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ABSTRACT 

We propose a mathematical model of the dynamics of mv / AIDS epidemic 

with the population of the community partitioned into three compartments of 

Susceptible, Latent and Infected classes. The latent class is structured into 

"latent age", which results in a set of three equations with one partial 

differential equation and two ordinary differential equations. The model 

equations are then analysed for stability of equilibrium state. The results 

indicate that the origin will always be stable except where the birth rate is 

greater than death rate of the population. It was also observed that the model 

shows a tendency for the epidemic to stabilise with the application of control 

or mitigation measures. We also discovered that the non-zero equilibrium 

state will always be unstable except where the birth rate is much greater than 

the death rate, where the rate of contracting the virus as well as death burden 

due to infection is particularly low. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND TO THE STUDY 

A mathematical model is a mathematical description of a real life situation. It is 

a process of creating a mathematical representation of some phenomenon in 

order to gain better understanding of that phenomenon. This work therefore, 

seeks to apply mathematical modelling as a tool for analysing the impact of 

HIV / AIDS epidemic on any giving population with time. The objective of this 

study is to investigate the sustainability or otherwise of any given population 

made up of the susceptible, the latent, and the infected classes. 

In this work, we propose a mathematical model of the dynamics of HIV / AIDS 

epidemic with Latent Age-Structure. The model comprises a system of ordinary 

differential equations, partial differential equations and integral equations, 

which we shall solve to obtain the equilibrium states of the model. The stability 

analysis of the zero and non-zero equilibrium states is then carried out to 

determine the conditions for stability or otherwise of the equilibrium states. 

For the purpose of this study, the population is divided into three classes of 

Susceptible Set), which is the class whose members are HIV free but are prone 

to the virus infection as they interact with members of the other two classes; the 

second class is the Latent L(t) whose members have contracted the HIV virus 

but have no symptoms of the AIDS infection; the third class is the Infected I(t): 

this is the class of those that exhibit the symptoms of the full blown AIDS 

disease at various stages of infection. 

" 
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The Latent class is structured by the latent age ' 't ' with a density function 

p(t, r), where t is the time. The rate of flow from the latent class into the 

infected class is given by 0-( r ) = tan( 7fr ), which tends to infinity as ' r ' 
2kT 

approaches its maximum 'T' where k is a control parameter which represents 

measures taken to slow down the rate of infection. These measures include 

public enlightenment campaign on behavioural change and safe sexual and 

medical practices, public health education, voluntary HIV testing, and use of 

antiretroviral drugs to slow down infection. We have assumed a maximum 

latent age T with 0 ~ r < T and 0 < k < 1. The population has a natural birth rate 

' Wand death rate ' Il' , while the infected class has an additional death rate due 

to AIDS infection 0, 

It is also assumed that new births in Set) are born into Set), the new births in I(t) 

are born into I(t), while the offspring of L(t) are divided between Set) and L(t) 

in the proportion 8 and 1-8 respectively with 0 ~ e ~ 1. This is because HIV 

infected pregnant women can be medically treated to keep the unborn baby free 

from HIV infection. 

The relevance of this research work cannot be over emphasized considering the 

disastrous effect of the HIV / AIDS epidemic on the development of many poor 

countries in various parts of the world. Therefore, in this first chapter we give a 

general introduction to the study as well as objectives of this research work. 

Also presented in this chapter are the scope and limitations of this research 

work. 
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In chapter two, we present a review of the literature of epidemiological models 

of HIV / AIDS, and the impact Of HIV / AIDS epidemic on Africa with particular 

emphasis on the Nigerian case and the response strategies for prevention and 

management of the epidemic. 

Chapter three provides the model equations usmg letters and symbols to 

represent the parameters and factors considered in this model including the 

initial conditions. The introduction of age-structure in the Latent class gave rise 

to a system of ordinary differential, partial differential and integral equations. 

We then solve these equations to obtain the equilibrium states of the model. The 

solution shows that the origin is an equilibrium state; the non-zero equilibrium 

state is also obtained. 

In chapter four, the zero equilibrium state is analysed for stability. Assuming a 

perturbation in the model equations, we evaluate the resulting equations to 

obtain the characteristic equation. We applied numerical method in evaluating 

some functions that emerged in the course of our analysis. The analysis shows 

that both the zero and non-zero equilibrium states will be stable for some 

conditions on natural birth and death rates of the population. 

Finally, chapter five contains suggestions and conclusion based on the result of 

the stability analysis. MathLAB was used to generate table of values for the 

stability functions with hypothetical values for the parameters. Useful 

suggestions on the sustainability of population are also given based on the 

results obtained. 
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1.2 SCOPE AND LIMITATIONS OF THE STUDY 

We shall consider an age-structure for the Latent class of the population and 

this gives rise to a system of integral and partial differential equations while the 

Susceptible and Infected classes are represented by ordinary differential 

equations. Age-structure was eliminated from the Infected class for ease of 

analysis. Also introduced is a controVmitigation parameter 'k', which is a 

measure of the effectiveness of responses both preventive and control to the 

HIV / AIDS epidemic. 

The model equations were evaluated to obtain the equilibrium states of the 

model and the characteristic equation. We also carried out the stability analysis 

of the equilibrium states using the characteristics equation. We have covered 

the stability analysis of the zero equilibrium state (i.e. origin) and the non-zero 

equilibrium state. We also compared the results obtained from the stability 

analysis of both the zero and non-zero equilibrium states to establish the 

consistency or otherwise our result. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents a literature reVIew of HIV/AIDS and Mathematical 

epidemiology with emphasis on HIV/AIDS models. This includes the impact of 

HIV I AIDS epidemic on Africa. 

2.2 IMPACT OF HIV/AIDS EPIDEMIC ON AFRICA 

In recent times, HIV I AIDS epidemic is considered as the greatest health 

problem threatening the human race, where the burden is greatest in Sub

Saharan Africa. It has become one of the most important challenges to the 

continuing existence and development of many poor countries in various parts 

of the world. AIDS has wiped out over four decades of development progress in 

the worst hit countries (DFID HIV/AIDS Strategy Report, May 2001). 

According to the Joint United Nations Programme on HIVIAIDS, over 40 

million people had been infected with the virus by the end of 2003 of which 

over 28 million were in Sub-Saharan Africa. In Sub-Saharan Africa, HIV I AIDS 

has shattered many families and placed extraordinary burden on the extended 

family and village system that have been the backbone of African child rearing 

tradition. In countries where prevalence is lower; the impact on many highly 

vulnerable groups will be severe. 
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The levels of infection are particularly high in India and South-East Asia. A 

DFID HIVIAIDS Strategy Report of May 2001 gave the global estimates for 

HIV/AIDS epidemic as at the end of 2000 as follows: people living with 

HIV/AIDS, 36.1 million; new HIV infection in 2000, 5.3 million; death due to 

HIV/AIDS, 3.0 million; cumulative death due to HIV/AIDS since the start of 

epidemic, 21.8 million; life expectancy reduced up to 20 - 30 years; 15 million 

AIDS orphans (with an estimated 30.2 million by 2010); 1 -2% loss in GDP per 

year in hardest hit countries. In many counties, especially sub-Saharan Africa, 

HIV I AIDS is putting an enormous strain on health and education services by 

drastically reducing the number of staff, the number of new trainees, and the 

length of service of current staff with HIV I AIDS. The instructional capacity of 

services is being seriously affected. At the same time the health care sector is 

overwhelmed with a massive increase in patients (up to 80% of hospital beds 

being occupied by patients with HIV I AIDS related illness). Although latest 

reports show a downward trend in the HIV I AIDS figures , it is not yet time to 

relax in the fight against this deadly pandemic. 

HIV/AIDS has many interconnected causes and consequences. Therefore, any 

response to the epidemic must be rooted on an understanding of why people are 

at risk of infection. A USAID report gave the means and proportion of HIV 

transmission globally as: Sexual transmission (both heterosexual and 

homosexual) - 80%; Injecting drug use (sharing needles) - 5%; Unsafe blood 

transfusions - 5%; Mother to child transmission - 10%. The risk of sexual 

transmission is substantially increased by the presence of other sexually 

transmitted infections (STI), high rates of partner exchange, lack of health 

information and other high risk behaviours. Alcohol is associated with high risk 
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behaviour in men, while biological vulnerability and female genital mutilation 

place women at high risk of infection. 

There are two mam VIruS types, HIVI and HIV2. HIVI is more easily 

transmitted than HIV2 and contributes more to the global pandemic. There are 

ten different virus subtypes each of HIVI and HIV2. This poses substantial 

technical problems for vaccine development. The time between infection with 

the virus and death varies, but can be more than 10 years, in developing 

countries it is frequently less. "AIDS" refers to a clinical definition of when an 

individual ' s immune system has become progressively weak, which makes the 

individual prone to opportunistic infections. In developing countries, 

technology and systems do not exist to monitor population' s immune systems. 

However, Anti-retroviral CARY) therapies can delay the onset of full blown 

AIDS infection, but there is not sufficient evidence to show that they also 

reduce transmission of HIV. There is presently no effective vaccine against 

HIV or cure for HIV/AIDS. Therefore, effective response to the epidemic 

should be based on proper understanding of factors relating to means and 

pattern of transmission, and vulnerability to HIV infection, with priority on 

strategies to promote prevention, while reducing the impact of the epidemic 

especially at individual, family and community levels. 

2.2.1 Epidemiology of HIV I AIDS in Nigeria 

The 2003 Sero-Prevalence Sentinel Survey by the National AIDS/STDs Control 

Programme of the Federal Ministry of Health indicates that some parts of the 

country are worse affected than others, but no state or community is unaffected. 

All the states in Nigeria have a general population HIV prevalence of over 1 %. 
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Although the first case of HIV I AIDS in Nigeria was reported In 1986, the 

epidemic has grown steadily since then. 

The adult HIV prevalence has increased from 1.8% in 1991 to 4.5% in 1996, 

and 5.8% in 2001. Estimates using the 2001 HIV/Syphilis Sera-Prevalence 

Sentinel Survey among women attending antenatal clinics reveal that more than 

3.5 million Nigerian were infected with HIV by the end of 2001 , which is the 

highest figure in West Africa. The epidemic in Nigeria has extended beyond the 

commonly classified high risk groups and is now common among the general 

population. In 2002 alone, more than 200,000 AIDS deaths occurred, and it was 

estimated that there were over 1.0 million AIDS orphans in Nigeria. 

With the adult HIV prevalence rate at 5.8% in 2001, the nation was said to be at 

the threshold of an exponential growth of the epidemic. In some communities, 

prevalence was higher than 10.0%. HIV/AIDS affects all age groups; but youths 

between the ages of 20 and 29 years are more infected, though in some zones 

(south-south and south-west), there was a higher prevalence in the 15-19 years 

age group as recorded in the 2001 Sentinel Survey. 
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Figure 2.1 

Graphical representation of HI V Prevalence in Nigeria (1991-2003) 
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Source: Federal Ministry of Health, 2003 HIV Sero-prevalence Sentinel Survey (2004) 

Recently, an increasing number of children are being either infected with the 

virus through mother-to-child transmission, or are loosing one or both parents 

to the disease. By all indications, the mv / AIDS epidemic has continued to 

grow largely through heterosexual unprotected sexual interactions. AIDS cases 

are becoming more visible in communities. Although AIDS case reporting has 

been characterized by under-reporting, delayed reporting and under-recognition 

the number of reported cases has been on the increase, especially since 1996. 

Similarly, the HIV prevalence rate among sex workers in Nigeria remained high 

and on the increase from 17.5% in 1991 , through 22.5% (1993) to 35.6% in 

1995. 
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The latest data, obtained through the 2003 HIV Sero-Prevalence Sentinel 

Survey, estimate the national HIV prevalence for Nigeria at 5.0%, which shows 

a decrease from 5.8% in 2001. However, this figure conceals significant 

regional differences, from 2.3% in South-West to 7.0% in North-Central. State 

level variations are even larger, from 1.2% in Osun and 1.5% in Ogun, over 

6.0% in Kaduna and 6.3% in Plateau to 9.3% in Benue and 12.0% in Cross 

River state. The divergence and irregular patterns of HIV prevalence rates and 

trends across zones and states demonstrates that the dynamics of the epidemic 

are different in each zone and state, which probably reflects different realities, 

different determinant and vulnerabilities, and different pace of the response at 

these levels. 

According to the 2003 report, Nigeria is the third most affected country in the 

world, behind South Africa and India, in terms of numbers of people living with 

HIV/AIDS. In this context, the high prevalence rates among young people make 

the case for identifying prevention efforts through strengthening HIV/AIDS 

education in and out of school. Empowerment of young girls and women to 

develop the knowledge and skills to protect themselves from HIV infection also 

needs to be emphasized. Since the rural HIV prevalence is not markedly 

different from the urban prevalence, intervention strategies should equally 

target the rural communities. 

There is the need for an increasing political commitment in the fight against this 

global scourge. Resource mobilization and multi-sectoral responses need to be 

strengthened and sustained, especially at the state and community levels. In 

anticipation of an increasing demand arising from the large numbers of 

estimated HIV I AIDS cases in the country, the existing care and support 

activities need to be scaled up. A comprehensive response strategy should place 
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particular emphasis on support for AIDS orphans and the anti-retroviral 

programme providing treatment to People Living with HIV/AIDS while 

eliminating stigma and discrimination. Other health sector interventions to be 

reinforced include; the National Safety programme, the provision of Voluntary 

Counselling and Testing services, the prevention and treatment of Sexually 

Transmitted Diseases and the treatment of Opportunistic Infections. 

2.3 LITERATURE REVIEW OF EPIDEMIOLOGICAL 

MODELS mV/AIDS 

The use of mathematical models as research tools in the study of the dynamics 

of disease epidemiology, especially vector born diseases has been going on for 

a long time. As a result, the relationship between disease epidemiology and 

population dynamics has been studied in various models. We hereby present a 

review of some of these studies which are relevant to HIV / AIDS. 

John Pickering, et al (1986) in a work, "Modelling the Incidence of AIDS in 

San Francisco, Los Angeles, and New York", presented a discrete nonlinear 

model, which was used to explore underlying biological and sociological 

characteristics of the AIDS outbreak and to forecast the number of new cases. 

The model dynamics assumed that AIDS is sexually transmitted and that other 

forms of transmission mimic sexual transmission. Its parameters reflect (1) how 

long AIDS takes to develop from exposure to diagnosis, (2) when during this 

development individuals are contagious, and (3) how changes in sexual 

behaviour and saturation - the removal of susceptible individuals through 

infection - affects the incidence of AIDS. The model was used in conjunction 
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with anal/rectal gonorrhoea rates from San Francisco to generate preliminary 

forecast of AIDS incidence, and the model 's best fits to observe incidence 

suggesting that there would be at least 2,400, 7,200 and 2,500 cumulative cases 

in Los Angeles, San Francisco, and New York respectively. 

Claude Lefevre and Marie-Pierre Malice, (1985) studied "A Discrete Time 

Model for S-I-S Infectious Disease with a Random Number of Contacts 

Between Individuals", in which they formulated a chain of binomial 

deterministic model for the spread of infectious disease of S-I-S type that 

accounts explicitly for the distribution of the number of contacts made by each 

susceptible during one time interval. Under certain hypothesis, a threshold 

theorem for endemicity is derived, bounds for the endemic level are 

constructed, and the transient behaviour of the epidemic process is investigated. 

Andrea Di Liddo (1985), proposed a S-I-R Vector Disease Model with Delay in 

which he analysed the deterministic epidemic model with derived by the 

Kermack-McKendrick model. The model is suitable to describe infections 

transmitted by a vector. Existence and uniqueness, stability and asymptotic 

behaviour of the solutions were studied. 

To assess the effect of random test and various factors on AIDS, W.Y. Tan and 

F. Shamsa (1990) published a paper "Assessing the Effect of Intervention on 

AIDS Development Induced by Blood Transfusion" in which they considered 

the situation where AIDS transmission is developed by blood transfusion and 

then proceeded to develop a stochastic model involving latency of AIDS 
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vIruses. Using a computer simulation, they computed and compared the 

probabilities of developing AIDS for both tested and not tested individuals. The 

effects of various factors were also assessed by computer simulated results. The 

indicated that even within the Weibull family, different probability distributions 

of latency and incubation exert very different effects on the time from 

contraction of virus to manifestation of AIDS symptoms and the effects of 

intervention by random testing and treatment. 

Ying-Hen Hsieh (1990), proposed an AIDS model with screening, in which He 

studied the transmission dynamics of AIDS epidemic in a male homosexual 

population using a compartment model along the lines of those proposed by 

Andrew et al (1986). The emphasis was to gain qualitative insight into the 

future trends of the very unique disease. Analytical results were produced with 

implications on the possible effects of random screening and removal on the 

population. 

W.Y. Tan (1990) developed a stochastic model for AIDS epidemic involving 

several risk populations. The probability generating function (PGF) of the latent 

persons, infected persons and AIDS cases was derived. By using PGF, it was 

shown that the expected values, the variances and the covariances of the latent 

persons, infected persons and AIDS cases satisfy some ordinary differential 

equations. These equations were solved numerically to assess effects of various 

factors on the AIDS epidemic. 
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In 1990, A. Pugliese studied an S-I epidemic model with a general shape of 

density-dependent mortality and incidence rates. He found out the global 

asymptotic convergence to an endemic equilibrium above a threshold, and to 

disease-free equilibrium below the threshold. He also examined the effect of 

vaccination on the population. 

Similarly, F. Brauer (1990) formulated models of S-I -R type for the spread of 

communicable diseases. He considered models which include non-linear 

population dynamics with permanent removal, 'R' . The principal result of this 

study is that the stability of endemic equilibrium may depend on the population 

dynamics and on the distribution of infective periods; sustained oscillations are 

possible in some cases. 

Garnett G.P. and Anderson R.M. (1994) formulated a mathematical model of 

the transmission dynamics of HIV -1 in a heterosexual population stratified by 

age, sex, and sexual activity (defined by rates of sexual partner acquisition). 

The model represents an extension of an extension of previous studies with a 

special focus on patterns of mixing or contact between sexual activities and 

different age classes of the two sexes. A range of mixing patterns between these 

groups is specified for both sexes. Mixing is described on two scales from fully 

assortative to fully disassortative, with random defined either according to 

numbers of sexual partnerships or numbers of people. The sexual partnerships 

in the model are balanced by changes in the rates of sexual partner acquisition 

between particular groups and a range of changes, from only women changing 

behaviour to only men changing behaviour, were analysed. The pattern of 

mixing is most influential in determining the shape and magnitude of the 
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epidemic, but the manner in which people choose partners (i.e. dependent on 

numbers or proportions in the population) is also important. The relative 

importance of variation in transmission possibilities and mean rates of partner 

change on the course of the HIV epidemic was also illustrated. The analysis of 

the sensitivity of predictions to changing parameters in the force of infection 

term of the model provides a theoretical basis from which the influence of 

control strategies and the demographic effects of HIV can be analysed. 

In another publication, Garnett G.P. and Anderson R.M. (1995) presented a 

paper titled ' Strategies for Limiting the Spread of HIV in developing Countries: 

Conclusions Based on Studies of the Transmission dynamics of the Virus ' . 

They examined possible interventions to reduce the spread of HIV including 

actions that attempt to alter sexual behaviour, such as education aimed at 

reducing the rate at which individuals acquire new sexual partners, and methods 

that reduce the probability of transmission between partners, such as promotion 

of condom use and the treatment of so-called "cofactor" sexually transmitted 

diseases. A mathematical model of HIV transmission that is able to mimic 

different approaches to the control of HIV transmission was employed to study 

the relative values of different approaches, either used in isolation, or in 

combination. The nonlinear nature of the term that describes the per capita rate 

of transmission dictates that for a given degree of intervention, the benefit 

accrumg in terms of reduced HIV spread depends on the prevalence on 

infection before the introduction of control. Benefit is greatest when HIV 

prevalence is low Combination approaches were predicted to be effective but 

the outcome is less than would be expected on the basis of simply summing the 

benefits resulting from each type of intervention used in isolation. The success 

of targeted interventions, aimed at those with high rates of sexual partner 
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change, depends on the heterogeneity in levels of sexual actIvIty within 

populations and what proportion of the population HIV is able to establish itself 

in. Targeted interventions were predicted to be very cost effective but their 

overall success in reducing HIV spread by a significant degree depends on the 

timing of their introduction (within the time frame of the development of the 

epidemic) and the pattern of mixing between different risk groups or sexual 

activity classes. 

M. Kakehashi (1998) analysed the spread of HIV/AIDS in Japan usmg a 

mathematical model incorporating pair formulations between adults and sexual 

contacts with commercial sex workers. The parameters involved in the model 

were carefully specified as realistically as possible to the actual situation in 

Japan. Plausible ranges were assigned to those parameters for which values are 

not known precisely. The model was used to simulate the effect of HIV infected 

commercial sex workers introduced into a population without HIV. It was 

shown that the model could generate different scenarios, an explosive infection 

or a temporal spread, according to different settings of the parameters. Then the 

condition for occasional introduction of HIV infected commercial sex workers 

to be able to cause an explosive spread of HIV infection was analysed. This 

condition was summarised in terms of the critical transmission probability so 

that we could easily evaluate the degree of the risk. For some unclear 

parameters, sensitivity to the critical transmission probability was calculated. 

They also calculated a plausible range of the critical transmission probability 

using the Latin hypercube sampling method where the parameters were 

distributed on the plausible ranges. According to the analyses of the model it 

was concluded that the actual situation of HIV spread in Japan should lie very 

near the critical point that determines whether the explosion HIV spread 
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actually takes place. This also suggests that effective action taken immediately 

could be useful to prevent explosive HIV infection in Japan. 

Tan W.Y. and Xiang Z. (1998) developed a state space model for the HIV 

epidemic in homohexual population which have been divided into 

subpopulations according to sexual activity levels. In this model, the stochastic 

dynamic system model is the stochastic model of the HIV epidemic in terms of 

the chain multinomial whereas the observation model is a statistical model 

based on the observed AIDS incidences. This model was applied to the San 

Francisco homosexual population for estimating the number of susceptible 

people, infected people and AIDS cases and for estimating the probabilities of 

HIV transmission from infective people to susceptible people given sexual 

contacts. The results show that the estimated numbers of AIDS incidence trace 

closely the observed numbers indicating the usefulness of the model. They 

observed that the estimated numbers of latent people show multimodal curves 

and that HIV infection takes place during the primary stage and very late stage. 

The result further showed that there are significant differences between the 

observed AIDS incidences and the estimates by the embedded deterministic 

model. These results indicates that using embedded deterministic model to 

estimate the HIV -infected people and to predict future AIDS cases can be very 

misleading in some cases. 

Hsieh Y.H. and Cooke K. (2000) considered 'Behaviour change treatment of 

core groups: its effect on the spread of HIV/AIDS', using a general model for 

treatment and behaviour change of the mv infected in a highly sexually active 

core group of female commercial sex workers and a 'bridge population' of 

young unpartnered males. In this model, the spread of HIV I AIDS in the 
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community is carried out mainly through the sexual interaction between the 

core group and the bridge population which acts as a bridge for the spread of 

disease to the general population. They also considered the effect of treatment 

of the infected and/or the subsequent behaviour change when targeted toward 

the core group and the bridge population. Analytical results were given for a 

strategy which targets treatment and behaviour change at either the core group 

or the bridge population. Numerical examples were also provided to illustrate 

the biological significance of the treatmentlbehaviour change and its effect of 

the threshold parameter values. The results show that if the contact rates and 

transmission probabilities of the treated individuals are sufficiently reduced, the 

treatmentlbehaviour change can eradicate the disease provided that the level of 

treatment in the infected population is sufficiently high. However, an ill

planned treatment programme which fails to meet the required reductions in 

contact rate or transmission probability could have a detrimental effect on the 

spread of the epidemic. 

Similarly, Auvert B. et al (2000) used a stochastic simulation model to asses the 

extent to which variation in sexual behaviour and transmission characteristics 

can explain the striking spatial heterogeneity in the prevalence of HIV among 

different geographical locations in Sub-Saharan Africa. Of the various 

parameters describing sexual behaviour the most important determinant of the 

spread of HIV is the proportion of men engaging in sexual relationships with 

people other than their spouses, including contacts with sex workers and short

term partners. Considering factors other than sexual behaviour the model shows 

that this heterogeneity in HIV prevalence could be the result of differences in 

the transmission probability of HIV or in the prevalence of other sexually 

transmitted diseases. These factors could play a key role in determining the 
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patterns of spread of HI V in sub-Saharan Africa and should be considered in the 

design of intervention strategies. 

Nico J.D. Nagelkerke, et al (2002), in paper 'Modelling mY/AIDS epidemics 

in Botswana and India: impact of interventions to prevent transmission' 

described a dynamic compartmental simulation model for Botswana and India, 

developed to identify the best strategies for preventing spread of HIV/AIDS. 

They considered the following interventions: a behavioural intervention focused 

on female sex workers; a conventional programme for the treatment of sexually 

transmitted infections; a programme for the prevention of mother-to-child 

transmission; an antiretroviral treatment programme for the entire population, 

based on a single regimen; and an antiretroviral treatment programme for sex 

workers only, also based on a single regimen. Their fmdings indicate that 

interventions directed at sex workers as well as those dealing with sexually 

transmitted infections showed promise for long-term prevention of HIV 

infection, although their relative ranking was uncertain. In India, a sex worker 

intervention would drive the epidemic to extinction. In Botswana none of the 

interventions alone would achieve this, although the prevalence of HIV would 

be reduced by almost 50%. Mother-to-child transmission programmes could 

reduce HIV transmission to infants, but would have no impact on the epidemic 

itself. In the long run, interventions targeting sexual transmission would be even 

more effective in reducing the number of HI V-infected children than mother-to

child transmission programmes. Antiretroviral therapy would prevent 

transmission in the short term, but eventually its effects would wane because of 

the development of drug resistance. 
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N.!. Akinwande (2005) in a study applied the theory of Laplace Transformation 

to carry out a stability analysis of the non-zero equilibrium state of an Age

Structured mathematical model of Yellow Fever disease dynamics. In this 

model, age-structures were introduced to the infective hosts' class, and the two 

compartments of the vectors. He also considered the urban yellow fever 

transmission cycle for modelling with two primary communities namely the 

Host and the Vector; the host community is made up of human beings while the 

vector community consists of aedes egypti. In his analysis, he established a 

sufficient condition necessary for exponential asymptotic stability of the non

zero equilibrium state of the model. 

Flugentius Baryarama et al (2005) formulated an HIV / AIDS mathematical 

model incorporating complacency for the adult population. Complacency is 

assumed a function of the number of AIDS cases in a community with an 

inverse relation. A method to fmd the equilibrium state of the model is given by 

proving a stated theorem. An example to illustrate the application of the 

theorem is also given. The model analysis and simulations show that 

complacency resulting from dependence of HIV transmission on the number of 

AIDS cases in a community leads to damped periodic oscillations in the number 

of infective with oscillations more marked at lower rates of progression to 

AIDS. The implications of these results to public health with respect to 

monitoring the mY/AIDS epidemic and widespread use of antiretroviral (ARV) 

drugs is discussed. 

In another study, N.I. Akinwande (2005) proposed a mathematical model of the 

dynamics of HIV/AIDS pandemic and analysed the zero equilibrium state for 
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stability. He introduced age-structure in the infected class and the influence of 

drug application and public enlightenment aimed at controlling the attitude of 

the populace as a measure of preventing/reducing the spread of the virus. The 

analysis revealed that the zero equilibrium state will always be stable except for 

situations where the birth rate is greater than the death rates. 
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CHAPTER THREE 

MODEL EQUATIONS AND EQUILIBRIUM STATE 

3.1 INTRODUCTION 

We formulate a mathematical model of the dynamics of HIV/AIDS epidemic 

with latent age structure by considering a population which is made up of the 

Susceptible Set), the Latent L(t) and the Infected I(t) classes and we assume that 

the three classes interact with one another . Then the rate of contracting the HIV 

depends on rate and level of interaction (sexual and other risky contacts) 

between the first class and the other two classes. At any time t, the susceptible 

class comprises those born without the HIV at the rate ~ minus those that leave 

the class through death at the rate Il and by contracting the virus at the rate u. 

This relation is represented in equation (3.1), in which we applied the mass 

action law based on our assumptions. Equation (3.2) is a partial differential 

equation which rises from the fact that a HIV victim may die naturally at the 

rate Il or flow into the infected class at the rate aCt). 

The infected class I(t) is made up of those born with the full blown AIDS 

infection at the rate ~ and those that flow from the latent class into the infected 

class at the rate a( 1:), and exit through a cumulative death rate from natural 

causes and burden of infection D. This is represented by the differential equation 

(3.3). The rate of infection a(r) is defmed in equation (3.4) which shows that 

the rate increases to infinity as the virus latent age 1: approaches its maximum T. 
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Therefore, at any time t, and initial stage of the HIV contraction with the latent 

age T = 0, the latent class L(t) takes the form B(t) which consist of those born 

with the virus at the rate ~, and those who just contracted the virus at the rate a, 

as shown in equation (3.5). Equation (3.6) represents the Latent class which is a 

transition from the susceptible class to infected class over a period T, with 

o ~ T < T , While equation (3.7) represents those infected at the initial time 

t = O. Also presented in equation (3.8) are boundary conditions of the model 

equations. 

3.2 THE MODEL EQUATIONS 

This section presents the model equations using parameters which we shall 

defme later in this section. Our model allows for the general application of the 

mass action law. We have also assumed the natural birth ~ and death rates Ji of 

the population as well as rate of contracting HIV a and additional death burden 

due to AIDS infection 0 to be constants. The model equations are given by; 

dS(t) = (p _ J-L )S(t) + BPL(t) - as(t)[L(t) + I(t)] 
dt 

ap(t ,T) + ap(t ,r ) +(J-L+a(T))p(t,T)=O 
at aT 

dI(t) = (f3 - J-L - 8)I(t) + rT a( T)p(t, T}ir 
dt .b 

Let o-(r) = tan( nr ), where 0 ~ r < T and 0 < k < 1 
2kT 

p(t,O)= B(t) = (1- B)pL(t) + as(t)[L(t) + I(t)] 
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L(t) = fp(t, r)dr:O~r<T 

p(O, r) = <l>(r) 

S(O) = S o; L(O) = Lo; 1(0) = 10 

(3.6) 

(3.7) 

(3.8) 

Equation (3.4) represents the rate of flow of people from the latent class L(t) 

into the infected class I(t), i.e. the rate of infection. It can be observed from this 

equation that the rate of infection, aCt) tends to infinity as the Latent virus age, 't' 

approaches its maximum, T. At the point of contracting the virus, we assume an 

initial value for the latent age t = 0 , so that the rate of infection is at zero. This 

can be seen from a graph of a( 't') versus 't' as shown below. 
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O L-===~---·-----------------------------------------+-~ 
T 't 

Figure 3.1 - rate of flow from the latent class into the infected class aCt) 
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The parameters used in this model are defined as follows: 

• ~ - Natural birth rate of the population. 

• ~ - Natural death rate of the population. 

• a. - Rate of contracting the mv. 

• aCr) - Rate of flow of people from the Latent class L(t) into the Infected 

class. 

• 't - Latent/virus infection age. 

• k - Control parameter which measures the effectiveness of efforts at 

slowing down the rate of infection. 

• T - Maximum Latent/virus infection age. 

• 8 - Additional death rate due to infection. 

• t - Time variable. 

• 8 - Proportion of new births in L(t) that are born into Set). 

• 1-8 - Proportion of new births in L(t) that are born into I(t); where 

O:s8:s1. 

, , 26 



3.3 EQUILIBRIUM STATE OF THE MODEL 

In this section, we shall use the model equations to obtain the equilibrium states 

ofthe model. 

At equilibrium state, let; 

s(t)=x; L(t)=y; I(t)=z; p(t,r)=¢(r); 

Hence, y = f ¢(r)dr 

¢(O) = B(O) = (1 ~ B)fJy + ax(y + z) 

Substituting equations (3.9) to (3.11) into the model equations, we have; 

(fJ - l1)x + BfJy - ax(y + z) = 0 

d 
-¢(r) + (11 + CT(r))tjJ(r) = 0 
dr 

Solving the o.d.e (3.13), we obtain; 

¢(r) = ¢(o)exp~ {(11 + CT(s))ds} 

Hence, equation (3.15) becomes; 

¢(r) = ¢(O)h(r) 
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(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Substituting equation (3.17) into equation (3.10) yields 

y = ¢(O) , h(r)dr = ¢(O)h (3.18) 

Where h = , h(r)dr (3.19) 

is a constant. 

Putting equation (3.11) into equation (3.18), we obtain; 

y = {(I- B)fJy + m(y + z )}h (3.20) 

Substituting equation (3.17) into equation (3.14) we have; 

(fJ - Il - 8)z + ¢( 0) r u( r )z( r )d r = 0 

Let 7r = I u(r )z(r )dr 

Recall also from equation (3.11) that; 

¢(O) = (1- B)fJy + m(y + z) 

Hence, equation (3.21) becomes; 

(fJ - Il- 8)z + 7r[(1- B)fJy + m(y + z)] = 0 

(3.21) 

(3.22) 

(3.23) 

We now solve equations (3.12), (3.20) and (3.23) simultaneously to obtain the 

values of x, y, z, which give the equilibrium states of the model. 

Observe from equation (3.12), given by; 

(fJ - Il)x + BfJy - m(y + z) = 0 
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that when x = 0 , we have; 

Bfly = 0; => y = ° , since Bfl -:t= ° . 
And from equation (3.20), we observe that when x = 0, we have; 

l{l- B)flh -1 Jy = 0; (3.24) 

=> y=O, since (1-B)flh-1-:t=0 

Similarly, from equation (3.23), when x = ° and y = 0, we have; 

(f3 - 11 - 8)z = ° (3.25) 

=> z = 0, since fl - 11 - 82 -:t= ° 
Therefore, we obtain the zero equilibrium state of the model gIven by; 

(x,y,z)= (O,O,O). 

For the non-zero equilibrium state of the model, we have; 

when x -:t= 0, we obtain from equation (3.12); 

-Bfly 
x = -----'--''--:-------:-

fl - 11 - a{y + z) 

Substituting equation (3.26) into equation (3.20), we have; 

y = {(l- e)py - a(y + J ePY( )]}h tfl - 11 - a Y + z 

~ (f3 - 11- a{y + z)lY = {(f3 - 11- a(y + z )K1- B)fly - aBfly{y + z )}h 

(3.26) 

(3.27) 

(f3 - 11- a{y + z)lY = {{fl - 11 X1- B)fly - a(y + z X1- B)fly - aBfly{y + z )}h 
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Simplifying further we have; 

[,B - f-L - a(y + z)lY = {(p - f-LX1- O)p - ap(y + z )}yh 

fl- f-L+ a(y+zXPh-1)=(P- f-LX1-0)ph 

(fl - f-L )(1- O)ph-1 
:::::> Y+z= -

a Ph-1 

Putting equation (3.28) into equation (3.26) yields; 

-Ofly 
X= fl a(p-f-L)[(1-0)flh-1] 

- f-L - a(ah -1) 

(3.28) 

(3.29) 

(3.30) 

We then substitute equations (3.28) and (3.30) into equation (3.23) to obtain; 
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~ Z= -nyl(l-B),8h-(l-B),8h+1J 
h{,B - Jl- 0) 

-ny 
z==-c------,--

h(,8 - Jl- 0) 
(3.31 ) 

Putting equation (3.31) into equation (3.28), we obtain; 

ny (,8 - Jl)(l- B),8h -1 
y- -

h(,8 - Jl - 0) - a ,8 h - 1 

(3.32) 

Again, we substitute equation (2.32) into equation (2.28) to obtain; 

(3.33) 

Similarly, putting equation (3.32) into equation (3.30), we have; 
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(3.34) 

Therefore, the values of x,y ,z given by equations (3.34), (3.32) and (3.33) give 

the non-zero equilibrium state of the model. 
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CHAPTER FOUR 

STABILITY ANALYSIS OF EQUILIBRIUM STATES 

4.1 INTRODUCTION 

This chapter deals with the analysis of the zero and non-zero equilibrium states 

of our model given by; (x.y,z)=(O,O,O) and (x,y,z) as given by equations 

(3.34), (3.32) and (3.33) respectively for stability. We shall apply the results of 

Bellman and Cooke, to analyse the stability or otherwise of the equilibrium 

states. But before then, we shall perturb the equilibrium states and from the 

resulting equations obtain the characteristic equation. The characteristic 

equation is then used to analyse the equilibrium states for stability. 

To establish the results of Bellman and Cooke, we hereby present a 

fundamental theorem to the analysis of the stability of characteristic equations 

as stated by Jack Hale; Theory of Functional Differential Equations, (1977). 

Theorem 4.1 

Let H(z) = p(z,e
z

) where p(z, w) is a polynomial in with principal term. 

Suppose H(iy), y E R, is separated into its real and Imagmary parts, 

H(iy) = F(y) + iG(y). (4.1) 

If zeros of H(z) have negative real parts, then the zeros ofF(y) and G(y)are 

real, alternate and 

G'(y)F(y) - G(y)F'(y) > ° (4.2) 
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for y E R. Conversely, all zeros of H(z) will be in the left-half plane provided 

that either of the following conditions is satisfied: 

(i) All the zeros of F(y ) and G(y) are real, simple, and alternate and the 

inequality (4.2) is satisfied for at least one y . 

(ii)All the zeros of F(y)are real and, for each zero, the Relation (4.2) is 

satisfied 

All the zeros of G(y) are real and, for each zero, the Relation (4.2) is satisfied. 

4.2 THE CHARACTERISTIC EQUATION 

Let us assume a perturbation of the equilibrium states of the model as follows; 

- Itt 
Set) = x + p(t); p(t) = p e 

- Itt 
L(t) = y + q(t); q(t) = q e 

I(t) = z + ret) ; 

=> q = r r;(r)dr 

- Itt 
r(t) = r e 

We then substitute equations (4.3) to (4.7) into the model equations; 

From equation (3.1) we obtain; 
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(4.4) 

(4.5) 

(4.6) 

(4.7) 



d ( - At) (- At) ( - At) 
- X + P e = (fJ - f.1) x + P e + BfJ\1 + q e 
dt 

( 
- AtX - At - At) 

-a x+ Pe y+qe +z+re (4.8) 

-At ( ) ()-At -At -At 
APe = fJ - f.1 x + fJ - f.1 Pe + BfJy + BfJq e - axy - axq e 

- At -- 2At - At - At -- 2A.t 
- ayPe - apqe - axz - axre - azpe - apre (4.9) 

Using equation (3.12) and neglecting terms of order two and above in equation 

(4.9), we have; 

0= [p - f.1- a(y + z)- A 1P + (BfJ - ax)q - ax~ (4.11 ) 

From equation (3.2), we have; 

At d At d ( )'" ( \.. AI A7](r)e + -¢(r) + e -7](r) + ,Ll + o-(r)!I'(r) + ,Ll + o-(r))'/(r)e = 0 
dr dr 

( 4.13) 

Using equation (3.13), we obtain; 

At At d ( '\.. At A1](r)e +e -1](r)+ j.1+a(r))'/(r)e =0 
dr 

(4.14) 

d 
=> -1](r) + (f.1 + a(r) + A)ry(r) = 0 

dr 
( 4.15) 
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Solving the o.d.e. (4.15), we obtain; 

1](1') = 1](o)exp~ rCu + a(s) + /L)ds} 

Integrating equation (4.16) over [0, T], we obtain; 

-
=> q = 1](O)b(/L) 

where, b(.<) = ([exp~ r(p+a(s) + .<)ds~dr 

To obtain the value of 1](0) , we recall equation (3 .11) given by; 

¢(O) = B(O) = (1- e)fJy + ax(y + z) 

And from equation (4.6), we obtain; 

p(t,O) = ¢(O) + 1](O)e At = B(t) 

Again, we recall equation (3.5) given by; 

B(t) = (1- e)fJL(t) + as'(t)[L(t) + J(t)] 

Substituting equations (4.3), (4.4) and (4.7) into equation (3 .5), we have; 

(
- At) ( - At l - At - AtJ B(t) = (1- e)fJ y + q e + a x + p e y + q e + z + r e 

-At -At -At 
B(t) = (1- e)fJy + (1- e)fJq e + ax(y + z)+ axq e + ayPe 

-- 2At - At - At -- Ht 
+apqe +axre +azpe +apre 
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Comparing equations (4.22) and (4.20) using equation (3.11) and neglecting 

terms of order two and above in equation (4.22), we have; 

(1- e)/3y + ax(y + z) + TJ(O)e At = (1- e)/3y + (1- e)/3q eAt 

(4.23) 

Substituting equation (4.23) into (4.18), we obtain; 

q = {a(y + z )p + [(1- e)/3 + ax fl + ax;}b(--l) (4.24) 

~ 0 = a(y + z )b(--l)p + {[(1- e)/3 + ax]b(--l) -l}q + axb(--l); (4.25) 

Similarly, from equation (3.3), we have 

U sing equation (3.14), we obtain; 

(4.28) 

(4.29) 

Substituting equation (4.16) into equation (4.29) using equation (4.23), we 

have; 
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(4.30) 

It; = (fJ - J-l- 8); + la(y + z )p + [(1- B)fJ + axE 

(4.31 ) 

0= a(y + z )c(1t )p + [(1- B)fJ + ax ]c(It)q + (p + ax C (It ) - J-l- 8 -It); (4.32) 

Since [~ l" 0, we obtain the Jacobian determinant using equations (4.11), 

(4.25) and (4.32) as given below; 

{J-f.1- a (y+ Z)-J.., 

a(y+z)b(J..,) 

a(y+ z)c(J..,) 

e{J -ax -ax j 
[(1- e)p + ax]b(J..,) -1 axb(J..,) = 0 

[(1- e)p + ax ]c(J..,) (p + axC(J..,)- f.1- £5 - J.., 

Hence, the characteristic equation is given by; 
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(jJ - f.L - a(y + z)- A){[((l- B)/3 + ax)b(A) -lK/3 + axC(A)- 1'- 8 - A) 

- axb(A)[(l- B)/3 + ax]C(A)}- a(y + z )b(A){(B/3 - ax)(p + axC(A)- 1'- 8 - A) 

+ ax[(1- B)/3 + ax ]C(A)} + a(y + z )c(A ){axb(A XB/3 - ax) 

+ ax([(l- B)/3 + ax ]b(A )-1)} = ° (4.34) 

4.3 STABILITY OF THE ZERO EQUILmRIUM STATE 

In this section, the zero equilibrium state (i.e. the origin) of the model is 

analysed for stability using the characteristics equation. 

At the zero equilibrium state (x.y, z) = (0,0,0), the characteristic equation (4.34) 

takes the form; 

(/3 - 1'- AX/3 - 1'- 8 - ..1,)[(1- B)/3b(A) -1]= ° ( 4.35) 

Therefore, either; 

(jJ - f.L - AX/3 - 1'- 8 - ..1,)= ° (4.36) 

or 

((1- B)/3b(A) -1)= ° (4.37) 

Observe that equation (4.36) is a quadratic equation in A, and so we have; 

A 2 
- (/3 - 1')..1, + 8..1, - (/3 - 1')..1, - (jJ - 1')8 + (/3 - I' ) 

2 
= ° 

=> ..1, 2 
- [2(/3 - 1')- 8];1, - (/3 - 1')[8 - (/3 - 1')]= ° (4.38) 
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Solving the quadratic equation (4.38), we have; 

2{/3 - f-L) - 8 ± ~ (2(j3 - f-L) - 8)2 + 4{/3 - f-L )[8 - (j3 - f-L)] 
A=--------~~~~------------------

=> A = 2{/3 - f-L)- 8 ± J8i 
2 

_ 2{/3 - f-L) - 8 ± 8 
2 

2 

2{/3 - f-L) - 28 
and A2 = = /3 - f-L - 8 

2 

(4.39) 

(4.40) 

It can be seen clearly from equations (4.39) and (4.40) that A]'A2 are negative 

if and only if /3 < f-L. Therefore, the origin will be stable when /3 < f-L, and 

solutions of (4.37) have negative real parts. 

Considering equation (4.37), we recall from equation (4.19) that; 

From the inner integral, we have; 

( 4.41) 
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=> b(A) = ([ exp( -AT)exp~ r(p + O"(s))dS~dT 

Again, from equation (3.16), we have; 

b(A) = (exp(-Ar)h(r)dr (4.42) 

We shall then use the result of Bellman and Cooke as applied by Akinwande 

N.I (2005), to analyse the zero equilibrium state for stability or otherwise, using 

equation (4.37). 

Let the equation (4.37) take the form; 

HI (A) = (1- B){3b(A) -1 = 0 == p(A,e "' ) 

where b(A) = ( exp(-Ar)h(r)dr 

Ifwe set ,.1,= im in equation (4.43), we have; 

The condition for Re ,.1,< 0 will then be given by the inequality; 

Fi (0 )G;(O)- FI'(O PI (0) > 0 

From equation (4.43), we have; 

b(im) = (exp(-imr)h(r)dr 

= ((cosmr - isinmr )h(r)dr 

b(im) = r h(r)cosmrdr - i r h(r)sinmrdr 
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~ b(im) = b/m) + i b2 (m) (4.47) 

So that, 

bl (m) = r h( r )cos mrdr (4.48) 

b2 (m) = - f h( r) sin mrdr (4.49) 

and, bl(O)= r h(r)dr = II (4.50) 

b2(0)=0 (4.51) 

, q' 

Also, bl (m) = -£ rh( r) sin mrd r (4.52) 

, 
=> bl (0) = 0 (4.53) 

and 
, q' 

b2 (m) = -£ m( r ) cos mrd r (4.54) 

=> b2' (0)= - r rh(r)dr =-If (4.55) 

From equation (4.43), we have; 

HI (iOJ) = (1- e)fJb(iOJ)-l (4.56) 

= (1 - B)fJb1 (m) -1 + i(l- B)fJb2 (m) (4.57) 

Comparing equations (4.57) and (4.44), we obtain; 

FI (OJ) = (1- e)fJb2 (OJ )-1 (4.58) 

G1 (OJ) = (1- e)f3b2 (OJ) (4.59) 
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Therefore, 

F} (0) = (1- t9 )j3bI (0)-1 

=> FI(O) = (1-t9)j3h-1 (4.60) 

GI (0)= (1-t9)j3b2 (0) = 0 (4.61) 

since bI (0) = hand b2 (0) = 0 

Similarly, 

, 
F}'(m) = (1- t9 )bI j3(m) (4.62) 

, 
G;(m) = (1 - t9)j3b2 (m) (4.63) 

so that, 

, 
F}'(O) = (1-t9)j3bI (0)=0 (4.64) 

, 
G;(O) = (1-t9)j3b2 , (0) 

~ G;(0) =-(1-t9)j3'1' (4.65) 

, , 
since bI (0)= 0 , and b2 (0)=-'1' 

Hence, the inequality (4.45) yields; 

l(l- e)fJh -11(1- e)fJ'I'] < 0 (4.66) 

Now since, (1- e)fJlf/ > 0 

the inequality (4.66) holds if; 
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(1-B)ph-1<0 

Recall from equations (3.16) and (3.19) that; 

h = r exp~ ,beu + a(s ))ds pr 

and from equation (3.4); a(s) = tan(~) 
2kT 

Solving the inner integral, we have; 

2kT ( 1fr ) = f.1r - -logcos -
1f 2kT 

Therefore, 

Carrying out the integrating, yields; 
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(4.68) 
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(4.70) 



(4.71) 

-
Substituting for h in equation (4.67), we define; 

We shall then use MathLab to carry out numerical computation of J 1 (k) to 

establish the conditions for stability of the zero equilibrium. The result shows 

that this equilibrium state will be stable when fJ < J-L and J1 (k) < 0 . 

4.4 STABILITY OF THE NON-ZERO EQUILIBRIUM STATE 

For the non-zero equilibrium state (x ,y,z) as given by equations (3.34), (3.32) 

and (3.33), we shall consider the characteristic equation (4.33) in the form; 

(4.73) 

Hence, from equation (4.33) we have; 

H2 (A)= (fJ - J-L - a(y + z)- A){[((l- B)fJ + ax)b(A) -1](jJ + axC(A) 

- f-L - 82 - A}-- axb(A )[(1- B)fJ + ax ]C(A)} - a(y + z )b(A ){(BfJ - ax)(fJ + axC(A) 

- f-L - 8 2- A}t- ax[(l- B)fJ + ax ]C(A)} + a(y + z )C(A ){axb(A XBfJ - ax) 

+ ax([(l- B)fJ + ax]b(A)-l)} ( 4.74) 
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We then apply the result of Bellman and Cooke to analyse the stability of the 

non-zero equilibrium state using equation (4.74). 

Ifwe set A = iw in equation (4.74), we have; 

H 2 (iW) = F2 ( W ) + i G2 (w ) 

The condition for ReA < 0 will then be given by the inequality; 

Recall from equation (4.46) to (4.55) that; 

b1(0)= h, and b2 (0)= 0 

b{(O) = 0 , and b2 (O)= - If 

Similarly, from equation (4.31), we have that; 

C(A) = r a-(r )exp[ - .bCu + a-(s) + A)tiS ]dr 

C(A)= r a-(r)exp(-,Ar)exp[ - .bCu+a-(S))ds]dr 

Recall from equation (3.16) that; 

her) = exp~ {Cu + a-(s))ds} 

=> C(A)= r a-(r)h(r)exp(-Ar)dr 
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(4.76) 
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(4.78) 



Thus, C{iw)= r O"{r)h{r)exp{-iwr)dr 

= r O"{r)h{rXcoswr-isinwr)dr 

C{iw) = r O"{r )h{r )cos wrdr - i r O"{r )h{r )sin wrdr 

So that, 

And C1 (o)= r O"{r )h{r )dr = 9t 

C2 (0) = 0 

Also, C{{w)=-r rO"{r)h{r)sinwrdr 

=> C{{O)= 0 

C~{w)=-r rO"{r)h{r)coswrdr 

c2(o) = - f ra-{r )h(r )ch =-A 

Now equation (4.74) becomes; 

H2 (iw) = (/3 - f.-L - a{y + z)- iw X[{l- (})/3 + ax ]bUw) -lX/3 + axC{iw) 
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(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

(4.86) 

(4.87) 

(4.88) 



- j.l - 62 - iW) - axb(iw Xf3 - fL - iW)[(l - B)f3 + ax ]C(iw) 

- a(y + z )b(iwXBf3 - axX/J + axC(iw)- fL - 62 - iW) 

+ a2xC(iwXy + z XBf3 - ax) + a2xC(iwXy + z X[(l- B)f3 - ax]h(iw)-l) (4.89) 

H 2 (iw) = (fJ - j.l- a(y + z)- iw )([(1- e)p + ax}91 (w) -1 + i[(l- e)p + ax}92 (w)) 

(13 + axC1 (w)+ iaxC2 (w)- fL- 62 - iW)- (axb1 (w)+ iaxb2(w)Xf3 - fL - iW) 

([(1- B)f3 + ax ]C1 (w) + i[(1- B)f3 + ax ]C2 (w))- (a(y + z )b1 (w) 

+ ia(y + z )b2(w)XBf3 - ax Xf3 + axC1 (w)+ iaxC2(w)- fL - 62 - iW) 

+ (a 2xC1 (wXy + z)+ ia2xC2(wXy + z )XBf3 - ax) + (a2xC1 (wXy + z) 

+ ia2xC2(wXy + z )X[(l- B)f3 + ax]h1 (w)-l + i[(l- B)f3 + ax ]h2(W)) 

Expanding further, we obtain; 

H 2 (iw) = {(f3 - fL - a (y + z) X[ (1 - B) 13 + ax ]h] ( w) - 1) 

+ w[(l- B)f3 + ax]h2 (w)Xf3 + axC1 (w)- j.l- 6J 

- {(fJ - fL- a(y + z )X(l- e)fJ + ax}92 (w) - wQ(l- e)p + ax}91 (w) -1)}(axC2 (w)- w) 

+ i{(f3 - j.l- a(y + z ))[(1- B)f3 + ax]h2 (w) 

- w([(l- B)f3 + ax]h1 (w) -l)Xf3 + axC1 (w)- j.l- 62 ) 

+ i{(p - fL- a(y + z ))([(1- e)fJ + ax}91 (w) -1)+ w[(l- e)fJ + ax}92 (w)}(axC2 (w)- w) 

- (ax(f3 - fL )b1 (w) + waxb2 (w ))[(1- B)f3 + ax ]C1 (w) + (ax(f3 - fL)b2 (w) 
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- waxb} (w))[{l- e)p + ax]C2{W)- i{{ax{p - Jl)b1 (w)+ waxb2 (w)) 

[(1- e)p + ax ]C2 (W) + (ax(j3 - Jl )b2 (w) - waxb1 (w ))[{1- e)p + ax ]C1 (w)} 

-ab1 (wxY+ zXBfJ -ax){fJ +axC} (w)- f1,- 02)+ ab2(wxY + zXBfJ -axXaxC2(W)- W) 

-i{ab1 (wXy+ zXBf3 -axXaxC2(W)- W)+ ab2 (wXy+ zXBfJ -axXf3 + axC1 (W)- f1,-52)} 

+ a2x{y + z Xep - ax)c1 (W)+ a2x{y + z )C} (wX[{l- e)p + ax]h1 (w) -1) 

- a2x{y + Z)c2 (w)[{l- e)p + ax ]h2(W) 

+ i~2x{y + z Xep - ax)c2(w) + a2x{y + Z)c1 {w)[(1- e)p + ax]h2 (w) 

+ a2x{y + Z)c2 (w X[{l- e)p + ax]h1 (w) -I)} (4.90) 

Comparing equations (4.90) and (4.75), we have; 

F2{W) = {(p - Jl- a{y + z )X[{l- e)p + ax]hI (w) -1) 

+ w[{l- e)p + ax]h2 (w)}(j3 + axC1 (w)- Jl- 62) 

- {(j3 - f1,- a(y + z ))[(1- B)f3 + ax]h2 (w) - wQ(l- B)f3 + ax]h} (w) -1)}(axC2 (w)- w) 

- (ax(j3 - Jl )b1 (w) + waxb2 (w ))[{1- e)p + ax ]C1 (w) + (ax{p - Jl )b2 (w) 

- waxb1 (w))[(l- B)fJ + ax]c2 (w)-ab1 (wXy + z XBf3 - ax XfJ + axC1 (w)- f1,- 52) 

+ ab2{wXy + zXep - axXaxC2{W)- W)+ a2x{y + zXep - ax)c1 (W) 

+ a2x{y + z )C1 (wX[{l- e)p + ax]hI (w) -1) 

- a2x{y + Z)c2 {W )[(1- e)p + ax]h2 (w) (4 .91 ) 
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G2 (w) = {(J3 - JL - a(y + z ))[(1- B)J3 + ax]h2 (w) 

- w([(I- B)J3 + ax]h, (w) -1)}(J3 + axC, (w) - JL - O2) 

+ {(f3 - fl- a(y + z )X[(l- e)p + ax]b, (w) -1)+ w[(l- e)p + ax]b2 (w)}(axC2 (w)- w) 

- (ax(J3 - JL )b, (w)+ waxb2 (w )X(I- B)J3 + ax )C2 (w) - (ax(J3 - JL )b2 (w) 

- waxb,(w)[(I- B)J3 + ax]c, (w)- ab, (wXy + zXBJ3 - ax Xax C2 (w)- w) 

-ab2(wXy + zXBJ3 -axXP +axCI (w)- JL -62)+a2x(y+ zXBP -ax)c2(W) 

+ a2x(y + z)c, (w )[(1- B)J3 + ax]h2 (w) 

+ a2x(y + z )c2(wX[(I- B)J3 + ax]h, (w) -1) (4.92) 

Therefore, 

F2 (0) = (13 - JL - a(y + z )X[(I- B)J3 + ax]h, (0) -IXJ3 + axC, (0) - JL- O2) 

- (13 - fl- a(y + z ))[(1- e)p + ax]b2 (0)axC2 (0) - ax(p - fl )b, (0)[(1- e)p + ax]c, (0) 

+ ax(f3 - fl)b2 (0)[(1- e)p + ax]c2 (O)-ab, (oXy + z Xep -axXP + axC, (0)- fl- 02) 

+ ab2 (0 Xy + z XBJ3 - ax )axC2 (0) + a2x(y + z XBJ3 - ax )C] (0) 

+ a 2x{y + Z)c] (0)([(1- e)f3 + ax]hl (0) -1)- a 2x(y + Z Xef3 - ax)c2 (0)[(1- e)f3 + ax]h2 (0) 

F2 (0)= (13 - JL - a(y + z )X[(1- B)J3 + ax]h -1'X!3 + a9tx - JL- O2) 

- ahx(J3 - JL)[(I- B)J3 + ax]9t - ah(y + z XBJ3 - axXJ3 + a9tx - JL - oJ 

+ a 29tx(y + z XBJ3 - ax) + a 29tx(y + z X[(I- B)J3 + ax]h -1) (4.93) 
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G2 (0) = {(,8 - 11- a(y + z ))[(1- B),8 + ax]h2 (0)(,8 + axCI (0) - 11- 62 ) 

+ (,8 - 11- a(y + z )X[(l- B),8 + ax]hl (0) -1)axC2 (0) 

- ax(,8 - 11 )bl (0 X(l- B),8 + ax)c2 (0) - ax(,8 - 11 )b2 (0 )[(1- B),8 + ax ]CI (0) 

- abl (oXy + zXe/3 - ax)axC2(0)-ab2 (oXy+ zXe/3 -axX/3 + axCI (0)- f1- 52) 

+ a2x(y + z XB,8 - ax)c2 (0)+ a2x(y + z)c\ (0)[(1- B),8 + ax]h2 (0) 

+ a2x(y + z )C2 (0 X[(l- B),8 + ax]hl (0) -1) 

=> G2(0)=0 (4.94) 

Since bl(O)=h and b2(0)=0, CI (O)=7r and C2(0) = 0 

F~(w)= {(,B - 11- a(y + z )X[(l- B),8 + ax]h{ (w)) + [(1- B),8 + ax]h2 (w) 

+ w[(l- B),8 + ax]h; (w)}(,B + axCI (w) - 11- 62 ) 

+ {(,8 - 11- a(y + z )X[(1- B),8 + ax]hl (w) -1}t w[(l- B),8 + ax]h2 (w) }axC{(w) 

- {(,8 - 11- a(y + z ))[(1- B),8 + ax]h; (w) - ([(1- B),8 + ax]hl (w) -1) 

- w[(l- e)fJ + ax]b{ (w)}(axC2 (w)- w)- {(fJ - f1- a(y + z ))[(1- e)/3 + ax]b2 (w) 

- w([(1- B),8 + ax]hl (w) -l)XaxC; (w )-1)- (ax(,8 - 11 )bl' (w) + axb2 (w) 

+ waxb2' (w)l(l- e)/3 + ax]el (w)-(ax(j3 - f1)bl (w)+ waxb2 (w))[(l- e)/3 + ax ]el' (w) 

+ (ax(fJ - f1)b2' (w)- axb1 (w)- waxbl' (w)l(l- e)/3 + ax]e2 (w)+ (ax(j3 - f1)b2 (w) 

- waxbl (w))[(l- e)/3 + ax]e2' (w)- abl' (wXy + z XefJ - ax XfJ + axCI (w)- f1- 52) 

51 



- t,B - f-L - a(y + z ))[(1- B),B + ax ]h2' (0)- ([(1- B),B + ax]h1 (0 )-1)fnC2 (0) 

- (jJ -/1- a(y + z ))[(1- e)f3 + ax]b2 (0)(axc2' (0)-1)- (ax(jJ -/1)bl ' (0) 
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(4.96) 

G2' (w)= tf3 - j.1- a(y + z ))[(1- e)f3 + ax ]h2' (w) - a(l- e)f3 + ax]hl (w) -1) 

- w([(l- e)f3 + ax]hl' (w) )Xf3 + axCI (w)- j.1- 02) 

+ {(f3 - JL - a(y + z )X(1- e)/3 + ax]h2 (W)- w([(1 - e)/3 + ax]hl (w)-1)}axC\' (W) 

+ tf3 - ,Ll- a(y + z ))[(1- e)f3 + ax ]hI' (w)+ [(1- e)f3 + ax]h2 (w) 

+ w[(1- e)[J + ax ]h2' (w)KaxC2 (w)- w)+ {(f3 - JL - a(y + z ))([(1- e)/3 + ax]hl (w) -1) 

+ w[(l- e)f3 + ax]h2 (W)}(axc2' (w )-1)- (ax(f3 - j.1 )b\' (w)+ axb2 (w) 

+ waxb2' (w)X(1- e)/3 + ax)c2 (w)- (ax(f3 - JL)b\ (w)+ waxb2 (w)X(1- e)/3 + ax)c2' (w) 

- (ax(f3 - JL)b2' (w)- axbl (w)- waxbl' (w)X(1- e)/3 + ax)cl (w)-(ax(f3 - JL)b2 (w) 

, 
+ a 2x(y + z )C2 (wX[{l- e)f3 + ax]hl (w)-1) 

, 
+ a 2x{y + Z)c2 (wX(l- e)f3 + ax)bl (w) (4.97) 
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G2' (0) = tp -f-L - a(y + z ))[(1- B)p + ax ]h2' (0) 

- ([(1- B)p + ax]hl (0 )-l)Xp + axCI (0)- f-L - 62 ) 

, 
+ (P - f-L - a(y + z ))[(1- B)p + ax]h2 (0 )axCI (0) 

+ tp -Jl- a(y + z ))[(1 - B)p + ax ]hI' (0)+ [(1- B)p + ax]h2 (0 )}aC2 (0) 

+ (p - f-L - a(y + z )X[(l- B)p + ax]hl (0) -1)(axC2' (0) -1) 

- (ax(P - Jl )b)' (0) + axb2 (0 )t(1- B)p + ax)c2 (0) 

- (ax(p - f-L )b) (0 )X(l- B)p + ax )C2' (0)- (ax(P - f-L )b2' (0) 

, 
- axb) (0 )X(1- B)p + ax)CI (0)- axb2(0 XP - f-LX(1- B)p + ax )C1 (0) 

Substituting for bi (0) = h, b{ (0) = b2 (0) = C2 (0) = C{ (0) = 0, b; (0) = -'1/ , 

C1 (0)= Jr and C; (0) = - A , we obtain; 
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G2' (0) = -[(p - Jl- a(y + z ))[(1- e)p + ax};t + ([(1- e)p + ax]h -1)l!J + a91x - Jl- 62) 

+ (j3 - Jl- a(y + z)X[(l- B)fJ + ax]h -lXaAx + 1)- ahAx(fJ - ,uX(I - B)fJ + ax) 

- (a9txCB - ,u}.;!- ahx X(I - B)fJ + ax)- ah(y + zXBfJ - axXaAx + 1) 

+ a 29tx(y + zX(I - B)fJ + ax}.;! + a2 AX(y + zX[(l- B)fJ + ax]h -I)} (4.98) 

From the inequality (4.76) we have; 

- {(p - JL - a(y + z ))(f(1- B)p + ax]h -1 xP + a9tx - JL- 02)- ahx(p - JLX(l- B)p + ax}9i 

- ah(y + z XBfJ - ax XfJ + a9tx - ,u - 02)+ a 29tx(y + z XBfJ - ax) 

+ U(l- B)p + axlh -l)ts + a91x - JL - 02)+ (p - JL - a(y + z)X[(l- B)p + ax]h -lXaAx + 1) 

- ahAx(fJ - ,uX(I- B)fJ + ax)- (a9tx(fJ - ,u}.;!- ahx X(l- B)fJ + ax) 

+ a2 Ax(y + z XBfJ - ax) + a 29tx(y + z X(I - B)fJ + ax}.;! 

(4.99) 

We shall then analyse equation (4.99) for stability or otherwise of the of non

zero equilibrium state by applying numerical methods and computer simulation 

using hypothetical values for parameters, to determine the sign (i.e. whether 
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positive or not) of equation (4.99). Recall the condition for stability as given by 

equation (4.99); F2(OP2' (0» 0 

Recall from equation (4.71) that; 

And from equation (4.55) that; 

If = r rh(r)dr 

Where h( r) = exp{ - ~Jl + tan( 2;T ))d<} 

= exp{ - [Jlr - 2~T log cosC7T )]} 

And from equation (4.83), that 

Substituting for a-{r) and h{r) we have; 
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(4.101) 

Also, from equation (4.88); 

We then simplify to obtain; 

(4.102) 

Using the Simpson' s formula for numerical integration, we evaluate to obtain 

approximations for If , 9t , and A for 0::; r < 10 and 0 < k < 1. We have 

considered low value k as given by k = 0.3 and high value k given by k = 0.9 

for r = [0,1,2,3,4,5,6,7,8,9] and compared the stability for the low and high 

values of k. 

Substituting for the values of x,y ,z as given by equations (3.34), (3.33), and 
-

(3.32) respectively, and h given by equation (4 .71), as well as the numerical 

approximations of If , 9t , and A into equation (4.99), we defme the resulting 

function by J 2 (k) which is evaluated to determine the sign and hence the 

stability of the non-zero equilibrium state for different values of the natural 

birth rate f3 and death rate J.1 of the population. Thus, the non-zero equilibrium 

will be stable whenJ2 (k»0. We have used MathLab to solve J 2 (k) 

generating a table of values using hypothetical values for the parameters. The 

results are presented in the next chapter. 
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CHAPTER FIVE 

CONCLUSION RECOMMENDATIONS 

5.1 INTRODUCTION 

This section presents discussions/remarks based on the results obtained in the 

work. Due to non availability of accurate statistical data for HIV/AIDS, we 

shall use MathLab to generate tables of values for J 1 (k) and J 2 (k) with 

hypothetical values for the parameters. Some of the results obtained are 

presented in Table 5.1 and Table 5.2. Also presented is a graphical 

representation J 1 (k) for given values of k, and different values of the death rate 

~ and birth rate ~ as shown in Figure 5.1. We also presented some 

recommendations based on our results. 

5.2 DISCUSSION OF RESULTS 

This section presents the results using tables and graphs as tools for illustration. 

Tables 5.l and 5.2 are profiles for J1(k) and J2 (k) respectively. Similarly, 

Figure 5.l is the trajectory for J1 (k), which represents the characteristic of the 

model for the zero equilibrium state . at different values of the birth rate f3 and 

death rate J.1. The trajectory for J 2 (k), which represents the characteristic' of 

the model for non-zero equilibrium state is not shown. 
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Table 5.1 - Stability Profile for J l (k) 

01 = 0.3, B = 0.4 , T = 10 

J l (k) J l (k) J l (k) J l (k) 

K f.i = 0.15, /3 = 0.45 f.i = 0.25, /3 = 0.15 f.i = 0.20, /3 = 0.10 f.i = 0.15, /3 = 0.15 

0.1 0.6059 -0.6580 -0.7225 -0.4647 

0.2 0.6808 -0.6521 -0.7145 -0.4397 

0.3 0.7266 -0.6478 -0.7092 -0.4245 

0.4 0.7599 -0.6444 -0.7051 -0.4134 

0.5 0.7826 -0.6420 -0.7023 -0.4058 

0.6 0.7948 -0.6406 -0.7007 -0.4017 

0.7 0.7992 -0.6401 -0.7001 -0.4003 

0.8 0.8000 -0.6400 -0.7000 -0.4000 

0.9 0.8000 -0.6400 -0.7000 -0.4000 

Remarks Unstable Stable Stable Stable 

Table 5.1 gives the profile for J l (k) and we observe from the table that 

J l (k) > 0 only when f3» f.1; i.e. when the birth rate f3 is much greater than 

the death rate f.1 of the population. We also found out that the profile follows 

the same trend for all values of 0] , B ::s; 1, where 8 and e are death modulus due 

to AIDS infection and proportion of new births of the latent class that are 
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susceptible respectively. We observe that the zero equilibrium state will always 

be stable except for situations where the birth rate f3 is much higher than the 

death rate Jl of the population. This situation is unusual considering the fact 

that the young and sexually active groups of the population are the worst 

affected by the pandemic. This means that for the population to be sustained 

once HIV / AIDS epidemic manifest, there should be a way of obtaining a 

speedy replenishment of the population. This could be achieved through 

accelerated birth rate and friendly immigration policies. 

1.0000 

0.8000 
~ 

.. .. 
~ 

-+-
0.6000 ~ 

0.4000 -+-- ~=O.15,~=O.45 

0.2000 ___ ~=O.25, ~=O . 15 -~ 
~=O.20,~=O . 1 0 -,.... -, 0.0000 -*- ~=O.15,~=O.15 

-0.2000 

-0.4000 
)(-~ 

-0.6000 • • • • • - - - --
-0.8000 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
k 

Figure 5.1 - Graphical Representation of the profile for J 1 (k) 
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The figure above is a graphical demonstration of our result. It can be seen that 

the graph J I (k) for which the birth rate fJ is greater than the death rate Ii lies 

entirely on the positive plane, while when fJ is less than or equal to Ii , J I (k) 

lies on negative plain. We also observe fro figure 5.1 that J I (k) approaches a 

maximum value as k increases. This observation is consistent with the 

application of antiretroviral drugs which only differs the eventual infection with 

full blown AIDS once an individual has contracted the virus . This also shows 

that with preventive and control measures such as public awareness campaign, 

promotion of abstinence among unmarried people and faithfulness among 

sexual partners, use of condoms, public health education; the effectiveness of 

control increases as the effort and level of response increases. However, the 

epidemic situation tends to stabilise with time even with more application of 

mitigation and control measures such as antiretroviral drugs. This could be due 

to complacency, which could lead to a return to high risk behaviours as shown 

by Flugentius Baryarama et al (2005). 

Table 5.2 - Stability Profile for J 2 (k) 

61 =0.3,8=0.4, T=9, a=0.05 , 6=0.025 

J 2 (k) J 2 (k) J 2 (k) J 2 (k) J 2 (k) J 2 (k) 
,u=0.15 ,u=O.10, ,u =0.15 ,u = 0.20 ,u = 0.25, ,u = 0.45 

K 
/3 = 0.45 /3 = 0.20 /3=0.15 /3=0.10 /3 = 0.15 /3=0.15 

0.3 -0.6563 0.0004 0.0000 0.0054 0.0049 0.1226 

0.9 -0.5787 0.0000 0.0000 0.0053 0.0048 0.1186 

Remarks Unstable Stable Stable Stable Stable Stable 
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Table 5.2 gives the profile for J 2 (k) from which we observe thatJ2 (k) < 0 only 

when f3» f.1 i.e. when the birth rate f3 is much greater than the death rate f.1 

of the population for both low and high values of the control parameter k. This 

indicates deteriorating epidemic situation, which may lead to eventual 

extinction of the population. This situation could be attributed to complacency, 

which is used to mean revert to high risk behaviours such as multiple sexual 

partners, sex with prostitutes, ignoring safe sex messages such as use of 

condoms when the HIV prevalence reduces to very low level, with the rate 

AIDS infection becoming less in the community. This result is particularly 

significant in most communities especially in sub-Saharan Africa where 

HIV/AIDS interventions are mainly donor-funded through programmes with 

specific duration where complacency could result from withdrawal of 

intervention or expiration of programmes duration. In this case, the progress 

made during the period of interventions might fade away as soon as the 

programmes end with high tendency for people to go back to risky behaviours 

that expose them to infection. The results also show that J 2 (k) is non-negative 

whenever f3::; f.1 i.e. when the birth rate f3 is less than or equal to the death rate 

f.1 of the population for both low and high values of the control parameter k. 

From the results, we observe that the non-zero equilibrium state will be 

predominantly stable as long as the rate of contracting the HIV virus a and the 

rate of AIDS infection o-(r) as well as the death modulus due to infection 8 are 

very small for all values of the control parameter k, except for situations where 

f3» f.1 in a community. Thus we observe that the non-zero equilibrium state is 

predominantly stable especially with the application of effective control and 

improved mitigation measures aimed at checking the prevalence rate (i.e. the 
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rate of contracting HIV) of the virus and reducing death burden due the full 

blown AIDS infection. This explains the reason why many infected 

communities have been able to control the spread of the virus and manage the 

epidemic. This means that an infected population can actually be sustained with 

effective applications of control and mitigation measures. 

5.3 CONCLUSION 

From the analysis of equations (4.35) and (4.36) we note that the zero 

equilibrium state of the model will always be stable when f3 < J.l, since 

J 1 (k) < O. The stability of the origin implies that once the virus is introduced 

into a population, there is an imminent danger of eventually extinction. On the 

other hand, the analysis of equation (4.74) shows that the non-zero equilibrium 

state of the model is unstable with J 2 (k) ~ 0 when f3:::;; J.l, and will only be 

stable when J 2 (k) < 0 and f3 > > f.l. This indicates the tendency for rapid and 

wide spread of the epidemic once it is introduced into any community. This 

explains observed cases in some African countries where the epidemic nearly 

wiped out infected communities. 

Therefore, in order to forestall such tragedy there should be a means of 

replenishing the population and providing improved and effective application of 

control parameters especially to reduce the HIV/AIDS prevalence rate. We 

therefore conclude from our results that a virus infected population or 

community can only be sustained for conditions that make the origin unstable; 

of particular importance is the unusual situation where the birth rate is greater 
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than the death rate, with high level of preventive and control measures 

particularly to reduce the rate of contracting the virus. 

5.4 RECOMMENDATIONS 

By implication, the introduction of the virus into a population poses definite 

health threat, hence the need to adopt a preventive approach and intensify 

response to the fight against the pandemic. The preventive approach is 

particularly recommended because once the epidemic is introduced into any 

population, all known remedies including the use of antiretroviral drugs and 

prompt medical treatment of opportunistic infections can only delay the 

inevitable eventual extinction of the population. Similarly, efforts should be 

made to combat complacency in HIV I AIDS interventions when there is a 

reduction in the number of AIDS cases as well as when intervention 

programmes expire or are withdrawn, which could lead to periodic behaviour of 

the HIV I AIDS epidemic. Thus, it has become imperative to sustain all 

HIV I AIDS interventions even with significant reduction in HIV prevalence and 

the number of AIDS cases in a community. 

Globally, especially in developing countries, HIV/AIDS has remained a major 

health problem, and the young age-groups are usually most affected. Therefore, 

health service intervention programmes need to be age-specifically oriented to 

protect the population highly exposed to risk. Considering the cultural and 

socioeconomic factors affecting the transmission, control and management of 

the disease, any effective response should adopt a holistic approach. This will 

help to correct erroneous myths as well as eliminate stigmatization associated 
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with the epidemic, and eliminate discrimination against those living with 

HIV/AIDS especially in the rural areas. 
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