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ABSTRACT 

We treat the problem of the control.. of environmental pollution with 

uncontrollable sources as a semi-infinite optimization problem with a 

system of linear constraints and developed a computer program to compute 

the solution of the problem taking cognizance of the relationship between 

approximation and optimization. 
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CHAPTER ONE 

BASIC CONCEPT OF OPTIMAL CONTROL. 

1.1 INTRODUCTION 

Optimal control is a part of mathematics in which a study is made of ways of 

formalising and solving problems of choosing the best way of realising the 

control of dynamical process. This dynamical process can be described using 

differential, integral functional and flnite difference equation or other formalised 

relation depending on the input function called the control and usually subject to 

constraints. 

The term 'theory of optimal control' is applied to mathematics theory in 

which methods are studied for solving non-classical variational problem of 

optimal control (as a rule, with differential constraint), which permit the 

examination of non-smooth functional and arbitrary constraint on the control 

parameter or on other dependent variable. 

The concept of mathematical theory of optimal control is sometimes used 

in a broader sense to cover the theory which studies mathematical method of 

investigating problem whose solution include a process of statistical dynamical 

optimisation, while the corresponding model situation permits interpretation in 

terms of some applied procedure for adopting an optimal solution. Mathematical 

theory of optimal control therefore contains an element of operation research, 

mathematical programming and game theory. 

Although particular problem of optimal control and non-classical 

variational problem were encountered earlier, the foundations of the general 

mathematical theory of optimal control were laid in 1956 - 1961. The key point 

of the theory was the Pontryagin maximum principle formulated by LS 

Pontryagin in 1956. The main stimuli in the formulation of this theory were the 

discovery of the theory of Dynamic Programming, the explanation of the role of 



functional analysis in the theory of optimal system, the discovery of the 

relationship between solutions of problems of optimal control and result of the 

theory of the Lyapunov stability and appearance of works relating to the concept 

of controllability and observability of dynamical systems. 

The result of the mathematical theory of optimal control has found broad 

applications in the construction of control process relating to diverse process of 

modern technology in the study of economics, dynamics and in the solutions of 

problems in the field of biology, medicine, ecology, demography etc. 

Problems of optimal control can be described in general term in any of the 

following ways: 

1. A controllable system S whose position at the instant of a time t is 

represented by a value x e.g. by vector of a generalised coordinate and 

impulse of a mechanical system, or by a function in the spital coordinate of a 

distributed system; by a probability distribution which characterises the 

current state of the stochastic system or by a vector of production output in a 

dynamic model of an economy etc. 

2. Optimal control problem can also be described by an equation, which 

connects the variable x, u, t and describe the dynamics of a system. An instant 

of time is indicated in which the system is considered. Foe example, the 

ordinary differential equation of the form: 

Xl = f (t, x, u), 1:0< t < tl xaRn
, uaRm

. 1.1.0 

with previously stipulated properties of the function (e.g. continuity of f in u, t, 

differentiability are often required). 

3. Optimal control problem can further be described if information is available 

which can be used to construct the controls (e.g. at any instant time or at 

previously described instances). A class of function describing the control 

which can be considered is stipulated, e.g. a set of pair-wise continuous 

function in x of the form: 
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U = U Cx, t) = pI Ct) 1.1.1 

with continuous coefficient etc. 

4 Optimal control problems can also be defmed by imposing constraint 

on a process to be realised. At this point in particular, the conditions 

defining the aim of the control comes into consideration C e.g. a system 

to hit a given set of the phase space R n, the demand for stabilisation of 

the solution around a given motion etc.). Furthermore constraint can be 

imposed on the value of the controls U or the coordinates of the 

position x in the variable or functional in their realisation etc. In the 

system 1.1.1 for example, constraint on the control parameters 

UEU< Rf or ~ Cu); ~: RP -7 Rk 

and on the coordinates 

are possible. Here, U, X are closed set~, <p are differentiable functions. 

1.1.3 

1.1.4 

5. An index (a criterion) is given of the quantity of the process to be realised. It 

can take the form of a function J (x C.), u C.)) in the realisation of the variable 

x, u over the period of time under consideration. Conditions 1 - 4 above can 

then be supplemented by the requirement of the optimality process (i.e., the 

minimum or maximum) of the criterion J (x (.), u (.)). In this way, for a given 

class of control for a system, a control u must be chosen which optimises the 

index J(x (.), u (.)) such that the aim of the control and the constraint are both 

satisfied. 

3 



1.2 THE THEORY OF OPTIMAL CONTROL 

The basic concept of optimal control problem is that of finding the control vector 

U = (Ul , U2, • ... , un) T which maximises the functional called the performance 

index (criterion) 

tl 

J = J fo (x, u, t) dt where 
t 
o 

x = (Xl , X2, ...•. , xn)T is called the state vector, t is the time parameter and 

fo is the function of x, U and t. The state variable Xi and the control variable are 

related as follows: 

d X_i = fi (Xl, X2 ••• Xn Uj, Ui , ••.• Un) 

dt 

X' = f(x, u, t). 

In many problems, the system is linear and X' = f (x, u, t) can be stated as 

follows: 

X' = Ax + Bu where A is an nxn matrix and B is an nxm matrix. In 

fmding the control vector u, the state vector is to be transformed from a known 

initial vector Xo at t = 0 to a terminal vector at t = T where some (all or non) of 

the state variable are specified. 

1.3 NECESSARY CONDITIONS FOR OPTIMAL CONTROL 

In order to derive the generalised necessary condition for optimal control, 

we consider the following specific problem: 

Find u, which maximise 

t l .• 
J = J [fo (x, u, t) dt 1.3.1 

to 

4 



Subject to 

X= f(x, u, t) 

With the boundary condition x (0) = k. Let A be the Langrange multiplier. Let 

tl 

J* = J {fo (x, u, t) + + A[f(x, u, t) - x']} dt 1.3.2 
to 

Now, the integrand 

F = fo+ Af(-x) 1.3.3 

is a function of two variable x and u. The Euler -Langrange equation with 

Ul = X UI' = ax - x' , -
at 

U2 = u and U2 = au = x' 
at 

as 

aF - d. aF =0 - -
ax dt ax 

aF - Q. aF =0 
au dt au 

In view of equation 1.3.4, equation 1.3.5 and 1.5.6 can be expressed as 

aFlax + A a Flau + A' = 0 

aFlau - Aa Flau = 0 

Now, let H be the Hamiltonian function defmed as H = fo + M 

Then equation 1.3.7 and 1.3.8 can be written as 

aH =A' 
ax 

aH =0 
ax 

5 
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Equation 1.3.9 and 1.3.10 represent two fIrst order differential equations the 
integration of whose values can be found from the known boundary condition of 
the problem. If two boundary conditions are specifIed as x (0) = k and x (T) = 
kT, the two integration constant can be evaluated without any diffIculty. On the 
other hand, if only one boundary condition is specifIed as say, x (0)= k, the free 
end condition is used as 

8H = 0 or A = 0 at t =T 
Ox. 

This specifIc approach can now be used to derive the general necessary 

condition for optimal control problems. 

A general optimal control problem can be stated as: 

tl 

J fo+ (x~, u~, t) dt 1.3.11 
to 

Subject to 

(x~, u~, t), 1= 1,2,3 ... n. 1.3.12 

Now let Pi be Langrange multiplier also known as the adjoint variable for the im 

constraint equation in 1.3.12 above. Then J* an augmented functional can be 

defmed as 

tl 

J* = J fo + L n Pi (fi - Xi) dt 
to 1=0 

The Hamiltonian functional H is defIned as 

- . 
IT = t u T L P i I i 

i=O 

Such that 

tl 

J = J (H - L n P i( fi ) dt 
to 1=0 

6 

1.3.13 

i .J . l -,. 

1.3.15 



Since the integrand 
_ . . . -

l' = tl- L · Pi Ii oepenos on x, u, t, mere are m -r n oepenoem vanabies "X aIlG Uj 
i=O 

and hence, the Euler Langrange equation becomes 

aH - 4...- L = 0, I = 1,2 ... n. 
ax dt ax 

aF -L. L = O;j = 1,2 ... n. 
a Uj dt a Uj 

1.3.17 

1.3.18 

In view of the relation 1.3.16 above, equation 1.3.17 and 1.3.18 can be re-written 

as 

- aH = Pi, 1=1,2, ... n 
axi 

aH = 0, j=1,2, ... m 
au· J 

Equation 1.3.19 and 1.3 .20 above are called the adjoint equation. 

1.3.19 

1.3.20 

The optimum solution of x, u and p can be obtained by solving equation 

1.3.7, 1.3.9 and 1.3.10. There are totally 2n +m equations with llXi and mUj 

unknown. If we now know the initial condition Xi (0), 1= 1,2, ... n and the 

terminal condition Xj (T), j=1,2, ... m with I < m we will have the terminal values 

of the remaining variables, namely Xj (T), j = i+1, 1+2, ... n free. Hence the free 

end condition will have to be 

Pj (T) = O,j = 1+1, 1+2, ... m 1.3.21 

Equation 1.3 .21 above.. is called transversality conditions. 

Below is an example that involves the direct application of the theory. 
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EXAMPLE 1.3.1 (Application Of Optimal Control Theory) 

Find the optimal control of U, which makes the functional 

J = J (x2 + u2 
) dt stationary with 

Xli = u and x (0) = 1 

It is necessary to note that x is not specified at t. 

Solution: 

The Hamiltonian is defined as 

H = to + AU 

From equation 1.3.9 and 1.3.10, we have 

-~=~ ro 
2u + A = 0 (ii) 

Differentiating (I) above we have: 

2ul = - AI 

Therefore AI = - 2ul , 

But from (i), AI = - 2x, hence, x = ul 

Since Xli = U we have that Xli = ul = X , 

~-~=O ~D 

Equation (iii) has a solution of the form 

X (t) = Cl Sinh t + C2 Cosh t (iv) 

where c} and C2 are constants. By using the initial condition x (0) = 1, we obtain 

x (0) = C2 = 1 

Since x is not fixed at the terminal point, t = T = 1. We use the condition A = 0 at 

t = 1. Now, from 

x (t) = c] Sinh t + C2 Cosh t 

Xl (t) = c} Cosh t + C2 Sinh t 

Hence, u = Xl = x (t) = c] Cosh t + C2 Sinh t 
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u (l) = 0 = c, Cosh 1 + Sinh 1 

So that c1 = c, = Sinh t 
Cosh 1 

and hence the optimal control is 

u (t) = Sinh t Cosht 
Cosh 1. 

+ Sinh t 

1. ~inh 1Cosh t + Cosh 1 Sinh t] 
Cosh 1 

= - Sinh (1-t) 
Cosht 

The corresponding state trajectory is given by 

x (t) = ul = Cosh (1-t) 
Cosh t 

We shall now state in a general way the general control problem. 

1.4 CLASSICAL CONTROL PROBLEM 

In order to define a classical control problem, we will impose some conditions on 

the function and sets. These conditions are conditions that are usually met when 

considering classical problems and also allows for modification of the classical 

problem into others that appears to have some advantages over classical 

formulations. 

So, let X be a vector space in n - space Rn
, U a vector space in m -space 

R m and t a real variable. Consider: 

1. a closed interval J = [t a, t b] with t a, < t b. Let t> , JO= (t a, t b) be the interior of 

this interval, i.e., the time interval in which the control will evolve. 

11. a bonded, closed path-wise connected set A in Rn 
• The trajectory of the 

control system is constrained to be in this set for t eJ 

iii. Two elements of A, x a, X b which are the initial and final state of the 

trajectory of the control system 

9 



iii. Two elements of A, x a, X b which are the initial and fmal state of the 

trajectory of the control system 

iv. A bounded closed subset U of Rill, U is the set in which the control function 

takes values 

v. Let <p = JxAxU, and g: <p -7 Rn a continuous function. We consider the 

differential equation 
. 0 

X f (t) = g [t, x(t), u(t) ] , tEJ 1.4.1 

Where the trajectory tEJ -7 x(t) EA is a function tEJ -7 u (t) E U is Lebesque 

measurable. The differential equation describes the control system and must be 

satisfied in the sense of caratheodory. 

vi. Let fo: <p -7 R be continuous function where fo IS the integrand of 

performance criterion for the problem. 

A trajectory (control pair) is said to be admissible if the following conditions 

holds 

1. X (.) (The trajectory function satisfy x (t)EA, tEJ and is absolutely 

continuous on J). 

11. U (.), the control function, takes value in the set U and is Lebesque 

measurable on J 

iii. The boundary conditions x (ta) = xa, x (tb) = x b are satisfied. 

iv. The pair p satisfied the differential equation in the sense of caratheodory. 

Now, let W denote the admissible pairs. A classical control problem does 

not have a solution unless W is non-empty. 

Consider the functional I: W -7 R defmed by: 

I (P) = J fo [t, x (t), u(t)] dt 
j 

where P is the control pair i.e. 

P = [x (.), u(.)] 

10 
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Therefore the classical control problem seeks P that will maximise the functional 

over the set W. 

To analyse the classical problem further, it is necessary to establish the 

characteristics of W, the set of the admissible pairs. Now, lets consider the 

boundary conditions of 1.4.1. Let p = [x (.), u (.)] be an admissible pair, and Ban 

open ball in R n+l containing J x A. Let c1 (B) denote the space of real valued 

continuously differentiable functions on B such that they and their ftrst 

derivative are bounded on B. Now, for roEB, let rog (t, x, u) = rox (t, x) g (t, x, u) 

+ rot (t, x) for all t, x, u Ero where ffix (t, x) and g (t, x, u) are vectors and roX is in 

the space C (ro) where ro = JxAxU. Since P = [x (.), u (.)] is an admissible pair. 

J ro~ (t, x (t), u (t) ) dt = J rox ([t, x (t)] x(t)+ rox [t, x (t)]} 1.4.3 
j j 

for all ro E cl (B). 

Note that it was necessary to introduce the set B and the space cl (B) 

because A may have an empty interior in R n. 

1.5 DEFINITION OF TERMS 

Definition 1.5.1 (Mathematical programming) 

A mathematical programme is an optimization problem subject to 

constraint in Rn of the form 

Minimize f (x) 

Subject to gi (x)< 0, I = 1,2, ... m, SE Rn 

The vector x E Rn has component XI X2, "'Xn which are called the unknown of 

the problem. The function f is called the objective function also called the 

economic function and the set of conditions gi (x)< 0, I = 1,2, .. , m and SES is the 

set of constraint of the problem. 

11 



Every vector x which satisfies the constraint such that gi (x)< 0 and XES is 

said to be the solution of the problem (p). We say that x* is a global solution of 

problem (p) if and only if there exist a neighbourhood v (x*) of x* such that x* 

is a global optimum of the problem 

Minimize f ( x) 

Subject to gi (x)< 0, I = 1,2, ... m, SE RD 

and XES nV (x*) Rn 

A mathematical programming problem is said to be convex if it comprise 

of minimizing a convex function (or maximizing a concave function) on a 

convex domain. Problem (p) above is a convex problem if 

1. f is a convex function 

11. the function gi, 1= 1,2, ... m are convex 

iii. SE Rn is convex 

Dermition 1.5.2 (Interior point) 

Let Sc R n be a subset of R n. Then we say that YES is an interior point if there 

exist E such that I x - yl <E; XES. In other words there is a ball with centre y 

contained in S. The set of all interior points of S is called the interior of S. 

Definition 1.5.3 (Convex Set) 

IfE is a vector space over R, then a subset C ofR is said to be convex ifx, y EC, 

O<A<l 

¢AX + (l-A)Y E C i.e. if the closed line segment connecting any two points in C 

also belongs to C. This line segment is denoted as 

[x, y] = {AX + (l-A)Y : O<A<l} 

For example: 

i. the empty set is a convex set 

12 



11. for any two points x, y E E, the closed segment [x, y] and for any x =!-y, the 

open line segment 

[x, y] = {AX + (I-A)Y : O<A<I connecting X and y is convex. 

Definition 1.5.4 (Convex and Concave Function) 

The function f(x) is said to be Convex over a convex Set X in En if for 

any two points x\, X2 EE and for all AE[O, 1], 

f(AX2 + (I-A) XI ) <Af(X2) + (I-A)f(XI) 1.5.1 

As a special case, the function f(x) of the scalar x is convex in the domain X ofx 

if PN < QN in all triads A, N, B as shown in the figure below: 

F (x) 

Xl 0 Ax2 + (l-A)XI x2 

Figure 1.5.1 (Convex function) 

The function f(x)is said to be concave over the set XEEn if for any two 

points X\, X2 EE and for all AE [0, 1], 

f(AX2 + (I-A) XI ) >Af(X2) + (I-A)f(xl) 1.5.2 

This is indicated in figure 1.5.2 below: 

Xl 0 Ax2+ (i-A) Xl x2 

Figure 1.5.2 (Concave function) 

13 



The following are some elementary results of convex and concave functions of 

considerable importance. 

1. Iff(x) is convex, the - f(x) is concave and vice versa 

11. The linear function Z = Cl X is both convex and concave throughout En 

iii. A concave (convex) function has the property that its value at an interpolated 

points is greater than (less than) or equal to the value that would be obtained 

by linear interpolation 

iv. The sum of a fInite number of convex (concave) functions is itself a convex 

( concave) function. 

The following theorems are vital. 

Theorem 1.5.1 

Let f(x) be a convex function over a closed convex set X in En . Then any 

local minimum off(x)is also the global minimum off(x) over X. 

Proof: 

The proof is by contradiction. Assume that f(x) takes on a local minimum 

at Xl EX, that its global minimum is at x* E X and that f(x*) < f(Xl). 

Now, 

f(AX* + (l-A) Xl) < Af(x* ) + (l-A)f(XI) 

< Af(XI) + (l-A)f(XI) 

= f(XI) 

for all AE[O, 1]. But for suffIciently small A, the point 

1.5.3 

x = AX* + (l-A)Xl lies in the neighbourhood of Xl and equation 1.5.3 then 

shows that f(x) < f(XI ) in this neighbourhood, which contradicts the fact that f(x) 

has a local minimum at x = Xl . Thus Xl and x* cannot be distinct and that ends 

the proof. 

14 



Theorem 1.5.2 

Let f (x) be a convex function over the closed convex X in En . Then the 

set of points at which f (x) takes on its global minimum is a convex set. 

Proof: 

The case where f (x) takes on its global minimum at a single point is 

trivial. Otherwise, suppose the global minimum is taken at Xl and X2 , Xl =1= X2 and 

let 

1.5.4 

Then, 

f(x) = f(AX2 + (I-A)Xt) < Afx2 )+ (I-A) f(xt) 

But fx2) = f(xt) = f(x*), the global minimum. Hence, f (x) = f(x*) for all points x 

defmed by equation 1.5.3. 

Def"mition 1.5.5 (Convex Cone) 

Let E be a linear vector space over R. Let C be a subset of E such that C is 

convex. C is said to be a cone (with the vertex 0 E, the zero element of E ) if x E 

E 

A >0 -~ AX EC. The subset C ofE is called a convex cone ifC is a cone and is 

also convex. 

Lemma1.5.1 

The cone K is convex if and only if x, y EK -~ x + Y E K 1.5.5 

Proof: 

1. Suppose K is a convex cone. Given x, y EK, if follows that 

Y2(x + y) = Y2(x) + Y2(y) EK since K is convex and x + y = 2(1I2(x + y)) 

E K since K is a cone. 

2. Suppose K is a cone satisfying equation 1.5.5. Ifx, y E K and 

A E [0, 1] are given, then AX + (I-A)Y EK since K is a cone. 
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Now equation 1.5.5 implies 

AX + (l-A)YEK. 

If K is non-empty convex cone in E, then let x >y (~y < x) ~x - y EE 

be an ordering relation on E. Since 0 E EK we have (reflexivity). 

Also, x > , y > Z => x> z (transivity). 

Sincex>y(~ y<x) ~x-y EEgivesx-y E Eandy-z E KLemma 

1.5.1 above implies x - z = (x - y) + (y - z) EK. Hence x >0E , A > 0 => 

AX > 0 E , X > y , z E E => x + z > Y + z . Hence the proof of the Lemma. 

Definition 1.5.6 (Topological Dual space) 

Suppose E is a unitary space. Ify E E, then setting C(x) <x, y> for x EE a 

linear form is dermed on E which satisfies 

I C(x) I < II y II II x I f for all x EE. By Cauchy Schwarz inequality. 

This is continuous and I I c I I <I I y I I . 

If Y = 0 E, then C is the zero mapping and I I c I I = I I y I I = 0 . Otherwise, 

I I y I I > 0 and I C(z) I < I I c I I for z = y which implies I I y I I < I I c I I. 

Hence, I I y I I = I I c I I. 

Defmition 1.5.7 (Linear Mapping) 

Let E and F be two normed vector spaces. A mapping: 

A: E -7 F is said to be linear if 

A (Ax + ~ y) = A A (x) +~ A(y) for all x, y E E and A, ~ E R. 

A mapping A: E -7 F is called continuous if Xn -7 x, Xn , Xn E E => A(xn) -7 

A(x). Below are some relvant theorems in linear mapping. 

Theorem 1.5.3 

A linear mapping A of E into f is continuous if and only if there is a > 

with 

I I A( x) I I f < a I I x liE for all x E E 
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Theorem 1.5.4 

F or every linear mapping AxF -7 G there are unique linear mappings 

Al :E -7 G and A2 :F -7 F satisfying 

A(x, y) = Al (x) + A2 (y) for all x E E, Y E F. 

F or example, let E and F be two hilbert space and A E L(E, F). If for each 

fIxed y* E F* we defme 

h*(x) = y*(A(x)) for all x E E, then h* E E*. Since E and F are hilbert 

space, there must be unique element YEF, h E E with 

<h, X>E = h*(x) = y*(A(x)) = <y, A(x)P 1.5.6 

Since the mappings y -7 y* , A and h* are continuous and linear, a continuous 

linear mapping AI: F -7 E, Y -7 his defmed by equation 1.5.6 with 

A *(y*)(x) = y*(A(x)) = <y, A(x» = < AY(y) , X >E for all x E E. 

Suppose E, F and G are linear vector spaces. The cartesian product Ex F is also 

a linear vector space, with componentwise addition and scalar multiplication. 

Definition 1.5.8 (Positive Cones and Covex Mappings) 

Let P be a convex cone in a vector space X. For cx, y E X, we write x > y 

(with respect to P) if x - yEP. The cone P defming this relation is called the 

positive cone in X. The cone N = -Pis called the negative cone in X and we 

write y < x for y - x E N. For example, in En, the convex cone 

P = { X E En: x = k., k2' ... kn} ki > 0 for all I 

defmes the ordinary positive orthart. 

1.5.7 

In a normed vector space it is important to defme positive cone by closed 

convex cone. For example, in En , the cone defmed 1.5.7 is closed. If one or 

more of the ineqaulities is changed to strict inequality, the resulting cone is not 

closed. 
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Let X be a vector space and let Z be a vector space having the cone 

spacified as a positive cone. A mapping G: X ~ Z is said to be convex if the 

domain <p of G is convex set and if G (ax) + (l-a)x)) < aG(x) ) + (l-a)G(x) ) 

for all x) , X2 E <p and 11 a, 0 < a < 1. 

Proposition 1.5.1 

Leg G be a convex mapping as in the last definition. Then for every Z E Z, 

the set {X:XE<p , G(x) < Z } is covex. 

Definition 1.5.9 (Linear Manifold) 

Let X be a normed vector space over R. A subset A of X is called a linear 

manifold if 

x, YEA, A E R => AX + (l-A)Y EA. 

If x*: X ~ R is non trivail form and a E R then, 

H = {XEX:X*(X) = a} 1.5.8 

is alinrear manifold and is called a hyperplane 

Assertion: 

It can be shown that every hyperplane is a maximal linear manifold, i.e. If 

A is a manifold, A ::::>H => A = H or A = X. Furthermore, a hyperplane H of the 

form of equation 1.5.8 is closed if x is continuous. In other words, a linear 

manifold H in X is maximal and closed if and only it is of the form 1.5.8 with x* 

E X*, the topological dual of X and x*:;t ex. 

18 



CHAPTER TWO 

LINEAR OPTIMIZATION IN FUNCTION SPACES 

2.t INTRODUCTION 

It is worth starting with in this chapter to mention that there exists a close 

relationship between approximation and optimization. 

The introduction of optimization theory to the discipline of mathematics 

about the time of the advent of computers brought about revolution to 

approximation theory. 

The connection between the two (approximation and optimization) is even 

clearer in case of discrete approximation problem. Here, a given real value 

function f is to be approximated at finite number of points X., X2 ... Xm of a set X 

(e.g., real numbers). Most of the times the given function values fi = f (Xi), i = 

1,2,3 ... m are the result of measurement so that an expression of f in algebraic or 

analytic form is not known. 

In the case of a linear approximation problem a finite dimensional vector 

space V is constructed consisting of linear combinations of the functions V I V 2 .... 

V n, whose values are easily computed and v E V is given by 

V (t) = In Xi Vi (t), for SES where x~ x2 ••• Xn 
1=1 

are real numbers and V (ti), ...... V (tm) are vectors in R m 

2.1.1 

The main focus in this work however is the so-called semi-infinite 

optimization, which results directly to continuous approximation problems. In 

this case, infinitely many free parameters can occur. This leads to such an infinite 

optimization problem especially when one seeks to approximate real valued 

function f on a compact set S (e.g., real interval) of continuous functions on S as 
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on S as well as possible in the sense of maximum norm. 

This type of problem occurs, for example, when one seeks representation 

of function for evaluation with computer. It also occur in the approximate 

solution of boundary and initial boundary value problems for ordinary and 

partial differential equations as well as in other area of application e.g., the 

control of environmental pollution to which this volume is dedicated to. 

2.2. THE GENERAL LINEAR OPTIMIZATION PROBLEM. 

2.2.1 Statement of the problem and the weak Quality Theorem 

Let E and F be two partially ordered normed Vector space whose order relation 

is denoted by 

> or < . Let KE and KF be the associated cones for the ordering. Let a continuous 

linear mapping defmed by: 

A: E ~ F: a continuous linear form 

C: E ~ R and a fixed element be F be given. Then, the linear optimization 

problem can be stated as: 

Maximize C (X) Subject to the side conditions. 

A (x) > b, x > QE 

=> A (x) - bEKf , xEKE. 2.2.1 

To this problem, a dual problem can be associated. For the dual problem, 

we consider the mapping 

A*: F ~ E* which is adjoint to A. We defme the following problem: 

Maximize Fb (y*) = y* (b) subject to the side conditions 

A * (y*) < C, y* > qF 

A * (y*) (x) = y* (A (x)) < C (x) for all xEKE and 

y* (y) > 0 for all YE KF 
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Now, let 

M = {x E F: A (x) > b, x >qf. 

N = {Y*E F*: A* (y*) < C, y* > qp 

let a be defmed as 

a -

1 
Inf. C (x), if M is man non-empty 
xeM 

+ 00, ifM is empty 

and p= sup y* (b), if N is non empty 

y *eN 

-00, ifN is empty 

We then have the following theorem: 

Theorem 2.2.1 

a and P defmed as: 

Inf. C(x), ifM is man non empty 

xeM 

+ 00 00, ifM is empty 

and 

= {SUP y* (b), 
y*eN 

-00 00 , 

ifN is non empty 

ifN is empty 

satisfy P -s.. a ... 
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Theorem 1.2.2 

If x and y* are admissible, respectively, for the dual problem, and if 

C (x) = y* (~) holds, then x and y* are optimal and ~ = a The two theorems so stated 

above are referred to as the Weak Duality Theorem whose proofs are shown 

below: 

Proof (Theorem 2.2.1) 

If M or N is empty, the inequality in 2.2.7 follows immediately from the 

defmitions of a and ~ in 2.2.3 and 2.2.4 above. 

IfM and N are not empty, then for each XEM and y* EN, it follows that 

y* (~) < y* (A (x)) = A * (y*) (x) < C (x) 

If one keeps y* EN fixed and varies x in M, then it follows that 

y* (~) < a = info C (x) 
xeM 

This inequality holds for all y* EN and hence, the Proof. 

Theorem 2.2.3 (Slackness Theorem) 

Let XEM and y* EN be given. The following two statements are 

equivalent: 

a. X and Y are optimal and ~= a 

" "" y* (A (x ) - b) = 0 and (A *(y *) - C (x ) = 0 2.2.8 b. 

Proof: 

Suppose (a) is satisfied. Then C (x")= y*(b) < Y "* (A (x")) = A *(y"*) (x") 

~C (x") from which 2.2.8 follows. 

Now, let (b) be satisfied. Then, C (x") = A *(y "*) (x") = y*(A (x") = y "*(b) and 

by theorem 2.2.2, (a) follows. 
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2.3 LINEAR OPTIMIZATION PROBLEM IN SEMI INFINITE 

SPACE. 

As in the general case, let E be a normed vector space in R n equipped with 

some norm and partially ordered by means of the cone. 

KE = Kn
r = {x = (x}, X2, ..... , xn)T : XI > 0 for i = 1,2, ..... r where 0 <r< n and 

Kn=Rn 

If {eI, e2, .... , en } is only basis of Rn (e.g., let eij = Mij be the Kronecker 

delta for ij= 1,2, .. ,n then every (continuous linear mapping) 

A: R n -7 F can be represented in the form 
A (x) =In fx for x = (x}, X2, .... , xn) T 

J=i 

with fi = A (Cj) 0 F, i = 1, 2, ........ , n. 

Then, by the definition of Topological dual space, every C E F* can be 

represented in the form 

C (x) =In CjXj for x = (x}, X2, .... , Xn)T 
1=1 

for x = (x I,X2 .. Xn)T with Cj = C (ej)ER,j = 1,2, ........ , n. 

With this, the linear optimization problem for the semi - infInite case can 

be stated as: 

Maximize 

C (x) = In C j X j 
1 =1 

Subject to the side conditions 

A (x) =Ln Fi Xi > b for x EKn
r 

1 =1 

The mapping 

A *: F* • E* (=Rn) which is adjoint to A is defmed by 

A *(y*) (x) = y* (A (x)) =Ln y*(fi) xi 
1= 1 

for all y*EF and XEE. 

The statement A *(y*) < C is equivalent to 
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LD y*(fi ) - C i )Xi < 0 for x EKDr 
i=1 

i.e., for all xERD with X i > 0, i = 1,2, ...... r« n) 

The statement in 2.3.2 is equivalent to 

y*(fi) < C i ; for i = 1,2, ....... , n 

y*(fi) = Ci ; for i = r+ 1, ....... , n 

2.3.2 

The dual problem for the problem of linear optimization (semi-infInite 

case is therefore equivalent to the problem of maximizing 

FB (y*) = y* (b) 

Subject to the side conditions 

y* (fi) < Ci, for i= 1, 2, .... .... . , r 

y* (fi) = Ci, for j = r+ 1, ............ ,n 

y* > qF* (A y* (y) > 0), for all y 0 KF 2.3.3 

2.4 SEMI-INFINITE OPTIMIZATION PROBLEM IN FUNCTION 

SPACE. 

As in the previous section, let E = R D equipped with some norm and 

partially ordered by means of the cone KDr < r < n. Further, let M be a compact 

metric space of continuous real valued functions on M equipped with maximum 

norm I.e. 

V (t) =ID Xi V i (t), for all t ES as in 2 .1, 
1=1 

and the ordering relation 

y > Z A y( t) > Z( t) for all t E M 

Then the corresponding cone for F is given by 

KF = {y EC (M): y (t) > 0 for all t EM 

and the associate semi-infInite problem reads 
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Maximize: 

2.4.3 
Subject to the side conditions 

Ln fi (t) xi > b (t) 
i=] 

for all tEM. Xi > 0, for i = 1,2, .......... , r 

If one chooses a finite number of points t1 , t2,., ,1m and defmes for enemy 

yEF = C (M), 

y* (y) = In Yi * (ti ) 2.4.4 
1=] 

where Yl *, ... Ym * ER are fixed non-negative numbers, then Y* is a linear 

functional on F. 

Now, a linear functional for C on E say, is continuous if and only if there 

is a constant a > 0 such that 

IC (x)1 < a II xii for all x E X. For this reason, 

Iy*(y) I :s... LIn IYi*111 Y 11 00 , for yEF 
i=l 

is continuous and consequently, y* EF. Furthermore, we have y*(y) > 0 for all 

yE KF, i.e., y* >FF 

For every y* EF* of the form of 2.4.4 i.e. 

the side conditions 

y*(fi) < Ci, for i=I,2, .......... , r 

y*(fi) = Ci, for i=r+l, ......... , n 

y* > qF (=> y* (y) > 0) for all yE KF as in 2.3.3 take the form 

for i=I,2, ......... , r 
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for j = r+ 1, .... , n 

y*, > 0, t\ E M for i=l, ...... , m. 2.4.5 

as in 2.2.3 take the form 

Lffi Yi * fj (ti ) <Ci ; for 1=1,2, ....... , r 
i=\ 

Lffi Yj * fj (tj ) = Ci ; for j= r+ 1, ......... , n 
j=\ 

y*\>o, tEM, for 1=1,2, ....... , m 

If conditions 2.4.5 above is satisfied, the it follows from the first weak 

duality theorem (theorem 2 .2.1) that 

In Yi * b (ti)~ a = Inf. C(m) 
\=\ xeM 

and these exist x ERn satisfying the side constrain 

Ln fi *(ti ) Xi > bet), for all t E M 
\=\ 

Xi > 0, for all i=l, ........... , rand 

L,n Yi * b (ti) =L n CiXi 
j=\ j=\ 

Then, by the second duality theorem (theorem 2.2.2), X and Y defmed by 

y*(y) = 

are optimal. 

The complimentary slackness theorem (theorem 2.2.3) yields the 

following assertion. 

Corollary 2.4.1 

Let x ERn with the side condition 

Ln Yi * b (ti ) <b(t), for all t E M 
\=\ 

xj > 0, for 1=1, ....... , r 
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and y* E F* be given according to 

with the side condition of the form 2.2.5. Then, the following two assertions are 

equivalent: 

a. x and y* are optimal and J3 = a 

b. The following two implications hold: 

yi> 0 => L n fi *(ti )Xi < b(ti)' (1=1,2, ...... , m) 
1=1 

xi> 0 => L Yi* fi(ti ) = Ci , G = 1,2, ............ , r) 
1=1 

2.4.6 

2.4.7 

]The proof is a direct implication of the slackness theorem in theorem 2 

.2.3 and the fact that in this special case, the conditions. 

and 

(i). x and y are optimal and fo =a 

(ii). y* (A(X/') - b) = 0 and (A*(y*) - c)( x'') = 0 as stated in the theorem 

becomes 

LID Yi*(Ln Yi* fi (ti) Xj - b (ti)) = 0 
i=1 i=1 

L,m (L,mYi* fi (ti) - Cj) Xi) = 0 
j=1 j=1 

which however are equivalent to (a) and (b) above so stated. 
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2.5. COUNTER EXAMPLES TO THE VALIDITY OF THE GENERAL 

EXISTENCE AND DUALITY STATEMENTS 

In order to guarantee the solvability of the control problems (P) and its 

dual (D) with the side conditions 

A (x) > b, x > qF 

(] A (x)-b E KF, x E KE 

and 

A*(y*) < C, y* > qF 

<=> A * (y*)(X) = y* (A (X)) < C (X), for all y E KF respectively, it is not 

sufficient to assume that the sets M and N as defmed in 2 .2.3 and 2.2.4 

respectively of the consistent element for the dual are not empty. We shall 

consider with a particular reference to the semi-infmite case. 

2.5.1 Insolvability of a Semi- inf"mite Problem 

Let E = R2 and let it be equipped with some norm and the trivial partial 

ordering with a positive cone K02 = R2. Further, let B = [0,1] and F = C (B), 

equipped with the maximum norm 

Ko2=R2 

Ilg 11 00 = Max *g (t) for g E C(B) 
TEB 

with the partial ordering 

y> Z <=> yet) > ° for all t E B. 

Finally, let b (t) = t for tE [0,1] and A: E -7F be defmed by 

A(x)(t) = e Xt,+X2 for t E [0,1], X =(Xt,X2 ). 

We consider the problem (P) of maximizing the continuous linear 

functional 

C (x) = 0. Xl+X2 subject to the side conditions. 
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XI, X2 E R, t2 XI + X2 > t for all t E [0,1]. 

One can see easily that the set M of consistent element is non-empty and 

that a = 0 (a is defmed as in the weak duality theorem 2 .2.5. There is however 

no X EM with C (x) = O. The problem therefore is not solvable. 

Now, referring to the weak duality theorem, the dual problem is 

equivalent to the problem of maximizing the linear functional y*(b) subject to 

the side conditions 

y*(fl) = 0 

y*(f2) = 1, y* > qF 

Hence, fl (t) = e and f2(t) =1 

If one defmes 

for all tE [0,1]. 

y*(y) = y(O) for all y E F = C [0,1], 

then y* E F* > qF*, y*(fl) = 0 and y*(f2) = 1 . Thus y* is consistent for the dual 

problem. Furthermore y*(b) = 0 = a, from which it follows by theorem 2 .2 .. 1 

that y*(b)= J3 =a =0. The dual problem is therefore solvable and the extreme 

values of both problems coincide as demonstrated in the diagram below. 

A(x) (t) 

I b (t) = t 

C (x) 

1 

Fig 2.5.1 (Insolvability of semi-infinite problem) 
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2.5.2 Occurrence of Duality Gap. 

Another reason why the general existence and duality statement may not 

hold is that of occurrence of duality gap. This occurs when the problem and it 

dual are solvable but the extrema do not coincide. 

As an example, let E be a set of all infInite real sequence X={xn}, n = 0,1, 

... n in which only a fInite number of terms Xn are non zero. If one defmes 

addition and a scalar multiplication in E component wise, then E becomes a 

linear vector space over R. Further, let E be equipped with the norm. 

II XII = I Xo I + Loo 
n IXn I 1.5.1 

n=\ 

and partially ordered by the relation x > x 1\ > Xn for all n. The positive cone of E 

is then. 

KE = {x = {xn} n = 0, 1, 2, ... ° E > ° for all n 

Let F = R2 be equipped with some norm and partially ordered by means of 

the positive cone KF = {q2 }. From this it follows that KF* = F* and for every y* 

> qF*, (i.e. y* E KF*), there is a unique y EF with 

y*(y) = (y, y) = Y I\y\ + y 1\2Y2 for all y E F. 

Let A: E -7 F be defmed by 

A(X) = 

Xo+LOO nxn ; 
0= ) 

for x = {xn}n = 0, 1, ........ EE 1.5.2 

A is linear and continuous. Further, let b = (1,0) and C (x) = Xo, x EE. Problem 

(P) reads: 

Minimize C (x) = Xo subject to the side conditions 
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X{) +Loo n Xn = 1, for x = 1,2, ...... EE, Xn >0 for all n; 
n=1 

Loo Xn = 0 1.5.3 
n=1 

Obviously x E E is admissible if and only if Xo = 1 and Xn = 0 for all n > 1. 

Consequently, a =1 and C(x) equals a for this single xOM, i.e. problem (P) is 

solvable. 

The adjoint mapping: 

A *: F*~ E is given by 

A * (y*) (x) = y* (A (x)) = YI " {X{) + Loo n xn} + Y2 " {~oo xn} 
n=1 n=1 

= YI "x{) + L 00 (Yin + Y2n). 1.5.4 
n=1 

The statement 

A *(y*) < C y* > q F* therefore is equivalent to. 

A *(y*) (x) = y "X{) + L 00 (Yin + Y2n) Xn < C (x) = Xo 
n=1 

for all {xn}, n = 0,1, ....... EE with Xn > 0 for all n. 

This statement is equivalent to, y < land Yin + Y2 < 0 for all n > 1 which 

equals 

" "" Y < 0 and Y 1 + Y2 < 0 

The dual problem (1) is therefore equivalent to the problem of maximizing 

the linear functional 

y*(b) = <y, b> = y ", Subject to the side conditions 

" "" Y 1 <0 and y I + Y 2 < 0 

Obviously, J3 = 0 and yt= y "2 = 0 is a solution of problem (D). Thus, both the 

problem and its dual are solvable. 
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Example 2.5.1 

This example explains further the case of exemption to the duality 

theorem. 

Let L2 [0,1] x R. Here L2 [0,1] is the Hilbert space of equivalent classes of 

measurable and Lebesque square integral functions on [0,1] with the norm. 

II f liz = (f *(t)*2 dt) 
o 

and the partial ordering 

(f, r) > (g, s) <=> f > g and r > s. 

Furthermore, let F = L2 [0,1] be equipped with the above norm and partial 

ordering. For every y* E F, there exist a unique y E F with 

y*(f) = Ji y(t)f(t) 
o 

for all f E F 

2.6 EXISTENCE AND DUALIZATION OF AN OPTIMIZATION 

PROBLEM. 

Let E and F be two partially ordered linear vector spaces. Let A: E7 F 

be a contentious linear mapping, C: E 7 R be a continuous linear functional, and 

be F. The general optimization problem consist of minimizing the linear 

functional C(x) subject to the side conditions. 

2.6.1 

The associated dual problem (D) is then: Maximize the linear functional 

Fb (y*) = y*(b) 

Subject to the side conditions A * (y*) < C, y* > F F* 2.6.2 

Here, A*: F* 7 E* is the adjoint mapping of the topological space F* and 

due to E. A * is therefore linear and continuous if one norms E* and F* in the 

natural way. The symbol "<" and ">" above refers to the partial ordering 

imposed on E*, F* respectively. 
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The dual problem therefore is equivalent to the problem of minimizing the 

linear form. 

-<Pb (y*) = - y*(b) 

subject to the side conditions 

- A*(y*) > - C, y* > F F*' 

This problem again has the form of the original one and therefore can be 

dualize. The problem arising is equivalent to the problem (P*) of minimizing the 

linear functional C**(X**) subject to the side conditions. 

A **(X**) > Fb, X** > 0 E** 2 .6.3 

Here A ** = E** -7 F** is the mapping which is adjoint to A *: E* -7 E*, 

C**: E** -7 R is defmed by C** (X**) = X**(C) for all X** EE and the symbol 

">" denote the partial ordering induced in F**, E** respectfully. If for an XEE 

the side condition A (x) >b, X > OE and satisfied, the we defme X** EE** by 

X** = Fx, that is, by 

x** (x*) = X*(x) for all x* EE*. 

Since x >OE, it follows that X**(x*) > 0 

Furthermore, 

for all X* > OE=> X** > OE**' 

A **(X**)(y*) = X**(A *(y*)) = Fx (A *(y*)) 

= A *(y*) (X) = y* (A (X)) and since A (x) > b, one has 

A**(X**) y* > y*(b) = Fb (y*) for all y* > GF when A**(X**) > Fb, 

Finally, one obtains C**(X**) = X**(C) = C (X) 

2.6.2 Sub-consistency and Normality of an Optimization Problem. 

Let R x F be the Cartesian product normed by IIA,yll = IIAII + Ilyll , AE R, y 

E F and let R x F be a convex cone (with (0, GF) as vertex defmed by. 

K (A, C) = {C (x) + r, A (x) -y): r > 0, X 0 K E, Y E KF 2.6.4 

Further let 

Lb= {(a, b): a ER} =Rx {b} 2.6.2 
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Hence, the set 

. M= {XE E: A (x) > b, x >Qd of the consistent elements of problems (P) 

is non empty if and only if Lb n K (A, C) is non-empty and problem (P) is 

equivalent to the problem offmding the element (a",z) EO Lb n K (A, C) such 

a " < a for all 

(a, z) E Lb n K (A, C). 

Therefore, we can fmd the extremal value of problem (P) as 

V(A, C, b) = 

{ 

Inf. Lb n K (A, C), is non empty 
(0., b) EK(A, c) 

+ 00 , IfLb n K (A, C), is empty 2.6.3 

The problem (P) is called sub-consistent if the intersection Lb nK (A, C) 

is not empty. Here, K (A, C) is the closed hull ofK (A, C) in R x F. 

The sub value of the problem (P) is defmed by: 

Vs (A, C, b) = (0., b)E K (A, C) 

{ 

Inf. Lb n K (A, C), is none empty 

+ 00, IfLb n K (A, C), is empty. 2.6.4 

The problem (P) is said to be normed if 

Lb n K (A, C) = Lb n K (A,C) 

Consequent of these defmitions, we have the following lemma. 

Lemma 2.6.1 

2.6.5 

If the problem (P) is consistent, i.e. Lb n K (A, C) = f, then (P) is also sub­

consistent and the following inequalities holds. Vs (a, c, b) < V (A, c, b) < +00 
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Lemma 2.6.2 

Let the problem (P) be normal, then the following two assertions holds: 

a. (P) is consistent if and only if (P) is sub-consistent. 

b. V (a, c,b)=Vs(A, c,b) 

Let A: E ~ F be defmed by 

A (f, r) (t) = P f(s)ds + r, for t E [0,1] 
o 

Then A is linear and continuous. 

Finally, let b:: 1 and 

C (f, r) = fl t f (t) dt + 2r 
o 

Then C is a continuous linear functional and for problem (P) we obtain the 

problem of minimizing. 

fl t f (t) dt + 2r 
o 

subject to the side conditions 

fl f(s) ds + r > 1, for almost all t E [0,1] t 
o 

f(t) > 0, for almost all tE [0,1] and r > ° 

2.6.3 The General Existence and Duality Theorems 

Before stating the general existence theorem, it is necessary to state the 

following decisive theorem of the theory. 

Theorem 2.6.1 

Let N be non-empty, i.e., the dual problem (D) is consistent. 

Then for (a, b) E R x F, the assertion: 
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(a, b) EK (A,C) <=> a,> V* (A*, b, c) 2.6.3. 

with 

V* (A *, b, c) = Sup. y* (b) holds 
y*eN 

Before the proof of this theorem, the following lemma is necessary. 

Lemma 2.6.3 

If the problem (P) is sub-consistent and the dual problem (D) is consistent, 

then we have: 

-00 <V*(A*,b,c)<Vs(A,b,c)<+oo 2.6.3 

Proof: 

Let ( , b)E K(A ,c) and y* EN. Then there are sequences {rn}, rn > 0, 

By the continuity of y*, it follows that a 2: y* (b), which implies equation 2 .6. 2. 

Lemma 2. 6. 4. 

If the problems (P) and (D) are both constant, then (P) is also sub consistent 

and 

-00 < V* (A*, b, c) < Vs (A, c, b,) < V (A, c, b) < +00 

The proof of theorem 2.6.1 now follows. 

Proof {Theorem 2.6.1) 

2. Let (a, b) E K (A, C) 

F or every y* E N it follows then, from the proof of lemma 2.6.1 that 
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a > y*(b) which yields a > V*(A *, b, c) 

2. Let (a, b) ~ K(A,C) 

Since K (A,C) is convex closed come, then there exist ( ,y*) E R x F with 

"A a+ y*(b) < 0 < "AP + y*(z) for all (P, z E K(A,C) 

In particular, one has 

"A{C(x) + r} + y* (A(x) -y) > qF for all y > qF. 

If we choose x =qE and r = 0, there it follows that (-y*) (y) ~o for all y > qF 

which implies y* > qF. 

If x = qE and y = qF then it follows that "Ar > 0 for all r > 0 which implies 

"A=o. 

Two cases are possible: (a) "A >0 and (a) "A = o. 

Then for y = qF, y*(A (x) > 0 for all x > qF and consequently, A *(-y*) < 

qF. Since N is not empty, there exist y* > qF with A *(y*) < C. If we defmes for 

every p > 0, 

Yp* =y* - py* 

Then y* > qF and A* (Yo*) < C implies Yo*, N and Yo* (b) = y*(b) - py * (b) 

with 

y*(b) < o. Therefore V*(A *, b, c) > YP * (b) for all p > o. 

Since lim. y p *(b) = + 00 , then necessarily V*(A *, b, c) = +00 which 
implies p 7 00 

a<V*(A,b,c).P"A >0 

If we set y* = -y*/"A, then y* > qF and a < y* (b) < V*(A*, b, c) follows 

from 2.6.3 

Theorem 2.6.2 (Existence Theorem) 

Suppose the convex cone: 

K (A, C) = {C(X) + r, A(X) - y: r > 0; K is closed. Therefore every bEF, 

the following assertion holds: 
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a.. Problem (P) is consistent and its value is fInite if and only if the 

dual problem (D) is consistent and its value is fInite. In both cases, the 

problem (P) is solvable, i.e. the infImum is assumed and - 00 < V (A b, c) 

=V*(A*, b,c)<+ 00 

b. If the problem (P) is consistent and the dual (D) is not consistent 

then we have 

V (A, c, b) = V*(A*, b, c) = - 00 

Proof: 

Since K (A, C) is closed, problem (P) is normal and all assertions except 

solvability of (P) in (a) are guaranteed. Because of the fact that K (A, C) is 

closed, however, we have. 

V (A, c, b) =Min. E K (A, c), a = C (x) 
(a., b)e K (A, C) X e M 

when problem (P) is consistent and YeA, c, b) > -00 

For variable b E F, the closedness of K (A, c) is also characteristical for 

the solvability of the problem under the assumption that the dual problem (D) is 

consistent and its value is fInite. 

2.6.1 Application of the Duality Theorem to the Semi-inC-mite Problem 

Consider the Semi-infInite problem (P) of minimizing the linear form 

C (X) = L n Ci Xi 
J= 1 

Subject to the side condition 

A (x) = L n fi Xj > b for XE Kr 
J= 1 

2.6.4 

Here, E = Rn is reflexive and KE = Kn
r is closed. The dual problem is 

equivalent to the problem of minimizing the linear form - y*(b) subject to the 

side condition. 
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- y* (fi) > -Cj,j = 1, -----r 
- y* (fi) = - Cj, j = 1, ----,f 

y* > qp 

K (A*, b) c Rn+1 is given by 

K (A*, b) = {-y*(b) + So -y*(fi) -S., 

- y*(fr) -Sr - y*(fr+l), ---------y*(fn):So > 0, 

S > 0, ......... Sr > 0, y* > qF*} 

If one defmes fo = b, then one can also represent K (A *, b) in the form. 

K(A*, b)=K*-K 

With K {-y*(fo), ... -y*(fn): y* > qF*} and K = {XE Rn+1
: Xo <, > 0, ......... Xr > 

Xr+l = ... = ... = O} 2.6.5 

k is obviously a closed convex cone in Rn+l. 
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CHAPTER THREE 
CONTROL MODEL FOR ENVIRONMENTAL POLLUTION 

3.1 THE GENERAL CONVEX OPTIMIZATION PROBLEM 

3.1.1 INTRODUCTION 

Linear optimization problem in function space has been considered in 

chapter two with its duality and existence theorems with particular reference 

to the semi -infinite optimization problem In this chapter convex optimization 

problem in function space, its duality and optimality is considered so as to 

construct a control model for the environmental pollution problem Some 

terminologies defined in chapter one especially those that relates to convex 

function and functional are used. 

3.1.2 Convex optimization Problem 

Let E be a vector space and X a non empty convex subset of E. Let F be 

partially ordered normed vector space and Y a positive cone. Furthermore, let 

f: X 7 R be a convex functional and g: X 7 F be a concave mapping and b EF 

a fixed element of F . 

Suppose that the set 

sex, g, b) = { XEX : g(x) > b } 3.1.1 

is not empty. Hence g(x) > b is equivalent to g(x) - b EY or g(x) E (Y + b). 

The concavity of g refers to the partial ordering in F induced by Y and the set 

sex, g, b) is convex. 

The general convex optimization is to seek an x- ES(X, g, b) such that 

ftx-) < ftx) for all XES(X, g, b) 3.1.2 

Every XEScx, g, b) is called consistent and every x- ES(X, g, b) satisfYing 

3.1.2 is said to be optimal. 



3.1.3 The Dual Problem (D) 

Let F* be a topological dual space ofF (F is defined as in 3.1.1 above) 

We define in F* x R the set 

S* = { (13, y*) E R x F* : F(x) - y* > 13 -y* (y) for all XEX, YEY} 

3.1.3 

The dual problem (D) is to seek a pair (13, Y*)ES* such that 13 + y-*(b) 2: 13 + 

y*(b) for all 

(13, Y*)ES* 3.1.4 

Each pair (13, y*) is said to be dually consistent and each pair (13-, y-*) E S 

satisfYing 3.1.4 is said to be dually optimal. The problem (D) is called 

consistent if the set S* is not empty. 

The extremal value of the dual problem is defined by: 

{

Sup: 13 + y*(b) ifS** 0 
v*(D) = (13, y*)eS* 

- ex:>: Otherwise 

3.2 CONVEX OPTIMIZATION IN FUNCTION SPACE 

3.2.1 Posing The Problem and Characterising The Optimality 

Consider the linear vector space E, a non empty subset X of E. Let f: X 

~ R be a functional and g: X ~C(T) a linear mapping where C(T) is the 

vector space of continuous real valued function defined on a compact 

Housdorf space T. We imagine C(T) to be equipped with the maximum norm 

II ~ I 00 = Max I (t) I for all g E C(T) 3.2.1 
teM 



and partially ordered in the natural way. Let Y denote the positive cone of C 

(T) 

Let 

S = {XEX: g (x) E Y} 

be a non empty set. We seek for an x - E S such that 

f{x-) :s f{x) for all XES 

3.2.2 

3.2.3 

To be able to give sufficient condition for the existence of such optimal 

element 

X - E S , we associate with every X-EX the value 

8(x) = Inf g(x, t) 
tET 

_and the non empty set 

lex) = {tET: g(x, t) = 8(x) } 

Then we have the following theorems. 

Theorem 3.2.1 

3.2.4 

3.2.5 

A element X- ES is optimal, i.e. for any x- EX, there exist an XES such 

that f{x-) < f{x) if for all XEX the following implication is true. 

g (x, t) > for all tElex) => f(x-) < f{x) 

i.e. it maximize the functional f on the set 

S (x-) = { XEX: g(x, t) > 0 for all tEl(x-) 

3.2.6 

3.2.7 

The proof of this follows immediately from the fact that S c S (x- ) and the 

equivalence of the implication 3.2.6 

The issue now is under what requirement is 3.2.6 necessary for the 

optimality of x- ES. To answer this question, we refer to the definition of star 

shaped set, Convex and Concave functional in chapter one and state the 

following theorem. 



Theorem 3.2.2 

Suppose x- ES is optimal, i.e. f (x-) :S f (x) for all XES. IfT is finite, X 

star shaped, f convex and g concave with respect to x-, then the implication g 

(x, t) > 0 for all tEl (x) => f(x- ) < ftx) holds for all XEX. 

Proof: 

Let assume that there is an x* E X such that 

g(x, t) > 0 for all tElex) and ftx* ) :s ftx-) 

Let a set B be defined thus 

B = { tET: g(x*, t) - g((x-, t) < 0 and the set 

Min g ((x-, t) : ifB is empty 
teB 

A- = g ((X-, t) - g(X*, t); ifB is non empty 

3.2.8 

Clearly, A- > 0, for in the case that B is not empty, we have B n l(x- ) = <I> on 

the basis of the assumption of3.2.8 which implies that g(x-, t) > 0 for all tEB. 

For A = Min (A-, 1) we have that AE(O, 1) and since X is star shaped with 

respect x- , it follows that XA, = AX* +(I-A) x- EX. That g is concave with 

respect to x- follows from the definition of A 

g(XA., t) > Ag(X*, t) + (1+ A )g(x-, t) 

= g(x-, t) +A[g(X*, t) - g(x-, t) 2:.- 0 

for all tET, i.e. XA. ES. 

From the concavity offwith respect to x- and the assumption in 3.2.8 

follows finally because of A > O. 

ftXA. ) < A ftx*) + (1+ A )ftx-) = ftx-) + [ftx*) - ftx-) < {{xl 



This clearly contradict the assumption of 3.2.8 and hence the assumption in 3.2.8 

is false. 

If we however assume that T is not infinite, then the following theorems 

(though weak) can be proved. 

Theorem 3.2.3 

Let x* EX be such that g(x*, t) > for all tEI(x-) and f(x) < f(x-) then the 

optimality of x - E S for all x E X implies 

g(x, t) > 0 for all tEI(x) => f(x- ) < f(x) 3.2.9 

Proof: 

Let x* EX with 

g(x*, t) > 0 for all tEI(x) and f(x- ) > f(x*) 3.2.10 

Let 8 de defined as 

8 = Min g(x*, t) 
te lex) 

Then 8 > 0 and the set 

1= {tET: g)(x* , t) > 1128 }is open and contains I(x). 

If I = T, then x* E Sand 3.2.10 is a contradiction to the optimality of x-· 

If 1;1:. T, then the complement of I is the non empty, closed subset ofT and 

J..Ll = Min g(x, t) 
te I(x) 

If however, 

g(x*, t) .2 g(x-, t) for all tET 3.2.11 

46.f. 



then again X*ES and 3.2.10 is a contradiction to the optimality ofx-. If3.2.11 is 

not satisfied, then 

Jl2 = Min g(x, t) [g(x*, t) - g(x-, t)] < 0 
tE T 

If one chooses 'A = Min (l-'A-) with 'A- = JlI / (.Jl2 ), then x"- = 'Ax* + (l-'A)x - EX 

and 

g(x,,- , t) > 'Ag(x*, t) + (1-'A)g(x - , t) 

= g(x,,- , t) + 'A(g(x*, t) - g(x- ,t) > 'Ab/2, for all tEl 

= g(x - , t) + 'Ag(x*, t) - g(x - , t) > 'Ab/2, > JlI + Jl2 > 0 for all tEB 

where ever x"- ES. Furthermore, because 'AE[O, 1], we have 

f(x,,- ) + 'Af(x*) + P -'A)f(x- ) + 'A[f(x*) - f(x-)] < f(x-) 

which contradict the optimality of x- . Thus the assumption 3.2.10 is false. 

The theorem belo}\' shows the relationship between the implication 3.3.6 

and 3.2.9 i.e. g(x, t» 0 for all t EI(x- ) => f(x- ) < f(x) and 

g(x, t) > 0 for all t ,EI (x- ) => f(x-) < f(x) 

Theorem 3.2.4 

Let E be a normed vector space and f: X ~ R a continuous functional. If 

for a given x- E S the set 

So(x- ) = { XEX: g(x, t) > 0 for all tEI(x- ) } 3.2.12 

is non empty and if S(x-) defined by 

g('Ax + (l-'A)x- > 'Ag(x) + (l-'A)g(x-), then the statement S(x- )c So (So 

(x- )) (i.e. the closure of So (x- ) ) holds and then the implication of 3.2.6 and 

3.2.9 is equivalent. 

Proof: 



Proof: 

If for some XEX, g(x, t) > 0 for all tEI(So (x- ) and there is a sequence 
{Sdofpoints Xk ESo (x-) with limit = f(xk) 

x~oo 

From 3.2.9 it follows that f (x- ) < f(xk) for all k and from this f (x- ) < f(xk) 

because of the continuity offwhich proves the implication 3.2.6. 

Lemma 3.2.1 

If E is a normed vector space and X a non empty subset of E, g concave 

on X and the set 

So = {XEX: g(x, t) > 0 for all tET} 3.2.13 

is not empty, then for very X- E S, the set So(x-) defmed by 

So(x- ) = {XEX: g(x, t) > 0 for all tET}is not empty and So(x- ) c So(x- ) 

where So(x-) is defmed by So(x-) = {XEX: g(x, t) > 0 for all tET}. 

Proof: 

By assumption, there exist XoEX such that g(x, t) > 0 for all tET when 

ever XoESo(x- )for all X- ES. 

Now, let an XES(X-) be given. Then for all k > we have 

Xk = 11k Xo + (l-IIk)x EX and g(Xk , t) > 11k g(Xo ,t) + (l-IIk)g(x, t) > 0 
for all tEI(x-) i.e. Xk E So(x-). Furthermore, x = Lim Xk 

k~oo 

which implies that XE So(x-). 

In summery, theorem 3.2.1 - 3.2.4 and Lemma 3.2.1 can be put together in 

one as in theorem below. 

Theorem 3.2.5 

Let E be a normed vector space, X a non empty convex subset of E, f a 

continuous and convex on X, g concave on X and the So defmed by 
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is non empty. Then an element x- E is optimal if and only if for all XEX, the 

implication 

g(x, t) > Of or all tEI(x-) => f(x-) < f(x) 

holds and this is equivalent to the implication 

g(x, t) > Of or all tEI(x-) => f(x-) < f(x) 

If T is finite, then the assumption So :;t~ is superfluous. 

This theorem is of particular interest when 

I (x-) = {tET: g (x, t) = O}, i.e. 8 (x-) = 0 where 

8( x-) = Inf. G(x, t) 
teT 

On the other hand, if 8(x-) > 0 then we have the next theorem. 

Theorem 3.2.6 

Suppose x- ES is optimal and 8(x-) > O. If X is star shaped, f convex and g 

concave with respect to x- then f (x-) < f(x) for all XEX i.e. x- is in fact, a 

minimal point of f on the set X. 

Proof: 

Let x* EX with f(x*) < f( x-). If g(x*, t) > g( x-, t) for all tET, then x* E S, 

in contradiction to the optimality of x - . Therefore we have 

Il = Min [g (x *, t) - g( x - , t) ] < 0 
teT 

Ifwe choose AE[O, 1] and x"- = AX* + (l-A)X- EX and 

g(x,,-, t) > g( x- , t) + g(x*, t) + [g(x*, t) - g( x- , t)] or all tET i.e. X,,- ES 

Finally, f(x,,- ) < f(( x-) +Af(x*) - f( x- ) < f( x-) which is a contradiction to the 

optimality of x - . Therefore the assumption is false. 

3.3 A mixed Linear - Convex Problem 



3.3 A mixed Linear - Convex Problem 

Let E = R n equipped with any norm and let X be a non-empty convex 

subset of E. Let T also be a compact Housdorf space and let v: T ~ Rn be a 

continuos mapping. Let a: T ~ R be a functional and let cER be a given vector, 

for every x ERn and every tET we defme 

g (x, t) = <v(t), x> - a(t) 3.3.1 

where <., .>denote the ordinary inner product in Rn 
• The g: E ~ C (T) is an 

afme linear and hence concave mapping. 

A mixed linear convex problem (P) can be stated as: 

Maximize the continuous linear functional f(x) = <c, x> subject to the side 

conditions XEX and g(x, t) > 0 for all tET. For every x- EE, we defme 

T(X, x-) = u { A(X - x-): XEX 
),>0 

where T(X, x) is a close convex cone in E = Rn . 

Theorem 3.3.1 

An element x - E S with S defined by 

S = {XEX: g (X)EY} where 8 (x-) > 0 and 8 is defined by 

8(x) = Inf g (x, t) 
teT 

is optimal if and only if c E T(X, x -) where T(X, x -) is defmed according to 

So = {XEX: g(x, t» 0 } and T(X, x-) is a convex cone defmed by 

Kn = K*ER: <K*, k» 0 for all kEK. 

Proof: 

By theorem 3.3.1, x- is optimal if and only if 

< c, x - X- > 0 for all XEX and this is equivalent to <c, h» 0 for all 

hET(X, x-). That is CE T (X, x-) 0 

Now consider an X- ES with 8(x-) = o. If the set 
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---' ........... _.-.. .. _-

So = {XEX: g (x, t) > O} for all tE'T is 110t cmpty or if' T IS a flllitC set 

quipped with discrete topology, then x~ is optimal if and only if 

<c x - x- > > for all XEX with , -

< vet) , x> - (x(t) > 0 for all tE I(x- ) 

,here I (x- ) = {tET: <vet), x-) - a(t) ::::: O} ~ <I> 

rone defines L (E, x-) = {hERIl: "'v (t), Ik > 0 f~)r (III tE l (x- ) ],],4 

'hen L (E, x- ) is obviously a closed convex cones ill E = Rn 

.4 Control Mod I for Environmental Pollution 

We shall) ow make use of the analysis so far to cOllstruct a cOlltrol Illodel 

'or typical cnvironlllental pollution problem, We shedl consider the problem as a 

emi -infin ite optimization problem in which there are infinitely mallY variables 

nel side conditions, 

Consider a given (two dimensional) control region S ill which a certain 

environmental conditions is to be guaranteed, That is the yearly contribution of 

envirOllmental poll ution is to be kept below a ·certain prescribed standard, We 

shall lkscribc this standard by a real valued function (r 011 the control region S, 

Furthermore, we consider the pollution arising Cwm the v<lrious sources 

illtn hvu c;l{egories IWIll Iy: 

JA. I ('011 'Tolin hie SOUl'CCS 

By controllable sources, we meLln thuse SUlJ('Cl:S ur pu lluli on I hat (;illl be re!.!.lIln~cd 

while the u llcontrollable source!:> refer t.o those !:>OlJl'CC!:> that can nol bc regulatcd, Let 11 

. 
COlli roll<lblc sources be present in t he region Sand U I , lh , "" U II be t he average yearly 

cOlltrib'.ILion from the 11 - controllable !:>Ollrces, Then the total contriblltioll from til!,; 

cOlltrollable !:>ources is 

Lil U i ; j =;:: I, 2, "" n 
' I . 
J 

3.4, I 

I. Where U I, "'" Un are real valued functions 011 the control region S, 



.4.2 lJncon tl~ollab~e Sources 

Let III controllable sources be present in the" region S and V I , V2 , 

.. ,U 11 1 be the average yearly contributioll from the III - Ull~olltrollable sour~es. 

,et the total contribu tion from the uncontrollable sources be Un i .c. 

,,~ . 
Un = ~ll Vi; I = I, 2, ... , m 

i I 
3.4 .2 

vhcrc V I, . ... , VII li re real valued fUl1ctions on the ~ontrol region S. 

Now, it is required that the that the (]verage concentration should not be 

x~eeded henee, we IUl vc the side condition 

2:11 U ($ ) + Uo (s) .:-:.. <p (s) for all S E S 
' I ' .I 

3.4 ,3 

incc Un is uncontrollable, ill any of these conditions are not satisfied, then the 

ncontrollable sources (U I , U2 , .... UI1 ) is regulated by multiplying it by a 

lctOr. Let ," j be the factor of the contribution from the controllable sources. TheIl 

IC jth ~ontribLl t ioll is reduced by the factor X,i where 0 S Xj <: I for .i _,c. I, 2, . .. , 11 

o that the side conditions 

Lll Uj(s) - Xi Ui (s) + Un (s) s.. <p (s) for all SES 
j I ' " 

or all S E S ~l re sat is fi ed i .c. 

Lll ( I-xj )Uj (s) + Un (s) < <11 (s) for all S E S 
, I 

.I 

3.4. LI 

learly, thi s will be satisfied if for every SES the condition U() (s) <. <p (s) is 

atisCied. 

Now, if an Xj -:;C 0 must be chosen thell~ost I11l1st come in, e.g. to enforce 

!ans and policies, to introduce air purifiers (in case of ~lir pollutioll) etc . where 

ost, in this case is proportional to Xi . 

Let ('j be the constant of proportionality. Then the total cost or reduction or 

ctors x I , X2 , ..... , XI! E lO, 'I] call bc expressed as 
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C(X, , ... "XI1 ) = 2:11 q Xj 
. , 

.I 

3.4.5 

'he l~lctors ,' , , X2 , . . .. , XI1 rnLlst be chosen sllbject to tile side condit iOIl 

:LII ( I -xj )Uj (s) + Uo (s) < <r (s) for all SES 
. , 
.I 

a -that the cost C(x, , .. .. ,XII is as small as possible. 

The cont rol problcm can 1l0W be stated as that of minimizing the linear 

lIllCI iOIl() I 

C(' ) '\'11 C' X· x, , ..... XII = L.; J J 
j ,, ' 

ubject to the side condi tion 

.... 11 Uj (s) Xj > 2:: 11 Uj (s) - <pes) ~ where 0 < Xj < Iforj = 1,2, ... ,11, .... 3.4 .6 , . , 
J 

'Ilis is a typical semi - infinite optimization problelll. 

hen, 

Let V (s) = (U , (s), ..... , U I1 (s))'I' 

(X(s) = I:11 Uj (s) - <p (s) ; SES 
. , 

.I 

3.4.7 

g(X, s) = < Yes), x> - exes»~, XE RII where <x, x> denote ·' the scalelr product 

1 R" , Furthermore, Let X = {XE RII : 0 < Xj < Ilor.i =--= I, .. . , n } and let T :.::.:S. 

ben, the problem (P) is that of finding all X- ES slich thatl(x'- ) <: f(x) for all 
'. 

ES where 

S = {XEX: g(x)EY}is a non empty set. Y clenotes the positive cone of 

'(T), 

e assume that the pollution arising from the uncontrollable sources lies in the 

ole regio:l of S under the prescribed standard i.e. 

Un (S) :s <p (s) fo r all SES 3.4.8 
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file set (x, g) is closed and bounded, hence the linear and continllous fUllct ional 

I S S lllll~S its minimum on S (x, g). Consequently; there exist an x- ES(X, g) with 

<c, X- ) < <c, x> for all XES(X, g) 3.4.9 

f we dcCinc o(x) = In C. G (x, t) 
l E T 

!leI g according to 3.4.7 above then two cases are possible 

o(x) > 0 

By theorem 3.3.1 , that is the case if cET(X, X- t with T(X, X -- ) given by 

T (X, x-) = u {(x- x-) : XEX and 

T (X, X- r = k*ERIl :<K*, k» ° for all kEK in Ril 

'01' this cas~ at hanel , we have 

T eX, X-· ) {xj ER for all Xj E(O, \), Xj > 0 for Xj ~- = 0, Xj < ° for Xj- = land 

T(X, X- t = {xERIl Xj = ° for Xj E(O, I), 

. > 0 I()[' X ·- = ° X· < ° for X·- = I J- J ' .1 -- J 3.4.10 

'ince Cj > 0 by assumption, CET (X, x) 0 is possible only in the case when x- =: 

11 which implies 

Lil Uj (s) < <pes) for all SES 
. I 

.I 

o that no reduction is necessary ill order 110t to exceed the standard (lnd 

onsequently no cost arise. Conversely, 3.4.9 is naturally sufficient ill order that 

- ~-.: 0)11 belongs to SeX, g) and is optimal i.e. <c, X- > < <c, x> for all x c:: S(X, g) 
'. 

fI ll ri II ed . 
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CHAPTER FOUR 

COMPUTATIONAL METHOD & ALGORITHM 

4.1 INTRODUCTION 

There are a number of optimal control problems that can be resolved 

completely analytically or reduced to simple finite dimensional problem . 

However, a great majority of problems arisil1g from large industrial , aerospace or 

governmental systems must ultimately be treated by computational methods. This 

is not because the necessary conditions for optimality are too difficult to derive 

but rather, the solutions of the resulting non-linear equations are beyond 

analytical tractability. 

There are two basic approaches for resolving complex optimization 

problems by numerical techniques: 

(i) By formulating the necessary conditions describing the optimal solutions and 

solving these equations numerically (usually by iterative scheme) or 

(ii) By bypassing the fonnulation of the necessary conditions and implement a 

direct iterative search for the optimum 

Though both methods has their merit and demerit, but the second method 

appears to be more effective since progress during the iterations can be measured 

by monitoring the conesponding values of the objective functional. 

]n this chapter, the basic concept of dealing with both procedures IS 

considered mainly, method for solving system linear equations. There are several 

computational methods of handling this. The Gauss Elimination method is used n 

this work to solve the system of linear constraint. 
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EXAMPLES 4.1 (Linear Environmental Pollution Problem) 

Consider a hypothetical air shed with a single cement manufacturing 

industry. The annual production is 2,500 banels of cement. Although the industry 

is equipped with mechanical collectors for air control, they are still emitting two 

pounds of dust for every banel of cement produced. The industry can be required 

to replace the with four field electrostatic precipitator which will reduce emission 

to 0.5 pounds of dust per banel or with five field electrostatic precipitator that 

could reduce emission to 0.2 pound per barrel. If the capital and the operating 

cost of the four wheel precipitator are N 0.4 million per banel of cement 

produced and if the five field precipitator are N 0.18 million per banel of cement, 

what control methods should required of this industry? Assume that in this 

hypothetical air shed, it has been determined that particulate emission (which 

now total 5, 000, 000 pound per day) should be reduced by 4, 200, 000 pounds. 

SOLUTION 

Now, if C represent the cost control, x is the number of banel of annual cement 

production subject to the four field electrostatic precipitator (cost of NO.4 

million per banel of cement produced) and y is the number of banels of annual 

cement production subject to the five field electrostatic precipitator (cost ofN 0.8 

million per banel of cement and pollution reduction is 5 - 4 .2 =0.8 million 

pounds per banel produced), then the problem can be stated as 

Minimize 

C (x, y) = O.4x +0.18y 

Subject to 

x + Y < 2, 500, 000 

1.5x + 1.8y > 4,200, 000 

x > 0, y > 0 
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This problem can be resolved by the linear programming method. 

O)million 
:::~ _____ F. easible region 

Fig. 3.5. (Graphical solution ofpr50blem 3.5.1) 

Now, 

x + Y = 2, 500, 000 

When x = 0, y = 2,500,000; 

When y = 0, x = 2, 500,000. 

Also, for 

1.5x + 1.8y = 4,200,000, 

x = 0 => Y = 4200000/1.8 = 233333.33 

and y = 0 => x = 4200000 1 1.5 = 2800000 

Solving x + y = 2500000 and 1.5x + 1.8y = 4200000 simultaneously, we 

X= 1000000 

Y = 1500000 

To detennine the optimal cost of control (i .e. the minimum cost), we evaluate 

C(x, y) at (2800000,0), (2500000,0) and (1000000, 1500000). 

Now, C (x, y) = 0.14x + 0.18y 
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C (2500000,0) = 0.14 x 2500000 +0.18 x 0 = N 35000 

C(2800000, 0) = 0.14 x 2800000 + 0.18 x 0 = N 392000 

C(lOOOOOO, 1500000) = 0.4 x 1000000 + 0 .18 x 1500000 = N 410000 

The least cost solution therefore is to install the four field electrostatic 
precipitator on the industry producing] 000000 (x = 1000000) ban-els and five­
field precipitator producing 1500000 (y = 1500000) ban-els of cement at the cost 
ofN 4]0000 (C (x, y) = 410000) 

Example 4.2. 

An environmental pol1ution control agency has N 30 million to use in the control 

of pol1ution in a given year. The money is to be appropriate among air pollution, 

chemical pollution and domestic waste . The mles for the administration of the 

fund require that at least N 3 million be invested in the control of each type of the 

pollutants, at least half the money be spent on chemical pollution and pollution 

arising from domestic waste, and the amount spent in the control of chemical 

pollution must not exceed twice the amOlmt spent in the control of air pollution . 

The annual concentrations ofpol1utants are 7% from air pollution, 80/0 from 

chemical pol1ution, and 9% domestic waste. How should the money be allocated 

among the various pollutants to produce a minimal concentration of pollutants? 

In millions of naira, Jet x = the amount spent on the control of air pollution, y = the 
amount spent on the control of chemical. Then the amount spent the control of 
domestic waste is 30- (x + y) . The constraints are: 

x, y > 3 

30- (x + y ) > 3 

x + y > 15 

y < 2x 
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and the objective function is: 

f (x, y) = 0.7x + 0.8y +0.9[30 - (x + y )] 

f(x, y) = 27 - 0.2x - 0.1 y 

The corresponding system of linear equation is: 

The feasible region is: 

x, y = 3 

x +y = 27 

x+y = 15 

y = 2x 

y = 2x and y = -x + 27 => x=9, y = ]8 hence we (9, 18) 

y =3 and y= -x + 27 => x = 24, i.e. (24, 3) 
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In a cCliain region S the environmental pollution problem thc're arises from 

accumulation of domestic waste, improper sewage disposal, chcmical pollution 

arising Ii-om the use of chemical in fishing and oil spillage. The table below 

shows the concentration of each pollutant at each location in the region. 

Locat- Domestic Sewage Chemical Combustion 
ion i waste UI s U I {s1 UI s U1 S 

800 600 250 1000 

2 650 900 750 1000 700 

3 900 350 780 950 600 

4 500 800 250 600 900 

. 5 250 650 800 250 300 

To bring the level of pollution to a comfortable level, the annual concentration at 

the locations should be reduced to 1259, 1343, 1564, 1145 and 660 tonnes 

respectively. Determine the reduction factor and the cost of reducing the 

pollution level in the region to desired tolerable level if contribution to the annual 

concentration are 20 %, 15%, 30%, 25 % and 10 % fi'ol11 Domestic w~ste, 

Sewage, Chemical, Oil Spillage and Combustil1o respectively? 

Solution: 

Now the control model is: 

Minimize: 

C(XJ , .. ",XII ) = LII Cj ~i 
j=1 

Subject to the side condition: 



C(XI , .. ".XII ) = 0.2 XI + 0 .15 X2 + 0.3 XJ + 0.25 X" + 0.10 Xs .and 

LII Uj (s) Xj > LII Uj (s) - (p(s) 
j= 1 .i ~ 1 

for each of the locations I = I, 2, ... 5 is 

800x, + 600 X2 + 250 XJ +300 Xi + 1000 Xs 

650xI + 900 X2 + 750 X3 + 1 000)4 + 700 Xs 

900xI + 350 X2 + 780 X3 +950 Xi + 600 Xs 4.3.1 

500xI + 800 X2 + 250X3 +600 X4 + 900 Xs 

250x( + 650 X2 + 800 X) +250 X4 + 300 Xs 

III Ui (s) for each of the locations are: 
j=1 

Location 1: 
2: 
3: 
4 
5: 

800 + 600 + 250 +300 + 1000 = 2950 
650+ 900 + 750 + 1000+ 700 = 3950 
900 + 350 + 780 + 950 + 600 = 2980 
500 + 800 + 250 '+600 + 900 = 3050 
250 + 650 + 800 +250 -I- 300 = 1550 

<pes) for each of the locations as given are: 1259, 1343, 1564, 1145 'and 660 

l-lence In Uj (s) - <pes) = 1259, 1343, 1564, 1145 and 660 respectively. 
j=1 

Equation 4.3.1 . above is the system of linear constraint giving rise to the 

~ augmented matrix: 

800 600 250 300 1000 1259 

650 900 750 1000 700 1343 

900 350 780 950 600 1564 4.3.2 

500 800 250 600 900 1145 

250 650 800 250 300 890 

Equation 4.3.2 can easily be computed by the Gussian elimination method .. The 

.!b:L 
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y = 15 - x andy = 3=> x = 12, i.e. (12,3) 

y = 15 - x and y = 2x => x = 5, hence , (5 , 10) 

f(9 , 18) = 27 - 0.2*9-0.1*18 

= 27 - 3.6 

= 23.4 

f (24, 3) = 27 - 0.2 * 24 - 0.1 * 3 

= 

27 - 5.1 

21.9 

f (12, 3 ) = 27 - 0.2 * 12 - 0.1 * 3 

= 27 - 2.7 

= 24 .3 

f (5 , 10) = 27 - 0.2 * 5 - 0.1 * 10 

27 - 2.0 

25 

The minimum cost of control will be incurred by spending N24 million on the 

control of air pollution, N3 on the control of chemical pollution and N 3 on the 

control of pollution from domestic waste. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

So far, a good number of concepts in optimal control with particular 

reference to control of enviromnental pollution with uncontrollable sources have 

been considered. It is important to emphasize that the interest in this work has 

been to exploit the intimate relationship that exist between approximation theory 

and optimization theory to solve optimization problems. The fact that 

approximation problem can be considered as an optimization problem is clear. 

Therefore, if approximation theory is included under the more general concept of 

optimization theory, then several optimization theories can be treated 

computationally be means of approximation theories . This is the principle 

imbibed in this work. 

It is noticeable however that when approximation theory is included in the 

more general theories of optimization; some special prope11ies of approximation 

are lost. Hence, one would no longer be able to answer all theoretical problems 

of approximation by means of optimization . 

The use of optimization theories in treating approximation problems is 

very fruitful in tenns of characterizing the best approximations and calculation 

and estimation of minimal deviation . Furthennore, various methods for solution 

of approximation problems may be applied successively to optimization 

problems. 

A number of computational examples in this work are hypothetical. The 

methods of solutions are based on age long computational procedures involving 

iterative search for solution until convergence is attained. 

There must be a number of other suitable approaches that may not have 

been treated in this work. It all depends on problem fonnulation , however the 
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fundamental idea remains the same. A problem with linear multi variable function 

subject to a number of constraints could be treated with the popular linear 

progratrunmg algorithm known as the Simplex Method credited to Danzig 

(1963). 

Classical optimization technique can be applied to problems for which 

there is no general procedure base on the work of Kulm and Tucker (1951). 

I will like to mention on a concluding note that this work is limited to some 

extent by wlavailability of suitable literature that deals directly with the subject 

matter. 

There are other altemative methods of computation of the solution to the 

constraint equation such as Jacobi iteration method, Gauss elimination and Sidel 

iteration method. 

5.2 RECOMMENDATIONS 

The topic "Optimal Control of Environmental Pollution with 

Uncontrollable Sources" is topic of immense practical application . Hence, it will 

be worthwhile to carry out further research in this area of study. I recommend 

that non-linear constraint or differential constraint be considered instead of the 

linear constraint used in this work. This will also form a prospective area of 

study. 
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4.4 DISCUSSION OF RESULT 

The computation below shows the step - by- step computation of the cost 

factor for the control of environmental pollution. The program philosophy is 

based of the popular Gussian method of solving system of linear equation. The 

solution is iteratively substituted to the cost function until the system converges. 

The cost reduction factor is the factor by which the concentration of the 

pollutants concerned must be reduced in order to guarantee the desired level of 

concentration. Substituting the cost reduction factor Xi to the cost function gives 

the cost of controlling the pollutants concerned the total cost of control is the 

summation of the cost of controlling of the pollutants 

Below is the result of generated by the computer program developed to 

implement the algoritlun. 
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