for every n. we 

have 

10 - lp 1 - 11 lR ' p ' R lp ' R I I + 12 12 + I : . I .'. 

'0 1 =0 .G x 1+0.2x1+02x3=1 .4 

' 0 lp ' R ' p ' R" ,~ ~ ' R 2 = 21 21 + 22 22' r ~ 3 2:l 

'0 2 = 0 .1 x 2 + O.G x 2 + 0.3 x 3 = 2.3 

103 =0.1 x1 +0.2x2+07x4=3.3 

7. 2·' 2 7 ~ ~ .0 , = P I I ' R I I + P I, R I < + . P , J . R 1:1 

20 1 = 0 .8 x 1 + 0 1 x 2 + 0.1 x 2 = 1.2 

20 - 2p:<R 2p 2R 2p 2R 2 - 21 21 + 22 22 + 23 23 

20 2 = 0.6 x 3 + 03 x 2 + 0.1 x 4 = 2.8 

20 3 =05x3+0Ax2+01 x1 =2A 
, 

Let °v, = 0 for i = 1.2.3. Then for n = '1 ve filld \lV ,II) = Min, ~ fO, and 

hence 

Let OV 1
(1 ). °vt ) and °V3(1) be the min imu lll earnings (cos t) corresponding 

For n=2 . we have 



kVI ?1 = Min [~O + \ -- J /' 0v I II] 
I 12 , L I 

= Min [ k 0 + k P 0v I I I + ~ P , C:V " I I I + 'p , r~V I I , J 
I 2 I 11 I '" ' ., , J 

i = 1, k :-: 1 'V 121 - 10 + Ip 0v ; 11 + :p leV III + Ip 0v III I - I II I I ;> ,' I :. 3 

=1 .4+06x1 .2+02x23+02x24=300 

i=1 . k=2 

= 1.2 + 0 .6 x 1.2 + 0 3 x 2 .3 + 0 1 x 2.4 = 285 

= 2 .3 + ,p i x 1.? + 0 6 x 2 3 : 0 3 x 2 4 = 4 52 

1·=2. k=2 . 20 +2p °V II ).+ 2p 0V ' I + ?p 0V I II 
2 21 1 22: 23:\ 

=28+0.6x".2+0.3x2 3 +01x24=445 

I· = 3 . k = 1, 10 + 1 P 0v 11 ) + 1 P 0v ' ; I + I P llV ' I , 
3 3 I 1 :12 2 :\::.:1 

= 3.3 + 0 .1 x 1,2 + 0 .2 x 2 .3 + 0 .7 x 2 .4 = 5 .56 

= 2.4 + 0.5 x 1.2 + 0 .4 x 2 .3 + 0 1 x 2 .4 = 4 .16 

We see that for n = 2 

For n = 3. we h'c .... ·2 

kV(3) = M 'ln [ "0 + kp 0v (2) ~ kp 0v 121 + kp 0v 12 ) J 
' 1 2 I 11 1 12 2 13 3 

1' = 1.k =1. 'VI J) _ ,'O +1p 0V (2) + l p llV 121 + l p 0V 121 
1 - 1 11 1 12 2 13] 

= 1.4 + 0 .6 x 2 .85 + 0 .2 x 4 .45 + 0 ,2 x 4 .16 = 483 

= 1.2 + 0 .8 x 2 .85 + 0 .1 x 445 + 0 .1 x 4 .16 = ,1 .34 
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,. = 2 . k = 1 0 + 1 P UV ' 21 + I P ()V· , + 1 P l'V ' :' 1 2 2 1 1 ~ :'. ~ '1 .~ 

= 2.3 + O. 1x 2.85 + 0 6 x 4 45 + 0 3 x 4 16 = 6 .50 

i=2 . k=2 . 

=2 .8+0.6x285+03x445+01 x416=626 

= 3.3 + 0 .1 x 2.85 + 0 .2 x 4 45 + 0.7 x 416 = 7 .39 

= 2.4 + 0 .5 x 2.85 + OA x 445' + 01 X 4 .16 = 602 

For II = 4 

kV (n) = M' [ kO + kn 0v 13) + kp 0v ,!.! + ~ p _ 0v 131 J 
I In 1 ~ I rz· 1 1 _ __ 12;' . I~\ :. 

i=1 , k=1. 10 + Ip Uv (3) + 'p 0v ,J, + Ip e,V 131 I 'I' 12;; \, 3 

= 1A + 0 .6 x 4 .34 + 0 .2 x 626 + 0 2 x 6.02 = 6AG 

i = 1, k = 2, 20 + 2p 0v (]) + 2p 0v 13 ' + 2p 0v 13) I 11 I 12 2 IJ ~ 

= 1.2 + 0 .8 x 4 .34 + 0 1 x 6 26 + 0 1 x 6 .02 = 5 .90 

i=2,k =1 , l o ~ + Ip 0v I]) -+- 'p . 0v ,-,., + Ip 0v IJI . 2', 2,';' :.'J J 

= 2.3 +·0.1 x 4.34 + 0 .6 x 626 + 0.3 xG.02 = 8.30 

. j = 2 , k = 2 , 20 2 + 2P2' °V ,I)) + '2Pn °V
2

IJ ' +?p 0v (3) 

23 3 

= 2.8 + 0.6 x 4 .34 + 0 .3 x 626 + 0 1 602 
. . x . = 7.88 

i=3 k=1 , . ' Q ] + 'p ], °V,I]) + 'P3, 0Vf~ 1 + Ip 0v (31 
~ , JJ J 

j = 3. k = 2 . 
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!~.u • .,!'..!.!.. ••••••••• 

= 2.4 + 0.5 x 4.34 + 0.4 x G.2G + 0.1 x 6:02 = 7.68 

\ 

with <>V, (4 ) = S.?, 0,,//") = 7.88 and uvt) = 7.68 

For n = 5 

= 1A + 0.6 x 5.9 + 0.2 x 7.88 + 0.2 x 7.68 = 8.05 

= 1.2 + 0.8 x 5.9 + 0.1 x 7.88 + 0.1 x 7 .68 = 7A8 

= 2.3 + 0.1 x 5.9 + 0.6 x 7.88 + 0.3 x 7 .68 = 9.92 
\ 

= 2.8 t 0.6 x 5.9 + 0.3 x 7.88 + 0 .1 x 7.68 = 9A7 

= 3.3 + 0.1 x 5.9 + 0.2 x 7.88 + 0 .7 x 7.68 = 10.84 

= 2A + 0.5 x 5.9 + OA x 788 + 0.1 x 7.68 = 9 .27 

with <>V, (5) ::: 7A8, °v2(5) = 9A7 and OV3(5) = 9.27 
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