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ABSTRACT 

Mathematical techniques for location of a damage event on a pipe was developed and tested 

using an experimental test rig. A pulse propagation velocity of 355 m/s was calculated from 

obtained data when static air was used as the transport fluid and 1538 m/s when flowing 

water was used as the transport fluid. The reason for the discrepancies between these values 

and the sound velocity values in air and water was investigated. A 21.2oC and 15.3oC 

temperature rise above ambient in the pressure pulses were obtained when static air and 

flowing water used were recorded. A difference of 20mm only was observed between the 

actual and computed event location when static air was used as the transport medium. When 

flowing water was used as the transport fluid, a difference of 23 mm was observed. 

Algorithms for the characterisation of damages in pipes were also developed. These were 

simulated with the results showing a good agreement between the shapes and magnitudes of 

the measured original and reconstructed pulses. The simulation was verified with 

experiments on the test rig. The results showed an underestimation in the magnitudes of the 

reconstructed pulses in the range of 40 – 45 %. This problem was solved by using a factor K 

obtained by dividing the maximum amplitude value of the original pressure pulse by that of 

the reconstructed pulse. A K value of 1.9 was calculated for the particular experimental data 

set used. Reconstruction of the measured original pulse at a damage location was achieved 

from combining the measured pulses from two other close locations using the developed 

Fourier transform based model. A wireless communication device was developed for 

transmission and processing of measured pressure pulses wirelessly to an analytics platform 

(ThingSpeak) for real time monitoring. Fifteen experiments were conducted on the 

experimental test rig using this device at pressure readings of 0.8 bar and 1 bar respectively 

in the pulse generator.  The amplitude of the pulse at sensor 2 denoting the event location 

using 0.8 bar was 901 mm while the amplitude of the other four pulses were 499, 477, 420 

and 346 mm respectively. For the pressure rating of 1.0 bar, the pulse at sensor 2 had an 

amplitude of 908 mm while the other four sensors were 509, 487, 429 and 355 respectively. 

In both experimental results, the pulse amplitudes ranged in values according to the distances 

of the five sensors from the event location with the pulses from the sensors closest to the 

event location having the highest values and those farthest from the event location having the 

least values. This showed the effectiveness of the wireless communication device.  
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       CHAPTER ONE 

1.0               INTRODUCTION 

1.1 Background to the Study 

Large pipelines carry vast volumes of crude oil, natural gas, and petroleum products around 

the world. These pipelines play an important role in modern societies, as they provide 

essential fuels for critical functions such as transportation, power generation and heating. A 

ruptured pipeline has the potential to cause significant environmental harm due to the toxic 

properties of the goods being transported through these pipelines. Ruptured pipelines also 

cause huge economic as well as humanitarian losses. The risk associated with pipeline in 

terms of safety of people, damage to the environment and loss of income has been a major 

concern to pipeline integrity managers. The effects of oil pipeline vandalism in terms of the 

climate, in relation to Nigerian security, and economic, environmental, and humanitarian 

losses and consequences have been clearly demonstrated (Onuoha, 2009). Pipeline failures 

are caused by structural issues 40% of the time, operator error 6% of the time, other factors 

25% of the time, outside force harm 27% of the time, and control issues 2% of the time 

(Agbaeze, 2000). According to the Nigerian Gas and Oil Pipeline Standards (GOST), a 

pipeline's normal lifespan is 33 years, but research has revealed that 42% of pipeline failures 

are mechanically induced, 18% are caused by corrosion, 24% are caused by third-party 

intervention, 10% are caused by operational error, and 6% are caused by human error (NNPC, 

2007). 

 

The monitoring of pipelines via sensors has garnered considerable awareness. A good 

example is seen in the use of acoustic sensors for monitoring and inspection of natural gas 
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pipelines (Park et al., 2007, Agrawal, 2008). This study intends to use sensors for detecting, 

locating and characterising a variety of damage events in pipelines using pressure pulses, Wi-

Fi for information transmission, and signal processing techniques based on the principle of 

vibration in pipes. 

 

In general, pipeline defects can occur in the manufacture, construction, and operation 

processes. In Nigeria, pipeline damage are prominently as a result of unknown causes, third 

party activity, mechanical failure, corrosion and operational error (NNPC, 2007). Continuous 

monitoring or periodic assessments of the transmission pipelines' integrity are needed to 

ensure the pipelines' continued safe operation. The ultimate goal of pipeline monitoring and 

inspection is to locate defective positions and obtain precise measurements and assessments 

of the defects so that human operators can take effective action to avoid further damage.  The 

aim of this research is to create a real-time pipeline monitoring and inspection system that 

will provide monitoring that is remote and continuous, and uses wire/wireless sensors to 

provide early detection, and warning of defects like leaks. 

  

There are several activities that must be completed by a pipeline control and inspection 

system ranging from detection of leaks to inspecting pipes for structural flaws. In order to 

achieve this, several types of sensors and actuators are used (Agbakwuru, 2011). Fiber-optic 

sensors, acoustic sensors, and magnetostrictive sensors are only a few of the types of sensors 

that have been researched and tested for pipeline inspections. Each sensor type has its own 

set of characteristics and operating conditions. In this study, monitoring of pipelines using 

wire/wireless sensors are surveyed and a pipeline monitoring and inspection platform based 

on an active sensor network described. Also, the fundamental components of the proposed 
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sensor networks, as well as signal processing techniques for detecting, localising, and 

characterising bursts, leaks, and other anomalies in a pipeline system, will be addressed. A 

system for transmission and processing of the obtained signal data using a Wi-Fi module is 

also discussed. 

 

 

Figure 1.1: Proposed device operation of pipeline monitoring system (Ninduwezuor-

Ehiobu, 2017) 

 

In Figure 1.1, the Sensor node would sense pipeline intrinsic property such as pressure 

through the pressure pulses or waves, and transmit the wave to a master-node which 

distributes the information to a readable device in real-time. 

1.2 Statement of Research Problem 

The monetary and social expenses related with oil pipeline damage are quickly ascending to 

unsuitably significant levels. These expenses can be named follows: 
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 Petroleum product loss. Petroleum products loss until the damaged pipeline section 

is isolated after the burst has occurred can be considerably large. The financial 

implication of these petroleum product loss is always very high with negative 

consequences on the nations’ economy (Agbakwuru, 2011).  

 Punctuated flow. The damage event creates certain changes to the flow of the fluid. 

Losses through the burst can reduce the pressure in the pipeline to an unacceptable 

level. The flow may be hindered at various points along the pipe. If there should arise 

an occurrence of pipeline damage, an extensive number of buyers can be left without 

petroleum products (fuel, diesel, crude oil, gas) (Ninduwezuor-Ehiobu, 2017).  

 Damage to infrastructure. Pipeline blasts can be amazingly hurtful for the 

encompassing structures. Enormous blasts can cause flooding of encompassing roads, 

buildings and water bodies leading to the death of aquatic life and health hazards in 

humans. 

 Expenditure on repairs. Based upon the size and time-taken of the burst, fix expenses 

can turn out to be on the high side. The rebuilding of the affected environment and 

payment for lost property are the expenses that must be added on top of the sum spent 

for fixing the damaged pipeline. 

 Environmental effects. Natural gas explosions can result in massive fires and massive 

amounts of destruction in the nearby towns. And, because methane is another 

greenhouse gas that contributes to climate change, exploding methane gas pipelines 

can do just as much physical and environmental damage. Crude oil spills can impact 

human health and the environment, resulting in fish and wildlife injuries or deaths, as 

well as poisoning of drinking water supplies. 
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Outcomes of pipeline damages recorded above are costly and hurtful. Accordingly, these 

outcomes are exceptionally unwanted. The general harm brought about by a pipeline damage 

relies upon the time between the real event and its seclusion. To limit the expenses related 

with pipeline damage, a procedure for speedy burst discovery, location and characterisation 

is essential. 

1.3 Significance of Study 

I. Prompt Action. 

One major cause of persistent oil spillage across the globe is the inability of existing 

pipe leakage detecting devices to detect pipeline leakage in real time. In Nigeria for 

example pipeline leak prevention is done by onsite monitoring by individuals through 

the use of helicopters or speedboats; which is ineffective because in 2014 alone Shell 

Petroleum Development Company and ENI recorded 204 and 349 spills respectively 

(Amnesty International, 2015). This further justifies our mission to “live in the future 

(zero pipeline leaks across the globe) and build something interesting (leak detector 

with multiple functions) to tackle present day problem (pipeline leak)”. 

 

II. Preservation of life, health and agriculture. 

Over the years, vandals have regularly damaged the facilities of Nigeria's oil 

pipelines. These pipeline damages have great adverse effects on human, animal and 

plant life also. As these petroleum products flow from damaged pipes due to the late 

detection of area of damage, and poorly equipped response team; it leads to land and 

water pollution. Residents of such areas where the damage occurred loose access to 
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clean water for drinking, cooking, and other domestic activities. This in the long run 

leads to health hazards in the occupants of such areas, and sometimes leads to death. 

Aquatic life is also not spared as the waters are no longer conducive for life. Farming 

is also greatly impaired. Plants also die as they are choked by the pollution caused by 

these petroleum products. 

 

III. Reduction in the financial strain on the Nigerian economy by loss of product. 

Also water supply and sewer pipe works, electrical and telephone cable works, and 

other public works projects are often executed around pipelines. These third-party 

works by contractors has severally caused damage to petroleum pipelines. The 

financial strain on the Nigerian economy and the environmental impact of petroleum 

pipeline damage cannot be over emphasised (Shell in Nigeria, 2019).  

 

IV. Efficient way of safeguarding pipelines. 

There is  need for development of a system that would monitor these pipelines, detect, 

locate damage along the pipelines, and determine the actual nature of damages on 

these pipelines-whether natural in nature (erosion, corrosion, ageing, welding defects, 

pressure surge problems) or mechanical harms from third parties (vandalisation, 

heavy duty equipment). This will definitely reduce loss of product and environmental 

pollution as the response team will be well equipped with the right tools and measures 

to tackle the damage even before arrival at the event location. This research work will 

also provide an efficient means of safeguarding these pipelines. Successful 

completion of the research will go a long way in increasing the country’s revenue 

from petroleum products.  
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V. Available Market 

According to epoxy pipeline engineers and other market reports, the pipeline leak 

detection industry is expected to grow to about $1.8 billion dollars in five years 

(Epoxy Oilserv, 2017), thus we venturing into this sector now means that we shall 

benefit from this exponential growth in the coming years. Also as a justification, there 

is a large transverse of pipeline network across Nigeria. The pipe length in km used 

in transport of oil and gas across Nigeria stands at about 12,714 km of pipe length 

(124 km condensate; 4045 km gas; 164 km light petroleum gas; 4441 km oil; 3940 

km refined products) that require real-time monitoring of pipe integrity (CIA World 

Factbook, 2019). This also goes to show that there is available market waiting to 

harness this technology. 

1.4 Aim and Objectives of the Study 

The aim of this research is to develop a petroleum pipeline monitoring system for detection, 

localisation and characterisation of damage events in pipes. This aim can be achieved through 

the following objectives: 

i. To develop mathematical techniques for locating, detecting and characterising 

damage events in pipes. 

ii. To simulate the developed model using MATLAB® computer software 

iii. To validate the simulation by experiments using a simulated pipeline with air and 

water as the transport fluid 

iv. To optimise the designed location, detection, and characterisation system.  
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1.5 Scope of the Study 

The scope of this research work was limited to the development of a system to locate, detect 

and characterise damage events in pipes. The approach of the technique for damage location 

and detection had to do with capturing of pressure pules through the length of the pipe 

combined with the review of these pressure pulses in the time domain. This work was carried 

out for both air and water filled pipes. The principle of digital signal processing was 

employed for the characterisation of damages in pipes through signal reconstruction process. 

The Fourier Transform was used to compute the spectrogram of the signals arising from 

various impulsive events by applying it to developed mathematical models. The Sinc Filter 

with the Fast Fourier Transform (FFT) was adopted for the filtering of the signal. The 

developed mathematical model was simulated using the MATLAB® computer software. This 

simulation was verified by developing experimental test rigs consisting of air and water filled 

PVC (Polyvinyl Chloride) for the flow of pressure pulses; capturing and recording of pulse 

data by an instrumentation system, a pulse generator, a Wi-Fi communication device for 

capturing, processing, recording and transmission of signal data to ThingSpeak, an Internet 

of Things (IoT) analytics platform service that allows you to aggregate, visualise, and analyse 

live data streams in the cloud from any location in the world. 
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        CHAPTER TWO 

2.0            LITERATURE REVIEW 

2.1 Pipeline Monitoring and Security 

Several types of technologies have been applied to pipeline networks to avoid spills and 

characterise damage/defects on pipes in real-time. Pipeline leakage has been a problem in 

existence for over a century now, from water pipeline leakage that leads to flooding, and 

crude-oil/natural gas pipeline leakage that leads to environmental degradation (Oil-Spillage) 

(Ninduwezuor-Ehiobu, 2017). Over the years, different inventions and innovations have been 

put in place to prevent and contain leakage on pipeline networks, but in the past few years, 

pipeline leakage in Nigeria is still present. In the Niger Delta, as a result of continued oil theft 

and acts of criminality, pipeline security and monitoring remains a high priority. The main 

sources of pollution in the Niger Delta currently are third-party interference and illegal 

refining. The Shell Petroleum Development Company of Nigeria Limited in 2018 alone lost 

more than 100 kilograms worth of spills and about 11,000 barrels of oil per day average theft 

from its operated Joint Venture (SPDC JV) pipelines. About 90% of these spills were caused 

by third party interference. These sabotage-related spills increased from 62 in 2017 to 111 in 

2018 (Shell in Nigeria, 2018). One reason for this increase is due to the attractive price of 

crude oil products as they are seen as an avenue to wealth hence the increase in illegal 

refining.These statistics show that continuous air and ground surveillance as well as action 

by the governments security apparatus to prevent oil theft and third-party interference 

remains a necessary and important activity. 
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Crude oil theft, illegal activities and attacks continue to affect oil facilities being operated by 

both indigenous and international oil and gas companies in Nigeria leading to a very volatile 

security situation. This volatile security situation has led to several disruptions to production 

of petroleum products in the country and several incidents of environmental pollution. The 

federal government’s revenue which is predominantly from sale of crude oil has also been 

affected. Industries, businesses and the public/private sector services have been hit also due 

to shortage of gas supply for production of electricity. 

 

Operational conditions of the pipelines also have led to oil spills in Nigeria. Apart from spills 

cause by criminals, they were operational spills totalling 15; which were more than 100 

kilograms in volume from facilities of Shell Companies in Nigeria alone. This was more 

than the 10 spills recorded by Shell companies in Nigeria in 2017. A total volume of 0.1 

thousand tonnes of oil was spilled from operational activities in 2017 while in 2018, the total 

volume of oil spilled from operational faults was approximately 0.4 thousand tonnes (Shell 

in Nigeria, 2018). 

2.1.1 Oil Spill Prevention in Nigeria 

The Federal Government of Nigeria as well as foreign oil companies operating in Nigeria 

have in the past carried out several clean-ups and remediation of areas with oil spillage, but 

in areas where there are challenges in accessing the incident sites to carry out investigation 

of cause of spills and stoppage of leaks, the spills are often made worse.  

 

Currently in Nigeria, several methods are being adopted the federal government, and foreign 

as well as indigenous oil and gas companies to prevent oil spillage. The Shell Petroleum 
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Development Company Joint Venture (SPDV JV) appraises the condition of pipelines 

regularly, maintains and replaces key sections of pipelines and flow lines. The company in 

2018 installed 70 km of flow lines bringing its total distance of replaced pipelines and flow 

lines to about 1,300 km within a seven years period. The company has been able to achieve 

this through its pipeline and flow lines integrity management system that regularly manages 

pipeline integrity, inputs barriers at required places, and to prevent failures makes a 

recommendation as to where and when pipeline sections should be replaced. An 

enhancement was made by the company in 2018 to its integrity management system to 

manage integrity threats emanating from regular vandalisation/sabotage of pipelines. 

 

Surveillance operations have also been carried out by the security forces of the Nigerian 

government to minimise and prevent oil spills caused by theft and sabotage of its facilities 

across Nigeria. The Shell Petroleum Development Company (SPDC) continues to do the 

same. The SPDC JV’s operational areas, including its pipeline network in 2018 were 

safeguarded by SPDC’s on-ground surveillance activities. This was to prevent occasions of 

third-party interference and to make sure that spills were detected and quickly responded to 

as best possible. In addition to this, the SPDC continues to carry out daily over-flights of the 

areas with pipeline network with the aim of identifying new spill activities or incidents. The 

SPDC also operates with specialised helicopters equipped with state-of-the-art high 

definition cameras which to a high extent, improves the surveillance of SPDC JV’s assets. 

Anti-theft protection devices on very important structures, such as manifolds and wellheads 

have also been implemented by the SPDC. 
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Presently in Nigeria, when a leak on a pipeline is identified, production is stopped, and a visit 

is made to the site of the spill to determine the cause of the damage to the pipeline. An SPDC 

reports states that when a leak is identified on one of its pipeline, in line with the Nigerian 

government’s regulation, a Joint Investigation Visit (JIV) team pays a visit to the site of the 

oil spill to determine the volume of oil spilled and the cause of the spill. The investigation 

team normally comprises persons from SPDC, federal government, state governments, 

regulators, security agencies and communities; often times local NGOs are invited as 

observers (Shell in Nigeria, 2018). 

2.2 Methods of Pipeline Monitoring 

 

2.2.1 Time Delay between Pulse Arrivals at Sensors (Cross Correlation Method) 

In locating the position of a damage event on a pipeline, the use of sensors along the pipeline 

on opposite sides of the event is required. This method determines this from the arrival times 

of pressure pulses and the positions of sensors on the pipe.  A major advantage of this method 

is that the pressure pulse time arrivals at sensors does not need to be measured to obtain the 

time delay as this is given directly. This method also stands out due to the fact that a good 

estimate of the time delay in pressure pulse arrival times using cross correlation is possible 

even when noise is added to these pressure pulses. This is due to the fact that the noise 

obtainable within these pressure pulses is averaged using the cross correlation method. This 

method when compared to the peak detection and threshold crossing methods gives a poorer 

fit. This is a disadvantage of using this method (Olugboji et al., 2015). 
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2.2.2 Acoustic Monitoring 

Rarefaction waves are associated with leak transients, and when these waves make contact 

with the pipe, a pressure (acoustic) waves is produced. These acoustic waves produces travel 

long distances inside the fluid, carrying information about what must have caused the impact 

on the pipe (Misiunas, 2004). Hydrophone sensors are mounted at distinct distances along 

pipelines to detect third-party interference (TPI) and leaks using acoustic monitoring 

technology. The accuracy of a leak position may be improved or boosted using acoustic leak 

correlators with portable computers or microprocessors. Various unwanted interruption 

noises, such as those from wind, water, traffic, and air craft are drawbacks of this system. 

Tiny holes with high pressure create clearer and louder sounds, making them easier to spot 

than a wide pipe burst with weak noise, and is surrounded by groundwater or escaped water. 

Also, plastic pipes tend to have very strong acoustic damping which in turn gives a wrong 

location of the damage. 

2.2.3 Wavelet Based Analysis 

A transient passing through a pipeline is partially mirrored and partially transmitted as it 

enters a leak.  The leak position can be determined as long as the first reflected wave can be 

determined from the measurements (Wang et al., 2001). Its benefit is that the method's 

definition is easy and straightforward to implement, given that the transient's initiating time 

is less than the reflection time between the leak and the measurement spot. It can also be used 

in real-time monitoring of pipeline ruptures. The disadvantage is that transient reflections 

can be caused by pipeline elements such as modified pipe diameter, elbows, or partially 

closed valves. In certain cases, depending on the location of the transient measurement, leak 

induced transient reflection cannot be detected (Wang et al., 2001). 
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2.2.4 Inverse Least Square Methods 

A regression between the measured transient pressure pulses and the modeled transient 

pressure traces is adopted in this method. The leak position and its size is obtained from 

minimising the deviation between calculated and measured pressure pulses when a discrete 

modelling at nodes in the network is carried out. Given enough measurement data, this 

method can be used for the calibration of any system parameter. Real tests have shown that 

inaccurate boundary conditions in a pipeline network and inaccurate transient modelling are 

challenges experienced with using this method.This is a major disadvantage of this method. 

2.2.5 Inverse Methods 

An Inverse problem is one where there is a relationship between the model parameters and 

the data (Olugboji and Yisa, 2012). This relationship is referred to as the model and the model 

usually takes the form of one or more formulas that the model parameters and data are 

anticipated to follow. Inverse method preserves monotonicity and correlation which helps in 

variance reduction methods, generating truncated distributions and order statistics. 

The leak detection and location techniques used in transient analysis make use of different 

signal processing techniques for the computing and analysis of the transient waves or 

pressure pulses generated when a damage event occurs on a pipe. 

 

Several research activities relating to damage detection, monitoring, location and sizing in 

gas and petroleum pipelines have been carried out in the past. Vibration-based approaches 

have been developed in the past and have been proven to be relatively successful in detecting 

damage in pipes (Razi et al., 2013). For a long period of development, vibration-based and 

guided waves-based damage detection technologies have produced a good number of 
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research results. Some of the noteworthy research findings are reviewed here in order to 

improve this present work on the development of a petroleum pipeline monitoring system for 

detection, location and characterisation of damages. 

 

Junxiao et al., (2017) used the negative pressure wave (NPW), a stress wave caused by a 

pipeline leakage that spreads from the point of leakage to both ends of the pipeline, and the 

hoop strain variation along the pipe wall to detect damage in a gas pipeline. The study 

measured strain variation allowed accurate (within 2% error) and repeatable location (within 

4% variance) of five manually controlled leakage points. Experimental results were then used 

to verify the effectiveness and the location accuracy for leakage in a 55 meter long model 

pipeline. 

 

Guofeng et al., (2017) used a stress wave propagation method with piezo-ceramic transducers 

to create a wavelet packet-based damage index matrix to classify crack damage in pipeline 

structures. On the specimen, four cracks were artificially cut, each with six damage cases 

corresponding to different crack depths. This aided in the simulation of cracks in various 

locations with varying degrees of impact. One piezo-ceramic transducer acted as the actuator 

for producing a pressure pulse that propagated through the pipeline specimen, while other 

piezo-ceramic transducers detected pulse responses in each crack event as they were 

deployed as sensors. In the study, based on the proposed damage index matrix, experimental 

results showed that the proposed approach can evaluate the crack severity and estimate the 

crack position in the pipeline structure. The proposed method's sensitivity reduced as the 

distance between the crack and the attached piezoceramic transducers grew. 
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Ravi et al., (2016) monitored pipelines using vibro-acoustic sensing- a method of detecting 

leaks and foreign particles in pipelines for fluid transportation. The sensing method used in 

the work was based on pipe shell vibrations produced by interaction with pipe or flow, and 

the remote identifications of fluid transients. The system performance was a function of the 

thermodynamics properties of fluids. An analysis of pressure transient propagation in gas 

filled pipelines was carried out in the work. The study was able to detect pressure noise level 

produced by third party interference and leak events in the 50 to 300 Hz bandwidth at a 

distance of 10 km. 

 

Golmohamadi (2015), used wavelet transform for processing signals to recognise damage 

and leak location in a hardware-based technique which used ultrasonic wave emission. In the 

study, leak site was identified using the wave emission speed and flight duration of 

backscattered signals when waves encountered leakage and were reflected.  

Changhang et al., (2017) used a low-power piezo-ceramic transducer as the actuator of 

vibrothermography and explored its ability to detect multiple surface cracks in a metal part. 

The Fourier Transform signal processing technique was employed in the work, and the 

obtained results showed that using the proposed low-power vibrothermography, all cracks 

can be identified quickly and easily.  

 

Enrique et al.; (2016) developed a new and integrated damage detection procedure by 

combining directed waves and electro-mechanical impedance techniques based on smart 

sensing. They explored this combination of techniques and proposed an Electro-Mechanical 

Power Dissipation (EMPD) based indicator for damages. The proposed technique's 
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applicability was assessed in a number of experiments using structures that were either real-

scale or lab-scale. In the study, the applicability of the proposed technique was tested through 

different experimental tests, with both lab-scale and real-scale structures and it was found 

that the technique can successfully contribute to positive damage identification even for 

instances of damage as complicated as those on concrete structures. 

 

Kia et al., (2018) proposed a new approach to damage detection of a concrete column 

structure subjected to blast loads using embedded piezo-ceramic smart aggregates (SAs). An 

active-sensing based approach was proposed where pressure pulses could be detected, as well 

as generated using the SAs that were embedded, and act as sensors and actuators. 

 

Namuq (2013), designed and tested a laboratory experiment to determine the data 

transmission mechanism in boreholes using mud pulse telemetry. A flow loop, four pressure 

transducers at various points along the loop, a mud sire, a centrifugal pump, and a data 

collection system were all part of the test facility. It also included an actuator system that 

could simulate the noise patterns generated by common duplex or triplex mud pumps. To 

simulate dynamic pressure pulse propagation behaviour in the fluid within the flow loop, a 

theoretical model was developed using commercial Computational Fluid Dynamics (CFD) 

code. The theoretical approach was checked and calibrated using laboratory data that 

simulated a variety of process for data transmission in boreholes. The study was able to 

achieve a reasonably good agreement between expected and measured strain. In the 

laboratory, a novel method (continuous wavelet transformation) was used for detecting 

continuous pressure pulses obtained in a noisy environment, and it was applied to various 

simulated drilling activity conditions for data transmission in boreholes. In comparison to the 
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traditional approach, the results showed that the continuous wavelet transformation can be 

used to clearly distinguish and better detect continuous pressure pulse intervals, frequencies, 

and discontinuity positions in the time domain. Namuq (2013) focused on drilling as the 

source of pressure pulses, this study looked into the causes of various pressure pulse 

generating events on a pipeline in order to describe these damage-causing events. As a result, 

the Fourier transform was chosen because it is essential for calculating Cross-Correlation 

Functions (CCFs) between asymmetrical images in order to assist in averaging and 

comparing them. 

 

Olugboji (2011), developed a model for determining the point of a damage event along a 

pipe. The cross correlation method was adopted for measuring the arrival times of pulses at 

any two sensors, and the principle of delay in arrival times between pressure pulses was the 

basis of the developed model. The obtained results in this work suggested that the developed 

model could be adopted in the monitoring of actual pipelines. The work was basically studied 

using pipes with static air. A major advantage of this method is that the pressure pulse time 

arrivals at sensors does not need to be measured to obtain the time delay as this is given 

directly using the cross correlation component of the MATLAB® software. This method also 

stands out due to the fact that a good estimate of the time delay in pressure pulse arrival times 

using cross correlation is possible even when noise is added to these pressure pulses. This is 

due to the fact that the noise obtainable within these pressure pulses is averaged using the 

cross correlation method. This method when compared to the peak detection and threshold 

crossing methods gives a poorer fit, with each application distortion form and size 

determining the error size. This is considered to be a disadvantage of adopting this method 

(Olugboji et al., 2015). 
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According to Nandi and Wong (2014), vibration signals can be used to diagnose the health 

of rotating devices. The work gives an overview of how recent developments in pattern 

analysis techniques, together with the introduction of miniature vibration sensors and high-

speed data acquisition technologies, have created a unique opportunity to develop and apply 

in-situ, beneficial, and non-intrusive condition monitoring and quality assessment methods 

for a wide range of rotating machineries. The study also included a study of traditional 

methods for vibration signal processing in the time and frequency domains. Following that, 

a series of recent computational intelligence-based approaches in this problem domain was 

presented, along with case studies that used single and multi-dimensional signals. The 

datasets they used in their case studies came from a number of real-world issues. 

 

Hale and Olugboji, (2011) studied damage detection in gas pipelines by remote impact 

measurements. The work went a step further to show that using the Digital Signal Processing 

(DSP) technique of digital filtering and deconvolution, a fair reconstruction of the source of 

pressure pulse propagating through a gas pipe is possible. The work also stressed that a better 

reconstruction requires the use of inverse methods that take account of the non-linearity of 

the system. 

 

Agbakwuru (2011), looked at how pipeline systems for notifying of encroachment, and leak 

prevention have advanced in the petroleum sector. The magnitude of oil spillage in the Niger-

Delta area as a result of intended/unintended damages was highlighted, and a potential 

control method was proposed. The best solution for avoiding emissions due to pipeline 

failure, according to the work, is that of ensuring hydrocarbon exit from pipelines do not 
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occur. The study considered several methods, and it was suggested that monitoring using 

acoustic methods could be useful in detecting anomalies that are sound related. The output 

of an acoustic transmission on steel pipelines submerged in water was compared to that of a 

similar study on plastic water pipelines. It was discovered that pipelines immersed in water 

had low attenuation as compared to pipes buried in dirt.  

 

Rashid et al., (2014) proposed a transient pressure wave-based technique coupled with 

wavelet analysis to achieve reliable detection and localisation of abrupt bursts and leakages 

using Transform Analysis. A technique that uses the information carried in the transient 

pressure signal was presented. An algorithm was also proposed which is distributed in nature, 

and run on low power sensor nodes. The algorithm was deployed in-field on a custom 

pipeline test bed and performance results were documented for various testing scenarios. 

However, only pipeline burst detection was achieved with this proposed method but not 

leakage localisation, size estimation, and distance calculation. The proposed method was also 

best suited for high noise generating long pipeline networks. 

 

Chung et al., (2015) developed a built-in non-destructive inspection method called Real-time 

Active Pipeline Integrity Detection (RAPID) for detecting, locating, and monitoring the 

progression of pipeline damages. The system was based on an acoustic ultrasonic detection 

technology used in the Aerospace industry for detecting and monitoring damage to aircraft 

structures. RAPID made use of a sensor system which comprised of a group of piezoelectric 

transducers and receivers that establish an acoustic ultrasonic meshed network on the 

monitored pipeline structure. One of the system design requirements was that the sensor 

system needs to function continuously in the operational environment with peak temperature 
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up to 300 oC for 15 years or more. The sensor network needed to be coated and robust in the 

harsh service environment. The meshed sensor network was designed to provide a detection 

sensitivity of 95 percent Probability of Detection. Standard installation procedures and tools 

were developed and the implementation was verified through field-testing. The RAPID 

prototype development was finished, significant progress was made in validating the system. 

To verify the capabilities of the system, a series of tests were performed by Acellent in 

partnership with Chevron utilising sections of 8in diameter steel pipes. During the tests a 

number of different sizes and depths of defects were introduced into the pipeline sections. 

These tests verified that the RAPID system was effective in detecting the occurrence of 

corrosion in the pipeline and monitoring its growth over time and the system was presented 

to both risk management companies and the gas pipeline industry, including Pacific Gas and 

Electric, Southern California Gas, and Chevron.  

 

Olugboji and Yisa (2012), devised an inversion technique for reconstructing a pulse after it 

had propagated through a pipe; a dynamic pulse that has become increasingly distorted. The 

developed method made use of the theory of inverse problems. An inverse problem is one 

that occurs in many branches of science and mathematics where the values of some model 

parameter(s) must be obtained from the observed data. Inverse problems are those in which 

the causes are unclear, but the solutions are known. In a scenario that the problem's outcomes 

or effects are known but not what caused it. It is essential to have knowledge of a forward 

model capable of predicting data when the model parameters are already known. 

Measurements of these effects are taken, and calculations are made to decide what caused 

them in an inverse problem. This necessitates a definition of the data, which in most inverse 

problems is just a table of numerical values, for which a vector is a convenient representation. 
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A propagation model was developed and several tests were carried out to verify the model. 

From the test results obtained using the developed model for pulse propagation, it was found 

out that the inverse method of pulse reconstruction gives better results than the deconvolution 

filter method with a 15 – 20 % difference only between the original and reconstructed pulses 

was realised when using the inverse methods. Using the deconvolution method, a 40 % 

difference was obtained. However, it was noted that the inverse method consistently 

underestimated the pulse magnitude, whereas the deconvolution filter overestimated it, so 

there could be a case for using both methods in a practical application to obtain the best 

possible estimate. The work was validated experimentally and the experimental results were 

consistent with the model results which gave a similar level of underestimation.  

 

Mclintyre (2017), created a technique for obstacle or breach detection and location in a 

conduit with a fluid medium. The device consisted of a number of individually recognisable 

Radio Frequency (RF) tags that were to be inserted into the conduit at an upstream stage. 

According to the work, each of the multitude of uniquely identifiable RF tags was included 

within a sensor pod with a customised size for effectively determining the size of the breach 

or obstacle, as well as a sensor for measuring the flow velocity of the fluid medium within 

the respective sensor pod. A second transceiver was mounted on the outside of the conduit 

and positioned near a downstream point in the fluid medium's flow direction.  

 

Adnan et al., (2015) explored the fundamentals of wave propagation in a gas pipeline, and 

some methods for revealing concealed information in a signal using synthetic signal 

simulation. The study's comparative approach for gas leak detection was the acoustic method. 

According to the research, wave propagation in the pipeline system can cause friction and 
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provide useful information for detecting leaks. In the work, the best combination of acoustic 

signal as wave propagation and Hilbert Huang Transforms (HHT) was proposed as the most 

effective method for detecting gas pipeline leaks. 

 

Haseloh and LaFleur (2013), devised a pipeline leak detection system that included a 

pipeline, pressure sensors placed at regular intervals along the pipeline to track pressure 

inside the pipeline, and a monitoring station that received data from the pressure sensors. In 

the absence of a leak, the monitoring station developed a standard pressure profile of relative 

pressures collected by the pressure sensors along the pipeline, and issues an alert if one of 

the pressure sensors provides data that is uncharacteristic of the normal pressure profile, 

suggesting a leak near that particular sensor. 

 

Jihoon et al., (2017) suggested a new leak detection and position approach based on vibration 

sensors and generalised cross-correlation techniques. Estimation errors of power spectral 

densities (PSDs) and cross-spectral densities (CSDs) were considered in this analysis. An 

updated maximum-likelihood (ML) pre-filter with a regularisation factor was used in the 

proposed process. In this study, they found the optimal regularisation factor that minimises 

the theoretical variance in functional water pipe channels, as well as a theoretical variance of 

the time difference estimation error by summation in the discrete-frequency domain was 

established. Numerical simulations using a water pipe channel model were used to equate the 

proposed approach to other traditional correlation-based techniques, and field measurements 

revealed that the proposed updated ML pre-filter outperformed conventional pre-filters for 

generalised cross-correlation. When different types of pipes are linked, the study also 

presented a method to measure the leak position using the time difference estimate. 
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Motaz and Yousef-Awwad (2017) investigated the use of wireless sensor networks to detect 

leaks in underground water pipes in order to solve the issue of water dispersion in water 

delivery networks. Prevention of leakage, and detection in water delivery networks were 

found to be critical for efficient natural resources usage in the study. To solve this problem 

and make the leakage detection process easier, the researchers created a wireless network 

framework that uses mobile wireless sensors to break detection,  and also for saving 

electricity, money, and time. The system could also measure the water level in the tank, and 

switch on the pump when the water level fell below a certain level because it had Smart 

Water Leakage Detection (SWLD) in the pipelines. The work was primarily divided into two 

sections: the first stage of their project was an alarm based on Global System for Mobile 

technology (GSM) to send Short Message Service (SMS) to the owner. Sensors, a GSM 

board, an Arduino, and relays to power the computer comprised the system's basic 

components. The control portion of the project included using an Android program to control 

the pump. The use of their proposed system resulted in increased operational performance, 

shorter wait times, and lower maintenance costs after detection of a leak. 

2.3 Damage Detection and Location Techniques 

These techniques are basically the techniques used in oil and gas industries, and those based 

on transient methods used for detecting existing leaks. 

2.3.1 Transient Modeling 

To continuously observe irregularities in pipelines, a continuous pressure pulse simulator can 

be used. A good number of techniques dependent on fluid flow rates and pressure abound. In 
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the petroleum industry, the majority of them are used. Two methods of transient modelling 

exist: the dynamic volume balance method and the pressure discrepancy method. An analysis 

between measured data and simulated data is used by the two methods. A computation of 

two flow discrepancies at the outlet and inlet is carried out using the dynamic volume balance 

method. An assumption that the pipeline is intact is made during the calculations, a fault 

sensitive method. A comparison between the pressure values at a number of points across the 

system is carried out using the pressure discrepancy method. A 15-30 s sampling interval is 

used while collecting the flow measurements and real-time pressure at both ends of the pipe. 

In this method, the flow and the measured pressure are used as the boundary conditions. The 

measurements made eventually reveals the leak when it occurs. As a result, a divergence 

occurs between the pressure values and the simulated flow. A response time of less than an 

hour on average is expected using this method. (Henrie et al., 2016). 

2.3.2 Acoustic Methods 

For detecting and locating leaks, acoustic measurements are a viable option to the model-

based methods previously described. A feature of the generated leak is an acoustic signal that 

propagates along the walls of the pipe or within the flowing fluid. Fixed continuous 

monitoring systems and the use of geophones manually are part of the complexities 

associated with using acoustic systems (Rajtar and Muthiah, 1997). Detection and location 

of abnormalities in water distribution systems, petroleum and chemical systems, and nuclear 

power plants are areas where acoustic leak detection systems have successfully been used. 

Not-withstanding, according to Wang et al. (2001), acoustic methods have several 

drawbacks. The performance of acoustic methods for detection and location of leaks are 

affected by the following factors: 
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 The leak characteristics. A signal with low strength is produced by the escaped water 

surrounding a huge pipe leak 

 Traffic, wind, etc. (undesired noise/interference) 

 Large number of leaks which lead to wrong leak positions 

 Plastic pipes with very strong acoustic damping 

 Different conditions of sound propagation across the pipeline 

2.3.3 Transient Analysis 

Along a pipeline, when a leak occurs suddenly, a decrease in pressure occurs after which a 

pressure pulse travels downstream or upstream. This pressure pulse when analysed can be 

used to detect and locate the leak or damage. Extraction of damage information from the 

measured pressure pulse is the primary objective of all methods for transient leak detection. 

Pulse generators, solenoid side discharge valves, and other special devices along with pumps, 

inline valves and other system elements are used to generate transient events or create a 

damage scenario. This method requires pressure measurements sampled at high frequencies 

because the speed of the transient wave can be over 1000 m/s. The method that is employed 

for further analysis determines the generated transients’ characteristics and the position 

measurement choice. 

In carrying out leak detection, the simple and most straightforward application of transient 

analysis is the method of leak reflection (Brunone and Ferrante, 2001). At the leak point 

along a pipe, partial reflection of the travelling transient wave occurs. Employing 

calculations, the location of the leak can be found as long as upon measurement of the 

pressure pulse, the reflected wave is identified. The time domain reflectometry (TDR) is the 
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principle upon which this method is based. Regression of measured and modeled transient 

pressure pulses is used by the inverse method (Olugboji and Yisa, 2012). Modelling of the 

leak is done at nodes within the network. Leak location and size are produced as a result of 

minimising the deviation between the calculated and measured pressures. Having adequate 

measurement data, apart from leak detection, calibration of system parameters can be 

achieved using inverse methods. 

In tracing a leak, the transient trace damping rate is used by the transient damping method 

(Wang et al.; 2002). Leaks and pipe friction are causes of the transient wave decay. 

Comparison between the simulated results and the measured pressure that contains the leak-

induced damping will lead to leak detection. From literature searched in the course of this 

study, and to the best of the author’s knowledge, investigation into how this method can be 

possibly applied in pipe networks has not been previously carried out. The analysis of the 

transient response while in the frequency domain is used by the frequency method (Ferrante 

and Brunone; 2003, Lee et al., 2003, Olugboji, 2011). Transformation of time-domain data 

to that of the frequency domain is carried out by Fourier transform. The leak position can 

then be gotten by making comparisons between the dominant frequencies of leaking pipelines 

and no leak pipelines. 

2.4 Signal Processing 

Signal processing is carried out for various reasons. Some of the objectives of signal 

processing as illustrated in Figure 2.1 which includes: 

 Information gathering for signal analysis: determination of system state 

 Detection: detection of abnormality by comparison to reference/normal values 
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 Monitoring: obtaining continuous or periodic information, identifying relative 

changes to the state of the system 

 Remedy and control: intervention based on measurements 

 Evaluation (Abraham, 2017). 

 

Signal data acquisition 

Pressure pulses 

Damage 

 

    Signal analysis    Signal 

processing 

 

 

Figure 2.1: Computer-aided detection and classification based on pressure pulse signal 

analysis (Abraham, 2017). 

 

 

2.4.1 Signal Processing Methods 

For analysing and processing of digital signals in their discrete forms, several methods and 

integral transforms exist. In order to get useful information form these signals, a lot of the 

existing methods and transforms are can be adopted. Some of these important methods are 

identified below: 

1. Fourier Transform 

This method forms the backbone of the various algorithms and methods used for signal 

processing. It is very much used in several areas of engineering and science (Blackedge, 
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2006). Revealing hidden information is the main advantage of signal transformation. 

According to Ortiz et al., (2009) and Soliman et al., (2001), the Fourier transform is the most 

popular signal analysis transformation technique. The following equations represent the 

mathematical expressions that define the Fourier transform (Goswami and Chan, 1999): 

ḟ (ω) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡∞

−∞
𝑑𝑡         2.1 

 

𝑓 (𝑡) =
1

2𝜋
∫ ḟ (𝜔)𝑒−𝑗𝜔𝑡∞

−∞
𝑑𝜔        2.2 

  

Where ḟ (ω) = function of frequency/Fourier transform of function 𝑓 (𝑡) 

 𝑓 (𝑡) = function of time 

 𝑡       = all real numbers 

 ω      = angular frequency 

 𝑗       = period function 

 

By disintegrating a signal into sine and cosine waves of varying frequencies, the Fourier 

transform, as shown in Equation 2.1, transforms the function f (t) from a time domain 

function to a frequency domain function ḟ  (𝜔). The inverse Fourier transform transforms a 

function from a frequency domain to a time domain using Equation 2.2. For this research 

work, the analysis of the signals was done in the time domain. This is shown in Figure 2.2. 

 



 
 

30 
 

 

Figure 2.2: Signal Fourier Transformation (Namuq, 2013) 

 

In Figure 2.2, the upper part of the image shows the pressure values which are a function of 

time being represented as a function of frequency using the Fourier transformation, and it 

provides information about the frequency content in the signal. In the lower part of the image, 

Fourier transformation is used to by break up a signal in sine and cosine waves of different 

frequencies 

 

2. Wavelet Transform 

Assuming that the signal being processed is non-stationary, this operation which is 

correlation-type based, and in terms of the kernel correlation and amplitude, includes a 

scaling property can be used (Blackedge, 2006). This transformation is a high level method 

compared to the Fourier transform. It is used in various sciences (Guan et al., 2004). The 

wavelet transformation of a function f (t) with respect to some analysing wavelet ψ is 

represented by the mathematical expression (Goswami and Chan, 1999): 
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W𝑓 (b, a) =
1

√𝑎
∫ f (t)ῲ 

𝑡 −𝑏

𝑎

∞

−∞
𝑑𝑡,        𝑎 > 0      2.3 

 

Where W𝑓 (b, a) = continuous wavelet transform 

 𝑓 (𝑡)       = function of time 

 𝑡               = all real numbers 

 ῲ              = impulse response 

 𝑎, 𝑏           = wavelet parameters 

The wavelet transform distinguishes the frequency components of a signal using a window 

technique with varying sizes while preserving the signal's time dependence (Soliman et al., 

2001, Ortiz et al., 2009). The wavelet transformation and decomposition of a wavelet signal 

is shown in Figure 2.3. 

 

 

Figure 2.3: Signal Wavelet Transformation (Namuq, 2013) 
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Figure 2.3 shows the graphical representation of the wavelet coefficients for a range of scales 

as a function of local domain known as the scalegram. The scalegram is seen in the upper 

right side of the image. At higher scale lower frequencies will be analysed while at lower 

scale higher frequencies will be analysed. 

 

3. Digital Filtering 

Digital filters can be used to model a collection of data that already exists, but they are 

typically used to process a series of data samples that have been collected previously and 

stored, or processed on sampling in real-time. Time domain filtering tends to enhance certain 

frequencies in the "signal" while attenuating other frequencies in the "noise". In Digital 

Signal Processing (DSP), digital filters are adopted. These digital filters are actually 

algorithms, and they are two main classes. These are: 

I. Fourier-based filters 

II. Convolution-based filters 

Non-recursive filters are convolution filters. They are real space filters, which are linear 

processes that work directly on data. Fourier filters work with data obtained by computing a 

signal's Discrete Fourier Transform. The Fast Fourier Transform algorithm is used to achieve 

this (Giurgiutiu, 2014). 
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Figure 2.4: Digital low-pass filter (Burgess, 2014) 

 

In figure 2.4, the top and bottom are a digital filter's input and output, respectively. On the 

left is the conventional time domain tracing, and the frequency domain representation is 

shown on the right. The input signal, x, is a low-frequency sine wave contaminated by a 

higher frequency sine wave of a lower amplitude. In the frequency domain, these two sine 

waves are represented by the single bars, each at their respective frequency and with a height 

proportional to their amplitude. After filtering, the high-frequency sine wave has been 

attenuated, resulting in an output, y, consisting of the pure low-frequency sine wave. 
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 Real-Space Filters 

The principle of moving windows is the basis for these kind of filters. A single value is 

outputted when an element data sample is processed. This process is then repeated as the next 

signal element is processed when the window moves to it. The FIR (Finite Impulse Response) 

filter is an example of a real space filter. This type of filter is non-recursive (Blackledge, 

2006):  

 

si = ∑ pi −  jfi𝑗          2.4 

Where,  

fi = input of the filter 

si = output of the filter 

pi = filter kernel 

 Fourier-Space Filters 

These are filters that operate on a signal’s DFT. They are operations that are multiplicative 

in nature. Denoting the DFT’s of Si, Pi and Fi with si, pi and fi, the Fourier space discrete 

convolution is given by (Blackledge, 2006): 

If Si, Pi and Fi are taken to denote the DFT’s of si, pi and fi respectively, then, using the 

discrete convolution theorem, in Fourier space (Blackledge, 2006) 

si = ∑ pi −  jfi𝑗  transforms to:   

Si = Pi Fi          2.5 
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A filtering operation is one in which the components of the Fourier experiences changes in 

its distribution as a result of a process that is multiplicative in nature. In Equation 2.5, Pi may 

be referred to as a filter and Si can be considered to be a filtered version of Fi. Fourier filters 

are broadly divided into five filter classes: 

i. Low-pass 

ii. High-pass 

iii. Band-pass 

iv. Band-stop  

v. Anti-aliasing  

 

Figure 2.5: Schematic of the functions of low-pass, high-pass, band-pass and band-stop 

filters 
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As observed in in Figure 2.5, a low-pass filter within a certain range attenuates or suppresses 

the high frequency components, while allowing the low frequencies of the same spectrum. A 

high-pass filter attenuates the low frequency components, while allowing the high 

frequencies of the same spectrum within a certain range. Only frequencies with a certain band 

are lowed to pass when using a band-pass filter. Band-pass filters are either high-pass or low-

pass filters (Wolf, 2019). 

4. Fast Fourier Transform 

Desiring less multiplications and additions while computing the Digital Fourier Transform 

(DFT), the Fast Fourier Transform (FFT) is used. Equation 2.6 and 2.7 gives the DFT of an 

N-point vector in standard form (Blackledge, 2006): 

Fm = ∑ 𝑓𝑛 𝑒
(−2𝜋𝑖𝑛𝑚)

𝑁𝑛          2.6        

Where ∑  𝑛 = ∑  𝑁−1
𝑛=0          2.7 

 

For a DFT with N number of points, the amount of computation needed is given by Equation 

2.8 and 2.9: 

 

WN = 𝑒
(−2𝜋𝑖)

𝑁           2.8 

Then Fm = ∑ 𝑊𝑁
𝑛𝑚𝑓𝑛𝑛         2.9 

 

Equation 2.10 shows the resulting matrix equation (Blackledge, 2006): 
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𝐹0

𝐹1...

𝐹𝑁−1

  =   

𝑊𝑁
0 𝑊𝑁

01           … 𝑊𝑁
0(𝑁− 1)

𝑊𝑁...

10 𝑊𝑁...

11           … 𝑊𝑁...

1(𝑁− 1)

𝑊𝑁
(𝑁−1)0

𝑊𝑁
(𝑁−1)1

   … 𝑊𝑁
(𝑁−1) (𝑁− 1)

    = 

𝑓0

𝑓1...

𝑓𝑁−1

  2.10 

 

A multiplication in the form of N*N is required for computing the DFT. A Matrix whose 

coefficients are given by a constant WN, raised to the power of nm is multiplied by an N-point 

vector fn to achieve this. 

5.  Convolution and Correlation 

Signal analysis is hugely dependent on the process of convolution. Even though convolution 

and correlation are have some properties that are significantly different, the two processes 

are quite similar. Fourier transform is fundamentally associated with convolution and 

correlation. 

 Convolution 

Equation 2.11 shows the operation in one dimension that gives the functions f and g 

convolution (Blackedge, 2006): 

f ⨂ g = ∫ 𝑓(𝑇)𝑔(𝑇 − 𝑡) 𝑑𝑇
∞

−∞
        2.11  

Convolution is commutative, associative and distributive respectively. 

 Correlation 

Equation 2.12 gives the functions f and g cross-correlation in a single dimension (Blackedge, 

2006): 
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f ⨀ g = ∫ 𝑓(𝑇)𝑔(𝑇 − 𝑡) 𝑑𝑇
∞

−∞
       2.12 

Correlation generally does not commute. Correlation is quite similar to convolution with a 

very small but significant difference. 

 

2.5 Sampling Signals  

For computers to be able to process digital signals, analogue signals are first converted into 

a number sequence through a process known as digitisation (Blackedge, 2006). The resultant 

digital form still contains all the information that was obtainable in the original analogue 

version after the conversion is done. This is only possible if the analogue signal is sampled 

at the right rate. This is the whole idea behind the sampling theorem. Equation 2.13 defines 

the sampling theorem which states that if a band-limited continuous function f (t) has a 

complex spectrum F (𝜔), / 𝜔/ ≤ ᾠ, then it is define by values regular interval spacing 

(Blackedge, 2006): 

 

 𝛿𝑡 ≤  
𝜋

𝜑
         2.13 

The parameter ῲ/π is known as the ‘Nyquist frequency’. When sampling an analogue signal 

the sampling frequency must be greater than twice double of the analogue signal’s highest 

frequency for reconstruction of the original signal from the sampled version to occur. The 

signal’s Nyquist frequency must be at least equal to the sampling rate if loss of information 

is unwanted when converting an analogue signal to a digital signal. If the above criterion is 

not adhered to, a distortive effect known as “aliasing” will occur causing the replicated 

spectrum to overlap. 
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Satisfying the condition, 𝛿𝑡 =  
𝜋

φ
 when sampling a digital signal gives rise to a Nyquist 

sampled signal where the Nyquist frequency is given by ᾠ/π, which is equivalent to two times 

the value of the signal frequency’s bandwidth. This sampling interval must be used to retrieve 

all of the information present in the original analogue signal from the digital signal while 

avoiding aliasing. 

 

2.6 Signal Reconstruction 

In digital signal processing, the term “reconstruct” has a special meaning. It is related to 

converting a signal from its discrete form to a continuous form using a Digital-to-Analog 

Converter (DAC) and an ideal reconstruction low-pass filter (Zisselman et al., 2018). 

 

 

 xo (t)                                    xts (n) xs (t) xr (t) 

 

Figure 2.6: An ideal sampling and reconstruction process 

xo (t) = original signal 

xts (n) = sampled signal or time-discrete sequence 

h (t) = ideal reconstruction low-pass filter 

xr (t) = reconstructed signal 

Figure 2.6 shows an ideal sampling and reconstruction system based on the results of the 

sampling theorem. This consists of a sampling device which produces a time-discrete 

sequence xts (n).h (t), an ideal reconstruction low-pass filter and an analog sinc filter, with 

Sampling D/A        h(t) 
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h(t) = (
𝑡

𝑇𝑠
). This analog filter cannot be applied directly to the time-discrete signal. The delta 

function is used to solve this challenge by turning the sequence into an analog signal xs (t). 

This is expressed as in Equation 2.14 below: 

𝑥𝑠(t) = ∑ 𝑥𝑡𝑠 
∞
𝑛= −∞ (𝑛)𝛿(𝑡 − 𝑛𝑇)       2.14  

According to the sampling theorem, this system will only produce an output or reconstructed 

signal xr (t) = xo (t) when the sampling frequency fs is at least twice the highest frequency of 

the original signal xo (t). 

 

To achieve a practical reconstruction system, only finite length pulses must be inputted into 

the reconstruction filter. This is achieved by the use of an operation known as the “Hold” 

operation (Zisselman et al., 2018). 

2.7 Digital Signal Processing for Characterisation of Damages in Pipes 

Every “real world” signal produced by an event/occurrence/source be it Bio-Electric (EEG, 

ECG); Electromagnetic (Radio, Radar); Pressure (Speech, Music, Sonar, Drilling, 

Explosion); Image (Camera, MRI), or others (Seismic) has its own special characteristics. As 

a result of the special characteristics each of these signals possesses, the appearance of each 

signal’s wave spectra is completely different from the other. In other words, the wave spectra 

of a signal caused by pressure from an explosion will be completely different from the wave 

spectra of a radio signal caused by an electromagnetic event. This is shown in the Figures 2.7 

and 2.8. 
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Figure 2.7: Wave Spectra of speech signal from a human in a neutral, angry, bored and 

happy state respectively (Seppanen, 2016) 

 

It can be seen from Figure 2.5 that the wave spectra of a speech signal from an angry person 

is completely different from that obtainable when the person is happy or bored. 
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Figure 2.8: Wave spectra of bio-electric ECG signals showing a normal heart rhythm 

(A.D.A.M., 2017) 

 

Figure 2.9: Wave spectra of bio-electric ECG signals showing post myocardial 

infarction (A.D.A.M., 2017) 
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Also from Figure 2.8, it can be seen that the wave spectra of bio-electric ECG signals of a 

person with a normal heart rhythm is completely different from that obtainable from a person 

with experiencing a hyper-acute phase or fully-developed phase of post myocardial infarction 

as shown in Figure 2.9. 

 

This is the whole idea behind the characterisation of damages in pipes using digital signal 

processing. Digital signal processing methods would be applied to a pipe that has undergone 

a damage causing impulsive event to process these signals from their analogue states to their 

digital states. Filtering of these signals would also be done to remove unwanted frequencies 

like those caused by noise and then generate the wave spectra of these signals. These DSP 

methods in order to fully characterise damages in pipes would be able to carry out Pattern 

Recognition through: 

 Abnormal signals (with event introduced) versus the normal signals (with no event) 

 Using an average of several outputted normal waveforms as the template  

 Detection of new waveforms, segmentation and comparison to the normal template 

Pipelines are considered as perhaps the most secure means of shipping oil based goods. They 

are damaged from time to time as a result of natural events (erosion, earthquakes, etc) or due 

to third party activities (explosions, drilling activities, vehicular movement, etc). A great 

challenge that pipeline operators has faced in the past regardless of the fact that the 

occurrence of damage event had been reported, is the difficulty in pin-pointing what exactly 

led  to the event. Severally, an intrusion on a pipe leads to the flow of pressure pulses in 

opposite directions through the pipe regardless of the fluid within the pipe. Detection and 

measurement of these pressure pulses can be carried out at sensors distances away from the 
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actual location of the event. The pressure pulses released due to the event are very 

informative as they can be used to determine the cause of the damage. 

 

The information about damage-causing impulsive event contained in these measured 

pressure pulses can be outputted through proper analysis of the pressure pulses (signals). 

Therefore, to achieve the characterisation of damage events in pipes, proper signal analysis 

of measured pressure pulses is carried out. 

2.8 Petroleum pipeline monitoring using Internet of Things (IoT) 

The oil and gas sector has been slow to embrace IoT technology despite having pipelines and 

refining facilities, and instrumentation on drilling rigs for decades. Only recently has the 

extraction industry begun to work with modern IoT (Gold, 2019). This change, is in part due 

to energy prices that have taken a hit in recent times; and most especially due to the 

coronavirus pandemic. There is an urgent need for oil-producing nations to safeguard their 

oil pipeline facilities from oil saboteurs in a bid to save their earnings from oil and gas 

production. This will in no small measure contribute to the funding of their national budget 

and boost their foreign exchange earnings (Tomiwa et al., 2020). Oil companies have been 

working to cut costs; and integration and automation is one of the easiest places to achieve 

this. An IoT solution that would be able to tie all these different threads of data together has 

now become a viable option for petroleum companies seeking to minimise human error and 

obtain real-time insights from the wide range of instrumentation present on the average 

petroleum pipeline (Gold, 2019). 

It was mentioned in (Hill, 2019) that integrating IoT with inputs from experts who can access 

the live data remotely and provide input via several video streaming channels would allow 
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pipeline operator access the right information at the right time, with the best analysis which 

would enable them to move from a reactive to a proactive/predictive operational stand point.  

IoT can play several roles in monitoring of pipelines. Operational data from electric 

submersible pump can be monitored to detect potential failure and automatically stop the 

pump to prevent damage, and in-turn notify operators to repair or replace the pump based on 

current machine and maintenance models (Ayn, 2019). IoT can also be used in pipeline 

optimisation, where it can shut down a valve and send an alert to a mobile device to avoid a 

major disruption or damage a pipeline (Ayn, 2019). 

There are many benefits of using IoT for pipeline control. Without IoT, businesses will have 

to rely on humans to perform routine checks and maintenance, according to Joshi, (2019). 

Because of its ability to track pipelines in real-time, the IoT framework assists in the 

reduction of manual tests. The real-time data can be used to reduce significant risks 

associated with pipeline leaks and other undesirable circumstances. According to Joshi, 

(2019), another benefit of using IoT in pipeline control is the efficient management of 

employees. Employees would only be needed to perform repairs when an issue arises, 

reducing the need for annual human monitoring and human resources. 

To the best of the author’s knowledge, not much works exits in the use of IoT for monitoring 

of petroleum pipelines but related works to the scope of this study exists. Notably, Cheddadi 

et al. (2020) proposed a low-cost IoT device for collecting and tracking electric and 

environmental data from a PV solar station in real time. In order to collect, process, store, 

and analyse data, a low-cost data pipeline for monitoring environmental and electrical 

parameters in a photovoltaic station was built. The ESP32 DEVKIT V1 was used as the 
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microcontroller in the proposed monitoring system for collection and processing of incoming 

data from sensors before transmitting the processed data to the cloud through built-in Wi-Fi. 

Also, Ibrahim et al., (2019) proposed an IoT-based greenhouse monitoring and remote 

control architecture that is applicable to various types of crops. The architecture that was 

proposed in this work is capable of allowing owner/supervisors to remotely control the green 

house through the internet and enable the autonomous control of the greenhouse operational 

conditions. The proposed architecture also allows the owner to monitor and keep record of 

the progress all through the period of plantation of the crops within the greenhouse. The 

simulation of the proposed system architecture was carried out using the Riverbed Modeller. 

2.9 Summary of Literature Review and Research Gaps 

The current state of pipeline monitoring and security in Nigeria has been discussed. It was 

found that pipeline monitoring in Nigeria and securing of these pipelines is still a challenge 

to pipeline operators as oil spill due to third party interference and operational faults still 

occur. Monitoring of pipelines in Nigeria is done through intermittent appraisal of pipelines, 

use of pipeline integrity management systems, on-the-ground and air surveillance of 

pipelines by security forces. High cost, planning complexity, and lack of proper access routes 

are major drawbacks for these monitoring methods. 

 

Leak identification is presently being carried out in Nigeria via visit to the site of the spill to 

determine the cause of the damage to the pipeline. A joint Investigation team pays a visit to 

the site of the oil spill to determine the volume of oil spilled and the cause of the spill. The 

investigation team normally comprises of persons from oil companies, the federal 

government, state governments, regulators, security agencies and communities. The 
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drawback for this type of method is that severe loss of product and serious environmental 

damage would have taken place before repair works would commence due to time wastage. 

As at the end of 2018, 234 oil spill sites in Nigeria remained un-remediated (Shell in Nigeria, 

2018). Huge cost of transportation of investigation team is another drawback.   

 

Methods of pipeline line monitoring from previous research have been discussed. The merits 

and demerits of these methods have also been highlighted. Vibration-based methods for 

pipeline monitoring have been found to be very effective. The method of time delay between 

pressure pulse arrivals was discovered to be very successful in locating leaks on a pipeline. 

Due to unwanted interference noise from traffic, water, wind and other sources, the acoustic 

method of pipeline monitoring was found to be not very efficient in the determination of a 

leak in a pipe. Transients inaccurate modelling was found to be a major drawback of the 

inverse least square method of pipeline monitoring. The pipe network boundary conditions 

was found to be another major drawback.  

 

Vibration based methods have been used to monitor pipelines in the past through the process 

of mathematical modelling. These mathematical models have proven to be successful in 

detecting and locating damages along a pipeline. As is the practice in literatures reviewed, 

the developed mathematical model is always simulated to predict the accuracy of the model. 

The simulation is then verified using built test rigs. The size of the built test rigs differ from 

reviewed literatures. Also, several types of sensors were used in past studies.  

 

Several signal processing techniques were discussed highlighting their uses and strengths. 

The Fourier transform was found to be very important in revealing hidden information in a 
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signal. It was also found to be very important in calculating Cross-Correlation Functions 

(CCFs) between unsymmetrical images to help averaging and comparing them.  

 

To the best of the author’s knowledge and from literature reviewed in the course of this study, 

previous research that has been done on pipeline monitoring has not taken adequate 

consideration in characterisation of the causes of damages or leaks on pipelines. Potential 

causes of damages on pipes like drilling, corrosion, use of a heavy mass were rarely taken 

into consideration. The research works were also based on operational causes of damage. 

Exhaustive studies have not been carried out mimicking these different damage causes to 

classify and characterise them in order to determine the cause of a leak on a pipeline even 

before arrival at the spill site.  

 

Also, to the best of the author’s knowledge and from literature reviewed in the course of this 

study, the reconstruction of the original pressure pulse at the point of damage from a 

combination the pressure pulses at different damage points along a pipeline has rarely been 

researched on. Most of the research works on event reconstruction were based on the 

reconstruction of an original pressure pulse from a single pulse recorded along the pipe. The 

Fourier transform methods of sampling and reconstruction are proposed to help achieve this. 

Combination of reconstruction methods to achieve the best possible estimate of the original 

pulse magnitude was rarely investigated. Research works on pipeline monitoring have 

focused on achieving event reconstruction using different methods. The use of a factor along 

with the Fourier transform method of signal reconstruction to solve the problem of under 

estimation and over estimation of original pulse magnitude is hereby advocated for, for its 

simplicity and versatility. 
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Previous research works on pipeline monitoring have rarely focused on real time 

transmission and monitoring of damage data wirelessly to an Internet-of-Things (IoT) 

platform to as a means of optimising pipeline monitoring systems. Previous research works 

have focused on the design/development of intelligence pipeline inspection gauges (pigs) to 

achieve this. Available in the world today is about 2.5 million km of hydrocarbon pipeline. 

That is enough to go around the earth’s circumference at least 62 times. For different reasons, 

a good percentage of pipelines across the world are considered impossible to pig (Oil and 

Gas IQ, 2015). These reasons include: 

 Tight bends in the pipe do not allow the rigid exoskeleton of the pig to pass through. 

 Blockages caused by sediments and contaminants may act as barriers to the path of 

a pig. 

 Pipes may have a number of different diameters which prohibit the passage of these 

torpedo-like structures. 

 There are valves in the pipeline that permanently obstruct the passage of anything 

but a gas or fluid. 

 There may be no direct entry into a pipe. 

 

The process of pigging is a very expensive one. Estimates have shown that pipeline 

monitoring and inspection by pig can cost as much as $56,000 per kilometer. Taking into 

consideration that 25 percent of the world’s pipelines fall into the ‘un-piggable’ class, it can 

be estimated that companies are spending close to $105 billion on pigging the world’s 

hydrocarbon pipelines. This is more than the annual gross domestic product of a lot of 

countries. Creating a pigging system for pipeline inspection and monitoring is a very messy 
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and labor intensive process. A very demanding planning process is required to make sure that 

operations are maintained within HSE parameters because most pigging processes run whilst 

pipelines are in service. Trained crew may require hours to correctly load the pig into the 

pipe after the planning is complete; and the running distance will only stretch to a handful of 

kilometers. As a result of this, depending on the pipe, before an inspection pattern can 

emerge, pigs may need to be launched severally. Smart pigs use intelligent technology such 

as transmitters, sensors, GPS, eddy current, magnetic fields, ultrasonic and acoustics to 

identify and diagnose potential problems (Oil and Gas IQ, 2015). 

The use of an Arduino, Wi-Fi module and the ThingSpeak IoT platform is advocated for to 

achieve real time monitoring of a pipeline from anywhere in the world. 

 

Therefore, the research gaps that have been filled in this work include: 

i. The use of an experimental test consisting of a PVC pipe, air/water as the 

transportation fluid, piezoelectric sensors and a data logger for the characterisation of 

damages in pipes 

ii. The use of the Fourier transform methods of sampling and reconstruction to achieve 

the reconstruction of an original pulse at the damage point from two other pulses at 

different points along the pipe 

iii. The use of a factor, along with the Fourier transform technique of signal 

reconstruction to achieve a best possible estimation of the original pulse magnitude. 

iv.  Combination of an Arduino, Wi-Fi module and the ThingSpeak IoT platform for 

continuous wireless transmission of damage data and real time monitoring of 

pipelines 
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The development of the petroleum pipeline monitoring system in this research work will 

therefore be based on the combination of signal processing techniques of sampling and 

reconstruction using Fourier transform; and the method of time delay between pulse arrivals, 

a vibration-based technique. The system is expected to detect and locate damage on a pipe 

with a good level of accuracy. It is also expected to be able to classify various damage events 

that occur on a pipeline. 
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         CHAPTER THREE 

3.0       MATERIALS AND METHODS 

3.1 Materials 

The major materials that were used for this research work are: 

i. Flexible polyethylene hose pipe 

ii. Water 

iii. Sulphuric Acid (AR H2So4 M.W. 98.08) with composition Assay/acid metric: 97-

99%; wt. per ml at 20oC about 1.835g 

 

The major equipment for the research and a brief about their use is presented thus in Table 

3.1. 

Table 3.1: Major Equipment 

S/N Equipment Specification Purpose Source 

1 TCAM 

piezoelectric 

sensors 

Diameter 15 cm; 

thickness 0.35 

mm; model 

number: 

8QQ0302 

For detection of 

propagated pulses 

along pipeline 

Aliexpress 

2 Pulse generator 5 Pa rating For generation of 

sharp fronted 

pressure pulses in 

the pipe 

Fabricated 

3 Pico Log 1012 10 bits, 12 

channels data 

acquisition 

module with 

serial number 

pl1000.en r2 

10.05.2013 

Recording and 

processing of 

signals from 

pressure pulses at 

specified sampling 

rate 

Pico 

Technology 
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4 MATLAB® 

software 

package 

(R2016a) 

R2016a Analysis of 

generated data; 

calculation of 

Fourier functions 

of generated 

pulses; for 

sampling and 

reconstruction of 

signals 

MathWorks 

5 Two 

LOMVUM 

hand drill 

Model Number: 

13T; Rated 

power: 220 V; 

Output Power: 

750 W and 1000 

W respectively; 

Frequency: 

50/60Hz; No 

load speed: 0-

4600 R/Min; 

Max. Chuck: 13 

mm; Size: 19 

cm and 28 cm 

respectively 

To generate pulses 

in the pipe 

Mechanical 

Workshop, 

Federal 

University of 

Technology 

Minna 

6 Hammer Average size, 

wooden handle 

To generate pulses 

in the pipe 

Mechanical 

Workshop, 

Federal 

University of 

Technology 

Minna 

 

7 Wireless 

communication 

device 

Arduino and 

WiFi Module-

based 

For processing and 

transmission of 

signal data 

received from 

sensors wirelessly 

to the ThingSpeak 

Fabricated 
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IoT analytics 

platform 

8 Laptop 

computer 

HP Pro book 

720p 

Connected to data 

acquisition module 

for processing of 

and visualisation of 

data. 

Personal copy 

9 Water tank 100 Liters 

rubber tank 

For storage of 

water used in 

experiments 

Gidan Kwano 

market, Minna 

     

 

 

3.1.1 Wireless Communication Device 

A wireless communication device was developed to carry out wireless transmission of signal 

data from the sensors to the ThingSpeak IoT analytics platform. The device consisted of an 

Arduino, and a Wi-Fi module which were integrated with the sensors that were placed on the 

pipelines. The Arduino was programmed to communicate with the ThingSpeak IoT analytics 

platform thereby sending signal data to the platform for visualisation and analysis. A circuit 

diagram showing how the Arduino and Wi-Fi module were connected is shown in Figure 

3.1. 
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Figure 3.1: Circuit diagram of connection between Arduino and Wi-Fi module (Raj et. 

al., 2015) 

3.1.1.1 The Choice of Micro Controller 

An Arduino was selected as the micro controller for this study. An Arduino is an open-source 

electronics platform based on easy-to-use hardware and software. Inputs like light on a 

sensor, a finger on a button, or a Twitter message can be read by an Arduino board and then 

turned it into an output like activating a motor, turning on an LED, publishing something 

online (Hobby Electronics, 2019).The Hwayeh CH34og +MEGA 328P Arduino shown in 

Plate I was used in the development of the wireless communication device. It made use of an 

Atmel 328 microprocessor controller. It was selected because of its good performance, low 

power consumption, real timer counter having separate oscillator, and is programmable 

(Hobby Electronics, 2019). The Arduino was programmed to collect data once every 15 
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seconds and update the channels on the analytics platform once every 2 minutes as seen in 

Appendix B. The reason for this is that the student version of the IoT platform was used and 

as such, only permit data collection every 15 seconds, though an Arduino is able to collect 

data even in milliseconds. The Arduino code is called a ‘sketch’ which is a short program 

that is run over and over by the device. 

 

 

 

Plate I: Hwayeh CH34og +MEGA 328P Arduino (Hobby Electronics, 2019)  

3.1.1.2 Wi-Fi Module 

The ESP01 ESP8266 Wi-Fi module as shown in Plate II was used for developing the wireless 

communication device. It was selected for this study due to its powerful storage and on-board 

processing capabilities, the ESP8266 can be integrated with sensors and other application-

specific devices through its GPIOs with minimal development and load during runtime. It 

allows for minimal external circuitry due to its high degree of on-chip integration, and the 

entire solution, including the front-end module, is designed to take up as little PCB space as 
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possible (Gamma, 2019). It was programmed via written codes to communicate with the 

Arduino. The codes are seen in Appendix C. 

 

 

 

 

Plate II: ESP01 ESP8266 Wi-Fi module (Gamma, 2019) 

3.2 Methods 

3.2.1 Damage Location Based on Pressure Pulse Analysis 

When a pipe is damaged, the flow of a pressure pulse to and from the point of damage occurs. 

These pressure pulses are eventually reflected when they reach the boundaries of the 

pipelines. In this work, the position of a damage on a pipe with air and water as the transport 

fluids respectively was determined. This required placing sensors at various points along the 

pipe. The travel times these pressure pulses can be found when a high frequency is used for 

sampling when pressure measurements are made at several points along the length of the pipe 

(Olugboji, 2011).  
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3.2.2 Propagation of Damage-Induced Pressure Pulses in a Water Filled Pipe 

The pulse arrival times in a pipe and the sensor positions along the pipe can be used to 

determine the location of an event along a pipe. These events could either be caused by 

drilling, impact, explosion, etc. In Figure 3.3, the schematic representation of a pipeline with 

four sensors placed along it is shown. The sensors: 1, 2, 3, 4 were distances x1, x2, x3, x4 

respectively from some boundary. The arrival times of some generated pulses caused by a 

damage-inducing impulsive event occurring at an unknown location is recorded as t1, t2, t3, 

and t4   by the four sensors.      

 

Figure 3.2: Schematic representation of sensors on a pipeline. 

 



 
 

59 
 

In the pipe seen in Figure 3.3, sensor 3 or 4 may be used to determine the event location. The 

occurrence of a damage event on a pipe leads to a change in pressure within the pipe which 

eventually leads to the generation of pressure pulses. Any change in pressure moves through 

the fluid-filled pipe at a velocity cp which is manifested as a pressure pulse in both directions.  

The propagation velocity of a pressure pulse in a fluid-filled pipe is determined by the elastic 

properties of the fluid, as well as the material and the geometry of the pipe. In an elastic pipe, 

the pulse propagation velocity of the elastic fluid within it is given as (Záruba, 1993; 

Finnemore and Franzini, 2002): 

 

𝐶𝑝 =√
1

⍴ (
1

𝐸𝑣  
+ 

𝐼𝐷

𝑊𝑡 𝐸
)
         3.1  

Where    = density of water (kg/m3) 

  Ev = water bulk modulus (N/m2) 

  ID = pipe inner diameter (mm) 

  Wt = thickness of wall (mm) 

  E = Pipe modulus of elasticity (N/m2) 

 

The arrival of pulses at the same side of the event which are sensors 3 and 2, or sensors 2 and 

1 as in the case shown in Figure 3.3 can be adopted for determining the velocity of the pulse 

propagation. Thus, the exact location of the event from sensor 3 is calculated by: 

𝑥𝐷𝐸3= 
(t34Cp + 𝑥43)

2
         3.2 

or from sensor 4, 

𝑥𝐷𝐸4= 
(𝑥43− 𝐶𝑝t34)

2
         3.3 
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To determine the arrival times of signals at each sensor, the cross correlation technique is 

used. 

3.3 Experimental Validation 

An experimental flow loop as shown in Figure 3.4 was built for validating the above 

discussed event location theory. This consisted of an air-filled PVC (Polyvinyl Chloride) 

pipe of total length 20.11 m and internal diameter of 20 mm for propagation of pressure 

pulses. A pressure pulse generator was used to introduce sharp-fronted pulses into the water 

filled pipe. Five piezoelectric sensors were situated at various points on the PVC pipe. Sensor 

1 was located at 2 m from one end; while sensor 2 was located at 5 m from one end and 

sensor 3 was located at 8 m from one end. Sensors 4 and 5 were located at 11 and 17 m from 

one end respectively. All sensors were connected to a single Pico Log data instrumentation 

system. This was used for capturing and recording of pulse data in the first experimental test 

rig. A second test rig was built with all the sensors connected to the wireless communication 

device. Both test rigs are shown in Plate I and II. The location of the event was 4.32 m from 

one end of the pipe. 
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       Sensors (Data acquisition system) 

  Flow direction                   5            4             3            2                        1 

         

          Pulse generator 

 

 

    

Figure 3.3: Schematic of experimental flow loop 

 

Sensor 1 was located at 2.24 m from the event location; sensor 2 was located at 0.68 m from 

the event location; sensor 3 was located at 3.68 m from the event location; sensor 4 was 

located at 6.68 m from the event location, and sensor 5 located at 12.684 m from the event 

location. Pressure pulses were generated at specific pressures severally and measurements 

made for each amount of pressure set in the pulse generator.  The velocity of the propagated 

pulse was experimentally determined using the pulse data from any two sensors. The 

MATLAB® software was used to carry out cross-correlation of the measured pressure pulses 

to determine time delay in arrival times of these (tdelay).  The velocity of pulse propagation 

was calculated as (Olugboji, 2013): 

C𝑝= 
𝑥𝑎𝑏 

 𝑡𝑑𝑒𝑙𝑎𝑦 𝑎𝑏 
          3.4 

Where   xab = distance between two selected sensors 
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  tdelay ab = time delay between arrival times at two selected sensors 

This calculation was done severally to examine the repeatability of pressure pulse velocity 

value. The average value of experimental pulse propagation velocity was determined from 

plots made graphically and compared to that obtained using Equation 3.1 to validate its 

accuracy. These experimental values of velocity were then used in Equations 3.2 and 3.3 to 

calculate the various event locations. An average of these locations was calculated and 

compared against the actual measured event location to determine the accuracy of the method 

used. 

3.4. Numerical Simulation and Modeling of Pressure Pulse Propagation for  

Characterisation 

In this work, emphasis was based more on outputting, analysing and categorising the wave 

spectra obtainable from different impulsive or damage causing events. Fourier transform 

ranks highest when it comes to linking the physics of a signal producing system to the signal 

characteristics. The majority of physics laws can be expressed using differential equations. 

This is a major advantage of Fourier transform as it can use differential equations to provide 

comprehensive and general solutions to physical systems. 

3.4.1 Mathematical Model 

For this work, the Fourier Transform was employed as the basis to develop the mathematical 

model needed for the reconstruction of the signals arising from various impulsive events. 

This is discussed in the following sections. 

 



 
 

63 
 

3.4.1.1 Mathematical Model for Sampling 

The following notations were adopted in the course of this work: 

xo (t) = original analog signal 

xr (t) = reconstructed signal (where xr (t) = xo (t)) 

xts (n) = time-discrete signal or sampled signal (𝑤ℎ𝑒𝑟𝑒 𝑥𝑡𝑠 (n) = 𝑥(𝑛𝑇𝑠)) 

fs = sampling frequency (samples/second) 

Ts = sampling interval (seconds/sample) (𝑤ℎ𝑒𝑟𝑒 𝑇s =  (
1

𝑓𝑠
)) 

ῲ = real angular frequency (radians/second) 

ω = digital angular frequency (radians/second) (where ω = ῲTs) 

t = continuous time variable 

n = discrete integer variable 

The inverse Fourier transform of a time discrete signal xts (n) obtained from sampling xo (t) 

every Ts second is given by: 

 

𝑥ts(n)  = 
1

2𝜋
∫ 𝑋𝑡𝑠(𝑒𝑖𝜔)𝑒𝑖𝜔𝑛𝑑𝜔

𝜋

−𝜋
       3.6 

 

In simplifying the above, the equation is expressed in terms of real angular frequency, ῲ. 

This gives:  

xts (n) = 
𝑇𝑆

2𝜋
∫ 𝑋𝑡𝑠(𝑒𝑖𝜑𝑇𝑆)𝑒𝑖𝜑𝑇𝑆𝑛𝑑𝜑

𝜋

𝑇𝑆

−
𝜋

𝑇𝑆

       3.7 

For a continuous signal, the inverse Fourier transform given by: 

xo (t) = 
1

2𝜋
∫ 𝑋𝑜(𝑖𝜑)𝑒𝑖𝜑𝑡𝑑𝜑

∞

−∞
      3.8 

Replacing t with nTs in the above equation, we obtain 



 
 

64 
 

x (nTs) = 
1

2𝜋
∫ 𝑋𝑜(𝑖𝜑)𝑒𝑖𝜑𝑛𝑇𝑠𝑑𝜑

∞

−∞
      3.9 

Splitting the integration in (3.9) into sub-intervals of length 
2𝜋

𝑇𝑠
 and taking the sum over the 

resulting integrals to obtain the complete area, we have: 

x (nTs) = 
1

2𝜋
∑∞

𝑘=−∞ ∫ 𝑋𝑜(𝑖𝜑)𝑒𝑖𝜑𝑛𝑇𝑠𝑑𝜑

(2𝑘+1)𝜋

𝑇𝑠
(2𝑘−1)𝜋

𝑇𝑠

     3.10 

Changing the integration variable by setting =  𝛼 + 
2∗𝜋𝑘

𝑇𝑠
 , we obtain: 

x (nTs) = 
1

2𝜋
∑∞

𝑘=−∞ ∫ 𝑋𝑜 (𝑖 (𝛼 +  
2∗𝜋𝑘

𝑇𝑠
)) 𝑒

𝑖(𝛼+ 
2∗𝜋𝑘

𝑇𝑠
)𝑛𝑇𝑠𝑑𝛼

𝜋

𝑇𝑠
−𝜋

𝑇𝑠

   3.11 

Multiplying (3.11) all through by 
𝑇𝑠

𝑇𝑠
 , with 𝛼 = 𝜑 and noting that 𝑒𝑖2∗𝜋𝑘𝑛 , we obtain: 

x (nTs) = 
𝑇𝑠

2𝜋
∫ ∑∞

𝑘=−∞

1

𝑇𝑠
𝑋𝑜 (𝑖 (𝜑 +  

2∗𝜋𝑘

𝑇𝑠
)) 𝑒𝑖𝜑𝑛𝑇𝑠𝑑𝜑

𝜋

𝑇𝑠
−𝜋

𝑇𝑠

    3.12 

In order for xts (n) to be equal to x (nTs) for all values of the integer n, equations 3.7 and 3.12 

must agree as given below: 

𝑋𝑡𝑠(𝑒𝑖𝜑𝑇𝑠) =
1

𝑇𝑠
∑∞

𝑘=−∞ 𝑋 (𝑖 (𝜑 +  
2𝜋𝑘

𝑇𝑠
))      3.13 

The above is the mathematical model for sampling of signals to obtain their digital spectrum. 

3.4.1.2 Mathematical Model for Signal Reconstruction 

The inverse Fourier transform for a band-limited signal is given by: 

𝑥𝑜(𝑡) =  
1

2𝜋
∫ 𝑋 (𝑖𝜑)𝑒𝑖𝜑𝑡𝑑𝜑

𝜋

𝑇𝑆

−
𝜋

𝑇𝑆

       3.14 

𝑋𝑡𝑠(𝑒𝑖𝜑𝑇𝑠) = 
𝑋(𝐼𝜑)

𝑇𝑆
 for the interval being integrated and when this is substituted into equation 

3.14, we obtain: 
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𝑥𝑜(𝑡) =
𝑇𝑠

2𝜋
∫ 𝑋𝑡𝑠(𝑒𝑖𝜑𝑇𝑠)𝑒𝑖𝜑𝑡𝑑𝜑

𝜋

𝑇𝑆

−
𝜋

𝑇𝑆

       3.15 

When the DTFT expression for 𝑋𝑡𝑠(𝑒𝑖𝜑𝑇𝑠)is applied, we obtain: 

𝑥𝑜(𝑡) =
𝑇𝑠

2𝜋
∫ ∑∞

𝑘=−∞ 𝑥𝑡𝑠(𝑛)𝑒(−𝑖𝜑𝑛𝑇𝑠)𝑒𝑖𝜑𝑡𝑑𝜑

𝜋

𝑇𝑆

−
𝜋

𝑇𝑆

     3.16 

With summation and integration interchanged, we obtain: 

𝑥𝑜(𝑡) =
𝑇𝑠

2𝜋
∑  ∞

𝑘=−∞ 𝑥𝑡𝑠(𝑛) ∫ 𝑒𝑖𝜑(𝑡−𝑛𝑇𝑠)
𝑑𝜑

𝜋

𝑇𝑆

−
𝜋

𝑇𝑆

  3.17 

Integrating, we obtain: 

𝑥𝑟(𝑡) = 𝑥𝑜(𝑡) = ∑∞
𝑘=−∞ 𝑥𝑡𝑠(𝑛)

sin(
𝜋

𝑇𝑠
(𝑡−𝑛𝑇𝑠))

𝜋

𝑇𝑠
(𝑡−𝑛𝑇𝑠)

  3.18 

The above is the reconstruction model that was used to recover the original signal xo (t) from 

the time-discrete sequence or sampled signal xts (n). 

To obtain a more accurate reconstruction of the original signal xo (t), we obtain: 

𝑥𝑟(𝑡) = ∑  ∞
𝑘=−∞ 𝑥𝑡𝑠(𝑛)

sin(
𝜋

𝑇𝑠
(𝑡−𝑛𝑇𝑠))

𝜋

𝑇𝑠
(𝑡−𝑛𝑇𝑠)

∗ 𝐾  3.19 

Where K is an approximation factor obtained by dividing the maximum value of 𝑥𝑜(𝑡), by 

the maximum value of 𝑥𝑟(𝑡). Equation 3.19 is the mathematical model that was developed 

to solve the problem of overestimation of a pulse that was reconstructed from the 

combination of two other pulses along the pipeline. K is obtained by dividing the maximum 

amplitude of the reconstructed pulse at a particular sensor by the maximum amplitude of the 

original pulse at the same sensor. These are obtained from plots in the MATLAB® 

environment.  
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3.5. Simulation of Mathematical Model 

The simulation of these mathematical models developed for both the sampling and 

reconstruction of signals obtained from pressure pulses’ propagating within a pipe was 

carried out using the MATLAB® software. This was done to ascertain the workability of the 

model and its ability to perform proper event reconstruction.  

A mathematical model was derived to determine the location of a damage event along a 

water-filled pipe. Another mathematical model was developed to determine the velocity of 

propagated pulse from experimentally measured pulse pressure at any two sensors using the 

principle of delay in the arrival times of pressure pulses at sensors. 

Mathematical techniques were also derived to carry out signal sampling and reconstruction. 

Preliminary testing of these mathematical models was carried out with the model being 

applied to three sample sets of data obtained from a different experimental setup carried out 

on pipeline monitoring. The sampling for each data sample was done after every 10 data sets 

to obtain a total of 250 samples. This simulation was carried out using the MATLAB® 

software. The results obtained show that this model can exactly reconstruct a signal from 

from values sampled at discrete, uniform intervals as long as the signal frequency is less than 

half the sampling frequency, fulfilling the Nyquist frequency criterion. The simulation was 

done in accordance with the procedure carried out by Olugboji, (2011). 

3.6. Experimentation for Validation of Simulation 

For the validation of the proposed methods for damage characterisation in pipes, four 

different experiments were carried out. These four experiments were carried out to mimic 

damage events in pipes caused by explosion, drilling, vehicular movement, and corrosion 

respectively. 
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3.6.1 Experimentation to Mimic Damage Event Caused by Explosion 

The experimental set up was basically the same as that shown in Figure 3.3 and Plates III and 

IV. A pulse generator was used to mimic an explosion in the pipe. Piezoelectric sensors that 

were linked to one data logger were placed at points along the pipe, and the data logger was 

used to capture pulse data and saved in a tab delimited data file. Analysis of the captured data 

was done offline in the MATLAB® environment with written codes.  

These experiments were carried out with air and water as the transport fluid respectively 

within the pipe, and different pressure rates were used in both experiments. A pulse generator 

with a hand pump connected to it was used to generate sharp fronted pulses into the pipe. 

This was done repeatedly at pressure readings from 0.2 bar to 1 bar within the pulse 

generator. A total of 50 tests were carried out and all the measured pressure pulses had similar 

shapes. 

The pressure pulse with the highest amplitude was obtained using a pressure reading of 1.0 

bar in the pulse generator, while the pressure pulse with the least amplitude was obtained 

using a pressure reading of 0.2 bar. 50 measurements were made in total because 10 

measurements each were made for each pressure rating in the pulse generator. An average of 

the time delay between pulse arrivals was obtained after cross correlation in MATLAB® 

 

3.6.2 Experimentation to Mimic Damage Event Caused by Drilling 

The experimental setup was the same with that of explosion. To mimic a drilling operation, 

sharp fronted pressure pulses were introduced into the PVC pipe by using a hand drill to drill 

holes of 4 mm diameter each at different points along the surface of the pipe. The signals 

from the sensors were recorded using the data acquisition model and saved. The saved data 

was analysed in the MATLAB® environment with written codes.  
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With the same experimental test rig, damage from a drilling event was mimicked. Two 

different hand drills were used to generate sharp fronted pulses into the pipe. The drills had 

power ratings 750 Watts and 1000 Watts respectively. This experiment was carried out with 

both air and water as the transport fluid in the pipe respectively. The drills were used to make 

holes along the pipe 

3.6.3 Experimentation to Mimic a Potential Damage Event Caused by Vehicular  

Movement 

With a similar experimental setup as that of explosion and drilling, this experiment was 

carried out by using a hammer to strike at points along the pipe. The hammer struck the pipe 

at an average of 445 N per strike. The solid mass was meant to mimic a sudden weight like 

that obtained from a vehicle. The signals from the sensors were also recorded using the data 

acquisition device and saved. The saved data was then analysed in the MATLAB® 

environment with written codes.  

To mimic potential damage to a pipe caused by movement of the tires of a vehicle over the 

pipe, a hammer was used to impart a mass on the pipe of the experimental test rig thereby 

introducing sharp-fronted pulses into the pipe. Air and water were also used respectively as 

the transport medium in the pipes 

3.6.4 Experimentation to Mimic a Potential Damage Event Caused by Corrosion 

The experimental setup is as illustrated in Figure 3.5. To mimic a corrosive environment in 

a pipe, sharp fronted pressure pulses were generated into the water filled PVC pipe by 

carefully introducing 97-99% concentrated Sulphuric acid at different points along the length 

of the pipe. The signals from the sensors were recorded using the data acquisition model and 
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saved. Analysis of the saved data was carried out using the MATLAB® software through 

written codes. 

 

 

 

       Sensors (Data acquisition system) 

   Flow direction               5           4            3          2                      1 

         

          Pulse generator 

 

 

      

Figure 3.4: Schematic of experimental test rig for corrosion  

 

The setup in Figure 3.4 was also adopted in mimicking damage due to drilling, vehicular 

movement and explosion in order to compare results between scenarios where air and water 

are the transport fluids within the PVC pipe and to see what is obtainable in both cases. This 

test rig is shown in Plate III. 

In all the four experiments, a voltage rating of 100 mV on the Pico Log data logger was used. 

This voltage was used because it was the maximum voltage rating on the data logger that 

 

Water tank 
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permitted the outputted pulse spectrums not to be distorted. An algorithm for FFT was written 

in the MATLAB® software and used to carry out sampling and reconstruction on the collected 

signal data. These signals in the frequency domain contained noise frequencies. An FFT 

algorithm for the Sinc filter was also be written in MATLAB® to perform the noise 

cancellation process. The experiments for each impulsive event were carried out repeatedly. 

Those to mimic explosion, drilling and vehicular motion were carried out 50 times each, 

while those to mimic explosion was carried out 5 times. The various wave spectra were 

outputted after processing and then analysed for pattern recognition. 

3.7 ThingSpeak IoT Analytics Platform 

ThingSpeak is an IoT platform service that enables live data streams to be viewed and 

analysed from sensor devices in the cloud (ThingSpeak, 2019). This platform enables you to 

perform data analysis on data collected from remote devices with MATLAB® codes in real-

time. The platform was signed up to, and channels were created on the platform. These 

channels were configured via written codes to communicate with the desired sensors. 

On the ThingSpeak network, five channels were generated to collect data from the five 

sensors used in the experimental test rig. Every 15 seconds, signal data was obtained, and 

every 2 minutes, all channels were changed. This was due to the fact that the student license 

of the platform was used. One second transfer of data, and immediate updating of the 

platform is only possible using the paid license. ThingSpeak visualised data posted by 

wireless networking devices in real time. With the ability to execute MATLAB® codes in 

ThingSpeak, online analysis and processing of the data was performed as it came in. Figure 

3.6 illustrates the Internet of Things process that was carried out in this work. 
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Figure 3.5: IoT system adopted for pipeline monitoring (ThingSpeak, 2019) 

Seen on the left of the figure are the smart devices (the “things” in IoT) that live at the edge 

of the network which is the wireless communication device used in this work. These device 

collected pressure pulse data from the piezoelectric sensors. In the middle is the cloud where 

data from the sensors was aggregated and analysed in real time, in this case was by the 

ThingSpeak IoT analytics platform. 

The right side of the diagram depicts the visual display associated with the IoT application. 

By conducting historical analysis on the data, insight into the collected data was gained. 
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3.7.1 Optimisation of Developed Detection, Location and Characterisation System 

A wireless device was incorporated into the experimental test rig as shown in Plate IV. The 

Arduino and Wi-Fi module were powered by a computer system through the use of two USB 

cables. This was so due to proximity to the computer system as they could be powered by 

being connected to an electric source. The Wi-Fi module of the device was activated by the 

internet connection from an android phone. This device replaced the data logger that was 

used in the setup in Plate I. Wire piezoelectric sensors were used in these experiments and 

the device was connected to the sensors via wires. The sensors captured the pressure pulses 

from the various damage events and the device transmitted these pulse data to the 

ThingSpeak analytics platform. Processing of these pulse data was done in real time on the 

ThingSpeak platform and the output of the measured pressure pulses was also displayed in 

real time. 
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CHAPTER FOUR 

4.0       RESULTS AND DISCUSSION 

4.1  Simulation of Derived Mathematical Models 

Results of the simulation of sampling and reconstruction carried out with this developed 

model are thus presented in Figures 4.1, 4.2, 4.3, 4.4, 4.5,4.6,4.7,4.8, and 4.9 respectively. 

 

 

Figure 4.1: Original simulated pulse for data set 1 
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Figure 4.2: Sampled simulated pulse for data set 2 
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Figure 4.3: Reconstructed and original simulated pulse of data set 1 

 

 

In Figure 4.1, 4.2, and 4.3, the value of the sampling period was 0.00001 s, and the data 

contained a single frequency component of 100 KHz. Figure 4.1 shows the plot of the original 

pulse. Figure 4.2 shows the sampling of the pulse using the Fourier transform method. The 

sampling was done after every 10 data sets to obtain a total of 250 samples. Figure 4.3 shows 

the reconstruction of the pulse using the Fourier transform method. The shapes of the 

reconstructed and measured original pulse in Figure 4.3 agree quite well as both have 

basically the same contour, and also, the magnitude of both pulse in Figure 4.3 can be seen 

to be the same with a value of 0.28m. The original measured pulse started at a negative time 

while the reconstructed pulse started from zero. This is because the reconstruction method 

does not take into consideration the negative time data values (Blackledge, 2006). 
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Figure 4.4: Original simulated pulse of data set 2  
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Figure 4.5: Sampled simulated pulse of data set 2 
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Figure 4.6: Reconstructed and original simulated pulse of data set 2  

 

A sampling period value of 0.00001 s was used in data set 2 and the data contained a single 

frequency component of 100 KHz. Figure 4.4 shows the plot of the original pulse. Figure 4.5 

shows the sampling of the pulse using the Fourier transform method. Figure 4.6 shows the 

reconstruction of the pulse using the Fourier transform method. The shapes of the 

reconstructed and measured original pulse in Figure 4.6 agree quite well as both have similar 

contours. Here, the magnitude of the reconstructed pulse in Figure 4.6 can be seen to be 

slightly underestimated compared to that of the original measured pulse. The original 

measured pulse started at a negative time while the reconstructed pulse started from zero. 

This is because the reconstruction method does not take into consideration the negative time 

data values (Blackledge, 2006). 
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Figure 4.7: Original simulated pulse of data set 3 
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Figure 4.8: Sampled simulated pulse of data set 3  
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Figure 4.9: Reconstructed and original simulated pulse of data set 3  

 

For data set 3, a sampling period value of 0.000004 s was used and the data contained a single 

frequency component of 250 KHz. Figure 4.7 shows the plot of the original pulse. Figure 4.8 

shows the sampling of the pulse using the Fourier transform method. Figure 4.9 shows the 

reconstruction of the pulse using the Fourier transform method. The shapes of the 

reconstructed and measured original pulse in Figure 4.9 also agree quite well as the contours 

of both pulses are similar. Here, the magnitude of the reconstructed pulse in Figure 4.9 can 

be seen to be the same as that of the original measured pulse. The original measured pulse 

here also starts at a negative time while the reconstructed pulse starts from zero. This is 

because the reconstruction method does not take into consideration the negative time data 

values (Blackledge, 2006). 
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From the results of the simulation, it is clear that the developed mathematical model can carry 

out good event reconstruction. 

 

 

 

 

Plate III: Experimental test rig1 showing various components of the rig with air as the 

transport fluid 
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Plate IV: Experimental test rig 2 with wireless communication device and air as the 

transport fluid 
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Plate V: Experimental test rig 3 with water as the transport fluid 
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4.2 Experimental Results  

The first set of experiments were carried out using the test rig shown in Plate I with air as the 

transport fluid. A Pico Log view of the pressure pulses captured along the pipe at all five 

sensors used is shown Figure 4.10, Figure 4.11 and Figure 4.12 respectively. A sampling rate 

of 13.16Ks/s was used in measuring and recording the pulse signals at the four sensors. This 

was twice the value of the frequency of the signals with a value of 6.54Ks/s. Using the 

sampling rate of 13.16Ks/s, the Niquist criterion was satisfied, and this prevented aliasing of 

the signals.  
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Figure 4.10: Measured pressure pulses from experimental rig sensors at pressure of 1 

bar with air as transport fluid 
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Figure 4.11: Measured pressure pulses from experimental rig sensors at pressure of 0.8 

bar with air as transport fluid 
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Figure 4.12: Measured pressure pulses from experimental rig sensors at pressure of 0.6 

bar with air as transport fluid 
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Figures 4.10, 4.11 and 4.12 show pressure pulses from three experimental results outputted 

from all five sensors placed on the test rig at pressure readings of 1bar, 0.8bar, and 0.6 bar 

respectively with air as the transport fluid. Located closest to the tee connection was sensor 

2, meaning it was closest to the point on the pipe where the pulse first arrived entered. This 

therefore defines the event location. The pulse enters at this point and then propagates in 

opposite directions, showing up first at sensor 2, then at sensor 1, then at sensor 3, next at 

sensor 4, and lastly at sensor 5. This is confirmed by the various peaks of the pulses as 

observed in Figures 4.10, 4.11 and 4.12. In Figure 4.10, the pulse at sensor 2 had a peak value 

or amplitude of 2.05 m. Also, the peaks at sensors 1, 3, 4 and 5 were 1 m; 0.9 m; 0.6 m and 

0.26 m respectively. This shows that the pulse from the pulse generator got to sensor 2 first 

before getting to sensors 1, 3, 4 and 5. This was the same for all the experiments carried out. 

The sensors' distance from the point where the produced pulse enters the pipe was directly 

related to the time it took for these pulses to arrive.  

In Figure 4.11, the pulse peak at sensors 2, 1, 3, 4, and 5 were 1.85 m; 0.9 m; 0.8 m; 0.45 m 

and 0.3 m respectively. In Figure 4.12, the pulse peak at sensors 2, 1, 3, 4, and 5 were 1.5 m; 

0.9 m; 0.75 m; 0.49 m and 0.2 m respectively. The pulse peaks in Figures 4. 11 and 4.12 were 

lower compared to those in Figure 4.10. This was because a pressure of 1 bar was used to 

obtain the peaks in Figure 4.10, while a pressure of 0.8 bar and 0.6 bar was used to obtain 

the peaks in Figure 4.11 and 4.12 respectively. 

The most ideal autonomous estimation of the occasion as it enters the pipe is sensor 2. The 

reason being that the pulse generator was closest to sensor 2. This is because attenuation or 

distortion of the pulse propagating from the tee connection will be very little before it reaches 

sensor 2 as a result of its proximity to the tee connection. The remaining four sensors are 

located at different points along the pipe to aid the location of the event. It is observed from 
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Figures 4.10, 4.11 and 4.12 that a reflection of the pressure pulse generated originally back 

into the pulse generator occurs. This reflection is observed to go back and forth from the 

pulse into the pipe. In carrying out experimental calculations, the negative pulse was not 

utilised. This is because the Fourier transform model does not take into consideration 

negative pulse data values. 

 

The experiments were also carried out using the test rig shown in Plate III with water as the 

transport fluid. A Pico Log view of the pressure pulses captured along the pipe at all five 

sensors used is shown Figure 4.13, Figure 4.14 and Figure 4.15. A sampling rate of 13.16Ks/s 

was also used in measuring and recording the pulse signals at the four sensors. 
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Figure 4.13: Measured pressure pulses from experimental rig sensors at pressure of 1 

bar with water as transport fluid 
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Figure 4.14: Measured pressure pulses from experimental rig sensors at pressure of 0.8 

bar with water as transport fluid 
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Figure 4.15: Measured pressure pulses from experimental rig sensors at pressure of 0.6 

bar with water as transport fluid 

 

 

Sensor 2 

Sensor 1 

Sensor 3 

Sensor 4 

Sensor 5 

(Y: 0.7) 

(Y: 0.55) 

(Y: 0.25) 

(Y: 0.22) 

(Y: 0.1) 

A
m

p
li

tu
d

e 



 
 

94 
 

Figures 4.13, 4.14 and 4.15 show pressure pulses from three experimental results outputted 

from all five sensors placed on the test rig at pressure readings of 1bar, 0.8bar, and 0.6 bar 

respectively with water as the transport. Located closest to the tee connection was sensor 2, 

meaning it was closest to the point on the pipe where the pulse first arrived entered. Also, 

this therefore defines the event location. The pulse enters at this point and then propagates in 

opposite directions, showing up first at sensor 2, then at sensor 1, then at sensor 3, next at 

sensor 4, and lastly at sensor 5. Here also, the time of arrival of these pulses were directly 

related to the respective distance of the sensors from the point at which the generated pulse 

enters the pipe.  

In Figure 4.13, the pulse peak at sensors 2, 1, 3, 4, and 5 were 1.4 m; 1.0 m; 0.77 m; 0.28 m 

and 0.1 m respectively. In Figure 4.14, the pulse peak at sensors 2, 1, 3, 4, and 5 were 1.4 m; 

1.0 m; 0.77 m; 0.28 m and 0.1 m respectively. In Figure 4.15, the pulse peak at sensors 2, 1, 

3, 4, and 5 were 0.7 m; 0.55 m; 0.22 m; 0.25 m and 0.1 m respectively. The pulse peaks in 

Figures 4.14 and 4.15 were lower compared to those in Figure 4.13. This was because a 

pressure of 1 bar was used to obtain the peaks in Figure 4.13, while a pressure of 0.8 bar and 

0.6 bar was used to obtain the peaks in Figure 4.14 and 4.15 respectively. 

 

The most ideal autonomous estimation of the occasion as it enters the pipe is also at sensor 

2. This is because attenuation or distortion of the pulse propagating from the tee connection 

will be very little before it reaches sensor 2 as a result of its proximity to the tee connection. 

The remaining four sensors are located at different points along the pipe to aid the location 

of the event. It is observed from Figures 4.13, 4.14 and 4.15 that a reflection of the pressure 

pulse generated originally back into the pulse generator occurs. This reflection is observed 

to go back and forth from the pulse into the pipe. In carrying out experimental calculations, 
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the negative pulse was also not utilised. This is because the Fourier transform model does 

not take into consideration negative pulse data values. 

 

4.3 Velocity of Pressure Pulse Propagation in Static Air 

Pulse data obtained from sensors 4 and 3 were used adopted for determining the velocity of 

the pulse propagation across the pipe based on the configuration in Plate I, with air as the 

transport fluid. The MATLAB® software was used to cross-correlate these measured pulses 

to determine arrival time delay between the pulses. The pressure pulse propagation velocity 

was determined using Equation 3.4 (Olugboji, 2013): 

 

C𝑝= 
x34

tdelay34
       4.1 

Where, x34 = distance between sensors 4 and 3.  

x34 = 3m 

tdelay34 = 0.008297s 

C𝑝 𝑎𝑖𝑟 = 
3

0.00845
 

Cp air = 355m/s 

 

The velocity of the measured pressure pulse propagation was computed to be 355m/s. There 

was a clear difference between this value and 343 m/s, which is the velocity of sound in air 

(NASA, 2018). Olugboji, (2011) investigated the reason for the discrepancy between the 

value of calculated pressure pulse propagation velocity and that of nominal velocity of sound 

propagation in his work since it was systematic and repeatable. It was suggested in his work 

that a localised temperature rise might have led to the pressure increase within the pipe. The 
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necessary rise in temperature was calculated to investigate the hypothesis. From his 

calculations, a temperature rise of 10oC and a pressure rise of 34 mbar above ambient was 

obtained. This led to his work confirming the high measured pulse velocities were as a result 

of the temperature change within in the pulses. To confirm this, calculations were carried out 

to see if they were a rise in the temperature of the measured pulses as thus (Olugboji, 2013): 

 

(
Cn

Cp
)

2

=  
Tn

Tp
       4.2 

Tp = Tn (
Cp

Cn
)

2

       4.3 

 

Where Tp = air temperature within the pressure pulse 

 Tn = ambient temperature 

 Cn = nominal sound propagation velocity 

 Cp = measured pulse propagation velocity 

With a measured pulse propagation velocity of 355 m/s, and a sound propagation velocity of 

343 m/s, at 25.3oC, Tp was calculated using Equation 4.3 as: 

 

Tp = 298.3 ∗ (
355

343
)

2

  = 319.5K, 

 

This represents a temperature rise of 21.2oC. This value goes to confirm the proposal made 

by Olugboji, (2011) and thus explains the discrepancy in the values of the measured pressure 

pulse velocity and the nominal sound velocity in air. 
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4.4 Velocity of Pressure Pulse Propagation in Flowing Water 

Pulse data obtained from sensors 4 and 3 were also used to determine the pulse propagation 

velocity across the pipe based on the configuration in Plate III, with water as the transport 

fluid. The MATLAB® software was used to cross-correlate these measured pulses to 

determine arrival time delay between the pulses. The pressure pulse propagation velocity was 

determined using Equation 4.1. The pressure pulse with the highest amplitude was obtained 

using a pressure reading of 1.0 bar in the pulse generator, while the pressure pulse with the 

least amplitude was obtained using a pressure reading of 0.2 bar. Only 10 measurements were 

made in total because 2 measurements each were made for each pressure rating in the pulse 

generator. This was due to the sensors losing their sensitivity a short while after coming in 

contact with water. An average of the time delay between pulse arrivals was obtained after 

cross correlation in MATLAB® and the result of the average value used in Equation 4.1 to 

obtain the velocity of pulse propagation as: 

x34 = 3m 

tdelay34 = 0.00195s 

C𝑝  water = 
3

0.00195
 

Cp water = 1,538m/s 

 

The velocity of the measured pressure pulse propagation was computed to be 1,538 m/s. 

There was a clear difference between this value and the value of the velocity of sound in 

water at a temperature of 26oC and normal pressure which is 1500 m/s (DOSITS, 2019). The 

reason for the discrepancy between the value of calculated pressure pulse propagation 

velocity and that of nominal velocity of sound propagation in water was also investigated to 
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infer if the rise in velocity was caused by the pressure and localised temperature rise within 

the pulse. The necessary rise in temperature if any, was calculated to investigate the 

hypothesis using Equation 4.2 and 4.3.  

 

With a measured pulse propagation velocity of 1538 m/s, and a sound propagation velocity 

of 1500 m/s, at 25.3oC, Tp was calculated using Equation 4.3 as: 

 

Tp = 298.3 ∗ (
1538

1500
)

2

  = 313.6K, 

 

This represents a temperature rise of 15.3oC. This thus explains the discrepancy in the values 

of the measured pressure pulse velocity and the nominal sound velocity in water.  

4.5 Event Location in Static Air 

The m-code language in MATLAB® was used in the calculation of the event location of the 

test rig’s pipe with air as the transport fluid. Figure 4.16 shows an estimate of the location of 

the real event. It shows a spread of the location calculations against the values of the pressure 

in the pulse generator for a total of fifty tests that were carried out. These number of tests 

were carried out to confirm the accuracy of the experiments that were carried out. 
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Figure 4.16: MATLAB® presentation of computed event location estimates using air 

filled pipe 

 

The location of the real event is the point of entrance of the original pressure pulse into the 

main pipe and it was determined from measurements made at sensors 1 and 2. The tee 

connection is the actual source of the pulses and formed the basis of all calculations about 

the location of the event. Equation 3.2 was used to calculate the actual event location which 

is the event occurring at sensor 2. The equation was slightly modified because as opposed to 

Figure 3.1, in the actual experimental test rig, the tee connection was located between sensors 

1 and 2, but closest to sensor 2 (the event location). Therefore Equation 3.2 was modified as 

(Olugboji, 2011): 
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xDE1= 
(t12Cp + x21)

2
         4.4 

 

Equation 4.4 (the distance of the event location from sensor 1) plus the distance between the 

tee connection (x offset) and sensor 2 gave the location of the event. x21 is the known distance 

between sensor 1 and 2, while t12 is the measured time delay between pulse arrivals at sensors 

1 and 2 which was obtained using the cross-correlation technique. With the aid of the written 

MATLAB® code, a consistency in the computed event location estimates was observed as 

show in Figure 4.16 confirming the accuracy of the experimental setup to validate the 

simulation carried out earlier. The computed estimates were in the range of between 4.243 m 

ad 4.246 m, a scatter of just 3mm, while the calculated measured location of the event was 

4.226 m and the measured location of the event on the test rig was 4.23 m. 

4.6 Event Location in Flowing Water 

The MATLAB® m-code language was then used in the calculation of the event location of 

the test rig’s pipe with water as the transport fluid. Figure 4.17 shows an estimate of the 

location of the real event. It shows a spread of the location calculations against the values of 

the pressure in the pulse generator for all the ten tests that were performed. Only ten were 

carried out as compared to the 50 carried out when air was the transport fluid because the 

sensors gradually lost their sensitivity when they came in contact with water. 

 



 
 

101 
 

 

Figure 4.17: MATLAB® presentation of computed event location estimates using water 

filled pipe 

 

Equation 4.4 was also used to calculate the actual event location which is the event occurring 

at sensor 2. With the aid of the written MATLAB® code, a consistency in the computed event 

location estimates was observed as show in Figure 4.17. The computed estimates had a scatter 

of just 5 mm, and were in the range of between 4.248 m ad 4.253 m, while the calculated 

location of the event was 4.3 m and the measured location of the event on the test rig was 

4.23 m. 

4.7 Characterisation of Damage 

4.7.1 Event Reconstruction 

The mathematical models for sampling in Equation 3.13 and the mathematical model for 

reconstruction in Equation 3.18 were applied through codes written in MATLAB® to the data 
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obtained from one of the many experiments made using the pulse generator and static air in 

the pipe as shown in Figure 4.18. The codes can be seen in Appendix A. The five sensors 

were connected to five different channels on the data logger and the original pressure pulses 

captured at all sensors were labelled as s1, s2, s3, s4, and s5 respectively, all located at various 

distances as discussed earlier. The tee connection was located between sensors 1 (s1) and 2 

(s2). Sensor 2 (s2) was closest to the tee connection and was taken to be the actual event 

location. The set up in Plate I was used for these experiments. 

 

 

Figure 4.18: Measured pressure pulse at all five sensors 
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The MATLAB® plots of the pressure pulse at sensors s1 to s5 are shown in Figure 4.19, Figure 

4.20, Figure 4.21, Figure 4.22, and Figure 4.23 respectively. 

 

 

Figure 4.19: MATLAB® plot of pressure pulse at sensor 1 
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Figure 4.20: MATLAB® plot of pressure pulse at sensor 2 

 

Figure 4.21: MATLAB® plot of pressure pulse at sensor 3 
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Figure 4.22: MATLAB® plot of pressure pulse at sensor 4 

 

 

Figure 4.23: MATLAB® plot of pressure pulse at sensor 5 
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Two major reconstructions of the pressure pulse at s2, the event location, were carried out. In 

the first reconstruction process, the original pressure pulse, s2 was sampled and the obtained 

samples used to reconstruct the event at s2.  The original pulse s2 was made up of a total of 

1320 samples and the sampling was carried out for 300 samples of s2 as shown in Figure 

4.24. 

 

 

Figure 4.24: Sampling of original pressure pulse s2 with MATLAB® 

The sampling process converted the original pressure pulse s2 to its discrete form. The 

original pressure pulse was then recovered from the discrete form of s2 as shown in Figure 

4.25. The original pressure pulse was captured with a single sampling frequency of 13.16 

Ks/s. A single sampling frequency of 26.32 Ks/s was used in order to achieve proper 

reconstruction of event, satisfying the Nyquist criterion. This was done to prevent the 

occurrence of aliasing of the reconstructed pulse. 
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Figure 4.25: Reconstruction of original pressure pulse s2 from samples of s2 

Figure 4.25 shows a fairly good reconstruction of the actual event as the original pressure 

pulse and the reconstructed pressure pulse have similar shapes. The amplitude peak of the 

reconstructed pressure pulse is a little bit underestimated compared to the original pressure 

pulse. This was consistent with all other reconstructions carried out on other data readings 

obtained from the several experimental results.  

A second reconstruction of the actual event, s2 was carried out. In this case, an attempt was 

made to recover the original pressure pulse at the event location from the two closest pressure 

pulses at the locations closest to the event location. This was done in other to provide a 



 
 

108 
 

solution to real life situations where the signal from the sensor at the location of an event was 

lost or not captured at all. If the other sensors closest to the event captured the signals from 

the event, these signals can then be used to provide a clue as to what originally happened at 

the site of the event. In this case, sensors 1 and sensors 3 were closest to sensor 2 at the event 

location. Therefore, the pressure pulses s1 and s3 were sampled respectively as shown in 

Figure 4.26 and Figure 4.27. Both pressure pulses were made up of a total of 1320 samples 

and they were both sampled for 300 points each. 

 

 

Figure 4.26: Sampling of original pressure pulse s1 with MATLAB® 
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Figure 4.27: Sampling of original pressure pulse s3 with MATLAB® 

 

The original pressure pulse s2 was then recovered from the combination of the discrete forms 

of both s1 and s3. Using the reconstruction model in Equation 3.18 in the MATLAB® 

environment, a combination of these discrete forms gave a reconstruction of s2 as shown in 

Figure 4.28. A single sampling frequency of 26.32 Ks/s was used. This was double the value 

of the sampling frequency that was used in the experiment so as to satisfy the Nyquist 

criterion and ensure proper reconstruction. A good reconstruction of the actual event was 

achieved as the reconstructed original pressure pulse s2 in Figure 4.28 had a similar shape 

with that of s2 in Figure 4.20. As before, it was observed that they was a difference in the 
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magnitude of s2, as the reconstructed pulse was underestimated compared to that in Figure 

4.20 showing the plot of s2. 

 

Figure 4.28: Reconstruction of original pressure pulse s2 from pressure pulses s2 and s3 

 

The magnitude of s2 in Figure 4.28 differed by 45 % compared to its magnitude in Figure 

4.20. This was consistent for all the repeated tests and the underestimation ranged between 

40 to 45 %. To solve the problem of underestimation of the reconstructed pulse as had been 

observed with several experimental data processed, a reconstruction factor, K was introduced 

as seen in Equation 3.19. K is an approximation factor obtained by dividing the maximum 

value or amplitudes of the original pressure pulse, 𝑥𝑜(𝑡) by the maximum value of the 



 
 

111 
 

reconstructed pressure pulse, 𝑥𝑟(𝑡). Comparing Figure 4.28 and Figure 4.20, it is observed 

that the original pressure pulse in Figure 4.20 has amplitude of 1.9 while the reconstructed 

pulse in Figure 4.28 has amplitude of 0.85. Therefore K is calculated as: 

 

𝐾 =
1.9

0.85
  = 2.235 

 

Using this obtained K value in Equation 3.19 in MATLAB®, a better reconstruction is 

obtained as shown in Figure 4.29. 

 

Figure 4.29: Reconstruction of original pressure pulse s2 from pressure pulses s1 and s3 

using reconstruction factor 
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Figure 4.29 shows that a good reconstruction of an event is better achieved by applying a 

factor K to the developed Fourier transform based model. This helped to solve the problem 

of underestimation of the nodes of the reconstructed signal that was observed with all the 

data samples that were processed.  

4.7.2 Damage Pattern Recognition 

One very important aspect of this work that was obtained from the experimental data is that 

a broad range of damages can be detected by this system. It was observed that each damage 

scenario generated its own pressure pulse that was peculiar to it when compared to the 

pressure pulse from another damage event. The four different experiments to simulate 

damage caused by explosion, drilling, vehicular motion and corrosion confirmed this.  

4.7.2.1 Damage from Explosion  

Figures 4.30 and 4.31 show the results from experiments to mimic explosion at two different 

readings. The results from sensor 1 in both readings are thus displayed.  
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Figure 4.30: Typical pressure pulse measured at experimental rig to mimic damage due 

to explosion (0.8 bar pressure reading at single sensor) 
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Figure 4.31: Typical pressure pulse measured at experimental rig to mimic damage due 

to explosion (1 bar pressure reading at single sensor) 

 

Figure 4.30 and Figure 4.31 show the typical pressure pulse that was obtained from the 

experimental test rig for tests to mimic damage caused by explosion. Only the amplitudes of 

the pulses differed due to the different pressure readings used as was obtainable in the study 

by Olugboji, (2011). 
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4.7.2.2 Damage from Drilling 

The captured pressure pulses from the experiments to mimic drilling are are shown in Figures 

4.32, 4.33, 4.34 and 4.35 respectively. 

 

 

Figure 4.32: Typical pressure pulse measured at experimental rig to mimic damage due 

to drilling with air as transport fluid (1000 Watts drill input power at single sensor) 
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Figure 4.33: Typical pressure pulse measured at experimental rig to mimic damage due 

to drilling with air as transport fluid (750 Watts drill input power at single sensor) 
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Figure 4.34: Typical pressure pulse measured at experimental rig to mimic damage due 

to drilling with water as transport fluid (1000 Watts drill input power at single sensor) 
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Figure 4.35: Typical pressure pulse measured at experimental rig to mimic damage due 

to drilling with water as transport fluid (750 Watts drill input power at single sensor) 

 

Figure 4.32 and Figure 4.33 show the typical pressure pulse for a test to mimic a drilling 

operation on an air-filled pipe while Figures 4.34 and 4.45 show the typical pressure pulse 

for a test to mimic a drilling operation on a water-filled pipe. These pressure pulses were 

consistent for all the 30 repeated tests with 5 tests carried out at each sensor using either the 

750 Watts or the 1000 Watts input power hand drill for both types of transport media. The 

results show that the pressure pulses from a drilling operation were different from that of an 

explosion as evident in the shape and amplitudes of the measured pressure pulses. This 
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further proved that damage events on pipes can be characterised according to what caused 

the damage. 

4.7.2.3 Damage from Vehicular Motion 

The results of these experiments are thus shown in Figures 4.36, 4.37, 4.38 and 4.39. 

 

 

Figure 4.36: Typical pressure pulse measured at experimental rig to mimic damage due 

to vehicular motion with air as transport fluid (measurement at sensor 2) 
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Figure 4.37: Typical pressure pulse measured at experimental rig to mimic damage due 

to vehicular motion with air as transport fluid (measurement at sensor 3) 
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Figure 4.38: Typical pressure pulse measured at experimental rig to mimic damage due 

to vehicular motion with water as transport fluid (measurement at sensor 2) 
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Figure 4.39: Typical pressure pulse measured at experimental rig to mimic damage due 

to vehicular motion with water as transport fluid (measurement at sensor 3) 

 

Figure 4.36 and Figure 4.37 show the typical pressure pulse for a test to mimic the movement 

of a vehicle over an air-filled pipe while Figures 4.38 and 4.39 show the typical pressure 

pulse for a test to mimic the movement of a vehicle over a water-filled pipe. The measured 

pressure pulses were also consistent in shape for all the 30 repeated tests with 5 tests carried 

out at each sensor using a small wooden-handle hammer in both transport fluid types. All the 

outputted pulses were similar in their spectra, and quickly attenuated. The results show that 

the pressure pulses from a heavy mass as that obtainable from the mass of a vehicles’ tyres 
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are different from that of an explosion or drilling operation as evident in the shape and 

amplitudes of the measured pressure pulses.  

4.7.2.4 Damage from Corrosion 

To mimic damage from corrosion, a corrosive environment was created within the pipe. The 

pipe was connected to a water tank and water was allowed to flow through the pipe. A pipette 

was used to introduce acid in varying quantities into the water filled pipe. At first, 2 ml of 

acid was introduced into the pipe; then 5 ml, 10ml and 25 ml respectively. The acid was 

poured first in small amounts, with the volume poured later increased. This was done this 

way because no changes were observed at 2 ml and 5 ml of acid poured, so the quantity 

poured had to be scaled up.  98.08% concentrated Sulphuric acid was used and it was 

intended that the introduction of the acid on the surface of the pipe would create an 

environment corrosive enough to generate sharp fronted pulses within the pipe in order to 

characterise damage on a pipe due to corrosion . Substantial pressure pulses were noticed 

only when 10 ml and 25 ml of the acid were introduced.  This could have been as a result of 

the increase in the resistivity of the piezoelectric sensors after it came in contact with water.  

Also repeated tests could not be carried out because the piezoelectric sensors lost their 

conductivity after sensing as they came in contact with the acid and got corroded. The results 

of these experiments are thus displayed in Figures 4.40 and 4.41 below. 
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Figure 4.40: Typical pressure pulse measured at experimental rig to mimic damage due 

to acid (25 ml of acid) 
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Figure 4.41: Typical pressure pulse measured at experimental rig to mimic damage due 

to acid (10 ml of acid) 

 

 

Figure 4.40 and Figure 4.41 show the typical pressure pulse from an experiment to mimic 

damage due to corrosion. The results obtained when 10 ml of acid was used showed very 

little pulse while a more visible pulse was observed when 25 ml acid was used. The pattern 

in both cases of acid quantity was not consistent to develop a pattern, but the results were 

different from those observed in the other damage scenarios. This proved that the pulses from 
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a damage event caused by corrosion is different from those obtained from damage events 

caused by other impacts. 

4.8 Wireless Processing and Transmission of Data 

The free student license of the ThingSpeak platform was used for this work and as a result, 

there was a 15 second delay in the transfer of pulse data to the platform (ThingSpeak, 2019). 

To achieve a one second transfer of pulse data on the platform, a professional license was 

required. Using a pulse generator, sharp fronted pulses were generated into the pipe and these 

captured pressure pulses were transmitted wirelessly via the wireless communication device 

to the ThingSpeak platform. Figure 4.42, Figure 4.43, Figure 4.44, Figure 4.45, and Figure 

4.46 show the measured pressure pulses at sensor 1 (s1); sensor 2 (s2); sensor 3 (s3); sensor 4 

(s4); and sensor 5 (s5) respectively for a pressure reading of 0.8 bar in the pulse generator. 

Figures 4.47, 4.48, 4.49, 4.50, and 4.51 show the measured pressure pulses at all five sensors 

for a pressure reading of 1 bar in the pulse generator.  

The results from each sensor channel on the ThingSpeak platform were saved and imported 

from the platform as a Microsoft Excel file. This was then imported into the MATLAB® 

environment for proper analysis. The experimental setup was same as before with sensor 2 

(s2) closest to the tee connection and taken as the damage location. On the ThingSpeak 

platform, sensor 1 readings were displayed on field 1 while sensor 2 readings were displayed 

on field 5. Sensor 3, 4 and 5 readings were displayed on fields 3, 2 and 5 respectively on the 

ThingSpeak platform. 
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Figure 4.42: MATLAB® representation of measured pressure pulses at all five sensors 

for a 0.8 bar pressure reading in the pulse generator 
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Figure 4.43: MATLAB® representation of measured pressure pulse at sensor 2 using 

the wireless communication device for a 0.8 bar pressure reading 

 

 
Figure 4.44: MATLAB® representation of measured pressure pulse at sensor 3 using 

the wireless communication device for a 0.8 bar pressure reading  
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Figure 4.45: MATLAB® representation of measured pressure pulse at sensor 4 using 

the wireless communication device for a 0.8 bar pressure reading 

 

 
Figure 4.46: MATLAB® representation of measured pressure pulse at sensor 5 using 

the wireless communication device for a 0.8 bar pressure reading 
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Figure 4.47: MATLAB® representation of measured pressure pulse at sensor 1 using 

the wireless communication device for a 1bar pressure reading 

 

 

Figure 4.48: MATLAB® representation of measured pressure pulse at sensor 2 using 

the wireless communication device for a 1bar pressure reading 
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Figure 4.49: MATLAB® representation of measured pressure pulse at sensor 3 using 

the wireless communication device for a 1bar pressure reading 

 

 

 
Figure 4.50: MATLAB® representation of measured pressure pulse at sensor 4 using 

the wireless communication device for a 1bar pressure reading 
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Figure 4.51: MATLAB® representation of measured pressure pulse at sensor 5 using 

the wireless communication device for a 1bar pressure reading 

 

 

Based on the sensor locations on the experimental set, a pressure pulse from the pulse 

generator would get to sensor 2 first, then to sensors 1, 3, 4, and 5 respectively. This was as 

a result of their respective distances from the pulse generator. When a pressure of 0.8 bar was 

used, the pulse in Figure 4.43 has an amplitude value of 901, which is the highest value for 

all the five sensors confirming that the pulse got to sensor 2 first. Figure 4.42 shows a pulse 

with an amplitude value of 499, the second highest value for all five sensors confirming that 

the pulse got to sensor 1 after sensor 2. Figure 4.44 shows a pulse with an amplitude value 

of 477; Figure 4.45 shows a pulse with an amplitude value of 420; Figure 4.46 shows a pulse 

with an amplitude value of 346. This confirms that the pressure pulse eventually got to 

sensors 3, 4, 5in that order respectively. 
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For the case of pressure of 1.0 bar, the pulse in Figure 4.48 has an amplitude value of 908, 

which is the highest value for all the five sensors confirming that the pulse also got to sensor 

2 first. Figure 4.47 shows a pulse with an amplitude value of 509, the second highest value 

for all five sensors confirming that the pulse also got to sensor 1 after sensor 2 in this case 

too. Figure 4.49 shows a pulse with an amplitude value of 487; Figure 4.50 shows a pulse 

with an amplitude value of 429; Figure 4.51 shows a pulse with an amplitude value of 355. 

This also goes to confirm that the pressure pulse eventually got to sensors 3, 4, 5 in that order 

respectively. In general, the results of these experiments confirm the aforementioned and also 

the effectiveness of the wireless communication device 

A total of 15 tests were repeated using five different pressure readings on the pulse generator 

and the wireless communication device. Figure 4.52 is a single representation of all the 5 

pressure pulses. Plate VI and Plate VII show the screen display of the ThinsSpeak platform. 
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Figure 4.52: ThingSpeak analytics platform page showing measured pressure pulses 

from all sensors for a 1 bar pressure reading
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Plate VI: ThingSpeak analytics platform page showing measured pressure pulses from 

sensor channels 1 and 2 (ThinsSpeak, 2019) 
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Plate VII: ThingSpeak analytics platform page showing measured pressure pulses from 

sensor channels 3, 4, and 5 (ThinsSpeak, 2019) 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Impacts and intrusions are among the major causes of pipeline damage. These events cause 

vibrations in the source point that can be used to detect, locate and characterise the defect. In 

this work, various mathematical techniques; algorithms, numerical experiments and a 

wireless communication device for real time monitoring of pipelines have been presented, 

developed and discussed. This system was tested and the following have so far been 

established in the course of this research work: 

1. Mathematical methods to carry out damage detection, location and characterisation 

in a pipe were developed 

2. The developed algorithms were first assessed by simulating them in Matlab® using 

data obtained from other works. The shapes and magnitude of the measured original 

pulses and reconstructed pulses agreed quite well confirming that the workability of 

the developed model. A difference of 0.01 m only was obtained between the pulse 

magnitudes of both the original and reconstructed pulses. 

3. The simulation was verified using an experimental test rig and results obtained 

showed were similar to those obtained from the simulation. These experimental 

results are consistent with the model results which gave a similar level of estimation 

of the pulse amplitude. 

4. A wireless communication device was developed for transmission and processing of 

measured pressure pulses wirelessly to an analytics platform (ThingSpeak) for real 

time monitoring.  



 
 

138 
 

5.2 Recommendations 

For future research, a lot of problems abound that should be focused upon. For the 

continuation of this thesis work, the directions that should be prioritised are listed here. 

i. The determination of the size of the burst or damage was not included in this work. 

In order to determine the size of a burst on a pipe, the method of transient damping 

should be used. This is because the pressure pulse information is used more by this 

method. 

i. Transmission of measured pulse data via the wireless communication device was 

done at the rate of once every 15 seconds. This made carrying out a lot of tests very 

difficult due to time constraint.  Future work should be carried out with the 

professional license of ThingSpeak to facilitate data transmission every second. 

ii. Wireless sensors should be used in future experimental setups to mimic real life 

scenarios as much as possible. 

5.3 Contributions to Knowledge 

The research work has been able to contribute to knowledge in the following ways: 

i. A low-cost monitoring system with the ability to perform real-time damage detection, 

location and characterisation, and allows you to view the results of the measured 

pressure pulses in real time on a computer system or even on a smart phone from any 

location in the world was developed. 

ii. Reconstruction of the original pulse at an event location on a pipe from the 

combination of pressure pulses measured from two other locations along the same 

pipe was achieved. 
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iii. Damage location in a water-filled pipe using the technique of delay in arrival times 

of pressure pulses was achieved. 

iv. Characterisation and classification of different damage events on a pipe was also 

achieved. 
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APPENDICES 

Appendix A 

MATLAB® Code for Sampling and Reconstruction 

%plot of original pressure pulses s1, s2, s3, s4, s5, s6 

t  = Time; 

s1 = ChannelCh1; 

s2 = ChannelCh2; 

s3 = ChannelCh3; 

s4 = ChannelCh4; 

s5 = ChannelCh5; 

s6 = ChannelCh6; 

 

plot(t*0.001,s1) 

xlim([0 0.05]) 

xlabel('time(s)') 

ylabel('s_1') 

 

plot(t*0.001,s2) 

xlim([-0.01 0.05]) 

xlabel('time(s)') 

ylabel('s_2') 

 

plot(t*0.001,s3) 

xlim([0 0.05]) 
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xlabel('time(s)') 

ylabel('s_3') 

 

plot(t*0.001,s4) 

xlim([0 0.05]) 

xlabel('time(s)') 

ylabel('s_4') 

 

plot(t*0.001,s5) 

xlim([0 0.05]) 

xlabel('time(s)') 

ylabel('s_5') 

 

plot(t*0.001,s6) 

xlim([0 0.05]) 

xlabel('time(s)') 

ylabel('s_6') 

 

%To satisfy Nyquist criterion 

Ts = 0.000076;                %sampling period 

Fs = 26.32;                   %sampling frequency 

n = 1:1:1320;                 %number of samples 

N = length(n);                %sample length 
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%sampled signal 

%sampling of pressure pulse s2 

s11_samples = s1(1:1:1320);    %1320 samples of s1. 

stem(n,s11_samples) 

xlim([0 300]) 

xlabel('n') 

ylabel('Discrete time signal s11(n)') 

 

%sampled signal 

%sampling of pressure pulse s3 

s33_samples = s3(1:1:1320);    %1320 samples of s3. 

stem(n,s33_samples) 

xlim([0 300]) 

xlabel('n') 

ylabel('Discrete time signal s33(n)') 

 

%reconstruction of original signal s2 

%recostruction factor k = 2.235 

s2=zeros(N,length(t)); 

for i=1:N 

    s2(i,:)=(s11_samples(i)*s33_samples(i))*rectpuls(Fs*t-i+1); 

end 
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plot(t,sum(s2),'b-',t,s1,'r:',t,s3,'r:') 

grid; 

xlim([0 40]) 

legend('Reconstructed Signal','Original Signal') 

ylabel('Reconstructed Signal s2(t1)') 

xlabel('time(ms)') 
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Appendix B 

Code for Programming of Arduino 

#include <SoftwareSerial.h> 

#include <ArduinoJson.h> 

SoftwareSerial s(5,6); 

 

void setup() { 

  s.begin(115200); 

  pinMode(A0,INPUT); 

  pinMode(A1,INPUT); 

  pinMode(A2,INPUT); 

  pinMode(A3,INPUT); 

  pinMode(A4,INPUT); 

  pinMode(A5,INPUT); 

 

} 

StaticJsonBuffer<1000> jsonBuffer; 

JsonObject& root = jsonBuffer.createObject(); 

void loop() { 

 

  // If the DHT-11 is not connected to correct pin or if it doesnot 

//work no data will be sent 

 

 

  root["Sensor1"]= analogRead(A0); 
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  root["Sensor2"]= analogRead(A1); 

   root["Sensor3"]= analogRead(A2); 

   root["Sensor4"]= analogRead(A3); 

   root["Sensor5"]= analogRead(A4); 

   root["Sensor6"]= analogRead(A5); 

 

 

if(s.available()>0) 

{ 

 root.printTo(s); 

 delay(1000); 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

152 
 

Appendix C 

Code for Programming of ESP8266 Module 

/* 

  WriteMultipleFields 

 

  Description: Writes values to fields 1,2,3,4 and status in a single ThingSpeak update every 

20 seconds. 

 

  Hardware: ESP8266 based boards 

 

  !!! IMPORTANT - Modify the secrets.h file for this project with your network connection 

and ThingSpeak channel details. !!! 

 

  Note: 

  - Requires ESP8266WiFi library and ESP8622 board add-on. See 

https://github.com/esp8266/Arduino for details. 

  - Select the target hardware from the Tools->Board menu 

  - This example is written for a network using WPA encryption. For WEP or WPA, change 

the WiFi.begin() call accordingly. 

 

ThingSpeak (https://www.thingspeak.com ) is an analytic IoT platform service that allows 

you to aggregate, visualise, and  

analyse live data streams in the cloud. Visit https://www.thingspeak.com to sign up for a free 

account and create a channel.   

 

Documentation for the ThingSpeak Communication Library for Arduino is in the 

README.md folder where the library was installed. 



 
 

153 
 

 See https://www.mathworks.com/help/thingspeak/index.html for the full ThingSpeak 

documentation. 

 

  For licensing information, see the accompanying license file. 

 

  Copyright 2018, The MathWorks, Inc. 

*/ 

#include <SoftwareSerial.h> 

SoftwareSerial s(6,5); 

#include <ArduinoJson.h> 

#include "ThingSpeak.h" 

#include "secrets.h" 

#include <ESP8266WiFi.h> 

 

char ssid[] = SECRET_SSID;   // your network SSID (name)  

char pass[] = SECRET_PASS;   // your network password 

int keyIndex = 0;            // your network key Index data (needed only for WEP) 

WiFiClient  client; 

 

unsigned long myChanneldata = SECRET_CH_ID; 

const char * myWriteAPIKey = SECRET_WRITE_APIKEY; 

 

// Initialise our values 

 

void setup() { 
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  Serial.begin(115200);  // Initialise serial 

  WiFi.mode(WIFI_STA);  

  ThingSpeak.begin(client);  // Initialise ThingSpeak 

  s.begin(115200); 

  while (!Serial) continue; 

} 

void loop() { 

StaticJsonBuffer<1000> jsonBuffer; 

  JsonObject& root = jsonBuffer.parseObject(s); 

  if (root == JsonObject::invalid()) 

    return; 

 

  Serial.println("JSON received and parsed"); 

  root.prettyPrintTo(Serial); 

  Serial.print("Data 1 "); 

  Serial.println(""); 

  int data1=root["Sensor1"]; 

  Serial.print(data1); 

    Serial.println(""); 

 Serial.print("   Data 2 "); 

  int data2=root["Sensor2"]; 

  Serial.print(data2); 

  Serial.println(""); 

  int data3=root["Sensor3"]; 

  Serial.print(data3); 
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  Serial.println(""); 

  int data4=root["Sensor4"]; 

  Serial.print(data4); 

  Serial.println(""); 

  int data5=root["Sensor5"]; 

  Serial.print(data5); 

  Serial.println(""); 

  int data6=root["Sensor6"]; 

  Serial.print(data6); 

  Serial.println(""); 

  // Connect or reconnect to WiFi 

  if(WiFi.status() != WL_CONNECTED){ 

    Serial.print("Attempting to connect to SSID: "); 

    Serial.println(SECRET_SSID); 

    while(WiFi.status() != WL_CONNECTED){ 

      WiFi.begin(ssid, pass);  // Connect to WPA/WPA2 network. Change this line if using 

open or WEP network 

      Serial.print("."); 

      delay(5000);      

    }  

    Serial.println("\nConnected."); 

  } 

  // set the fields with the values 

  ThingSpeak.setField(1, data1); 

  ThingSpeak.setField(2, data2); 
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  ThingSpeak.setField(3, data3); 

  ThingSpeak.setField(4, data4); 

    ThingSpeak.setField(5, data5); 

      ThingSpeak.setField(6, data6); 

  // figure out the status message 

  // write to the ThingSpeak channel 

  int x = ThingSpeak.writeFields(myChanneldata, myWriteAPIKey); 

  if(x == 200){ 

    Serial.println("Channel update successful."); 

  } 

  else{ 

    Serial.println("Problem updating channel. HTTP error code " + String(x)); 

  } 

  // change the values 

  delay(6000); // Wait 20 seconds to update the channel again 

} 

 

 


