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ABSTRACT

In this work, we applied the unconstrained non-gradient optimiza-
tion algorithms of Spriet-Baron and Coggins to solve the Submerged
Sewage Dispersion Model and compared the output results of the two
algorithms alongside with an analytical solution. The output results
show that both methods attain the global minimmm at 2.1 x 107, In
doing so, the number of iterations for the Spriet. Baron is 184 while that.
of the Extended Coggins is 12. This shows that the Extended Coggins
algorithm is a better algorithm for the Sewage Dispersion model con-
sidered in this work as it converges much faster.
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CHAPTER ONE

INTRODUCTION TO OPTIMIZATION THEORY

1.1 PREAMBLE

The evolution of optimization theory originates among many oth-
ers, with economic problems and game theory where optimal strategy
was to be described mathematically.

Stephenson (1971), postulates that the activity of man is developed
enlirely trying to optimize the various situations he finds himselfl. In
the light of this, optimization can be defined as the art for determining
the best decision in a given set of circumstances.

Optimization is a field of applied mathematics consisting of a col-
lection of principles and methods used for the solution of ¢nantitative
problems in many disciplines: physics, biology, engineering, economics,
business and others. Mathematically, the purpose of optimization is
to find the best solution to a given problem (which may also include a
number of limiting constraints). This mathematical area, optimization,
grew from the recognition that problems under consideration in man-
ifestly many fields could be posed theoretically in such a way that a
central store of ideas and methods could be used in obtaining solution
for all of them.

A typical optimization problem may be described in the following
way



lixample

There is a system, such as a:physical machine, a set of biological
organism or a business organization whose behavionr is determined by
several specified [actors. The operation of the system has a goal as
the optimization of the performance of this system. The latter is deter-
mined at, least in part. by the level of the factors over which the operator
has control; the performance may also be aflected however by other lac-
tors over which there is no control. The operator secks the right levels
for the controllable factors that will optimize, as far as possible, the
performance of the system.

For example, in the case of a banking system, the operator is the
governing body of the central bank; the inputs over which there is con-
trol are interest rates and money supply; and the performance of the
system is deseribed by economice indicators of the economic and politi-
cal units in which the banking system operates.

The first step in the application of optimization theory to a practical
problem is the identification of relevant theoretical components. This is
often the most diffienlt part. of the analysis, requiring a thorongh ninder-
standing of the operation of the system and the ability to deseribe the
operation of the system in precise mathematical terms. Generally, on
the development of optimization technigue one begins the construetion
of such a method, according to Polak (1971) by inventing a conceptnal
algorithm.

Then one modifies this conceptual process in such a way as to reduce
cach of its iteration to a [inite number of digital computer operations.
That is, one reduces it, to an implementable algorithm. To achieve this
objective, in an effective manner, one has to use an adaptive or closed
loop method for truncating at. least, some of the infinite sub procedures.
This approach has the advantage of avoiding a greal, deal of time put.

2



into very precise calenlations when one is still quite far from the optimal
point. that one is trying to find. To make matters worse, the resulting
algorithm may fail to converge. Bonday (1984) supported this same
view point. by saying that it is not. always economical to do a thorongh
lincar search. All that is necessary, he said, is to obtain a reduction in
the function value. At the first sight, this may seem rather erude. The
compntation to find the minimam in this direction might be consid-
crable. Again he stated that practical experience with these types of
problems shows that it is just. not, worthwhile. e t herefore presumed
that what. we lose on the aceuracy swing al, this stage we make up for
on the progress Lo the minimmm via changes in direction ronndabouts.

Looking at example one, the main theoretical components are the
system, the inputs and outputs, and its rles of operation. The system
has a set of possible states at each moment in the life of the system,
it is one of these states, and it changes from state to state according
to certain rules determined by inputs and ontputs. There is a nmumeri-
cal quantity called the performance measure, which the operator seeks
to maximize or minimize. It is a mathematical fnction whose value
is determined by the history of the system. The operator is able to
influence the value of the performance measure throngh a schedule of
inpnts. Finally, the constraints of the system must be identified; these
are the restrictions on the inputs that are beyond the control of the
operalor.

I'rankly speaking, the modern large scale digital computer has given
a great impetus to compntational procedures of solving large class of
optimization problems.



1.2 NUMERICAL OPTIMIZATION PROBLEM

Many problems involve finding the best, in some defined respect, of
many possible solutions. The best solution might be the one leading
to the lowest cost, the largest profit or the shortest route in a journey.
Such problems are ones of opltimization. Becanse of their cconomic im-
portance, their effective computational solution is extremely important..

1.2.1 STATEMENT OF AN OPTIMIZATION PROBLEM

(i) FOR AN UNCONSTRAINED PROBLEM

The mathematical problem is to find a set of values x; such that
F'(r;) is as small (or as large) as possible. Simply put: IMind

I
T2

which minimizes F'(x).
(ii) FOR A CONSTRAINED PROBLEM

The mathematical problem is to find a set of values a; such that
F(x;) is as small (or as large) as possible. Simply put: Find

rn
T2
Tn

which minimizes F'(x).



Subject to the constraint.:
Glx)<t; =12 ...;m

Li()=0; j=1,2 ....,p

Where = is an n-dimensional vector called the design vector, i.e. x;
means the set of all x;; 7 — 0, 2, ... n.

The function F or F(x) represents the cost or other value to be
optimized and it is called the objective function. And the problem is
nsnally defined so that the cost (objective) is to be minimized. g;(x)
and 1;(x) are, respectively, the inequality and the equality constraints.

The number of variables n and the number of constraints m and/or
p need nol, be related in any way.

In most optimization problems, the objective function I' depends on
several variable, x,,x,,...,x,. These are called the control variables
because we can control them, that is, chose their value. Generally,
in any optimization problem the objective is to optimize (maximize
or minimize) some function f. This function is called the objective
function. Optimization theory develops methods for optimal choice of
Ty, Ta,...,T, which maximize (or minimize) the objective fnction f.
that is method for finding optimal values of @y, xy, ..., x,,.

1.2.2 CONSTRAINED/ UNCONSTRAINED VARIABLES

In many problems the variable z; (i.e choice of values of 2y, @o, ... ,z,
) are not, entirely free but are subject to constraints, that is additional
conditions arising from the nature of the problem and the variable.



These constraints can be equality constraints, or both. They take
the form '
q;(zi) =0, j=1,2,...,pfor equality constraints and gi(z;) > 0, k =
1,2,...,m for inequality constraints. Fither or both of p and m can be
zero, meaning Lhat. there are no constraints in that class.

1.2.3 LINEAR PROGRAMMING

The objective function and the constraints may be linear or non-
linear. If both are linear, the problem belong to the speciality called
linear programming,.

A linear programming is defined as the minimization of a linear ob-
jective function whose variable satisfy a system of linear inequalities.

Linear programming or linear optimization consists of methods for
solving optimization problems in which the objective function I' is a
linear function of control variables x,z3,...,7, and the domain of
these variables restricted by system of linear inequalities. Problems
here can also involve thonsands of variables and require the solution of
numerous linear equations at each step ol an iterative process.

1.2.4 NON-LINEAR PROGRAMMING

Non-linear programming are those in which either the objective
function or at least, one of the constraint function is non-linear.

6



1.2.5 MATHEMATICAL PROGRAMMING

Both linear and non-linear programming falls under the specificity,
referred to as mathematical programming. Mathematical programming
may be deseribed in terms of its mathematical strueture and computa-
fional procedures or in terms of the broad class of important. decision
problems which can be formulated as the minimization (maximization)
ol a lunction of several variables thal, are subject, to system of side con-
straints.

1.3 DEFINITION OF TERMS

Definition 1.3.1 — DESIGN VECTOR

This is described by a sel, of quantities some of which are viewed as
variables during the design process.

Definition 1.3.2 — PREASSIGNED PARAMETERS

These are the quantities thal, are usnally fixed al. the oulset, in any
engineering system or components.

Definition 1.3.3 — DESIGN OR DECISION VARIABLE

These are the quantities that are treated as variables in the design
process in any engineering system. The design variables are collectively
represented as a design vector, thus:

T
T2



Definition 1.3.4 — DESIGN CONSTRAINTS

In many practical problems, the design variables cannot, be chosen
arbitrarily; rather, they have to satisfy certain specified functional and
other requirements. The restrictions that. must be satisfied in order to
produce an acceplable design are collectively called design constraints.

The constraints which represent limitations on the behaviour or per-
formance of the system are termed as behaviour or functional constraints.

The constraints which represent. physical limitations on the design
variables like availability, fabricability and transportability are known
as geometric or side constraints.

Definition 1.3.5 - OBJECTIVE FUNCTION

Note that, the conventional design procedure aims at finding an ac-
ceptable or adequate design which merely satisfies the functional and
other requirements of the problems. In general, there will be more than
one acceptable designs and the purpose ol optimization is to choose the
best one out of the many acceptable designs available. Thus a crite-
rion has to be chosen for comparing the different, alternate acceptable
designs and for selecting the best one. The criterion with respect to
which the design is optimized when expressed as a function of the de-
sign variables is known as the criterion or merit, or objective fanetion.

Definition 1.3.6 — OPTIMIZATION TECHNIQUE

The various technique(s) available for the solution of optimization
problem(s) are classified nnder the heading mathematical programming
technique (also known as the optimum secking methods). These tech-
niques are useful in finding the minimum or maximum of a function of



several variables under a preseribed sel of constraints.
Example of such classification includes the classical methods of dif-

ferential calenlus which can be uised to find unconstraint. maximum or
minimum of a function of several variables.

1.4 CLASSIFICATION OF OPTIMIZATION PROBLEMS
Generally, optimization problems can be classified as follows:

1.4.1 CLASSIFICATION BASED ON THE EXISTENCE
OF CONSTRAINTS

As already stated, any optimization problem can be classified as
a constrained or unconstrained one depending upon whether the con-
straints exist, or not, in the problem.

1.4.2 CLASSIFICATION BASED ON THE NATURE OF
DESIGN VARIABLES

Taking into cognisance the nature of design variables encountered,
optimization problem can be classified into two broad categories, viz:

Category 1
The problem is to find values Lo a sel. of design parameters, which

make some prescribed function of these parameter minimum subject to
certain constraints.



Category 11

The objective is to find a set of design parameters, which are all
continuous functions of some other parameter, that minimize an objec-
tive function subject to the prescribed constraints.

1.4.3 CLASSIFICATION BASED ON THE PHYSICAL
STRUCTURE OF THE PROBLEM

Considering the physical structure of the problem, optimization
problem can be classified as optimal control and non-optimal control
problems.

Two types of variables usnally describe an optimal control problem,
viz:

(i) The control (design) variables

(ii) The state variables

The control variables govern the evolution of the system from one
stage to the next and the state variables deseribe the behavionr of the
system in any stage. Clearly stated, the optimal control problem is a
mathematical programming problem involving a number of strategies,
where cach stage evolves [rom the stage in a preseribed manner.

Optimal control problem are stated as follows:

Find the set of control or design variables such that the total ob-
jective function over the I, number of stages is minimized subject to
certain constraints on the state and control variable. i.c.

10



I'ind £ which minimizes

L
F(z) =) filzi, %)
T =0
sibject to the constraints

@z, W) =415 =125

_qj(:r.j) S 0, ] == 1,2,...,]1

and

he(ye) <0; k- 1,2,...,L

where
x; is the i™ control variable;
yi is the i*" state variable;

; is the contribution of the i*" stage to the total objective function :
g J ;

g; hr and q; are functions of x;, yi; and x; and y; respectively.
g7 y IR 1 . .

1.4.4 CLASSIFICATION BASED ON THE NATURE OF
EQUATIONS INVOLVED

This classification is based on the nature of the expression for the
objective function and the constraints. Here, optimization problems
can be classified as:

(i) Linear programming problems
(ii) Non-linear programming problems
(iii) Geometric programming problems

(iv) Quadratic programming problems

11



This classification is extremely useful from the computational point
of view since there are many methods developed solely for the efficient,
solution of a particular class of problems.

(i) LINEAR PROGRAMMING PROBLEM

If the objective function and all the constraints in equation 1.2.2 (a
and b) are linear functions of the design variables, the mathematical
programming problem is called a linear programming (LP) problem. A

linear progrmming problem is often stated as [ollows:

['ind

T

which minimizes

- subject to the constraints

n
* P ‘ ’
Z By = by J = 1,841
k=1

ande; >0 1=312....,0
where ¢;, aj and b; are constants.

(ii) NON-LINEAR PROGRAMMING PROBLEM

If any of the function among the objective and constraints function
1.2.1 a and b is non-linear, the problem is called a non linear program-
ming problem (NLP).



(ili) GEOMETRIC PROGRAMMING PROBLEM

A geometric programming problem (GMP) is one in which the ob-
jective function and constraints are expressed as posynomials in .

Definition

A fanction h(x) is called a posynomial if h can be expressed as the
sum of power terms of the form:

e /1 a/2 na/n
Ciy; Ty , Ty a---a'rn/
where ¢; and a;; are constraints with ¢; > 0 and x; > 0

Thus a posynomial fuction can be expressed as

H{z) = cx{"23"™ ...23"

Thus the GMP problem can be stated as follows:
Find x which minimizes

Nc
. Flz)=Y o[l,2]; a>p, 2,50
$=1

subject to

Nj
gi(x) = ay; [H;‘,f,.r:“‘] <0 §=12,...m
i

where N, and N; denote the number of posynomial terms in the
objective and j constraint function respectively.

13



(iv) QUADRATIC PROGRAMMING PROBLEM
A quadratic programming problem is a non-linear programming
problem with a quadratic objective function and linear constraints. The

problem is formulated as follows:

I'ind » which minimizes

F(z) =c+ ) _qmi+ .Y Qi
i1

=173=1

subject, to
L
Za.ij:n; =g F=1L8...00 520 i=12.i..4n
i1

where ¢, gi, Qi; and b; are constants.

1.4.5 CLASSIFICATION BASED ON THE PERMISSIBLE
VALUES OF THE DESIGN VARIABLES

Depending on the values permitted for the design variables, opti-
mization problem can be classified as follows:

(i) Integer programming problems

(ii) Real-valued programming problems

(i) INTEGER PROGRAMMING PROBLEMS

If some or all of the design variables oy, x2, ..., 7, ol an optimiza-
tion problem are restricted to take only interger (or discrete) values,
the problem is called an integer programming problem.

11



(ii) REAL-VALUED PROGRAMMING PROBLEMS

Il all the design variables are permitted to take any real value, the
optimization problem is called a real walned programming problem.

1.4.6 CLASSIFICATION BASED ON THE

DETERMINISTIC NATURE OF THE VARIABLES
INVOLVED

Based on the deterministic nature of the variables involved, opti-
mization problem can be classified as deterministic and stochastic pro-
gramming problems.

This is an optimization problem in which some or all of the parame-

ters (design variables and/or preassigned parameters ) are probabilistic,
stochastic or deterministic as the case may be.

1.4.7 CLASSIFICATION BASED ON THE
SEPARABILITY OF THE FUNCTIONS

Based on the separability of the functions (objective and constraints),
optimization problem can be classified as

(i) Separable programming problem

(ii) Non-separable programming problem

(i) SEPARABLE PROGRAMMING PROBLEM

A function F(x) is said to be separable if it can be expressed as the
snm ol n single variable function fi(x), fo(x), ..., fa(x), ic.

F(z) = Y fi(x)
t=1

15



A separable programming problem is one in which the objective
function and the constraints are separable and can be expressed in
standard form as

Find £ which minimizes

Fr) = 3 i)

subject to

n
("j(.’ﬁ) Z.‘Iij(m,') < bj; ) I, 2, 1L
§=1
where b;’s are constants.

(i) NON-SEPARABLE PROGRAMMING PROBLEM

A non-separable programming problem is one in which the objec-
tive function and/or the constraints are non separable.

1.4.8 CLASSIFICATION BASED ON THE NUMBER OF
THE OBJECTIVE FUNCTIONS

Depending on the number of objective unctions to be minimized,
optimization problems can be classified as single and mnlti objective
programming problems.

A multi-objective programming problem can be stated as follows:

Find z which minimizes

Fi(z), Fy(z), ..., Fi(z)

subject to
9i(z) £0,j=1,2,...m

16



where F, F5, ... K} denote the objective functions to be minimized
simultaneously.

1.4.9 GENERAL APPRAISAL OF OPTIMIZATION
THEORY

As noted earlier on, the first step in the application of optimization
theory to a practical problem is the identification of relevant, theoretical
components, that is:

(a) a thourough understanding of the operation of the system; i.e.
conceptual algorithm.

(b) the ability to describe the operation of the system in precise math-
ematical terms i.e. Implementation algorithm.

The next step is the choice of an appropriate method to be used.
However, the method used for solving most optimization problem are
often grouped as gradient and non-gradient methods. The gradient
method requires function and derivative evaluation while the non-
gradient, method requires function evaluation only. These are further
claborated as follow:

Most. methods for solving constrained optimization problem employ
the first and sometimes the second partial derivatives of the objective
finction.  The choice of such method is clear becanse for example,
first. and second derivatives of a function define its gradient. and cnrva-
ture and thereby determine the existence and location of the extremum
which solves the problem under consideration.

However, in practical optimization problem, it frequently occurs
that the evalnation of the function and constraints involve a lengthy
and complicated calenlation and as a consequence it is diffienlt or even
impossible to derive explicit expression for the required derivatives by

17



means of finite difference approximation. However, the use of this ap-
proach can infroduce truncation and or cancellation errors which may
nullify the theory underlying the chosen algorithm and lead the search
astray so that it converges to the solution only very slowly.

An alternate approach to the nse of finite difference is Lo employ an
optimization procednre which does nol eall for derivative valnes. Snuch
non gradient. methods are termed DIRECTT SEARCH MEETHOD. The
diveet search strategies for generating a sequence of improving approx-
imation to the solution are based simply on comparison of fnetion
valnes, and generally thongh not always, methods are heuristic in na-
ture having little or no mathematical basis. By their nature, they make
only very limited assumption about the function and generally no more
than continmity so as a result they have a very wide field of applica-
tions. Thus not only can they be used in problems for which differen-
tiation is diflicult but also for those cases where it may be appropriale;
derivatives are discontinnons, or when the fmnetion values are subject
to errors. These are situations in which gradient. based methods can
prove ineflective or ineflicient. Most, of the direet methods are litile
alfected by such diflienlties.

I'urthermore, because of their lack of assumption about the func-
tion, they can prove more reliable and stable than the gradient based
methods, or most. of them, because of their lack of a basis, and hence
assumed inefliciency, one should not, ignore them from practical point
of view.
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1.5 AIM AND OBJECTIVE OF THE STUDY

The aims and objectives of the study are:

1. 'To review the direct scarch technigne of Spriet. and Baron for the
submerged sewage dispersion model.

2. To review the Coggins optimization algorithm for the submerged
sewage dispersion model.

3. To find the most efficient. line search algorithm in attaining the min-
imum for the submerged sewage dispersion model.
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CHAPTER TWO

SUBMERGED SEWAGE DISPERSION MODEL

2.1 THE SPRIET-BARON MODEL

2.1.1 INTRODUCTION

Most urban communities located on a sea shore utilise or consider
ntilising a deceptively simple system of disposal of their sewage wa-
ter after a rongh preliminary treatment (sedimentation), the liquid is
pumped to a linear diffusor enclosed on the sea floor, al, several kilo-
meters from the shore under a submergence of some 50 meters. The
diffusor itself is a Sparger pipe, 2 to 4 meters in diameter, and pierced
with equidistant side holes of 5 to 10 centimeters diameter. When the
sea current is nanght, the buoyant, Jets formed at the side holes unite
near the diffusor into a linear vertical buoyant, plume whose behaviour
was studied in great detail for the case of Laminer flow [1] and for that
of turbnlent. flow |1, 2|. It has been shown for instance, that the max-
imum density difference between sea water and the plume decreases
assymptotically (when the distance to the diffusor, y, decreases) like

-3/5 r1/5
Y 3/ }'n/

for Laminar flow and like
2/3
y 'Ky

for turbulent, flow.

As the submergence is finite, these plumes are eventnally deflected
into horizontal buoyant plumes either at the sea surface or at the level
of a thermodine if the flux of density difference per unit length of dif-
fusor, Fy, is small enough.
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The structure of these horizontal buoyant plumes has not yet been
thoroughly investigated, and therefore prevailing design methods of
marine sewage disposal system [6] take only the dispersion in vertical
plumes into account. The Spriet-Baron model gives the main results
for the case of linear Laminar horizontal buoyant plumes.

2.1.2 THE CONSERVATION EQUATION

When the Bousinesq hypothesis (which allows one to study the ef-
feets of Buoyaney) pertaining to natural conveetion in a gquasi incompressible
(partly constant density) flnid applies, the momentum and energy equa-
tions respectively assnme the following form for bi dimensional flow [0x
is horizontal, Oy is v(‘l‘l,i('all:

O, ) 00 1

——— T e——— 2
Nz, y) o ' ;71_/2A v (2.1)
) = FaEte 2.2

oz, y)  PGyY?
where
¥ = Stream function
O = reduced density diflerence
(i, — Grashol number defined as the ratio of buoyant to Lo viscous
forces given as

g = To) L
2

£ls

where
3 = Temperature coeflicient of volume expansion
Ty — Ty = is a characteristics temperature difference of the system.
I, = characteristic dimension
p = mass density
it = absolute or dynamic viscosity
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~ g — gravity
P, — Prandtl number which is the ratio of diffusivity of momentum to
the diffusivity of heat.
e,
r Y
¢p — specific heat al, constant, presure
k = the thermal conductivity

P =

The plumes considered by Spriet. Baron model are infact Prandil
boundary layers along the 0Ox axis. To [ind their assymplotic solution
for (+,, — oo in the vicinity of y — 0 (inner solution), one has to stretch
y and W as [ollows:

y = yGy° (2.3(#))
v = gGye (2.3(i1))

The fundamental term in the inner solution satisfies then

P L\ S S0\ A 1\ (3 2R\ DO O
Y 0rdoY?  Dx Y3 Dr | OYA

(2.4)

VOO OWIO 1 9O

Y dr oz oY  P.oy?

The inner solution will be valid to

(2.5)

v 1/10
oG, ')

However, the The Spriet-Baron model in investigating the behaviour
of horizontal bnoyant plumes consider those plumes formed at the sea
surface, on the sea floor and the case where the plume is submerged at
the level of a thermocline.
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2.1.3 SUPERFICIAL HORIZONTAL BUOYANT PLUMES

When the plume is formed at the sea surface the solution of (2.4)
and (2.5) must satisfy the following boundary conditions:

Y -0, W0 (2.6)
(which means that the surface is a stream line.)

R\l
ay?

0 (2.7)

(which implies that no shear stress at, the surface).

00
— =0 :
5% (2.8)

(which implies that there is no heat flux to the atmosphere).

o

Y -
% By

-0 (2.9)

(this means that there is no velocity in the x direction far from the
surface). © = 0 (no effect on specific mass far from the surface) (2.10)

The problem admits the following similarity solution:

v = VE[(), © - —};g(m (2.11)

where the similarity variable is
n=—7= (2:12)

The function f and g satisfy the system

1

Loon
J" = 58" — 5n9 (2.13)
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, P
g —7[0 (2.14)

and the boundary conditions

n-0, f=f" 0 (2.15)
=0, [ =8 (2.16)
Moreover, to completely-determine the solution the enthalply flux
is normalized: Be o
/ Uedy / ['gdn = 1 (2.17)

This problem was solved with an optimization scheme [5]. For mn-
merical integration a Ath order Runge Kutla Gill method was nsed.
It is possible to check that the numerieal solition is correet for large
values of Prandtl (the assymptotic solution is casily fonnd); for instance

lim g(n) = g(0) exp [:i’rTfl_(Q_).n'z} (2.18)

oo

. g9(0)y//(0) 1 = 8

lim = (2.19)
Pr—o0 v P,- 2\/1_r

It is worth remarking that the dilution along the surface is by no

means negligible. ©(0) varies like 2 '/2 I';','/ﬁ, while the superficial ve-

e th y 1/3
locity is independent. of x (and proportional to H,/ ).

and

2.1.4 HORIZONTAL BUOYANT PLUMES ON THE SEA
FLOOR

Il instead of urban sewage water one wonld pump some dense indus-
trial effluent to the distributor, the boundary layer would now spread
on the sea floor. The velocity field and density difference field are again

given by (2.4), (2.5), (2.6), (2.8), (2.9) and (2.10) instead of (2.7).
ov

P s )], . o
\ oY

) (2.20)
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(which means that the velocity is zero on the sea floor). The similarity

solution (2.11), (2.12) still applies
v =z f(n)

and

%g(n)

where [ and g are given by (2.13) and (2.14) but, under the bonndary
condition

O =

=0, [=0, 0 (2.21)
g=o8, =0 (2.22)
and with the conservation equation for the enthalpy flux
[ fgdn (2.23)
The assymptotic solution for P, — oo is such that
F.J"0
lim g(n) = g(0) exp ———f‘—(—ln"’ (2.24)
Pr—o00 12
> O )
. g 3 "
”I’nn‘o TREE E 2([2)2/3] (2/3) (2.25)

2.1.5 HORIZONTAL BUOYANT PLUMES SUBMERGED
AT THE LEVEL OF A THERMOCLINE

When the sea density increases with depth one says that the sea is
stably stratified. A vertical density profile then typically displays two
or more plateanx some 10 to 100 metres deep separated by transition
zones of only 1 meter depth, the thermoclines. If a vertical plume
reaching a thermocline has lost enough buoyancy underway it will be
deflected horizontally and feed a so called submerged sewage field. To
model this field, suppose that a known flow of lignid of density equal to
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the mean density between those of the adjacent plateaus is injected at
the level of the (infinitely thin) thermoclines. The resulting plume will
be symmetric with respect to Ox and the equation describing this free
shear boundary layer are again (2.4), (2.5) with the boundary condition:

Y 0, Psi 0 (2.26)

0x is a streamline;
L S 9.27
AY'? ' (2.27)

the horizontal velocity profile is symmetric with respect to Ox.

0=0 (2.28)
by symmetry.

v

— =0 2.29

ay ) ( )

far from the plume the velocily is purely vertical.
6=1; (2.30)
density is given.

Adapting Schichtings |7] solution for the linear isothermal Jet, and
look for a Blasius- Howarth [8] expressio‘fsn of the

W= X33 X3 (n) (2.31)
i=0
0 =3 X"g(n) (2.32)
i=0

where the similarity variable is:

(2.33)



the fundamental terms of these expansion are
Jo — 6atanhan (2.34)

: 1
Nl gnal 2
o [( osh m)] dn

9o : - (2.35)
g [(:osh”’ » m)] l dn
where « is related to the momentum flux by
o0 .
M =2 / U2dY — 48pa® (2.36)
0

For the practical case of disposal of nrban sewage in the sea water,
the density difference is essentially due to the concentration difference
in sodium chloride. The interesting pollutants might. be present in
minute concentrations and would then diffuse through this plume, but
withont disturbing its density or its velocity field, if concentration of
siuch a pollutant is C, a solution of the following form exists

C = X"13Y X®/p,(n) (2.37)
i=0
satisflying
oC OV IC OV 1 &AC
e — e L 2.38
OX Y JYoX S, 0Y? A5
oC
Y =0, =—=0 2.39
by symmetry.
¥ =00, T=0 (2.40)
the dilution far from the plume is complete.
It is easy to show that the fundamental term in (2.37) is
(
hy = — ) (2.41)

5.
cosh®>* am
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2.1.6 OPTIMIZATION TECHNIQUE

Boundary value problems can be solved using an optimization scheme.
The expression :

o0 2

oo ([ fraan=1) v anri(oo) (2.42)

2 o0

for instance is a suitable objective function for the solution of (2.13),
(2.11), (2.16), (2.17). For the case of analog. Integration in a hy-
brid confignration, machine noise disturbes the correct evalnation of
the eriterion function if the partial derivative cannot be determined
analytically, the numerical evaluation of the derivative is jeopardized
by noise. A good and fast. direet, search technique is preferable. The
method chosen here is modified rotating coordinate technique. The al-
gorithm has been provided for an eflicient, line search for determining
the minimum point in a given direction.

Line Search

The line search is a combination of direct, search and curve fitting in
such a way that under fairly general conditions, convergence to the
minimum is guaranteed [9].

Let X, be the present. point, d, the direction of the search and oy
a given step. Following function evalnation are done:

J(Xg tandy), [(Xp + 200dy), [( Xy | Aowdy)

till three points X; — X, | oqd,

Xo = Xi + aod;,
X3 = X + azd,

are obtained which satisfy the condition

[(Xy) > [(X2) < [(X5)
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If the function f(X) is strictly unimodal in the given direction the
coordinate ay, of the minimum point. X, | a,,d, will be the interval
(v, vp). Then a enrve fitting procedure is started which does not. re-
quire derivatives.

A quadratic

1 i(ce — o))

3
(0 — ;) ’
gla) = 3 (X)) 2E—5 (2.43)
il
is passed throngh the three points and the coordinate of the extremum

(03— ad(X,) 1 (03— ad)/(Xy) 1 (o}~ d)f(Xs)
 2(an — o) f(Xy) (3 — ) [(Xg) 1 (a1 — a2) f(X;)
is warranted to be a minimum and contained in the interval (o, a3);

J(X} 1 a.dy) is evalnated. If o, < @y a new point X; = X | a.dy is
introduced reducing (v, ay) to (v, ay).

(2.44)

If e, > 3, X5 — X4 | o, d, is calenlated and (e, a3) reduce to
(1, ). A new guadratic fit is performed on the reduced interval . If
) = g, the interval (ay, ;)  «; is the coordinate of X; being the
argnment of f; — max{f(X,), [f(X2)} - is divided to obtain a new
point. X, in such a way that the new interval is smaller than the pre-
ceeding one. It can be proved by the Global convergence theorem [9]
that this algorithm converges to the solution if the objective funetion
is continmous and nnimodal in «. The order of convergence is known to
be about 1.3 [9]. in practice the search procedure has to be terminated
before it has converged. I'or these problems ay, is determined to within
a fixed percentage of its trne value. A constant ¢, 0 < ¢ < 1 is sclected
(¢ = 0.01) and « is found so as to satisly |« — a| < ¢|a| where a is the
lower bound a; on the true minimizing value of the parameter if a; is
different from zero or equal to the termination value for the complete
algorithm if a equals zero.
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2.1.7 OPTIMIZATION ALGORITHM

In a simple coordinate descent method the coordinate directions
(€1, €3y ..., €,) are cyclically used to provide the directions for indi-
vidual line searches. If the objective function has continuous partial
derivatives this method is globally convergent [9], and the convergence
rate is affected by relation of the coordinates. However if the first
partial derivative are not continuous objective functions and the coor-
dinate directions can be found so that the algorithm will not find the
minimum. By rotating the coordinate system after n line searches an
attempt is made to solve the problem

. If at the same time one axis is oriented towards the direction of
the valley, locally estimated in a way analogous to the method used in
the parallel tangent algorithm it has been found by some trial objective
functions that the convergence rate is improved. An efficient method
for obtaining a new orthonormal set is that of Powel [11], which requires
O(n?) multiplications instead 'of O(n?).

The final algorithm is the following:

Given X, and the current set of orthonormal set of orthogonal di-
rections D = (d,, d,, ..., d,) a set of 3;’s are computed using n line
searches. '

B = min f(X,, Bdy)

with Xm =X;+Bid; forj=1,2,...,n—1.

The orders of the directions d; is changed yielding D" = St s
so that the first k directions have 3 — values different from zero
(Bo, By «-+y B, 0, 0, ..., 0). Then a new set of directions is com-
puted.

Liset g=k
7 = (Bk)’
o = Prdy,
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2. if j = 0 terminate the process otherwise compute

(74;'—1 — fj-10)

TN I o
3.setj=35-1
T=1+(f;)’
g =a+fd;goto2. -
4. The remaining vectors are obtained as follows:.
& k k
dp = \/;;; g= Zﬂjig-, T = Z(ﬂj)z (2.46)
j=0 j=0
di=diforj=k+1,k+2 ..., n—1
We now have a new set D" = (dg, d, ..., d,_,) to repeat the

procedure. ;

To minimize the number of objective function evaluations a suit-
able step for the line search is necessary. If the step is too small; the
initial value has to be doubled too many times. If the step is too large,
too many curve fittings have to be performed. Therefore the step is
adjusted during the optimization. For every coordinate relaxation (n

line searches)
1 n—1
iy

is computed. The series {ax} converges at least linearly for the quadratic
case [9]. The convergence rate is dependent of the special onjective
function under study but experimentally it has been found that if a
fraction of a (say a/8) is used as step for the next coordinate search an
improvement in overall computation time is observed for the different
objective function encountered in the problem. ’
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Conclusion

The classical methods of boundary layer theory allows us to ac-
curately model linear Laminar horizontal buoyant plumes. Using the

~ modern developments of the theory (method of assymptotic expansion)

we could even produce still better solutions of the non-linear problems
considered. However, for any reasonable design the unit flow fy is likely
to be so large that the flow would be turbulent rather than Laminar.

2.2 REVIEW OF THE EXTENDED COGGINS
OPTIMIZATION TECHNIQUE

- 2,21 INTRODUCTION

-~

Coggins algorithm as a ope variable search method algorithm for
obtaining the optimum value of an objective function with one variable
[6]. It is not a rampantly used iterative procedure because of its lim-
itations are being its restriction on one variable cost function. Even
though it was developed solely to be used on objective function with a
single variable, however, an attempt was made to [5] construct a more
generalised algorithm based on the formulation of the coggins’ one vari-
able method. :

The constrained optimization problem is
max ( or min) z = F(x) where X = (X®, X@ .. x™)

Here, unimodality is assumed while for a multimodal function mul-

~ tiple starting points should be used .

In the next section, consideration is made of an objective function
with two variables and subsequently generalised for n variables.
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2.2.2 THE ALGORITHM

The algorithm to find the optimum value of a function with two
variables is listed in the steps below.

Step (1)

The objective function is evaluated using the initial value X((,l), é2).

Step (2)

The values of X and X® are incremented
/

XM = xM 4 Ax® (2.47())
X? = x@ 4 AX® (2.47(i7))

The new value of X and X® are used to evaluate the function. If
there is function improvement then

AXD =24 AXD, AX® = 24 AX® (2.48)

else
AXW = —AXD AXD = _AX®

Step (3)

After the first step, if there is function improvement then

AXD =2xAXD AX® =24 AX®? (2.49)
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: AXD @
X AX
= ! N 15N
5 AX

Step (4)

When a local optimum is obtained
1 2 1 2 1
(X, X, (X0, X2, (K, x2)

Straddling the optimum. Then the additional point X ,ﬁﬁr’l, X,g_)l is
located

AX®

- 1 1 :
X = X2+ =5 (2.50(2))
/
AX® Y
X8 = X0+ —— (2.50(i)

The best three points
(X2, x{), xf°, x), (x", x)

are obtained
Step (5)

A quadratic equation, f, is then curve fitted to the three retained

~ points, the optimum location X*V X2 is located by setting dF = 0.

oF oF
dF = oxm X" + pxm X =0 (58
oF oF
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) _ % {( X2V _ X;z(n) F( X0, X{z)) % ( X2V _ Xf“’) P ( x0, Xéz))

+ (X320 - 5D F (X, XY}/ { (8" - %) F (x00, x{) +

(X - xP) P (x0, X) + (x0 - xP) P (x$, X))}
(2.53)

% 1 2(2 2(2 1 2 2
X0 = L3 x30) F (x{), x) + (22 - ) £ (20, x{) +

(xi® - x3®) F (xgn,' xP) 1 {(x8 - xP) P (x, xP) +

(<0~ X (0 ) + (50 (0 9]
(2.54)

/

Step (6)

The value of the objective function at X = X*1) and X@ = x*?
is compared with the best previous point subject to a convergence limit.

1X*® — XD (best)] < limit (2.55(i))

1X*® — X P (best)| < limit (2.55(ii))

If the inequalities (2.55) are satisfied, the procedure stops else the worst
points are replaced by X*®, X*® and a new quadratic surface is fit-
ted and local optimum obtained.

This continues until equations (2.55) are satisfied. Hence it can be
generalised for n variables X(™ € IR™ as we see in the next section.
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2.3 COMPARISON OF OPTIMIZATION TECHNIQUES

Coggins method and Spriet-Baron optimization technique falls un-
der the classification of non-gradient based methods of solving opti-
mization problems. These methods are generally termed Direct search
methods.

2.3.1 DIRECT SEARCH METHODS

The direct search strategies for generating a sequence of improving
approximations to the solution are based simply on comparison of func-
tion values and generally, though not always, methods are heuristic in
nature, having little or no mathematical basis. By their nature they
make only very limited assumptions about the function, and generally
no more than coptinuity so as a result they have a very wide field of
application. Thus not only can they be used in problems for which
differentiation is difficult,

but also for those cases where it may be appropriate, derivatives are

discontinuous, or when the function values are subject to errors. These
‘are situation in which gradient based methods can prove ineffective or

inefficient. Most of the direct search methods are little affected by such
difficulties, and because of their lack of assumptions about the function
they can prove more reliable and stable than the gradient based meth-
ods.

2.3.2 COGGINS/SPRIET-BARON OPTIMIZATION
TECHNIQUE

Coggins method is used to solve an unconstrained optimization
problem that employs a direct search technique. Similarly, Coggins al-
gorithm as a one — variable search method is is an algorithm for obtain-
ing optimum value of an objective function with one variable [5].Even
though it was developed solely to be used on objective function with
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a single variable, however, Sasindro and Reju [5] have generalised the
algorithmto that of multi-variable based on the formalism of the one

variable method.

The unconstrained optimization problem is as follows:

Maximize (or Minimize) Z = F(X) where X = (X, X® = x(™),
Here Unimodality is assumed.

In the Spriet-Baron model, the expression

o ( | roin- 1) "+ aaf(o0) (2.56)

is a suitable objective function for the solution of (2.13), (2.14), (2.15),
(2.16), (2.17). The method chosen by Spriet-Baron is a modified ro-
tating coordinate technique. The algorithm has been provided of an
efficient line search for determining the minimum point for a given di-

rection.

The line search employed by Spriet-Baron is a combination of di-
rect search and curve fitting in such a way that under fairly general
conditions, convergence to the minimum is guaranteed (see 2.1.6)

‘ 2.3.3 COGGINS/SPRIET-BARON IOPTIMIZATION
ALGORITHM

Step 1

For Coggins: the objective function is evaluated using the initial

value &‘,1’, &2 ;
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That of Spriet-Baron: Given X, and the current set of orthogonal

directions
D=(¢oa dla cey Qn—l)

a set of B;’s are computed using n line searches. §; = ming f(X;, fAd;)
With_&j_'_l =—X—j’ ﬁij fOl'j=0, 1, ey ’n.—]..
The order of the directions d; is changed yielding
D' = (—(,)’ ‘—i-,lv 4 -d-;—l)

so that the first k directions have 3 — values different from zero

(ﬂov ﬂl’ ey ﬂk; 0, O, caey 0)

Step 2

-~

For Coggins, the values of X and X® are incremented
X0 = xM 4 AxD (2.57(3))
X® = x® 4 AX? (2.57(i))
But that of Spriet-Baron, a new set of directions is computed:

set
(2.58)

j=k 7=, &=7Pudi
The new value of X", X® in (2.57) are used to evaluate the func-
tion if there is function improvement then

AXD =24 AXMD AX® =24AXD (2.59)

else
AXD = _AXD AX® = _AX®

but for (2.59):

38



x B

f‘--F-

==

if j = 0 terminate the process, otherwise compute

3 (Td;q =5 ﬁj—lé)
' T+ A

(2.60)

Step 3

After the first step in (2.3.2) if there is function improvement then

AXMD =24 AXD, AXD =24xAX? (2.61)
. else
AXD = A%m, AX® = -A—)zi(ﬁ
However after computing (2.60) for Spriet-Baron, set
j=i-1, r=r+(8) 8=5+0d (2.62)
Step 4

!/
(

For Coggins, when a local optimum is obtained
1) (2 1 2 1 2
(2, x), (X2, x20), (X2, x2y)
(1)

straddling the optimum. Then an additional point X, ,, X,S?I is lo-

cated. At £ig
5 1 2 2
Xen =Xy + ——, b = X+ —o— (2.64)

The best three points

(e i, (), 28N, xP. x)

are obtained.
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In the case of Spriet-Baron, the remaining vectors are obtained as
follow:

6 k
d = 7= 8 Zﬁ, di; v=) () (2.65)
=0
di =d,forj=k+1, k+2, ..., n—-1

We now have a new set

to repeat the procedure.
Continue the procedure until the best 3 points are located, see 2.1.6.

Step 5 ¥

/

For Coggins, a quadratic equation f is then curve fitted to the three
retained points. The optimum location X*(), X*®) is located by set-
ting dF = 0.

oF oF
= M 4 (2)
dF = 6X(1)dX 6X(2)dX 0 (2.66)
oF or

X+ — %{(xg(" b Xgu)) P ( xO, X?’) + ( X2 _ Xf“’) P ( X, X(2))

+(X12“)—-X§(1’) ( xM, (2))}/{( xM _ “’)F(Xf‘), )dz))Jr

(Xg” —X{") F (X‘” X‘”) £ (X{‘) —Xé‘)) F (X(”, X(z))}
; (2.68)
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X2 _ % {( X2 _ X;(z)) P ( XM, X(?)) ( X2 _ X12(2>) I ( X0, Xéz)) i

(Xz(z) X22(2))F(X§1) (2))}/{( x® X‘”)F(X}”, X{?))+

(%67 - x) F (x589, X) + (X - x2) P (x4, x$)}
(2.69)
However, for the Spriet-Baron model, if the function f(x) is strictly
unimodal in the given direction the coordinate «,, of the minimum
point a; + amd, will be in the interval ay, a3. Then a curve fitting
procedure is started which does not require derivatives.

A quadratic

-

¢ o) = 3 sy o= i) lu(a o) (2.70)

i—0 Mjzi(q — o)

is passed through the three points and the coordinate of the extremum.

[(0‘2 — a3)F(X,) + (ef — o) F(X,) + (of — az)F(_&)}

(a2 — a3) F(X,) + (a3 — a1) F(X3) + (a1 — a2) F(X,)
(2.71)

is warranted to be a minimum and contained in the interval ((a;, as);
F(X, + aed,) is evaluated.

Qe =

Step 6

For Coggins, the value of the objective function at X = X(V
and X® = X*2) js compared with the best previous point subject to

a convergence limit

IXOD — XD (best)] < limit, | X — X (best)| < limit (2.72)
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If the inequality (2.72) is satisfied the procedure stops, else the worst
points are replaced by X*) X2 and a new quadratic surface is fit-
ted and local optimum obtained. This continues until (2.72) is satisfied.

At this level, for the Spriet—Baron, to minimize the number of objec-
tive function evaluations a suitable step for the line search is necessary.
If the step is too small, the initial value has to be doubled too many
times. If the step is too large, too many curve fittings have to be per-
formed. Therefore the step is adjusted during the optimization.

For every coordinate relaxation (n line searches)

ln-—l
(L=;Zﬂj

§=0

is computed.

/
The series {ax} converges at least linearly for the quadratic case.

2.3.4 REMARK

The Spriet-Baron model as outlined above and that of Coggins
(extended) optimization algorithm when compared seem to be very
similar. However, absolute resemblance in the methodology used is not
guaranteed. But with little modification, the Coggins extended method
can be used to solve the integral functional as used by the Spriet-Baron
model as we shall examine latter.
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CHAPTER THREE
SOLUTION OF THE SUBMERGED SEWAGE
DISPERSION MODEL

3.1 STATEMENT/DERIVATION OF THE OBJECTIVE
CRITERION

From equation (2.42), the expression given as:

[o') 2
ik ( [ sioan= 1) + aaf*(c0)

according to Spriet-Baron [11] a suitable objective function for the
solution of (2.13), (2.14), (2.16) and (2.17).

To simplify this expression (2.42) we adopt Schlictings [7] solution
for the linear isotl'lermal Jet, thus

f(n) = 6atanh an (3.1)

5 Jo [cosh®™ m)]_l dn
1o oo™ an] "

where a = 0.099; (see appendix 1c¢).
Differentiating (3.1) and taking the square of both sides gives

9(n) (3.2)

f%(n) = (6a sechzcm)2 = 36a” (sech(an))"

Integrating:
/ f'(n)dn = 6a / sech®amdn = 6o tanh am (3.4)

Also integrating (3.2) with

/ [costh' an]—l dp=1
0
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yields e : ,
/ g(n)dn = sech?P "am (3.5)

—00

Combining (3.4) and (3.5) gives:
/ " f'gdn = (6a tanh an)(sech?™ an)
squaring both sides yields:
( / i f ¢ gdn)2 = [(6atanh an)(sech®” ')]2
Expanding the expression (2.42) and substituting accordingly we get
o0 2
fra ([ rain=1) +eurco)
: j
=m { [(6a tanh an)(sech®” ro:n)]2 — 2(6a tanh am)(sech®™) + 1}
+a [360:2 (sechzom) 2]

=m [360:2 tanh? an (sech®an) P _ 2a tanh on) (sech’am) o 1]

+oy [36a2 (sech2a17)2] (3.6)
Where
ay = oy = 0.21(x1073|K)
P, = 6.4748 '
n= YX2/3
a = 0.099
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Note:

(i) 7 is the similarity variable since 7 is used in dimensionless analysis
and we intend to consider f and g as only functions of 7, we set
n=0.1, 0.2, 03, ...

(ii) a1 = @y is the thermal expansion coefficient whose value according
to Howatson et al [15] is 0.21(x1073| K)

Substituting these values in equation (3.6), gives:

&= —4 2 I L o 2. Ay
[ =2.1x107*|0.352836 tanh” an | (sech®an) 1.188 tanh an (sech®an) " + 1

+2.1 % 10~ [0.352836 (sech’an)’|

- Pr
= 7.4 x 107° tanh® an [(sech/?an)Z] — 2.5 x 10" tanh an (sech®an) g

+2.1 % 107" + 7.4 x 107 (sech®an)’

The simplified objective function is given as:
f(n) = 7.4x107® tanh? am [(sechan)’] P _2.5%107* tanh an (sech®am) s
4+2.1 x 107 + 7.4 x 107° (sechan)’

The objective function can now be stateds as:
Find
m
M2
- :
n
which minimizes
7.4 x 1075 tanh? an [(sechan)’] P 9.5x 10" tanhan (sech®am) i
+2.1 x 107* + 7.4 x 107° (sechan)"
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3.2 ANALYTICAL SOLUTION OF THE OBJECTIVE
FUNCTION

Since our intent is to adopt the line search method which is a com-
bination of direct search and curve fitting to attain the minimum, we
decided to use hypothetical values to solve the objective function (3.6)
with a view to serve as a basis for further comparison with the op-

timization algorithm method of Spriet-Baron and Extended Coggins

optimization algorithm.

Problem
Minimize
f(n) = 7.4x107° tanh® o [(sechan)4] P _9.5x10~* tanh an) (sech’an) 3
. +2.1x107* 4 7.4 x 107® (sechan)" (3.7)

/
Solution

a = 0.099, P, = 6.4748, n = 0.1, 0.2, 0.3,...

Iteration 1

f£(0.1) = 7.4 x 10~5[tanh(0.0099)]? [(sech(0.0099))"] i
—2.5 x 10™* tanh(0.0099) (sech(0.0099))%] "
+2.1 x 107 + 7.4 x 107® (sech(0.0099))"*
= 0.000281519390149 = 2.81519390149 x 10~

Iteration 2

£(0.2) = 7.4 x 105[tanh(0.0198)]2 [(sech(0.0198))*]
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~2.5 x 107" tanh(0.0198) [(sech(0.0198))?]
+2.1 x 107 4 7.4 x 107 (sech(0.0198))"
= 0.000279034054484 = 2.79034054484 x 10~

Subsequent iteration using math cad code shows the result as out-
lined in table 4.1.

3.3 SOLUTION OF THE OBJECTIVE FUNCTION
USING SPRIET-BARON OPTIMIZATION ALGORITHM

The objective function to be minimized is:
f(n) = 7.4x107° tanh® an [(sechan)’] P _9.5%10 tanh an (sech®an) g

+2.1 x 107+ 7.4 x 107° (sechan)"

The algorithm is as follow:

Let X} be the present point.
d;. the direction of search
o a given step

We shall evaluate:

F( Xk + ardy), f(Xi+ 20xdi), f(Xk+doudy) ...

We define:
Xk = (Oa =33
dy = (1, 2)
ar = 0.1
then,
m = X" 4 nadM = 0+1(0.1)1 = 0.1

Similarly
e = X? + nagd? = (1) + 1(0.1)2 = —0.8
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Re-writing the objective function:

T, m2) = famar = 7.4 x 107% tanh? any [(sechang)4] X

—2.5 x 10" tanh an, (sech’an,) il
42.1 x 107 + 7.4 x 107° (sechan,)* (3.8)

Iteration 1
Xe=(0, -1),0,=01dr=(1, 2),a=0.099, P. =6.4748, n = 1
m = X" +napd = 04 (1)0.1)(1) = 0.1 5 = X? + noyd? =
-1+ (1)(0.1)(2) = —0.8

Fam21 = 7.4 x 107° tanh?((0.099)(0.1)) [(sech((0.099)(—0.8)))*]**"**

. —2.5 x 10~* tanh((0.099)(0.1)) (sech?((0.099)(—0.8)))**"*®

42.1 % 107 + 7.4 x 107 (sech((0.099)(—0.8)))"
= 7.4 x 107 tanh®(0.0099) [(sech(—0.0792))"] **"*
—2.5 x 10~* tanh(0.0099) (sech?(—0.0792))**™**
42.1 x 107 + 7.4 x 107° (sech(—0.0792))"*
= 0.000280708574959 = 2.80708574959 x 10~

Iteration 2
Xi = (0, —1), ax = 0.1 di = (1, 2), @ = 0.099, P, = 6.4748, n = 2
m = X" + noad® = 0+ (2)(0.1)(1) = 02 5, = X2 + nopd?
~1+(2)(0.1)(2) = —06

Famz2 = 7.4 x 1075 tanh?((0.099)(0.2)) [(sech((0.099)(~0.6)))*]**"**

~2.5 x 10~* tanh((0.099)(0.2)) (sech®((0.099)(~0.6)))*"**

+21 % 10744 7.4 % 10°° (sech((0.099)(_0_6)))4
= 7.4 107" tanh’(0.0198) [(sech(~0.0594))] """
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—2.5 x 10~ tanh(0.0198) (sech?(—0.0594)) **™**

421 x 107" + 7.4 x 107° (sech(—0.0594))*
= 0.00027860024412 = 2.7860024412 x 10~

Iteration 3
Xe=(0, -1), 0. =0.1dr = (1, 2),a=0.099, P, =6.4748, n = 4

m = X"+ nopd? = 0+ (49)(0.1)(1) = 04 7, = XP + noyd? =
—1+ (4)(0.1)(2) = —0.2

famaz = 7.4 x 107 tanh?®((0.099)(0.4)) [(sech((0.099)(—0.2)))*]**"**

—2.5 x 10~ tanh((0.099)(0.4)) (sech?((0.099)(—0.2)))**™**

42.1 x 107 + 7.4 x 1075 (sech((0.099)(—0.2)))"
= 7.4 x 107" tanh?(0.0396) [ (sech(~0.0198))"]**"*

—2.5 x 10~* tanh(0.0396) (sech?(—0.0198))**"**
+2.1 x 107* + 7.4 x 107° (sech(—0.0198))*
= 0.000274187595294 = 2.74187595294 x 10~

As a result, of the tedious nature of generating the values manually,
we decided to use the aid of computer to generate the subsequent val-
ues. The math cad simulation procedure is as follows:

n=1,2 4, 6,8, 10, ...
Xi = (0, —1), dx = (1, 2), @ = 0.099, o = 0.1, P, = 6.4748

G = X" + napd" = 0+ n(0.1)1
As= X,(cz) + nakdf) = —1+n(0.1)2
which gives:

F(Gy A) = fama = 7.4 x 107° tanh?(aG) [(sech(aA))!]”"
—2.5 x 10~* tanh(aG) (sech2(aA))Pr
4+2.1 x 107" + 7.4 x 107® (sech(aA))"*
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3.4 SOLUTION OF THE OBJECTIVE FUNCTION
USING THE EXTENDED COGGINS ALGORITHM

Minimize
f(n) = 7.4x107° tanh® o [(sechan)’] " _9.5%10~* tanh an) (sech®am)”™

+2.1 x 107" + 7.4 x 107® (secham)* (3.9)

The algorithm assumes the following: Let X} be the present point
AP be a step length
where X = (0, —1)
AP =1(.1
Pl +=01,2,3; ...

,Iteration 1 (direct substitution)

X1 =0, Xo = —1, a = 0.099, P, = 6.4748
/

f(Xl, X2) = fnmls = T.4 % 10_5 »tanhz(aXl) [(SBCh(QXz))d] i

—2.5 x 107" tanh(aX;) (sech2(aX2))P'
4+2.1 x 107" + 7.4 x 107° (sech(aX3))"*
= 7.4 x 107° tanh?(0) [(sech(—0.099))*]**"*
—2.5 x 107 tanh(0) (sechQ(—O.099))6'4748
42.1 x 107 + 7.4 x 1075 (sech(—0.099))*
= 0.000282565893840 = 2.8256589384 x 10~

Iteration 2

X1=0401=01, Xo=-1+40.1=-09, a=0.09, P, = 6.4748

Frmzs = 7.4 x 107 tanh?(0.0099) [(sech(—0.0891))*]**™**
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~2.5 x 107" tanh(0.0099) (sech?(—0.0891))**"*
+2.1 x 107" 4 7.4 x 107® (sech(—0.0891))"*
= 0.000280491329455 = 2.80491329455 x 10~
Iteration 3

X = 0+42(01) = 02, X; = —1+2(0.1) = —0.8, @ = 0.099,
P, = 6.4748

Frm3s = 7.4 % 107° tanh?(0.0198) [(sech(—0.0792))"] "™

~2.5 x 10~* tanh(0.0198) (sech?(—0.0792))**™**

+2.1 % 107 4 7.4 x 107° (sech(—0.0792))"
= 0.000278352579459 = 2.78352579459 x 10~

To hasten this process of iteration, the use of mathcad code is em-
ployed with the following assumptions:
Let Ap=0.1,p=2",p=0+App, q= -1+ App
with a = 0.099, P, = 6.4748
(see appendix 4)

Then
f(p, @) = 7.4 x 1075 tanh®(ap) [(sech(aq))4] #3
—2.5 x 107* tanh(ap) (sechQ(aq))P'
4+2.1 x 107* + 7.4 x 107® (sech(aq))*
(see Table 4.1)
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CHAPTER FOUR

COMPUTATIONAL/SIMULATION ANALYSIS FOR THE
SUBMERGED SEWAGE DISPERSION MODEL

4.1 COMPUTATIONAL RESULTS USING ANALYTICAL
SOLUTION

Using the values:
n =01, 02, ..., a =0.099, and P, = 6.4748 in (3.8) and using the
mathcad code we obtain the following results for the various values of
n as presented in tables 4.1, 4.1a, 4.1b. and 4.1d.

From the table 4.1 we obtain the graphical illustrations in figures
4.1. -
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Table 4.1: Computational results using

analytical method

SIN f(n) S/N f(n) S/N fm)
1 10.000281519390149 62 |0.000232882586313 123]0.000216409581041
2 10.000279034054484 63 | 0.000232846658131 12410.000216205033558
3 10.000276553530118 64 |0.000232791168895 125(0.000216005995912
4 10.000274087033998 65 |0.000232716111712 126{0.000215812388078
5 10.000271643407108 66 10.000232621613087 12710.000215624125804
6 [0.000269231064864 67 |10.000232507921874 1280.000215441121162
7 10.000266857953922 68 | 0.000232375398149 129]0.000215263283056
8 10.000264531515546 69 |0.000232224502104 130} 0.000215090517692
9 10.000262258655509 70 {0.000232055783073 131]0.000214922729017
10 10.000260045720427 7110.000231869868777 132]10.000214759819129
11 10.000257898480296 72 [0.000231667454867 133[0.000214601688646
12 10.000255822116950 73 10.000231449294830 134]0.000214448237058
13 10.000253821218052 74 10.000231216190329 135]0.000214299363038
14 10.000251899776210 75 10.000230968982018 136 0.000214154964739
15 [0.000250061192766 76 10.000230708540866 137]0.000214014940060
16 {0.000248308285766 77 {0.000230435760033 138(0.000213879186888
17 10.000246643301653 78 10.000230151547310 1391 0.000213747603320
18 10.000245067930193 79 10.000229856818130 140 0.000213620087866
19 10.000243583322198 80 [0.000229552489175 141]0.000213496539630
20 1 0.000242190109605 81 10.000229239472550| 142]0.000213376858474
21 [0.000240888427543 82 10.000228918670546 143 0.000213260945166
22 |10.000239677938016 83 [0.000228590970956 14410.000213148701513
23 |0.000238557854912 84 10.000228257242939 1451 0.000213040030478
24 10.000237526970061 85 10.000227918333411 1460.000212934836281
25 |0.000236583680117 86 [0.000227575063930 147]0.000212833024496
26 {0.000235726014074 87 |0.000227228228066 148]0.000212734502130
27 |0.000234951661255|* 88 [0.000226878589211 149]0.000212639177689
28 [0.000234257999637 89 ]10.000226526878810 150]0.000212546961241
29 10.000233642124415 90 | 0.000226173794978 151{0.000212457764465
30 |0.000233100876688 91 10.000225820001477 152]0.000212371500697
31 10.000232630872189 92 10.000225466127021 153]0.000212288084960
32 10.000232228529988 93 10.000225112764876 154]0.000212207433995
33 |0.000231890101055 94 10.000224760472734 155]0.000212129466280
34 10.000231611696630 95 10.000224409772822 156]0.000212054102047
35 10.000231389316276 96 | 0.000224061152227 157]0.000211981263294
36 |0.000231218875538 97 |0.000223715063411 158(0.000211910873787
37 [0.000231096233079 98 |10.000223371924885 159]0.000211842859062
38 [0.000231017217186 99 10.000223032122024 160(0.000211777146422
39 |0.000230977651510 100} 0.000222696008002 161{0.000211713664933
40 | 0.000230973379917 101]0.000222363904826 162]0.000211652345408
41 10.000231000290310 102]0.000222036104447 163|0.000211593120400
42 10.000231054337283 103{0.000221712869938 164|0.000211535924185
43 10.000231131563485 104)0.000221394436715 165]0.000211480692742
44 10.000231228119559 105)0.000221081013800 166]0.000211427363735
45 10.000231340282542 106] 0.000220772785094 167]0.000211375876494
46 | 0.000231464472625 107]0.000220469910671 168]0.000211326171984
47 10.000231597268179 108 0.000220172528068 169]0.000211278192788
48 10.000231735418982 109] 0.000219880753562 170(0.000211231883079
49 |1 0.000231875857584 110(0.000219594683443 17110.000211187188592
50 |0.000232015708796 111{0.000219314395252 172]0.000211144056595
51 10.000232152297266 112]0.000219039949000 173]0.000211102435863
52 |0.000232283153184 113]0.000218771388350 17410.000211062276648
53 |0.000232406016121 114{0.000218508741767 175{0.000211023530651
54 10.000232518837066 115]0.000218252023623 176]0.000210986150987
55 10.000232619778731 116]0.000218001235267 17710.000210950092161
56 {0.000232707214209 117]0.000217756366044 178]0.000210915310034
57 10.000232779724086 118)0.000217517394282 179]0.000210881761791
58 | 0.000232836092129 119]0.000217284288217 180|0.000210849405916
39 10.000232875299664 120]0.000217057006885 181]0.000210818202155
0 |10.000232896518792 121]0.000216835500967 182]0.000210788111491
' 10.000232899104571 122]9.000216619713582 183]0.000210759096110
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184]0.000210731119373 245(0.000210070192958 306|0.000210006407513
185/0.000210704145785 246/ 0.000210067508710 307]0.000210006159860
186|0.000210678140968 247(0.000210064926341 308(0.000210005921758
187]0.00021065307 1628 248(0.000210062442029 309]0.000210005692839
188|0.000210628905529 249 0.000210060052090 310|0.000210005472751
189|0.000210605611466 250/0.000210057752981 311]0.000210005261154
190/ 0.000210583159231 251]0.00021005554 1285 312]0.000210005057721
19110.000210561519593 252]0.000210053413714 313/0.000210004862139
192]0.000210540664266 253]0.000210051367100 314]0.000210004674105
193] 0.000210520565884 254]0.000210049398395 315/0.000210004493329
194]0.000210501197977 255|0.000210047504662 316]0.000210004319532
195]0.000210482534939 256]0.000210045683072 317/0.000210004152444
196]0.000210464552012 25710.000210043930905 318/0.000210003991808
19710.000210447225252 258]0.000210042245537 319{0.000210003837375
1980.000210430531513 259]0.000210040624447 320(0.000210003688906
19910.000210414448419 260]0.000210039065204 321(0.000210003546171
200]0.000210398954342 261|0.000210037565470 322|0.000210003408951
201]0.000210384028378 262|0.000210036122991 323/0.000210003277031
202]0.000210369650329 263|0.000210034735602 324|0.000210003150208
2030.000210355800677 2640.000210033401215 325|0.000210003028285
204]0.000210342460567 265/0.000210032117822 326/0.000210002911074
205]0.000210329611784 266|0.000210030883488 327|0.000210002798393
206|0.000210317236733 267|0.000210029696355 328|0.000210002690067
207{0.000210305318422 268|0.000210028554629 329/ 0.000210002585928
208(0.000210293840439 269|0.000210027456587 330]0.000210002485815
209{0.000210282786940 270} 0.000210026400570 331]0.000210002389572
210/ 0.000210272142623; 271]0.000210025384981 332]0.000210002297051
211]0.000210261892717 272|0.000210024408283 333]0.000210002208106
212]0.000210252022964 273|0.000210023468997 3340.000210002122602
213]0.000210242519598 274(0.000210022565699 335/0.000210002040404
214]0.000210233369335 275/ 0.000210021697019 336/0.000210001961385
215]0.000210224559354 276]0.000210020861640 337]0.000210001885422
216]0.000210216077282 27710.000210020058292 338(0.000210001812398
217]0.000210207911180 278]0.000210019285756 339]0.000210001742199
218]0.000210200049529 279(0.000210018542856 340]0.000210001674716
219(0.000210192481215 280]0.000210017828462 341]0.000210001609843
220]0.000210185195517 281]0.000210017141487 342]0.000210001547481
221{0.000210178182092 28210.000210016480885 343]|0.000210001487532
222|0.000210171430964 283(0.000210015845649 34410.000210001429902
223]0.000210164932511 284]0.000210015234809 345(0.000210001374503
22410.000210158677455 285|0.000210014647435 346(0.000210001321248
225]0.000210152656846 286|0.000210014082629 34710.000210001270055
226(0.000210146862055 28710.000210013539528 348|0.000210001220842
227(0.000210141284761 288|0.000210013017304 349|0.000210001173535
228|0.000210135916942 289]0.000210012515157 350]0.000210001128060
229]0.000210130750862 290{0.000210012032319 351/0.000210001084344
230(0.000210125779066 291|0.000210011568051 352|0.000210001042322
231(0.000210120994364 292|0.000210011121642 353]0.000210001001926
232|0.000210116389828 293|0.000210010692409 354]0.000210000963095
233|0.000210111958779 294|0.000210010279693 355]0.000210000925767
234]0.000210107694780 295]0.000210009882863 356|0.000210000889885
235]0.000210103591626 296/0.000210009501308 357]0.000210000855392
236|0.000210099643339 297|0.000210009134443 358|0.000210000822235
23710.000210095844158 298]0.000210008781706 359]0.000210000790363
238|0.000210092188529 299 0.000210008442554 360)0.000210000759725
239(0.000210088671103 300(0.000210008116466 361(0.000210000730274
240/ 0.000210085286726 301{0.000210007802941 362]0.000210000701963
24110.000210082030430 302/ 0.000210007501496 363]0.000210000674749
24210.000210078897431 303|0.000210007211669 364|0.000210000648590
243|0.000210075883120 304(0.000210006933013 365|0.000210000623444
44(0.000210072983055 305|0.000210006665098 366/0.000210000599272
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S/IN f(n) SIN f(n) SIN f(n)
367)0.000210000576037 4281 0.000210000051549 489(0.000210000004607
368|0.000210000553702 429]0.000210000049548 4901 0.000210000004428
369]0.000210000532232 4301 0.000210000047625 491|0.000210000004256
370/ 0.000210000511595 431]0.000210000045777 49210.000210000004091
371]0.000210000491757 432]10.000210000044000 4931 0.000210000003932
372|0.000210000472688 433|0.000210000042292 4941 0.000210000003779
373(0.000210000454357 4341 0.000210000040651 4951 0.000210000003633
37410.000210000436738 435]10.000210000039073 496 0.000210000003492
375(0.000210000419801 436|0.000210000037557 49710.000210000003356
376(0.000210000403520 43710.000210000036099 4981 0.000210000003226
37710.000210000387871 438|0.000210000034698 4991 0.000210000003100
378/0.000210000372828 439 0.000210000033351 500} 0.000210000002980
379(0.000210000358369 440/ 0.000210000032057 501|0.000210000002864
380]0.000210000344469 441]0.000210000030812 5021 0.000210000002753
381]0.000210000331109 442]0.000210000029616 503|0.000210000002646
382]0.000210000318266 443|0.000210000028467 504 | 0.000210000002544
383]0.000210000305922 444(0.000210000027362 505|0.000210000002445
384]0.000210000294056 445 0.000210000026300 506 | 0.000210000002350
385/0.000210000282650 446]0.000210000025279 507]0.000210000002259
386 0.00021000027 1686 447(0.000210000024298 508|0.000210000002171
387|0.000210000261147 448|0.000210000023355 509|0.000210000002087
3880.000210000251017 449(0.000210000022448 510]0.000210000002006
389|0.000210000241280 450|0.000210000021577 511]0.000210000001928
390(0.000210000231920 451|0.000210000020739 512|0.000210000001853
391]0.000210000222923 45210.000210000019934 513]0.000210000001781
39210.000210000214275 4531 0.000210000019161 514(0.000210000001712
393(0.000210000205963 | » 45410.000210000018417 515(0.000210000001645
39410.000210000197972 455(0.000210000017702 516|0.000210000001582
395/0.000210000190292 456(0.000210000017015 51710.000210000001520
396|0.000210000182909 4571 0.000210000016354 518/0.000210000001461
397(0.000210000175813 4581 0.000210000015720 519(0.000210000001404
398|0.000210000168992 459|0.000210000015109 520 0.000210000001350
399]0.000210000162436 460|0.000210000014523 521(0.000210000001297
400]0.000210000156133 461 0.000210000013959 522|0.000210000001247
401]0.000210000150076 462 0.000210000013417 523|0.000210000001199
402|0.000210000144253 463|0.000210000012896 524(0.000210000001152
403|0.000210000138656 464(0.000210000012396 - 525|0.000210000001107
404]0.000210000133276 465 0.000210000011915 5261 0.000210000001064
405(0.000210000128105 466|0.000210000011452 527]0.000210000001023
4060.000210000123134 467|0.000210000011008 528]0.000210000000983
407(0.000210000118356 468|0.000210000010580 52910.000210000000945
408(0.000210000113764 469 0.000210000010170 530/ 0.000210000000909
409/0.000210000109349 470|0.000210000009775 531]0.000210000000873
410{0.000210000105106 471]0.000210000009395 532]0.000210000000839
411(0.000210000101028 472]0.000210000009031 533]0.000210000000807
41210.000210000097107 473]10.000210000008680 534(0.000210000000775
413]0.000210000093339 47410.000210000008343 53510.000210000000745
414]0.000210000089717 475(0.000210000008019 536|0.000210000000716
415]0.000210000086236 4761 0.000210000007708 53710.000210000000689
416 0.000210000082889 477|0.000210000007409 538|0.000210000000662
417]0.000210000079673 478 0.000210000007121 539/ 0.000210000000636
4181 0.000210000076581 4791 0.000210000006845 540} 0.000210000000611
419|0.000210000073609 480| 0.000210000006579 541]0.000210000000588
420]0.000210000070752 481]0.000210000006323 542|0.000210000000565
42110.000210000068007 482|0.000210000006078 543|0.000210000000543
42210.000210000065367 483|0.000210000005842 544|0.000210000000522
423(0.000210000062831 484|0.000210000005615 54510.000210000000502
42410.000210000060392 485/ 0.000210000005397 546 0.000210000000482
425]0.000210000058048 4860.000210000005188 54710.000210000000463
126 0.000210000055796 4871 0.000210000004986 5481 0.000210000000445
2710.000210000053630 4881 0.000210000004793 549|0.000210000000428
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SIN f(n) SIN f(n) SIN f(n)
550|0.000210000000412 611/0.000210000000037 672]0.000210000000003
5510.000210000000396 612 0.000210000000035 673]0.000210000000003
552 0.000210000000380 613[0.000210000000034 674]0.000210000000003
553]0.000210000000365 614 0.000210000000033 675/ 0.000210000000003
554]0.000210000000351 615 0.00021000000003 1 676 0.000210000000003
555|0.000210000000338 616 0.000210000000030 677/0.000210000000003
556 0.000210000000324 6170.000210000000029 678 0.000210000000003
557|0.000210000000312 618 0.000210000000028 679|0.000210000000002
558/ 0.000210000000300 619/ 0.000210000000027 680 0.000210000000002
559(0.000210000000288 620/ 0.000210000000026 681 0.000210000000002
560/ 0.000210000000277 621 0.000210000000025 682 0.000210000000002
561 0.000210000000266 622 0.000210000000024 683|0.000210000000002
562|0.000210000000256 623[0.000210000000023 684 0.000210000000002
563/ 0.000210000000246 624 0.000210000000022 685 0.000210000000002
564]0.000210000000236 625 0.000210000000021 686 0.000210000000002
565 0.000210000000227 626/ 0.000210000000020 687 0.000210000000002
566 0.000210000000218 627/ 0.000210000000020 688 0.000210000000002
567 0.000210000000210 628 0.000210000000019 689 0.000210000000002
568/ 0.000210000000202 629]0.000210000000018 690/ 0.000210000000002
569 0.000210000000194 630/ 0.000210000000017 691/0.000210000000002
570/ 0.000210000000186 631/ 0.000210000000017 692 0.000210000000001
571]0.000210000000179 632 0.000210000000016 693 0.000210000000001
572]0.000210000000172 633 0.000210000000015 694 0.000210000000001
573]0.000210000000166 634 0.000210000000015 695 0.000210000000001
574 0.000210000000159 635/ 0.000210000000014 696 | 0.000210000000001
575/ 0.000210000000153 636/ 0.000210000000014 697 0.000210000000001
576/ 0.000210000000147 |* 637/ 0.000210000000013 698/ 0.000210000000001
577]0.000210000000141 638] 0.000210000000013 699/ 0.000210000000001
578/ 0.000210000000136 639 0.000210000000012 700|0.000210000000001
579]0.000210000000131 640/ 0.000210000000012 701]0.000210000000001
580 0.000210000000125 641|0.00021000000001 1 702|0.000210000000001
581]0.000210000000121 642 0.000210000000011 703]0.000210000000001
582|0.000210000000116 643[0.000210000000010 704[0.000210000000001
583/ 0.000210000000111 644 0.000210000000010 705|0.000210000000001
584 | 0.000210000000107 645| 0.000210000000010 706 | 0.000210000000001
585/ 0.000210000000103 646/ 0.000210000000009 707/0.000210000000001
586 0.000210000000099 647/ 0.000210000000009 708]0.000210000000001
5870.000210000000095 648 0.000210000000008 709]0.000210000000001
588|0.000210000000091 649 0.000210000000008 710]0.000210000000001
589/ 0.000210000000088 650/ 0.000210000000008 711]0.000210000000001
590(0.000210000000084 651/ 0.000210000000008 712/ 0.000210000000001
591/0.000210000000081 652 0.000210000000007 713]0.000210000000001
592|0.000210000000078 653] 0.000210000000007 714]0.000210000000001
593/0.000210000000075 654] 0.000210000000007 715]0.000210000000001
594 0.000210000000072 655/ 0.000210000000006 716]0.000210000000001
595/ 0.000210000000069 656 0.000210000000006 717]0.000210000000001
596 0.000210000000067 657 0.000210000000006 718]0.000210000000001
5970.000210000000064 658| 0.000210000000006 719]0.000210000000001
598|0.000210000000062 659/ 0.000210000000005 720]0.000210000000000
599(0.000210000000059 660/ 0.000210000000005 721]0.000210000000000
600 0.000210000000057 661 0.000210000000005 722|0.000210000000000
601]0.000210000000055 662| 0.000210000000005

602 | 0.000210000000052 663 0.000210000000005

603 0.000210000000050 664 | 0.000210000000005

604 0.000210000000048 665/ 0.000210000000004

605 | 0.000210000000047 666/ 0.000210000000004

606 0.000210000000045 667|0.000210000000004 .

607 0.000210000000043 668| 0.000210000000004

608 0.00021000000004 1 669/ 0.000210000000004

609/ 0.000210000000040 670/ 0.000210000000004

610/ 0.000210000000038 671/ 0.000210000000003
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Fig 4.1a: Graphical illustration of analytic results
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4.2 COMPUTATIONAL RESULTS USING
SPRIET-BARON ALGORITHM

By using the initial value of X = (0, —1), the step size of oy = 0.1,
the direction of search di. = (1, 2), @ = 0.099 and P, = 6.4748. in (3.9),
with G = 04n(0.1)1 and A = —1+4n(0.1)2 and also using the mathcad
code we obtained the result presented in table 4.2; and from table 4.2
we obtained the graphical illustration in figures 4.2.
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Table 4.2: Computational results using Spriet-Baron Algorithm

1] 0.000280708574959 48| 0.000210915345384
2| 0.000278670024412 49| 0.000210788132768
3] 0.000274187595294 50| 0.000210678153738
4| 0.000269406212570 51/ 0.000210583166874
5| 0.000264608869074 52| 0.000210501202540]
6 0.000260045720427 53| 0.000210430534232
7] 0.000255912933620 54| 0.000210369651945
8| 0.000252340486260 55| 0.000210317237692
9] 0.000249388942996 56| 0.000210272143190
10{ 0.000247053978331 57| 0.000210233369671
11] 0.000245276815172 58| 0.000210200049727
12{ 0.000243958586062 59( 0.000210171431080
13] 0.000242976636140 60f 0.000210146862124
14| 0.000242200848233 61/.0.000210125779106
15[ 0.000241508216826 62| 0.000210107694803
16( 0.000240794224642 63| 0.000210092188543
17{ 0.0002399801 19060 64| 0.000210078897440
18] 0.000239015868794 65| 0.000210067508715
19] 0.000237879248897 66] 0.000210057752984
20| 0.000236571998090 67| 0.000210049398397
21| 0.000235114226696 68| 0.000210042245538
22| 0.000233538225245 69| 0.000210036122992
23| 0.000231882602413 70{ 0.000210030883489
24| 0.000230187365234 71/ 0.000210026400570
25| 0.000228490235749 72| 0.000210022565699
26| 0.000226824237640 73] 0.000210019285756
27| 0.000225216410730 74| 0.000210016480885
28| 0.000223687419738 75| 0.000210014082629
29| 0.000222251799259 76| 0.000210012032319
30/ 0.000220918597093 77/ 0.000210010279693
31 0.000219692221547 78| 0.000210008781706
32] 0.000218573349171 79{ 0.000210007501496
33| 0.000217559797284 80| 0.000210006407513
34| 0.000216647305269 81| 0.000210005472751
35| 0.000215830198380 82| 0.000210004674105
36/ 0.000215101928176 83| 0.000210003991808
37] 0.000214455496285 84| 0.000210003408951
38/ 0.000213883774963 85( 0.000210002911074
39| 0.000213379740593 86| 0.000210002485815
40| 0.000212936636438 87| 0.000210002122602
41| 0.000212548079623 88| 0.000210001812398
42| 0.000212208125357 89| 0.000210001547481
43| 0.000211911299190 90| 0.000210001321248
44| 0.000211652606029 91/ 0.000210001128060
45| 0.000211427522758 92| 0.000210000963095
46( 0.000211231979744 93] 0.000210000822235
47| 0.000211062335200 94| 0.000210000701963
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95( 0.000210000599272 141{ 0.000210000000412

96| 0.000210000511595 142| 0.000210000000351

97| 0.000210000436738 143| 0.000210000000300

98| 0.000210000372828 144| 0.000210000000256

99| 0.000210000318266 145| 0.000210000000218
100| 0.00021000027 1686 146{ 0.000210000000186
101] 0.000210000231920 147 0.000210000000159
102| 0.000210000197972 148| 0.000210000000136
103| 0.000210000168992 149 0.000210000000116
104 0.000210000144253 150( 0.000210000000099
105| 0.000210000123134 151| 0.000210000000084
106] 0.000210000105106 152| 0.000210000000072
107| 0.000210000089717 153| 0.000210000000062
108 0.000210000076581 154| 0.000210000000052
109| 0.000210000065367 155| 0.000210000000045
110} 0.000210000055796 156| 0.000210000000038
111] 0.000210000047625 157] 0.000210000000033
112{ 0.000210000040651 158| 0.000210000000028
113 0.000210000034698 159| 0.000210000000024
114] 0.000210000029616 160| 0.000210000000020
115( 0.000210000025279 161| 0.000210000000017
116] 0.000210000021577 162{ 0.000210000000015
117] 0.000210000018417 163| 0.000210000000013
118] 0.000210000015720 164) 0.000210000000011
119{ 0.000210000013417 165{ 0.000210000000009
120 0.000210000011452 166{ 0.000210000000008
121 0.000210000009775 167 0.000210000000007
122] 0.000210000008343 168| 0.000210000000006
123] 0.000210000007121 169 0.000210000000005
124| 0.000210000006078 170{ 0.000210000000004
125/ 0.000210000005188 171] 0.000210000000004
126] 0.000210000004428 172} 0.000210000000003
127] 0.000210000003779 173| 0.000210000000003
128| 0.000210000003226 174] 0.000210000000002
129] 0.000210000002753 175( 0.000210000000002
130] 0.000210000002350 176{ 0.000210000000002
131] 0.000210000002006 177] 0.000210000000001
132| 0.000210000001712 178| 0.000210000000001
133| 0.000210000001461 179{ 0.000210000000001
134| 0.000210000001247 180| 0.000210000000001
135/ 0.000210000001064 181] 0.000210000000001
136/ 0.000210000000909 182| 0.000210000000001
137| 0.000210000000775 183| 0.000210000000001
138| 0.000210000000662 184| 0.000210000000000
139{ 0.000210000000565 185| 0.000210000000000
140{ 0.000210000000482 186| 0.000210000000000
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Fig. 4.2a: Graphical illustration of Spriet-Baron results
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4.3 COMPUTATIONAL RESULTS USING EXTENDED
COGGINS ALGORITHM

By using the initial valueS (0, —1), the step length AP = 0.1,
P=2 wherer=0, 1, 2, ..., a =0.099 and P, = 6.4748. in (3.7),
with p = 0+ APp and ¢ = —1 + APp and using the mathcad code
we obtained the result presented in tables 4.3; and the corresponding
figures 4.3.
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Table 4.3: Computational results using Extended Coggins Algorithm

0.000282565893840
0.000280491329455
0.000278352579459
0.000273919224579
0.000264693289241
0.000246838921457
0.000224617029471
0.000229625680436
0.000217512666704
0.000210067508710
0.000210000002753
0.000210000000000
0.000210000000000
0.000210000000000
0.000210000000000
0.000210000000000
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Fig. 4.3a: Graphical illustration of Extended Coggins results
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4.4 ANALYSIS OF THE COMPUTATIONAL RAESULTS

The table below gives a summary of the various optimization algorithms

employed in this study to analyse the Submerged Sewage Dispersion Model.

Algorithm No of iterations Global minimum
Analytical 72zt f2axi0f I
Spriet-Baron 184 2.1x 107

ixtended Coggine 12 2.1x 10"

" Table 4.4.1

“The following observations arise from the above tabular presentation:

Remarks
. In the analytical simulation, the objective function is considered as a function

of the variable.
The optimal point was located after 721 iterations.
The optimal point of 1 =72.1

I'he minimum valuc of /() = 2.1 x 10

2 For the Spriet-Baron algorithm, the objective function is considered as a
function with two variables.
The optimal point was localed after 184 iterations.
I'he minimum value of f(n) = 2.1 x 10

2. FFor the extended Coggins algorithm, the objective function is considered as a

function of two variables.
The optimal point was located after 12 iterations. ,

. o S 5 g ]
I'he minimum value of /() = 2.1 x 10
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All the algorithms attain global minimum with different number of iterations.
A compafin of the results from the table above shows that the extended Coggins

optimization algorithm is a better algorithm for the solution of the problem under

study. -
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

The non—gradient method considered so far avals to one the fun-
damental issues in the design of line search which is a combination of
direct search and curve fitting in such a way that under fairly general
conditions, convergence to the minimum is guaranteed.

A comparison of the efficiencies of the line search methods consid-
ered in locating the optimal value of the function (table 4.4.1) shows
that though each method succeeded in approximating the location of
the minimum at X* = 2,1x 1074, the number of iteration shows a great
difference. While the Spriet—[?a.ron optimization algorithm requires 184
iterations before attaining the global minimum; the Extended Coggins
algorithm attains the global minimum with just 12 iterations.

5.2 RECOMMENDATION

Going by the above presentation, the Extended Coggins optimiza-
tion method has as an iterative method proves to be better than the an-
alytical and Spriet-Baron methods. This is because it does not consume
(occupy) much of computer space and at the same time produces bet-
ter results with fewer iterations; making it a time-saving non-gradient

method.
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APPENDIX I

1(a) Momentum = Mass x Velocity
Momentum = Area x Dynamic velocity
if area = 10m?

M = 10m? x (1.00 x 10" Kgm~'s~!
= 10m? x 0.001 K gm's7!
= 0.01Kgms™!

1(b)
_ G
Pr . k
Cp =3930 J/g K; n=1.005 Kgm™; K = 0.61 w/mK
_Given these values, we have that: P, = 6.4748

1(c) According te Schlictings [7], we can determine a from the expres-
sion: /

' 2/3
o = 0.2753 (%)

M = Momentum

p = density

Howatsn et al [15] gave the values as follows:

M = 0.01 Kgm s™'; p = 1025 Kg m™"; which gives the value:
a = 0.099
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APPENDIX II _
NOTATION / SEEECTIVE NUMENCLATURE

“u = horizontal velocit}.' component
X = horizontal distance
y = vertical distance
Fy = density difference flux per unit lengthl of diffusion
G, = GRASHOF number
Py = mass flux of pollutant per unit length of diffusion
P = PRANDTL number
‘o= therma:l expansion coefficient
¥ = stram function -
0 = reduced density difference
p specific mass
I' = Gamma function
K = thermal conductivity of fluid
1 = similarity variable
C, = specific heat constant pressure of the fluid

f = dimensionless stream function
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