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ABSTRACT

Ihe research work focuses on the dynamic analysis of the non-linear circular

...ylindrical shell. The mathematical model of the problem is based on

onnell-Mushtari-Vlasov theory of shallow shells. The ensuing nonlinear partial

fifferential equation is approximated by asymptotic series, resulting from regular

aerturbation technique and the obtained equations were solved analytically. The

ases of free and forced vibration were considered. In the latter, the cases of

ulsating pressure and a moving force having constant magnitude were studied.

he stability of the cylindrical shell with or without initial imperfection was also

tudied. The result indicates exponential decay, away from the edge of the shell,

vhich is one of the unique characteristics of a shell. From the numerically

imulated results it is observed that higher modes of vibration can be neglected,

is is because the contribution to the dynamic displacement is mainly in the first

ode and the characteristic shape of the first mode is similar to the force

istribution on the system. It is also observed that the increase in the excitation

mplitude produces a wrinkling effect on the shell, which results in the shell

eformation.
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CHAPTER ONE

1.0 GENERAL INTRODUCTION

1.1 Background of the Study

The word shell is an old one and is commonly used to describe the hard covering of

eggs, crustacea, tortoises, etc. The dictionary says that the word shell is derived

from the Latin scalus, as in fish scale. But to us now there is a clear difference

between the tough but flexible scaly covering of a fish and the tough but rigid shell

of, say, a turtle. In this work we shall be concerned with man-made shell structures

as used in various branches of Science and Engineering. Shells are classified by

their geometry (cylindrical, spherical, elliptic paraboloid, hyperbolic paraboloid,

circular cone shell etc.). Many cylindrical shells were analyzed using approximate

methods, in that when extended in the long direction they approach beams in

behavior, and when shortened in the same direction approach arches in behavior.

Hence, they fall between the limiting cases of beams and arches, Richard et.al

(2002). There are many interesting aspects of the use of shells in Science and

Engineering, but one alone stands out as being of paramount importance namely

the structural aspect. The list of applications from a historical point of view, and, to

take as a connecting theme, the way in which the introduction of the thin shells

have made important contributions to the development of several branches of

Science and Engineering is given below.
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(i) Architecture and Building: The development of masonry domes and

vaults in the middle ages made possible the construction of more

spacious buildings. In more recent times the availability of reinforced

concrete has simulated interest in the use of shells for roofing purposes

(ii) Power and Chemical Engineering: The development of steam power

during the industrial revolution depended to some extent on the

construction of suitable boilers. These thin shells were constructed from

plates suitably formed and joined by riveting and/or welding. More recently

the use of welding in pressure vessel construction has led to more

efficient designs. Pressure vessels and associated pipe work are key

components in thermal and nuclear power plants, and in all branches of

the chemical and petroleum industries.

(iii) Structural Engineering: An important problem in the early development

of steel for structural purposes was to design compression members

against buckling. A striking advance was the use of tabular members in

the construction of the Forth railway bridge in 1889: steel plates were

riveted together to form reinforced tubes as large as 12 feet in diameter

and having a radius/thickness ratio of between 60 and 180.

2



(iv) Vehicle Body Structure: The construction of vehicle bodies in the early

days of road transportation involved a system of structural ribs and non

structural paneling or sheeting. The modern form of vehicle construction,

in which the skin plays an important structural part, followed the

introduction of sheet-metal components, performed into thin doubly curved

shells by large power presses, and firmly connected to each other by

welds along the boundaries. The use of curved skin of vehicles as a load

bearing member has similarly revolutionalized the construction of railway

carriages and aircrafts. In the construction of all kinds of spacecraft, the

idea of a thin but strong skin has been used from the beginning.

(v) Composite Construction: The introduction of fiberglass and similar

lightweight composite materials has had a great impact on the

construction of vehicles ranging from boats, racing cars, fighter and

stealth aircraft, and so on. The exterior skin can be used as a strong

structural shell.

Miscellaneous Examples: Other examples of the impact of shell structures include

water cooling towers for power stations, grain silos, armour, arch dams, tunnels,

submarines, and so forth.

1.1.1 Thin Shell

Thin shells are shell structures that have h« R, where h is the shell thickness and

R the mean shell radius, h is small compared with its other dimensions and
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compared with its principal radius of curvature. Middle surface of thin shells is the

surface that bisects the shell. It specifies the form of this surface and the thickness

h at every point. Thin shells are considered form resistant structures, as they resist

loads by virtue of their shape. It will not function if flat, and carry loads

predominantly through in-plane stresses rather than by bending, granted that thin

shells bend as well as compress.

1.1.2 Classification in Terms of Thickness Ratio

Shell mathematical models can be classified in terms of the ratio of the thickness to

a characteristic dimension:

• Very thick: 3D effects

• Thick: stretching, bending and higher order transverse shear

• Moderately thick: stretching, bending and first order transverse shear

• Thin shells: stretching and bending energy considered but transverse shear

neglected

• Very thin shells: dominated by stretching effects. Also called membranes.

The main difference from flat plates is that the determination of characteristic

dimensions is more complex.

1.1.3 Closed and Open Shell

Before describing the main body of the theory it is useful to discuss quantitatively

an important practical point that state that closed box is rigid, whereas an open box
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is easily deformable for example aluminum can easily be squashed far more easily

after the ends have been removed . In practice, it is not possible to make

completely closed structural boxes. In a ship for example, there will be various

cutouts in the deck for things such as hatches and stairways. It is sometimes

possible to close such opening with doors, hatch covers that provide continuity. A

more extreme example is provided by shell roofs in general. Here the shell is

usually very open, being merely a cap of a shell, and the provision of adequate

edge rips, together with suitable supports, is of crucial importance. A main objective

in the design of shell roofs is to eliminate those aspects of behavior that spring from

open nature of the shell. The effect of small cutouts on the overall rigidity of a shell

may be trivial; the effect of a large cutout can be serious.

1.1.4 A Simple Geometric Approach

The notion that a closed surface is rigid is well known in the field of pure Euclidean

geometry. There is a theorem of Cauchy which states that a convex polyhedron is

rigid. The concept of rigidity is, of course, hedged around with suitable restrictions,

but will be an obvious one to anybody who has made cardboard cutout models of

polyhedral. It is significant that the qualifier convex appears in the theorem.

Although it is possible to demonstrate by means of simple examples that some non

convex polyhedral (that is, polyhedral with regions of non-convexity) are rigid, it is

also possible to demonstrate special cases of non-convex polyhedral which are not

rigid, and are capable of undergoing infinitesimal distortions at least. This is a
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accurate results only for very thin shells, and also we consider the simply supported

boundary condition which is most commonly used in practical applications.

1.4 Motivations/Significance of the Study

The motivations for this study come about from growing number of applications

involving shell models for which explicit solutions are typically unavailable. The

problems of nonlinear vibration of shell have received considerable attention but not

sufficient enough as many questions await complete clarifications. The sources of

the nonlinearities in the governing equations may be geometric, inertial, material, or

any combination. The geometric nonlinearity stems from nonlinear strain

displacement relations, the inertial nonlinearity may be caused by the presence of

concentrated or distributed masses, and the material nonlinearity occurs when the

stresses are nonlinear functions of the strain. It is largely for this reason that the

subject of shell structures generally is a difficult one.

1.5 Methodology

We consider the approximation of the model equation using a regular perturbation

technique, where a small perturbed parameter 8« 1 which emerges naturally by

introducing the dimensional quantities, is used to reduce the nonlinear equation

and thereby solving the resulting linear equation analytically. Hence we obtain the

analytical approximations both for free and forced vibrations of the cylindrical shell

that reveal the essential dependence of the exact solution on the parameter in a
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more satisfactory way. Stability of shell was also analyzed; were the initial

imperfection was taken into consideration.

1.6 Layout of Thesis

The first chapter is an introduction; it introduces the concept of shells, the aims and

objective of the study, the methodology adopted are all explained in this chapter.

Chapter two is on literature review about relevant previous works carried out on

shell structures. Mathematical review was also included were various methods of

solving Partial Differential Equation both analytical and numerical approaches were

highlighted and discussed. The semi analytic method Perturbation method which is

also the approach used for the study was also discussed.

Chapter three the governing differential equation for the system was stated. The

solutions of both free/forced vibration of the cylindrical shell were obtained. The

stability of the cylindrical shell with or without initial imperfection was also analyzed.

Chapter four, deals with the numerical simulation of the results obtained in last

chapter (chapter three). Graphs were plotted to show the effect of various

parameters on the amplitude of vibration.
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Finally, Chapter five gives discussion of the results obtained, conclusions on the

present study and recommendations for future research.

Additionally, there is an appendix providing results of some terms in the solution.

1.7 Definition of Terms

I. Large Amplitude: in context of shell theory large amplitudes signify

amplitudes exceeding the shell thickness, or of several times. The shell

thickness, which in other context may still be considered to be small.

II. Middle Surface: The surface that bisects the shell is called the middle

surface.

iii. Damping:Retardation of oscillatory motion due to an opposing medium

iv. Resonance:Is a technical term that describes the sudden amplification of

amplitude of vibration when the frequency of oscillation of the driving unit

approaches the oscillating unit

v. Buckling: Is the phenomenon that accounts for when the inplane loads

becomes compressive, upon attaining certain discrete values, these

compressive loads do result in producing lateral displacement, thus, there

does occur a coupling between inplane loads and lateral displacement

10



vi. Stress: Field created by a force on a plane of body

vii. Strain: Displacement caused by stress field

viii. Rotary Inertia: The reluctance of a body to start circular motion

ix. Rigidity: The resistance of a body to deform on application of stress

11



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Review of Previous Related Works

A number of non-linear governing equations have been proposed for the dynamic

response of shells. They include the theories of Donnell (1934), Sanders (1963)

and Reissner (1955).The main differences among these theories are the

approximations used in relating the strains and curvatures to the displacements.

Donnell's theory is the most widely used of all these theories. Donnell (1934)

established the nonlinear theory of circular cylindrical shells under the simplifying

shallow-shell hypothesis. Due to its relative simplicity and practical accuracy, this

theory has been widely used. The most frequently used form of Donnell's nonlinear

shallow-shell theory (also referred to as Donnell-Mushtari-Vlasov theory) introduces

a stress function in order to combine the three equations of equilibrium involving the

shell displacements in the radial, circumferential, and axial directions into two

equations involving only the radial displacement Wand the stress function F.

fig. 2.1 showing the shell coordinates and the geometry
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Evensen (1963) noted in his experiments that the nonlinearity in closed shells is of

the softening type and weak. Evensen and Fulton (1967) used Donnell's nonlinear

shallow-shell theory, but with a different form for the assumed flexural displacement

w, involving more modes. Specifically, he included the companion mode in the

analysis, as well as an axisymmetric contraction having twice the frequency of the

mode excited:

W = [Amn(t)CosnO +Bmn(t)SinnO]Sin(mnxl L)
+(n2 I 4R)[Amn(t)+ Bmn(t)]sin "tm nx] L)

2.1

where n is the circumferential wave number, m is the number of axial half-waves,

Amn(t) and Bmn(t) are two time functions associated to the driven and companion

mode, respectively. Evensen's assumed modes are not moment-free at the ends of

the shell, as they should be for classical simply supported shells, and the

homogeneous solution for the stress function is neglected; however, the continuity

of the circumferential displacement is exactly satisfied. Evensen studied the free

vibrations and the response to a modal excitation without considering damping and

discussed the stability of the response curves. Mayers and Wrenn (1967) analyzed

free vibrations of thin, complete circular cylindrical shells. They used both Donnell's

nonlinear shallow-shell theory and the Sanders-Koiter nonlinear theory of shells.

Their analysis is based on the energy approach and shows that non-periodic (more

specifically, quasiperiodic) motion is obtained for free nonlinear vibrations. In their

analysis based on Donnell's theory, the same expansion introduced by Evensen,

without the companion mode, was initially applied; the backbone curves (pertaining

13



to free vibrations) of Evensen were confirmed almost exactly. A second expansion

with an additional degree of freedom was also applied for shells with many axial

waves; finally, an expansion with more axisymmetric terms was introduced, but the

corresponding backbone curves were not reported. In their analysis based on the

Sanders-Koiter theory, an original expansion for the three shell displacements (i.e.,

radial, circumferential, and axial) was used, involving seven degrees of freedom.

However, only one term was used for the flexural displacement, and the

axisymmetric radial contraction was neglected; axisymmetric terms were

considered for the in-plane displacements. The authors found that the backbone

curves for a mode with two circumferential waves predict a hardening-type

nonlinearity which increases with shell thickness. Dowell and Ventres (1968) used a

different expansion and approach in order to satisfy exactly the out-of-plane

boundary conditions and to satisfy on the average the in-plane boundary conditions.

They studied shells with restrained inplane displacement at the ends and obtained

the particular and the homogeneous solutions for the stress function. Their

interesting approach was followed by Atluri (1972) who found that some terms were

missing in one of the equations used by Dowell and Ventres (1968); recently,

Dowell et al (1998) corrected these omissions. The boundary conditions assumed

both by Dowell and Ventres and by Atluri constrain the axial displacement at the

shell extremities to be zero, so that they are different from the classical constraints

of a simply supported shell (zero axial force at both ends). Atluri (1972) found that

the nonlinearity is of the hardening type for a closed circular cylindrical shell, in

14



contrast to what was found in experiments. The axisymmetric term used by Dowell

and Ventres and Atluri in their mode expansion is a sine in the axial coordinate

(specifically, it is the first axisymmetric mode of linear vibrations) and has an

independent time variation, i.e.

W = [Amn(t)CosnB + Bmn(t)SinnB ]sin(mnx I L)
+ [Amo(t)]sin (mnxl L)

2.2

Their approach was criticized by Evensen (2000) because it gives a hardening-type

result; he pointed out that satisfaction of continuity of the circumferential

displacement on the average is not a good enough approximation, in view of its

importance in nonlinear vibrations. Amabili et al (2000) showed that at least the first

and third axisymmetric modes (axisymmetric modes with an even number of

longitudinal half-waves do not give any contribution) must be included in the mode

expansion (for modes with a single longitudinal half-wave), as well as using both

the driven and companion modes, to correctly predict the trend of nonlinearity with

sufficiently good accuracy: Leissa and Kadi (1971) studied linear and nonlinear free

vibrations of shallow shell panels, simply supported at the four edges without in-

plane restraints. Panels with two different curvatures in orthogonal directions were

studied. This is the first study on the effect of curvature of the generating lines on

large-amplitude vibrations of shallow shells. Donnell's nonlinear shallow-shell

theory was used in a slightly modified version to take into account the meridional

curvature. A single mode expansion of the transverse displacement was used. The

Galerkin method was applied; the compatibility equation was exactly satisfied, and
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in-plane boundary conditions were satisfied on the average. Results were obtained

by numerical integration and non-simple harmonic oscillations were found. For

cylindrical and spherical panels, phase plots show that, during vibrations, inward

deflections are larger than outward deflections, as previously found by Reissner

(1955).Chen and Babcock (1975) used the perturbation method to solve the

nonlinear equations obtained by Donnell's nonlinear shallow-shell theory, without

selecting a particular deflection solution. They solved the classical simply supported

case and studied the driven mode response, the companion mode participation,

and the appearance of a travelling wave. A damped response to an external

excitation was found. The solution involved a sophisticated mode expansion,

including boundary layer terms in order to satisfy the boundary conditions. They

also presented experimental results in good agreement with their theory, showing a

softening nonlinearity. Regions with amplitude-modulated response were also

experimentally detected. Radwan and Genin (1976) derived nonlinear modal

equations by using the Sanders-Koiter nonlinear theory of shells and the Lagrange

equations of motion, taking into account imperfections. However, the equations of

motion were derived only for perfect, closed shells, simply supported at the ends.

The nonlinear coupling between the linear modes, that are the basis for the

expansion of the shell displacements, was neglected. As previously observed, this

single-mode approach gives the wrong trend of nonlinearity for a closed circular

shell. The numerical results give only the coefficients of the Duffing equation,

obtained while solving the problem Harari (1976) used a perturbation method to
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study the nonlinear equations of motion of shallow shells and plates. Applications

are given only for plates and no numerical results are presented Nayfeh and Raouf

(1987) studied vibrations of closed shells by using plane-strain theory of shells and

a perturbation analysis; thus, their study is suitable for rings but not for supported

shells of finite length. They investigated the response when the frequency of the

axisymmetric mode is approximately twice that of the asymmetric mode (two-to-one

internal resonance). The phenomenon of saturation of the response of the directly

excited mode was observed. Raouf and Nayfeh (1990) studied the response of the

shell by using the same shell theory previously used by Nayfeh and Raouf (1987),

retaining both the driven and companion modes in the expansion, finding

amplitude-modulated and chaotic solutions. Only two degrees of freedom were

used in this study; an axisymmetric term and terms with twice the number of

circumferential waves of the driven and companion modes were obtained by

perturbation analysis and added to the solution without independent degrees of

freedom. The method of multiple scales was applied to obtain a perturbation

solution from the equations of motion. By using a similar approach, Nayfeh et al

(1991) investigated the behavior of shells, considering the presence of a two-to-one

internal resonance between the axisymmetric and asymmetric modes for the

problem previously studied by Nayfeh and Raouf (1990).Chiba (1993) studied

experimentally large-amplitude vibrations of two cantilevered circular cylindrical

shells made of polyester sheet. He found that responses of almost all modes

display a softening nonlinearity. He observed that for modes with the same axial
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wave number, the weakest degree of softening nonlinearity can be attributed to the

mode having the minimum natural frequency. He also found that shorter shells have

a larger softening nonlinearity than longer ones. Travelling wave modes were also

observed. Ganapathi and Varadan (1996) used the finite element method to study

large-amplitude vibrations of doubly-curved composite shells. Numerical results

were given for isotropic circular cylindrical shells. They showed the effect of

including the axisymmetric contraction mode with the asymmetric linear modes,

confirming the effectiveness of the mode expansions used by many authors, as

discussed in the foregoing. Only free vibrations were investigated in the paper,

using Novozhilov's theory of shells. A four-node finite element was developed with

five degrees of freedom for each node. Ganapathi and Varadan also pointed out

problems in the finite element analysis of closed shells that are not present in open

shells. The same approach was used to study numerically laminated composite

circular cylindrical shells. Selmane and Lakis (1997) applied the finite element

method to study free vibrations of open and closed orthotropic cylindrical shells.

Their method is a hybrid of the classical finite element method and shell theory.

They used the refined Sanders-Koiter nonlinear theory of shells. The formulation

was initially general but in the end, to simplify the solution, only a single linear mode

was retained. As previously discussed, this approximation gives erroneous results

for a complete circular shell. In fact, numerical results for free vibrations of the same

closed circular cylindrical shell, simply supported at the ends. Amabili et al (1998)

investigated the nonlinear free and forced vibrations of a simply supported,
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complete circular cylindrical shell, empty or fluid-filled. Donnell's nonlinear shallow

shell theory was used. The boundary conditions on the radial displacement and the

continuity of circumferential displacement were exactly satisfied, while the in-plane

constraints were satisfied on the average. Galerkin projection was used and the

mode shape was expanded by using three degrees of freedom; specifically, two

asymmetric modes (driven and companion modes), plus an axisymmetric term

involving the first and third axisymmetric modes (reduced to a single term by an

artificial constraint), were employed. The time dependence of each term of the

expansion was general. Different axial constraints were imposed at the shell ends.

Coupling with an in viscid fluid was considered. Solutions were obtained both

numerically and by the method of normal forms. Numerical results were obtained

for both free and forced vibrations of empty and water-filled shells. Vol'mir and

Ponomarev (1973) studied the nonlinear response of orthotropic circular cylindrical

shells subjected to (i) a time-varying axial load (constant load plus harmonic

component) plus a static external pressure and (ii) a harmonic external pressure

and a static axial load. They used Donnell's nonlinear shallow-shell theory and a

mode expansion involving three terms: one asymmetric and two axisymmetric. In

particular, the first axisymmetric term is analogous of that used by Evensen and the

second one is just a constant radial displacement of the shell. Continuity of the

circumferential displacement was satisfied. The system was reduced to one of a

single degree of freedom and the equation of motion shows nonlinearity, a

nonlinear damping coupled to the radial displacement w, and a quadratic term
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coupled to the radial accelerations. Results show both hardening and softening

nonlinearity, depending on the system parameters. Linear stability of the Mathieu

equation was also investigated. Nagai and Yamaki (1978) studied circular

cylindrical shells subjected to compressive axial periodic forces (constant force plus

harmonic load) by means of Donnell's nonlinear shallow-shell theory. The

superposition of an unperturbed axisymmetric vibration of the shell and an

asymmetric incremental deformation was assumed. Results show that the shell has

generally bounded solutions for the radial displacement and the unperturbed

axisymmetric vibration is stable. However, under specific axial forces, having

specific constant and variable amplitude and a particular frequency, the shell can

become unstable. The stability was studied for different shell characteristics and

boundary conditions. Nonlinear vibrations of shells of revolution under constant plus

harmonic loads were studied by Gotsulyak et al (1982) using a perturbation

approach. The method was applied to shallow spherical shells under uniformly

distributed constant plus harmonic loads. Results show that a critical load value

gives a bifurcation point, from which a branch, corresponding to a non-axisymmetric

solution, emerges. Popov et al (1998) investigated large-amplitude vibrations of

complete, infinitely long circular cylindrical shells with axially periodic deformations,

excited by an axial force (constant plus harmonic load). Donnell's nonlinear

shallow-shell theory was utilized. The equations of motion were obtained by using

an energy approach, including dissipation. Discretization was obtained by using a

mode expansion with four degrees of freedom, capable of describing the well-
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known diamond pattern of buckled shells, but neglecting the companion mode.

Moreover, some results were obtained with a reduced expansion. The bifurcation

analysis and the study of stability under a harmonic axial load were performed, with

models having one or two degrees of freedom. Gonc.alves and Del Prado (2000)

investigated the nonlinear response of infinitely long circular cylindrical shells with

axially periodic deformations subjected to axial excitations (constant force plus

harmonic load). They found that the constant axial force necessary to reach

instability must be lower than the static critical load for the softening character of the

post-buckling response. Donnell's nonlinear shallow-shell theory was used and the

'solution was obtained by Galerkin projection. Both a simple two-mode expansion of

the flexural displacement and a refined 18-mode expansion were used; both of

them neglected the companion mode. Jumps to the bifurcated equilibrium position

under excitation were found, and the convergence of the solution with the number

of modes employed in the expansion was numerically verified. They also studied

the effect of axial pre-stress on the free vibration (backbone curve) of circular

cylindrical shells. It is seen that the axial load largely increases the softening-type

nonlinearity of the shell, especially when the critical load Per is approached. Vol'mir

et. al. (1973) studied nonlinear oscillations of simply supported, circular cylindrical

panels and plates subject to an initial deviation from the equilibrium position

(response of the panel to initial conditions) by using Donnell's nonlinear shallow

theory. Results were calculated by numerical integration of the equations of motion

obtained by Gerlerkin projection, retaining three or five modes in the expansion.

21



Mikhlin (2000) studied vibrations of circular cylindrical shells under a radial

excitation and an axial static load, using Donnell's nonlinear shallow-shell theory

with Gerlerkin projection and two different mode expansions. Amabili (2005) studied

Large amplitude (geometrically non-linear) vibrations of doubly curved shallow

shells with rectangular base, simply supported at the four edges and subjected to

harmonic excitation normal to the surface in the spectral neighbourhood of the

fundamental mode are investigated. Two different non-linear strain-displacement

relationships, from the Donnell's and Novozhilov's shell theories, are used to

calculate the elastic strain energy. In-plane inertia and geometric imperfections are

taken into account. The solution is obtained by Lagrangian approach. The non

linear equations of motion are studied by using (i) a code based on arc length

continuation method that allows bifurcation analysis and (ii) direct time integration.

Amabili et. al. (2003) experimentally studied large amplitude vibrations of a

stainless-steel circular cylindrical panel supported at four edges. The nonlinear

response to harmonic excitation of different magnitudes in the neighborhood of

three resonances was investigated. Experiments showed that the curved panel

exhibited a relatively strong geometric nonlinearly of softening type. Nayfeh (1983)

used a perturbation technique to reduce the eight-order vibration problem for

presstred, clamped cylindrical shells to an equivalent sixth-order membrane

problem. In the transformation to a membrane problem composite expansion are

utilized, uniformly over the length of the shell, to formed modified boundary

conditions that account for the effects of bending near the shells.
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From the above reviews it can be noticed that the solutions to the nonlinear partial

differential equation governing shell motion can be broadly classified into three

approaches: purely numerical methods, perturbation methods, and a combination of

the Galerkin procedure with either perturbation or numerical methods. Where

perturbation techniques were used in the literature, linear models were mostly

employed for the study where asymptotically closed form of solution were obtained,

also in most of these works the lateral distributed loading were not considered. We

considered in this project nonlinear cylindrical shell subjected to pulsating force,

moving force and the axial-in plane stress function as that of an equivalent lateral

distributed load, which involves solving the two partial differential equations

simultaneously.

2.2 Geometric Analysis of shell

Consider the position vector

where .t;(a.j3),f2(a.j3)andf3(a.j3)are continuous, singled valued functions. The

surface is determined bya and j3 uniquely. a and j3 are called curvilinear

coordinates. u, v and ware unit vectors in the Cartesian coordinate system.

Orthogonality is addressed as

ar ar. d t i-.- = 0 Inner pro uc ISzero
aa aj3

The distance between (a.j3)and(a+da.j3+dj3)is
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ar ards= -da +-djJ = 0
aa ajJ

The scalar product of ds with itself is

Where A and B are called Lame's parameters or measure numbers. The formula

shown above is the first quadratic form of the theory of surfaces.

• Gaussian Curvature

where r, and ry are the principal radii of curvature

- k > 0: Synclastic shells, i.e., spherical domes and elliptic paraboloids.

- k = 0: (either-, or ry is zero): Single-curvature shells, i.e., cylinders and cones.

- k < 0: Anticlastic shells, i.e., hyperbolic paraboloids and hyperbolas of

revolution.

• Stress Resultants and Stress Couples of Cylindrical Shells
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fig 2.2 showing stress resultant of a cylindrical shell

statically indeterminate.

In most cylindrical shells. u,will be small andQx will be small also Mxo,Mexare

• Classifications of Shells

Oral (2004) classifies shells as follows:

i. LLong shells - ~ 2.5
r
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Line loads produce significant magnitudes of M()and Q(} membrane forces

become insignificant. Stresses can be estimated using the beam theory.

ii. Intermediate shells 0.5 ~ L < 2.5
r

III. Short shells L < 0.5
r

The line loads produce internal forces generally in the region near the longitudinal

edge. Greater part of the shell behaves with membrane value.

Beam Theory for long cylindrical shells

• For long shells the stresses can be estimated closely by beam theory. The

shell is considered as a beam of a curved cross section between end

supports.

• Assumption: relative displacements within each transverse cross section are

negligible.

Membrane theory

• For a certain class of shells which the stress couples are an order of

magnitude smaller than the extensional and in-plane shear stress resultants,

the transverse shear stress resultants are similarly small and may be

neglected in the force equilibrium.

• The assumption is valid only if at least one radius of curvature is finite. (Flat

plates are excluded from resisting transverse loading in this manner.)
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• The shell may achieve force equilibrium through the action of inplane forces

alone. Hence, the state of state of stress in the shell is completely determined

by equations of equilibrium i.e., to shell is statically determinate.

• The boundary conditions must provide for those shell edge forces which are

computed from the equations of equilibrium. The boundary conditions must

also [permit those shell edge displacement (translation and rotations) which

are computed from the forces found by the membrane theory.

2.3 Partial Differential Equation

A partial differential equation is an equation relating an unknown function (the

dependent variable) of two or more variables with one or more of its partial

derivatives with respect to those variables. The order of the highest derivative is

called the order of the equation.

The equation

A(x,y)uxx+ B(x,y)uxy+ C(x,y)uyy+ O(x,y)ux+ E(x,y)uy+ F(x,y)u + G(x,y) = /(x,y) __ 2.3

eqn. (2.3) is the general second order linear Partial differential equation in two

independent variable. If /(x, y) = 0 then (2.3) is homogeneous else is non-

homogeneous.

2.3.1 Linear and Nonlinear Partial Differential Equations

A POE is linear if the dependent variable and its derivatives appear in linear

combination. When the POE is not linear, a distinction is made between so-called
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quasilinear POEs and Fully Nonlinear POEs. The former is defined as an equation,

in which the highest derivative is still linear, but not necessarily the lower derivatives

or the dependent variable itself. For example:

Quasilinear: Uxx= Uyy+ Ut2 2.4

Fully nonlinear: Utt= uxx+ Uyy
2

TABLE 2.1: Elliptic, Parabolic, and Hyperbolic Second Order PDEs

Criteria Type of POE Example Properties

B2 - AC < 0 Elliptic Laplace equation Boundary Value
a2u + a2u = 0 Problem
ax2 ax2

B2 - AC = 0 Parabolic Fourier's equation
a2u au Mixed BV and IV

a-=- problemax2 at
B2 - AC > 0

Hyperbolic Wave equation Mixed BV and IV
2 a2u a2u problem or IV problem
c-=-ax2 at2

and the set criteria are as follows:

TABLE 2.2: Set Criteria in vector-matrix form

The Set is If the eigenvalues of detlA - ...tBI = 0

Elliptic Imaginary

Parabolic Real and identical

Hyperbolic Real and distinct
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2.3.2 Methods of Solving Partial Differential Equations

There are various methods of solving partial differential equation which can be

classified as analytic or numerical

(a)Analytical Methods

These methods produce exact and closed form solution of the partial differential

equation the following are among the most important;

(i) Separation of Variables/Superposition Methods

Suppose a solution of the form U{x, y, z, t)is sought for some partial differential

equation (expressed in Cartesian co-ordinate). If the product of the form can be

obtained.

U(x,y,z,t)= X(x)Y(y)Z(z)T(t) * 0 2.5

A solution of the form (2.5) is said to be separable in x, y, z and t seeking solution of

this form is called the method of separation of variables.

(ii) Laplace Transformation

If f{t )is a given function that is defined for all t > o. Then we multiply f{t) by

e-SI and integrate with respect to tfrom zero to infinity. Then, if the resulting integral

exists, it is a function of s, say F(s)(sbeing the Laplace parameter).
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00

F(s) = fe-sf J(t )dt
o

The function F(s) of the variable s is called the Laplace transform of the original

function J(t )and will be denoted by L(J)thus

00

F(S) = L(J) = fe-sf J(t )dt
o

2.6

The operator described, which yields F(s) from given J(t), is called the Laplace

transformation. The original function f(t)in eqn. (2.5) is called the inverse transform

or inverse of J(t )and it is denoted by L-' (F); that is J(t) = L-' (F)

(iii) Application of Laplace Transformation to Partial Differential
Equations

Laplace transformation is a very useful tool in the solution of certain class of initial

value problems and it is carried out as follows:

• The Laplace transformation with respect to one of the two or more variables

in the time domain, usually t is taken. This gives rise to an equation for the

transform of the unknown function. This is so since the derivatives of this

function with respect to other variable slip into the transformed equation. The

latter also incorporate the given boundary and initial condition.

• The ordinary differential equation is solved to obtain the transform of the

unknown function.
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• Applying the inverse transformation to the result, obtain the solution of the

given problem.

If the coefficient of the given equation does not depend on t, the transformation will

simplify the problem. This method is usually applied for IVPs.

(iv) Fourier Transformation

Given the equation

~ (2 rOO
fc(w) = ~; Jo f(x) coswx dx

Then lc(w) is called the Fourier Cosine transform of f(x).

Then f(x) is called the inverse Fourier Cosine transform of lc(w). The process of

obtaining the transform lc(w) from f(x) is called the Fourier Cosine

Transformation.

Also given the equation

~ (2 rOO
!sew) = ~; Jo f(x)sinwx dx

Then !sew) is called the Fourier sine transform of f(x).

ri rOO ~If f(x) = ~; Jo !s(w)sinwx dx
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Then [(x) is called the inverse Fourier Sine transform of !sew). The process of

obtaining the transform !sew) from [(x) is called the Fourier Sine Transformation.

Similarly given the equation,

few) = _1_ fOO [(x)e-iwx dw.J2ii -00

Then [(x)is called the inverse Fourier transform of few) and it is denoted by

i= F-1c!(w)). The process of obtaining the Fourier transform F([) =! from a

given [ is called Fourier transformation.

(v) Application of Fourier Transformation to Partial Differential
Equations

Fourier series are applied in the solution of partial differential equation in a way that

if the initial boundary data of problem is given on the positive half-plane (Right or

Left).The Fourier Cosine or Sine transformation may be appropriate but in case

where the initial boundary data are not given the Fourier transformation is used.

(b)Numerical Methods

The process of solving partial differential equation with its auxiliary conditions can

be reduce to a finite number of arithmetical calculation that can be carried out by

computer in an iterative procedure. Hence numerical methods are appropriate

schemes of solving partial differential equation. These include the following:

(i) Finite Difference

Finite difference consists of replacing each derivatives by a quotient.
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• Forward Difference Approximation

f{xi+J = f{xJ+ hf'{xJ+ ~; f"{XJ+ +s,

truncating the series after the first derivative yields

we then have

f'(x,) = f(X,.,j; f(x,) +o(h)

f{xi+J- f{xJis called the first forward difference and h is called the step size, that

is, the length of the interval (mesh) over which the approximation is made is termed

the forward difference because it is utilizes data at i and i + 1 to estimate the

derivative

• Backward Difference Approximation

The Taylors series can be expanded backward to calculate a previous value on the

basis of a present value as in.

f( x,_,) = f(x,) +hf'(x, )+~;1"(x,) + +R" 2.7

truncating this equation after the first derivative and rearranging yields
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f'(x,) = f(X,)~f(X,_,) +o(h) = V{'

where the error is O(h)and Vi; is referred to as the first backward difference.

• Central Difference Approximation

A third way to approximate the first derivative is to subtract equation (2.6) from the

forward Taylor's series expansion

f(x,.,)= f(x,)+hf'(x,)+ ~: r(x,)+ .

to yield

f(xH,) = f( x,_,)+ 2hf'(x, )+ ~: r(x,) + .

which can be solved for

f'(x,) = f(x'·')2~f(x,_,) + h: r(x,)+ .

Hence

2.8

eqn. (2.7) is centered difference representation of the first derivative. The Taylor's

series analysis yields the practical information at the centered difference is a more
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accurate representation of the derivatives. For example, if we have a step size

using a forward or backward difference, we would approximately halve truncation

error whereas for centered difference the error would be quartered.

• Relationship Between the Difference Operators

from the Taylors series expansion

f(x,.,)= f(x,)+ hf'(x,)+ :; r(x,)+ +R"

but in general fm (x;) =D" f'(x;)

hence

[
(hD) 2 (hD) 3

]f(x,+J = 1+ hD+ 2! + 3! + f(xJ+ R;

f(x" ,) = f(x, ) + hJ'(x, ) + ~: f"(x,) + + R"

where ehD =[l+hD+ (hD)2 + (hD)3 + ]+R
2! 3! n

but from shift operator f(x;+,) = Ef(x;)

we have [E - e'" lr(xJ = 0

since f(x,)"* 0 then E = ehD

also from the Taylors series expansion

f(x,_J = f(x, ) - hf'{xJ + :; f"{xJ + +R,
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[
(hD) 2 (hD)3 ]we also have f(x,_,) = 1- hD + 2! - 3! + f(xJ + Rn

f(x,_,) = e:" f(x,)

By definition forward difference operator is given as

rearranging we have !!:.f(x;) = [ehD -llr(x;)

The backward difference operator is given as

Vf(x,) = f(x,)- f(x;_J

Vf(x,) = f(x,)- «" f(xJ

V = 1_e-hD

The central operator is given as

( J

hD

similarly f x;_~ = e-2f(x;)
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(

hD hD Jtherefore If(xJ = e--:;- e---:;j(xJ

(

hD hD J
(j= e2-e 2

hence 0 = 2Sinh(h~ )

Accuracy of Finite Difference Methods

The Finite Difference formulas and their subsequent use in boundary problems

must assure accuracy in portraying the physical aspect of the problem that has

been modeled. The accuracy depends on consistency, stability and convergence as

defined below:

a. Consistency: That the finite difference procedure may in fact approximate

the solution of the Partial Differential Equation under consideration and not

the solution of some other POE. For example:

O(~t)+O(&y = T.E

Since the T.E ~ 0 as~t,(&)~ 0

The forward difference scheme is consistent with the original POE

b. Stability: A numerical scheme used for the approximation of a partial

differential equation is stable if the error remains bounded. Certain criteria

must be satisfied in other to achieve stability.
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c. Convergence: The departure of the forward difference approximation from

the solution of the POE at any grid point is known as the local discretization

error, e.

i.e. if u is the exact solution and v the forward approximation then,

e=u-v

The forward difference method is said to converge if e ~ 0 as the grid step

lengths tend to zero

(ii) Finite Element Method

In finite element methods difference equations are generated using approximate

methods with the piecewise polynomial solutions. The finite element methods

include weighted residual, least squares, partitions, Galerkin, moment and

collocation methods. The domain R is divided into finite number of non-overlapping

sub-domains called finite elements. Any regular or irregular network may be used

as finite elements. Generally the straight line segments are used for one

dimensional case, triangles, rectangles or elements with algebraic curves as

boundaries in the plane, and tetrahedron or hexahedron in three space dimensions

Okedayo (2008).

2.3.3 Choice of Method of Solution

The analytical method of solving a Partial Differential Equation requires that the

problem must be sufficiently idealized (linear) for techniques to be effective. For
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nore practical problems, either the boundary geometry or the governing equations

Ire simpler, and one must often be content with approximate solutions.

mong the methods of approximation, two are most important. Perturbation

nethods are powerful tool for getting analytical results. If however, the problem is

'ar from anything that can be solved exactly, strictly numerical methods via

discretization or subdivision into elements must be employed. In general, analytical

perturbation methods are much more effective in gaining a qualitative insight, while

numerical methods are good in producing quantitative information. Sometimes the

two can be mixed for studying small departures from a basic state that must itself

be solved numerically. The method employed in this work is the regular perturbation

technique

2.3.4 Perturbation Analysis

Perturbation methods are used when a small parameter (or a larger parameter) is

introduced in a given equation or data for the problem. Then the (assumed) solution

is expanded in a series of powers (or inverse powers) of the parameter and this

expansion is inserted into the equation and data for the problem. By equating like

powers of the parameter, a collection of problems results whose solution is

expected to be simpler than that of the given problem. The series expansion of the

solution converges or is expected to converge. Since only the first few terms in the

series are determined and the distinction between convergent and divergent

asymptotic series becomes irrelevant.
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Ne shall give a brief account of the analytical approach of perturbation method.

Perturbatlon methods are one of the most powerful tools for getting analytical

'esults .

.::>erturbationanalysis can be classified into two as follows:

(a) Regular perturbation

(b) Singular perturbation

2.3.5 Regular Perturbation Analysis

W consider a linear or nonlinear differential equation

L(u,c)=O 2.9

that depends (smoothly) on the small positive parameter e and problem for (2.9)

given over a bounded or unbounded spatial region G. If (2.9) is of elliptic type,

appropriate boundary condition are assigned on 8G or at infinity. If (2.9) is of the

hyperbolic or parabolic type, in addition to the boundary conditions assigned on 8G

or at infinity for all t >- 0 I initial data are given in Gat the time t = o. The boundary

or initial data may depend on e I but the boundary 8G for the present is assumed to

be specified independently of c.

The reduced or unperturbed problem associated with the problem for (2.9) is

obtained on formally setting c =0 and its data. That is, we consider the equation

L(u,O) = 0

With the reduced data obtained from the data for the given problem for (2.9). If the

reduced problem has a unique solution, then the given problem is called a regular
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ierturbation. If this is not the case, we have a singular perturbation problem Erich

1983). Generally speaking, if the reduced equation is of a different type or order

han the given equation, we have a singular perturbation problem. It may happen,

rowever, that the reduced problem can be solved even if the order or type of the

jiven equation is changed.

An introductory outline of the typical ideas and procedure of regular perturbations

given below by Okedayo (2001).

(i) Identify a small parameter. This is very important first step, which must be

taken by recognizing the physical scale relevant to the problem.

(ii) One then normalizes all variable with respect to this characteristic scale.

In the normalized form, the governing equations will display certain

dimensionless parameters of certain physical relevance to the problem. If

one of the parameters say e , is much less than unity, then & can be

chosen as the perturbation parameter.

(iii) Expand the solution as an ascending power of the small parameter. As an

example a power series s

2.10

where Un' (n = 1,2,3, ) is called the nth order term. Collect terms of

the same order in all governing equations and auxiliary conditions and get

perturbation equations at each order.
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(iv) Starting from the lowest order, solve the problem at each order

successively up to a certain order say O( e'";

(v) Substitute the results for Un' (n = 1,2,3, ) back into (2.10) to get the

final results which is accurate up to some described order o(&m )Example:

Let us examine the quadratic equation

u2 + e U-1 = 0 2.11

here e is much less than unity let us propose to find the solution as perturbation

ries

d substitute this into equation (2.11)

Expanding and collecting terms of equal powers, we get

(U~ -1)+e(2UoU1 +Uo)+e2(2UoU2 +U12 +UJ+ ... = 0

With the coefficient of each power of e equated to zero, a sequence of perturbation

equation is obtained of various orders.

0(&0 ):

0(&):

0(e2):

the lowest order solution is

U =+1o
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th this result higher order problems are solved successivety.

U1 =-Yz and

n this case the efficacy of the approximate result can be judged by comparing with

he exact solution

Clearly, this result confirms the perturbation series solution to the accuracy

calculated.

2.3.6 Singular Perturbation Analysis

In singular perturbation theory we are concerned with the study of partial differential

equation which contains a small parameter that multiplies one or more of the

highest derivative terms in the equations. Thus when that parameter is equated to

zero either the order or the type (or both the order and type) of the given equation is

changed. Generally, this means that a regular perturbation series solution proves

inadequate to handle the initial and/or boundary data for the given problem. It thus

becomes necessary to introduce boundary or initial layers where the solution of the

given problem undergoes a rapid transition from a form that satisfies all the data
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iven for the problem to a form represented by the perturbation series. Singular

rturbation theory is sometimes taken to encompass any problem where regular

erturbation theory is inadequate for any reason (see Aiyesimi(2007)) . This may

ot involve the presence of a small parameter multiplying the highest derivative, but

nay be due to the presence of secular terms that result in a non-uniformity of the

solution over an infinite region or the occurrence of a small parameter in the data

or the problem. Singular perturbation analysis requires the following steps.

(i) Diagnose the failure of the regular expansion check which of the original

assumptions is violated when failure occurs. Examine the quantitative nature

of the breakdown

(ii) Choose new terms that should be important near breakdown and start a new

perturbation analysis.

Example: Consider the following cubic equation

which can also be solved exactly. For a small e let us try the straightforward

expansion

Substituting this series into the equation we have

Equating equal powers of e yields the perturbation equations

U =1o
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UI =U~

U2 =3U~UI

Ihe situations are obviously

Uo = 1,U,= 1,U2 = 3

ence the final solution is

U=1+&+3&2 +0(&3)

e notice that the other two solutions of the original cubic equation disappear.

Hencewe seek a better expansion, which leads to a singular perturbation.

We may assume

U = X& -1/2 so that

The original cubic equation becomes

X&-1/2 = 1+ X3 &-1/2 2.12

Substituting the new expansion

X = Xo + &1/2Xp+CX2 + &3/2X3 + ... into (2.12) and collecting powers of e we get

the perturbation equations

0(&0 )

0(&1/2 )

0(&)

The solutions at successive order give

xo=(O,-l)
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-1
x =
I 3x2-1o

....pecific value can be obtained depending on the value of Xo

e.g. When Xo = -1

&1/2 3&
x=-l--+-+ ...

2 8

o that

1 3U = _& 1/2 __ +- & 1/2 +...
2 8
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CHAPTER THREE

.0 GOVERNING EQUATION AND SOLUTIONS

.1 Non-linear Shell Model Equation

he Donnell's non - linear shallow shell theory, gives the equation for transverse

ibration of a very, thin, circular cylindrical shell as

Eh3ere D = is the flexural rigidity, E is the Young's Modulus, v is the
12(1- v 2)

oisson's ratio, h the shell thickness, R the mean shell radius, p the mass density

the shell, c the damping coefficient and q the radial pressures applied to the

urface of the shell as a consequence of external forces. The radial deflection w is

sitive inward w = Ow ,W= a2; and F is the in plane stress function; F is definedat at

3.1.2

biharmonic operator is defined as
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Iso using Donnell's non-linear shallow shell theory, the middle surface strain

lisplacement relationships are obtained.

a~ fJv Ow Ow=--+-+---
xB RoB ax ax RoB

n-plane displacements are assumed to be infinitesimal, i.e. I c; 1« h,1 v 1« h

hereas w is of the same order of the shell thickness.

Solution of the Nonlinear Shell Model Equation

he biharmonic Operator

3.2.1

ubstituting eqn. (3.2.1) into (3.1.1) gives

3.2.2

introduce the following quantities length, 1- unit length, To - Time and

No - prestress, which has the unit of force and length. Hence
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= ul
w=> u=-
I

R
r=-

I

ere u, ~,r and r are all dimensionless quantities

Ow au
ax a~

1 a2u a4w 1 a4u
-=i a~2' ax4 =[3 a~4

I au a2w I a2u
To ar' at 2 To 2 a t: 2

In this thesis we will consider two cases: case 1 we neglect the radial pressure i.e.

q = 0 throughout due to free vibration and case 2 where q =I:- 0 for forced vibration.

Hence for the former, substituting the dimensionless quantities into eqn. (3.2.2) we
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1 [No a2f a2u 2No a2f a2u No a2f a2u]- ----------+---R2 t ' ae2 . ac;2 i ' ac;ae . ac;ae i ac;2 . ae2 3.2.3

earranging eqn. (3.2.3) we have

3.2.4

eqn. (3.2.4) is arranged to obtain

a4u a4u
ac;4 + 7] ac;2ae2

/4
a=-4'

R

2/2
here 7] =-2 '

R

No [2 thi t II h rt b . Ph . Ie = -- IS emerges na ura y as t e pe ur ation parameter. ysica Iy, thisDR2

means that the terms arising from the nonlinear behavior are now a perturbation of

the systems linear characterization. On formally setting s equal zero, we recover

of the linear system. This implies that regular perturbation can be

We now assume solution of the form

u = Um (c; ,T)Sin m e}
f = fm(c;)Sinme

3.2.6

Substituting eqn. (3.2.6) into (3.2.5) gives
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4U ( a 2U ( 2 )J 4 * au. a 2u .: SinmO+ 7] -----f- m SinmO + am umSinmB+c -m-SznmB+ f3----f-SznmBae; ae; aT aT

{
R d?f a2u df, ( au J d?f (2 )u }-& -SinmB--'" -m2Sin2mB.+ .--'" -2mCosmB-'" mCosmB-'" +SinmB--'" .-m Sinmil
I d~2 jill a~2 d~ a~ d~2 III

- 3.2.7

sqn. (3.2.7) was arranged to obtain

3.2.8

eqn. (3.2.8) gives

Seeking asymptotic expansion of the form

-3.2.10

Substituting (3.2.10) into (3.2.9) gives
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04 [ 2 ] 2 02 [ 2 ]
~ 4 Umo + &Um I + & Um2 +.......... - 17 m a~2 Umo + &Um I + & Um2 + .

• a [ 2] 02 [ 2] 4 [ 2]I-C- Umo + &UmI + & Um2 + ... + J3 -2 Umo + &UmI + & Um2 + .... + a m Umo + &UmI + & Um2 + ....or or

{
R d2 [ 2 ] 2. ([ 2 ]e --2 fmo +&fml +& fm2 + -m Sinmil I.; +&fml +& fm2 + .
I d~

8', [umo + "Uml + "'~m' + ··········1+[umo + "Uml + "'Urn' + ··········1:;, [/mo +" J.. + ,,' 1m,+ 1J
2m2 Cos2 me ( d [ 2 J a [ 2 ]]}. - i.; + &L; + & fm2 + - umo + &Uml + & Um2 + - 3.2.12

Sin mil d~ a~

ubstituting eqn. (3.2.1) into the equation of the inplane stress function eqn. (3.1.2)

-3.2.13

substituting the dimensionless quantities we obtain

-3.2.14

-3.2.15

earranging eqn. (3.2.15) we have

-3.2.16
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2/2 14
Vhere 7] = -2 and a = -4

R R

4 2 ( J2Ehl = Nol !2_ 12(1-v2)
"I R2 DR2 No 0

,qn. (3.2.16) now becomes

-3.2.17

here p, ~ (: r12(1- v')

n formally setting e equal zero in eqn. (3.2.17), the order of the linear equation is

ot lost. This implies that regular perturbation can also be applied.

assuming the solution of the form

U = Urn(~, T )SinmB}
f = frn(~)SinmB

3.2.6

Substituting eqn. (3.2.6) into eqn. (3.2.17) we have

3.2.18

Rearranging 3.2.18 gives
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- 3.2.19

Seeking asymptotic expansion of the form

3.2.10

Substituting eqn. (3.2.10) and eqn. (3.2.19) we have

equating coefficient of equal powers of e in eqn. (3.2.12) and eqn. (3.2.20) we

have

.Order (&0)

3.2.21

3.2.22
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Order (& )

3.2.1 Order (&0) Solution for Radial Deflection umo(~,t)Free Vibration

eqn. (3.2.21) is the order (&0) for the Radial Displacement

3.2.23

-3.2.24

3.2.21

3.2.25

eqn. (3.2.25) is chosen to satisfy the simply supported end boundary conditions

a2umo (0,r) = 0
a~2

Substituting eqn. (3.2.25) into eqn. (3.2.21) we obtain

(kntU; (r)Sinkn~ + 217m2 (kn? Uo(r)Sinkn~ +c· dUo (r) Sinkrd; + fJ d2U02(r) Sin kn~
d t d t

Rearranging eqn. (3.2.26) we have
55
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eqn. (3.2.27) is the free motion of a mass

solving eqn. (3.2.27) we let Ua (r) = Ae'lT

2 *f3A +c A+Z = 0

The solution depends on the nature of the roots. For vibration to occur then

the general solution is

c
--r

U;(r) = e 2P (AkCos ¢r +BkSin¢r)

Where ¢= ~ 4/3z - (c*t
2/3
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ence

c--,
Umo(c;, r) = e 2fJ (AkCos ¢r +BkSin ¢r)Sin knc; - -3.2.28

Ak and B, are constants to be obtained by the given initial conditions.

Umo(c;,0) = 0

oUmo (c;,O)----"~----'- = Tor 0

where t:0 is the velocity at initial equilibrium position

There is no initial displacement hence at umo(c;,O) = 0 it implies that

then,

c--,
umo(c;,r)=e 2fJ (BkSin¢r)Sinknc;

From the second condition we have

B, = 2ro [l-Coskn]
¢kn

We finally obtain

C
co 2r --,

umo(c;,r)= 2:-0[l-Coskn]e 2fJ Sin ot Sinkrd;
k=1 ¢kn
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3.2.2 Order (50) Solution for the Inplane - Stress Function fmo(~)

3.2.22

Eqn. (3.2.22) is the order (5°) problem for inplane stress function

Eqn. (3.2.22) can be rewritten as

d 4 fmo _ 2( 1m) 2 d 2 fmo + (I m) 4 {" = 0
d{,4 R ae R .l tno

3.2.30

We let J, = AeJ1~ -mo -3.2.31

Substituting (3.2.31) into (3.2.30)

l m l m l m l m
11-- -----
r-R'R' R' R

The general solution is given as

-3.2.32

The constants are to be obtained using the boundary condition
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rom the given boundary condition the solution can generally be represented by the

series expansion

a;)

frno (r) = IBpSin P1r~
p=l

3.2.33

For all values of p

Substituting eqn. (3.2.33) into eqn. (3.2.30) we have

since Sinpnt; is arbitrary chosen forOs; ~ s; 1

and Bp :f. 0then

3.2.3 Order (c) Solution for the Radial Deflection Urnl (~, r) Free Vibration

-3.2.23

Eqn. (3.2.23) is the order (c) problem substituting the values of
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Where

H(~)= - R IBp(p7rY Sin p rd;
I p=l

To solve eqn. (3.2.34), the function Um1 (~, r) can be expressed as a series of Eigen

function

00

Uml(~,r)= Lbk(r)(h(~)
k=l

3.2.35

V k (~) is chosen so as to satisfy the simply supported boundary conditions

Vk (~)I~=O,l= 0 and

Hencewe let

The Eigen function is now given by

where Ck remain arbitrary constant chosen to normal'



THEOREM 1.1

Let {¢n(~)} be a countably infinite orthonormal set in a Hilbert space H. Then the

00 00 2

series Ian¢n (~) , where an are scalars, converges if and only if the series Ilanl
n=l n=l

converges

Proof:
00

if Ian¢n(~) converges,
n=l

00

set u = Ian¢n(~)
n=l

Then from Bessel's inequality

n=l

But every bounded series of positive numbers converges, so necessity is proved.

00 2

Next, let Ilanl converge.
n=l

00

Put an = Iak¢k(~)
k=l

n 2

then Ilan - am IIH2 = Ilak I
k=m+l

i.e. {¢n(~)} is Cauchy sequence in H.

Since H is complete

{¢n(~)} is convergent, as asserted

Hence the sufficiency and thus end of proof.

61



from eqn. (3.2.34) we can take

co

G(~) =I dk(/Jk (~)
k=1

00

H(~) = Laklpk(~)
k=l

substituting eqn. (3.2.37) into (3.2.34)

and since lpk(~) *- 0then

-3.2.38

equation (3.2.38) is the forced motion of a mass

where

solving homogeneous part of eqn. (3.2.38) we have

3.3.39
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The solution depends on the nature of the roots. For vibration to occur then

(c' y - 4/3z -< 0

A = [=i_ ± i~ 4/3z - (c• )2 J
2/3 2/3

the general solution is obtained as

c--,
bk(rl =e 2P (AkCos¢r+BkSin¢rr) 3.2.40

Where ¢= ~4/3z - (c' y
2/3

We seek for the solution of the non homogeneous part (particular integral) by the

way of variation of parameter. We assume particular integral of the form

3.2.41

cere {j)=--

2/3

C; em, Coset +C~e(JJTSinot = 0 3.2.42

3.2.43
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, -c~SinotC1 = _ _::______.:__
Cos ot

ubstituting (3.2.44) into (3.2.43) and rearranging we obtain

d .C' = _k Sin'Idn:
2 2¢ If'

. ·1 I C' _ - C;Cos¢rIml ar y 2 - -
Sinot

Substituting (3.2.46) into (3.2.43) and rearranging we have

dC1 = _k (Sin2¢r - 2r)
4¢

Hence we have

C ( J1 --, d a
bk{r) =-e 2P A Cos ¢r+B Sin ¢r __ k 2rCos ¢r +_k

4 ¢ z

e will obtain the constants A and B subject to the initial condition
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3.2.44

3.2.45

3.2.46

3.2.47

3.2.48

- 3.2.49



rom the first condition

-4aA= __ k

Z

For the second condition we obtain

We now have

C (( • J J1 - 2// 4 c ak dk. 4ak d, akbk(r)=-e - ro---+- Szn ¢r--Cos ¢r--2rCos ¢r +-
4 ¢ 2f3 z 2¢ z ¢ z -3.2.50

Finally

{ C(( · J J}1 --T 4 cad 4a d auIl11(~,r)= ICk -e 2fJ - ro k +_k Sin ¢r__ kCos ¢r--k Zt Cos ¢r +___!_ Sinkrd;
k=l 4 ¢ 2f3z 2¢ z ¢ z

3.2.51

To compute Ck from orthonormal sets

I

I¢k(~)¢m (~)d~ = {~ ~:: 0 ~ ~ ~ 1
o

ence

I I

I¢2k(~)d~ = Ic:v:(~)d~
o 0

Zr: k - 3.2.52
kst =Coskx Sinkn
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.2.4 Order (s)Solution for the Inplane - Stress Function fml (C;)

- 3.2.24

qn. (3.2.24) is the order (s) problem substituting the values of

OU 02U . th tiU ____!!!!!_ rna Into e equa Ion gives
Ina' Oc; , Oc;2

[
. ]2 [. ]2 2 2 C CfJ m COS me fJ kn --T --T

I . (2) e 2(1 Sin qrr Cos2 krcc;- fJl(krc?fJ2m2Sinme e 2(1 Sin ¢r Sin krd;
Sin mil

3.2.53

00 2r= I_o [l-Coskrc]
k=l ¢k7r

sing the Finite Fourier Sine transformation (FFST) of eqn. (3.2.53) subject to the

nditions

IIIl0) = !'nlO) = °

obtained
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3.2.54

Finally, on taking the inverse Fourier transform of L,(~)we have;

r:(~)=2I-1 {fJlRfJ2 (kn.y e- ;>Sin ¢n (fJ4)+ fJlm2 Cos.2 m(}(fJ2k1r r [e - ;>Sin ¢n]2 (fJs)
\1'=1fJ3 I Sinm ()

- 13,(k7r)2 132m2Sin m B ( e - ;>Sin ¢r }p6) }Sin \'f,,-~ -3.2.55

here

fJ - _ k Cos kn Sin Ij/n -Ij/ Sin kst Cos Ij/n
4 - n(k2 _1j/2)

fJ - _ 1j/2 - 2k21j/2Cos Ij/nCos(kn Y - 2lj/kSinlj/n Sin kn Cos kn + 2k2 Coslj/n
5 - 1j/.7Z{4k2_1j/2)

fJ - Ij/Sin kn Cos Ij/n - k Cos kn Sin Ij/n
6- n(k2_1j/2)
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3.2.5 Order (&0) Solution for Radial Deflectionumo (~, r)ForcedVibration

3.2.56

(a) We will first consider a case of Pulsating Pressure acting on the surface of

the shell

fig 3.1 force acting on a shell surface

Fromeqn. (3.2.2) when q "* 0, and expanding in power series of E we have

Substituting eqn.(3.2.57) into (3.2.56) we have

Jsing the Fourier Sine transform subject to the simply supported boundary

ondition

'82umo (0,r) = 0
ae

I

mO(~,r)= fUmoSinIf/Jr~d~
o
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-3.2.58

-3.2.59



Evaluating the integrals we obtain

rearranging eqn. (3.2.60) we obtain

Where 'II = 2r+l, r E Z

rearranging eqn. (3.2.61) we have

* 13
where fJ8 = ~, fJ9 = ao and fJo = ----

fJ fJ DfJ Sinmtl

-3.2.60

3.2.61

-3.2.62

~aking the Laplace transform of eqn. (3.2.62) subject to the initial condition we have

Evaluating eqn. (3.2.63) we have

Rearranging eqn. (3.2.64) we have

t::=: 2fJoPo [ Q]( 1 )fimo(n,r)= 2 r\2 2 fJ fJ
'lin s +~l. S + s 8 + 9
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-3.2.64
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3.2.66

esolving eqn. (3.2.66) into partial fractions we have for

a b1
F-----= +---
(s-a2)(s-a3) (s-a2) (s-a3)

'0. +b = 0 ~ a = -b

-3.2.67

-3.2.68

n other to obtain the Laplace inversion of equation (3.2.68) we shall adopt the

allowing representations:

3.2.69

3.2.70

70



Since ~mo(n;r)is expressed in a fairly simple way in terms of functions whose

Laplace transform are easily recognizable. Then the Laplace inverse of eqn.

.(3.2.70) is the convolution denoted by the integral Omolafe et. al. (2008)

T

ff;Cr-u)g(u)du , i=1,2
o

eqn. (3.2.70) now becomes

- 3.2.71

Evaluatingeqn. (3.2.71) we have

3.2.72

ffhe inverse Fourier sine transform is given by

mOen,r) = 2LUmO(n, r)Sin II/1r~
'1'=1 3.2.73

Substitutingeqn. (3.2.73) into (3.2.72) we have
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(b) We will also consider a case of moving force acting on the surface of the shell.

From eqn. (3.2.2) when q "* 0, and expanding in power series of E we have

3.2.56

3.2.75

Where qj (~, r) - is continuous moving force acting on the surface of the shell

Vi - the velocity and

8(~-vir) - Direc delta function which is defined as

("* v(r
(= v(r

Substituting eqn. (3.2.75) into (3.2.56) we have

3.2.76

sing the Fourier sine transform subject to the simply supported boundary condition

I

mO (~, r) = fUmoSinlflJr~ d~
o

-3.2.59

:valuating the integrals we obtain

()4 2 ( )2 4 \- * auIfIJr + 217m IfIJr +m a Jlmo + C __!!.l!!_ + taT

.arranging eqn. (3.78) we obtain

72



rearranging eqn. (3.79) we have

-3.2.79

* 13
Where fJs = ~, fJ9 = ao and fJo = ----

fJ fJ DfJ Sin mil

Taking the Laplace transform of eqn. (3.2.79) subject to initial condition we have

Evaluatingeqn. (3.2.80) we have

3.2.81

3.2.82

earranqinq eqn.(3.2.82) we have

3.2.83
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- /38 +~/382 - 4/39 - /38 - ~ /382 - 4/39where a2 = and a3 = _--'---___:___;____
2 2

resolvingeqn. (3.2.83) into partial fractions we have for

-3.2.84

3.2.85

In other to obtain the Laplace inversion of equation (3.2.85) we shall adopt the

following representations:

3.2.86

3.2.87

,ince v: (n,r) is expressed in a fairly simple way in terms of functions whose

.aplace transform are easily recognizable. Then the Laplace inverse of eqn.

.2.87) is the convolution denoted by the integral

;;(r-u)g(u)du , i=1,2

n. (3.2.87) becomes

- 3.2.88
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Evaluating eqn. (3.2.88) we have

3.2.89

The inverse Fourier sine transform is given by

UmO (n,r) = 2L umO (n, r)Sin 1f/1C~
'1'=1 3.2.90

Substituting eqn. (3.2.89) into (3.2.90) we have

-inallyeqn. (3.2.91) becomes
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3.3.2

3.3 Stability of the Circular Cylindrical Shell

p

L

rig3.2 axially-loaded cylindrical shell

('Ie tend to find under what loading condition, lateral deflection might occur due to

ixial load P. The buckling of the circular cylindrical shell under axially symmetric

)ading can be obtained by modifying equation (3.2.21) to have

4 - 2»; 4 P 7] m I
3-~-4 +a m »; = D 3.3.1

is chosen as a mode shape (buckled shape) which satisfies the simply supported

undary conditions of circular cylindrical shell.

bstituting eqn.(3.3.2) into eqn.(3.3.1) we obtained

3.3.3
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Since Sinkrd; is arbitrarily chosen for 0 < ~ < 1

and Ak "* 0 then

[k 4 4 4 P 17m2Z k 2 2] 01r +am + 1r = -
D

3.3.4

1- [ 4 4 4] 1P = -D k 1r + am 2 2 2 -
17 m Zk 1r

3.3.5

earranging (3.3.5)we have

3.3.6

or each value of k there is a unique buckling mode shape and a unique buckling

ad. The least load that buckles is where k = 1 hence we obtained

3.3.7

iJ.1 Buckling of the Shell with an Initial Imperfection

n. 3.3.1 can be modified to give

3.3.8

77



Substituting (3.3.9) into (3.3.8) we have

Since Sinkiti; is arbitrarily chosen for 0 < f, < 1

Hence

( ) BJ B2
»; f, = - D[ rc2 am' ] +- D[ 4rc2 am2] + .

- ---+--- - ---+----
P 17m2/ 17rc2/ P 17m2/ 174rc2/

The least load that buckles the structure occurs at k = 1 i.e.
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k < 1 it has no physical significance to the dynamics of the system.
I

The shell will either inelastically deform or strain harden or it will fracture. When
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CHAPTER FOUR

4.0 NUMERICAL SIMULATION

4.1 Numerical Simulation

Considering the solution of the order (£0) and order (s)and for different values of e

we employ the MAPLE 11 Mathematical computer software for the purpose of this

simulation. The displacement profiles of the shell are displayed graphically in what

follows demonstrating the effect of the, initial velocity at initial equilibrium stage,

mode number, damping parameter and external force (pulsating force and a moving

force) on the amplitude of vibration.

The material employ is the circular cylindrical shell, simply supported at the ends,

having the following dimensions and properties:1= O.2m, R=O.1m, h=O.247x10-3m,

E=71.02x109Pa, p=2796kg/m3 and v=O.31
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4.1.1 Computations for Free Vibration

450
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::J
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mode

Fig 4.1 Frequency of the structure over mode number m
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fig. 4.2 Response of the cylindrical shell to the effect of damping coefficient
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0.0

(a) (b)

0.02
0.0

(c)

fig. 4.3 Response of the cylindrical shell to the effect of damping coefficients in three
dimension (a) c=76 (b) c=236 (c) c=393
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U(~, 't)

0.00003

0.00002
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0~--~--r-~-- __--__--~--~--~--~-4
o 0.2

-- 'to=2.5 --

0.4 0.6 0.8 1.0
~

'to=1.5 -'to=41

fig. 4.4Response of the cylindrical shell to the effect of initial velocity at initial equilibrium
stage
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0.1
0.0

(a) (b)

(c)

fig 4.5 Response of the cylindrical shell to the effect of velocity at initial equilibrium stage
(a) To=1.5 (b) To=2.5 (c) TO=4
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-- m=4 -- m=.5 --- m=6 -- m=71

fig. 4.6 displacement profile for the cylindrical shell with different wave numbers
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(a)

0.1
0.0

(b)

(d)

fig. 4.7 displacement profile for the cylindrical shell with different wave numbers
(a) m=4, (b) m=5 (c) rn=6 and (d) m=7

(b)
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U(~,1:)
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......-~----------,
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-- 1:=0.003 -- 1:=0.005 -- 1:=0.0091

fig 4.8 time response of the free vibrating cylindrical shell
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fig. 4.9 mode shape profile of Inplane stress function
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4.1.2 Computation for Forced Vibration

0.8

0.6 f\U(~;t) /1\\0.4

0.2 "

0
0.10 0.20

-0.2 ~

-0.4

-0.6

-0.8

-- Po=1l50N -- Po=849N -- Po=565N I
fig. 4.10 response of forced vibrating cylindrical shell to different values of pulsating force
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fig. 4.11 response of forced vibrating cylindrical shell to different values of pulsating force
(a) po=565N/m2(b) po=849N/m2and (c) po=1150Nlm2
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fig. 4.12 time response of a forced vibrating cylindrical shell
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19 4.13 displacement profile with different mode index
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4.14 response of forced vibrating cylindrical shell to different values of moving force
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g. 4.15 response of forced vibrating cylindrical shell to different values of moving force (a)
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19.4.16 time response of a forced vibrating cylindrical shell subjected to a moving force
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fig. 4.18 Deformed shell shape for different values load at first mode

4.1.3 Computation for Stability
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. 4.19 Deformed shell shape for increase of load from zero to 525N
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fig. 4.20 Deformed shell shape for different values load at second mode
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CHAPTER FIVE

5.0 DISCUSSION OF RESULTS, CONCLUSION AND RECOMMENDATION

5.1 Discussion of Results

From the solutions i.e. eqn. (3.30) and eqn. (3.52) the axial-Inplane stress function

is that of an equivalent lateral distributed load as far as the lateral displacement u is

concerned. The solutions have some constant terms an oscillating (harmonic) factor

and a factor which exhibits an exponential decay away from the edge of the shell.

This decay in the lateral deflection due to edge stress couple or an edge transverse

shear resultants. Since the shape bending number is proportional to the derivatives

of the lateral deflections, each of these also decays away outwardly from the edge

of the shell.

igA.1 shows frequency plotted over the wave number it is observed that for each

mode number m there is a corresponding frequency of the system. In fig. 4.2 the

~ffectof different values of damping coefficients on the amplitude of vibration with

=1, T=0.01, and To = 1.5, as the value of the damping coefficients increases the

mplitude of vibration decreases. The displacements of damping coefficient in z

rection are reported in Figs. 4.3(a)-(c). It is observed that with the damping

efficient increasing, the risk of resonance will be sufficiently reduced. Fig 4A

ows the shell response to the effect of initial velocity at equilibrium stage with

0.01 and c=76 as the value of the velocity increases the amplitude of vibration

100

----------......



increases. The effect in z direction and the shell deformations are reported in figs.

4.5(a)-(c) it is observed that the nonlinearity is of the weak, softening type. The

response that is attained physically depends on the initial conditions.

Fig. 4.6 and figA.7 (a)-(d) shows displacement profile for the cylindrical shell with

different values of wave numbers with 1:=0.1, p=1 and k=1 it is observed that the

model is more accurate for values of m ~ 5 which conforms with the result of

Amabili (2005).

Fig 4.8 shows time response of the cylindrical shell, it is observed that amplitude

increases with time but dies out quickly due to the effect of damping.

Fig. 4.9 mode shape of inplane stress function is displayed, it is observed that if the

axcitation amplitude increases this produces wrinkling of the shell. However, if the

'hell is disturbed the shell may respond with the nonlinear terms.

ig. 4.10 shows the response of forced vibrating cylindrical shell to different values

pulsating force with m=5, ljJ=3, and 1:=0.1 it is observed that the largest force has

e highest amplitude value and ljJ can take only odd value. The deformations of

e shell in z direction are reported in figs. 4.11 (a)-(c) it is observed that higher

des of vibration can be neglected, this is because the contribution to the

amic displacement is mainly done by the first mode and the characteristic shape
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of the first mode is similar to the force distribution. Fig. 4.12 shows time response of

a forced vibrating cylindrical shell with m=5, l/J =3 and po=565N/m2 it is observed

that as the time increases there is corresponding increase of the amplitude. Fig

4.13 shows displacement for various mode indexes.

Fig. 4.14 shows response of forced vibrating cylindrical shell to different values of

moving force with m=5, l/J=3,T=0.1and Vi = 8.2 it is observed that l/Jcan assume an

integer value and the largest force has the highest amplitude. The deformations of

the shell in z direction for different values of moving force with constant magnitude

are also reported in figs 4.15(a)-(c). Fig. 4.16 shows time response of a forced

vibrating cylindrical shell with m=5, l/J=3 and qf= 1 x 103N/m2, it is observed that as

the time increases there is corresponding increase of the excitation amplitude.

Cig.4.17 shows response of the shell to different values of velocity. It is observed

hat if the velocity of the moving force acting on the shell increases the critical

peed of the vibrating system involving shell under the action of moving forces

creases but with increase in the damping coefficient, the risk of resonance will be

fficiently reduced.

g. 4.18 and fig. 4.20 shows deformed shell shape for different values load at first

d second mode respectively. Fig. 4.19 and fig. 4.21 shows deformed shell shape

increase of load from 0 to 525N in first and second mode respectively. Simple

iodic motion and chaotic responses have been detected. This indicates the non-
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linear dynamics of the cylindrical shell subject to external excitation. It is visible that

in some regions the shell presents the same behavior when the load is increased or

decreased. This indicates that different stable solutions coexist for the same set of

system parameters, so that the solution is largely affected by initial conditions.

These elastic stability considerations are very important in the analysis and design

of structure in which compressive stresses result from the loading, because in

addition to ensuring that the structure is not merely over stressed or over deflected,

in this case a new failure mode has been added, i.e. bucklinq. Initial imperfections

in shells can result in their buckling at loads far below their theoretical capacity.

Once a shell buckles, its collapse tends to be complete .

.2 Conclusion

Ihe nonlinearshell model equation (in the sense of Donnell - Mushtari - Vlasov

eory) was reduced to linear equations using the regular perturbation technique

nd the obtained linear equations were solved analytically. Free and forced

ibrations were considered. In the case of the latter, pulsating pressure and moving

rce having constant magnitude were studied. Finally the stability of the cylindrical

~ellwith or without initial imperfection was studied. The following conclusions were

awn for the study carried out:
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(a) It is observed that higher modes of vibration can be neglected; this is

because the contribution to the dynamic displacement is mainly done by the

first mode and the characteristic shape of the first mode is similar to the force

distribution on the system.

(b)When the load is increased or decreased on the shell surface some regions

in the shell presents the same behavior. This indicates that different stable

solutions coexist for the same set of system parameters, so that the solution

is largely affected by initial conditions.

(c) The method of regular perturbation presented in this thesis has proved to be

successful in reducing the nonlinear partial differential equation into a linear

form using the perturbation parameter.

(d) If the shell is subjected to external forces and the excitation amplitude

increases this produces wrinkling of the shell, which will result in the shell

deformation.

(e) The study has shown that nonlinear theories are very necessary in predicting

the stability of the cylindrical shell
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Detailed analysis of she" structures should be carried out before it is used in

esigns to prevent collapse which can lead to destruction of life and properties

(f) When damping coefficient increases the amplitude of she" vibration decreases,

hence the risk of resonance is sufficiently reduced.

5.3 Applications

(a) This work will assist the practicing engineers to evaluate the dynamic

response of a free and forced vibrating cylindrical she" subjected pulsating

pressure, moving force and other forms of external loading with ease.

(b) It can be applied to calculations involving shells often encountered in

structural design, and other areas of she" application in engineering.

(c) Also, it can assist the engineers in analyzing the stability of she" with or

without initial imperfection

.4 Recommendations

b) Due to the importance of she" structures in Science and Engineering, we

commend that interested researchers should consider the case of a thick she" by

nploying other she" models.

Interested researchers can also employ other forms of boundary conditions

it is done in science and engineering
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(d) Though we consider the case of buckling of the shell, interested researchers

can extend the work to include stiffeners
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APPENDIX A
restart;

H(~) :=- ~ 'B[p].(p.n)2·sin(p'n.~);

R B p2n2 sin(p n~)
H(~) :=- p I (1)

2knc[k] :=
k ti - cos(kn) sin(kn)

ck:=.[2 )r----k-n:----

k t: - cos(kn:) sin(kn:)

<I>(~) := c[k]'sin(k'n'~);

(2)

kn:------- sin(kn~)
k t: - cos(kn:) sin(kn)

<I>(~) :=.[2 (3)

1

a[k] := I (H(~) '<I>(~) )d~;
o

ak:= I I 1 [R B p2 n:3/2 .[2 j k (
k= Ip= 1 I ( _p2+k2) p k t: - cos(kn) sin(kn)

-pcos(P1t) sin(k1t) +ksin(p1t) cos(h)) 1
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APPENDIXB
restart;

2 0't [0 l1t 0m2 0sin (moe) 0Ai := -..::..._::.-------'---'-
<I> '

2 'to 1t m2 sin ( rn e)
Ai := (1)

<I>

A2 := (koBo (1 - cos(k°1t)) osin(po1to~) osin(k°1t°~));
A2 := k B (1 - cos( k 1t) ) sin (p 1t~) sin (k 1t~) (2)

A3 := ( i~B 0 (1 - cos( k°1t) ) osin(po1to~) -sin] k°1t°~) );

A3:= p2 B (1 -cos(k1t)) ;in(p1t~) sin(k1t~) (3)

40 r [0] 01t 0rn2 0cos2( rn 0e)
A4 :=- 0 0 (Bopo (1 - cos(ko1t)) ocos(po1to~) ocos(k°1to~));

<l>°sm(moe)
4't01tm2cos(me)2 Bp (l-cos(k1t)) cos(p1t~) cos(k1t~)

A4 := - (4)
<I> sin (rn e)

G(~) :=Aio(A2+A3) +A4;

m :~~ (2 'o'lOm' sin(me) (k B (1 - cos(h) ) sin(p,,~) sin(kn:~) (5)

+ p2 B (1 - cos( k 1t) ) ;in (p 1t~) sin (k 1t ~) ))

4't01trn2cos(me)2 Bp (l-cos(k1t)) cos(p1t~) cos(k1t~)

<I> sin( rn e)

2k1tc[k] :=
k t: - cos(k1t) sin(k1t)

,..---------

ck:=.J2 (6)
k1t

k t: - cos(k1t) sin(k1t)
<I>(~) := c[k]osin(ko1to~);

<I>(~) :=[2 k1t------- sin(k1t~)
k t: - cos(k1t) sin(k1t)

(7)

I

d[k] := I (G(~) 0<1> ( ~) ) d~;
o
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- 1 (2 t m2 B 12Fj k (4 k2p2
~ksin(m8) (_p2+4k2)p 0 k1t-cos(k1t) sin(k1t)

cos(m 8)2 - 2 k4 cosl z rr] cos(m 8)2 + cos(p 1t) p2 k2 - 4 k2p2 cos(k1t) cos(m 8)2
+ 2 k4 cos( m 8) 2 + 5 cos] k 1t)3p2 k2 COS(p 1t) COS( m 8) 2 - 2 p2 k2 + 2 cos] k 1t) p2 k2
- 2 k4 + 2 cos( k 1t) k4 - cos( k1t) 3p4 COS(p 1t) - 2 cos] k rr) cos(p 1t) k4 - cos(p 1t) p4
+ 2 cos(p 1t) k4 + cos( k1t) cos(p 1t) p4 - cos( k 1t) cos(p 1t) p2 k2
+ 2 cos(k1t) k4 cos(p 1t) cos(m 8)2 + p2 k2 COS(k1t)2 cos(p 1t)
+ p2 k2 COS(p 1t) cos(m 8)2 - p4 COS(k1t)2 cos(p 1t) cos(m 8) 2
- cos( k 1t)3p2 k2 COS( P 1t) + COS( k n ) 3P4

COS( P 1t) COS( m 8) 2
- cos( k1t) p4 cos(p 1t) cos( m 8) 2 + p4 cos( k1t) 2COS(p 1t) - 2 k4 cos(p 1t) cos( m 8) 2
- 4 p3 k cos( k 1t) sin (k rt] sin (p 1t) cos( m 8) 2 + 2 p3 k cos( k rt] sin (k 1t) sin (p n )
- 5p2 k2 cos( k 1t)2 cos( P 1t) cos( m 8) 2 + P4 cos( P 1t) cos( m 8) 2
-cos(k1t) p2 k2cos(p1t) cos(m8)2 +4 cos(k1t)2 / ksin(k1t) sin(p1t) cos(m8)2
- 2 cos( k n) 2/ k sin (k 1t) sin (p rt] - 2 P k3 cos( k n.) sin (k 1t) sin (p 1t) cos( m 8) 2
+2pk3cos(k1t) sin(k1t) sin(p1t) +2cos(k1t)2pk3sin(k1t) sin(p1t) cos(m8)2
- 2 cos(k1t)2 P k3 sin(k1t) sin(p 1t)))
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Where

To solve eqn. (3.2.34), the function Um1 (; , r) can be expressed as a series of Eigen

function

00

um1(;,r)= Ibk(r)(h(;)
k=l

3.2.35

V k (;) is chosen so as to satisfy the simply supported boundary conditions

-ience we let

3.2.36

'he Eigen function is now given by

3.2.37

lere Ck remain arbitrary constant chosen to normalize the Eigen function
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