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ABSTRACT

The aim of this work is to consolidate the application of the Implicit function
theorem to a specific epidemiological problem (Yellow Fever Epidemics) whose basic
equations satisfies the axioms under which such theorem can be applied.

Also, to determine the amount of resources consumed by a certain individual, we
do make a tacit appeal to the above —mentioned theorem, which is thus applied in the
field of economics theory. We have restricted ourselves to these two applications for the
sake of brevity.

A word about the structure of the work. The first chapter contains enough notions
to comprehend the remaining work, while chapter two and three supplies the necessary
foundation that motivate and anticipates formulation of specific problems in chapter four
and relates them to the principal theorems in chapter two and three where it is stated and
proved rigorously. Chapter Five, the closing one is basically the interpretation of the

result followed by concluding remarks.
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CHAPTER 1
SOME BASIC CONCEPTS
1.1. Introduction

The world is full of systems such as physical, chemical, biological or economic to
name a few, which depend on one or many factors [10]. This relationship could
either be lincar or non-lincar when considered in mathematical context.

In economics for example, the price of a commodity depends strongly on
demand as well as cost of production. These various variables can be
mathematically related together by functions. The subject of this work is centered
around this notion of functions with emphasis on the Implicit Function, and the
application is based on a special thcorem namely the Implicit Function Theorem,
which is a very important theorem in Mathematical Analysis.

In order to state and prove this main thcorem in the next chapter, some basic
concepts such as relations and functions will be useful in the sequel and we shall
define them in this chapter.

The primary objective of this chapter is to introduce and define some classical
terms and give a brief review of the Implicit Function Theorem, which is the key

tool we use in this work.



1.2. Definition [3]

Let X and Y be any two non-empty scts. The Cartesian product X x ¥ of X and
Y is the set of all ordered pairs (v,y) such thatx e X andy e V.
1.3. Definition (Relation) [14]

A relation usually denoted by R is any subset of the Cartesian product X x ¥ of
any two non-empty sets X and V.

Note that if R is a relation on X x ¥ i.e. R < X x ¥, we say that R is a relation
from X to Y. If X=7VY, wesimply say that R is a relation in X.
1.4. Definition

The domain of a relation R is the set Dom(R)

Dom(R)={x: (x,)) € R, for some y}
The range of R is the set
Rng(R)={y: (x,y) € R, for some x}

1.5. Definition (Function)

Let X and Y be two non-empty sets. A function is a rule that associates to each
element x € X one and only one element y € V. In the notational form, we write

f: X > Y

N =y



Also Dom(f) c X and Rng(/) ¢ ¥ and the terms transformation, operation and
mapping are all synonymouswith function. Without any ambiguity and without loss
of generality, we shall adopt the convention of using small letters £, g for functions,
but sometimes F, G as the case may be.

There are in general many kinds of functions such as polynomials,
trigonometric, exponential, logarithmic functions to name a few.

Some concepts such as one-to-one, onto, and composition of functions are of
importance in the study of functions but we shall not dwell on them here. Our focus
in this work being the application of the Implicit Function Theorem as stated in the
title.

Next we shall define the inverse of a function and thereby introduce the Inverse
Function Theorem which will help us to have a good understanding of the subject
of this work.

1.6. Definition (Inverse Function)
Given a function f{x) , the function g(x) is called the inverse function of f{x) if
it has the following properties.

(i) Mg(x) = g(Ax) =x

(ii) the domain of g(x) is the range of flx)

(iii) the range of g(x) is the domain of f{x)



1.7. Remark
The Inverse Function Theorem states roughly in a layman’s language that a

continuously differentiable mapping fis invertible in a neighbourhood of any point

x at which the linear function /"' (x) is invertible (i.c. capable of having an

inverse).

1.8. Inverse Function Theorem

Suppose that fis a continuously differentiable mapping of a subset G of R" i.e.
GcR", f : G > N" with non-zero Jacobian at all points x € G and f' (x) is
invertible for some x, € G, y, = f(x,). Then there exists neighbourhood
U=U(xy) andV =V (y,) i.c.

(a) There exists open sets U and Vin R" such that x, e U and y, e V, fis
one-to-one on U and fiU) = V;

(b) Ifgis thé inverse of f (which exists by (a), defined in V' by g(flx)) =x, x €
U, theng € C' (U), i.e g is continuously differentiable on V)

If we write the equation y = f{x) in the component form, we arrive at the
following interpretation of the conclusion of the theorem:

The system of n equations

¥, = f(XypenX, ); 1 ST SN



can be solved for x,,....x, in terms of y, ...y, if we restrict X and ¥ to small
enough neighbourhoods of x and y; the solution are unique and continuously
differentiable.

Although it is the statement of the inverse function theorem that was only
supplied above, proof shall however be given in the next chapter also. With these
notions in mind, we are now well equipped to introduce the idea of Implicit
Function Theorem.

The Implicit Function Theorem as part of the bedrock of Mathematical Analysis
and Geometry and Geometrical Anal;vsis [8]. Its history is complex and is
intimately bound up with the development of fundamental ideas in Analysis and
Geometry. There are many forms of lilc thcorem and they are stated below:

(i) The classical formulation
(i) Formulation in other function spaces (abstract spaces)
(iii) Formulation for non-smooth functions and
(iv) Formulation for functions with degenerate Jacobian
Particularly, powerful Implicit Function Theorems, such as the Nash Moser

Theorem (often referred to as the hard Implicit Function Theorem) have been



developed for specific applications (c.g. the imbedding of Riemannian manifolds)
[15].

Inverse Function Theorem is a special case of the Implicit Function
Theorem where the dimension of each variable is the same. In the next chapter we
discuss the Implicit Function Theorem. In chapter 3, we introduce and prove a
modified version of the theorem and then applied it to the study of the nature of

the roots of characteristics equation arising from a mathematical model of yellow

fever disease epidemics.
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CHAPTER 2
THE IMPLICIT FUNCTION THEOREM
2.1 Introduction

Functions can primarily be classified as either explicit or implicit. In what
follows, attempts shall be made to explain the idea of explicit function briefly before
we dwell on implicit functions.

We speak of explicit functions whenever we are certain about the direction of
correspondence between differet variables. Given two variables x and y, say, if the
value of y varies in some definite form with respect to the value which is arbitrarily
assigned to x, then the variable y is said to be an explicit function of x. When this

happens the variablé x is said to determine the variable y. For example the

functions,
f(x)=y=64x"
2
y=x
and
y=sinx

are all explicit functions [4].
On the other hand, an implicit relationship is said to characterize two or more

variables whenever the direction of correspondence between them is not obvious.



Thus an implicit function exists between the variables x and y, say if the values that
the two variables can take are interdependent or linked in some definite form. For
instance, the algebraic process indicated by the following:

x(=y+6=0 2.1)

represents an implicit function of two variables x and y.

2.2 Implicit Functions
The function
x’y? +sinxy =0 (2.2)
represents an implicit function between x and y, because it is not obvious which f the
two variables x and y is the dependent or independent variable.But there is a mutual
relationship between x and y. Thus as equation (2.2) suggests, implicit functions
usually takes the form whereby the functions are usually written with both variables
on the same side of the equality sign while zero or a constant term which is not
dependent on both x and y is on the other side. An example is the equation of a circle
center origin, with radius a, its equation will be given by:
x? +y? =a?
From the foregoing, from an equation of the form
F(x,y)=0 (2.3)

we can determine y as a function of x. If that happens, we have

y=gx)



and then say that g is defined implicitly by

F(x,y)=0; or F(x,g(x)) =0 (2.4)
The problem posed by (2.3) is a simple case when the independent variables that are
involved in the expression are only two. Thus we can have a general form when we
have a system of several equations involving several variables and we are now faced
with the question of whether we can solve these equations for some of the variables
in terms of the remaining variables, in a particular neighbourhood.

This is similar to the problem in (2.3) above except that x and y are replaced by
vectors (that is n — tupple elements). Under rather general conditions, a solution
always exists. The Implicit Function Theorem gives a description of these conditions
about the solutions. An important special case is the familiar problem in algebra of

solving n —linear equation of the form
Ya,,x, =13 (i=12...n) (2.5)
i /

where the ¢, and 7, are considered as given numbers and x , j=1,2,....n represent

the unknown variables.

In linear algebra it is shown that such a system has a unique solution if, and only

if, the determinant of ythe coefficient matrix

A=a,|



is non-zero. Note that the determinant of a square matrix A = [a,,]is denoted by det

A or det [a,,] .Af det [a”] # 0, the solution of (2.5) above can be obtained by the

Cramer’s rule which expresses each x, as a quotient of two determinants, say
X, = A%) where D = det [a,,]and A, is the determinant of the matrix obtained by

replacing the k" column of[a,,] by 1,.1,,...1, [7].

In particular, if each 1, = 0,i = 1.2.....n, then each x, =0 which is the trivial

solution. Now the system (2.5) can be written in the form of (2.3). So each equation
in (2.5) then takes the form:

[,(X,1) =0 where X =(x,.x,....x,)
and

n

f(X,0)=Da,x, 1, (2.6)

1=1
Therefore the system in (2.5) can be expressed as one vector equation /(X ,7/)=0
Where /= (f,,f,....1,)- If D, f,, denote the partial derivative of f, with respect to
the j” coordinate x, then D f,(X.,t)=a, Thus the coefficient matrix A4 =[a,j] in

the system (2.5) is a Jacobian matrix. As noted earlier, linear algebra instructs us

that the system (2.5) has a unique solution if the determinant of this Jacobian matrix

10



is non-zero.

In the general Implicit Function Theorem, the non-vanishing of the determinant
of a Jacobian matrix also plays an important role. This comes about by
approximating f by a linear function. The equation f(X, 1) = 0 gets replaced by a

system of linear equations whose coefficient matrix is the Jacobian matrix of f.

2.3 Notation and Definition (Jacobian)

If f=(f./,,..[,)and X =(x,.x,....x,), the Jacobian matrix
Df(X)= [D,f,(,\’)] is an n x n matrix where as noted carlier D, f, denotes the
partial derivative of / with respect to the ;" coordinate x, and that
D, f,(X,t)=a,, Thedeterminant of the Jacobian matrix is called a Jacobian

determinant and is denoted by J, (.\'). Thus

J;(X) = det Df (X) = det[ D, £,( )] 2.7)
The notation
Lﬂ.”' o / ) (2.8)

Is also used to denote the Jacobian determinant J, (.\') i.e.

J,(X)=det Df(X) = det[D,f,(,\’ )| = :;2:—:—; 2.9)
X)X,

11



or

hi 1.
X, X,
(~/~ '
ax, ‘
J, (X)= N I (2.10)
2/ f,
ox, . 2x,

Our aim in this chapter is to study the Implicit Function Theorem and some

examples where it applies. To do this, we first introduce the notion of implicit

differentiation.

2.4 Implicit Differentiation
Assume [:QcR" -5 N" is differentiable, and y = f(x)e ("(Q2)and consider
y+Iny=x+Inx (2.11)
We say that the equation (2.11) implicitly defines y as a function of x. By

differentiating each side, i.c. obtain after re-arranging

|
1+
v
> X (2.12)
dx 1
1+

y

12



Now, suppose that we have an equation of the form
F(x.y)=0 (2.13)
Where x is an exogenous variable (independent) and y an endogenous (dependent)
variable, An illustrative example is given by:
F(x.y)=y+Iny-x-Inx=0 (2.14)

Taking the total differential,

dFF = Fdx + F dy (2.15)
dy ~
= ==F (2.16)

provided that F = 0. In the special case when F{(x, y) is given by (2.14),

|
| +
ly F
2o X 2.17)
dx 1
L

)!

& |

Thus the result achieved by implicit differentiation could equally well have been
achieved by total differential. At times rather than there being a single exogenous
variable x, there may be many. Suppose

' I N — x,.y)=0 (2.18)
Where x,,x,,.....,x, are exogenous variables and y is once more an endogenous

variable. Taking the total differential of equation (2.18) gives:

13



., OF AF ' ad
dF = = dx, +.....+ dx, + o dv=0 (2.19)

o x, x )
At times we may be interested in the comparative static effects of how an
endogenous variable y changes as an exogenous variable x, say, changes and all

other x’s are kept constant. In this case

cF cF
dF =—dx, + —dy=0
ox, cy
('? [.‘
dy o5, F, (2.20)
o %, CdF F,
cy
provided
I, #0 (2.21).

It is important to note the use of the partial derivative symbol on the left hand side
of the equation (2.21). This is because we are finding the rate of change of y with

respect to x, when all other exogenous variables other than x, are kept constant.

: dy ; . . . ;
By contrast, in (2.16), we wrote — - becausc y is a function of a single variable x in
[4

Ix
this case. Equation (2.6) in the case of single exogenous variable or equation (2.9) in
the case of many exogenous variable are referred to as the “Implicit Function Rule”.

The following examples will illustrate the above discussion very vividly. Let

14



F(x,p)=x+3y"-9=0 (2.22)
This is the circle with radius 3 center at the origin (0, 0). This implicitly defines y as
a function of x is obviously incorrect because the value of y that satisfies (2.22) is not
a function of x. However, the relation defined by (2.22) can be split into two separate
parts both of which involve y being defined as a function of x, that is
N g

The two separate parts are

y=v9-x? (2.23)

and

y=-v9-x? (2.24)
Equation (2.23) being the top half of the circle and (2.24) the Iowe;' half.
From (2.23)

dy -x

o (2.25)

While (2.24) gives:

iy 4
e (2.26)
dx \[9 -x?

Using the Implicit Function rule, we take the total differential of (2.22)



to obtain

dF =2xdx +2ydy =0 (2.27)
dy X

= —=-—; y=z0 (2.28)
dx y

By considering equation (2.25) and (2.26) we can write:

when
y = \[9 _— \’2 iil}—‘ = - ’\‘- = - "—>—,'L::—

and when

y = —\/9— r? 51;)“ = - ‘-’ = "‘ti.‘j“‘:.’.‘,"_?

Thus the equation (2.28) which is the Implicit Function rule captures both cases

simultaneously.

2.5 Simultaneous Equation Rule of the Implicit Function Rule

So far we have only considered in the previous section one single equation for the

implicit function and a single endogenous (independent) variable.

Suppose we have a system of well defined n equations in x endogenous variables

and m exogenous (dependent) variables.

16



(2.29)
o ¢ AR [P a,)=0
Taking total differentials, we have
A F' F' AF éF'
——dt+. A ——dx, + —da+.+ ——da,,
ox, ox, ca, ‘a,
( (2.30)
cF" o F" AF" e F"
——d,+.+——dx, + —da,+.+ —da,
o x, ox, ca, ca,
or equivalently
(6 F' oF)  [eF oF )
axl « s e ax" tixl (7a| (a| OO C?a”'(am
= ' s a : (2.31)
oF ol ) ler T aF
» v dx,, ) —da, . . . —da,
\ Fx, ox, ) ‘ca, ‘ca,

Equation (2.31) is in the form Ax = b and the Crmer’s rule can be used to solve for

provided | A| # 0, that is

17



e er
& X, ox,
0 (2.32)
T
ax, = ©Ox,

This determinant is referred to as the Jacobian determinant. A unique solution
exists for dx,,....dx, if|Al#0 and the equations are said to be consistent; and if
| 4] = 0 they are inconsistent as the equations have infinitely many solutions.

If only one of the o terms changes, say «, we write

| -1 - [ 25!
OF AF cx, AF
Z s o 33 .
(?xl ax, j|oa, ‘a,
= . (2.33)
6-7\ }—:n f? );-n (‘1‘ :\." (-.\ -,?n
éx, =~ ox, \Pa, ca

n

o xi
We can solve for r terms using the Cramer’s rule, provided the Jacobian
a

/
determinant is non-zero. Equation (2.33) is sometimes referred to as the
“simultaneous version of the Implicit Function Rule.”

In general it is more convenient to work with equation (2.33) and for this reason,

18



it seems normal to work with the total differential variant.
In order to forge ahead, we nced some definitions and basic theorems before

stating our main theorem, which will aid in the understanding of the latter.

2.6 Definition

Assume that /:QcR" 5> N" is differentiable at c. The Jacobian of fat c is

[ 4f, 2PN
a%, e}« o ox, ()
I [0 1) P S
S@= G @l (2.34)
(7'/:'; | Lo (v'/; |
| Ax, LR ax, (c)d

A function /:QcR" 5> N" is locally 1 — 1 on DcQ if for every p € D, there exists
£ >0 such thatfis1—1on B(p,g) (the ball center p radius ¢). The next theorem

proves this. We first state without proof a result which is used thereafter.

2.7 Mean Value Theorem [11]

Let f be a function such that:
(i) it is continuous in the closed interval |a, b];
(ii) it is differentiable in the open interval (a, b);

Then there is a number ¢ in the open interval (a, b) such that

19



f(h) = f(a)

b-a

S'(¢)= (2.35)

2.8 Lemma

Assume that /:QcR” -5 N" isin ("(Q2) and that J, (p) # 0. Then thereisan g >0

such that fis 1 -1on B(p,¢).

Proof

Since the partials are continuous atp and ./, (p) #0 wecan find £ >0

such thatif p ,...p € B(p.¢). then

af, A,
oy, Py (P

(7./ ("‘fv

E;L(Pz) SR ;C:'(I’z)

i 7 A |#0 (2.36)
2/, A

Bx, ) - - . i, (p,)

Let a # b € B(p,¢) applying the mean value theorem to each component function £,

to get a point p, on the line segment joining @ and b we have

a/, af, c,
./‘I(b)_./;(u) =(_a—w(,)l )'—57 ——(I)I) “““ 4:774(1)1 ))(h_a) (2‘37)
X, ox, cox,

and assuming f(b) = f(a) we have

20



a2, éf,
Ex_,(p') Coe '(3"‘:'(1’.)
0= . s et o lb-a) (2.38
Ao, . Ofa
ox, ) - - G P

which is impossible.
2.9 Theorem (Injective Mapping Theorem)
Assume that f:QcR" -5 N" is ("(£2) and that rank (_/"(p)) =n forevery p e Q.

Then is locally 1 — 1 on Q.
}
|

Proof
Let p, € Q. Since rank (f'(p)) =n<m, wecan assume by re-arranging the

component functions if necessary that

AV,
Y (p)) 20 (2.39)
Let /:QcR" 5> N" bedefined by / =(/,...../,) It follows from the previous

lemma that thereis £ >0 such that fis 1 — 1 on B(p,.¢) Hence, it is clear that fis

also 1 — 1 on B(p,,€). Next, we consider an example on the above notions.

21




2.10 Example
Let f(x,y)=(e" cosy,e"siny). Then

e‘cosy —e’sin
J(x,y)= d y=ez"¢0

e“siny e‘cosy

It follows that fis locally 1 — 1 on R*. However f'is not globally 1 — 1 on R” since

f(x,y)=f(x,y-2r).

2.11 Lemma

Let /:Qc®R" —N"and assume that Q c R" is open, f € C'(Q)and J,(p) # 0 for

every p € Q. Then /() is open.

Proof
Let g, = f(p,) € f(€) Then,3 >0 5 B(p,.6) € Qandfis1—-1on B(p,.5).
Let C= {p e Q> ”p— p0“ = 5} be the boundary of E(po,é') where H ] H denotes the

usual R” norm. Then f{c) is compact and ¢, = f(p,) ¢ f(c). Let

r= min{“q—qon 3q € f(c)}, q, € B(qo,g) and define (/):E(po,é') —> R by

o) =lrm-a (2.40)

Since ¢ is continuous on ,B(p,,5 ) there exists a p’ such that ¢(p") < ¢ (p). Now if

22



* * 2 1 * *
p € C, then \p(p") Sgr Zgr >,/ @(p,) which is impossible. Thus, p° ¢ C,so p

is a local minimum for ¢ and hence Vo(p')=0.1If p=(x,,....x,), and ¢ = (35550 V)

then
o(p) = g(f,(p) -y) (2.41)
Hence
2o f .
0=2‘_;ﬁ—f'<p W) =p)ij=12.n  @42)
Since
gt . . "
é,—(p ) 1205 f,(p )=y, (2.43)
xl

and /(p") =g, Thus B(g,.3) < /().

2.12 Theorem (Open Mapping Theorem)

Let /:R" —> R". Assume that QcR" is open, that /' € C'(Q2) and that rank

(f'(p)) =m for every p € Q Then f(D) is open.

Proof

Let ¢ = (c,....c, ) € Q@ We may assume that

7y P

7)) 070 =49

23



and since / € ("(€2), we can find an open neighbourhood U of ¢ such that

A /RURY Y
ETPRIER & i g

BUX oo X )= FA R ens By g sl ) (2.46)
on the open set |
= {06 e X X e X Gy o, ) € U € R” (2.47)
Now geC(V)and J (x,....x,)# 0 forany (x,....x, ) € }" The previous lemma

shows that g(J') is open. Also f(c) € g(I')c f(U). This shows that f(c) e f(U)°,

i.e. the interior of f/(U).

2.13 Lemma

Assume that L:R" — R" is linear and that ker L = {0} Then there exists an M >0

such that

Iy = Ml (2.48)

forall u e N".

Proof

Let S ={u e N":lul =1} Then L(S) is compact and does not contain 0. Let

24




M = min{”l,(u)”:u S S}.

2.14 Lemma
Let /0" > R" Iffis C' at p, and if J, (p,) # 0 then there exists an open

neighbourhood U of p, and an m > 0 such thatif pe U

L m = rpol = mlp-p,l (2.49)

Proof

Since J,(p,) # 0, Df (p,):N" = N” is 1 — 1 By the previous lemma we can find an

M
M >0 such that "Df(p(, )N > Mlull. Letm= 5

<

By the definition of differentiability there exists an open set U containing p, such

thatif pe U

L7 = (o) = DI (po ) p = p = mlp = py (2.50)
But
L7 (p) = 1(p) = DF (poXp= o) 2 DI ()P = Pl =17 () - 1 (o)
2 2mp - pol| -/ () - 1 (o) (2.51)
This can only happen if

L m =1l zmlp-p,| (2.52)
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Next we state and prove a special case of the Inverse Function Theorem, where

the dimensions of the variables are the same.
2.15 Theorem (Inverse Mapping Theorem)

Let /:Qc R" — N". Suppose that / € C'(€) and that J,;(py) 20 Then there
exists an open neighbourhood U of p, on which f'is invertible. Moreover /' is

differentiable at f(p,) with

Df '(py) = Df (py)" (2.53)

Proof
It follows from the Injective Mapping Theorem, the Open Mapping Theorem and
lemma (2.13) that there exists an open neighbourhood U of p, such that fis 1 -1 on

U, W=f(U) is open and

"f(p) - f(po )“ > m”p—- p(,” forall pe U (2.54)

Let g:R" — N" be defined by

(p=1lp-p ||"f(p) L) = DI (PP =P p# po.pelU
g(p o

0 P=DP

(2.55)

Since J, (p,) 20, (Df (p,))”" exists and
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||17 - I’n"( Df(po) ' ((p) =(Df (p) "L (PY= F(pg)=Df (P )P =Py))
=(Df (p) " (S(PY= [ (py)=(p=Py) (2.56)

Let ¢, = f(p,) and g = f(p).Then

| ,
—la=aull orpn ol 217 @)= 1w - i g - g0 @257)

Now, we can find an £ > 0 such that B(p,.£)c U. As fis continuous on B(p,,&),
/7" is continuous at ¢,.

It follows that

o _ -l -D gLl .
lr"@-7"a0) - Dr (py) '(q ‘lo)"=0 (2.58)

lim

- o~ gl

Since as ¢ — ¢q,, p = p, and g is continuous at p,.

2.16 Example

Let f(x,y)=(e"cosy, e"siny). Then as above

e‘cosy -—e'siny 5
J,(x,y)=det| _ | . =e" 20
e'siny e‘cosy

It follows that f'is locally invertible on 9’ and

A .| efcosy e'siny
IDf (x.p)| " =e

—-e¢'siny e'cosy
Observe that F(x, y) is 1 — 1 on the strip 0 < y < 27. If we let
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P R—

(u,v) =(e" cosy.e"siny) on this strip, then we can explicitly solve for w and v. In

particular

[
re
-

2
u +v =

tany = —

Consequently,

1 5 :
X = ~2In(u‘ +v7)

u
y= lan"(-)
‘Y

We now differentiate to get that

u v
2 2 2 2
. ) +v
Df (U.\’)= u +\ u
v u
) 2 2 2
u +v u +v
| r n \']
=—35 3
u +v° I_—\' uJ
1 . 4 2
| € cosy e’siny
=.@" .
-e'siny e'cosy

as expected.
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2.17 Remarks (Implicit Function Theorem)
Assume that we are given an equation in two variables of the form

Six,5) =0
And a point (x,,y,) such that / (x,.y,)=0. We say that we can solve for y in
terms of x in a neighbourhood U of X, if there exists a function ¢ : U — R such that
@(x,) =y, and f(x,p(x))=0. The function ¢ is said to be implicitly defined by f.

We can use the chain rule to obtain

2f
- L (xyp)

'(x) L 2.60
X)= ==E - .
@( = B (2.60)
L (xy)

Ay

57
provided that %L(x‘y) #0 The previous question : Given fand (x,,y,) when does
y .

such a function exist? The answer to this will arise from the Implicit Function
Theorem. It is a remarkable consequence of the theorem that under the mild

assumption that f{x, y) is continuously differentiable on a neighbourhood of (x,,y,)

C
the fact that — (x,p) # 0 is sufficient to guarantee the existence of such a ¢
ay

Moreover ¢ is actually uniquely defined on a ncighbourhobd of x,.
2.18 Theorem (Implicit Function Theorem)
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Let [ = ([ essres N TR —" X, )5 @ = (Wysssasens v,). Suppose that
[:QcR"™ - N" is such that / € (' (€) on the open set Q. that (p,.q,) € Q is

such that f(p,.q,) and

Pl L& bt 4 4. N4 v+Go 20 5 &1
B (rmmny,) Pord0) D

Then there exists a unique function (;):‘JI"' — N" defined in a neighbourhood U of
p, With ¢ € C'(U) and

D o(py) =g,

i) f(p,e(p)=0 ‘for cach pe U

Moreover, if y, = ¢,(p) then

er|_fenoo
R e

In particular

Proof
Let /7:0R™" — N™" be defined by

F(p.q)=(p.f(p.q))
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= (x, sewny X Jy By yonsa X s Py nssis Wiy Ficossors Jo R g0 A N )) (2.64)

Then F e C'(Q) and

o 0 0 . 0]
P T
; ) 21 s
Ipeay=| 2 Lok e

axl & x'" (7),1 C?yn

of, " an ern T eq,
-(?x' T (me (‘;y' Y % 4 (?y" I
ACTERY )

- (Py.q0) # 0 2.65
L TR R {269}

It follows from the Inverse Mapping Theorem that F has an inverse in an open
neighbourhood W of (p,.q,) with F(W) an open neighbourhood of F(p,,q,) and

F™' e C'(F(W))where F™'(.) is a hypersurface in a neighbourhood of( p,,q,)(7].

Now

F(p,q)=(p.f(p.q)) = (r.5) (2.66)

implies that



s

(P.q) = F ' (r.s)=(r.0(r.5)) (2.67)
Hence
(r.8)=F(F ' (r.s) = Fr.0wr.s) = (r. f(r.0(r.5))  (2.68)
for all (r, s5) in F(W). This shows that
s=[(r.0(r.s)) . (2.69)
and thus

0= f(p.0(p.0)) (2.70)

for all p in a neighbourhood U of p, We now let ¢ (p)=0(p.0) for pelU

Note that
@(py) =0(p,.0) =g, (2.71)
Since F™' e C'(F(W))it s clear that ¢ € ' (U)).
If we apply the chain rule to
0=/(p.o(p) (2.72)
we get

_df, ¥4/, e,
Ax, nly, Ix,

0 (2.73)

To solve the system we note that
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(o] [y cf1ée]

x, cy Py, 10k,
o (2.74)

of,ilern, o oy,

_C?.\',_‘ _C‘;)’| . . ‘ (?)vn -_(?"'I_J

By the Cramer’s rule, we obtain

(41, of, _éf, éf af,

dy, = 23y, y, ¢y, =~ Ay

det

ef, ey Arooar ey

So__Lon " 4y v dy oy,
7%, Ofrot)
2y, )
. a(‘/l """ [n)
O Fpres Vs Vs Vo visi ¥y )
= —— el (2.75)
I Jrsees 1)
a(ys-..y,)
Finally, ¢ is unique in the sense that if
S (p) = f(p. @y (p)) =0 (2.76)

for some function ¢, that is continuously differentiable in a neighbourhood of p,

with ¢,(p,) = g, for p near sufficiently to p, so

[%)
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F'(py o (p) = F (.9, (p) = (p.0)
F"(p. ®,(p) = F"'(p. ®, () =(p.0) (2.77)

However, since ™' is 1 -1, ¢,(p)=,(p).

2.19 Remarks

The fundamental question that th.e Implicit Function Theorem attempts to
supply answer to is : when is the relation defined by f{x, y) = 0 also a function? In
other words, when can the equation f{x, y) = 0 be solved explicitly for y in terms of
x, yielding a unique solution? The Implicit Function Theorem deals with this
question locally. It tells us that, given a point (x,.y,) such that f(x;,y,) =0 under
certain conditions there will be a neighbourhood of (x,.y,) such that in this

neighbourhood the relation defined by f(x, y) = 0 is also a function.
2.20 Corllary
2 i ol i af
If /:%° >N is C' on ancighbourhood of (x,,y,) and (?—}—’(xo,yo) # 0 then the

equation f{x, y) = 0 has a unique solution y = ¢ (x,) = y, which exists and is

continuously differentiable in a neighbourhood U of x, with



Ll G s ey, S LS

dy X

=D (2.78)

X c _/

2.21 One - Dimensional Case
When n =m = I the theorem reduces to: Let I be a continuously differentiable, real
valued function defined on an open set £ c%’ and let (x,.y,) be a point on E for

which F(x;,y,) =0 and such that

aF

- 0 2.79
7y ¥ (2.79)

(25+a)
Then there exists an open interval / containing y, and a unique function g:/ -> N
which is continuously differentiable and such that g(y,) = x, and F(g(y),y) =0 for

all ye .

2.22 Example

Show that in a neighbourhood of the point (7, -1) the equation
x*+y’-3x+3y=-6

defines y uniquely as a function ¢ (x) of.x and find ¢'(x) and ¢'(1) .

Solution

Welet f(x,y)=x"+y' =3x+3y+6. Sincefis clearly C' and since f(1I, -1) = 0, the

‘w
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Implicit Function Theorem guarantees the existence of ¢ provided that

cf

={],~1) %0
oy
Cv_/~ 2 )
But *o"—y(l’_l)zlv +3=3(-1)"+3=06#0. we have that
cf
by fx(x.))
(p(x)_dx_—(’/'
L ()
_i3x3—3)
T3y 43
and
s
T -1y ;
() = ax _:(3(])'—32_9_0
el)=-57 3143 6
(L,-1
ay

2.23 Corollary
If /:% > 9N is C'in anecighbourhood of (x,.y,.2,). f(Xy,¥4.2,) =0 and

Py
—a—'i—(x(,.y(,.zo) # 0 then the equation f{x, y, z) = 0 has a unique solution ¢ (x,y) =2z,

@(x,,Y,) =2, which exists and is continuously differentiable in a neighbourhood U

of (x,.y,) with



cp Oz X
Ax Ax
cz

af

cp O: _(“'_\'
éy éy Of

r

2.24 Theorem

The Implicit Function Theorem can be stated as: Let / = (/,,.... f,) be a vector
valued function defined on an open set Sin N"** with values in R". Suppose f € C'
Let (X,,7,) bea pointinS for which /(.X,.r,) = 0 and for which then x n

determinant | D, f,(X,.1,)[ #0.

Then there exists a k — dimensional open set 7, containing 7, and one and only one
vector valued function g defined on 7, and having values on i" such that
(@ geC onT,

by  g(T)=1,

(c) f(g(),t)=0 foreveryton 7.

Proof

The Inverse Function Theorem shall be applied to a certain vector valued function
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F=(F,...F,,F...,...F..,) (2.80)

defined on S and having values in R"**. The function F is defined as follows: For

<m<n, let F,(X,t)=f,(X,t)andfor <m<k, F,_ (X,t)=t, We can write
F=(1) (2.81)
where /' =(f,.....f,) and when [ is the identity function defined by I(?) = for each

tin R*. The Jacobian J +(X,t) then has the same value as the n x n determinant
det[D L FilkX ,t)] because the terms which appear in the last £ rows and also in the

last k columns of J,(X,r) form a k x k determinant with ones along the main

diagonal and zeros elsewhere; the intersection of the first n rows and n columns

consists of the determinant det[Dj f,(X ,t)] and

[D.f,.,(X.0]=0 for <i<n, 1<j<k

Hence the Jacobian J, (X,,7,) # 0 and also F(X,,7,) = (0.,¢,).

Therefore by the Inverse Function theorem, there exists open sets X and Y
containing (X ,,7,) and (0,7,) respectively, such that Fis 1 -1 on X; and
X =F7'(Y). Also there exists a local inverse function G, defined on ¥ and having

values on X, such that

GFX,9)=(X,9 (2.82)
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and such that G € C' on Y. Now G can be reduced to components as follows:

G=(V, W) where =(V,,...,V,) isavector valued function defined on Y with values
in R" and = (w,,...,w,) is also defined on Y but has values in R*. We can now

determine V and W explicitly.
The equation G(F(X, t)) = (X, ), when written in terms of the components V" and
W gives the two equations:
VIF(X, 1) =X and W(F(X, 1) =t (2.83)
But now, every point (X, #) in Y can be written uniquely in the form (X,7) = F(X',1')
for some (X',') in X and the inverse image F~'(Y) contains X. Furthermore, by
the manner in which F was defined, when we write (X,7) = F(X',t') we must have
t'=t. Therefore,
(X,n)=V(F(X,)=X" (2.84)
and
(X, )=W(F((X',t") =t (2.85)
Hence the function G can be described as follows: Given a point (X #) in Y, we have
G(X,t)=(X",1) (2.86)
where X' is a point in R" such that

(X,t)=F(X",1) (2.87)
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This statement implies that:
FVX,0),0)=(X,1) in Y (2.88)
Now, if we define the set 7, and the function g in the theorem as follows: Let
T, ={r e %" :(0,1) € ¥} (2.89)

and for each ¢ in 7, define g(r) = V(0, 7). The set 7, is open in &' Moreover, g C'
on 7, because G € C' on Y and the components of g are taken from the components
of G. Also

g(1,) =V(0.1,) = X, (2.90)
because (0,7,) = F(X,.1,). Finally, the equation F(V(X, 1), 1) = (X, 1), which holds for
every (X, 7) in Yyields (by considering the components in R” ) the equation

SV, ), ) =X (2.91)
Taking X = 0, we see that for every ¢ in 7, we have f{g(t), t) = 0, and this completes
the proof of statements (a), (b) and (c). It remains to prove the uniqueness of the
function g. This follows from the 1 — 1 property of /. If there were another function,

say /i, which satisfies (c), then we have

(g(1), 1) =(h(), 1), or g(t)=h() (2.92)

for every rin 7.
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2.25 Remarks
From the above theorem, the Implicit Function Theorem takes the form: Suppose
that X and Y are subsets of the real line %t let x, € X', y, € } and let (x,,y,) be an
interior point of the plane set X x V; if Fis continuous in some neighbourhood of
(x0.¥0) il F(x,,y,) =0 and if there exist 6 >0 and £ >0 such that F(x, y) for any
fixed x € (x, - J,x, +J) is strictly monotone on (y, - £,y, + £) as a function of y,
then there is a 5, > 0 such that there is a unique function
Ji(xg =05, Xg +0y) > (Vg — €.y + &) (2.93)
for which
F(x, f(x) =0 (2.94)
For all x € (x, - J,,x, +J,). Morcover, fis continuous and f(x,) = y,.
The hypothesis of this theorem are satisfied if F is continuous in a neighbourhood
of (x,, y,) the partial derivative F exists and is continuous at (x,, y,);
F(x,, y,) =0 and F (x,, y,)# 0. Ifin addition the partial derivative F_ exists and

is continuous at (x,, y,) then the implicit function fis differentiable at x, and

c!f(.Yo) — F'(xo» Vo)
dx F.»(xm Vo)

(2.95)

This theorem has been generalized to the case of a system of equations, when Fis a
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vector — valued function. Let R” and 9" be n- and m- dimensional Euclidean
spaces with fixed coordinate systems and points x = (x,,...,> x,) and y=(y,,...,5,)
respectively. Suppose that F maps a certain neighbourhood Wof (x,, y,) e R" xR"
into N” and that F.i=1...m are the coordinate functions (of the n + m variables

XjsecesXys Pysoenr Vo) OLFythatis F=(F,..... I ). If Fis differentiable on W, if

m

e 20 (2.96)

then there are neighbourhoods U and V of x, e R" and y, e " respectively,
UxV c W and a unique mapping /:U — IV such that F(x, f{x)) =0 €NR" forall
x € U. Here f(x,)=y,, fis differentiable on Uand if /' =(f,,...,f,) then the

af
. s . . . . S . .
explicit expression for the partialderivatives ——. i=1...,n, j=1,....m can be
J

ik
found from the system of /1 linear equations in these derivatives:

cF, &k,
e e e 1 ) 2.97
ox, ,.Z.("y, cx L340

k=1....m i=lstfixed (i=1,....n).
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CHAPTER 3
MODIFIED VERSION OF IMPLICIT FUNCTION THEOREM
In this chapter we introduce the modified version of the implicit function
theorem
which is used in chapter four to discuss the roots of the characteristics equation of a
population model.
3.1 Theorem
Let F(y,x) =0 be an implicit function such that
(i) x>0
(i) F(0,00=0

(iii)) F#,(0.0)=0 and F (0,0) =0 have the same sign with the former strictly non-

vanishing.
: F,(0,0)
(iv) »y.(0)= —m—o—) <0

Then y = ¢ (x) exists in the neighbourhood of (x.y) = (0.0) such that y <0.
Proof
With assumptions (i), (ii) and (iii) the Implicit Function Theorem guarantees the

existence of a unique solution y = ¢ (x) in the neighbourhood of the origin.



Let us assume that (iv) exists, i.e.

aF
dv_ F0.0) _ ox
dx  F(0.0) CF

-

cy

wh — %0
ere 3y

Let y = f(x) be a continuous explicit solution of the implicit function F(x,y) =0 il_l
the

neighbourhood of the origin. Then for any x € (-5, §), where § > 0, there holds the
identity F(x, f(x))=0. Hence

T(x. (X
£ F{X _/(\H:O

CX
for any point in this neighbourhood. By chain rule of differentiating a composite

function, we have

OF OF dy

Fx  dydc
hence

LA

ox cy dx
and
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oF

& __. %% .o
dx T cr (1}' *
oy dx

3.2 Remark
In the neighbourhood of the origin, if then the graph of the function lies below
the x-axis that is and the gradient of the function is negative, because the function is

a decreasing function, that is slanting from top left to right as shown below in figure

A

—P X

Fig. (3.1)



CHAPTER 4
APPLICATIONS OF THE IMPLICIT FUNCTION THEOREM

4.1 Yellow Fever Diseasc Dynamics Model

4.1.1 Introduction

Two of the most important problems faced by people studying mathematical
models are numerical approximation of steady states and parameter identification.
Both of these problems lead to large non-linear systems of equations that can
sometimes be difficult to solve analytically. While there is an abundance of software
available to tackle these types of problems, there are often multiple solutions, and
many of these can be difficult to find without the aid of a careful strategy. One
helpful strategy is to identify a salient parameter in the model and use the Implicit
Function Theorem [12], in a modified version.

In the last chapter, we discussed the Inverse and Implicit Function Theorems as a
motivation towards the applications presented in this chapter. In this section, we
introduce a model of Yellow Fever Dynamics as proposed by Akinwande [1], and
applied the modified version of the Implicit Function Theorem in chapter three to
study the characteristics equation arising from the model with a view to analyse the
stability or otherwise of the steady state of the model.

This model involves the interaction of two principal communities of hosts

(human) and vectors (aedes egypti mosquitoes). The host community is partitioned
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into three compartments of susceptibles class S(7), Infected class /(1) and the
Recovered or Immune R(7). While the vector community is partitioned into two
compartments of Non-Virus Carrying class N(r) and Virus Carrying class M(1)
where 7 > 0 is the time.

The dynamics involve biting intcrncti(ms between § and M, if effectivewill cause
members of the class S(7) to move or flow into /(7). Similarly, an effective biting
interactions between /(1) and N(1) will cause the members of N(?) to flow into M(1)
Here, effectiveness in the biting interactions is when there is a transfer of virus from
the host to the vector or from the vector to the host.

It is assumed that the offsprings of the hosts’ population are born immune, as
they enjoy natural immunity for a period of one year. The transmission of virus
among the vectors can however be vertical, so it is assumed that a proportion of the
offsprings of the vectors are carriers from egg stage.

The model equations are therefore given by equations (4.1) to (4.5) below:

ds
= ASHIAR =+ p)S -, MS (1)
Eg}:-;['R+rS+al 4.2)
di
E=_(,,,+a +8) ] +a,MS (4.3)
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dN

= BN+ (1=0)M) = i, N =, NI (4.4)
dM

e OB, M~ pu, M +a,NI 4.5)
¢

with the initial conditions
S(0) =Sy; R(0) = Ry 1(0)= 1,0 N(O)y= N2 M) =M, (4.6)

The parameters are defined as follow:

£, = natural birthrate for hosts

[, = natural birthrate for the vector

4, = natural mortality rate for host

11, = natural mortality rate for vector

a =recovery rate for infected host

a, = effective biting interaction rate between S and M compartments

a, = effective biting interaction rate between N and I compartments

0 = death rate among the infected host arising from infection

6@ = proportion of the offsprings of M that get infected vertically

y = immunization rate among host community
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4.1.2 Normalisation

Let
P=S+I1+R Q=N+ M. PO)=P; Q0)=0Q, (4.7)
5
To normalize the variables, we let
R 1 M
X Se= Fa— L= 4.8
| 5 P 0 (4.8)
These transform equations (4.1) — (4.5) to of the system of equations (4.9) — (4.11)
below:
: aX
, g By =, +y)X +6XY -a, XM 4.9)
[4
dY , ,
-‘;’—=—(a +5+ p))V+a, XM (4.10)
dz ,
— =P (-0)Z+a,(1-2)) (4.11)
a
-

4.1.3 Steady States of the Model Equation

At steady state, let

(X)), Y1), Z(1)) = (x, y, 2) (4.12)

with P and Q constants, then we obtain the following from (4.9) — (4.11):

49



By=(u +y)x+&y-axzQ, =0 (4.13a)
-(a+d+p,)y+a,xzQ,=0 (4.13b)

-B,(1-8)z+a,(1-2)yl, =0 (4.13¢)

4.1.4 Definition (Steady or Equilibrium State)

The steady or equilibrium state of a mathematical model is the observable state
as the system evolves. At steady state, the rate of change of the state with respect to
time is set to zero in the continuous system as we are discussing in this section. In the

discrete model, the steady state occurs when the variables are set to constants.

4.1.5 Definition (Characteristics Equation)
The characteristics equation of a mathematical model is the equation arising
from the determinant Jacobian equation
lA-All=0 (4.14)
where A is the n-square matrix of the coefficients, 1 is the eigenvalue and 7/ is the

n x n identity matrix.

4.1.6 Application of the Modified Implicit Function Theorem
In the above equations, x, y, z are the values of the variables at equilibrium state,

BisBys 1y iy,,,a,.,0.8 ,a are non-negative parameters defined earlier in the

S0



section.

A solutions of the simultancous equations (4.13) is given by

(x.3.2) =(»~ﬂ—'~~.0.0] (4.15)

a,+y

and the associated characteristics equation is given by

Ria+s+p,+p,(0-0)1+ ﬁ,(l—()){a 8 -%’—&} (4.16)
1

For the purpose of our application, we shall use the variables A, the eigenvalue

and set @ = #,(1-6) and then consider the Implicit Function

P
F(Aw)= 2 +(a+5+p, +(u)/l+(z){a +6 -9—'—‘—'(;—:’5°—ﬂ'}= 0 (4.17)
|

For (A.w)=(0,0);

F(0,0)=0 (4.18a) .
cF aF
FA(’Lw):;j(’Lw) H Fﬂ,(}».(u):%(l,w) (4.18b)

and so
Fy(Aw)=24+(a +6 + B, + ) (4.192)
F,(0,0)=a+6+f4,>0 (4.19b)

as a, d, f, are non-negative parameters.



Also

IO B
Fo(Aw)= A+ +5 - D% o/ (4.20)
a, +y
PO
F.(0.0) =  + 5 - 21020, 4.21)
a, t+y

So using the midified Implicit Function, we have that: A= ¢(w) exists in the
neighbourhood of the origin (1.@) = (0.0), with 2 <0 i.e. the steady state given by
equation (4.15) is locally stable.

Another non-trivial solution (steady state) for the normalized system is given by

)2 =00)y 80)) 4.22)

and the corresponding characteristics equation is thus given by

(-8, -7 +&-a,0,80») - A)|(~a -8 - B, +25 - A)

(-B.(1-0) - a,yP, - 2) - @@, RO, / ()1 - g(1))]

~a,0, [T ON-B,(1-0) - a,yP, - A) +a,@, RO, f (1)1 - g(»)] =0 (4.23)

Using A and a, as salient parameters and the modified Implicit Function

Theorem, we have that



F(Ada,)= (—/}, -y +-a,0,g(y)- A)[(—a -8 - f,+200 - /1)
(-B,(1-0)-a,yP, - 2) @@, RO,/ (101 - (1))
-alQog(y)[él'(y)(—/}z(l =0)-a,yl, - W)+ a,a, KQ, ()1 - g(y))] =0(4.24)

noting that for —a -6 - f, + 26 =0;

a+d+pf,
) i 4.2
) 55 (4.25)

We note that F(0,0) = 0.
Differentiating partially with respect to A and we obtain
Fy(Ao)=[-AB,(1-0)=a,yP, - ) - a,a, 0, [ (»)(1 - g(»))]
H=p, =7+ - a,0,8(3) - A=A B,(1 - 0) - a,yP, - A+ 1))
=AP,(1-0)—a,yFy - ) +a,a, 0 f(y)(1 - g(y)
H=B, -7 + 8 -,0,800) - A-AB,(1-0) -, P, - A+1)) (4.26)
and
F, (Ao)= (-8, -y +&-a,0,8(») - ) (@, RO,/ ()1 - g(»)))
~0 W[~ B,(1-0) = a,yPy = 1) - a,a, RO, [ (»)(1 - g(»))]  (4.27)
Hence

Fy(0,0)=(=8, -y +&) ( 8,(1-0) - a,yP,) (4.28)
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and
F, (0.0)= (=4, -y + & - a,0,200) - 2) (a, 2,0,/ (0)(1 - g(»)))

+80, f (Mg B, (1= 0) = a,yP) (4.29)
thus if
-p,-r+H>0 - (4.30)
then F, >0 and F, <0 so the non-trivial equilibrium state is unstable.
If-p,-y+6y<0 then F, <0 and F, >0 so the non-trivial equilibrium state is
yet unstable.
4.2 Economics Model
4.2.1 The Model
Assume a consumer consumes varying amounts of two products X and Y [6]
Let X = units of A consumed
Y = units of B consumed
The consumer operates his utility by consuming these goods in accordance with the
following utility function:
U=fX,Y) (4.32)
And his purchasing decision is guided and limited by a budget constraint given by

P,B+P,R=1 (4.33)



where P is the price of the product i and I is his total income. From (4.33) we
obtain

tel I

R +—
Pl( ! )I(

(4.34)

The theory of utility maximization which states that the slope of the indifference
curve equals the slope of the budget constaint, gives:

MU, P

== 4.35
MU, P, (@35
where MU, = marginal utility of goods i which is the derivative of the utility

function with respect to goods i. So we obtain

AU(B.R FU(B.R
AL B IRA A LN (4.36)
7B AR

where K is a non-negative constant and equals to some overall level of utility and.

JU(B,R) JcU(B.R) dR dK

o, e G e 37
oB ' OR dB dB 437
. dK .
and since B 0 we simplify to get
U AU dR
il e g 4.38
o8 R ap™" (4-38)

and solving for B gives

hn
n



cU
dR cB ol

(13_—(7U- ; Neio

R

42.2 Example
Let
U=0+anB+(l-a)lnR

Differentiating gives

&S R

B __N
(1 -a ) P,
R
At equilibrium, B and R are given by

. / o (l=a)l
=%l & _(-a)
PH I)R

If for example o =05, P, =%$4. 6 =100, P

B’ =25and R’ =50.

4.3 Remarks

r -

(4.39)

(4.40)

(4.41)

(4.42)

$2. 1=%200, give the values:

1.  The Implicit Function theorem as modified in this work can be utilized to

determine the nature of the roots of a characteristics equation in a specified
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neighbourhood.

The limitation of the thecorem in the present state is that only one
parameter can be considered at a time, also any parameter used will not
feature in any constaint obtained in the analysis.

The theorem however helps in .(hc analysis of the stability or otherwise of
the steady state.

It will be of interest to develop the theorem to accommodate the use of

more parameters simultaneously.



. o i

CHAPTER §
RESULTS AND CONCLUSION

5.1 Interpretation of the Result

The application of the Modified Implicit Function Theorem to the characteristics
equations of the Mathematical Model of Yellow Fever Dynamics leads to the

inequality

I
5(a+6—ﬂ,)<y (5.1)
From this inequality, we observe that keeping the immunization rate slightly

1
above the value 5((1 +0 - ﬂ,) could prevent the outbreak of epidemics.

We have seen therefore that this theorem is a powerful tool in the study of
characteristics equations and should be explored further.

In the Economics model, the marginal utility of goods i can be expressed as the
first derivative of the utility function taken with respect to the goods. The
indifference curves slope is equal to the ratio of the marginal utilities. The
equilibrium occurs when the slope of this curve is equal to the slope of the budget

constraint.



5.2 Concluding Remarks
In this work, we have found that the Implicit Function Theorem can be a very
useful tool in the analysis of certain complicated functions like the
characteristics equation and therefore recommend further study of this
theorem, especially the modified version used in this work [1].
It will be of great interest if the further study of the Implicit Function

Theorem can take care of more than one parameter than it is in this work.
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