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ABSTRACT 

This project proposes a dete1l11inistic mathematical model of the tuberculosis 
disease dynamics. The model population is partitioned into three distinct classes : 
the Susceptible, Exposed and the Infected. The dynami cs of the three 
compartments was described by a system of ordinary differential equations. The 
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rate (u), while the condition for the stability or instability of the non-zero 
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CHAPTER ONE 

INTRODUCTION 

1.1 Bacl{gronnd of the Study 

Mathematical models are derivation of the mathematical relations which 

describc the features of the system under consideration. The method of analysis 

involving the use of cquilibrium state and stability of the models are. useful 

tools ill the study of mathematical model of population dynamics according to 

Akinwande (1999). 

rvfathematical models have been used both analytically and numerically to give 

insight into the dynamics of many real life situations Benya (200S). 

Epidemiology is the study of diseases. Infectious diseases such as HlV / AIDS, 

tuberculosis, Lassa fever, SARS, Ebola, Rabies, Foot and Mouth disease c.Lc. 

C811SC millions of death yearly worldwide Fitzgibbon amllaglais (2000). 

Tubcrculosis is one of the leading causes of death worldwide killing about two 

million people each year \\1110 (2009). It is estimated that about 1.7 billion 

people arc infccted worldwide WHO (2006). 



The high incidence of tuberculosis in the developing countries is as a result of 

povelty and underdevelopment, which lead to overcrowding, malnutrition, lack 

of access to good health care services - which (ll'C contributory factors to the 

spread of the disease. The nature of population distribution is such that many 

people live in small areas, while others in larger areas have sparse 

concentration of people. 

This uneven pattern of population distribution, which results into maSSlve 

concentration of people in a limited area, is a major factor which has helped to 

sustain some diseases, especially the airborne diseases Jr which tuberculosis is 

one. 

This work has been divided into five chapters. The first chapter is the 

• 
. introduction. The second chapter contains review of some literature related to 

this work. In chapter three we present the model equations, the equilibrium 

state and the characteristics equation are obtained. In chapter four we analyse 

the equilibrium state for stability and finally conclusion and recommendation 

are presented in chapter five. 
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1.2 Objectives of the Study 

The objectives of this research ork are: 

1. To propose mathematical population model for tuberculosis disease 

pandemic. 

2. To obtain and analyze the zero and nOll-zero leqUilibrium states for 

stability. 

3. To draw conclusion from the result of the an~lysis relevant for the 

control and poss ible prevention of the diseases. 
\ 

1.3 Significance of the Study 

The threat of infectious disease is not only a major cause of death and misery 

to both human and nnimal populations but also it has the potential of major 

social and economic impact. 

As human capital is !Jart of resources of a nation, the study of population plays 

a vital role in 1\ e economi c success of '1 nation especially where the health 

capacity of the population could be undern llned. 

Population studies are an aid to development planning both in the short and 

long term ill areas such as Ir\bour, education, health, environmental 

preservation and social security to mention a few. Such studies provide 
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information and knowledge to government for effective policy formulation in 

order to achieve desired social amI economic objectives .. 

1.4 Scope and Limitation of Stud y 

In this work we present Susceptible - Exposed- Tnfected but Recovered (SEIR) 

model. This model is ori.e straill (Drug-sensitive) with one form of latency and 

one class of active TE. In this model individuals can only move to the infected 

class from the latent class so there is only one progression rate, and there is 

recovery from latency and active class back to the susceptible class. The 

dynamics of tuberculosis between the compartments is presented in a system of 

ordinary differential equations . The zero and non-zero equilibrium states are 

obtained and analysed for stability. Hypothetical parameter values are then 

used to test the stability result for the non-zero equilibrium state. 

1.5 Overview of Tu bcrculosis 

1.5.1 Introduction 

Tuberculosis (TB) is a chronic or acute bacterial infection that primarily 

attacks the lungs, but which may also affect the kidneys, bones, lymph nodes 

and brain. The disease is caused by mycobacterium tuberculosis, a rod-sha)ed 

bacterium. 

4 
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The symptoms of tuberculosis include chest pain, cough, loss of appetite, 

weight loss, fever, chi lis, shortness of breadth and fatigue. 

In 1993 Tuberculosis was declared a global emergency by the world health 

organisation (WHO), the first s :h designation ever made by that organisation. 

One individual becomes infected with Tuberculosis (TB) every second and 8 

million people contract the disease every year according to WHO (2003). 

It is also predicted by WHO that if left unchecked TB will kill 35 million 

people in the world over the next 20 years WHO (2003). 

Tubercles found in mummified bodies, has shown that TB had been existing 

since at least the year 2000 BC WHO (2003). Writings of acient Babylonia, 

E~ypt and China made references to TB. The teim tuberculosis was derived 

from the Latin word tubercular and was first used in 1839. Tubercula means 

small lump, which refers to the small sear tissue of infected individuals. In the 

19th century TB reappeared in Europe and United States on epidemic levels. 

In the early 19th century, significant research into the causes and cure of TB 

began. The damage caused by Tn was described in 90d autopsies by French 

physician Gaspard Bayle. J\ French army doctor J .A. Villenium showed that 

TB could be transmitted from humans to animals WHO(2f03). 
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Due to lack. of cure for TB an American physician Edward Trudeau who was 

affected by the disease twice (in 1873 and 1876) thought he was dying and 

traveled to Saranac lake in the Adirondack mountains of New York to spend 

his final days, eventually his symptoms disappeared and attributed the healing 

to the fresh air of the mountains. He built the first American Sanatorium in 

1885. This later became a model for many sanatoriums that were used for 1B 

treatment in the late 19th century and early 20th century. In 1930 United States 

had a total of 84,000 beds in 600 sanatoriums. Trudeau established the Trudeau 

Laboratory responsible for training most physicians versed in the treatment of 

TB, in the 50 years that followed. 

Early in the 19th century, TB was thought to be a disease of morally superior 

individuals, but the epidemic continues to claim larger circle of people, often 

poor and the disadvantaged. In the absence of scienti1c knowledge, TB was 

attributed to a person's lifestyle. 

The bacteria that cause TB was discovered by a German physician Robert 

Koch in 1882 WHO (2003). K ch demonstrated the p~esence of the bacteria 

and how it was transmitted, using simple but precIse observations and 

experiments. 

6 



In 1924 the first TB vaccine (BCG) was produced at the Pasteur institute in 

Paris, by French bacteriologists, Albert Calmette and Canille Guerin working 

with a virulent strain of bovine (cow) tubercle bacillus with hope of protecting 

the world against TB. The vaccine was tested on a newborn child and it was 

successful. The beginning of modem antibiotic therapy for TB began in 1944 

when an American microbiologist Selman Waksma isolated streptomycin from 

a fungus, streptomycin lavendulla. 

Over the next 30 years there was a declining rate of disease incidence and 

I 
mortality due to success of the drug therapy wit.h these achievement public 

health officials believe TB could be conquered. 

J .5.2 Transmission and Infection , 

TB is transmitted from person to person, usually by inhaling bacteria carried in 

the air droplets. When a person sick with TB coughs, sneezes or speaks some 

.particles that carry two to three bacteria surrounded by a layer of moisture are 

released in the air. ] f another person inhales these particles the bacteria may 

lodge in that person's lungs and multiply. Other less common route of 

transmission is through the skin. Laboratory technicians who handle TB 

specimen can contract the disease through skin wounds. TB has also been 
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reported in people circulllcised with unsterilized instrument and those who 

receive tattoos WHO (2003). 

TB disease develops in two stages: Primary and Secondary stage. 

1.5.2. (a) Primary Tuberculosis 

At this stage the person is infected with TB bacteria, but often is not aware of it 

and does not manifest the symptoms of the disease. At this early stage primary 

TB is not contagiolls. Macrophages, immune cells t~at detect and destroy 

foreign matter, ingest the TB bacteria and carry them to the lymph nodes where 

they may be inhibited, destroyed, or they may multiply. 

Active primary tuberculosis will develop if the bacteria multiply. If the bacteria , 

are not destroyed but inhibited, the immune cells and the bacteria will form a 

mass known as granuloma or tubercle. The immune cells form a wall around 

the inactive bacteria. The TB bacteria remain walled off and inactive as long as 

the immune system remain strong. At this initial stage of TB, the bacteria may 

remain dormant in the body for many years, without the disease progressing. 

As soon as the immune system becomes weakened the tubercle opens, 

releasing the bacteria and the infection may develop into secondary TB. 
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1.5.2 (b) Secondary Tuberculosis 

At this secondary stage carriers of TI3 may infect others because the formerly 

dormant bacteria has multiplied and destroyed tissue in \lungs, and has spread 

to the rest of the ody via the blood stream resulting to a collection of fluid or 

air in the lungs which may be accompanied with cough, of blood or phlegm 

'through which other people can be infected. 

1.5.3 Diagnosis 

Two separate methods are used to diagonize TB. The tuberculin skin testing is 

a method of screening for exposure to TB infection. In this method a purified 

protein derived from the bacteria is injected into the skin. The skin area 

injected is inspected 48 to 72 hours later for lumps. A positive test means that 

'TB infection has occurred. This method is not 100% accurate and does not 

always indicate the presence of active TB disease. 

Identification of the bacteria in sputum (matter coughed up from the lungs) is a 

method used to establish the diagnosis of TB disease or other body fluids and 

tissues in addition to an abnormal chest x-ray and the presence of TB 

. I 

symptoms. Another test is required, onee TB has been diagonised, so as to 

determine the most appropriate drugs for treating the particular strain of TB 

bacteria. 
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1.5.4 Prevcntion and Treatmcnt 

To reduce the spread of TIJ in public places, general preventive measures can 

be taken. Good ventilation system that lessen:: the chance of infection by 

dispersing the bacteria is also a preventive measure. Other preventive measures 

include ultraviolet lightiJig which reduces but does not eliminate the threat of 

infection by killing TB bacteria in confined spaces. Also vaccines, such as the 

Bacillus Calmette Guerin (BCG) vaccine, prepared from bacteria that have 

been weakened, are another preventive measure. This vaccine is most effective 

in preventing childhood cases ofTB. 

Drug therapy has become the cornerstone of treatment, with the advent of 

effective antibiotics for TB. Most drug therapies involve mUltiple drugs given 

for at least 6 months or even up to 9 or 12 months, because single drug 

treatment often causes bacteria resistance to drugs. The multiple drugs are a 

combination of antibiotics such as isoniazid, rifampcin, pyrazinamide and 

·ethambutol. The entire gene sequence or genome of the bacteria were decoded 

successfully by scientist in 1998. This will likely create new methods fvr 

treatment and prevention ofTB. 

In order to ensure drug compliance WHO initiated tl" Directly Observed 

Treatment Short-course (DOTS) where health workers observed the patient 
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take their drugs as prescribed to avoid the development of multi-drug 

resistance - TB (MDR - TB) and extensively drug resistant TB (XDR-TB). 

The latter is resistant to first line and some second line drugs while the former 

is resistant to at least two first line drugs. 

1.6 Mathematical Modeling 

Mathematical modelling involves using variables and parameters to define the 

features of a system, in a formula or equations to represent any biological, 

physical or economic system. 

Benyah (2005) defines mathematical modelling as "the process of creating a 

mathematical representation of some phenomenon in order to gain a better 

understanding of the phenomenon". Essentially, any real situation in physical 

.and biological world whether natural or involving technology or human 

intervention, can be subjected to analysis by modeling if it can be described in 

quantitative terms. 

Therefore, mathematical modelling is a powerful mathematical technique that 

I 
allows a set of assumptions to be captured and be fqllowed to their precise 

logical conclusion. It provides us with new hypothesis, suggests experim :!nts 

and measures crllcial parameters. 
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.1.6.1 Types of MathematicallVlodcl 

The techniques used to construct the model and the degree of 

understanding/knowledge of the system to be modelled form the basis for 

distinguishing types of model when classified, according to Barnsley (2005) 

Some are classified according to the type of variables involved. For instance 

(a) Discrete or continuous according as the variables involved are discrete 

or continuous. Other types of model are 

(b) Stochastic or deterministic according as chance factors are taken into 

account or not 

(t) Dynamic or static according as time variations in the system are taken 

into account or not. 

(d) Linear or non-linear according as the basic equations describing them 

are linear or non-linear 

1.6.2 The Modelling J>.'ocess 

A thorough understanding of the underlying principles 9r factors of the system 

to be modelled, is a necessary condition for developing a mathematical model 

for a real life situation. 
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The modelling process requires the modeler to decide what factors are relevant 

to the problem and which factors could be de-emphasized. 

In order to formulate a successful model Benya (2005) has outlined the 

following general approach in the formulation of a real life problem in 

mathematical terms: 

(a) Identify the problem 

(b) Identify the important variables and parameters 

. (c) Determine how the variables relate to each other str ting the assumptions 

(d) Develop the equations or inequalities that express the relationship 

between the variables. 

(c) Analyze and so lve the mathematical problem 

Cf) Interpret the result and relate it to real-life 

.A mathematical model of a system will often involve the variable time. In this 

case a solution of the model gives the state of the system i.e. the values of the 

dependent variable for appropriate values of t describes the system in the past, 

present or future. 

13 



1.6.3 MathematicallVIodel through Differential Equation 

Mathematical modeling in terms of differential equation anses when the 

situation being modeled involved some continuous variable(s) varying with 

. respect to some other continuous variables and we have some reasonable 

hypothesis about the rate of change of dependent vari~ble with respect to 

independent variable. 

When we have one dependent variable (say x) dependin1 on one independent 

variable (say time t), we get a mathematical model in terms of ordinary 

differential equation. 

1.7 Equilibrium State and Stability 

1.7.1 Equilibrium State 

An ordinary differer.tial equation (ODE) is called an autonomous differential 

equation if the independent variable appears explicitly. 

As an example, the first-order ODE below 

dx = I(x) 
dt 

(1.1 ) 

is an autonomous equation, Slllce the right-hand side IS independent of t 

explicitly. 
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The solution of the equation I(x) = 0 are called the critical points of the 

autonomous ODE given ill (1.1), referred to as equilibriJm or steady state of 

the ODE. If the ODE has a constant solution x(t) = c, then x=c is a critical point 

0[(1.1) such a solution is called an equilibrium solution. 

' 1.7.2 Stability 

Stability in physics and engineering is the property which a body possesses 

such that once it is disturbed from a condition of equilibrium or steady motion; 

it will return to its original position or motion as a result of the action of the so-

called restoring forces or torque. 

Stability generally demands both restoring forces and damping factors in a 

• 
'moving or oscillating system. In an electrical or me hanical oscillating system, 

such as a servo mechanism if restoring forces are not properly timed and if 

damping is insufficient, these forces cannot fulfill their function rendering the 

system unstable and sending it out of control. 

A solution I(x) is said to be stable if any other solution of the equation that 

starts out sufficiently close to it when x = 0 remains close to it for succeeding 

values of x if the difference approaches zero as x increases, the solution is 

15 
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1 I 

called asymptotically stable. I I' a soluti(lIl does not have either of these 
I 

properties, it is called unstable. 

1. 7.3 I1lush'ativc Exa III pies 

Equilibriuin may be stahle or unstable. For example, a pencil standing on its tip 

I has unstable eqU1ilibriUIll. A picture on the wall always possesses stable 

·equilibrium (fig 1.1) 

;""J • FE .. 
" 

., 
177"r; . I 

Fig 1.1: An Illustration or stable and unstable equilibrium of an object. 
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Perhaps, the following will give a better insight to the concept of equilibrium. 

From fig 1.2 below, ira ball is pushed down a hill, it may eorne to rest at 

positions A or C, but it is only by chance that the ball will be stationary exactly 

at B. The positions A and C are stable equilibra for the ball, wherea3 B is an 

unstable equilibrum. Suppose we place the ball carefully at point B, a gentle 

breeze or earth tremor will cause the ball to shift away \ from B. In contrast, 

positioning the ball at point A or C will result in the ball staying hear the stable 

,equilibrium, even on a gusty day. 

A 

-B 

c 

Fig 1.2: Stable and Unstable equilibrium of a ball on a hill.. 

'Equilibrium is considered stable (for simplicity we will consider asymptotic 

stability only) if the system always returns to it after small disturbances, if the 

system moves away from equilibrium after small ' d: sturbances, then we say .. he 

equilibrium is unstable. 

17 



2.] Intr'oduction 

CHAPTER TWO 

LITERATURE REVIEW I 

In this chapter we review some literatures that are related to the dyna!"!'1;c" of 

\ 
tuberculos is (TB) disease pandemic. 

Presently there exist thousands of research findings on TB disease dynamics. In 

most of the studies conducted on TB dynamics, the classical epidemic model 

has been used extensively to study the dynamics of the disease. 

Usually such models show the movement between different compartments of 

the population. 

, 
Recent research efforts have been geared towards studying the heterogeneous 

factors in the population with a view to incorporating them into the model. 

Below we present the efforts that have been made by researchers and their 

findings on v,uious aspects f TB disease dynamics under the following 

subheadings. 

• Transmission 

• Infection 

• Treatment 

18 



• Prevention 

• IIIV-TB co-infection 

2.2 Transmission and Spread of Tuberculosis 

Most early transmission models were deterministic but recent resurgence of 

'tuberculosis (TB) in developed countries and increases in cases of casual 

contact and public transport suggested a model based on thorough 

understanding of the dynamics of the disease. 

Consequently, Aparacio et al (2000) developed a generalized household 

(cluster) model, which took close and casual contact into account. The 

household cluster comprise of social networks (family members, office mates, 

olassmates, any person who have prolonged contact with an active case). The 

other cluster are those outside the social network. The basic reproductive 

number for the model is 

pnk Ro = _----C. __ _ 

P+r+Jl+k 
(2.2.1 ) 

where f3 is the transmission rate, 11 is size of cluster, 11 natural mortality iate, 

' r is the total per-capita removal rate from the infected and k is the progression 

rate to active TB. It can be seen that Ro depends nonlirearlY on the parameter fJ 

19 



and linearly on the size 11. The condition Ro > 1 implies there exist endemic 

equilibrium and the disease persists. 

It was found that the total number of secondary infections caused by casual 

contact is greater than those produced by contacts in active clusters. The reason 

being that the number of subpopulation living in t~e active cluster is smaller 

than the total population size. 

Tuberculosis is transmitted to an uninfected person when an infected person 

pass the bacteria and the former inhales it therefore effort are being intensified 

to study the impact of TB in public transportation, as mass transpOliation plays 

a primary role in casually close contact Aparacio et al (2000) 

M\.}rphy et al (2002) investigated how mass public transport can influence the 

transmission of TB, because infectious people can move long distances and 

spread the disease far from their origin. Some simulations performed on the 

system reveal that the travel time, which the non-bus taking individuals spend 

in public transport contributes to the transmission of TB, because the low 

income group who often ridc public transport near equilIriUm, while the high 

income group who rarely ride public transport and have private cars are 

vulnerable to mycobacterium tuberculosis and spr ad it i1 their clusters. 

20 



They went furth er to estimate the va lue of relevant parameters and found that 

011 the average 100 people enter and leave the bus hourly and that one TB 

infection per 1000 traveler's \vas generated per hour of travel. They al so found 

that about 300/0 of the new TB cases could be attributed to bus travel with the 

rate of transmission higher in poorly ventilated and crowded transportation 

system. 

Research has also shown that genetit, susceptibility affect endemic prevalence 

levels and alters the effect of treatment of tuberculosis patient. Genetic 

susceptibles are part of the susceptible subpopulation who can be infected with 

mycobacterium tuberculosis, as not all people are equally susceptible to 

TB Belamy (2000). 

In 2002, Murphy et a] (2002) presented a new model with two subpopulation to 

verify the effects of genetics factors on epidemic of TB, they found using 

.numerical simulation that a small genetically susceptible subpopulati01I ccm 

drastically increase prevalence and incidence of TB in the general population. 

The result also show that if 30% is genetically susceptible, the prevalence of 

TB could double to 600/0. \ 

Tuberculosis is an air-borne contagious disease affecting about one third of the 

world population, out of which two third live in developipg countries. 
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Spread of TB is rapid in areas with poor public health services and crowded 

living conditions. It is also spread in homeless shelters' prisons and areas 

where living conditions are disrupted by wars, famine and natural disasters. 

These factors have been found to contribute to the spread of TB by many 

researchers. For instance, Semantimba et al (2005) formulated mathematical 

models with four compartment (SILT) to establish the conditions on the size of 

the area occupied by internally displaced peoples' camp (IDPCS) in Uganda. 

Both numerical and qualitative analysis of the model were performed and the 

effect of variation in the area size and recruitment rate on the different 

epidemiological states was investigated. They observe that a stable disease free 

equilibrium point exist provided that the characteristic area is greater than the 

ptoduct of the probability of survival from the latent stage to the infections 

\ 

stage ( k ) and the number of latent infections produced by a typical 
J.1 + k + r) 

. . . d"d 1 d . I'll . C:' • f(P)CS +lhCT ) I II1fectlOus In IVI ua unng lIS 1er mean II1Jectlon peno W 1ele 
f.1 + 8 +'"7. 

k is the rate of progression to activc T8, f"J is the recovery rate of latent class, 

f.1 is the natural death rate. (3) and [32 is the probability that a susceptible and 

treated individual respectively become infected per contact per unit timc.,u is 

the natural death rate, whi Ie 8 is the T8 induced mortality rate,l) and '"7. 
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recovery rate of latent and infected class respectively. S is the susceptible class, 

while T is the treated class. They found that for the existence of disease free 

equilibrium A > ( K ]( fJ1CS + fJ2eT ] . 
. J1 + K + 1'1 J1 + 8 + 1'2 

In conclusion, the study 

recommends that the characteristic area per individual should be at least 0.25 

square kilometers so as to minimize tuberculosis incidence. 

This model differs from ours due to the creation of separate compartment for 

the treatment class. In our model treated individuals are returned to the 

susceptible class. \ 

'In a related research work by Koriko and Yusuf (2005) the dynamics of 

tuberculosis disease population was considered usir g the Susceptible -
, 
Infected - Recovered but Susceptible (SIRS) model, the infected class (1) is 

broken into those that will progress directly to active TB and those that will 

progress to Latent TB, this is different from our model where all individuals 

progresses into Latent class upon infection. The resulting model equations 

were solved numerically by simulations. It was found that the population 

dynamics depends more on the number of actively infected people in the 

population at the initial stage and on the disease incidence transmission rate at 

a given time. 
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2.3 Infection of TubelTulosis 

Infection occurs when mycobacterium tuberculosis bacteria IS lodged in the 

lung of a sLlsceptible person from an infected person. 

,Due to the activity of immune cells in the lung, the ~erson either becomes 

latently infected or actively infected. Researchers are now focusing their 

attention on the activities that occur within the lung that determines the type of 

infection. 

A mathematical model of tuberculosis was formulated and used to evaluate 

strategy of targeting therapy to persons with recently acquired latent 

tuberculosis(TB) infection by Ziv et al (2001). The model was used to measure 

the effectiveness of therapy for early latent TB infection in reducing i.he 

prevalence of active TB. The model was able tv show the kind of effective 

therapy for early latent tuberculosis infection that can eliminate active TB 

when combined with therapy for active TB. 

The authors concluded that contact investigation where persons recently 

infected with mycobacterium tuberculosis (MTB) are identify and treated, can 

'have a substantial effect on controlling TB epidemics. 
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Researchers at the Ohio State University Caldw~ll (2009) are uSlllg 

mathematical modeling to determine whether a change to the nature switching 

time would result in a more effective immune response. 

Switching time refers to the changes that occur between the two immune 

response (the innate and the acquired), in fighting any invading pathogen. The 

innate immune response begins a fight against any pathogen; the acquired 

immune response follows with aim of attacking the specific pathogen causing 

the infection. 

The model in thi s study simulates the entire activity in the immune response to 

TB paving the way of testing what the outcome would be if changes were made 

along the way for example if developing a drug can artificially inhibit or 

activate part of the process. A process that could determine what it would take 

to shorten the switching time and reduce the number of bacteria in the lung. 

The model calculates the average switching time to be about 50 days after TB 

invades the lung, this roughly coincides with clinical expectation that a skin 

test will be positive [or TB between four and eight weeks after infection. 

Furthermore, the model reveals that switching time of the immune response 

could be shortened and bacterial load reduced if interferon gamma (a cytokine 
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that participate in the conversion of one type of immune response to other) is 

introduced early during irnmune response. 

They concluded that interferon gamma might be one component of a short 

approach to new TB therapies. According to Schlesinger a director in Ohio 

States centres for microbial interface biology "If we could shorten the 

treatment for TB that would be a very powerful means of breaking 

transmission cycles" Caldwell (2009). 

It has been assumed for decades that secondary tuberculosis is caused by 

reactivation of endogenous infection rather than by a new exogenous inCect io . 

However, studies have now showed that reinfection is caused by recurrence of 

tuberculosis after treatment (exogenous reinfection). 

Annelis et al (1999) performs DNA finger printing with restriction fragment 

length polymorphi sm analysis on pairs of isolates of mycobacterium 

tuberculosis Crom 16 compliant patients who had been cured of pulmonary 

tuberculosis after treatment, b t now reinfected. All the patients lived in 

endemic areas of South Africa. For the 12 of the 16 patients the restriction 

fragment - length polymorphism banding patterns for the isolates obtained 

. fi h" . 1 \ b I' d' .were different from those for the Isolates Tom t e mItla tu ercu OSIS Isease. 
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All the 15 patients tcstcd ror human immune deficiency vIrus \vcre sero-

negative. Therefore they conclude that exogenous reinfection might be the 

major cause of secondary tuberculosis after a previous cure in an area with 

high incidence of the disease. 

A mathematical model for the time delay from initial Latent infection to active 

disease and infection transmission was proposed by Edwin and Shelley (1996). 

Both the Activation delay function and time delay function were found. For the 

activation delay function fiO' they consider the initially infected at time II and 

define a time-delay function Iia such that the probability that a surviving 

individual develops an active case in the time interval (II + T )and (II + T + dr) is 

The effective reproductive number for this model was found by usmg the 

effective incidence of new infections in the whole population which IS 

p(t) = Po (t)X(t) and R(t ) = Ro(t)X(t). If /?(t) is equal to a t onstant R over many 

decades (even if R() and X· vary slightly), the result is an exponential solution for 

the effective incidence 

P(t) = P(O)exp( +At) 

Where the constant A the fractional rate of change per year is related to the 

constant R by a ratio of integrals. 
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co 

ff(r )dr 
R = __ -=--0 ____ _ 

OC! 

f f(r )dr exp( - At) 
o 

(2.3.1) 

Equation (2.3.l) shows that R < I when /\ is negative, R > 1 when t\ is positive 

and R = I for steady state of /\ = O. /\ is the fractional rate of change. They used 

case rate tabl es in the United State, to calculate fractional rate of change per 

annum in the incidence of active TB. Estimates for the effective reproductive 

number were derived. The model predicted active case rates in various groups 

and compare them with publi shed tables. It was observed from the comparison 

that the risk or activation decreases rapidly, then gradually, for the first 10 years 

a fter initial infection. 

2.4 Prcvcn (-ion of Ttl bCI'ClJiosis 

Studies have shown that tuberculosis (T8) can be controlled. Some studies 

indicate the epidemiological class that can influence prevention of tuberculosis 

(TB) or its eradication. 

Nucci et al (1997) evaluate the efficacy of TB control measures in hospitals to 

prevent nocosonmial (Hospital) transmission. The control measures employed 

in the hospitals are:-
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1. Isolation of patients 

11. General ventilation 

111. Use of high efficiency particulate a1r (HEP) filters or ultra violent 

germicidal irradiation (UVG I) 

IV. Adoption of appropriate respiratory protective (surgical) masks and 

particulates respirators such as HEP masks. 

Using a room with a source of airborne infection and air disinfection devices as 

recommended above. The study shows that the only\ control measure that 

significantly reduces the infection rate is the administrative measure (isolation 

of patients) as the efficacy of other control measures decreases as the 

i~fectivity of the source case increases. The method \was evaluated with a 

deterministic mathematical model for airborne contagion: 

ds = _ P QS 
dt V ' 

dQ . 
dt = -CQ + q, t ~ 0 

with initial conditions S(O) = So > 0 

Q(O) = Qo ~ 0 
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Where Q is the ratio between the pUlmonary ventilation P (assuming 

p=o.O Im3/min) aml thc volulllc V of the room. S is the susceptible class, C is 

the disinfection rate and q is the infection rate. 

The model is solved to obtain 

{ 
pq ct + e - c( -11 

S(t,q,c)= So exp -- . 'J 
v c 2 

. \ 
(2.4.1 ) 

The rate of infection (q)is derived a posteriori when the number s of 

susceptible persons who were not infected is known. sr solving S(t,q,c)= s 

. with respect to q. with ,v given by (2.4.1) yields. 

v c 2 S 
q = - . . log _0 

P c/ + e- u -1 s 

'Where S is the number of uninfected persons and So the number of 

susceptible. The effect of Direct Observation Treatment Short-course (DOTS) 

programme initiated by WHO in preventing high prevalence levels ofTB in the 

population have been presented in a paper by Phillip (2006). 

Phillip formulated a mathcmatical model to forecast the impact of different 

scenarios for TB control measu es of TB epidemic in the western pacific 

region. He develops initial condition for the model by first modeling a virgin 
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epidemic by simul ating the introduction of a single infection case into a 

population of susceptible individuals, until equilibrium. 

\ 
The model was used to generate an epidemic without introducing DOTS TB 

control measures (constrained) [or 30 years, followed by a gradual introduction 

of DOTS progressing untn the year 2005 . The morels shows decline in 

prevalence levels similar to the declines obtained from prevalence surveys 

conducted in the western pacific region and also exhibit the same trend with 

estimated prevalence trend published by WHO. 

Having proved the e fficacy of this method, a scenario for DOTS case detection 

rate and DOTS plus coverage for the period 2006-2010 were propo cd to 

predict the impact of '1'13 control on prevalence and mortality and also to 

predict the impact of DOTS plus on the MDR-TB. 

The result obtain from the study shows that case detection rate should be 

increase to over 70% in order to attain the regional target of reducing 

prevalence and mortality by 50% compared to the levels of 2000. The result 

also indicates that implementation and expansion of DOTS plus programmes 

will have a long term impact on the proportion MDR-TB among preval ent TB 

cases. 
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Therefore, DOTS in combination \vith case detection can lower prevalence 

levels. DOTS is a strategy that focuses on treatmenJ of active T13 cases, a 

complementary approach is preventive treatment through contact tracing where 

.recently infected (but not infectious) contacts of identified TB cases are placed 

on preventive therapy. 

Juan et al (2006) presentcd a model which explores the effect of contact tracing 

on the prevalence level of TB. The analysis shows that treating a small fraction 

of the infected contacts effectively could significantly reduce the incidcnce of 

active TB. 

·2.5 Treatment of Tuberculosis 

1;uberculosis was assumed to have been routed out in developed countries 

surprisingly it resurfaces in the late 1980's and since then it has been a subject 

for many studies. Treatment for tuberculosis is now based on Direct 

Observation Treatment Short-course (DOTS) as approved by WHO to avoid 

the emergence of resistance strain of the bacteria which is difficult to cure. 

Implementation of DOTS ensures that patients take their drugs in the presence 

of health care worker and complete their treatment. 
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In a study on the cffect of DOTS in Nigeria Daniel and Andrei (2007) 

presented a mathematical model far tuberculosis and its dynamics under the 

implementation of DOTS in Nigeria. 

The condition for the eradication of tuberculosis in Nigeria established by the 

model was based on the fraction of detected infectious individual under the 

DOTS treatment. Both numerical and qualitative analysis of the model were 

performed also the effect of the fraction of detected cases of active TB on L1e 

various epidemiological groups was investigated. 

The qualitative analysis shows that there is a disease free equilibrium state and 

is globally asymptotically stable provided the fraction of detected cases 

exceeded a certain critical value. This means that the disease will be eradicated 

if this critical level of detection will be reached, implying that the basic 

requirement for the minimization of the incidence of TB is by increasing the 

detection rate. This assertion was also suppOlted by the result of the numerical 

simulation. 

In an attempt to study the effect of vaccination, treatme\nt and population area 

size on the transmission dynamics of TB in a proportionate mi.xing population 

Umar (2007) propose a mathematical model that incorporates the density 

dependent dynamics of tuberculosis, the effect of trea~ment and vaccination. 
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The study reveals that if the population area size is large the density of the 

susceptible will be small and this will reduce the size of the basic reproduction 

number. Convel sely, a small area willlcad to high density of susceptible. 

The equation 

A> ( 1 J[CfJl + CfJ2 0-] 
kl + lJI + P + /5 It 

(2.5.1) 

describes the sizes of the area (11) required for stability of the disease free 

equil ibriulTI. It was found that if A is greater than right hand side of (2.5.1) the 

- +JL 

[

/1 ] density of the susceptible, 0- A will be small, thus reducing the size of the 

basic reproductive number (the: nl1mber of individuals infected by an infected 

person during his infections peri(.(I), conversely, if A is \ess than the right band 

side or (2.5.1) the dens ity of the sLlsceptible will increase. Consequently, the 

basic reproductive !lumber and infection generated by a single individual wiIi 

be higher this effect could be eliminated with ade~uate vaccination and 

treatment as revealed by the stl dy. The parameters PI is the transmission rate 

of an infected person not vnccinttted, Il2 is the transmission rate of an infected 

person to a susceptible person not vaccinated, () the rate at which sllsceptibles 

are vaccinated, 111 rate of removal of infectives, jJ. natural death rate, kt 
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treatment rate of infectives and c per capita contact rate .. I-Ience they conclude 

that if the population has large area size and employ vaccination and treatment 

adequately, the disease can be eradicated complelely from the population. 

Lipsitch and Levin (1998) use mathematicat models of mycobacterium 

population dynamics under antimicrobial treatment t6 investigate the impact of 

non-compliance, heterogeneity and other factors on the success of treatment. 

The ascent of drug resistance in treated hosts with non-compliance and! or 
./ 

protected compartment of bacteria where only one drug is active was generated 

by prediction with the model. The simulation takes into a~count random 

mutation and growth rate of bacteria in the protected co+partment. 

The model prediction shows that relative rates of killing are important than 

mutation rates in determining the order in which resistance mutants ascend. 

\ 
The prediction of the model in combination with data about drug resistance 

-
patterns, reveal that non-compliance and not heterog~neity IS the cause of 

treatment failure. 

2.6 HIV TB Co-Epidemics 

A co-epidemic occurs when the spread of one infections disease stimulates the 

spread of another infection. 
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· \. 

HlV and TB exhibit Ul1lque symbiosis despite biological differences their 

relationship is synergistic as the presence of one exacerbates the other. HIV 

infected individuals are particularly susceptible to alquiring TB infection 

WHO (2006). An HlV infected individual with latent TB is 50 times more . 

likely to develop active TB in a g!ven year than an HIV uninfecteu individual 

WHO (2006). I 

Elisa et al (2008) develop two covariant of a co-epidemic model of the two 

diseases. The stability criteria for the disease free equilibrium and the quasi-

disease free equilibria (define as the existence of one disease along with the 

complete eradication of the other) were determined. 

They presented an illustrative numerical analysis of the HIV-TB co-epidemics , 

in India which was used to explore the effects cf hypothetical prevention and 

treatment scenarios. 

The numerical analysis shows that exclusively treating HlV or TB may reduce 

the target epidemic but the other epidemic will subsequently exacerbate. The 

analysis also suggest a coordinated treatment effect that include highly active 

antiretroviral therapy for HI V, atent TB prophylaxis and active TB treatment 

as necessary in slowing down tll(' HIV - TB co-epidemic. 
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Simple mathematic3\ model was ueveloped by Bermejo and Richard (2005) to 

study the impac t of HI V epidcmic on TB incidence in developing countries, 
\ 

using figures [rom publi shed reports to estimate the rise ofTB incidence as the 

HIV epidemic expands. The expected increase in T~ incidence and the 

percentage of TB cases that will be HIV positive are plotted against the HIV 

prevalence. 

The study shows that if appropriate action is not taken, TB incidence in 

developing countries will double as the prevalence ofmV infection reaches 13 

per hundred adult. 

Oluwaseun et a1. (2008) presented a paper on a deterministic model on t~le 

synergistic interaction between HIV and mycobacterium tuberculosis. The 

model was simulated to evaluate impact of different treatment strategies. They 

found that HIV only treatment strategy saves more cases of the mixed infection 

than the TB - only strategy. 

Also for low treatment rates the mixed only strategy saves the least number of 

cases (of HI V, TB and the mixed infection) when compared to other strategies. 

The researchcrs then conclude that if resources are limited, then directing such 

resources to treating one of the diseases is more beneficial in reducing new 

cases of the mixed infection than targeting the mixed infection only diseases. 

37 



CHAPTER THREE 

MATERIALS AND METHOD 

3.1 Introduction 

The transmission dynamics of tuberculosis comprises of the following stages . 

. It begins when an infectious person propels TB germs into the air through 

speaking, talking, sneezing or spiting and is inhaled by a susceptible person. 

The bacteria may lodge ill the person's lung and multiply. If the immune 

system in the lung is able to fi ght the bacteria and render it inactive ( vaL ed 

off) the person will develop latent TB whieh is not infectious and does nbt 

harm the host. 

, 
·The person may remain with latcnt TB for as long as possible unless cured by 

treatment with antibiotics. I r the bacteria later become active due to breakdown 

of the immune system the persoll '.-vill degenerate to active TB, at this stage he 

is symptomatic and infectious and can be cured if treated otherwise the person 

may die from the infection. The person when cured becomes susceptiblc as he 

is likely to be re-infected on contact with an infected person. 
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In this chapter, we develop a deterministic model of the dynamics of TB 

disease infection. The population pet) is divided into three compartments. The 

Susceptible class S(t) , the Exposed class E(t), and the infected class /(t). 

P(t) = S(t) + E(I) + J(t). 

The Susceptible class are those members of the population that are not infected 

with tuberculosis, but are likely to contact TB when exposed to infected 

person, the Exposed class E(t) are those members of the population who have 

been infected, but are asymptomatic and cannot infect others. The infeci.ed 

class 1(t) are members of the population that have been infected, symptomatic 

and can infect other during contact. 

'Mere, we describe the dynamics of tuberculosis using a system of ordinary 

differential equations; we obtain the zero and non-zero\ equilibrium states and 

obtain the characteristics equation. 

3.2 Basic Assumptions 

At time t, the following movements occur between the c~mpartments 

(i) Members of the Susceptible class S(I) move into the exposed class E(I) 

due to infection at the rate a . 

(ii) Members of the Exposed class E(I) move into Infected class I(t) due to 

lack of treatment or break down of immunity at the rate r . 
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(iii) Members of the Exposed class E(t) move back into the Susceptible class 

S(t) due to trea tment at the rate 1', . 

(iv) Members of the Infected class I(t) move into the Susceptible class S(t) 

due to treatment/recovery at the rate "2. 

(v) New births are not infec ted at birth hence they belong to the susceptible 

population. 

(vi) Birth rate (rl) and death rate (Jl ) are uniform for the population. The 

infected class has an additional death burden 8 due to infection. 

3.3 The Model Equations 

P(t) - Total population 

P(t) = S(t) t- £(1) + 1(1) (3. 1) 

dS(t) = 

dt 
fJ [S(t) + E(I) + 1(1)] - [of(t)+..uJs(t)+'iE{t)+,~/(t) 

dE{J2 = a 1(1) S(I) - (/1 + r +,.,) E(I) 

dt 

dJ{J2 = r E(t) - (/-, -I- 8 + "2) 1(1) 

dt 
The diagram below shows the dynamics between the compartments: 

r 

Fig 3.1: A flow diagra m for the mode 0 f Transmission or tuberculos is 
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The parameters are defined as follows: 

a = The ratc or contracting TB due to interaction of S(t) and f(t) 

f3 = natural birth rate for the population P(t) 

natural death rate for the population P(t) 

r progression rate from Exposed class E(t) into Infected class 

l(t) due to lack oftreatmentiimmunity. 

= death rate due to TB infection in the Infected class l(t) 

3.4 The Equilibrium States of the Model 

Let S(I) = x, E(I) = y , J (t) = z 

At equilibrium we have that: 

, 
/3(x + Y + z) - (az + I-') x + I'tY + I'2Z = 0 

(/3 - /-' - az )x + (/3 + 1'1 ))' + (/3 + I'2)Z = 0 

From (3.9) we have that: 

YY z = -""'"'--'---
f-l + 0 + 1'2 

Substituting for z into (3.8) gives 
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(3.11 ) 

So either y = a 01' (3.12) 

I.e. 
(J-l + r + 1'1 )(p + J + 1'2 ) 

X = ...:!---.:..-...!...:.....:~----.!:..;... 
ar (3.13) 

From (3.12) when y = 0 and substituting y = 0 into (3.10) we obtain z = 0 

When y = o,z = 0 in (3.7) we have that x = o. 

Hence (x,y,z) = (0,0,0) is an equi librium state. 

When y" 0 , x is given by (3.13) substituting for z and x as gi ven by (3.1 0) 
I 

and (3.13) respectively into equation (3.7) we obtain: 

[ [ 
n' )]I-(P -l-Y-l- J'I XP -l-6-1- J'2)] (fJ ) fJ - p- a . -I- -I-J'I Y 

P-l-6+ J'2 _ a y 

(3.14 ) 
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fJ (p + r + 1"1 XI' + 5 + 1"2 ) (I-' + r + 1'1 Xp + 8 + 1'2) (ayy Xll + r + 1'1 ) 
- I-' -

a r ar (,u + 8 + r2 ) 

(J1 + 5 + " 2 ) + ([3 + 1"1 )y + ([3 + " 2 )Y.J ) = 0 

ay ) I' + c'5 +" 2 

A,u+r+11Xp+8+1).f - "'I-L+r+11XJl+8+1'2f -(arXf-L+y+l1Xf-L+8+f'JJ+aJfp+O+1).X{J+ldy+afM+l'2) 
~~~--~~~~--~~~~~--~~--~~~~~-O 

a}f,,+5+1~) \ -

fJ(f.1 + Y + r1)(J.1 + 8 + r2)2 - l-l(J.1 + Y + 1'1 XI-l + 8 + r2)2 - (aw XJ.1 + r + 'i) 

(f.1 + 8 + r2)+ aY(I-L + 8 + 1'2 XfJ + 1'1)Y + ay2y(fJ + r2) == 0 

i.e. aW(Ji+o + 1'2 XP +rl)+ ay2y(p +r2)-(aw XJi J y+r] XJi+O +'"2)= 

f-L(f.1 + Y + r1 Xf-L + 8 + r2 )2 - fJ(f-L + Y + 1'1 Xf-L + 8 + r2)2 . 

y[aY(Ji'+o +r2 XP + rl )+ay2(p +1'2 )-(ay XJi + r+ '1 XJi+ 0 + r2 )]= 
~(Ji+r+rl XJi+O + r2 f -P(p+r+ 1lXJi+O +r2)2] 

y== 
ay(f.1 + 8 + r2)(fJ +'1)+ ay2 (f3 + '2)- (ay Xf-L + r + rl Xf-L + 8 + r2) 

y _ (Ji + 0 + 1"2)2 [,u(Ji + Y +rl)- p(Ji + r + r\)] (3.15) 
- ay[(f-L + 8 + r2 XfJ + 1'1 )+ r(fJ + 12)- (f-L + r + rl Xf-L + <5 + r2)] 
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+ 

Substituting (3.15) into 3.10 we have that: 

z = ar [ell + 6 + "2 XfJ + r, ) + r (13 + "2 ) - (fl + r + rl Xfl + 5 + "2 )] 

1-'+6+"2 

z - (,Ll + b + r21u (I-' + r + r, ) - 13 (,Ll + r + r, )] 
- a [eLL + 6 + r2 XfJ + 1', ) + r (13 + "2 ) - (,Ll + r + rl Xfl + 6 + r2 )] 

The equilibrium states are: 

(a) The Zero equilibrium state is given by: 

(x,y, z)= (0,0,0) and 

(b) The non-zero equilibrium states are: 

(3.16) 

To obtain the characteristic equation we obtain the Jacobin determinant of the 

system equations which is given by: 

44 



f3 - 11 - az - A 

az 
- (fl + r + rJ - A 

ax =0 

o y 

and the characteristic equation is then given by 

(fJ - f-L - az -AXrat - (,u + r + '1 + AXil + 8 + ''2 + A)j +(p +'1Xaz(p +8 + ''2 + A)] 

+ [([3 + r2 - at Xraz)] = 0 

. (fJ - f.1 - az - A Xrax ) - (fJ - II - az - A Xfl + r + rl + A XfrL + 8 + r2 + A) 

+ (Paz + rJaz X,u +" + /'2 + A) + (p + /'2 - ax Xraz) = 0 I (3.17) 
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CHAPTER FOUR 

RESULTS 

4.1 Stability of Zen) Eq uilibdul1l State 

At Zero Equilibrium state (x,y. z) = (0,0,0) .The characteristic equation 

. (3.17) takes the form: 

(fJ - fL - A )[ (fL + Y + 1'1 + A XI-' + b + 1'2 + A)] = 0 ( 4.1) 

i. e (fJ - /-l - A X,u + Y + 1'1 -I- A Xp -I- b -I- "2 -I- A) = 0 

i.e either (fJ - Ji - A) = () or (Il -I- Y -I- r1 -I- A) = () or (Jl + f + 1'2 + A) = () 
, 

hence, 

(fJ - ,u -- A) = ° 
(4.2) 

Also, if we consider, 

We have: 

(4.3) 

Similarly, 

(4.4) 
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From (4.3) and (4.4) A2<O and A3<O respectively. A,<O if~<J.1, A,>O ifP> p . So 

the zero equilibrium state is stable i r P<J.1 and unstable if otherwise. 

4.2 Stability of the NOli-zero Equilibrium Sta{~ 

At non-zero equilibrium state 

ar 
2 I 

y = (,L1+8+r2) [,L1(,L1 + r + Ii) - p(,L1 + r + rl)] 
ay[(,L1 + 8 + r2)(p + rl) + y(P + r2) - (,L1 + Y + rl)(ll + 8 + 1'2)] 

_ _ (,L1 + 8 + ' '2 X,L1(,L1 + Y + rl ) - p(,L1 + Y + rl )] 
£, - a [(,L1 + 6' + 1'2 XP + 1'1 ) + Y (,8 + r2 ) - (,L1 + Y + rl Xli + 8 + 1'2 )] 

As applied in Bellman and Cooke (1963), the result of Bellman and Cooke 

theorem states that 

Theorem 

Let6(z) =p (z,eZ
) where p(z,w) is a polynomial with principal term. Suppose 

6(iy), y E I, is separated into its real and imaginary parts, 

6(iy)=F(y) + iG(y) . T f all zeros of6(z) have negatives real parts, then the zeros 

ofF(y) and G(y) are real, simple, alternate and 

F (OJG' (O)-F' (O)G(O» a (4.5) 

For y E I, conversely, all zeros of 6(z) will be in the left half-plane provided 

that either of the following conditions is satisfied: 

(i) All the zeros of F(y) and G(y) are real simple; and alternate and 

inequality (A) is satisfied for at least one y. 
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(ii) All the zeros of r( y) are real and, for each zero, Relation (A) is 

satisfied. 

(iii) All the zeros of G(y) are real and, for eacb zero, R.elation (A: is 

satisfied. \ 

(iv) All the zeros of G(y) are real and, for each zero, 

The inequality (4.5) is applied to the characteristic equation (3.17) . We 

consider (3 .17) in the form 

And obtain from (3.1 7) 

H(;1) = ((3 - az - j../ - ;1)(rax) -· ((3 - az - j../ - ;1Xf.1 + r + rl K,ll + S + 1'2 +;1) + 

(fJaz + rl az Xf.1 + 6 + r2 + ;1) + (yaz )(fJ - ax + 1'2 ) (4.6 ) 

setting A = i w we get 

H(iw) = F(w) + iCC i\") (4.7) 

Where F(lI') and G(1\) are the real and imaginary parts of H(ill'). 

substituting A = ill' into (4.6) we btain: 
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' (i~v ) = (fJ - az - J.-L - iwXyax) - (fJ - az - JI - iW)(U + Y + 1'1 + iw Xil + 0 +"2 + ilv) 

+ (fJaz + 1'1 az )(jl + 0 + 1'2 + iw) + (yaz )(fJ - ax + "2) 

= (fJ - az - J.-L - iw) yax - [(fJ - az - It) - iW][(ft + Y + rl) + iw] [(,il + 0 + "2) + iw] 

+ (fJaz + rl az) [(,u + 0 + 1'2 ) + iw] + (yaz XfJ - ax + "2 ) 

= (p - a.z -- fi){yax) - iw(yax) - [(fJ - az - ,t'XJ.1 + Y + 1) + W 2 - iW{Jl + Y + 1'1) 

+ iw(P - a.z - Il)] [(Ii + b' + 1'2 )+ iw] + fJa.z[(fi + 0 + "2) + iw] 

+ "la.z[(fi + c5 + r2) + iw.l + ya.z(fJ - ax + 1'2) 

= (P - a.z - p)(yax ) - iw(yax ) - [(fJ - az - Ii Xil + Y + I) ) + W2 l(Il + 0 + 1"2 ) 

[-iw(ft + Y + 1'1) + iw(fJ - az - Il)](J.-L + 0 + r2) - iw[(fJ - az - Ii) 

(p + Y + r1)+ W
2 ] + W 2

{fl + Y + q) - W
2(fJ - az - Il) + 

fJaz(p + c5 + 1'2) + ilv(fJo.z) + (rlaz)(ll + c5 + 1'2) + iw(r)az) + yaz(fJ - ax + 1'2) 

= (fJ - a.z - p)(yax) - hv(yax) - (;3 - az - Jl 'XJl + Y + 1') )(,Ll + 0 + r2) + W 2 (p + c5 + 1'2) 

- iW{J1 + 0 + 1'2 )(p + Y + 1'1) + illl(fi + c5 + "2)(13 - az -11) - iw(fJ - a.z - Ii) 

(/l 4- y + 1'1) - iw3 + w 2 (J-l + Y + 1'1) - W
2 (fJ - a.z - /l) + Pa.z(fi + 0 + 1"2) 

+ iw(fJaz) + r)a.z(ll + c5 + 1'2) + iw(rJaz) + yaz(fJ - ax + r2) 

we obtain F(w) and G(w) of equation (4,7) from (4.8) as follows 

pew) = (/3 - az -1I )(rax ) - (fJ - az - 11)(11 + Y + rl)(11 + 0 +''2) + w2 
(Jl + 0 + 1'2) 

+ w 2 (,it + y + 1'1) - w
2 (;3 - az - J.-L)+ fJazC!t + 0 + 1"2) + 'laz(,Ll + 0 + 1'2) 

+ yaz(fJ - ax + 1'2) 

J(w ) = w(fJ - az - ,Ll)(p + 0 + 1'2) - w(yax) - W(ft + 0 + 1'2 )(Jl + ~ + rl) - w(fJ - az - ft) 

(ft + y + 1'1) - w3 + w{;3az) + W(1'1 az) 
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G '(w) = (,8a z)+ (I", az )- (yax )- (I' + 8 + r2 XJ1 + r + rd

eu + r + r, X,8 - az - I' ) - 3 lV 2 

Setting l\I = 0 

F (0) = (/3 - az - ,u )(yax ) - (/3 - az - Jl XII + Y + 1'\ xP + 8 + 'i) + (paz xP + 8 + 'i ) 

+ (1'\ az )(J-I + J + ' i ) -I- (yaz XfJ - lJ_ + ' '2 ) 

F'(O) = 0 

G'(O) = (,8az) + (1', az ) - ()lax) - (Ji + 8 + 1'2 )(f.1 + r + r)) 

- (,8 - az - 1-')(1-' + Y + ,., ) 

G(O) = 0 

(4.9) 

(4.10) 

( 4.11) 

( 4.12) 

We have from the Bellman and Cooke's theorem (Bellman and Cooke (1963)) 

that: 

The condition Re A < 0 ; is given by the inequality: 

F(O)G'(O) - F'(O)G(O ) > 0 (4.13 ) 

The equation (4.13) is the stability condition for the non zero equilibrium. 

But from (4.10) and (4.12) we have F'(O) = 0 and G(O) = 0 

. Hence equation (4.13) becomes \ 

F( O) G'(O) > 0 (4.14) 

Let J = F( O) G'( O) (4.15 ) 
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Then non-zero state will be stable when 1>0. The stability condition (4.14) 

lS tested with hypothetical parameter values and the results obtained are 

shown in table (4 .1) below: 

Table 4:1 Numerical Simulation for the Stability Analysis of Non-zero 

equilibrium state using hypothetical parameter values with Ms Excel 

II ~l a y 0 r, r, F(O) G'(O) J Remark 

0.02 0.0 15 0.00 1 0.15 0.0 1 0.1 0.0 1 -00000000055893 -00 1987 13 0.0000000055 893 stable 

-- -- --
0.02 0.0 15 0.002 0.15 0.0 1 0. 15 0.02 -0.000000009 1203 -0.0299 166 0.000000009 1203 stable 

--- --
002 0.015 0.003 0. 15 0.0 1 0.2 0.03 -0.0000000 I 14074 -004196 10 0.0000000 114074 stable . 

--
0.02 0.015 0.004 015 0.0 1 0.25 0.04 -0.0000000 128059 -0.0560044 0.0000000 128059 stable 

-
0.02 0.0 15 0.005 0. 15 0.0 1 OJ 0.05 -0.0000000 134798 -0.0720468 0.0000000 134798 stable 

0.02 0.015 0.006 0.15 0.0 1 OJ5 0.06 -0.0000000 135 124 -0.0900882 0.0000000 135 124 stable ~. 

0.02 0.0 15 0.007 0.15 0.0 1 0.4 0.07 -0.0000000 129493 -0. 11 0 1286 0.0000000 129493 stable 

---
002 0.015 0.008 0. 15 0.0 1 0.45 0.08 -0.0000000118173 -0 .132 1680 0.0000000 11 8 173 stabk I 

0.02 0.015 0.009 0. 15 0.01 0.5 0.09 -0.0000000 I 0 1 3~5 -0. 1562064 0.0000000 I 0 1325 stable 

0.02 0.0 15 0.01- 0. 15 0.01 0.55 0.1 -0.000000007905 1 -0.1822437 0.000000007905 I stabl e 

- '------- ---- '-

• 
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CHAPTER FIVE 

DISCUSSION OF RESULT, CONCLUSION AND 

RECOJVl MENDATION 

5.1 Discussion of Result and Conclusion 

We observe from (4.2) tbat thc zero equilibrium state is a state of population 

extinction, will be stable if the bilih rate is unusually less than the death rate. 

However since thc eigcnvalues are not all negative we conclude that the zero 

equi libri um is ul1stab I e. We observe frolll Tabl e (4.2) thait when Ihe recovery 

rate for the latent class (rJ), the recovery rate for the active class (r2)and the rate 

of infection of Tll (0) arc varied li·om low values 10 hiih values J remains 

·positive for both low and high values since the values are greater than zero we 

con,elude that the non-zero equilibriulll is stable, the st~bility of non-zero 

equilibrium implies that treatment of 1 B at both latent and Active stage is an 

effective treatment strategy that could Icad to the control and possibly the 

eradication of the disease hcnce the population is sustainable. 

5.2 Recommendations 

Tuberculosis is an airbornc disc( . e and therefore prevention and control of 

tuberculosis could be achievcd if the following measures are adopted. 

1. Avoid and prevent over crowd ing in homes, rooms and dwellings 
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2. Prevent or control exposure to infected animals such as cattle, birds, 

dogs, cats and in rected persons. 

3. Keep the immune system healthy by avoiding drugs and alcohols as they 

suppress the immune system. 

4. Ensure good, adequate hygiene measures. 

·5. Adequate ventilation system should be provided in rooms and public 

shelters. 

6. Preventive vaccines such as the Bacillus Calmette duerin (BCG) should 

be administered to particularly children. 

7. It is important for individuals to cover their mouth with handkerchief 

when they sneeze or cough in public places. 

8. ' The town planning authorities should ensure that adequate spaces are 

provided between houses during allocation of plots. 

9. All immigrants should be s reened for tuberculosis. 

10. In health-care settings, high efficiency particulate air (HEPA) filters 

should be provided in rooms where TB patients are kept. 

11. Health-care workers should be provided with respiratory protective 

devices. 

12. Healthcare workers should be given periodic training and education on 

care of patients with TB. 

, 
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13. All health-care centres involve in TB treatment should adopt the Direct 

Observation Treatment Short-course (DOTS) str~tegy for treatment of 

patients. 

14. Government should create awareness and sensitize the public on 

\ transmiss ion and spread ofTB. 

15. Government should embark on contact tracing for newly infected 

individuals, so that they can be placed on anti-TB therapy immediat('ly. 

16. The model inves ti gates the stability or otherwise of a single-strain (drug 

sensitive-type or TB only), the model can be extended to investigate 

two-strain TE (the drug sensitive and non-drug sensitive) for stability or 

instability. 

.. 
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