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ABSTRACT

We treat the problem of the control. of environmental pollution with
uncdntrollable sources as a semi-infinite opti}nizatidn problem with a
system of linear constraints and developed a computer program to compute
the solution of the problem taking cognizaﬁce of the relationship.between
approximation and optimization. :
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CHAPTER ONE
BASIC CONCEPT OF OPTIMAL CONTROL.

1.1 INTRODUCTION

Optimal control is a part of mathematics in which a study is made of ways of
formalising and solving problems of choosing the best way of realising the
control of dynamical process. This dynamical process can be described using
differential, integral functional and finite difference equation or other formalised
relation depending on the input function called the control and usually subject to
constraints.

The term ‘theory of optimal control’ is applied to mathematics theory in
which methods are studied for solving non-classical variational problem of
optimal control (as a rule, with differential constraint), which permit the
examination of non-smooth functional and arbitrary constraint on the control
parameter or on other dependent variable.

The concept of mathematical theory of optimal control is' sometimes used
in a broader sense to cover the theory which studies mathematical method of
investigating problem whose solution include a process of statistical dynamical
optimisation, while the corresponding model situation permits interpretation in
terms of some applied procedure for adopting an optimal solution. Mathematical
theory of optimal control therefore contains an element of operation research,
mathematical programming and game theory.

Although particular problem of optimal control and non-classical
variational problem were encountered earlier, the foundations of the general
mathematical theory of optimal control were laid in 1956 - 1961. The key point
of the theory was the Pontryagin maximum principle formulated by LS
Pontryagin in 1956. The main stimuli in the formulation of this theory were the

discovery of the theory of Dynamic Programming, the explanation of the role of
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functional analysis in the theory of optimal system, the discovery of the

relationship between solutions of problems of optimal control and result of the

theory of the Lyapunov stability and appearance of works relating to the concept
of controllability and observability of dynamical systems.

The result of the mathematical theory of optimal control has found broad
applications in the construction of control process relating to diverse process of
modern technology in the study of economics, dynamics and in the solutions of
problems in the field of biology, medicine, ecology, demography etc.

Problems of optimal control can be described in general term in any of the
following ways:

1. A controllable system S whose position at the instant of a time t is
represented by a value x e.g. by vector of a generalised coordinate and
impulse of a mechanical system, or by a function in the spital coordinate of a
distributed system; by a probability distribution which characterises the
current state of the stochastic system or by a vector of production output in a
dynamic model of an economy etc.

2. Optimal control problem can also be described by an equation, which
connects the variable x, u, t and describe the dynamics of a system. An instant
of time is indicated in which the system is considered. Foe example, the
ordinary differential equation of the form:

X'=f(t, x, u), <t <t; xeR", ueR™ 1.1.0
with previously stipulated properties of the function (e.g. continuity of fin u, t,
differentiability are often required).

3. Optimal control problem can further be described if information is available
which can be used to construct the controls (e.g. at any instant time or at
previously described instances). A class of function describing the control
which can be considered is stipulated, e.g. a set of pair-wise continuous

function in x of the form:



U=U(xt)=p () 1.1.1

with continuous coefficient etc.

4 Optimal control problems can also be defined by imposing constraint
on a process to be realised. At this point in particular, the conditions
defining the aim of the control comes into consideration (e.g. a system
to hit a given set of the phase space R™ the demand for stabilisation of
the solution around a given motion etc.). Furthermore constraint can be
imposed on the value of the controls U or the coordinates of the
position x in the variable or functional in their realisation etc. In the

system 1.1.1 for example, constraint on the control parameters

ueU<R"or ¢ (u); ¢ :R" > R" 1.1.3

and on the coordinates

xeX cR"or @(x)<0,R" >R’ 1.1.4

are possible. Here, U, X are closed set ¢, ¢ are differentiable functions.

5. An index (a criterion) is given of the quantity of the process to be realised. It
can take the form of a function J (x (.), u (.)) in the realisation of the variable
X, u over the period of time under consideration. Conditions 1 - 4 above can
then be supplemented by the requirement of the optimality process (i.e., the
minimum or maximum) of the criterion J (x (.), u (.)). In this way, for a given
class of control for a system, a control u must be chosen which optimises the
index J(x (.), u (.)) such that the aim of the control and the constraint are both

satisfied.



1.2 THE THEORY OF OPTIMAL CONTROL
The basic concept of optimal control problem is that of finding the control vector
U= (uy, uy ...., Uy T which maximises the functional called the performance
index (criterion)

t

J= J. fo (X, u, t) dt where
t
0

X=(X1, X2 eeeee s xn)T is called the state vector, t is the time parameter and
fy is the function of x, u and t. The state variable x; and the control variable are
related as follows:

dx; =fi(x;,X2...X, U, Uj 5 ....Up)

dt

X' =f(x,u,t).
In many problems, the system is linear and X' = f (X, u, t) can be stated as
follows:

X' = Ax + Bu where A is an nxn matrix and B is an nxm matrix. In
finding the control vector u, the state vector is to be transformed from a known
initial vector x, at t = 0 to a terminal vector at t = T where some (all or non) of

the state variable are specified.

1.3 NECESSARY CONDITIONS FOR OPTIMAL CONTROL
In order to derive the generalised necessary condition for optimal control,
we consider the following specific problem:

Find u, which maximise

tl

T= J[fo(x, u,t)dt 1.3.1

to



Subject to
X=f(x,u,t)
With the boundary condition x (0) = k. Let A be the Langrange multiplier. Let

tl

I*= | {f(x, u, t) ++ A[f(x, u, 1) - x]} dt 13.2
to
Now, the integrand
F = fo+ AMf (-x) 1.3.3
is a function of two variable x and u. The Euler -Langrange equation with
u =xu'=0k = X
ot
U =uandu,= du = X'
ot 1.3.4
as
oF -d.oF =0
ox dt ox 1.3.5
oF -d.oF =0
ou dt du 1.3.6

In view of equation 1.3.4, equation 1.3.5 and 1.5.6 can be expressed as

OF/ox+ A O0F/ou+A' =0 1.3.7
OF/ou - L0 F/ou =0 1.3.8
Now, let H be the Hamiltonian function defined as H=f, + M
Then equation 1.3.7 and 1.3.8 can be written as
oH =}

1.3.9

0x 1.3.10



Equation 1.3.9 and 1.3.10 represent two first order differential equations the
integration of whose values can be found from the known boundary condition of
the problem. If two boundary conditions are specified as x (0) = k and x (T) =
kT, the two integration constant can be evaluated without any difficulty. On the
other hand, if only one boundary condition is specified as say, x (0)= k, the free
end condition is used as

oH _0OorA=0att=T
OX.
This specific approach can now be used to derive the general necessary
condition for optimal control problems.
A general optimal control problem can be stated as:

tl

] o+ (x7,u7, t)dt 1.3.11
to

Subject to
X;=f; x7,u’,t),1=1,2,3 ...n. 1.3.12

Now let p; be Langrange multiplier also known as the adjoint variable for the i
constraint equation in 1.3.12 above. Then J* an augmented functional can be

defined as

tl

J*=Jfo+znpi(fi -Xi)dt 1.3.13
=0

to

The Hamiltonian functional H is defined as

=7 4L Pig Eodudr
i=0

Such that

tl

J=JH-X"pi(f)dt 1.3.15
to =0



Since the integrand

F=H-2, p;iI; dependas on X, U, I, Nere are m + n dependent variadics (X ana uj
=0

and hence, the Euler Langrange equation becomes

oH-d F=0,I=12...n 1.3.17
ox dt ox
OF -d . F =0;j=12...n. 1.3.18
al.lj dt auj

In view of the relation 1.3.16 above, equation 1.3.17 and 1.3.18 can be re-written

as

- O0H =p,I=1,2,...n 1.3.19
OX;

oH =0,j=1,2, ...m 1.3.20
auj

Equation 1.3.19 and 1.3.20 above are called the adjoint equation.

The optimum solution of x, u and p can be obtained by solving equation
1.3.7, 1.3.9 and 1.3.10. There are totally 2n +m equations with nx; and mu;
unknown. If we now know the initial condition x; (0), I= 1,2, ...n and the
terminal condition x; (T), j=1,2, ...m with 1 <m we will have the terminal values
of the remaining variables, namely x; (T), j =it+1, I+2, ...n free. Hence the free

end condition will have to be

p(T)=0,j=I+1,1+2, ...m 1.3.21
Equation 1.3.21 above is called transversality conditions.

Below is an example that involves the direct application of the theory.



EXAMPLE 1.3.1 (Application Of Optimal Control Theory)
Find the optimal control of u, which makes the functional
J = | (x* + u?) dt stationary with
x'=uand x (0)=1
It is necessary to note that x is not specified at t.
Solution:
The Hamiltonian is defined as
H=1f+ M
=x*+u’+\u
From equation 1.3.9 and 1.3.10, we have
-2x=)! (i)
2u+A=0 (ii)
Differentiating (I) above we have:
2u'=- 2!
Therefore, A' = - 2u'
But from (i), A' = - 2x, hence, x = u'
Since x!' = u, we have that x! =u'=x
X -x=0 (iii)
Equation (iii) has a solution of the form
X (t)=c; Sinht + ¢, Cosh t (iv)
where ¢ and ¢, are constants. By using the initial condition x (0) = 1, we obtain
x(0)=c, =1
Since x is not fixed at the terminal point, t = T = 1. We use the condition A = 0 at
t=1. Now, from
X (t)=c; Sinh t+ ¢, Cosh t
x' (t) = ¢; Cosh t + ¢, Sinh t
Hence, u=x'=x (t)=c; Cosht+ ¢, Sinh't

8



u(l)=0=c; Cosh 1+ Sinh 1

So that cl =c¢; =Sinh t
Cosh 1

and hence the optimal control is

u(t)= Sinh t Cosht + Sinh t
Cosh 1.
_1. [Sinh 1Cosh t + Cosh 1 Sinh t]
Cosh 1
= - Sinh (1-t)
Cosh t

The corresponding state trajectory is given by

x (t) =u'= Cosh (1-t)
Cosh t
We shall now state in a general way the general control problem.

1.4 CLASSICAL CONTROL PROBLEM
In order to define a classical control problem, we will impose some conditions on
the function and sets. These conditions are conditions that are usually met when
considering classical problems and also allows for modification of the classical
problem into others that appears to have some advantages over classical
formulations.
So, let X be a vector space in n - space R", U a vector space in m -space
R™ and t a real variable. Consider:
i. aclosed interval J = [t .t ] witht , <t . Let J°-J%= (t , t ) be the interior of
this interval, i.e., the time interval in which the control will evolve.
ii. a bonded , closed path-wise connected set A in R". The trajectory of the
control system is constrained to be in this set for t €J
iii. Two elements of A, X ,, X , which are the initial and final state of the

trajectory of the control system



iii. Two elements of A, x ,, X , which are the initial and final state of the
trajectory of the control system
iv. A bounded closed subset U of R™ U is the set in which the control function
takes values
v. Let ¢ = JxAXU, and g: ¢ = R" a continuous function. We consider the
differential equation
X' (t) =g [t, x(t), u(t) ], tel’ 1.4.1
Where the trajectory teJ = x(t) €A is a function te] = u (t) € U is Lebesque
measurable. The differential equation describes the control system and must be
satisfied in the sense of caratheodory.
vi. Let f: ¢ = R be continuous function where f;, is the integrand of
performance criterion for the problem.
A trajectory (control pair) is said to be admissible if the following conditions
holds
i. X (.) (The trajectory function satisfy x (t)eA, teJ and is absolutely
continuous on J).
ii. U (.), the control function, takes value in the set U and is Lebesque
measurable on J
iii. The boundary conditions x (t,) = X,, X (t,) = X , are satisfied.
iv. The pair p satisfied the differential equation in the sense of caratheodory.
Now, let W denote the admissible pairs. A classical control problem does

not have a solution unless W is non-empty.

Consider the functional I: W->R defined by:
L(p)=J folt, x (t), u(t)] dt 142
j

where P is the control pair i.e.

P =[x (.), u()]

10



Therefore the classical control problem seeks P that will maximise the functional
over the set W.

To analyse the classical problem further, it is necessary to establish the
characteristics of W, the set of the admissible pairs. Now, lets consider the
boundary conditions of 1.4.1. Let p =[x (.), u (.)] be an admissible pair, and B an
open ball in R ™' containing J x A. Let ¢' (B) denote the space of real valued
continuously differentiable functions on B such that they and their first
derivative are bounded on B. Now, for ®eB, let ®® (t, X, u) = o, (t, X) g (t, X, u)
+ o (t, x) for all t, X, u e® where oy (t, X) and g (1, x, u) are vectors and ®" is in

the space C (@) where o = JxAxU. Since P =[x (.), u(.)] is an admissible pair.

Jof (t, x (1), u(t)) dt=Jo. {[t, x (D] x()+ o [t, x (D]} 1.4.3
j j

Jo®x®]dt=0(t,x)- o(t, X)) =20 1.4.4

for all ® € ¢' (B).
Note that it was necessary to introduce the set B and the space ¢' (B)

because A may have an empty interior in R".

1.5 DEFINITION OF TERMS

Definition 1.5.1 (Mathematical programming)

A mathematical programme is an optimization problem subject to
constraint in R" of the form

Minimize f (x)

Subjectto g; (x)<0,1=1,2, ...m, se R"
The vector x € R" has component x; X», ...X, which are called the unknown of
the problem. The function f is called the objective function also called the
economic function and the set of conditions g; (x)<0,1=1,2,.., m and seS is the

set of constraint of the problem.
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Every vector x which satisfies the constraint such that g; (x)< 0 and xeS is
said to be the solution of the problem (p). We say that x* is a global solution of
problem (p) if and only if there exist a neighbourhood v (x*) of x* such that x*
is a global optimum of the problem

Minimize f (x)

Subject to g; (x)<0,1=1,2, ...m, se R"
and xeS NV (x*) R"

A mathematical programming problem is said to be convex if it comprise
of minimizing a convex function (or maximizing a concave function) on a
convex domain. Problem (p) above is a convex problem if

i. fisa convex function

ii. the function g;, I= 1,2, ...m are convex

iii. se R" is convex

Definition 1.5.2 (Interior point)
Let Sc R" be a subset of R". Then we say that yeS is an interior point if there
exist € such that | x - y| <e; xeS. In other words there is a ball with centre y

contained in S. The set of all interior points of S is called the interior of S.

Definition 1.5.3 (Convex Set)
If E is a vector space over R, then a subset C of R is said to be convex if x, y €C,
0<A<1
=>Ax + (1-A)y € C i.e. if the closed line segment connecting any two points in C
also belongs to C. This line segment is denoted as

[x, y] = {Ax + (1-L)y : 0<A<1}
For example:

i. the empty set is a convex set

12



ii. for any two points x, y € E, the closed segment [x, y] and for any x #y, the
open line segment

[x, y] = {Ax + (1-A)y : 0<A<I connecting x and y is convex.

Definition 1.5.4 (Convex and Concave Function)

The function f(x) is said to be Convex over a convex Set X in En if for
any two points X, X, €E and for all A€[0, 1],

f(Axy + (1-1) x; ) < Mi(xp ) + (1-M)f(xy) 1.5.1
As a special case, the function f(x) of the scalar x is convex in the domain X of x

if PN < QN in all triads A, N, B as shown in the figure below:

F (x) Q
P
\$ i
Xl 0 Ax2 + (1-A)X1 x2

Figure 1.5.1(Convex function)

The function f(x)is said to be concave over the set XeE" if for any two

points x;, X, €E and for all A€[0, 1],
f(Axy + (1-1) x; ) > Af(x; ) + (1-A)f(x;) 1.5.2
This is indicated in figure 1.5.2 below:

—
%Zf

/7
Xl 0 Ax2+ (1-A) X1 X2

Figure 1.5.2 (Concave function)



The following are some elementary results of convex and concave functions of

considerable importance.

i. Iff(x) is convex, the - f(x) is concave and vice versa

ii. The linear function Z = C' x is both convex and concave throughout E"

iii. A concave (convex) function has the property that its value at an interpolated
points is greater than (less than) or equal to the value that would be obtained
by linear interpolation

iv. The sum of a finite number of convex (concave) functions is itself a convex
(concave) function.

The following theorems are vital.

Theorem 1.5.1
Let f(x) be a convex function over a closed convex set X in E" . Then any
local minimum of f(x)is also the global minimum of f(x) over X.

Proof:

The proof is by contradiction. Assume that f(x) takes on a local minimum
at x; € X, that its global minimum is at x* € X and that f(x*) < f(x)).
Now,
f(Ax* + (1-1) x;) < Af(x* ) + (1-M)f(xy)
<Af (xp) + (1-)f(xy)
=1(x) 1,53
for all A€[0, 1]. But for sufficiently small A, the point
x = Ax* + (1-A)x, lies in the neighbourhood of x; and equation 1.5.3 then
shows that f(x) < f(x; ) in this neighbourhood, which contradicts the fact that f(x)
has a local minimum at x = X, . Thus x; and x* cannot be distinct and that ends

the proof.

14



Theorem 1.5.2

Let f (x) be a convex function over the closed convex X in E" . Then the
set of points at which f (x) takes on its global minimum is a convex set.

Proof:

The case where f (x) takes on its global minimum at a single point is
trivial. Otherwise, suppose the global minimum is taken at x; and x, , X; # X, and
let

x=(Ax;+(1-A) xy), A € [0, 1] 1.54
Then,

f(x) = f(Ax, + (1-A)x;) < Afxp 3+ (1-1) f(xy)

But fx,) = f(x;) = f(x*), the global minimum. Hence, f (x) = f(x*) for all points x
defined by equation 1.5.3.

Definition 1.5.5 (Convex Cone)

Let E be a linear vector space over R. Let C be a subset of E such that C is
convex. C is said to be a cone (with the vertex O, the zero element of E ) if xe
E

A >0 - Ax €C. The subset C of E is called a convex cone if C is a cone and is
also convex.

Lemmal.5.1

The cone K is convex if and only if X,y eK -2 x+y € K 1.5.5

Proof:

1. Suppose K is a convex cone. Given x, y €K, if follows that

Ya(x +y) = Y2(x) + %(y) €K since K is convex and x +y = 2(1/2(x +y))
€ K since K is a cone.

2. Suppose K is a cone satisfying equation 1.5.5. If x, y € K and

A € [0, 1] are given, then Ax + (1-A)y €K since K is a cone.

15



Now equation 1.5.5 implies

Ax + (1-A)yeK.

If K is non-empty convex cone in E, then let x >y (&Ly<x) ®x-y €E
be an ordering relation on E. Since @ €K we have (reflexivity).

Also, X >, y > z=> x> z (transivity).

Sincex>y (@ y<x)®x-yeEgivesx-ye Eandy -z € K Lemma
1.5.1 above implies x -z =(x-y)+(y-z) eK. Hencex> O, A > 0=

AX>0g,x>y,ze E=>x+z >y+z.Hence the proof of the Lemma.

Definition 1.5.6 (Topological Dual space)
Suppose E is a unitary space. If y € E, then setting C(x) <x, y> for x €E a

linear form is defined on E which satisfies

|C(x)| < | |y| | ||x|| for all x eE. By Cauchy Schwarz inequality.

This is continuous and | | ¢| | §| |y| | .

If y = O, then C is the zero mapping and [lc|]=] |y| | =0. Otherwise,

||y| | > () and | C(z)| - | | C || for z = y which implies ||y| | < I |c| |

Hence, | [y||=1lc|].

Definition 1.5.7 (Linear Mapping)
Let E and F be two normed vector spaces. A mapping:

A: E - F is said to be linear if
AMAx+py)=AAX) +tpA(y) forallx,y e Eand A, p € R.

A mapping A: E = F is called continuous if x, 2 X, X, , X, € E => A(x,) =

A(x). Below are some relvant theorems in linear mapping.

Theorem 1.5.3

A linear mapping A of E into f is continuous if and only if there is a >

| |A®)| s <o | |x] |g forallx € E
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Theorem 1.5.4

For every linear mapping AXF = G there are unique linear mappings
A, :E 2 G and A, :F - F satisfying

AX,y)=A, (xX)+Ay(y)forallx e E,y € F.

For example, let E and F be two hilbert space and A € L(E, F). If for each
fixed y* € F* we define

h*(x) = y*(A(x)) for all x € E, then h* € E*. Since E and F are hilbert
space, there must be unique element yeF, h € E with

<h, x> = h*(x) = y*(A(x)) = <y, A(X)r 1.5.6

Since the mappings y = y* , A and h* are continuous and linear, a continuous
linear mapping A": F 2 E, y > h is defined by equation 1.5.6 with

A*(y*)(x) = y*(A(x)) =<y, A(x)> =< A'(y), x> forall x € E.
Suppose E, F and G are linear vector spaces. The cartesian product E x F is also

a linear vector space, with componentwise addition and scalar multiplication.

Definition 1.5.8 (Positive Cones and Covex Mappings)

Let P be a convex cone in a vector space X. For cx, y € X, we write X >y
(with respect to P) if x - y € P. The cone P defining this relation is called the
positive cone in X. The cone N = -P is called the negative cone in X and we
write y < x for y —x € N. For example, in E ", the convex cone

P={xeE":x=ky,ky, ...k} ki >0 forall I 1579
defines the ordinary positive orthart.

In a normed vector space it is important to define positive cone by closed
convex cone. For example, in E" , the cone defined 1.5.7 is closed. If one or
more of the ineqaulities is changed to strict inequality, the resulting cone is not

closed.
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Let X be a vector space and let Z be a vector space having the cone
spacified as a positive cone. A mapping G: X = Z is said to be convex if the
domain ¢ of G is convex set and if G (ax; + (1-a)x;) < aG(x; ) + (1-a)G(x; )

forallx;,x, e pandlla, 0 < <1.

Proposition 1.5.1

Leg G be a convex mapping as in the last definition. Then for every z € Z,

the set {x:xe@ , G(x) <z} is covex.

Definition 1.5.9 (Linear Manifold)

Let X be a normed vector space over R. A subset A of X is called a linear
manifold if

X,y € A,A € R=>Ax+(1-L)y €A.
If x*: X 2R is non trivail form and aceR then,

H = {xeX:x*(x) = a} 1.5.8

is alinrear manifold and is called a hAyperplane

Assertion:

It can be shown that every hyperplane is a maximal linear manifold, i.e. If
A is a manifold, A DH => A = H or A = X. Furthermore, a hyperplane H of the
form of equation 1.5.8 is closed if x is continuous. In other words, a linear
manifold H in X is maximal and closed if and only it is of the form 1.5.8 with x*

€ X*, the topological dual of X and x*# O,
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CHAPTER TWO
LINEAR OPTIMIZATION IN FUNCTION SPACES
2.1 INTRODUCTION

It is worth starting with in this chapter to mention that there exists a close
relationship between approximation and optimization.

The introduction of optimization theory to the discipline of mathematics
about the time of the advent of computers brought about revolution to
approximation theory.

The connection between the two (approximation and optimization) is even
clearer in case of discrete approximation problem. Here, a given real value
function f is to be approximated at finite number of points x;, X; ... X, of a set X
(e.g., real numbers). Most of the times the given function values f; = f (x;), i =
1,2,3...m are the result of measurement so that an expression of f in algebraic or
analytic form is not known.

In the case of a linear approximation problem a finite dimensional vector
space V is constructed consisting of linear combinations of the functions V; V,....

V., whose values are easily computed and veV is given by

V(t)=zn X; V; (t), for seS where x; y... X, 2.1.1
=

are real numbers and V(t;), ......V(ty) are vectors in R™

The main focus in this work however is the so-called semi-infinite
optimization, which results directly to continuous approximation problems. In
this case, infinitely many free parameters can occur. This leads to such an infinite
optimization problem especially when one seeks to approximate real valued
function f on a compact set S (e.g., real interval) of continuous functions on S as
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on S as well as possible in the sense of maximum norm.

This type of problem occurs, for example, when one seeks representation
of function for evaluation with computer. It also occur in the approximate
solution of boundary and initial boundary value problems for ordinary and
partial differential equations as well as in other area of application e.g., the

control of environmental pollution to which this volume is dedicated to.

2.2. THE GENERAL LINEAR OPTIMIZATION PROBLEM.
2.2.1 Statement of the problem and the weak Quality Theorem

Let E and F be two partially ordered normed Vector space whose order relation
is denoted by
> or <. Let K¢ and Ky be the associated cones for the ordering. Let a continuous
linear mapping defined by:
A: E = F: a continuous linear form
C: E 2 R and a fixed element be F be given. Then, the linear optimization
problem can be stated as:
Maximize C (X) Subject to the side conditions.
AX)>2b,x>Q
=> A (x) - beKy, xeKg. 2.2.1
To this problem, a dual problem can be associated. For the dual problem,
we consider the mapping
A*: F - E* which is adjoint to A. We define the following problem:
Maximize Fb (y*) = y* (b) subject to the side conditions
A* (y*)<C,y* 2 qr
A* (v*) (x) =y* (A (x)) < C (x) for all xeKg and
y* (y) > 0 for all Yg K¢ v
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Now, let

M={xeF:A(x)>b,x>qgr 2.2.3
N={y*e F*: A* (y*)<C,y*>qp 2.2.4
leta be defined as
a = Inf. C (x), if M is man non-empty
xeM
+ oo, if M is empty LD
and B= sup y* (b), if N is non empty
y*eN
-0, if N is empty 2.2.6.

We then have the following theorem:

Theorem 2.2.1

o and B defined as:
a = Inf. C(x), ifM is man non empty
xeM
+00 o, if M is empty
and
B = [Supy*(b), ifN isnonempty
y*eN
-0 © if N is empty

satisfy B <a. ... 2.2.7
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Theorem 1.2.2

If x and y* are admissible, respectively, for the dual problem, and if
C (x) = y* (B) holds, then x and y* are optimal and p = o The two theorems so stated
above are referred to as the Weak Duality Theorem whose proofs are shown
below:

Proof (Theorem 2.2.1)

If M or N is empty, the inequality in 2.2.7 follows immediately from the

definitions of a and B in 2.2.3 and 2.2.4 above.
If M and N are not empty, then for each xeM and y* € N, it follows that

y* (B) <y* (A (x))=A* (y*) (x) <C (x)

If one keeps y* €N fixed and varies x in M, then it follows that
y* (B) <a=inf. C (x)
xeM

This inequality holds for all y* €N and hence, the Proof.

Theorem 2.2.3 (Slackness Theorem)

Let xeM and y* eN be given. The following two statements are

equivalent:

a. X and Y are optimal and = a

b. Y*(A(x)-b)=0and(A*y *)-C(x)=0 228
Proof:

Suppose (a) is satisfied. Then C (x )= y*(b) <y * (A (x)) = A*(y *) (x)
< C (x") from which 2.2.8 follows.
Now, let (b) be satisfied. Then, C (x') = A*(y *) (x ) =y*(A (x) =y *(b) and
by theorem 2.2.2, (a) follows.
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2.3 LINEAR OPTIMIZATION PROBLEM IN SEMI INFINITE
SPACE.

As in the general case, let E be a normed vector space in R" equipped with
some norm and partially ordered by means of the cone.

Kg =K"= {x=(x1, X»
Ky=R"

If {ey, ey,...., €, } is only basis of R” (e.g., let eij = M;; be the Kronecker

x")' :x;>0fori=1,2,..,where 0 <,<nand

.......

delta for i,j=1,2, ..,n then every (continuous linear mapping)

A:R" > F can be represented in the form

A (x) =2J::“l fx for X = (X1, Xzyeerey Xn)
with =A(¢)0F, i=1,2,........ , .

Then, by the definition of Topological dual space, every Ce F* can be
represented in the form

C (x)=X"Cx; forx= (X1, X2,...., Xq)'
=1

forx=(x1,Xx; .. x,,)T with C;=C (¢j))eR,j =1, 2, ........ , .
With this, the linear optimization problem for the semi - infinite case can
be stated as:
Maximize
C(x) =IZ_'I‘ G X;
Subject to the side conditions

A (x) =2"F, X; >bforx eK" 2.3.1
1=1

The mapping
A*: F*  E* (=R" which is adjoint to A is defined by

A¥(y*) (x) = y* (A (x)) ;2" y*(f) xi
for all y*eF and x€E.

The statement A*(y*) < C is equivalent to
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28 y*(f)-Ci)x; <0forx eK",  orall xeK", 232

i=1
i.e., for all xeR" with x; > 0, i= 1,2,......r(< n)

The statement in 2.3.2 is equivalent to

y*(£) <C;i; fori=1.2,....... ,n

y*(f)=C;; fori=r+l, ....... , n

The dual problem for the problem of linear optimization (semi-infinite
case is therefore equivalent to the problem of maximizing

Fg (y*)=y* (b)

Subject to the side conditions

y* (f) <Ci, fori= 1,2, ......... oI
y* (f) =Ci, forj=r+l, ............ N
y* > qe* (A y* (y) > 0), for all y O K 233

24 SEMI-INFINITE OPTIMIZATION PROBLEM IN FUNCTION
SPACE.
As in the previous section, let E = R" equipped with some norm and
partially ordered by means of the cone K"; < r < n. Further, let M be a compact
metric space of continuous real valued functions on M equipped with maximum

norm 1i.e.

V (1) =2"x;V;(t), forallt eSasin2 .1,
=1

and the ordering relation
y>Z Ay(t)>Z(t) forallt e M 2.4.1.
Then the corresponding cone for F is given by
Ki={yeCM):y(t)>0forallteM 2.4.2

and the associate semi-infinite problem reads
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Maximize:

Zn Ci X
o 2.43
Subject to the side conditions

2" £ (1) xi > b (1)
i=1

forallteM. x; >0, for i=1,2, .......... , T
If one chooses a finite number of points t;_p,., ,tn and defines for enemy
yeF=CM),
y* ()’)=I§n yi*(ti) 2.4.4
where y; *, _ yn*€R are fixed non-negative numbers, then y* is a linear

functional on F.

Now, a linear functional for C on E say, is continuous if and only if there
is a constant a > 0 such that

|C (x)| < a || x|| for all x € X. For this reason,
y*W | <Z"[y*|llylle, foryeF
i=1

is continuous and consequently, y* €F. Furthermore, we have y*(y) > 0 for all
ye K, i.e., y* >Fg

For every y* eF* of the form of 2.4.4 i.e.
YY) =2 yi*yi ()

the side conditions
y*(f) <Ci, for i=1,2,.......... T
y*(£)=Ci, for i=r+1, ......... ,n
y*>qr (= y* (y)>0) forall ye Ky as in 2.3.3 take the form

fori=1,2, ......... , T
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y*,>0,t, € Mfori=l, ...... , m. 2.4.5
as in 2.2.3 take the form

Zm Yi * f] (ti ) §Cl 5 for I=1,2, ....... s I
i=1

2"yi*fj(4)=Ci; for j=1+1, ......... ,n
pu

y*1>0, teM, forI=1,2, ....... ,m
If conditions 2.4.5 above is satisfied, the it follows from the first weak

duality theorem (theorem 2 .2.1) that

2 yi* b (t )< o =Inf C(m)
=1

xeM

and these exist x € R" satisfying the side constrain
2" £ *(t ) x; > b(t), forallt e M
I=1
x; >0, for all i=1,........... , rand

2"y * b(ti)?ZnCiXi

=1 =1

Then, by the second duality theorem (theorem 2.2.2), x and y defined by
Y= X yty)

are optimal.
The complimentary slackness theorem (theorem 2.2.3) yields the

following assertion.

Corollary 2.4.1

Let x € R" with the side condition

2"yi*b(t;) <b(t), forallt e M
=1

xj >0, for I=1,....... , T
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and y*e F* be given according to
yH) = 2"y y(t)
with the side condition of the form 2.2.5. Then, the following two assertions are
equivalent:
a. xand y* are optimal and f =«
b.  The following two implications hold:

yi>0=> X"fi*(t;)x; < b(t;), 1=1,2, ......, m) 2.4.6
=1

xi>0=> 2Xy*fit)=Ci,(=12, ccoreern... ,T) 2.4.7
=1

]The proof is a direct implication of the slackness theorem in theorem 2
.2.3 and the fact that in this special case, the conditions.

(). xandy are optimal and f; =a

(ii). y* (A(X)-b)=0and (A*(y*) - c)( x') = 0 as stated in the theorem

becomes

E;" yi*(izll" yi* fi(t) x5 -b(t)) =0
and
2™ (XM y* fi(t) - Cj) xi) =0

o

which however are equivalent to (a) and (b) above so stated.
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2.5. COUNTER EXAMPLES TO THE VALIDITY OF THE GENERAL
EXISTENCE AND DUALITY STATEMENTS

In order to guarantee the solvability of the control problems (P) and its
dual (D) with the side conditions

A (x)>b,x>qr

(JA (x)-b € Kg, x € Kg
and

A*(y*)<C,y* > qr

<=> A* (y*)(X) = y* (A (X)) < C (X), for all y € K respectively, it is not
sufficient to assume that the sets M and N as defined in 2 .2.3 and 2.2.4
respectively of the consistent element for the dual are not empty. We shall

consider with a particular reference to the semi-infinite case.

2.5.1 Insolvability of a Semi- infinite Problem

Let E = R and let it be equipped with some norm and the trivial partial
ordering with a positive cone K,” = R% Further, let B = [0,1] and F = C (B),
equipped with the maximum norm
K02 = R?

lig Il by lg'lax *g (1) for g € C(B)

with the partial ordering
‘ y>Z <=>y(t)>0 forallt € B.
Finally, let b (t) =t for te [0,1] and A: E F be defined by
AX)(t) =t X;,+X, for t € [0,1], x =(x1,X2 ).
We consider the problem (P) of maximizing the continuous linear
functional

C (x) = 0. x;+x; subject to the side conditions.
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X1, X, € R, ? x; +x, >t forallt e [0,1].

One can see easily that the set M of consistent element is non-empty and
that o = 0 (o is defined as in the weak duality theorem 2 .2.5. There is however
no x eM with C (x) = 0. The problem therefore is not solvable.

Now, referring to the weak duality theorem, the dual problem is
equivalent to the problem of maximizing the linear functional y*(b) subject to
the side conditions

y*(f)=0

y¥®)=1, y*>gqr

Hence, i (t) =t’and fy(t) =1  for all te [0,1].

If one defines

y*(y)=y(0) forally € F=C[0,1],
then y* € F* > q¢*, y*(f)) = 0 and y*(f;) = 1 . Thus y* is consistent for the dual
problem. Furthermore y*(b) = 0 = a, from which it follows by theorem 2 .2..1
that y*(b)= B =a =0. The dual problem is therefore solvable and the extreme

values of both problems coincide as demonstrated in the diagram below.

Ax) (1)

1 b()=t

C (x)

|
1

1

Fig 2.5.1 (Insolvability of semi-infinite problem)



2.5.2 Occurrence of Duality Gap.

Another reason why the general existence and duality statement may not
hold is that of occurrence of duality gap. This occurs when the problem and it
dual are solvable but the extrema do not coincide.

As an example, let E be a set of all infinite real sequence X={x,}, n= 0,1,
... n in which only a finite number of terms Xn are non zero. If one defines
addition and a scalar multiplication in E component wise, then E becomes a

linear vector space over R. Further, let E be equipped with the norm.

| X||=|Xo| + 2" n|xq| 1.5.1
n=1

and partially ordered by the relation x > x > x, for all n. The positive cone of E
is then.

Ke={x={xa} n=0,1,2,...0E>0foralln

Let F = R” be equipped with some norm and partially ordered by means of
the positive cone K¢ = {q, }. From this it follows that K¢* = F* and for every y*
> qr*, (i.e. y* € K¢*), there is a unique y €F with

Y*¥) =, y)=y yi+y 2y, forally e F.

Let A: E = F be defined by

(x0+Z°n Xy ;
n=1
AX) = A

w .
Xn 5
1

., T

forx= {x,}n=0, 1,........ eE 1.5.2

A is linear and continuous. Further, let b= (1,0) and C (x) = X, x €E. Problem
(P) reads:

Minimize C (x) = X, subject to the side conditions
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Xo+2°nx,=1,forx=1.2,...... eE, x, >0 for all n;

n=1

2% =0 1.5.3

n=1
Obviously x €E is admissible if and only if xo = land x, = 0 for all n > 1.
Consequently, a =1 and C(x) equals a for this single x0M, i.e. problem (P) is
solvable.
The adjoint mapping:
A*: F*-> E is given by
A* (1) (0 =y* (A G =1 (X0 +Z7 00} +y2 {27 %o}

=y; Xo+ § ® (yin + yon). 1.5.4

The statement

A*¥(y*) <C y* > qF* therefore is equivalent to.
AXy*) () =Y X0+ 2 " (yin + y2n) %, < C () = xg

for all {x,},n=0,1,....... €E with x, > 0 for all n.
This statement is equivalent to, y < land y;n + y, <0 for all n > 1 which
equals
| y <0andy, +y, <0
The dual problem (1) is therefore equivalent to the problem of maximizing
the linear functional
y*(b)=<y,b>=y ", Subject to the side conditions
y 1<0andy,+y »<0
Obviously, =0 and y,;’=y ", = 0 is a solution of problem (D). Thus, both the

problem and its dual are solvable.
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Example 2.5.1
This example explains further the case of exemption to the duality

theorem.
Let L, [0,1] x R. Here L, [0,1] is the Hilbert space of equivalent classes of

measurable and Lebesque square integral functions on [0,1] with the norm.

I £1l= (' *(0** )

and the partial ordering
(fr)>(g s)<=>f>gandr>s.
Furthermore, let F = L, [0,1] be equipped with the above norm and partial

ordering. For every y* € F, there exist a unique ye F with
v = J' yoro

forall fe F

2.6 EXISTENCE AND DUALIZATION OF AN OPTIMIZATION
PROBLEM.
Let E and F be two partially ordered linear vector spaces. Let A: E> F
be a contentious linear mapping, C: E - R be a continuous linear functional, and
be F. The general optimization problem consist of minimizing the linear
functional C(x) subject to the side conditions.
’ AX)>bx>qg 2 .6.1
The associated dual problem (D) is then: Maximize the linear functional
Fy (y*) =y*(b)
Subject to the side conditions A* (y*) <C, y* > F ¢* 2.6.2
Here, A*: F* - E* is the adjoint mapping of the topological space F* and
due to E. A* is therefore linear and continuous if one norms E* and F* in the
natural way. The symbol “<” and ‘“>” above refers to the partial ordering
imposed on E*, F* respectively.
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The dual problem therefore is equivalent to the problem of minimizing the
linear form.

-@p (¥*) =-y*(b)
subject to the side conditions

-A*y*)=-C,y*>F¢*.

This problem again has the form of the original one and therefore can be
dualize. The problem arising is equivalent to the problem (P*) of minimizing the
linear functional C**(X**) subject to the side conditions.

AFX*) > Fy, XF* 2> D p** 2.63

Here A** = E** - F** is the mapping which is adjoint to A*: E* > E*,
C**: E¥* - R is defined by C** (X**) = X**(C) for all X**€E and the symbol
“>” denote the partial ordering induced in F**, E** respectfully. If for an xeE
the side condition A (x) >b, X > Og and satisfied, the we define X** €E** by
X** =F, thatis, by

x** (x*) = X*(x) for all x*eE*.

Since x > Op, it follows that X**(x*) >0  for all X* > Op=> X** > Og**.
Furthermore,
AR (X*¥)(y*) = X*H(A*(y*)) = F, (A*(y*))
=A*y*)(X) =y* (A (X))and since A (x)> b, one has
AFH(X**) y* 2 y*(b) =Fy (y*) for all y* > Op when A**(X**) > Fy,
! Finally, one obtains C**(X**) = X**(C) = C (X)
2.6.2 Sub-consistency and Normality of an Optimization Problem.

Let R x F be the Cartesian product normed by ||Ay|| = |[|A|| + |lyll, Ae R, y
€ F and let R x F be a convex cone (with (0, Or) as vertex defined by.

KAC={Cx)+r,Ax)-y):r>0,X0Kgy eKg 2.6.4

Further let
Ly, = {(a, b): a eR} =R x {b} 2.6.2
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Hence, the set

‘M= {xe E: A (x) > b, x> O} of the consistent elements of problems (P)
is non empty if and only if Ly N K (A, C) is non-empty and problem (P) is
equivalent to the problem of finding the element (0',2) €0 L, " K (A, C) such
that ol < o for all

(a,z) e LK (A, C).

Therefore, we can find the extremal value of problem (P) as

Inf. Ly " K (A, C), is non empty
V(A, C, b) = (o, b) eK(A, C)
+ o, IfL, nK (A, C),is empty 2.6.3

The problem (P) is called sub-consistent if the intersection L, NK (A, C)
is not empty. Here, K (A, C) is the closed hull of K (A, C) in R x F.
The sub value of the problem (P) is defined by:

Inf. Ly " K (A, C), is none empty
VS (A, C, b) — (a, b)E K (A. C)
+ o0, IfL, N K (A, C), is empty. 2.64

The problem (P) is said to be normed if
LynK(A,CO)= LynK(AC 2.6.5

Consequent of these definitions, we have the following lemma.
Lemma 2.6.1

If the problem (P) is consistent, i.e. L, n K (A, C) = f, then (P) is also sub-

consistent and the following inequalities holds. Vs (a, ¢, b) <V (A, ¢, b) <+
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Lemma 2.6.2
Let the problem (P) be normal, then the following two assertions holds:

a. (P) is consistent if and only if (P) is sub-consistent.

b. V(a,c,b)=Vs(A,c,b)

Let A: E = F be defined by
A (f,r) (t) =] f(s)ds +r, for t € [0,1]
0

Then A is linear and continuous.

Finally, let b= 1 and

Cit r)=I‘tf(t) dt + 2r
0

Then C is a continuous linear functional and for problem (P) we obtain the

problem of minimizing.

f‘tf(t) dt + 2r

0

subject to the side conditions

,[l f(s)ds+r>1, foralmostallt e [0,1]t
0

f(t)>0, for almost all te [0,1]and r >0

=

2.6.3 The General Existence and Duality Theorems
Before stating the general existence theorem, it is necessary to state the

following decisive theorem of the theory.

Theorem 2.6.1
Let N be non-empty, i.e., the dual problem (D) is consistent.

Then for (a, b)e R x F, the assertion:
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(a,b) eK (A,C) <=>a>V* (A*, b, c) 2.6.3.
with
V* (A*, b, c) = Sup. y* (b) holds

y*eN

Before the proof of this theorem, the following lemma is necessary.

Lemma 2.6.3
If the problem (P) is sub-consistent and the dual problem (D) is consistent,
then we have:

~o0 < V*(A*,b,c)<Vs(A,b,c)<+ow 2.6.3

Proof:
Let (, b)e K(A ,c) and y* €N. Then there are sequences {r,}, r, >0,

{Xa},
X, € K¢ and {y,}, yn» € Kg with

=Lim. {C (x,) + 1y}, b=Lim. {A (X,)- y,) holds.

n->o0 n o

By the continuity of y*, it follows that a > y* (b), which implies equation 2 .6. 2.

Lemma 2. 6. 4.
If the problems (p) and (D) are both constant, then (P) is also sub consistent
and
-0 < V* (A*,b,c)<Vs (A,c,b,) <V (A,c,b)<+w
The proof of theorem 2.6.1 now follows.
Proof (Theorem 2.6.1)
2 Let (a, b) € K (A, C)

For every y* € N it follows then, from the proof of lemma 2.6.1 that
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a > y*(b) which yields a > V*(A*, b, c)
2. Let (o, b) ¢ K(A,C)

Since K (A,C) is cohvex closed come, then there exist (,y*) € R x F with

A at y¥(b) <0 <AB+y*(z) for all (B, z € K(A,C)

In particular, one has

MC(x) +r1} +y* (A(x) -y) > gr for all y > gp.

If we choose x =g and r = 0, there it follows that (-y*) (y) > 0 for all y > qf
which implies y* > q.

If x = qg and y = gf then it follows that Ar > 0 for all r > 0 which implies
A=0.

Two cases are possible: (a) A >0 and (o) A = 0.

Then for y = qg, y*(A (x) > 0 for all x > qr and consequently, A*(-y*) <
gr. Since N is not empty, there exist y* > qr with A*(y*) < C. If we defines for
every p > 0,

Y, * =y* - py*

Then y* > gr and A* (yp*) < C implies yp*, N and yp* (b) = y*(b) - py * (b)
with
y*(b) <0. Therefore V¥(A*, b, ¢) > y,* (b) forall p> 0.

Since lim. y,*(b) = + o , then necessarily V*(A*, b, ¢) = 4o which
implies s
a<V*(A,b,c). BAL >0

If we set y* = -y*/A, then y* > qr and a < y* (b) < V¥(A*, b, ¢) follows
from 2.6.3

Theorem 2.6.2 (Existence Theorem)
Suppose the convex cone:
K (A, C)={C(X) + 1, AX) - y: r > 0; K is closed. Therefore every beF,

the following assertion holds:
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a.. Problem (P) is consistent and its value is finite if and only if the
dual problem (D) is consistent and its value is finite. In both cases, the
problem (P) is solvable, i.e. the infimum is assumed and - <V (A b, ¢)
=V*(A*,b,c)<+

b. If the problem (P) is consistent and the dual (D) is not consistent
then we have

V (A, c,b)=V*(A* b,c)=-

Proof:

Since K (A, C) is closed, problem (P) is normal and all assertions except
the solvability of (P) in (a) are guaranteed. Because of the fact that K (A, C) is
closed, however, we have.

V (A, c,b)=Min. € K (A, c),a=C (x)
(a,b)e K(A,C)x e M

when problem (P) is consistent and V(A, ¢, b) > -0
For variable b € F, the closedness of K (A, ¢) is also characteristical for
the solvability of the problem under the assumption that the dual problem (D) is

consistent and its value is finite.

2.6.1 Application of the Duality Theorem to the Semi-infinite Problem

Consider the Semi-infinite problem (P) of minimizing the linear form
C(X) =J_21“ Ci x
Subject to the side condition
A (x) =J§" f x; > b for Xe Kr 2.6.4

Here, E = R" is reflexive and Kg = K"; is closed. The dual problem is
equivalent to the problem of minimizing the linear form - y*(b) subject to the

side condition.
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-y )=, j=1,—r
-y )=-G,j=1,—2
y* > Qps
K (A*, b) c R™ is given by
K (A*,b) = {-y*(b) + S -y*(f1) -Si,
= ¥HE) -8, - Y )y - y*(£n):S0 > o,

If one defines f, = b, then one can also represent K (A*, b) in the form.

K (A*,b)=K*-K
With K {-y*(fy), ... -y*(f,): y* > q&*} and K = {Xe R™": X, <, >0, ......... X, =
X1 =..=..=0} 2.6.5

k is obviously a closed convex cone in R™"".
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CHAPTER THREE
CONTROL MODEL FOR ENVIRONMENTAL POLLUTION

3.1 THE GENERAL CONVEX OPTIMIZATION PROBLEM
3.1.1 INTRODUCTION

Linear optimization problem in function space has been considered in
chapter two with its duality and existence theorems with particular reference
to the semi -infinite optimization problem. In this chapter convex optimization
problem in function space, its duality and optimality is considered so as to
construct a control model for the environmental pollution problem. Some
terminologies defined in chapter one especially those that relates to convex
function and functional are used.

3.1.2 Convex optimization Problem

Let E be a vector space and X a non empty convex subset of E. Let F be
partially ordered normed vector space and Y a positive cone. Furthermore, let
f: X->R be a convex functional and g: X = F be a concave mapping and beF
a fixed element of F .

Suppose that the set

SX, g b)={xeX:g(x)>b} 311
is not empty. Hence g(x) > b is equivalent to g(x) - b €Y or g(x) € (Y + b).
The concavity of g refers to the partial ordering in F induced by Y and the set
S(X, g, b) is convex.

The general convex optimization is to seek an x €S(X, g, b) such that

fix") < f{x) for all xeS(X, g, b) 3.1.2
Every xeS(X, g b) is called consistent and every x €S(X, g, b)satisfying
3.1.2 is said to be optimal.

LD



3.1.3 The Dual Problem (D)

Let F* be a topological dual space of F (F is defined as in 3.1.1 above)
We define in F* x R the set

S*={(B,y*) e RxF*:F(x)-y*>B-y*(y) forall xeX, yeY}

3.1.3

The dual problem (D) is to seek a pair (B, y*)eS* such that B + y *(b) > B +
y*(b) for all

(B, y*)eS* 3.14

Each pair (B, y*) is said to be dually consistent and each pair (B~, y *)eS
satisfying 3.1.4 is said to be dually optimal. The problem (D) is called
consistent if the set S* is not empty.

The extremal value of the dual problem is defined by :

Sup: B + y*(b) if S* 0
v*(D) — { B, y*)eS*

- o0: Otherwise

3.2 CONVEX OPTIMIZATION IN FUNCTION SPACE
3.2.1 Posing The Problem and Characterising The Optimality

Consider the linear vector space E, a non empty subset X of E. Let f: X
- R be a functional and g: X->C(T) a linear mapping where C(T) is the
vector space of continuous real valued function defined on a compact

Housdorf space T. We imagine C(T) to be equipped with the maximum norm

Il gl =Max|(t)| forallg e C(T) 3.2.1
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and partially ordered in the natural way. Let Y denote the positive cone of C
(T)
Let

S={xeX:g(x) e Y} 3.2.2
be a non empty set. We seek for an x €S such that

fix") < f{x) for all xeS 323
To be able to give sufficient condition for the existence of such optimal
element

x €S, we associate with every X €X the value
O(x) = Inf. g(x, t) 324
teT

_and the non empty set

I(x) = {teT: g(x, t) =&(x) } 3.2.5
Then we have the following theorems.
Theorem 3.2.1

A element x €S is optimal, i.e. for any x €X, there exist an xeS such
that f{x") < f{x) if for all xeX the following implication is true.

g (x, t) > for all tel(x) => f(x) < f{x) 3.2.6
i.e. it maximize the functional f on the set

S (x)={xeX: g(x, t) >0 for all tel(x) 3.2.7
The proof of this follows immediately from the fact that S — S (x™ ) and the
equivalence of the implication 3.2.6

The issue now is under what requirement is 3.2.6 necessary for the
optimality of x* €S. To answer this question, we refer to the definition of star
shaped set, Convex and Concave functional in chapter one and state the

following theorem.



Theorem 3.2.2

Suppose x €S is optimal, i.e. f(x) < f(x) for all xeS. If T is finite, X
star shaped, f convex and g concave with respect to x, then the implication g
(x, t) > 0 for all tel (x) => f(x™ ) < f{x) holds for all xeX.
Proof:

Let assume that there 1s an x*e€X such that
g(x, t) > 0 for all tel(x) and f{x* ) < fix") 3.2.8
Let a set B be defined thus

Min g ((x, t): if B is empty

B=| teT: g(x* t) - g((x, t) <0 and the set
i
A= g((x,t) - g(x* t); if B is non empty
Clearly, A~ > 0, for in the case that B is not empty, we have BN I(x” )=¢ on
the basis of the assumption of 3.2.8 which implies that g(x, t) > 0 for all teB.
For A = Min (A", 1) we have that Ae(0, 1) and since X is star shaped with
respect X , it follows that x; = Ax* +(1-A) x €X. That g is concave with
respect to X follows from the definition of A
g0x, ) > Ag(x*, 1) + (1+ A )g(x, 1)
=g(x, )+ eg(x*, ) - g(x, >0
for all teT, 1.e. x; €S.

From the concavity of f with respect to x and the assumption in 3.2.8

follows finally because of A > 0.
fx.) <A fx*) + (1+ A)f(x) = fix) + [fix*) - fix) <fx)
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This clearly contradict the assumption of 3.2.8 and hence the assumption in 3.2.8
is false.
If we however assume that T is not infinite, then the following theorems

(though weak) can be prbved.

Theorem 3.2.3
Let x*eX be suclll that g(x*, t) > for all tel(x") and f(x) < f(x") then the
optimality of X" €S for all xeX implies

g(x, t) > 0 for all tel(x)=>f(x" ) < f(x) 3.2.9

Proof:
Let x*e X with
g(x*,t) > 0 for all tel(x) and f(x™ ) > f(x*) 3.2.10

Let & de defined as
& = Min g(x*, t)

tel(x)
Then & > 0 and the set

I = {teT: g)(x*, t) > 1/25 }is open and contains I(x).
If1=T, then x*€S and 3.2.10 is a contradiction to the optimality of x™
IfI# T, then the complefnent of I is the non empty, closed subset of T and

1= Min g(x, t)
tel(x)

If however,

g(x*,t) >g(x7,t) forall teT 3.2.11

8.




then again x*€S and 3.2.10 is a contradiction to the optimality of x™. If 3.2.11 is

not satisfied, then

Ho = l\frrl g(x, t) [ g(x*, 1) - g(x, 1) ] <0

If one chooses A = Min (1-A7) with A~ =y , (12 ), then x5 = Ax* + (1-A)x ~ eX
and

g(x, t) > Ag(x*, t) +(1-A)g(x", t)

=g(xp,t)+ Mgx*, t)-g(x ,t) >Ad/2, forall tel

=g(x , t) +Ag(x* t)-g(x ", t) >A0/2,> w+ pp >0 for all teB
where ever x; €S. Furthermore, because A [0, 1], we have

fx ) + Mx*) + (I-M(x ) + A[f(x*) - f(x7)] <f(x")
which contradict the optimality of x™ . Thus the assumption 3.2.10 is false.

The theorem below shows the relationship between the implication 3.3.6
and 3.2.9 i.e. g(x,t)>0forallt el(x )=>f(x" ) <f(x) and

g(x,t)>0 forall tel (x™ ) =>f(x" ) <f(x)

Theorem 3.2.4

Let E be a normed vector space and f: X = R a continuous functional. If
for a given x™ €S the set

So(x )= {xeX: g(x,t)>0 for all tel(x ) } 32.12

is non empty and if S(x™ ) defined by
g(Ax + (1-A)x~ > Ag(x) + (1-A)g(x" ), then the statement S(x )= So (So
(x™)) (i.e. the closure of Sy (x™ ) ) holds and then the implication of 3.2.6 and

3.2.9 is equivalent.

Proof:

B



Proof:

If for some xeX, g(x, t) > 0 for all tel(Sy (x™ ) and there is a sequence

{Si}of points x; €Sy (x ) with limit = f(xy)
X0

From 3.2.9 it follows that f (x ) < f(xy) for all k and from this f (x™ ) < f(xy)

because of the continuity of f which proves the implication 3.2.6.

Lemma 3.2.1

If E is a normed vector space and X a non empty subset of E, g concave
on X and the set

So = {xeX: g(x,t) > 0 for all teT} 3.2.13
is not empty, then for very X~ € S, the set So(x™ ) defined by

So(x™ ) = {xeX: g(x,t)> 0 for all teT}is not empty and So(X™ ) < So(X )
where So(x™ ) is defined by So(x™ ) = {xeX: g(x, t) > 0 for all teT}.

Proof:

By assumption, there exist xoeX such that g(x, t) > 0 for all teT when
ever XoeSy(x )for all x™ €S.
Now, let an xeS(x™ ) be given. Then for all k > we have

xx = l/k xo+ (1-1/k)x €X and g(xx, t) > 1/k g(xo,t) + (1-1/k)g(x,t) >0

for all tel(x") i.e. Xx € So(x"). Furthermore, x = Lim x,
k 2o

which implies that xe Sy(x").
In summery, theorem 3.2.1 - 3.2.4 and Lemma 3.2.1 can be put together in

one as in theorem below.

Theorem 3.2.5
Let E be a normed vector space, X a non empty convex subset of E, f a

continuous and convex on X, g concave on X and the S, defined by

46



is non empty. Then an element X~ € is optimal if and only if for all xeX, the
implication
g(x, t) > Ofor all tel(x") => f(x") <f(x)
holds and this is equivalent to the implication
g(x, t) > Ofor all tel(x") => f(x") < f(x)
If T is finite, then the assumption S, #¢ is superfluous.
This theorem is of particular interest when
[(x)={teT: g(x,t)=0}, i.e. d (X)) = 0 where
d( x7) = Inf. G(x, t)

teT

On the other hand, if 8(x") > 0 then we have the next theorem.

Theorem 3.2.6
Suppose x €8 is optimal and 8(x") > 0. If X is star shaped, f convex and g
concave with respect to x then f (x7) < f(x) for all xeX i.e. X is in fact, a

minimal point of f on the set X.

Proof:
Let x*e X with f(x*) < f( x7). If g(x*, t) > g( x7, t) for all teT, then x*€S,
in contradiction to the optimality of X™ . Therefore we have

n=Min [g(x*,t)-g(x ,t)]<0
teT

If we choose A€[0, 1] and x; = Ax* + (1-A)x” €X and
g(xy, t) > g(x7, ) +g(x*, 1)+ [gx* t)-g(x", t) Jorall teT i.e. x, €S
Finally, f(x; ) < f(( x") +Af(x*) - f( x” ) < f( x) which is a contradiction to the

optimality of x™ " Therefore the assumption is false.

3.3 A mixed Linear - Convex Problem
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3.3 A mixed Linear - Convex Problem

Let E = R" equipped with any norm and let X be a non-empty convex
subset of E. Let T also be a compact Housdorf space and let v: T 2 R" be a
continuos mapping . Let a: T = R be a functional and let ceR be a given vector,
for every xeR" and every te T we define

g (x, t) = <v(t), x> - a(t) 3.3.1
where <., .>denote the ordinary inner product in R" . The g: E = C (T) is an
afine linear and hence concave mapping.

A mixed linear convex problem (P) can be stated as:
Maximize the continuous linear functional f(x) = <c, x> subject to the side
conditions xe X and g(x, t) >0 for all teT. For every x €E, we define

TX, x )=U {Mx- X ):xeX
2>0

where T(X, x) is a close convex cone in E=R" .

Theorem 3.3.1
An element x €S with S defined by
S = {xeX: g (x)eY} where d (x) > 0 and 9 is defined by
d(x)=Inf g (x, t)

teT
is optimal if and only if ce T(X, x7) where T(X, x") is defined according to
So={xeX: g(x,t)> 0 } and T(X, x") is a convex cone defined by
Ko =K*eR: <K*, k> > 0 for all keK.

Proof:

By theorem 3.3.1, x is optimal if and only if

<c¢,x-Xx >0 for all xeX and this is equivalent to <c, h>> 0 for all
heT(X, x). Thatisce T (X, x)"°

Now consider an X~ €S with 3(x") = 0. If the set
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So = {xeX: g (x, t) > 0} for all teT is not empty or if T is a finite set
quipped with discrete topology, then x™ is optimal if and only if
<¢, x - x> > for all xeX with u

< v(t), x> - ot) > 0 for all tel(x™) 233
here 1 (x7)= {teT: <v(t),x")-a(t) =0} =¢
f one defines L (E, x7) = {heR": <v (1), h>> 0 forall tel (x”) 3.3.4
‘hen L (E, x7) is obviously a closed convex cones in £ = R"

4 Control Model for Environmental Pollution

We shall now make use of the analysis so far to construct a control model
or typical cnvironmental pollution problem. We shall consider the problem as a
emi -infinite optimization problem in which there are infinitely many variables
1d side conditions.

Consider a given (two dimensional) control region S in which a certain
environmental conditions is to be guaranteed. That is the yearly contribution of
environmental pollution is to be kept below a certain prescribed standard. We
shall describe this standard by a real valued function ¢ on the control region S.

Furthermore, we consider the pollution arising from the various sources

into (wo categories namely:

J.4.1 Controllable Sources
By controllable sources, we mean those sources ol pollution that can be regulated

while the uncontrollable sources refer to those sources that can not be regulated. Let n

conirollable sourécs be present in the region S and U, , Uy, ...,U, be the average yearly

contribution from the n - controllable sources. Then the total contribution from the

controllable sources is

22 =1,2, v, B
it

.., U, are real valued functions on the control region S.

3.4.1

i. Where U,,
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4.2 Uncontrollabie Sources
Let m controllable sources be present in the region S and V|, Va,
.Uy be the average yearly contribution from the m - uncontrollable sources.

et the total contribution from the uncontrollable sources be U, 1.c.
Up =2."Vii=1,2,....m ; 342
&l

here V,, ..., V, arcreal valued functions on the control region S.
Now, it 1s required that the that the average concentration should not be

T

xceeded hence, we have the side condition

22" U(8) + Ug (8) < ¢ (s) for all seS 3.4.3
il

ince Uy 1s uncontrollablg, in any of these conditions are not satisficd, then the
ncontrollable sources (U, , U, , ....U, ) is regulated by multiplying it by a
wctor. Let x; be the factor of the contribution from the controllable sources. Then
1e jth contribution is reduced by the factor x; where 0 < x; < Iforj = 1,2, ..., n

o that the side conditions

20 Uis) -x; Ui (s) +Uo(s) < ¢ (s)forall seS
i .
rall seS are satisfied i.c.

2 (1=x)Uj (s) + Uy (s) < o (s) forall seS 3.4.4
il

learly, this will be satisfied if for every seS§ the condition Uy (s) = ¢ (s) is
atisfied.

Now, if an x; # 0 must be chosen lhen cost must come in, ¢.g. to enforce
lans and policies, to introduce air purifiers (in case of air pollution) ete. where
ost, in this case is proportionzil to x; .

Let ¢; be the constant of proportionality. Then the total cost of reduction of

ClOrS X| , X2, .. , Xn € [0, 1] can be expressed as
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Clxr, coeXa )= 20 G X, L 3.4.5
il

he factors %y, X2, ...., X, must be chosen subject (o the side condition

2" (1)U () + Uy (s) < ¢ (s) for all seS

il

o-that the cost C(x, , ..... X, 1s as small as possible.
The control problem can now be siated as that of minimizing the linear

mnctional

ubject to the side condition

Sl (s) x; B Ui (s) - @(s) ; where 0 <x; < lforj=1,2,...,n,....3.4.0
i il

his is a typical semi - infinite optimization problem.
Let V(s) = (U (8), ...y Un (8))'
c(s)=2" Uj(s)- ¢ (s);seS | 3.4.7
il

hen, .

g(x, 8) =< V(s), x> - as)>, xeR" where <x, x> denotes the scalar product
R" . Furthermore, Let X = {xe R": 0<x;< Iforj=1,...,n } and let T =S.
hen, the problem (P) is that of finding an x~ gS such that f(x™ ) = [(x) for all
€S where |
S = {xeX: g(x)eY}is a non empty sct. Y denotes the positive cone of
(T).
e assume that the nollution arising from the uncontrollable sources lics in the
hole region of S under the pi'éscribed standard i.e.

Uy (8) < (s) for all seS 3.'4.8
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he set (x, ¢) is closed and bounded, hence the linear and continuous functional
ssumes its minimum on S (X, g). Consequently, there exist an x™ e S(X, g) with
<¢, X ) < <c¢, x> for all xeS(X, g) 349

fwe define 8(x) = Inf. G (x, t)

tel
nd g according to 3.4.7 above then two cases are possible
S8(x) >0

By thecorem 3.3.1, that is the casc if ceT(X, x™ )" with T(X, x™ ) given by
T X7 ) =wd@+x ) XeX and
T(X,x )" =k*eR" :<K* k>>0 forall keK in R"

or this case at hand, we have
T (X, x7) {xjeR forall x; €(0, 1), x; > 0 for x;* = 0, x; <0 for x;” = land
T(X, x™ )" = {xeR" x; =0 for x; (0, 1),

g0 forx7 =0 ,x<0forx =1 3.4.10

ince ¢; > 0 by assumption, CeT (X, x) ° is possible only in the case when x™ =

» which implies

2" Uj (s) < o(s) for all seS
i

o that no reduction is necessary in order not to exceed the standard and
nsequently no cost arise. Conversely, 3.4.9 is naturally sufficient in order that
"= @), belongs to S(X, g) and is optimal i.c. <c, x™ > < <¢, x> for all xeS(X, g)

fulfilied.
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CHAPTER FOUR
COMPUTATIONAL METHOD & ALGORITHM

4.1 INTRODUCTION

There are a number of optimal control problems that can be resolved
completely analytically or reduced to simple finite dimensional problem.
However, a great majority of problems arising from large industrial, aerospace or
governmental systems must ultimately be treated by computational methods. This
is not because the necessary conditions for optimality are too difficult to derive
but rather, the solutions of the resulting non-linear equations are beyond
analytical tractability.

There are two basic approaches for resolving complex optimization
problems by numerical techniques:

(i) By formulating the necessary conditions describing the optimal solutions and
solving these equations numerically (usually by iterative scheme) or

(i) By bypassing the formulation of the necessary conditions and implement a

direct iterative search for the optimum

Though both methods has their merit and demerit, but the second method
appears to be more effective since progress during the iterations can be measured
by monitoring the corresponding values of the objective functional.

In this chapter, the basic concept of dealing with both procedures is
considered mainly, method for solving system linear equations. There are several
computational methods of handling this. The Gauss Elimination method is used n

this work to solve the system of linear constraint.
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EXAMPLES 4.1 (Linear Environmental Pollution Problem)

Consider a hypothetical air shed with a single cement manufacturing
industry. The annual production is 2,500 barrels of cement. Although the industry
1s equipped with mechanical collectors for air control, they are still emitting two
pounds of dust for every barrel of cement produced. The industry can be required
to replace the with four field electrostatic precipitator which will reduce emission
to 0.5 pounds of dust per barrel or with five field electrostatic precipitator that
could reduce emission to 0.2 pound per barrel. If the capital and the operating
cost of the four wheel precipitator are N 0.4 million per barrel of cement
produced and if the five field precipitator are N 0.18 million per barrel of cement,
what control methods should required of this industry? Assume that in this
hypothetical air shed, it has been determined that particulate emission (which

now total 5, 000, 000 pound per day) should be reduced by 4, 200, 000 pounds.

SOLUTION
Now, if C represent the cost control, x is the number of barrel of annual cement
production subject to the four field electrostatic precipitator (cost of N 0.4
million per barrel of cement produced) and y is the number of barrels of annual
cement production subject to the five field electrostatic precipitator (cost of N 0.8
million per barrel of cement and pollution reduction is 5 — 4.2 =0.8 million
pounds per barrel produced), then the problem can be stated as
Minimize
C (x,y)=0.4x +0.18y
Subject to
x+ y < 2,500,000
1.5x +1.8y > 4,200, 000
x>0,y>0
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This problem can be resolved by the linear programming method.

2.5, O)million Feasible region

RB(1.0, 1.5) million

N
Fig. 3.5.(Graphical solution of pr5oblem 3.5.1)

Now,
X +y=2,500, 000

When x =0, y = 2,500,000,

Wheny =0, x =2, 500,000.

Also, for

1.5x +1.8y = 4,200,000,

x =0=> y=4200000/1.8 = 233333.33

and y = 0 => x = 4200000 / 1.5 = 2800000

Solving x +y = 2500000 and 1.5x +1.8y = 4200000 simultaneously, we
X= 1000000
Y = 1500000

To determine the optimal cost of control (i.e. the minimum cost), we evaluate

C(x, y) at (2800000,0), (2500000,0) and (1000000, 1500000).

Now, C (x,y)=0.14x + 0.18y
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C (2500000,0) = 0.14 x 2500000 +0.18 x 0 = N 35000
C(2800000, 0) = 0.14 x 2800000 + 0.18 x 0 = N 392000
C(1000000, 1500000) = 0.4 x 1000000 + 0.18 x 1500000 = N 410000

The least cost solution therefore 1s to install the four field electrostatic
precipitator on the industry producing 1000000 (x = 1000000) barrels and five-
field precipitator producing 1500000 (y = 1500000) barrels of cement at the cost
of N 410000 (C (x, y) =410000)

Example 4.2.

An environmental pollution control agency has N 30 million to use in the control
of pollution in a given year. The money is to be appropriate among air pollution,
chemical pollution and domestic waste. The rules for the administration of the
fund require that at least N 3 million be invested in the control of each type of the
pollutants, at least half the money be spent on chemical pollution and pollution
arising from domestic waste, and the amount spent in the control of chemical
pollution must not exceed twice the amount spent in the control of air pollution.
The annual concentrations of pollutants are 7% from air pollution, 8% from
chemical pollution, and 9% domestic waste. How should the money be allocated
among the various pollutants to produce a minimal concentration of pollutants?
In millions of naira, let x = the amount spent on the control of air pollution, y = the

amount spent on the control of chemical. Then the amount spent the control of
domestic waste is 30- (x + y). The constraints are:

(x,y>3
30-(x+y)>3
< x+y>13

y < 2x
\
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and the objective function is:
f(x,y)=0.7x + 0.8y +0.9[30 — (x +y )]
f(x,y)=27-02x-0.1y

The corresponding system of linear equation is:

/
X,y=3

X +y =27
x+y=15

y =2x

N

The feasible region is:

28

N\

t21

y=2xandy=-x +27 =>x=9, y = 18 hence we (9, 18)

y=3andy=-x + 27 =>x =24, ie. (24,3)
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EXAMPLE 4.3
In a certain rcgion S the environmental pollution problem there arises from
accumulation of domestic waste, improper secwage disposal, chemical pollution

arising from the use of chemical in fishing and oil spillage. The table below

shows the concentration of cach pollutant at each location in the region.

Local- Domestic | Sewage Chemical Oil Spillage | Combustion
ion i waslc Ul(s) Ul(s) Ul(s) Ul(s) Ui(s)
1 800 600 250 300 1000
2 650 900 750 1000 700
3 900 350 . 780 950 600
4 500 800 250 600 900
- 250 650 800 250 300

To bring the level of pollution to a comfortablce level, the annual concentration at
the locations should be reduced to 1259, 1343, 1504, 1145 and 660 tonnes
respectively. Determine the reduction factor and the cost of reducing the
pollution level in the region to desired tolerablc level if contribution to the annual
concentration arc 20 %, 15%, 30%, 25 % and 10 % from Domestic waste,

Sewage, Chemical , Oil Spillage and Combustivo respectively?

Solution:

Now the control model is:
Minimize :

C(Xl ; .....*n ) = Z:‘ C_; Xj
e
Subject to the side condition:
2"Uj(5) % 2 2" Uy () - 9(6) |
= |

e\



LKy 5 senud X0 )=02x,+0.15x;+ b.3 X3+ 0.25 x4+ 0.10 x5 .and

2" Ui (9)% 2 2" Ui () - 9(s)
| =

for cach of the locations 1 =1, 2, ...5 is

800x,+ 600 x; + 250 x3 +300 x4 + 1000 x5 )
650x;+ 900 x; + 750 x3 +1000x4 + 700 X5

900x, + 350 x; + 780 x3 +950 x4 + 600 x; b4l
500x,+ 800 x; + 250x3 +600 x4 + 900 x5

250x;+ 650 x; + 800 x5 +250 x4 + 300 x5 )

b X U; (s) for cach of the locations are:
i

800+ 600 + 250 +300 + 1000 = 2950
650+ 900 + 750 +1000+ 700 = 3950

Location 1

2;

3; 900 + 350 + 780 + 950 + 600 = 2980
g

5

500+ 800 + 250 +600 + 900 = 3050
250+ 650 + 800 +250 + 300 = 1550

¢(s) for each of the locations as given are: 1259, 1343, 1564, 1145 and 660
Hence 2" Uj (s) - o(s) = 1259, 1343, 1564, 1145 and 660 respectively.
i

Equation 4.3.1 above is the system of linear constraint giving rise to the

. augmented matrix:

(800 600 250 300 1000 | [1259]
650 900 750 1000 700 1343
900 350 780 950 600 | = |1564| - 432
500 800 250 600 900 1145
250 650 800 250 300 | (890 |

Equation 4.3.2 can casily be computed by the Gussian climination method. The

EEvE



y=15-x andy=3=>x=12,1.e. (12,3)
y=15-—xandy=2x=> x =35, hence, (5, 10)
f(9,18)= 27-02%*9-0.1*18

= 27-3.6

= 234
f(24,3)= 27-02%24-0.1*3

= 27-51

= 219
f(12,3)= 27-02*12-0.1*3

= 27-2.7

= 243

£(5,10)= 27-02*5-0.1*10
= 27-20
= 25

The minimum cost of control will be incurred by spending N24 million on the
control of air pollution, N3 on the control of chemical pollution and N 3 on the

control of pollution from domestic waste.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATION
5.1 CONCLUSION

So far, a good number of concepts in optimal control with particular
reference to control of environmental pollution with uncontrollable sources have
- been considered. It is important to emphasize that the interest in this work has
been to exploit the intimate relationship that exist between approximation theory
and optimization theory to solve optimization problems. The fact that
approximation problem can be considered as an optimization problem is clear.
Therefore, if approximation theory is included under the more general concept of
optimization theory, then several optimization theories can be treated
computationally be means of approximation theories. This is the principle
imbibed in this work.

It is noticeable however that when approximation theory is included in the
more general theories of optimization; some special properties of approximation
are lost. Hence, one would no longer be able to answer all theoretical problems
of approximation by means of optimization.

The use of optimization theories in treating approximation problems is
very fruitful in terms of characterizing the best approximations and calculation
and estimation of minimal deviation. Furthermore, various methods for solution
of approximation problems may be applied successively to optimization
problems.

A number of computational examples in this work are hypothetical. The
methods of solutions are based on age long computational procedures involving
iterative search for solution until convergence is attained.

There must be a number of other suitable approaches that may not have

been treated in this work. It all depends on problem formulation, however the



fundamental idea remains the same. A problem with linear multivariable function
subject to a number of constraints could be treated with the popular linear
programming algorithm known as the Simplex Method credited to Danzig
(1963).

Classical optimization technique can be applied to problems for which
there is no general procedure base on the work of Kuhn and Tucker (1951).

I will like to mention on a concluding note that this work is limited to some
extent by unavailability of suitable literature that deals directly with the subject
matter.

There are other alternative methods of computation of the solution to the
constraint equation such as Jacobi iteration method, Gauss elimination and Sidel

iteration method.

52 RECOMMENDATIONS

The topic “Optimal Control of Environmental Pollution with
Uncontrollable Sources™ is topic of immense practical application. Hence, it will
be worthwhile to carry out further research in this area of study. I recommend
that non-linear constraint or differential constraint be considered instead of the
linear constraint used in this work. This will also form a prospective area of

study.
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4.4 DISCUSSION OF RESULT

The computation below shows the step — by- step computation of the cost
factor for the control of environmental pollution. The program philosophy is
based of the popular Gussian method of solving system of linear equation. The
solution 1s iteratively substituted to the cost function until the system converges.

The cost reduction factor is the factor by which the concentration of the
pollutants concerned must be reduced in order to guarantee the desired level of
concentration. Substituting the cost reduction factor x; to the cost function gives
the cost of controlling the pollutants concerned the total cost of control is the
summation of the cost of controlling of the pollutants

Below is the result of generated by the computer program developed to

implement the algorithm.
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