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ABSTRACT 

The management of agricultural and natural resource 

systems entails sequential decision processes, with decisions 

usually made under uncertainty. Solutions to many of these 

management problems can be obtained using the approach of 

dynamic programming. 

A model was then developed and employed to relate 

irrigation, rainfall and water use parameters to i=th season 

crop and thus to yield. The model was validated using data 

from Hadija Jama'are Irrigation System, Kano, Nigeria. 

The aim of this project is to illustrate how the principles 

of dynamic programming can be and has been applied to 

agricultural system. 

Application which is discussed and described is a simple 

crop-irrigation problem. Emphasis is placed on numerical 

approach to problem formulation and solution. To aid with 

numerical solution, a computer program was used to solve the 

same problem. 

The problem include selecting integer values of the height 

of water released from storage at the beginning of each season 

(u i in meters) so that the present values of receipts from 

sale of the crop is maximized. The findings are supported with 

optimum decision path for the optimal sequence of irrigation. 

Key Words: - Dynamic Programming, Irrigation sequence, Optimalality, Eigenvalues, Yield 

estimates, Decision stage, Additive objective function, Maximum Princip,le, Recursive functional 

equation, Decision variables , Stage return and Discount factor. 
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three dynamic programming arguments are used to derive 

optimali ty conditions for a particular resour.ce. 

A second reason for learning about dynamic programming is 

the important practical one that it provides a means of 

solving dynamic and stochastic resource problems numerically. 

Three of the most frequently asked questions in the 

field of irrigation are "what are the yield benefits derived 

from irrigation ?", II how are these yield benefits related to 

certain water-use parameters ?" and "how are these benefits 

together with the parameters related to the season's crop ?". 

If data useful in answering these questions are collected, a 

model can be developed and employed, Throsby. 

The techniques of dynamic programming are explored to 

develop a mathematical optimization model for crop irrigation 

system. This is illustrated by applying it to a simple crop­

irrigation problem which was developed progressively in 

chapter four. A computer solution of the model for the same 

problem is included in chapter five and shows what level of 

water input will produce optimal yield for crop under 

irrigation, thus helping us to decide how to manage water most 

efficiently for irrigation purposes. 

1.2 The Nature of Agricultural And Natural Resource Problems 

Human survival and welfare have always depended on the 

successful management of agricultural and natural resources. 

However over time the management of these resources has become 
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more complex as a consequence of growth of various sort. 

Increases in world population and material standard of living 

circumscribe old notions of natural resource being virtually 

limitless. As Boulding (1966) has argued in The Coming of the 

Spaceship Earth, until recently man could concentrate on 

maximizing resource flows through the economy, without much 

concern for the impact on resource stocks. It is increasingly 

important to consider the extent to which future consumption 

may be restricted as a result of current usage. In other 

words, the user costs of the current consumption of resources 

should be evaluated. 

Along wi th popUlation and economic growth there has been an 

increase in the scale of exploiting agricultural and natural 

resources. For example, widespread land clearing, fertilizing 

and fishing have placed strains on the maintenance of the 

resource base, leading to problem of pollution and damage to 

natural habitats. 

Another type of growth has been in technical knowledge 

about the exploitation and conservation of resources. For 

example, research continues to reveal more about the effect of 

water management practices on grain yield · and about the 

conversation of feed inputs to meat output. Because better 

decisions can usually be made with more information, the 

management of resource entails the processing of more 

information than there was previously. 

The question of what is successful management is more 
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difficult to answer now that it is widely recognized that the 

sum of individuals' interests may not be the same as the 

interest of the society. Problems at the individual level are 

more likely to take account of environmental constraints 

imposed by society, and problems at the aggregate level are 

more likely to be formulated with multi-dimensional goals. 

Operations Research techniques can be used to tackle the 

increased complexity of resource management. Many resource 

problems entail decisions which are sequential, risky and 

irreversible. Dynamic programming is a versatile technique 

with considerable scope for helping to solve such problems. 

The management of immobile and animate resources such as 

minerals involves exploration and extraction decisions which 

are clearly sequential and subject to risk. The management of 

living resources is even more complex because the interact 

with other natural systems which are uncontrollable and 

imperfectly understood. For example, crops respond to changes 

in temperature and water, which in turn are affected by and 

influence the weather. 

Decisions are further complicated by the changing state of 

the biological unit as it passes through phases of birth, 

growth, reproduction and death. 

The relationship between outputs and inputs not only changes 

through time, but is also uncertain. Uncertainty is increased 

if inputs such as water and solar energy are determined by the 

weather, if the biological units are free ranging or 
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migratory, and if the biological units are part of a f ood 

chain which maintains a dynamic equilibrium with other living 

systems. 

Another feature of the management of agricultural and 

natural resource system is that decisions can have 

irreversible effects on the natural resource base. In the case 

of inanimate resource there are examples of decisions which 

are for all intent and purposes irreversible, such as to 

exhaust a mine or exploit a wilderness area. The decisions are 

technically reversible but are economically irreversible 

because the cost of reversal are unacceptable high. Georgesco 

Roegen has interpreted the second law of thermodynamics as 

support for the proposition that the consumpti.on of a resource 

in the economic process irreversibly reduces the usefulness or 

value for any further consumption. Decisions with respect to 

living systems are often reversible. Living systems are 

typically well-buffered and are capable of reacting against 

adverse stimuli. Biomass which is destroyed will often 

regenerate automatically given time. However, decisions which 

lead to the extinction of species are technically 

irreversible, at least at the present stage of genetic 

engineering. 

In summary, current development in the usage of natural 

resources are increasingly raising complex and socially 

important issues. The next section briefly reviews some of the 

management techniques used to study resource problems, and 

'" ' .. ' '.~ .,..' ." ... .'- .". 
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considers the scope for the greater use of dynamic 

programming. Control variables employed in resource management 

are broadly classified prior to the formulation of a 

generalized resource problem. Optimality conditions for the 

generalized problem are derived using the reasoning of dynamic 

programming. The aim is to provide some intuitive insight into 

the conditions required for intertemporal optimality. 

1.3 Management Techniques Applied To Farm Management 

Given the variety of types of management problem encountered 

in agriculture and natural resource industries it is not 

surprising that all of the common operations research 

techniques, including dynamic programming, have been applied 

to problems in these industries. What is surprising is that 

dynamic programming is not used more frequently than it is. 

Some of the special problems that occur in agriculture and the 

techniques used to solved them, are considered. 

There is a long tradition of applying operations research 

techniques to solving management problems, Throsby ; Martin. 

However it is probably fair to say that the most popular 

techniques are linear programming for whole-farm management 

and marginal analysis for single-enterprise management. 

Linear programming was originally used to solve farm 

planning problems which were deterministic and static. The 

linear programming framework has been extended to solve more 

complex whole-farm problems which may be characterized as 
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dynamic, stochastic, non-linear and discrete. Whilst linear 

programming is computational much more efficient than dynamic 

programming for solving deterministic problems with a linear 

objective function and linear constraints, dynamic programming 

may be more suitable for solving more intractable problems 

Examples of the use of marginal analysis for solving static, 

deterministic single-enterprise problems are widespread in 

text dealing with production economics and farm management. 

The classical application is the decision on the optimal 

application of fertilizer to a growing crop. To the extent 

that the fertilizer problem can be typified as a single­

period, deterministic, point-input, point-output process, 

straight forward calculus techniques can be applied. 

Marginal analysis has been extended to stochastic, single ­

period, single-enterprise problems in order to provide further 

insight into the theory of the farm, Magnusson·, and to aid the 

efficient management of farm enterprises, Dillion; Anderson 

et al.,. If the statistical moments of financial outcome as a 

function of input levels are known and utility is a well­

defined function of financial outcome, then stochastic utility 

maximization problems can be solved using calculus. 

The extension of marginal analysis to the solution of 

multi-period, single-enterprise problems has been less 

straightforward. Dynamic systems are controlled by the timing 

as well as the level of inputs and outputs. Dillion, (p.97 ) 

notes that some early work in livestock production functions 

... " ~ .~ ~'.'-.-" ,,_. .----...... -' . 
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'did not really comprehend the problem of profit maximization 

over time'. He gives the marginal conditions which must hold 

for the solution of point-input, point-output processes. The 

necessary marginal conditions for the more complex problems 

are best obtained by formulating the problem in an optimal 

control framework and applying the maximum principle. The 

approach is described in later section for the discrete time 

case. However, in practice the solution is often difficult. 

There is a scope for the wider adoption of control theory 

formulations of crop and livestock problems. In general, time 

in such formulation is best treated as a discrete variable 

because decisions are made at intervals. There is a range of 

solution techniques besides dynamic programming for solving 

problems formulated in this way, such as iterative gradient 

methods. However dynamic programming is a technique 

particularly suited for obtaining numerical solutions to 

problems which involve functions which are non-linear and 

stochastic, and state and decision variables which are 

constrained to a finite range of values. Applications to 

agriculture is not considered in this projec~. 

1.4 Control Variables In Resource Management 

In this section some of the basic types of control required 

in the management of different resource systems are 

considered. The decision paves the way for the consideration 

of a generalized resource problem in the next section. 

--
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All resource systems are managed for the eventual harvesting 

of some product. However, the pattern of harvesting varies 

between resource systems. In the case of a renewable 

biological resource, harvesting may continue indefinitely, 

whereas in the case of an exhaustible resource harvesting 

finishes with depletion or with extraction costs high relative 

to resource price. Resource systems are classified by the 

pattern of harvesting in Table 1.1 which also show the basic 

type of control variables often used in the management of 

different resource systems. The management of an agricultural 

or naturally occurring resource may be typified as a series of 

decisions on the levels of inputs and 'outputs. As a 

generalization, the management of an agricultural resource 

requires a sequence of both input and output decisions, 

whereas the management of a , natural resource requires a 

sequence of output decisions only. Types of input, output and 

replacement decisions are described in turn. The distinctions 

are important for determining the formulat.ion of control 

problems. 
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Table 1.1 

Enterprise Input Decision 

ACquisition Continual 

(1) Once only harvested or cul led 

Horticulture, grains * 
Poultry, pigs, beef * 
Forestry (no * 

thinning) 

(2) Continual harvesting until exhausted 

Mining * 

maintenance 

* 
* 

(3) Continual harvesting until producing stock is culled 

Viticulture, fruits * * 
tropical sorghum 
Eggs, wool, diary * * 
Forestry (with * 

thinning) 
(4 ) Continual harvesting indefi nitely 

Aquaculture * * 
Ocean fishing * 

Output Decision 

Continual Repro- Final 
produce 

* 
* 

* 
* 

* 
* 

duction 

* 

* 

biomass 

* 
* 
* 

* 
* 

............................................................ 

1.4.1 Input decisions 

Two types of input control are acquisition inputs and 

maintenance inputs. Acquisition inputs are the resources 

themselves or inputs required to gain access to the resource. 

In agriculture they may be seeds, land or young stock; they 

include hunting inputs in the case of the fishery and 

exploration in the case of minerals. Maintenance inputs are 

those inputs which must be supplied by man for the survival or 

growth of the resource. For the management of some natural 

resources no maintenance input may be required, as in the case 

of fishery or relatively few and mainly for protection, as in 

the case of forest stands and exhaustible resource. However in 

agriculture maintenance inputs are typically -very important, 

i 

.I 
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being a major determinant of the timing, quality and quantity 

of the eventual produce. In crop production, maintenance 

inputs may be irrigation, fertilizers and pesticides; in 

livestock production they may be feed, water, shelter and 

veterinary supplies. 

1. 4.2 Output decisions 

Three types of output can be distinguished; output 

continually harvested from the resource stock; young stock 

resulting from reproduction by the parent stock; and biomass 

of an adult stock after harvesting or slaughter. 

Eggs, fruits, wool - and milk are examples of continual 

agricultural outputs. Exhaustible resources mined and timber 

from thinning forest stands are examples of continual natural 

resource outputs. The two further categories of output relate 

only to living resources. The production of young stock can 

usually be controlled, although the case of the deep-sea 

fishery is an exception. Examples of valuable biomass of a 

once-living stock are vegetables, grains, meat and felled 

trees. 

1.4.3 Timing and replacement decisions 

The scope for deciding the timing of harvesting depends 

on the type of output. In the case of inanimate resource 

such as minerals the product is always available and 
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from living resource either appear at a point in time (e.g. 

eggs and young stock) or mature ready for harvest over a 

relatively short time period (e.g. wool and milk). In these 

cases, the output decision is one of whether or not to harvest 

the product when it becomes available. Availability of product 

depends on time, weather and season, and on any inputs 

injected by man. The situation is difficult in the case of 

output which is final biomass because it accumulates 

continuously. There are many opportunities for harvesting the 

biomass, either continually (e.g. forest thinning) or finally 

(e. g. forest clear felling). In this case the timing of 

harvesting is an important decision variable; 

For living-resource categories (1) and (3) in table 1.1 a 

decision to cull is accompanied by the decision on whether or 

not to replace the culled stock with new stock of the same or 

of different kind. The final harvesting decision is followed 

by the acquisition decision. If there is to be replacement 

with the same kind of stock, the replacement may be obtained 

either by retaining the output of young stock or from outside 

the system. 

Whatever optimal decisions have to be made, whether they 

relate to the timing and levels of inputs or outputs, the same 

principle applies. The current consequences of a decision must 

be weighed against the future consequences of the decision. 

The way in which this should be done for continual maintenance 

and harvesting and decisions is demonstrated in the marginal 
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conditions for intertempora1 optimality which is derived in 

the next section using the logic of dynamic programming. 

1.5 A Simple Derivation of the Conditions for 

Intertempora1 Optimality 

The consequence of an input into a resource system is an 

immediate loss exchanged for some future gain. For example, 

feed is fed to livestock in the expectation of marketable 

weight gain in the future. Conversely, the consequence of 

extracting an output from a resource system is an immediate 

gain exchanged for some future loss. Harvesting an additional 

fish now means that it cannot be harvested tater; that the 

effort required to catch another fish later may be increased 

because there will be fewer fish per unit volume of sea; and 

that the growth in the biomass of the fish stock will be 

reduced if growth is an increasing function of biomass. If 

optimal decisions are to be made on the timing and level of a 

sequence of inputs or outputs, and the goal of the decision 

maker is a function of current and future returns, then both 

the immediate and future consequences of a current decision 

have to be taken into account. MacInerney (1976, 1978, 1981) 

gives a useful diagrammatic exposition of how they should be 

taken into account in a simple two-period model. 

The rules which summarize the optimality conditions which 

hold for control problems in general are referred to as the 

maximum principle. The maximum principle can be defined for 

c_~·.. , .. -- ••..... ,. .,~ 

I 
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either continuous-time or discrete-time problems. One simple 

method for deriving the maximum principle for continuous-time 

problems is via the reasoning of dynamic programming, Sethi 

and Thompson. The maximum principle for discrete- time problems 

can be obtained using calculus an dynamic lagrange multiplier, 

Benavie. However, as shown below, the maximum principle for 

the discrete-time problems can also be derived easily and 

directly using the reasoning of dynamic programming. A 

discrete-time formulation is appropriate for most resource 

problems because in general outputs are obtained (inputs are 

applied) periodically rather than continuously. The derivation 

shows how dynamic programming can be used as an analytic 

device. For comparison, the same rules are obtained in 

Appendix 1.A by working with a dynamic Lagrangian expression. 

1.5.1 The general resource problem without replacement 

For the generalized problem let the level of resource stock 

at the start of the first decision period be Xi' Decisions on 

input or output levels u i are made at the beginning of each n 

decision periods (subscripted by i) in the planning horizon. 

Any stock remaining at the end of the n-th decision period has 

a final value F(xn +1 }. The period gain resulting from decision 

u i is denoted by a i {Xi' u i }. The discount factor per decision 

period which applies aver all decision periods is Ci, and 

equals l/(l+r} where r is the discount rate . . 



Natural 
resource 

Mine 

Irrigated 
crop 

Beef 
cattle 

Timber 
thinning 
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Table 1.2 

Examples of Functions in Some Resource Control Problems 

Xi u i 

Resource Level of 
mass extraction 

Crop Level of 
biomass irrigation 

Liveweight Level of 
feed 

Timber Level of 
biomass thinning 

gi {Xi} 

Autonomous 
growth 

hi {XiI u i } 

Level of 
extraction 

Irrigation 
induced growth 

(hi < 0) 

Weight gain 
(hi <0) 

Level of 
thinning 

a i {XiI u i } * 

Net returns from 
extraction = 
Pihi -Ci {Xi' U i } 

Net returns from 
irrigation = 

-Pnhi (l+r) n-i- CnUi 

Net returns from 
feeding = 

-Pnhi (l+r) n-i- CnUi 

Net returns from 
thinning = 
(Pi - C i ) U i 

Fishery Fish Level of Autonomous 
biomass fishing effort growth 

Level of 
harvesting 

Net returns from 
harvesting = 

__________________________________________________________________________________ ~Pihi-Ci~iLYil 

p, = price of product ; c , • cost per unit of control; C,{.} = total control cost; r • rate of discount . 
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The present value of the initial resource stock, denoted by 

lower-case Vi ' is 

n 
v i{Xi'Ui' ... ,~} = E a i- lai{Xi ,ui } + anF{Xn+l } 

i =l (1.1) 

The problem is to maximize (1.1) with respect to Ul' ... '~ 

subject to the initial stock level Xl and the stock dynamics 

equations 

(i=l, ... ,n) (1.2) 

where g i { . } is the autonomous growth per period of the 

resource and h i{.} is the per period reduction in stock level 

consequent on Xi and u i . 

depends upon the natural resource to be managed. Some examples 

are shown in Table 1.1. 

The formulation applies most immediately to timber thinning 

and the fishery, for which u i is the level of harvesting 

effort in period i. The functions g i {Xi } and h i {Xi' u i } are 

usually distinguished in the case of the fishery to deal 

separately with the natural growth of the fish biomass and the 

harvest of biomass, respectively. 

In the case of an irrigated crop and beef cattle, there is 

no need for both g i{.} and h i{.}, so g i{.} is dropped. Here the 

u i 's are levels of inputs, and h i 's are negative representing 

increases in the resource stock. In the simple mining problem, 

u i is the level of extraction equal to h i . However, u i could 

instead represent exploration effort, in which case h i would 
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be negative, representing discoveries of new resource stocks. 

In many cases there are restrictions on u i . There may be a 

limit to the amount of water available across periods for 

irrigating a crop, or the appetite of livestock (a function of 

liveweight) may limit the level of feed input. Any constraints 

on u i are easily taken care of when solving problems 

numerically .using dynamic programming. They are ignored for 

ease of exposition in the rest of the section. 

Equation (1.1) states that the value of the initial 

resource stock equals the present value of all period gains 

arising from the management of the resource plus the final 

value of the resource. Alternatively, the value of the initial 

resource stock is the sum of the gain in period 1 and the 

value of the resource at the beginning of period 2 discounted 

one period. In symbols; 

n 

Vi{X1,U1, ... ,un} = a1{x1,u1} + E Q!i-lai{X1,U1} + Q!nF{Xn+1} 
i=2 

Let U*i denote the optimal level of u i and the upper case 

Vi {Xi } denote the value of the resource stock at the beginning 

of period i if control U*i' ... ,u*n are implemented. 

Suppose the value of V2 {X2 } has already been determined. Then 

the management problem at the beginning of the first period 

can be formulated as finding; 



18 

= a l {Xl' U \} + av 2 {X2 } 

= max [al {Xl' uJ + av2{x2}] 

u i (1.3) 

Note that by the transformation of equation (1.2) x 2 is the 

following function of Xl and u l ; 

This is the approach of dynamic programming. A one-decision 

variable problem is abstracted from the original n-decision 

variable problem, although clearly the solution depends on 

V2{X2 } which is initially unknown. It may appear that the cart 

is being placed before the horse, but V2{X2 } can be determined 

through the process of backward induction described in Chapter 

four. 

Assuming that and can be 

differentiated, and for simplicity that the solution is an 

interior solution, from (1.3) and (1.2) a necessary condition 

for optimality is 

(1.4) 

The term dV2/dx2 denotes the rate of change in the optimal 

value of the resource stock in situ at the beginning of period 

2 with respect to x 2 • It is the value of the marginal change 

in x 2 after allowing for optimal reaction in the control 

variables u2' ••• ,Un. It is conveniently written as A2 because 

it has the same interpretation as the Lagrange multiplier A2 
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used in the alternative derivation of the . intertemporal 

optimality conditions in Appendix 1.A. Thu./3 (1.4) can be 

written as 

(1.5) 

Equation (1.5) shows that immediate gains (losses) must be 

balanced against the present value of future losses (gains) in 

determining u\. It is required that u l be increased whilst the 

immediate marginal gains (present value of future losses) more 

than offset the present value of future losses (immediate 

gains) until (1.5) holds. 

If u i is the usage of a resource then the right-hand side of 

equation (1.5) represents the marginal user cost referred to 

in section 1.2. For a one-period problem (or if n = 1), the 

right hand side of equation (1.5) is zero. 

Although Xl is not a control variable, if the stock is 

optimally managed across all periods then the resource owner 

should be indifferent between leaving the marginal unit of the 

resource in place or extracting it. To see that this condition 

does indeed hold, differentiate both sides of equation (1.3) 

with respect to Xl to obtain; 

dVl/dxl = oal/oxl + a (dV2 /dx2 ) (OX2 /0Xl ) 

or 

(1.6) 

Augmenting the current resource base by one unit has two 

impacts. The period gain is altered, and the resource stock at 

the beginning of period 2 is changed. Thus, the increase in 
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the optimal value of the resource stock at the beginning of 

period 1 equals the additional period gain plus the increase 

in the optimal value of the resource stock at the beginning of 

period 2, discounted one period. 

The generalized natural resource problem subsumes not only 

the first-period problem (1.3) but also the remaining sequence 

of single-period problems for i = 2, ... ,n. The two conditions 

for optimality, (1.5) and (1.6), generalize to 

(i = 1, ... , n) (1.7) 

(i = 1, ... , n) (1.8) 

with boundary conditions 
Xl = X l (1.9) 

(1.10) 

The last boundary condition holds because the value of the 

resource after all decisions have been made, Vn+l {~+J, is set 

Equations (1.7) to (1.10) represent a special case of the 

discrete maximum principle, although (1.8) is usually 

rewritten to give the between period change in A. Equation 

(A1.2) in Appendix 1.A shows the alternative version of (1.8). 

The results are related to the Hamiltonian used in control 

theory in Appendix 1.B. 

It may be possible to use equations (1.7) to. (1.10) to solve 

a resource problem analytically. However, the solution of a 

set of difference equations with two-point boundaries is not 

always straightforward. In Chapter four it is explained how 

.' .... .. .-. 
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numerical solutions to the problem formulated in (1.1) can be 

obtained directly using dynamic programming. 

1.A Appendix: A Lagrangian Derivation of the Discrete 

Maximum Principle 

A general control problem for the management of a natural 

resource was presented in Chapter one. The conditions which 

must hold for intertemporal optimality were derived using a 

dynamic programming approach. The derivation introduced the 

idea of recursive induction which is the heart of the dynamic 

programming approach. In this appendix the same conditions are 

derived by finding the conditions for which the relevant 

Lagrange expression is maximized. The alternative derivation 

is included for comparison of the two methods and for 

completeness. A Lagrangian expression for the problem 

presented in section 1.5 is 

n 

L = E a i-1a i {Xl' Ul}+Al (Xl-Xl) +anF{XIl+l } 

i=l 

n 

+ Eai Ai+l (Xi +gi {Xi} -hi {Xii u i } -Xi +l ) 
i=l 

n 

= E ai- l [ai{Xl,ul} + aiAi+l(Xi+gi{XJ-hi{Xi,Ui}-Xi+l) 

i=l 

where the Lagrange multiplier or costate variable, Ai' is the 

contribution which an additional unit of the resource stock 
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would make to the value of the resource stock at the beginning 

of period i. If a small change in u i or Xi changes Xi+l by .6.Xi+1, 

the value at the beginning of period i of . the change is 

O!Ai+1.6.Xi +1. In some derivations of the discrete maximum 

principle, the Lagrange expression is formulated so that what 

is represented by o!Ai+l in this analysis is represented instead 

Necessary conditions for an interior solution are 

fJL/fJui + ai-1[fJai/fJui - aiAi+1(fJhjfJui )] = 0 

which implies 

fJaj fJu1 = aAi+l (fJhi / fJui ) (i=l, ... ,n) (A1.1 ) 

fJL/fJxi = a i -1 [fJai/fJxi+aAi+1 (l+dgjdxi -fJhi/fJxi ) -Ai] = 0 

which implies 

Ai = fJajfJxi+aAi+l(l+dgjdxi-fJhjfJxi) 

or, after rearranging and noting that a = l/(l+r) where r is 

the rate of discount 

fJL/ fJ'Xn+l = an [- Ai+l + dF / dXn+l] = 0 

which implies 

Ai+l = dF / dXn+l 

(i = 1, •• , n) 

(Al. 2) 

(A1. 3) 

(A1.4) 

No allowance has been made for any constraints on u i . If 

there are constraints on u i ' they can be incorporated in the 
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Lagrangian expression. Another extension is to allow for the 

possibili ty of boundary solutions. Some of the conditions 

become inequalities, and the Kuhn-Tucker conditions apply. 

Dorfman and Benavie present the derivation of the discrete 

maximum principle with useful economic interpretations. Clark 

presents derivations of both the continuous and discrete 

maximum principles, and applies them to a wide variety of 

problems encountered in the management of natural resources. 

1.B Appendix: A Note on the Hamiltonian used in Control 

Theory 

The conditions for the optimal management of a resource 

through time are often derived from optimal control theory. 

Although not immediately obvious, they can also be derived 

intuitively from the basic equation of dynamic programming. 

The derivation here is restricted to cases where all functions 

are continuously differentiable. The discrete maximum 

principle for the general resource problem formulated in 

Chapter one can be stated in terms of the expression 

(i=l, .. ,n) 

(Bl.l) 

The discrete maximum principle states that a necessary 

condition for optimality is that u i maximizes H{.} at each 

stage i. If the solution is an interior solution, the 

requirement is that 

OHdoui = 0 (i = l, .. ,n) (Bl.2) 
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The associated adjoint equation 

(i=l, ... ,n) (B1.3) 

relates the rate of change of the adjoint variable or dynamic 

Lagrange multiplier to Hi {.} and the rate of interest r, where 

Ol = l/(l+r). 

The fundamental dynamic programming equation for optimal 

control is the general form of (1.3); 

max [ai {Xi' u i } +OlVi +1 {Xi +1}] 

u i 

(i=l, .0 •. ,n) (B1.4) 

The purpose of this appendix is to show that (B1.4) implies 

(B1. 2) and (B1. 3). A necessary condition for an interior 

solution is 

(i=l, .. ,n) (B1 . 5) 

which is the same as (B1 .2) after subs ti tuting Ai+l for 

Denoting optimal u i by U*i' (B1.4) can be rewritten as 

(i=l, .... ,n) (B1.6) 

Because u\ is a function of Xii (B1. 6) can be totally 

differentiated with respect to Xi to give 

(i=l, .. ,n) (B1.7) 

After rearrangement and substitution for dVJdxil (B1.7) 

becomes 
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Ai (l+r) -Ai +1 = (l+r) oaJoxi +Ai +1 (dgJdxi -Ohi /Oxi ) 

or 

Ai+1-Ai = rAi-(l+r)OHi/oxi (l, .. ,n) (Bl.S) 

which is the same as (Bl. 3). The term Hi {.} introduced in 

(Bl.l) is the current value Hamiltonian of control theory, 

discounted one period. 
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Chapter two 

WATER MANAGEMENT UNDER IRRIGATION 

2.1 Irrigation Methods; 

Irrigation is the application of water to soil to assist in 

the production of crops. Irrigation water is supplied to 

supplement the water available from rainfall and ground water. 

In many areas of the world, the frequency of rainfall is not 

adequate to meet the moisture reqUirements of crops. 

Irrigation is an age-old art - as old as civilization. The 

pressure for survival and the need for additional food 

supplies are causing the rapid expansion of irrigation system 

throughout the world, Michael and Ojha. 

The scope of irrigation science extends from the water shed 

to the farm and to the channel. Water being a limited 

resource, its efficient use is basic to the survival of the 

ever increasing population of the world. In the comprehensive 

strategy needed for the conservation and development of water 

resources, several factors are to be kept in view. These 

include the availability of water, its quality, location, 

distribution and variation in its occurrence, climatic 

conditions, nature of the soil, competing demands and socio­

economic conditions. In dealing with each of these, every 

effort must be made to make the best use of water, so as to 

make possible a high level of continuous production. The 

objective of an efficient irrigation is to increase 

agricultural production per unit volume of water, per unit 
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area of cropped land, per unit time, Irrigation Commission. 

Water for irrigation is obtained from natural streams or 

rivers, surface reservoirs and from underground reservoirs. 

Flood water from rivers is collected in surface reservoirs by 

constructing dams at suitable sites. Runoff water from small 

areas can also be collected by constructing ponds or tanks. 

Water from underground reservoirs is utilized by constructing 

wells and installing pumps or other water lifts. Water from 

surface reservoirs is taken through canals. Canals run from 

higher to lower elevations, and water flows to them by the 

force of gravity. 

Based on whether the source of water is above or below the 

field surface, irrigation is classified into two main types: 

(a) Flow irrigation where the water reaches the field from the 

source by gravity flow; 

(b) Lift irrigation requiring the water to be raised or 

lifted from its source to the field surface. _ 

If stream, river or lake can be conveniently tapped to take 

water to canals, it is often the most economical source of 

water for irrigation. However, in most cases, ' this source of 

water is not adequate during dry season when .water is needed 

most by the crop. Therefore, it is essential that the 

potential supplying power of the river or stream be considered 

before planning the irrigation system. 
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The Measurement, Conveyance and Control Of 

Irrigation Water On The Farm 

The important factor in the efficient working of an 

irrigation system is the character of the structure used for 

transporting and distributing water. An additional factor is 

the measurement of irrigation water, which permits more 

intelligent use of this valuable natural resource. 

Present day knowledge of soil-moisture plant relations permit 

irrigation system to be designed for applying water in correct 

quantities when needed. In order to use this knowledge 

efficiently a reasonable accurate measureme.nt of water is 

necessary. Accurate measurement is necessary in field studies 

of soil-water plant relationship. Further, measurement enables 

the farmer to know the actual volume of water consumed. 

Many researchers have measured the water use in irrigated 

crops using metal tanks installed in the middle of the field. 

Many experiments are conducted with three to six moisture 

regimes in tanks without bottoms to determine the most 

satisfactory regime in terms of optimal yield. 

Various types of structures are used to cont~ol water in the 

farm. The purpose of the farm distribution system is to safely 

carry the required irrigation stream from the source to the 

individual furrow, basin or border. The system must provide a 

means of control so that the labour required for irrigation is 

held to a practical minimum, thereby ensuring easy and 

accurate application of irrigation water, and will help to 
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make the best use of water supply Christiansen, J.E. 1953. 

Water is a basic necessity for all life systems. It is 

essential not only for survival but also to the quality of 

life, In a recent publication, Food and Agriculture 

Organization (FAO) emphasized the importance of water as a key 

input in agriculture stating that "Notwithstanding the fact 

that land is indispensable for agricultural production, It is 

water rather than land which is the binding constraint. It is 

only when water constraint is removed that other technical 

constraints such as nutrients and pests become important". 

The development of water resources especially for 

irrigation purposes in Nigeria dates back to the pre-colonial 

era. The traditional application of water to land for dry 

season farming in Northern Nigeria was one of the earliest 

attempts made towards increasing agricultural production. This 

notwithstanding, Nigeria has not developed irrigation to the 

same extent as other developing nations, particularly in Asia. 

Even though irrigation has been practiced in Nigeria as far 

back as ninth century, it was not until the recurrence of 

drought and the attendant famine during the 1970' s that 

concerted efforts were made to develop irrigation to give 

protection against the failure of crops and ameliorate the 

attendant environmental degradation of droug~t, World Bank. 

The initial case for development of irrigation in Nigeria was 

based in part, therefore, on the need to sustain a growth in 

food supply that would broadly lead to national food security. 

I 
I 
I 

I 
I 
I 

I 
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2.2 Effect of Irrigation on Yield Response 

Management of limited water supplies in Irrigation system 

requires sound knowledge of the relationships between crop 

yield and water use. To optimize economic returns the way 

yield responds to varying conditions of water supply should 

influence the way in which water is distributed in an 

irrigation system, as well as the choice of crop variety and 

the use of inputs at the farm level. For best results, soil 

water should be kept close to field capacity, Aglibut et aI, . 

Rayes. But the water environment in which crops are grown 

varies tremendously throughout Nigeria. Most · tropical crops 

are grown under less than favourable conditions. Thus, since 

the new improved varieties were developed under favorable 

conditions, where water is not a limiting factor, 

International Rice Research Institute, the potential of new 

crop technology has not been widely reached. For adequately 

irrigated areas, relatively higher yields are associated with 

climatic factors that contribute to low evaporative demand 

conditions. 

2.2.1 Effect of Irrigation on Sequential Cropping 

For centuries, the crop and farmers of the humid tropics 

have adapted themselves to the rainy season. Crop varieties 

are mostly photoperiod-sensitive and the farmers usually plant 

whenever the monsoon rains begin, Abilay. 

They harvest at a fixed date after the rains stop and the 

.. - .,'. 
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water recedes. As a result, farmers of the humid tropics, 

accustomed to growing one crop a year, sel~om realize the 

importance of water management for better irrigation. 

with the development of photoperiod-insensitive crop 

varieties in recent years, the Nigerian farmers are equipped 

to grow more crops in one year and to develop crop-oriented 

sequential cropping pattern, because they are not limited by 

temperature. The only environmental defect left to hamper 

cultivation of more crops in the humid tropics is rainfall 

availability. Development and measurement of water resources 

are the only way to remedy it. Experience from some locations 

in Nigeria is used to estimate rotational intervals under 

conditions of variable soils, sources of water, and seasons. 

It is hoped that through better water control 'and management 

double cropping crop culture can be established and further 

development of mUlti-cropping can be achieved rapidly 

throughout Nigeria, FMA&NR. 

2.3 Diagonalization of Matrix In Irrigation Problem; 

Data from an agricultural experiment with two-way 

classification form an r x c matrix table, where rand c 

denote the number of classes in the two classification 

criteria used. For example, if the grain yield in an 

irrigation trial are classified based on two criteria - water 

depth (1 to 3) and multi-cropping (lst to 3rd seasons) the 

resulting data represent a 3 x 3 matrix table. 

:,., ,~ -, ,,' .. 
' .. ", ~" " 
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In practice, if such matrix is reduced, the resulting 

diagonal elements or eigenvalues summarizes the matrix table 

and a simple and final statements regarding conditions for the 

feasibility of this reduction seems in order, Margenau and 

Murphy. 

A matrix may be diagonalized if (a) if all the eigenvalues 

are distinct, for example, consider the case in which all 

eigenvalues A are different. Select one, say Ai' and form the 

n linear equations; 

Ax = '\ X Ai (2.1) 

They are homogeneous, and may be solved for the ratio of the 

components of the eigenvectors Xi. Remembering that each 

component contains an arbitrary constant that can be written 

as a column vector, Reju. 

The remaining eigenvectors are determined in the same way, 

using each eigenvalues in turn. Finally a matrix x is formed 

whose columns are the eigenvectors of A which satisfies the 

equation 

AX = •• (2.2) 

where Oij is the II kronecker II delta an represents a 

discontinuous factor which is taken to be unity when the two 

subscripts have the same value (i=j) but is zero when they are 

not equal. when equation (2.2) is multiplied by x- l we obtain 

X-lAX = A = [AiOij ] •• (2.3) 
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It is thus shown that the matrix x which diagonalizes A, may 

be found by compounding the eigenvectors of A into a matrix. 

The reduction to diagonal form here described is unique except 

for the order in which the eigenvalues occur along the 

diagonal. 

(b) If it is Hermitian or symmetric. Here the problem is 

that of diagonalizing the symmetric matrix A by means of a 

congruent transformation. Except for slight modification, the 

reduction of a Hermitian matrixes to diagonal form is similar 

to the procedure used for real symmetric matrices. 

(c) If it is unitary for example, if a unitary matrix is 

indicated by U then from its definition U = (U+) -l, hence 

U+ = U- i (2.4) 

Suppose the element in a single column of U are given by Uj , 

then the next Hermitian scalar product of two columns 

Uj +Uk = 0 ij (2 .5) 

A similar relation may be found between the rows. Hence the 

rows and columns of a unitary matrix of order n form a set of 

mutually perpendicular unit vectors in Hermitian space. 

In cases (b) and (c) a unitary matrix can always be found to 

affect the transformation while in (a) a more general type of 

transforming matrix will be needed, Aiyesimi. 
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CHAPTER THREE 

METHODS OF DYNAMIC PROGRAMMING 

3.1 Introduction; 

Since Bellman expounded and popularized dynamic programming 

in the 1950s, several papers on dynamic programming with 

management applications have appeared. However, the management 

applications have been mainly to business and industry. There 

does not have been a dynamic programming paper published with 

applications to the management of agricultural and natural 

resources. Books on operations research usually devote a 

chapter or two to dynamic programming. The treatment is 

inevi tably limited, seldom progressing for example to the 

solution of infinite-stage problems. 

In this chapter the solution of deterministic, finite-stage 

dynamic programming using backward recursion is explained. The 

solution procedure is valid for any problem for which 

Bellman's Principle of Optimality holds. The necessary 

structure and properties of a dynamic programming problem are 

discussed. The process of backward recursion is illustrated in 

the solution of a problem in Chapter four by compiling 

solution table. The computer solution to the same problem is 

also shown in Chapter five. 

3.2 Backward Recursion Applied To General Resource Problem 

In Chapter one an n-stage general resource problem was 

introduced. It was shown how the problem could be formulated 
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as one of maximizing, with respect to the initial decision 

variable u l , an objective function subsuming an (n-1)-stage 

problem. The same type of decision problem exist at all 

subsequent decision stages. The overall problem of finding 

U* l l •••• ,u*n can be solved by finding U *1 which satisfies the 

following recursive functional equation; 

(i=n, •. ,l) .•• ' (3.1) 

with 

where 

* * u 1l .... ,u n given = value derived from implementing 

the level of the resource stock is Xi ; 

u i = decision on level of input or output; 

g i {Xi } = autonomous addition to the resource stock 

between stage i and i+1; 

h i{xi ,ui } = controlled reduction in the resource stock 

between stage i and stage i+1; 

Xl = stock of the resource available at stage 1; 

F{X } = final value of the resource stock remaining at n +l 

stage n+1; 

and 

a = discount factor. 
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Equation (3.1) is a functional equation because functions 

appear on both sides. It is recursive beca~se determining 

Vi+l {Xi+l} enables Vi {Xi } to be determined. The equation reflects 

Bellman's Principle of Optimality which is expounded more 

fully in section 3.2 in connection with numerical solution of 

problems. 

Because equation (3.1) is recursive the general resource 

problem can be solved by a process of backward induction. The 

term Vi+l{.} on the right-hand is usually unknown for all i 

except for i=n. In the case of i=n, Vn+l {Xn +1 } = F{Xn +1 }. Equation 

(3.1) can therefore be solved for i=n to give u *n and Vn{~}. 

The solution to the general resource problem is obtained by 

repeating the process for all i from i=n to i=l. 

In practice the solution of a functional equation may nat be 

straight-forward. In Chapter one it was assumed that Vi{Xi } and 

a i {xi ,ui } were differentiable functions and the solutions were 

always interior solutions. It was also pointed out that many 

resource problems do not have these features, in which case it 

still may be possible to obtain solutions numerically. 

A numerical formulation of the general resource problem 

restricts the values of Xi and u i to finite sets for all i. A 

further restriction is that any feasible combination of Xi and 

u i must imply access to a value of Xi+l . The dynamic 

programming problem can then be interpreted as one of finding 

the optimal path through a network of nodes. A perhaps obvious 

but exploitable characteristic of the optimal path is 
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described in Bellman's Principle of Optimality. 

3.3 The Principle Of Optimality 

The Principle of Optimality is illustrated with reference 

to a simple mining problem. Suppose Xi represents the number 

of units of a mineral in the ground at stage i, and always 

takes one of the nine values between 0 and 80 shown in the 

grid in Fig. 3.1. The decision variable u i represents the 

number of units mined and can take one of the values 0, 10 or 

20, subject to U i s xi. The amount of mine at each of four 

stages has to be decided. The net returns from mining, 

a{xi,u i }, are shown in Table 3.1. 

Max 

Subject to 

4 
1:: a{xi' uJ 
i=l 

and to other constraints on u i • 

The feasible stock levels at each stage are bordered by the 

broken lines in Fig 3.1. At each decision stage, the three 

levels of mining 0, 10 and 20 are possible at each feasible 

state node. 



Stock 
(x) 

0 
10 
20 
30 
40 
50 
60 
70 
80 
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Table 3.1 
Mining Stage Returns a{x,u} 

Mined (u) 

o 10 20 

-10 
-10 -60 
-10 -40 -60 
-10 -25 -40 
-10 -15 -20 
-20 0 -10 
-20 10 10 
-20 20 35 
-20 30 70 

As an example, the decisions are illustrated in Fig. 3.1 at 

stage 4 for stock level 20. 

Mineral stock 
(Number of units) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

Decision stage 
1 234 

x x x x x 

x x x xe 
x x x )' x 

/ 
x x x ' /' x x 

/ 

x x x/ ~ x 

x x~x x x 

x x x x x/ x x x x 

x x x x x 

------------------------------------------------------------

Fig 3.1 Grid of feasible stock levels. 
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The optimal path through the state nodes is .80, 60, 50, 40, 

40 and is shown in Fig 3.1. The corresponding optimal mining 

policy is 20, 10, 10, 0 which gives a total return (70 + 10 + 

o - 10) = 70. The method of identifying the optimal path is 

not dealt on at this stage . The point to be made is that for 

the policy to be optimal, it must conform with Bellman's (p. 

83) Principle of OptimalitYi 

An optimal policy has the property that, whatever 

the initial state and optimal first decision may 

be, the remaining decisions constitute an .optimal 

policy with regard to the state resulting from 

the first decision. 

In other words, if 80, 60, 50, 40, 40 really is an optimal 

path starting with Xl = 80 then 60, 50, 40, 40 must be the 

optimal path starting with x 2 = 60i 50, 40, 40 must be the 

optimal path starting with X3 = 50i 40, 40 must be the optimal 

path starting with x 4 = 40. It is simple to check the validity 

of these statements. 

Note that the Principle of Optimality is not a definition of 

an optimal policy, for the principle states that an optimal 

policy consists of a nesting of shorter optimal policies. 

Rather it is a statement about the recursive nature of an 

optimal policy which suggests that sequential decision 

problems can be solved by a process of backward recursion. 

Referring to the example, it was argued by a process of 

contraction along the optimal path starting with Xl = 80 that 
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40, 40 must be the optimal final path starting with x 4 = 40. 

Conversely, an optimal path over any number of decision stages 

can be found by a reverse process of expansion. Optimal final 

paths are determined from all possible values of x 4 (20 to 80) 

in the knowledge that one of them must be part of each of the 

optimal paths starting from X3 (40 to 80). This enables the 

optimal paths from each possible value of X3 to be determined 

in th knowledge that one of them must be part of each of the 

optimal paths starting from each possible value of x 2 • In this 

way the optimal path starting with Xl = 80 is found. 

In the process of finding the overall optimal path, 

information is generated about many possible optimal sub-

paths, only a few of which are actually embedded in the 

overall optimal path. Such information may be redundant. On 

the other hand, it may be useful for sensitivity analysis, or 

it may be useful for pursuing a feedback control strategy when 

transitions from one stock level to another are subject to 

uncertainty. In any .event, the number of decision consequences 

explored using backward recursion is much less than the number 

using total enumeration for problems with many decision 

stages. In the example problem, 34 = 81 decision consequences 

must be evaluated using total enumeration compared with (lx3) 

+ (3x3) + (Sx3) + (7x3) = 48 using backward recursion. In 

general, if the number of decision stages is n and the initial 

stock is large enough, the number of decision consequences 

which must be evaluated is 3n by total enumeration and 3n 2 by 
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backward recursion. For n > 3, backward recursion requires the 

evaluation of fewer decision consequences. 

3.4 The Structure Of Dynamic Programming Problems 

In Chapter one it was stressed that one of the advantages of 

dynamic programming was that few constraints are placed on the 

function ai(xi,ui ), gi{Xi ) and hi (Xi'Ui ) • The functions could be 

non-linear, discontinuous and/or stochastic. However, for it 

to be possible to solve a problem by dynamic programming, it 

must have a particular structure. The structure must be the 

same or similar to that for the general resource problem 

already encountered. 

To describe the required structure, the following terms are 

employed; decision, decision stage, state, transformation 

function, stage return function and objectiv.e function. The 

problem must consist of a sequence of decision, up .. , n. A 

point in time at which a decision is made is a decision stage, 

often referred to merely as stage. Any decision u i made at the 

i-th decision stage has two consequences. First, it results in 

a change in the state of the decision system from Xi at stage 

i to Xi+l at stage i+1. The change is expressed by the 

transformation function which for the general resource problem 

can be written as 

Xi+l = Xi + gi{Xi } - hi{xi,ui } 

but which can be more generally written as 

Xi+l = ti {Xi' u i } 
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Secondly, the decision results in a return at each decision 

stage given by the stage return function, ai{xi,ui}. The 

overall objective of the problem must be ' to select the 

decision sequence up .... ,u., so that a separable objective 

function of the n stage returns is optimized. The objective 

function most frequently encountered are the sum of stage 

returns, or the present value of stage returns 

n 

E ai-1ai {Xi' uJ 
i=l 

The final decision to be taken, u." determines the terminal 

state of the system, Xi+l. There may be some final value 

F{Xn+1} associated with the terminal state, in which case it 

is included in the objective function. 

Although the additive objective function is the most 

commonly used one, there are other separable objective 

functions for which the principle of optimality holds. 

Nemhauser, following Mitten, has presented a sufficient 

condition on the objective function for the application of the 

principle of Optimality, besides separability. If the 

objective function is separable, then the objective function 

of the last two decision stages can be written 

where an is the stage return at stage nand F is the terminal 

value. In general 

(i = 1, .... ,n-1) 

The sufficient condition is that 



43 

In other words, fi must be a monotonically non-decreasing 

function of fi+l for all a i . This condition is ljJatisfied if the 

objective function is additive in stage returns, or the 

product of stage returns provided all stage returns are non-

negative. The latter objective function has been used in crop-

irrigation problems because it implies zero .total return if 

any stage return is zero as a result of crop failure. Cooper 

and Cooper (1981) have pointed out that the monotonicity 

condition is not a necessary condition, but have also 

commented that so far, there has been no satisfactory 

statement of the necessary conditions on the objective 

function for the principle of Optimality to hold. 1 

It is important to note that the decision system must be 

fully described at any stage i by t~e state of the system, Xi' 

in the sense that Xi+l and a i depend only on Xi and u i and any 

other exogenous variable. Only to this extent may the behavior 

of the system be dependent on the history of the system prior 

to stage i. In other words, the decision system must process 

the Markov property.2 

To sum up, a dynamic programming problem with an additive 

objective function has the following form: 

Max 

Subject to 

n 

E a i-1a i (Xii u i ) + ct'F{x.,+l} 
i=l 



44 

(i= 1, .. ,n) 

and other constraints on u i • 

The corresponding recursive equation for solving the problem 

is 

(i n, ... , ,1) .. (3.2) 

with 

and other constraints on u i • 

1 Hastings, pp 25-33, proves that two conditions, which he 

terms separability and optimality conditions, are necessary 

and sufficient for solving a mUltistage decision problem by 

dynamic programming. 

2 Problems with casualty lags greater than one period can be 

formulated to conform with the first-order Markov 

requirements, by suitably defining the state variable. For 

example, if Xi+l and a i depend on X i _1 as well as Xi and Uu the 

requirement is met by defining both Xi and X i _1 as state 

variables . 

• ,., ",;"'P~ -
.' ••• "!" ~.~., f.~. ('I. 
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CHAPTER FOUR 

The Irrigation Optimization Model 

4.1 Introduction 

Here, for exposition purposes, a highly simplified problem 

in the management of a growing resource is introduced. The 

problem is formulated as a dynamic programming problem and 

solved numerically. 

4.2 Deriving The Yield Response Model 

In deriving The Yield Response Model, Day, et al,. consider 

the yield of seasonal crops and the depth of water, Wi' 

received by each crop grown in the i-th season for a 

horticultural crop, like tomatoes, using · the data from 

Hadejia-Jama'are Irrigation System, Kano, Nigeria, the yield 

response to moderately well drained sandy loam soil, an 

improved variety, (Bataoto), and fertilizer applied ei ther at the 

split or one time application, at the rate of 90-120-90, (N.P2 

0s.K20), Simons, as shown in Table. 4.1 below · 

Water Grain Yield (t/ha) 
Depth 1 st season 2nd season 3rd season 

(cm) crop crop 

1 15 14 17 
2 13 15 18 
3 18 17 14 

Table 4.1; Yield response of sequential croppi ng to the 
depth of water (Wi ) received by each crop grown 
in the i- th season. 

crop 
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Arranging the data in matrix form, and reducing it to the 

diagonal form to obtain the eigenvalues, Ai' . 

Thus, the matrix, X, was determined such that 

X-lAX = A = 

with, 

o ij 

[AiOij ] 

= 
1 

1 

1 

.. (4.1) 

0, i#j 

1, i=j 

making all matrix elements vanish except along the main 

diagonal elements which are now the eigenvalues, Fisher, et 

al, . 

Table 4.1, in matrix form, gives the matrix: 

A = 
15 
13 
18 

14 
15 
17 

17 
18 
14 

(4.2) 

Reducing matrix A to the diagonal form using a suitable 

numerical method on the computer, yields Al = 0.9, A2 = 1.6 

and A3 = 2.1, showing the eigenvalues to be distinct, Adeboye, 

thereby fulfilling the condition for diagonilization of matrix 

in irrigation problems of section 2.3 (a). 

A = 

Result of Reducing Matrix A 

10.9 
10.0 
10.0 

0.0 
1.6 
0.0 

0.01 
0.01 
2.11 

or 
0.0 

A2 
0.0 

••• (4.3) 

where the eigenvalues occur along the diagonal and zero 



elsewhere, with respect to equation (4.1). .1.1. &-.. _ 

the yield, Y, and A the depth of water Wi received, then 

equation (4.1) can be rewritten as, Polis, 

(4.4) 

As a result of the diagonilization, table 4.1, now takes the 

form of equation (4.3), 

Table 4.2; Crop yield of seasonal crop and 
the depth of water received . 

Depth of water 
(w) cm 

1 
2 
3 

Crop yield 
(y) t/ha 

0.9 
1.6 
2.1 

It was observed that the functional relationship between the 

yield (y) and the depth of water Wi received is non-linear 

because the response is usually rapid at lower levels, slower 

at the intermediate levels and could become negative at higher 

levels of water depth. 

Therefore, a quadratic function was considered and hence the 

yield response data (now represented by the eigenvalues) of 

table 4.2, are fitted to the quadratic equation model of the 

form; 

Y = A + B X + C X2 

Using the technique that involves the linearization of the 

non-linear form of table 4.2, through the transformation of 

variables, Burt, to obtain: 

Y = W - 0.1 W2 (4.5 ) 

Where A = 0.0; B = 1.0: and C = - 0.1 

Hence in the prediction equation, the yield response of 

seasonal crop y to different depths of water W i 
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received by the crop grown in the i-th season is given by 

(i = 1 to 3) 

(See the graphical representation in Fig 4.1) 

2 
Grain t 
yield I 

I 
(t/ha) I 

I 

1 

o+-________ ~ ________ ~ ________ ~~ 
123 

water depth (cm) ---~ 

Fig 4.1; Functional relationship of yield and water depth. 

4.2.1 Deriving The Water Balance Equation. 

A water balance refer to an accounting of- water movement 

into and out from farm according to the simplified equation, 

Net + 
Irrigation 

rain = 
fall 

seepage & + 
percolation 

evapotran 
spiration 

+ surface 
drainage 

Irrigation, drainage, rainfall and evapotranspiration data 

are all expressed as depths of water in centimeters over the 

area of the farm. For a highly simplified example, the depth 

of water, Wi' received by the i-th season crop, in cm would 

consist of total supply of water, which is the sum of net 

irrigation, u, in meters plus rainfall, q, in centimeters 

which for varying depths and quantities we have the following 

equation; 

which implies basic counting technique, Arrow, et al,. 
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4.2.2 Objective of the Far.mer 

Is to select integer values of u i so that the present value 

of receipts from sale of the crop is maximized. The price (# 

per ton) received from the i-th season crop is b i • 

4.3 Dynamic Programming As A Method Of 

Conceptualizing Resource 

Many agricultural economics have noted the need for an 

opera tional approach for solving dynamic problems. Johnson and 

Rausser p.164 comment that 'many agricultural economics for 

a number of years have been busily applying static neo-

classical theory to intrinsically dynamic system' . Heady, p. 38 

has suggested 'perhaps conventionally optimizing theory was 

used more widely in recent decades because theory related to 

time and stochastic phenomena was not yet sufficiently 

operational' Hanf and Schiefer p. 16 notes that 'in most 

operational decision models the time dimension of marginal 

decisions is not considered adequate' . 

One of the aim of this project has been to draw together an 

example of how dynamic programming, since its advocacy by 

partitioners such as Throsby and Burt in the early 1960's has 

already been applied to a dynamic resource problem. In so 

doing the image of dynamic programming as an arcane or 

esoteric technique may be rebutted and its simplicity and 

practicability demonstrated. 

A useful insight into the nature of a dynamic resource 

problem is obtained just by for.mulating the basic recursive 

equation, regardless of whether the problem is solved using 
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dynamic programming. The process of identifying state 

variables, decision variables, stage return function and state 

transformation functions help formalize the problem. 

To summarize what is gained from the recursive equation, 

consider once more the equation for the general resource 

problem introduced in Chapter one; 

OSU1 SU1 

o SU1 SUi 

(i = n, .. ,l) (4.6) 

Where 0 and u i are lower and upper bounds on the control 

variable u i ' and u\ is the optimal value of the resource stock 

at stage i is given the usual economic imputation of being the 

capitalized value of the stream of optimal stage returns. Thus 

(4.5) is consistent with 

n 

vi{xJ = E a j-iaj{xjlu*j}. 
j=l 

It can be seen that from (4.6) that at any stage i, U*i 

depends simultaneously on the impact of u i on the current 

stage return and on the present value of the resulting 

resource stock at stage i+1. 

4.3.1 Forward Recursion and Stage Numbering 

In general it is possible to solve numerical dynamic 

programming problems which are deterministic by forward as 

well as by backward recursion. Forward recursion has an 



advant age over backward recurs ion for problems W1"C.u. ~. _ _ _ 

planning horizons. The relevant planning horizon may be judged 

to be the one for which, if it were increased, there would be 

no change in the optimal first decision, or first few 

decisions. The relevant decision horizon must be found by 

experimenting with successive longer horizons until the 

requisite criterion is met. If backward recursion is used, a 

fresh problem would have to be solved for each planning 

horizon. If forward recursion were used, once calculations had 

been performed for a planning horizon 

calculations for one additional stage 

of n stages, only 

would need to be 

performed for a decision horizon of n+1 stages. 

At this point,it is probable as well to point out that the 

ordering of stage subscripts in dynamic programming recursive 

equations is conventionally the reverse of that used here. 

That is, if backward recursion is used, stage subscript i 

denotes the number of decision stages remaining, instead of 

the number of the stage reached in the sequence in which 

decisions are actually taken. The convention of reverse 

ordering is perhaps useful when the process of backward 

recursion is actually being worked through. It is not followed 

here because temporal ordering of stage subscripts make the 

interpretation of the recursive equations more 

straightforward. 

4.4 The Formulation of tho Problem; 

A farmer grows three horticultural crop in successive 

seasons over one year on 100 ha. Each crop takes four months 

or one season to reach maturity from the time of planting . 

The yield of each crop (in hundreds of tons per 100 ha), -



is given by; 

(i = 1 to 3) 

where, Wi ' is the depth of water in cm. received by the crop 

grown in the i-th season. The depth of water received depends 

on the height of water released from storage at the beginning 

on each season (u i , in meters) and rainfall received during 

each season (gi' in cm). The area of the dam is 1 hectare, so 

The dam is full at the beginning of the first season with 

water height of 3 m. The amount of water which can be released 

at the beginning of any season is limited to integer values of 

water and also by the amount in storage. Rainfall augments the 

water in storage. The catchment area is 100 ha, so 1 cm of 

rainfall raises the level of the dam X i by 1 m. provided the 

dam is not full. 

The problem can be formulated as; 

3 

Max E ex:i-1b i (Wi - 0 .lw2 i ) • 

i=l 

Subject to 

with data 

b = [50, 100, 150] 

g = [2, 1, 1] 

ex: = 0.95 

4.5 The Solution Procedure 

Ui' X i integer 

The backward recursive equation used to solve this problem 

is, 



Vi {Xi} = max [bi (Wi - 0 .lwi 2) + aVi+l {Xi -ui +qi}] . 
OsbisXi (i=3 to 1) 

with ••••• (4.7) 

The recursive equation is solved in appendix (4.A) and used 

in the compilation of Table 4.3. Consider the option which can 

be taken at stage two if the dam water level is 3 m. If no 

water is released, then only water received by the crop is 1 

cm of rainfall. The value of the additional crop yield is 

#9,000.00. The dam water level will still be 3 m at stage 3 

despite the rainfall because of overflow. The optimal return 

at stage 3 from a water level of 3 m has been calculated to be 

#36,000.00 in stage 3 section of Table 4.3. The return 

discounted one stage is #(0.95*36,000 = 34,200.00). 

The value of releasing no water at stage 2 with 3 m of water 

is therefore #(9,000+34,200 = 43,200.00). 

The value of releasing all of the available water is the sum 

of the value of the additional crop yield (#24,000.00) and the 

discounted value of return from the dam with 1 m of water 

depth remaining at stage 3 is #(0.95*24,000 = 22,800.00), 

which equals #46,800.00. The optimal amouIit of water to 

release can be seen to be 2 m, giving a total return of 

#50,900.00. If there is excessive water level, there will be 

overflow and this equals the amount of rainfall received 

during that season. 



Dam 
water 
level u 3 = 0 

Xi 
(m) q3 = 1 iW3 = 1 

0 13.5+0.0 = 13.5 
1 13.5+0.0 = 13.5 
2 13.5+0.0 = 13.5 
3 13.5+0.0 = 13.5 

Dam 
water 
level u 2 = 0 

Xi 
(m) q2 = 1i W2 = 1 

0 9.0+22.8 = 31.8 
1 9.0+29.9 = 38.9 
2 9.0+34.2 = 43.2 
3 9.0+34.2 = 43.2 

Dam 
water 
level u 1 = 0 

Xi 
(m) ql = 2 iw1 = 2 

0 8.0+43.6 = 51.6 
1 8.0+48.4 = 56.4 
2 8.0+48.4 = 56.4 
3 8.0+48.4 = 56.4 

--k.... -r----- ____ ~ac1on Returns (#OOO) , 
Stage 3 

Water released (ha m) V3{XJ U*3{XJ 

U 3 = 1 U 3 = 2 

q3 = 1iW3 = 2 q3 = 1i W3 = 3 

24.0+0.0 = 24.0 
24.0+0.0 = 24.0 31.5+0.0 = 31.5 
24.0+0.0 = 24.0 31.5+0.0 = 31.5 

Stage 2 

U 3 = 3 

q3 = 1i W3 = 4 

36.0+0.0 + 36.0 

13.5 
24.0 
31.5 
36.0 

o 
1 
2 
3 

Water released (ha m) V 2 {X2 } u \ {x2 } 

U 2 = 1 u 2 = 2 u 2 = 3 

q2 = 1i W2 = 2 q2 = 1 iW2 = 3 q2 = 1i W2 = 4 

31.8 0 
16.0+22.8 = 38.8 38.8 0 
16.0+29.9 = 45.9 21.0+22.8 = 43.8 45.9 1 
16.0+34.2 = 50.2 21.0+29.9 = 50.9 24.0+22.8 = 46.8 50.9 2 

Stage 1 

Water released (ha m) Yl {Xl} U*.l {Xl} 

u 1 = 1 u 1 = 2 u 1 = 3 

ql = 2 iWl = 3 ql = 2 iW1 = 4 ql = 2 iWl = 5 

51.6 
10.5+43.6 = 54.1 56.4 
10.5+48.4 = 58.9 12.0+43.6 = 55.6 58.9 
10.5+48.4 = 58.9 12.0+48.4 = 60.4 12.5+43.6 = 56.1 60.4 



55 

4.6 Optimal Irrigation Decision Path 

Table 4.3 shows that if the dam is full at the start of the 

growing season, the maximum return is #60,400.00. The optimal 

decision path shown in table 4.4 was derived by tracking 

forward through time from stage 3 to stage 1 .. . 

Table 4.4 

Optimal Irrigation Sequence Starting With the Dam Full 

Season Dam water Water Season Discounted 
Level released return total return 

{m} {ha m} {~OOO} {~OOO} 
1 3 2 12.0 60.4 
2 3 2 21.0 50.9 
3 2 2 31.5 31.5 

The three crop received a total of ten units of water. Six 

were supplied from the dam, and four were received as 

rainfall. The dam was emptied at the beginning of the third 

season, though subsequent rainfall left the dam with a water 

height of 1 mat the end of the third season., 

Table 4.3 can be used to find the optimal sequence of 

irrigation starting with other water levels and seasons. 
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Appendix 4.A 

The solution of equation (4.6) used in the compilation of 

table 4.3 

Vi {Xi} = max [bi (Wi - 0 .1wi 2) + Q!Vi+l {Xi -ui +qi} 1 
OsbisXi (i=3 to 1) 

with ••.•• (4.7) 

Wi = u i + qi 

V4 {X4 } = 0 

Stage Three 

Applying the data to equation (4.7) 

u 3 = 0, % = 1, W3 = 1, X3 = 0 

V3{X3} = [150 (1 - 0.1) + 0.95V4 {xo_o+1 }1 = 13.5+0 = 13.5 

u 3 = 0, % = 1, W3 = 1, X3 = 1 

V3{X3} = [150 (1 - 0.1) + 0.95V4 {x1 _o+1 }1 = 13.5+0 = 13.5 

u 3 = 1, % = 1, W3 = 2, X3 = 1 

V3{X3} = [150 (2 - 0.4) + 0.95V4 {X1 _l+ 1 }1 = 24.0+0= 24.0 

u 3 = 0, % = 1, W3 = 1, X3 = 2 

V3{X3} = [150 (1 - 0.1) + 0.95V4 {x2 _o+1 }1 = 13.5+'0 = 13.5 

u 3 = 1, % = 1, W3 = 2, X3 = 2 

V3{X3} = [150(2 - 0.4) + 0.95V4 {x2 _l+ 1 }1 = 24.0+0 = 24.0 

u 3 = 2, % = 1, W3 = 3, X3 = 2 

V3{X3} = [150 (3 - o .9) + 0.95V4 {x2 _2 +1 }1 = 31.5+0 = 31.5 

u 3 = 0, % = 1, W3 = 1, X3 = 3 

V3{X3} = [150 (1 - 0.1) + 0.95V4 {x3_o+1 }1 = 13.5+0 = 13.5 

u 3 = 1, % = 1, W3 = 2, X3 = 3 

V3{xJ = [150(2 - 0.4) + o . 9 5V4 {X3-1+J 1 = 24.0+0 = 24.0 

u 3 = 2, % = 1, W3 = 3, X3 = 3 
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V3 {X3 } = [150 (3 - 0.9) + O. 95V4 {X3 - 2+l } 1 = 31.5+0 = 31.5 

u3 = 3, % = 1, W3 = 4, X3 = 3 

V3{xJ = [150(4 - 1.6) + O. 95V4 {X3 - 3+l } 1 = 36.0+0 = 36.0 

Stage Two 

U2 = 0, q2 = 1, w2 = 1, x2 = 0 

V2 {X2 } = [100(1-0.1) + 0.95V3 {xo_o+l }1 = 9.0+22.8 = 31.8 

u 2 = 0, q2 = 1, w2 = 1, x2 = 1 

V2 {X2 } = [100(1-0.1) + 0.95V3 {xl _o+l }1 = 9.0+29.9 = 38.9 

u 2 = 1, q2 = 1, w2 = 2, x 2 = 1 

V2 {X2 } = [100(2-0.4) + 0.95V3 {Xl _l +l }1 = 16.0+22.8 = 38.8 

u 2 = 0, % = 1, w2 = 1, x2 = 2 

V2 {X2 } = [100(1-0.1) + 0.95V3 {x2 _o+l }1 = 9.0+34.2 = 43.2 

u 2 = 1, % = 1, w2 = 2, x 2 = 2 

V2 {X2 } = [100 (2-0.4) + 0.95V3 {x2 _l +l }1 = 16.0+29..9 = 45.9 

u 2 = 2, % = 1, w2 = 3, x 2 = 2 

V2 {X2 } = [100(3-0.9) + 0.95V3 {x2 _2+l }1 = 21.0+22.8 = 43.8 

u 2 = 0, % = 1, w2 = 1, x 2 = 3 

V2 {X2 } = [100(1-0.1) + 0.95V3 {x3 _o+Jl = 9.0+34.2 = 43.2 

u 2 = 1, % = 1, w2 = 2, x 2 = 3 

V2 {X2 } = [100(2-0.4) + 0.95V3 {x3 _l +l }1 = 16.0+34.2 = 50.2 

u 2 = 2, q2 = 1, w2 = 3, x2 = 3 

V2 {X2 } = [100(3-0.9) + 0.95V3{x3 _2+Jl = 21.0+29.9 = 50.9 

u 2 = 3, q2 = 1, w2 = 4, x2 = 3 

V2 {X2 } = [100 (4-1.6) + 0.95V3 {x3 _3+l }1 = 24.0+22.8 = 46.8 

Stage one 

u l = 0, % = 2, wl = 2, Xl = 0 
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Vl {Xl} = [50(2-0.4) + 0.95V2{xO_O+2}J = 8.0+43.6 = 51.6 

u l = 0, ql = 2, wl = 2, Xl = 1 

Vl {Xl} = [50(2-0.4) + o . 95V2{Xl _O+2} J = 8.0+48.4 = 56.4 

u l = 1, % = 2 wl = 3, Xl = 1 

Vl {Xl} = [50(3-0.9) + 0.95V2{Xl _l +2}J = 10.5+43.6 = 54.1 

u l = 0, % = 2, wl = 2, Xl = 2 

Vl{xJ = [50(2-0.4) + O. 95V2{X2_0+2} J = 8.0+48.4 = 56.4 

u l = 1, % = 2, wl = 3, Xl = 2 

Vl {Xl} = [50(3-0.9) + 0.95V2{X2_l +2}J = 10.5+48.4 = 58.9 

u l = 2, % = 2, wl = 4, Xl = 2 

Vl {Xl} = [50(4-1.6) + 0.95V2{X2_2+2}J = 12.0+43.6 = 55.6 

u l = 0, % = 2, wl = 2, Xl = 3 

Vl {Xl} = [500(2-0.4) + 0.95V2{X3_0+2}J = 8.0+48.4 = 56.4 

u l = 1, ql = 2, wl = 3, Xl = 3 

Vl {Xl} = [50(3-0.9) + O. 95V2{X3_l+2} J = 10.5+48.4 = 58.9 

u l = 2, % = 2, wl = 4, Xl = 3 

Vl {Xl} = [50(4-1.6) + 0.95V2{X3_2+2}J = 12.0+48.4 = 60.4 

u l = 3, % = 2, wl = 5, Xl = 3 

Vl {Xl} = [50(5-2.5) + 0.95V2{X3_3+2}J = 12.5+43.6 = 56.1 
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CHAPTER FIVE 

ANALYSIS OF RESULTS 

5.1 Using Computer To Solve The Crop Irrigation Problem 

The repetitive nature of the procedure for solving numerical 

problems is apparent from solving the crop irrigation problem. 

For problem of any realistic size computer programs are 

written to find solutions. 

Hastings has developed a general purpose dynamic 

programming package which is available commercially, and known 

as DYNACODE. Morin refers to some other codes which are 

available. A sample set of the routines for solving general 

purpose dynamic programming problems (referred to as GPDP) is 

used here. The program is written in Basic to make them 

accessible to owners of micro computers. 

The first step is to structure the data for writing to file 

using DPD. Table 5.1 shows the system of · numbering and 

labelling states and decisions used. 

Table 5.1 

Identification of States and Decisions 

Dam level State Label Water Decision Label 
(m) number released number 
x I u (ha m) D 
0 1 Lo 0 1 Ro 
1 2 Ll 1 2 Rl 
2 3 L2 2 3 R2 
3 4 L3 3 4 R3_ 
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Problem Name ? 

DP 
CID 
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Problem 

Deterministic Dynamic 
Problem Parameters; 
Number of Decisions 
Rate of Discount (%) 

Programming Solution 

= 3 
= 5.2632 

O12timal State Segyence For All Initial States 
Stages Values 

1 2 3 4 
1 3 3 2 51.6287 
2 4 3 2 56.3787 
3 4 3 2 58.8787 
4 4 3 2 60.3787 

Details of Optimal Path 
Enter Initial State No. (or '0' to finish) .? 

Stage State Decision Discounted 
No. --------- ----------- Stage Return 

No. Level No. Release 
1 4 L3 3 R2 12 
2 4 L3 3 R2 19.95 
3 3 L2 3 R2 28.4287 
4 2 L1 0 0 

Details of Optimal Path 
Enter Initial State No. (or '0' to finish) ? 0 

--CIDF---

4 

Value 

60.3787 
50.925 
31.5 
0 

Table 5.2 Solution To The Cro12 Irrigation Problem using FDP 

The stage-3 data block CD and the stage-2 and -1 data for 

data block ED were drawn up as shown in Table 5.3. The layout 

is similar to that used in table 4.3. The data were 

transferred to copies of code sheets (not shown here) Because 

the crop irrigation problem is deterministic and has finite 

stages, CIDF was chosen as the problem name. Finally, Table 

5.2 shows the solution obtained by running FDP for the problem 

CIDF. The first part of the printout from FDP gives the 

Optimal sequence of state numbers starting from each possible 

state at stage 1. The second part gives further details of the 
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optimal sequence for any nominated initial state number, in 

this case the state No. 4 representing full dam. 

Table 5.3 

Stage Data For The Crop Irrigation Problem 

Stage 3 

I D = 1 D = 2 D = 3 D = 4 
J R(I, J) J R(I, J) J R(I, J) J R(I, J) 

1 2 13.5 
2 3 13.5 2 24.0 
3 4 13.5 3 24.0 2 31.5 
4 4 13.5 4 24.0 3 31.5 2 36.0 

Stage 2 

I D = 1 D = 2 D = 3 D = 4 
J R(I, J) J R(I, J) J R(I, J) J R(I, J) 

1 2 9.0 
2 3 9.0 2 16.0 
3 4 9.0 3 16.0 2 21.5 
4 4 9.0 4 16.0 3 21.5 2 24.0 

Stage 1 

I D = 1 D = 2 D = 3 D = 4 
J R(I, J) J R(I, J) J R(I, J) J R(I, J) 

1 3 8.0 
2 4 8.0 3 10.5 
3 4 8.0 4 10.5 3 12.0 
4 4 8.0 4 10.5 3 12.0 3 12.5 

The results agree with those presented in Table 4.4 based on 

the calculations in Table 4.3, thereby helping farmers take 

decision on how best to apply water to a crop under 

irrigation. 

This table show the result of the first part of the right 

hand side of equation (4.4) to show that the computer routine 

agrees with the manual solution. 
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5.3 Expected Development and Recommendations 

Computer power is becoming increasingly available on farms 

with the spread of micro computers. Although computers are 

used primarily for book-keeping and taxation' purposes, many 

software packages have been developed to aid management 

decision making in the areas of budgeting, control of farm 

inputs and predicting yield of crop and livestock products. An 

indication of the interest in the field is the publication of 

relevant newsletters and journals, such as Farm Computer News 

in Nigeria an the New International journal of computers and 

electronics in Agriculture. 

It is unrealistic to expect many farm managers to have the 

time and inclination to invest in any detailed understanding 

of dynamic programming. However, the continued development of 

dynamic programming software should make only a general 

understanding of the scope of dynamic programming necessary in 

other to apply it. 

Perhaps the greatest problem is the lack of relevant data. 

However, as Burt has pointed out, data are not collected 

unless there is a perceived need for them; and the need is not 

always perceived until models designed to answer practical 

questions are developed. There is a symbolic relationship 

between data available and model used. In the application of 

dynamic programming considered in this project there is area 

of data shortfall. Such application help to identify 

priorities in scientific research. Some requirements are for 

data specific to the farm. By using dynamic programming within 

the adaptive control framework it is possible to generate farm 
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specific data. Thus if a farm specific paramete r in a dynamic 

programming model is initially unknown, it may be set at some 

value which is an average across farms. Bayesian or other 

methods may be used to periodically revise estimates of the 

parameter. An example application to estimating the yield 

response of multiple cropping to depth of water received was 

presented in chapter Four. 

There are many areas of application in agriculture and 

natural resources industries which have not been touched in 

this project. For example dynamic programming can be usefully 

applied to problems in Farm financial management and in other 

stochastic multistage decision process. Speculating on future 

application Denardo p. 394 singled out computer science, 

applied mathematics, economic growth models and agricultural 

resources as promising areas for further development. 

5.4 Conclusion; 

The question is not whether irrigation plays a critical role 

in the food production of this nation: it has already. Th e 

question is how it can continue to do this in the most 

sustainable manner, FAO. The answer to this will go a long 

way toward determining the outcome of tomorrow's agricultural 

research and extension services, practices and policies. 

The par"adox of all the foregoing scenario is that irrigate d 

agriculture would have to produce much more food in f uture 

while using less water than it uses currently and the 

intensification of food production to attain these objectiv e 

will lead to greater stress . Producing more food with I e 
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regimes. Then the ability to formul ate the crop irrigation 

problem using the logic of dynamic programming. The second 

order, non linear polynomial yield estimate, the price 

received for the i-th season crop, the rainfall received 

during each season, the water released from storage at the 

beginning of each season, the depth of water received by each 

crop grown in the i-th season, the dam water level and the 

rate of discount were implored into the backward recursive 

equation to obtain the optimal irrigation returns from where 

the optimal sequence of irrigation was derived. An important 

feature here is that optimal decisions are specified for the 

entire range of possible states which may be .reached at each 

stage. An important point is that an optimal decision is known 

for whatever state is actually reached. The solutions are 

closed-loop or feedback policies. The computer routine should 

help those who want to solve relatively simple problems but 

are daunted by the prospect of a lot of tedious calculation, 

or of having to start programming a solution from the scratch. 
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