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ABSTRACT 

The aim of this work is to consolidate the application of the Implicit function 

theorem to a specific epidemiological problem (Yellow Fever Epidemics) whose basic 

equations satisfies the axioms under which such theorem can be applied. 

Also, to determine the amount of resources consumed by a certain individual, we 

do make a tacit appeal to the above - mentioned theorem, which is thus applied in the 

field of economics theory. We have restricted ourselves to these two applications for the 

sake of brevity. 

A word about the structure of the work . The first chapter contains enough notions 

to comprehend the remaining work, while chapter two and three supplies the necessary 

foundation that motivate and anticipates formulation of specific problems in chapter four 

and relates them to the principal theorems in chapter two and three where it is stated and 

proved rigorously. Chapter Five, the closing one is basically the interpretation of the 

result followed by concluding remarks. 
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CHAPTER 1 

SOME BASIC CONCEPTS 

1.1. Introduction 

The world is full of systcms such as physical, chemical, biological or economic to 

name a few, which depend on one or many factors 1101. This relationship could 

either be linear or non-linear whcn considcrcd in mathematical context. 

In economics for example, the price of a commodity depends strongly on 

demand as well as cost of production. These various , 'ariables can be 

mathematically related together by functions. The subject of this work is centered 

around this notion of functions with emphasis on the Implicit Function, and the 

application is hased on a special theorem namely the Implicit Function Theorem, 

which is a very important thcorem in Mathematical Analysis. 

In order to state ·and prove this main thcorem in the next chapter, some basic 

concepts such as relations and functions will be useful in the sequel and we shall 

define them in this chapter. 

The primary objective of this chapter is to introduce and define some classical 

terms and give a brief review of the Implicit Function Theorem, which is the key 

tool we use in this wotk. 

I . 



1.2. Ilefinition 13) 

Let X and Y be any two non-empty sets. The Cartesian product X x Y of X and 

Y is the set of all ordered pairs (x, y) such that x E X and Y E I'. 

1.3. Definition (Relation) 114) 

A relation usually denoted by R is any subset of the Cartesian product X x Y of 

any two non-empty sets X and I' . 

Note that if R is a relation on X x Y i.e. ReX x J', we say that R is a relation 

from X to Y. If X = Y, we simply say that R is a relation in X. 

1.4. Definition 

The domain of a relation R is the set Dom(R) 

Dom(R) = { x : (x, y) E R, for some y} 

The range of R is the set 

Rng(R) = {y-: (x, y) E R, for some x} 

1.5. Definition (Function) 

Let X and Y be two non-empty sets. A function is a rule that associates to each 

element x E X one and only one element Y E Y. I n the notational form, we write 

/ 

/ : X ~ Y 

f(x) = y 

2 



Also Dom(/) c X and Rng(/) c I' l1nd the terms transformation, operation and 

mapping arc all synonymouswith function. Without any ambiguity and without loss 

of generality, we shall adopt the convention of using smalliettersf, g for functions, 

but sometimes F, G as the case may be. 

There arc in general many kinds of functions such as polynomials, 

trigonometric, exponential, logarithmic functions to name a few. 

Some concepts such as one-to-one, onto, and composition of functions are of 

importance in the study of functions but we shall not dwell on them here. Our focus 

in this work being the application of the Implicit Function Theorem as stated in the 

title. 

Next we shall define the inverse of a function and thereby introduce the Inverse 

Fuhction Theorem which will help us to have a good understanding of the subject 

of this work. 

1.6. Definition (Im'erse Function) 

Given a functionj{x) , the function g(x) is called the inverse function ofj{x) if 

it has the following properties. 

(i) j{g(x» = g(f{x» = x 

(ii) the domain of g(x) is the range of j{x) 

(iii) the range of g(x) is the domain ofj{.t-) 

3 



1.7. Remark 

The Inverse Fundion Theorem states roughly in a layman's language that a 

continuously differentiable mapping/ is invertible in a neighbourhood of any point 

x at which the linear function .f' (x) is invertible (i.e. capable of having an 

inverse) . 

1.8. Inverse Function Theorem 

Suppose that/is a continuously differentiable mapping of a subset G of ~n i.e. 

G c ~H" ,I : G ~ 9t n with non-zero Jacobian at all points x E G and f' (x) is 

invertible for some Xo E G , Yo = /(xo )' Then there exists neighbourhood 

U = U( xo ) and V = V(Yo) i.e. 

(a) There exists open sets U and V in ~H" such that Xo E U and Yo E V,/is 

one-to-one on U andj{U) = V; 

(b) If g is the inverse of/(which exists by (a), defined in V by g(f{x» = x, x E 

U. then g E C' (U), i.e g is continuously differentiable on V) 

If we write the equation y = j{x) in the component form, we arrive at the 

following interpretation of the conclusion of the theorem: 

The system of n equations 

y, =/, (xp .... xn ) ; l~i~n 

4 



can be solved for x I' .... x" in terms of )"1 •. .. . Y.. if we restrict X and Y to small 

enough neighbourhoods of x nnd y; the solution are unique and continuously 

d ifferen tin Me. 

Although it is the statement of the innrse function theorem that was only 

supplied above, proof shall howenr be ginn in the next chapter also. With these 

notions in mind, we are now well equipped to introduce the idea of Implicit 

Function Theorem. 

The Implicit Function Theorem as part of the bedrock of Mathematical Analysis 

and Geometry and Geometrical Analysis 181. Its history is complex and is 

intimately bound up with the developmcnt of fundnmcntalldens In Analysis and 

Geometry. Therc arc many forms of the theorem and they are stated below: 

(i) The classical formulation 

(ii) Formulation in other function spaces (abstract spaces) 

(iii) Formulation for non-smooth functions and 

(iv) Formulation for functions with degenerate Jacobian 

Particularly, powerful Implicit Function Theorems, such as the Nash Moser 

Theorem (often referred to as the hard Implicit Function TheoJ1em) have been 

I r 

.1 
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developed for specific applications (e.g. the imhcdding of Riemannian manifolds) 

(l51· 

Inverse Function Theorem is It special case of the Implicit Function 

Theorem where the dimension of each yariahle is the same. In the next chapter we 

discuss the Implicit Function Theorem. In chapter 3, we introduce and prove a 

modified version of the theorem and then applied it to the study of the nature of 

the roots of characteristics equation arising from a mathematical model of yellow 

fever disease epidemics. 

6 



CHAPTER 2 

THE IMPLICIT FUNCTION THEOREM 

2.1 Introduction 

Functions can primarily be classified as either explicit or implicit. In what 

follows, attempts shall be made to explain the idea of explicit function briefly before 

we dwell on implicit functions. 

We speak of explicit functions whenever we are certain about the direction of 

correspondence between differet variables. ~iven two variables x and y, say, if the 

value of y varies in some definite form with respect to the value which is arbitrarily 

assigned to x, then the variable y is said to be an explicit function of x. When this 

happens the variable x is said to determine the variable y. For example the 

functions, 

fex) = y = 64x 3 

and 
y = sin x 

are all explicit functions [4]. 

On the other hand, an implicit relationship is said to characterize two or more 

variables whenever the direction of correspondence between them is not obvious. 

7 



Thus an implicit function exists between the variables x and y, say if the values that 

the two variables can take are interdependent or linked in some definite form. For 

instance, the algebraic process indicated by the following: 

x 2 
- y+ 6 = 0 (2.1) 

represents an implicit function of two variables x and y. 

2.2 Implicit Functions 

The function 
x 2 y2 + sinxy = 0 (2.2) 

represents an implicit function between x and y, because it is not obvious which f the 

two variables x and y is the dependent or independent variable.But there is a mutual 

relationship between x and y. Thus as equation (2.2) suggests, implicit functions 

usually takes the form whereby the functions are usually written with both variables 

on the same side of the equality sign while zero or a constant term which is not 

dependent on both x and y is on the other side. An example is the equation of a circle 

center origin, with radius a, its equation will be given by: 

From the foregoing, from an equation of the form 

F(x,y) = 0 (2.3) 

we can determine y as a function of x. If that happens, we have 

y = g(x) 

8 
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and then say that g is defined implicitly hy 

F(.\·, J1 = 0; or F(x. g(.\)) = 0 (2.4) 

The problem posed by (2.3) is a simple case when the independent variables that are 

involved in the expression arc only two. Thus we can have a general form when we 

have a system of several equations involving several variables and we are now faced 

with the question of whether we can solve these equations for some of the variables 

in terms of the remaining variables, in a particular neighbourhood. 

This is similar to the problem in (2.3) above except that x and y are replaced by 

vectors (that is n - tupple clements). Under rather general conditions, a solution 

always exists. The Implicit Function Theorem gives a description of these conditions 

about the solutions. An important special case is the familiar problem in algebra of 

solving n -linear equation of the form 

La"x, = ', ; (i = 1.2 .. ... 11) (2.5) 

where the a" and " nrc considered as given numhers and x" j = 1,2, .... 11 represent 

the unknown variables. 

In linear algebra it is shown that such a system has a unique solution if, and only 

if, the determinant of ythe coefficient matrix 

A = [a,,] 
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is hon-zero. Note that the determinant of II squnre matrix A = [a,,] is denoted by del 

A or del [a,,]. If del [a, J] *- 0, the solution of (2.5) llbove can be obtained by the 

Cramer's rule which expresses each x. ~lS a quoticnt of two determinants, say 

Xl = Afo where D = del [a, J 1 and A. is the determinant of the matrix obtained by 

replacing the k'" column of [a, ,] by 11'1 2 , ••. 1" [7] . 

In particular, ifeach I , = 0, i = 1.2 . .. .. 11, then each x. = 0 which is the trivial 

solution. Now the system (2.5) can he written in the form of (2.3). So each equation 

in (2.5) then takes the form: 

/; ( X, t) = 0 w here X = (x I • X 2 •••• x" ) 

and 

" 
!,(X,/) = La"x} -I, (2.6) 

,-I 

Therefore the system in (2.5) can be expressed as one vector equation /(X ,I) = 0 

Where / = (/"/2 , ... /,,). If D,l" denote the partial derivative of !, with respect to 

the j'" coordinate x, then D,l,(X,/) = a" Thus the coefficient matrix A = [a;j ) in 

the system (2.5) is a Jacobian matrix. As noted earlier, linear algebra instructs Us ' 

that the system (2.5) has a unique solution if the determinant of this Jacobian matrix 

to 

/ 



is non-zero. 

In the general Implicit Function Theorem, the non-vanishing of the determinant 

of a Jacobian matrix also plays an important role. This comes about by 

approximating/by a linear function. The equationf(X, t) = 0 gets replaced by a 

system of linear equations whose coefficient matrix is the Jacobian matrix off. 

2.3 Notation and Definition (.Jacobhm) 

If f = (/"/1 ''' ./'') and X = (X I . X 2 ..• . x,,), the Jacobian matrix 

Df(X) = [ D,/' (X)] is an n x n mlltrix where as noted earlier D, .(' denotes the 

partial derivative of ./: with respect to the j' '' coordinate x, and that 

D)/, (X ,t) = a, ." The determinant of the ,Jacobian matrix is called a Jacobian 

determinant and is denoted by .I I (X) . Thus 

The notation 

.II (X) = det P{(X) = det[ D, .(,(X)] 

iJ (II.··· · .1:, ) 
r7 (x l .. ··· x ,, ) 

Is also used to denote the .Jacobian determinant .I , (X) i.e. 

. [ . , ] d (I" .. . ./,,) .II (X) = detPI(X) = del D,.!,( ,\) = ---"--'-----=.....::...:... 
c (xl , ·· ··x,,) 

J J 

(2 .7) 

(2 .8) 

(2 .9) 



or 

cil • 1 (':.1:, ' 

OX1 (' x, 
r /2 

J I (X) = 
c? x! 

(2.10) 

al • 1 "/ (" . " 

ox" ox" 

Our aim in this chapter is to study the Implicit Function Theorem and some 

examples where it applies. To do this, we first introduce the notion of implicit 

differentintion. 

2.4 Implicit Differentiation 

Assume J:Oc~H" ~\.H" is differentiuble, and )' = f(X)E C'(O)and consider 

y + In y = x + In x 

We say that the equation (2.11) implicitly defines)' as a function of x. By 

differentiating each side, i.e. obtain after re-arranging 

I 
1+ ely x 

dx= - T 
1+ 

y 

12 

(2 .11 ) 

(2.12) 



Now, suppose that we have an equation of the form 

F(x.y) = 0 (2.13) 

Where x is an exogenous variable (independent) and J' an endogenous (dependent) 

variable, An iIIustratil'C example is given by: 

F(x.y) = y+ In), - x - Inx = 0 (2.14) 

Taking the total differential, 

d F = F dx + /. dr , , . (2. 15) 

c~}' F, 
=:) _. =- -

cit F . , 
(2. I 6) 

provided that F, ~ O. In the special case when F(,~,)1 is given by (2.14), 

I 
dy F 1+ , x (2.17) - - - -
dx F I .. 1+ 

Y 

Thus the result achieved by implicit differentiation could equally well have been 

achieved by total differential. At times rather than there being a single exogenous 

variable x, there may be many. Suppose 

(2.18) 

Where XI ,X2 , . • . .. 'xn are exogenous variables and)' is once more an endogenous 

variable. Taking the total differential of e(luation (2.18) gives: 

13 



;t F (' F (' F 
elF = --- dr, + ... .. + dr + til' = 0 ox, r"x" " ( J y ' 

(2.19) 

At times we may be interested in the cornpnl'ati\'C static effects of how an 

endogenous variable y changes as nn exogenous \ 'nriable Xl sny, changes and all 

other x's are kept constant. In this case 

dF = 0 F cit l + r F dy = 0\ 
oX l t3y 

i1 F 

~ ?)' = _ !2:r~ = _ ~~ I- I 
o Xl 0 F /', 

/~ )' J 

(2.20) 

provided 
F, 7: 0 (2.21). 

It is important to note the use of the partial derivative symbol on the left hand side 

of the equation (2.2 t). This is because we arc finding the rate of change of y with 

respect to Xl when all other exogenous variables other than xk are kept constant. 

By contrast, in (2.16), we wrote d)~ because)' is a function of a single variable x in 
dr 

this cnse. Equntion (2.6) in the case of singll' exogenous \'nrinble or equation (2.9) in 

the case of many exogenous varinble arc referred to ns the "Implicit Function Rule". 

The following examples will illustrate the abo\'e discussion very vividly. Let 

14 



F(x ,y) = X 2 + / - 9 = 0 (2.22) 

This is the circle with radius 3 ccntcr at thc origin (0, 0). This implicitly definesy as 

a function of x is obviously incorrcct bccausc thc valuc of)' that satisfics (2.22) is not 

a function of x. Howc\'cr, thc relation defined hy (2.22) can bc split into two separate 

parts both of which in\'olvc J' being defincd as a function of x, that is 

The two separate parts are 

(2.23) 

and 

(2.24) 

Equation (2.23) being the top half of the circle and (2.24) the lower half. 

From (2.23) 

(2.25) 

White (2.24) gi\'es: 

(2.26) 

Using the Implicit Function rule, we take the total differential of (2.22) 

15 



to obtain 

elF = 2xd\' + 2y(~\' = 0 

dy 
=> -

dr: 

x 
• y 

By considering equation (2.25) and (2.26) we can write: 

when 

and when 

i ely x x 
y = J9 - x , - = - - = - -;==-= 

dx Y 9 - x 2 

x J--2 d)' x 
y = - 9 -x . - = - - = -r=== 

dx Y 9 -x 2 

(2.27) 

(2.28) 

Thus the equation (2.28) which is the Implicit Function rule captures both cases 

simultaneously. 

2.5 Simultaneous Equation Rule of the Implicit Function Rule 

So far we have only considered in the previous section one single equation for the 

implicit function and a single endogenous (independent) variable. 

Suppose we have a system of well defined n equations in x endogenous variables 

and m exogenous (dependent) variables. 

16 



(2.29) 

Taking total differentials, we have 

of' 0 F' r'~ F' (~ F I 
---:;-- c/x, + ... + - .,- cit" + --., - da 1+ .. . + -.,-- da" 
u X, ClX" ral (am 

(2.30) 

o F" c /. " /i F" (~ F" 
-;;- d'{,+ .. . +~tlt" + ~-- clal+ .. . +-.,- da., 
uX , u x " ( ·a l ('am 

or equivalently 

of' of' r i' F' c F' 
ox, ox" dx, a da, adam a l a., 

= (2.31) 

of'' o F" Jd~"J /'1 F" o f'' lh, l - :-.- da, ~da.,) ox" o a, am 

Equation (2.31) is in the form Ax = b and the ermer's rule can be used to solve for 

provided IAI ~ 0, that is 

17 



?FI (~ ,..1 
.., 

( ' XI ( . x 
" 

~O (2.32) 

t3 F n 
( 'J F" 

t3 XI 

This determinant is referred to as the .Jaeohian determinant. A unique solution 

exists for dXI'".,dtn if lAI ~ 0 and the equations are said to be consistent; and if 

IAI = 0 they are inconsistent as the equations haH infinitely many solutions. 

If only one of the a terms changes, say a I we write 

(r FI 

rJ XI 

~ ~' y <'x! 1 (("': FI 
1--

r7 r 11;7 a / ' a 
• " I I 

I I 

I 
I of'' 
l~ 

I = (2.33) 
I I 

;I F" Jl : ~" J l ~::' J (7 x" ( ' a I 

oxi 
We can solve for ~ terms using the Crnmer's rule, provided the Jacobian 

v a, 

determinant is non-zero. Equation (2.33) is sometimes referred to as the 

"simultaneous version of the Implicit Function Rule." 

In general it is more convenient to work with e(luation (2.33) and for this reason, 
, 

18 



it seems normal to work with the tntal diff('f'l'ntial variant. 

In order to forge ahead, we need som(' definitions and hasic theorems before 

stating our main theorem, which will aid in the understanding of the latter. 

2.6 Definition 

Assume that / : ne~t" -49t n is differentiable at c. The Jacobian off at c is 

o(I, , .... /,,) 
J f (e) = (c) = 

o (x, , .... xn ) 

cJ I, 
- (c) 
ox, 

del . . 

I ~j; «) l r' x, 

a /, (e) 

ox" 

cJ ( 
_._" (c) 

ox" 

(2.34) 

A function I : ne~t" -4 ~H" is loc~'lIy I - I on De n. if for evcry p E D, there exists 

c > 0 such thatfis t - 1 on B(p,c) (the ball center p radius c). The next theorem 

proves this. We first state without proof a result which is used thereafter. 

2.7 Mean Value Theorem 1111 

Let/be a function such that: 

(i) it is continuous in the closed interval la, bl; 

(ii) it is differentiable in the open interyal (a, b); 

Then there is a number c in the open interval (a, b) such that 

19 



2.8 Lemma 

((h) - ((0) 
f'(c) = ,_. -- . . 
. h - o 

(2.35) 

Assume that 1 :Oc9t" ~ ~H" is in C' (0) and that .J , (p) ~ O. Then there is an E > 0 

such that/is 1 - 1 on B(p,c) . 

Proof 

Since the partials are continuous at p and .J I (1') ~ 0 we can find E > 0 

such that if pp .. ... p" E B(p.,,·) . then 

0 /' 
-'- " ( ) 

.:J p" uX I 

?l 
. I ( ) - I) 7 . I 

( .\" 

o l , -::-=- (P2 ) 
O X" 0 . ~ 

11 .1:. 
-:;- - (p,,) 
u x" 

(2.36) 

Let a ~ b E B(p,E) applying the mean ,'alue theorem to each component function h 

to get a point p, on the line segment joining a and b we have 

(
0 l ( 7 ( /~ ( ) 

/,(b)- /,«(1) = ~(P.). ~..!.. (p. ) . .... ~(P.) .(b-a) 
u X I u X 2 (.I X" 

(2.37) 

and assuming I(b) = I(a) we have 

20 



0 (, (': l 
-~ (p ) "7 ' , (1' ,) 
A X, ' ( x 

" 

0= .(h - lI) (2.38 

o In (i .!,,, 
a-(p") ;;--(1' ,,, ) 

X, X" 

which is impossible. 

2.9 Theorem (Injectin MllpJling Thcorcm) 

Assume thHt I:Oc~H" ~~H" is C(n) llnd that rank (f'(p») = 11 for e\'ery p EO. 

Then is iocally 1 - 1 ori O . 

Proof 

Let Po EO. Since rank (.f'(p)} = 11 ~ m. we can llssume by re-arranging the 

component functions if necessary that 

0(/, .... .. 1:, ) 
---'---- (pll):t: 0 
o (x, . .... x ,, ) 

(2.39) 

Let I : Oc~H" ~\.H " be defined hy f = (/, ..... f,) It follows from the pre\'ious 

lemmH that there is £: > 0 stich thllt lis I - I on 11(/'o.f; ) lIence, it is clear thatfis 

also 1 -Ion 8(po ' £:) ' Next, we consider an example on the above notions. 
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2.10 Example 

Let f(x ,y) = (e X cos y,e X sin y) . Then 

eX cos y 
J r (x ,y) = r • 

. e' sm y 

_e X sin y 2x 

= e :;t: 0 
eX cosy 

It follows thatfis locally 1 - 1 on 91 2
• However fis not globally 1 - 1 on 91 2 since 

f(x,y) = f(x,y - 2Tr) . 

2.11 Lemma 

Let f :Oc91" ~ 91 n and assume that 0 emil is open, f E C' (Q) and J r (p) :;t: 0 for 

every p E Q. Then f(O) is open. 

Proof 

Let C = {p E 0 3 lip - Poll = 5} be the boundary of SCPo ,5) where 11.11 denotes the 

usual 91" norm. Thenf(c) is compact and qo = f(po) ~ f(c) . Let 

rp (p ) = Ilf(p) _ qll12 (2.40) 

Since rp is continuous on ,S(po,5)there exists a p' such that rp (p')::;; rp (p) . Now if 

22 



2 1 
p' E C, then ~cp(p ') ~ "3 r ~ "3r > ~cp (Po) which is impossible. Thus, p' ~ C, so p' 

is a local minimum for cp and hence "Ilcp(p') = O. If P = (x" .... xn), and q = (Y" .... Yn) 

then 

n ? 

cp (p) = 2J~(p) - y;t (2.41) 
;=1 

Hence 

~ 0J; . ( • ) . 
0 = 2t1 0 Xj (p ) J; (p ) - y, ; } = 1,2 .... n (2.42) 

Since 

(2.43) 

• - r 
and I(p ) = q; . Thus B(qo' "3) c 1(0.)· 

2.12 Theorem (Open Mapping Theorem) 

Let I :91" ~ 91111 . Assume that 0. c mn is open, that I E C' (0.) and that rank 

(/'(p)) = m for every pE n Thenf(D) is open. 

Proof 

Let C = (c l , .. .• cn ) E 0. We may assume that 

0(/1 ,··· ·'/111) ----'--'-------'---"'-- ( c) :t:- 0 
o(xl ,···· ,xlI1 ) 
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and since f E C'(O), we can find an opcn neighbourhood U of c such thnt 

r( ll .... .. /~,) 
-'---' - (p) ~ 0 
o(xl· ..... x no ) 

(2.45) 

for cach p E U. Wc let }!. : ~H" ~ ~H"' be defined h~' 

g(xl· .. .. x ", ) = /(.\'I ..... xm .cm,,· .... c,,) (2.46) 

on the open set 

J' = (Xl ..... .\' ''' ) 1(.\'1 . .... .\' ''' . (' ,,,.1 .... · (',, ) Ell c ~H"' (2.47) 

shows that g(V) is open. Also ftc) E x(J') c /( U ) . This shows thnt !(c) E !(U)o, 

i.e. the interior of f(U). 

2.13 Lemma 

Assume that L:~W ~ ~Hm is linear ~lI1d that her L = {O} Then there exists an M> 0 

such that 

II L( II )11 ~ MIIIIII (2.48) 

for all u E I.W. 

Proof 

Let S = {u E 91" :llull = I} Then L(S) is compact and docs not contain O. Let 
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M = 111 in {IIL(lI)lI:lI E S). 

2.14 Lemma 

Let f :9l" --) 9t
m If/is Cl at Po and if .J I (1',,) :t:. 0 then there exists an open 

neighbourhood U of Po and nn ", > 0 such that if I' E V 

(2.49) 

Proof 

Since J I (Po) ~ 0, P{(Po) :'Jl" --) ~H" is 1 - 1 Uy the previous lemma we cnn find an 

1

M 
M> 0 such that 1 Pf(po )11 ~ MlllIl!. Let m = 2". 

By the definition of differenthlbility there exists an open set U containing Po such 

that if P E V 

III(p) - f(po) - P(Po )(1' - 1'1l)1I ~ ",11" - Poll (2.50) 

But 

Ilf(p) - I( Po) - P{(Po )(p - 1'0)11 ~ 1J(po )111' - Poll-lIf(p) - f(po )11 

~ 2mllp - Poll-llI(p) - f(Po)11 (2.51) 

This can only happen if 

IIf (/') - f(/,,,)1I ~ ",11" - 1',, 11 (2.52) 
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Next we state and prove a special cnse of the Innrse Function Theorem, where 

the dimensions of the variables arc the same. 

2.15 Theorem (Inverse Mapping Theorem) 

Let f : o.c ~H " ~ ~H ". Suppose tlUIt f ECI (0.) and that .If (Po) :I- 0 Then there 

exists an open neighbourhood U of 11(1 on which/is invertible. Moreover / -1 is 

differentiable at /(Po) with 

(2.53) 

Proof 

It follows from the Injective Mapping Theorem, the Open Mapping Theorem and 

lemma (2.13) that there exists lin open neighbourhood U of Po such that/is 1 -Ion 

U, W = /(U) is open and 

Il f(p) - f (po )11 ~ mll p - Poll for all 17 E V 

Let g :9l " ~ ~H " be defined by 

{
II 1 11 11!(p) - / (Po) - L~l(po )(p - Po )11; p:l- Po' P E V 

g(p) = p- Po 

o 17 = Po 

Since .I f (Po):I- o. (D/(pO» -1 exists and 

26 

(2.54) 

(2.55) 



= (D/(pu)r' (f( 1') - ftpo) - (p - Po) (2.56) 

Let qo = f(po) and q = f(p) .Then 

Now, we can find an £ > 0 such that 13(1'11'[;) cU . As/is continuous on B(po '£)' 

f -' is continuous at qo' 

It follows that 

(2.58) 

Since as q ~ qu' P ~ Po and g is continuous at I'u' 

2.16 Example 

Let /(x ,y) = (eX cos y, eo'siny). Then as ahove 

[ 

, I' 1 e cosy -e Sin \ ' 
J (x y) = det - = e 1r *- 0 , r • f 

J eo smy eo cos y 

It follows that/is locally invertible on ~H2 and 

I 1

_, _2 ,[e'COsy e'sin y ] 
Df(x, y) = e I' , 

-e Sill y e cos)' 

Observe thnt F(.r:, y) is J - 1 011 the strip 0 ~ )' < 2IT . If we let 
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(lI , v) = (e o' cosy.e ' sin y) on this strip, then we cnn explicitly solve for II and v. In 

particular 

Consequently, 

2 ~ 2 r 
/I +" = e 

" tan y = -
11 

I 1 , 

r = - In (/I " + ,, " ) - 2 

1(11) Y = tan - ; 

We now differentinte to get thnt 

.[e'cos)' e'SiI1 Y ] = e2 

-eo'sin y e'cosy 

as expected. 
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2.17 Remarks (Implicit Function Theorem) 

Assume that we are given an equation in two varia hies of the form 

Ahd a point (xo'Yo) such that !(xo.Yo) = O.o We say that we can solve for y in 

tetms of x in a neighbourhood U of Xo if there exists a function rp : U ~ 9l such that 

rp(xo) = Yo and f(x,rp(x» = O.o The function rp is said to be implicitly defined byte 

We can usc the chain rule to obtain 

(? ( 
.; (x ,y) 

£1\ , (' x 
qJ'(x) = -~. = -{? f7""- '· .. 

dl: 
::J " (x ~) . ) 
( " y 

(2.60) 

of 
provided that 0 y (XJI):f. 0 The pre\'ious question: Given/and (xo'Yo) when does 

such a function exist? The answer to this will arise from the Implicit Function 

Theorem. It is a remarkable consequence of the theorem that under the mild 

assumption that/(..\", y) is continuously differentiable on a neighbourhood of (xo,Yo) 

the f~lct that of (x ,y):t:- 0 is sufficicnt to guarantee the existence of such a rp oy 
, 

Moreover rp is actually uniquely defined on a neighbourhood of xo.o 

2.18 Theorem (Implicit Function Theorem) 
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f:D.c;;;. ~H".n' ~ ~H" is such that IE C'(n) on the open set D.. that (Po ,qo) E D. is 

such that /(Po .qo) ami 

(2.61) 

Then there exists a unique function tp :~H'" ~ ~H" defined in a neighbourhood U of 

Po with tp E C' (U) and 

(i) () 'P Po = qo 

(ii) I(p ,tp(p» = 0 for each p E U 

Moreover, if y, = 'P, (p) then 

(2.62) 

In particular 

0 (/" .... ... /,,) 

- = - = 
o (x, . ... ... • x '" .)', . .... .. . )',,) 

{.~ (I, ... ...... /;, ) (2.63) 

o (y" ....... )',,) 

Proof 

Let F: ~H''' ''' ~ 9l"+'" be defined by 

F(p,q) = (p ,/(p ,q» 
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=(XI.· .. ,Xn,. (I(XI .. ··.Xn'.)"I .. ... I" ) . . .. .. ( (xl .. · · .. X .I 'I . .. .. }'») 
• ~ . " . ", nI '" • " 

Then FECI (n) and 

r o () 

1 0 
r f ' (1 f ' . I . I 

iJx., iJYI 

iJ ,1;, rJ .1;, a/" 
iJy" 

(/ ". ,/,,) 

(2.65) 

It follows from the inverse Mapping Theorem that F has an inverse in an open 

neighbourhood J.vof(Po ,qo) with F(JJI) an open neighbourhood of F{Po,qo) and 

F -
I 

E C -
I 
(F(W»where F -I (.) is a hypersurface in a neighbourhood of{Po,qo)(7]. 

Now 

F(p,q) = (p,f(p,q» = (r.s) (2.66) 

implies that 
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(p,q) = F -'(,. . .'I) = (,..O(,. .s» (2.67) 

Hence 

(,. .s) = F( F -' (,. .s» = n,..O(,. . .\'» = ("'/(".O(l'. s») (2.68) 

for all (r, s) in F(JJI). This shows that 

s = !(,..O(,..s» . (2.69) 

and thus 

0= /(p.O(p.O» (2.70) 

for all p in a neighbourhood U of Po We now let <p(p) = B(p.O) for P E U 

Note that 

(2.71 ) 

Since F - ' E C-'(F(W»it is clear that <p E C -I(U) . 

If we apply the chain rule to 

0= /(p.<p(p» (2.72) 

we get 

(2.73) 

To solve the system we hote that 
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By the Cramer's rule, we obtain 

a!, 

det 
I 

d/;, 
oy" 

at" . , 

(2.74) 

t3 ~k J 
ox, 

a!, 

oy" 

l 0 j; c7 J. r .J; (t ./; a f. 
a rtJ. a Y. ;; YI C )'. a y. a Y. - - - ------_. - ----_. ------ - -

rJ (I, , ... .. /;, ) ax, 
o(y, , ... y,,) 

0 (/" ... ,/,,) 

o(y, , ... Y, _,.y"Y,+ , , ... y,,) 
= o(/" ... ,J,,) (2.75) 

o(y" ... y,,) 

Finally, rtJ is unique in the sense that if 

(2.76) 

for some function rtJ2 thut is continuously differentiable in a neighbourhood of Po 

with rtJ2 (po) = qo for fJ ncar sufficiently to Po so 
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2.19 Remarks 

The fundamental question flult the Implicit Function Theorem attempts to 

supply answer to is : when is the relation defined by f(x, y) = 0 also a function? In 

other words, when can the equation f('t, J) = 0 be solved explicitly for y in terms of 

X, yielding a unique solution? The Implicit Function Theorem deals with this 

question locally. It tells us that, given a point (x o.Yo ) such that f(xo, y o) = 0 under 

certain conditions there will be n neighbourhood of (xo ' )'0 ) such that in this 

neighbourhood the relation defined hy f(.\·,.I) = 0 is also a function. 

2.20 Corllary 

If f :"Jl 2 
--t 9l is C ion a neighbourhood of (xn,Yo ) and : f (xo ,Yo):I; 0 then the 

uy 

equation f(x, y) = 0 has a unique solution y = ({J (xo) = Yo whieh exists and is 

continuously differentiable in a neighbourhood U of Xo with 
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(-: ( 
.... (X.),) 

ely ( I X 
qJ' (X) = - = - -::--.,.-. - ­

dr r f 

2.2 tOne - Dimensional Case 

:J' (x.y) 
( ' )' 

(2.78) 

When" = Itt = I the theorem reduces to: Let F be a continuously differentiable, real 

valued function defined on an open set £ C~Hl and let (xo ,Yo) be a point on E for 

which F(xo 'Yo) = 0 and such that 

o f 
oy 

( .ttl. 'II) 

(2.79) 

Then there exists an open inten1al. I containing )'1) and R unique function g: I ~ ~ 

which is continuously differentiable and such that g()'o) = Xo and F(g(y),y) = 0 for . 

all y E I. 

2.22 Example 

Show that in a neighbourhood of the point (/, -I) the equation 

X " + yJ - 3x + 3)' = -6 

definesy uniquely as a function qJ(x) ofx and find qJ'(x) and qJ'(I). 

SolutiOh 

We let [(x,y) =x) + yl - 3x + 3y + 6 . Sincefis clearly C l and slncef(l, -1) = 0, the 
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Implicit Function Theorem guarantees the existence of ({J pro"ided that 

?f 
- .,- (1. - 1);t 0 
0)' 

of 
But oy(I,-I)=3y1+3=3(- 1) 1+ 3=6;t0. wehaHthat 

and 

r? l 
d 

.:J (x.y) 
, y ux 

({J (x) = dx = - -;;-1-' - -
. (x ,y) 

it)' 

_(3-,"2 - 3) 

- 3/ +3 

of (1 1) 
, ox'- -(3( 1) 2 -3) 0 

({J ( 1) = - 0 j = 3( - 1 ) 2 + 3 = '6 = 0 
oy(I.- 1) 

2.23 Corollary 

of 
oz (xo·)'o,zo);t 0 then the equationj(.x,)', z) = 0 has a unique solution qJ(x,y) =Z, 

qJ (xo 'Yo) = Zo which exists and is continuously differentiable in a neighbourhood U 
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2.24 Theorem 

= -- = 
r" x (" x 

(~ f 
(1 X 

( . : 

cf 
O<p oz ry 
oy=oy= of 

liz 

The Implicit Function Theorem can he stated as: Let I = (I I , ... ..f,,) be a vector 

valued function defined on an open set S in ~H , .. k with values in 9l" . Suppose feel 

Let ( Xo, /o) be a point in Sforwhich / (Xo, I ,, ) = 0 and for which the n x n 

Then there exists a Ii - dimensional open set Tn containing 10 and one and only one 

vector valued function g defined on To and having values on 9t " such that 

(c) I (g(t) , /) = 0 for ever)' t on 7~ . 

Proof 

The Inverse Functiorl theorem shall be applied to a certain vector valued function 
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(2.80) 

defined on S and having values in 91 'Hk
. The function F is defined as follows: For 

::; m::; n, let Fm(X,t) = Im(X,t) and for ::; m::; k, F,Hm(X,t) = tm We can write 

F=(f,/) (2.81) 

where I = (II , .... /" ) and when / is the identity function defined by /(1) = t for each 

tin 91 k
. The Jacobian J F (X,t) then has the same value as the n x n determinant 

det [ Dj /, (X,t) ] because the terms which appear in the last k rows and also in the 

last k columns of J F (X, t) form a k x k determinant with ones along the main 

diagonal and zeros elsewhere; the intersection of the first n rows and n columns 

consists of the determinant det [Dj /; (X,t) ] and 

[ D; In+ j (X, t) ] = ° for ::; i ::; n , 1::; j ::; k 

Hence the Jacobian J F (Xo ,to) :f; ° and also F (Xo,to) = (O,to)' 

Therefore by the Inverse Function theorem, there exists open sets X and Y 

containing (Xo,to) and (O,to) respectively, such that Fis 1-1 on X; and 

X = F- I (Y). Also there exists a local inverse function G, defined on Yand having 

values on X, such that 

G(F(X, t)) = (X, t) (2.82) 
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... 

and such that G E Ci on Y. Now G can be reduced to components as follows: 

G = (V, W) where = (VI'""" ' Vn ) is a vector valued function defined on Y with values 

in ~H " and = (WI'"""' wk ) is also defined on Ybut has values in ~k" We can now 

determine Vand W explicitly. 

The equation G(F(X, t)) = (X, t), when written in terms of the components Vand 

W gives the two equations: 

V(F(X, t)) = X and W(F(X, t)) = t (2.83) 

But now, every point (X, t) in Y can be written uniquely in the form (X,t) = F(X',t') 

for some (X' , t') in X and the inverse image F - I (Y) contains X. Furthermore, by 

the manner in which Fwas defined, when we write (X,t) = F(X' ,t') we must have 

t' = t" Therefore, 

(X,t) = V(F(X,t)) = X ' (2.84) 

and 

(X,t) = W(F(X' ,t')) = t' (2.85) 

Hence the function G can be described as follows: Given a point (X, t) in Y, we have 

G(X,t) = (X' ,t) (2.86) 

where X ' is a point in ~n such that 

(X,t) = F(X' ,t) (2.87) 
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This statement implies that: 

F(V(X. I}. I} = (X. I) in I' (2.88) 

Now, if we define the set 7~ and the function g in the theorem as follows: Let 

To = {f E ~H k :(O,f) E r} (2.89) 

and for each t in To define g(t) = V(O, t}. The set To is open in 9tk Moreover, gEe' 

on To because G E C ion Yand the components of g are taken from the components 

of G. Also 

(2.90) 

because (O. fo) = F(Xo. fo)' Finally, the equation F(V(X, t}, t} = (X, t), which holds for 

ever)' (X, I) in I' yields (hy considering the components in ~H" ) the equation 

/(V{X, I), t} = X (2.91) 

Taking X = 0, we see that for every t in To we have/(g(t}, t} = 0, and this completes 

the proof of statements (a); (b) and (c). It remains to prove the uniqueness of the 

function g. This follows from the I - I property off. If there were another function , 

say I" which satisfies (c), then we have 

(g(I), I) = ("(I), I} , or g(l} = "(1) (2.92) 

for eve,r)' t in To' 
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2.25 Remarks 

From the above theotem, the Implicit Function Theorem takes the form: Suppose 

that X and Yare subsets of the real line ~H let Xu E .r. Yo E Y and let (xo'Yo) be an 

interior point of the plane set X x I' ; if F is continuous in some neighbourhood of 

(xo .Yo) if F (xo 'Yo) = 0 and if there ~xist (j > 0 and £ > 0 such that F(.\:, y) for any 

fixed x E (xo - g ,xo + g ) is strictly monotone on (Yo - £ .Yo + £) as a function of y , 

then there is a go > 0 such that there is a unique function 

(2.93) 

for which 

F(x,J(x)) = 0 (2.94) 

For all x E (xo -go'xo + go)' Moreovcr,/is continuous and / (xo) = Yo' 

The hypothesis of this theorem are satisfied if F is continuous in a neighbourhood 

of (xo' Yo) the partial derivative F, exists and is continuous at (xo, Yo ); 

F( xo' Yo ) = 0 and Fy (xo, Yo ) :to O. If in addition the partial derivative F.. exists and 

is continuous at (xo' Yo ) then the implicit function/is differentiable at Xo and 

F, (xo' )'0) 

~. (xo, Yo) 
(2.95) 

This theorem has been generalized to the case of a system of equations, when F is a 
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vector - valued function. Let ~H" ami ~H'" he n- and m- dimensional Euclidean 

spaces with fixed coordinate systems and points x = (XI .. .. 'X,,) and y = (yl .... 'y"') 

respectively. Suppose that F nUlps a certain neighbourhood Wof (xo' Yo) E 91" x 91'" 

into ~W' and that F" i = 1. .... 111 arc the coordinate functions (of the" +"' variables 

XI' .... XII.YI ..... Ym ) ofF, that is I· =(. I·; .. ... "~, ) . IfFisdifferentiableon W,if 

F(xo, Yo) = 0 and if the .Jacobian: 

iJ ( I· I • ...• F,,, ) ;to 
o (YI ' .. ··yno) 

(I' ll' ' .. I 

(2.96) 

then there are neighbourhoods U and V of Xo E ~H" and Yo E ~W' respectively, 

v x V c Wand a unique mapping f: V ~ JI such that F('\',f('t)) = 0 E 9t'" for all 

X E U. Here I(xo ) = )'0' fis differentiable on V and if 1= (/1' ... ,/",) then the 

?l 
explicit expression for the partialderivativcs ~ i = l.. .. ,n , j = 1, ... ,m can be 

o x, 

found from the system of 111 linear e(luations in these derivatives: 

(} F. no /' I'~ ("I, 
- + L--- ~-- = 0 
(} x, ,_l OY, 0 x, 

(2.97) 

k = 1, ... ,111, i = is fixed ( i = 1, ... ,17). 
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CHAPTER J 

MODIFIED VERSION OF II\IPLICIT FUNCTION THEOREM 

In this chapter we introduce the modified nrsion of the implicit function 

theorem 

which is used in chapter four to discuss the roots of the characteristics equation of a 

population model. 

3.1 Theorem 

Let F(y,x) = 0 be rtn implicit function such that 

(i) x ~ 0 

(ii) F(O,O)= O 

(iii) F, (0.0) = 0 and Fr(O,O) = 0 have the same sign with the former strictly non-

vanishing. 

(iv) y (0) - Fr (0,0) < 0 
.r F,.(O ,O) 

Then y = ¢ (x) exists in the neighhourhood of (.r.y) = (0.0) such that y < O. 

Proof 

With assumptions (i), (ii) and (iii) the Implicit Function Theorem guarantees the 

existence of a unique solution y = ¢ (x) in the neighbourhood of the origin. 
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Let us assume thnt (iv) exists, i.e. 

d v 

£Ix 

o f 
where - ~O oy 

F,(O.O) 
= 

F, (0.0) /~ F 

(' .I' 

Let y = f(x) be a continuous explicit solution of the implicit function F(x ,y) = 0 in 

the 

neighbourhood of the origin. Then for any x E (- 8 . 8), where 8> 0, there holds the 

identity F(x , /(x» == O. Hence 

for any point in this neighbourhood. By chain rule of differentiating a composite 

function, we hnve 

hence 

and 

o f 0 F ely 
- + - - =0 
o x 0 y dx 

o f o f dy 

o x o y dx 
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iJ F 
dy (~X 
-- =- ;to 
dr 0 F (~y 

o y clr 

3.2 Remark 

In the neighbourhood of the origin, if then the graph of the function lies below 

the x-axis that is and the gradient of the function is negative, because the function is 

a decreasing function, that is slunting from tnp left to right as shown below in figure 

3.1. 

y 

--------~o~~---------------.x 

Fig. (3 .1) 
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CHAPTER 4 

APPLICATIONS OF TilE 1l\IPLlCIT FUNCTION THEOREM 

4.1 Yellow Fever Disease Dynamics Model 

4.1. t Introduction 

Two of the most important prohlems faced hy people studying mathematical 

models arc numerical approximation of steady states and parameter identification. 

Both of these problems lead to large non-linear systems of equations that can 

sometimes be difficult to solve analytically. While there is an abundance of software 

available to tackle these types of problems, there arc often multiple solutions, and 

many of these can be difficult to find without the aid of n careful strategy. One 

helpful strategy is to identify a salient parameter in the model and use the Implicit 

Function Theorem 1121, in a modified version. 

In the last chapter, we discussed the Inverse and Implicit Function Theorems as a 

motivation towards the applications presented in this chapter. tn this section, we 

introduce a model of Yellow Fenr Dynamics as proposed by Akinwande 11), and 
applied the modified version of the Implicit Function Theorem in chapter three to 
study the characteristics equation arising from the model with a view to analyse the 
stability or othenvise of the steady state of the model. 

This model involves the interaction of two principal communities of hosts 

(human) and vectors (aedes egypti mosquitoes). The host community is partitioned 

46 



into three compartments of susccptihlcs class S(I}, Infected class I(f) and the 

Recovered or Immune R(I}. While the Hctor community is partitioned into two 

compartments of Non-Virus Carl1'ing class N(f} and Virus Carrying class M(t) 

where I ~ 0 is the time. 

The dynamics im olve biting interactions hetween Sand M , if effectivewill cause 

members of the class S(I) to move or now into I(I}. Similarly, an effective biting 

interactions between I(f) and N(I) will cause the members of N(I) to now into M(I) 

Here, effectiveness in the biting interactions is when there is a transfer of virus from 

the host to the vector or from the vector to the host. 

It is assumed that the offsprings of the hosts' population are born immune, as 

they enjoy natural iriHnunity for II period of one year. The transmission of virus 

among the vectors can however be vertical, so it is assumed that a proportion of the 

offsprings of the vectors are carriers from egg stage. 

The model equations are therefore given by equations (4.1) to (4.5) below: 

(4.1) 

(4.2) 

(4.3) 
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(4.4) 

dM 
- ,- = B/3 2 M - 1-1 , M + a 2 N I u - (4.5) 

with the initial conditions 

The parameters are defined as follow: 

/3, = natural birthrate for hosts 

/32 = natural birthrate for the vector 

1-1, = natural mortality rate for host 

1-12 = natural mortality rate for vector 

a = recovery rate for infected host 

a 1 = effective biting interaction rate hetween Sand M compartments 

a 2 = crfective biting interaction rate between N and I compartments 

8 = death rate among the infected host arising from infection 

B = proportion of the offsprings of M that get infected vertically 

r = immunization rate among host community 
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4. J.2 Normalisation 

Let 

P =S+ l + R: Q =N+ Af : 1'(0)= 1'0: Q(O) = Qo (4.7) 

To normalize the vatiablcs, we let 

S I · M \' ). z· /\ = 1' : . = -p : - = -Q (4.8) 

These transform e(luatiol1s (4.1) - (4.5) to of the system of equations (4.9) - (4. J 1) 

below: 

(4.9) 

(4.10) 

dZ dt = - P 2 (1 - ()Z + a 2 (1 - Z) }, (4.11 ) 

4.1.3 Steady States of the Model Equation 

At steady state, let 

(X(t), Y(t), Z(t)) = (.\', y, z) (4. J 2) 

with P and Q constants, then we obtain the following from (4.9) - (4.11): 
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PI - (,tIl + r) x + ary - a IXZQo = 0 

- (a +8 + PI )y +alxzrJo = 0 

- P 2 (1 - O)z + a 2 (I - z)y Po = 0 

4.1.4 Definition (Steady or Equilibrium State) 

(4.138) 

(4.13b) 

(4.l3c) 

The steady or equilibrium state of a 'mathematical model is the observable state 

as the system evolves. At steady state, the rate of change of the state with respect to 

time is set to zero in the continuous system as we are discussing in this section. In the 
) 

discrete model, the steady state occurs when the variables are set to constants. 

4.1.5 Definition (Characteristics Equation) 

The characteristics equation of a mathematical model is the equation arising 

from the determinant Jacobian equation 

IA - All = 0 (4.14) 

where A is the n-square matrix of the coefficients, A. is the eigenvalue and 1 is the 

n x n identity matrix. 

4.1.6 Application of the Modified Implicit Function Theorem 

In the above equations, x, y, z are the values of the variables at equilibrium state, 

PI ' /3 2, 111 , 112 ,a l ,a 2,0 ,8 ,a are non-negative parameters defined earlier in the 
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section. 

A solutions of the simultnne()us e(luatilll1S (4.13) is given by 

(x. y.z) = ( /3, .0.0) 
a, + r (4.15) 

and the associated characteristic!! equation is ~i\'Cn by 

For the purpose of our application, we shall use the variables "t, the eigenvalue 

and set w = /3 2 () - e) and then consider the I mplicit Function 

(4.17) 

For (A.CO) = (0,0) ; 

F(O,O) = 0 (4.18a) . 

of o f 
F).("t,w) = 0 A ("t,w); Fm("t·w) = o w (A,W) (4.18b) 

and so 

(4.19a) 

F,t(O,O) = a +8 + /3, > 0 (4.19b) 

as a , 8 , /3, are non-negative parameters. 
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Also 

So using the midilied Implicit Function, we han that: A. = ¢(ftJ) exists in the 

neighbourhood of the origin (A.. tv ) = (0.0), with A. < 0 i.e. the steady state given by 

equation (4.15) is locally stable. 

Another non-trivial solution (steady state) for the normalized system is given by 

(.Y:, )" z) = (f()'), )" g{J~) (4.22) 

and the corresponding characteristics e(luation is thus given by 

Using A. and a l as salient parameters and the modified Implicit Function 

Theorem, we have that 
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noting that for - a - 8 - fJ I + 2~1 = 0; 

a+c5+fJ, 
y = 2c5 (4.25) 

We note that F(O,O) = 0. 

Differentiating partially with respect to A and we obtain 

F~ (..1,(0) = - [ -..1( fJ 2 (I - (J) - a lYPo - A) - a la 2 /~Qof(y)(I- g(y»] 

+( -fJl - r + c5y - aIQog(y) - ..1)( -..1(fJ 2 (\- 0) - alyPo - A.+ I)) 

and 

Hence 

(4.28) 
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and 

(4.29) 

thus if 

- fJ I - r + (~I > 0 . (4.30) 

then F). > 0 and FOI < 0 so the nnn-trivial equilihrium statc is unstable. 

If.- fJ I - r + c5'y < 0 then F). < 0 and F,'I > 0 so the non-trivial equilibrium state is 

yet unstable. 

4.2 Economics Model 

4.2.1 The Model 

Assume a consumer consumes varying amounts of two products X and Y [6) 

Let X = units of A consumed 

Y = units of B consumed 

The consumer operates his utility by consuming these goods in accordance with the 

following utility function: 

U=/(X, Y) (4.32) 

And his purchasing decision is guided and limitcd by a budget constraint given by 

(4.33) 
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where P, is the price of the product i and I is his total income. From (4.33) we 

obtain 

(4.34)' 

The theol1' of utility m~lximization which statcs that the slope of the indifference 

curve equals the slope of the budgct cons taint, gives: 

MU H PH -- - - (4.35) 

where MU, = marginalutilif)' of goods i which is the derivative of the utility 

function with respect to goods i. So we obtain 

_O_U-,-( B_, R_) d 13 + _o _U_( ~'--R) cl R = cl K 
o B o R 

(4.36) 

where K is a non-negative constant and cquals to some overall level of utility and. 

rJ U(B , R) cU(B , I?) ell? elK 
---- + - - --o B r1 I? . dB dB 

(4.37) 

dK 
and since dB = 0 we ~implify to get 

oU o U dR 
iJ B + 0 R . dB = 0 (4.38) 

dR 
and solving for dB gives 
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4.2.2 Example 

Let 

elR 

dB = 

rU 
c? /J 

au 
c R 

U = 0 + a In B + (1 - a) In R 

Differentiating gives 

a 
B I'H 

-('~a)= 1'/1 

At equilibrium, Band R nrc given by 

• a/ • (I-a)/ 
B = - , R = -'-----'--

PH 1'/1 

(4.39) 

( 4.40) 

(4.41) 

(4.42) 

If for example a = 0.5. PH = $4 . 0 == 100. 1'/1 = $2. / = $200 , give the values: 

B· = 25 and R· = 50. 

4.3 Remarks 

l. The Implicit Function theorem as modified in this work can be utilized to 

determine the nature of the roots of a characteristics equation in a specified 
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nei~hbourh()od. 

2. The limitation of the theorem in the present state is that only one 

parameter can be considered at a time, also any parameter used will not 

feature in any constaint obtained in the anal)'sis. 

3. The theorem however helps in the nnalysis of the stability or othenvise of 

the steady state. 

4. It will be of interest to denlop the theorem to accommodate the use of 

more parameters simultaneously. 
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CHAPTER 5 

RESULTS ANI> CONCLUSION 

5.1 Interpretation of the Result 

The application of the Modified Implicit Function Theorem to the characteristics 

equations of the Mathematical Model of Yellow Fe"er Dynamics leads to the 

inequality 

(5.1 ) 

From this inequality, we observe that keeping thc immunization rate slightly 

I 
above the , 'alue 2( a + 8 - fJl) could prevent the outbrcak of epidemics. 

We have seen thcrefore that this theorem is a powerful tool in the study of 

characteristics equations and should be explored further. 

In the Economics model, the marginal utility of goods i can be expressed as the 

first derivative ot the utility function taken with respect to the goods. The 

indifference curves slope is equal to the ratio of the marginal utilities. The 

equilibrium occurs when the slope of this cun'c is cqual to the slope of the budget 

constraint. 
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5.2 Concluding Remarks 

In this work, we have found that the Implicit Function Theorem can be a very 

useful tool in the analysis of certain complicated functions like the 

characteristics equation and therefore recommend further study of this 

theorem, especially the modified version used in this work 111. 

It will be of great interest if the further study of the Implicit Function 

Theorem can take care of more than one parnrtleter than it is in this work. 
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