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ABSTRACT 

One of the major tasks of numerical analysis is that of solving differential equations. 
The goal, target and objective of numerical analysis are to r~plicate the exact solutions or at 
least produce solutions that are very close to exact solutions. Hence, the closer such solutions 
are to the exact solutions, the better the method. In this research work, we examine the 
existing processes, how they are derived and their limitations. Based on such analysis, we 
derived, some Quasi-Runge-Kutta methods, through a refinement process, for the solution of 
initial value problems. For acceptability, the schemes so derived are tested for consistency, 
zero-stability, and convergence. Also provided, is an example of initial value problem solved 
with the hew methods and their results help to establish their high degree of accuracy. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background Of The Study: 

The use of simple operations to find approximate solutions to complex problems 

constitutes the main goal of numerical analysis. One of the major tasks of numerical 

analysis is that of solving differential equations, which are just relationships involving an 

independent variable x, a dependent variable y, and one or more differential coefficients 

ofy with respect to x - An example of differential equation is 

y" + 2y' + y = 0 ................................ (1.1) 

Differential equations represent dynamic relationships, i.e quantities that change, 

and are thus frequently occurring in scientific, engineering, as well as social problems. 

The solution of a differential equation thus provides solution to the physical problem it 

represents. 

Solutions to differential equations were derived using analytical or exact methods. 

Those solutions are often useful as they provide excellent insight into the behavior of 

some systems. However, analytical solutions can be derived for only a limited class of 

problems. These include those that can be approximated with linear models and those that 

have simple geometry and low dimensionality Consequently, analytical solutions are of 

limited practical value because most real life problems are non-linear and involve 

complex shapes and processes. 

In such cases, where differential equation defies solution analytically, an 

approximate solution is often obtainable by the application of numerical methods . 

Numerical methods are techniques by which mathematical problems are formulated so 

that they can be solved with arithmetic operations. This means that the relevant particular 



solution is obtained as a set of function values for the range of values of the independent , 

variable. This set of points is an approximation of exact solution at these points. 
-

-i A variety of methods qave been derived for solving differential equations. These 

methods can be classified into two: 

One-step and multistep methods. 

One-step -methods permit the calculation of Yi+}, given the differential equation 

and Yi. They utilize information at a single point Xi to predict a value of the dependent 

variable Yi+l at a future point Xi+l . Runge-Kutta methods are members of this family. 

Multi-step methods require additional values of yother than at i. Multi-step 

methods are based on the insight that, once the computation has began, valuable 

information from previous points is at our disposal. Some famous sub-classes are Adam-

Moulton and Adam-Bash forth methods. Various reasons determine the choice of one 

method over another, two obvious criteria being speed and accuracy. However, the advent 

of fast and efficient digital computers has increased dramatically the role of numerical 

methods in solving scientific, engineering as well as social problems. Scheid (1998). 

1.2 Dermitions: 

1.2.1 Differential Equation 

A differential equation is an equation involving an unknown ftmction and one or 

more of its derivatives. It is a relationship between an independent variable X, a dependent 

variable y, and one or more differential coefficients ofy with respect to x, e.g dy = x+ y , dx 

1.2.2 initial value Problem (IVPs) 

A first order differential equation, y' = f{x + y), together with an initial condition, 

y(xo)=yo constitutes an initial value problem, 

y' = f{x, yl y{xo 1 x > xo .... .. : ...... . {1.2) 

2 



l.2.3 Numerical Solution Techniques: 

We wish to solve the standard initial value problem given by equation (1 .2) above. 

Since analytical or exact solutions are not always possible to find, it is essential to work 

with techniques which work without then. One approach is the numerical analysis, which 

tries to find good algorithms to approximate solutions. This simply means finding 

procedures by which computers can do the solving for us. , 

1.2.4 Numerical Method: 

A numerical methods can be defined as a differential equation that involves a 

number of consecutive approximations Yn+j, j=O,1... k, from which it will be possible to 

compute sequentially the sequence Yn; {n=O,I,2 ... n} . Lambert (1991). Although 

numerical methods for IVPs can take many forms, all of them can be written in the 

general fonn. 

Ie 

La jY n+j= h<l> f (y n +k ,Y n+k-l> .. · .... Y n' X n' h) ... .. . .. . . (1.3) 
j =O 

Yi = Jl;(h), i=O,I, ....... k-l ...... ... .. . .. (1.4) 

Where subscrip.t f indicates that the dependence of <I> on Yn+k, Yn+k-l .. .... .... ,yn, Xn is 

through the function f (x,y) and [Jl; (h)] i=O,I ...... k-l are the initial points. 

Patrizia (2001). 

l.2.5 Convergence: 

A numerical method is convergence if 

lim y" = y(x} 

h--+O 

For all x o~er the finite interval [xo, x,,] i.e if the sequence of improved values converge 

to the true value of y. A method is not convergent is said to be DIVERGENT. 

Patrizia (2001). 
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1.2.6 Local Truncation Error 

The local truncation Error tn+l of the one-step scheme is given by 

t n+1 = Y{Xn+1)- y(x,,)- h;(x",y(x,,},h) 

Where y(x) is the true solution to the IVP. 

The local truncation error simply put, is the amount by which the true solution of the IVP 

fails to satisfy the first order differential equation, under the simplying assumption that 

the previous solutions are exact. i.e (y n = y{x,,}) . 

1.2.7 Total Truncation Error 

The total truncation error is the difference between the solution y(xn+l) and yn+l 

(The solution calculated after n+ 1 steps). 

en+l: IIY(Xn+l)-Yn+lll ... ... ...... . (1.5) 

1.3 Aims And Objectives: 

The aim of this study is to derive High Order Quasi-Runge-Kutta methods by a 

Refinement Process for the solution of initial value problems. 

The objectives of the study include the following: 

i) To derive new methods which have less computation steps than the Runge

Kutta methods. 

ii) To verify the accuracy of the methods by making comparison with the exact 

solutions and reference method (Runge-Kutta methods). 

iii) To use the methods to solve some differential eq~ations. 

4 



CHAPTER TWO 

2.0 LITERA TURE REVIEW 

2.1 Overview 

The family of One-step methods for solving initial value problems offers a wide 

range of methods which are further grouped into subclasses. A great many methods have 

been developed in this direction, and yet other are still being developed. Many have 

undergone changes to improve their accuracies, or their error control strategies or shed 

more light on their behaviors in general. 

DAVID RUNGE (1895), in his paper on the numerical solutions of differential 

equations put forward a method for solving first order differential equations (Specifically, 

IVP), that achieved a higher order than the linear multistep methods (LMM), by 

sacrificing the linearity of the algorithm while preserving its one-step nature. His method 

involves extending the approximations of the improved Euler method further, so as to 

obtain a one-step method having a higher order of accuracy. This is because one-step 

methods, have- the advantage of permitting a change of mesh length at any step, since no 

starting proces!i is required. Since the time of Runge, many researchers have taken 

advantage of the flexibility of the method to derive schemes either to improve accuracy or 

error control strategies. 

HEUN (1900), put forward the following third-order formula for a three stage method. 

5 



He reckoned that Runge' s work could be further extended to include terms up to order h
3 

previously ignored by Runge. 

WILHELM KUTTA (1901), extended the method of Runge further to systems of . 
equations. Thus, this method ·has come to be known as the Runge-Kutta method. Kutta's 

third order rule is given by 

According to Lambert (1973); "it is most popular third order Runge-Kutta 
Method, for desk computations (largely because the coefficient Y2 is preferable to YJ, 
which appears frequently in Heun' s method)". 

MERSON (1957), was the first to propose the idea of deriving a special R-K method, 

which would admit an easily calculated error estimation, which does not depend on 

quantities calculated at previous steps. Merson' s method is 

and it is defmed by the butcher tableau below: 

6 



0 

Ih Ih 

Ih 1/6 1/6 

Yz I/S % 

1 Yz 0 
-3h 2 

1/6 0 0 2iJ 1/6 

The above method, has order four and an estimate for the local truncation error given by 

This method has been widely used for non-linear problems, although the error estimate is 

valid only when the differential equation is linear in both x and y, that is of the form: 

y'=a x + by +c 

Merson's idea, is to derive R-K methods of order r and r+l, which share the same set of 

vectors (kj). 

BUTCHER J.C (1963, 1976), in a long series of papers s~g in the mid-sixties, has 

developed various theories out of the Ruge-Kutta method. Notable among his theories 

are, 

(i) An S-stage explicit R-K method, cannot have order great than s, 

(ii) There exists no five-stage explicit R-K method of order five he also established 

the order condition for all class of Runge-Kutta method. Below is the 

representation of Runge-Kutta scheme, in Matrix notation, a fonn know as the 

Butcher Tableau. Recall the general S-stage Runge-Kutta method. 

s 

Yn+I-Yn= hIbl,kl 
1=1 

s 

k l= !(xn+cjh,Yn+hIQj jkj},i = 1,2,3, ..... s . 
j=1 

7 



Calf the bj's the weights, the Cj's the abscissas, and the kj'S the slopes. Butcher defined the 

s-dimensional vectors c and b and the s x s matrix A, by c ~ [Cl, C:z, ... . .. c.lT 
and b = [hI, 

In, .. be]T and A = ray]. Then method expressed conveniently as Butcher tableau 

= 

C2 a21 a22 an ...... .... a2a 

C3 ~ 1 \i32 a33 ..... · .. . .. a3s 

Cr asl 3s2 3s3 .......... 3ss 

b l b2 b3 ............ bs 

Will assume 

.r-l 

c j = Lav,i = 1,2, .... s 
J=I 

One important use to which the Butcher tableau could be put, is in determining the type 

of the method (i.e explicit, implicit, and semi-implicit). 

i) If "A" is strictly lower triangular => explicit method; calculate kl explicitly; then 

k2, e. t. c, up to k., 

ii) If :1 ay = 0, j> 1 => implicit method: 

Requires a system of sxs (non-linear) equations be solved per step. 

iii) If llij = 0, J> 1 and :1 llij:f 0 => semi-implicit; 

Requires s scalar (non-linear) equations be solved per step. 

seRA TON (1964), derived a fourth-order estimate which admits an error which is valid 

for a non-linear differential equation, unlike merson's, the method is as below: 

_ = h(~k +~k + 32 k + 250 k ) 
Yn+l Yn • 162 1 170 3 135 4 1377 5 

8 



k l= !(xn,Yn) 

2h 2h 
k2= f(x" +-,y" +-kl ) 

9 9 

He gave the estimate for the local truncation error as : 

Where 

19 27 57 4 
r = -k --k +-k --k 

24 I 8 2 20 3 15 4 

Although, Scraton's estimate was more realistic than merson's when applied to a 

general non-l~ear differential .equation, it has the disadvantage that it is not linear in the 

krs. As a result, it is applicable only to a single differential equation and does not extend 

t? a system equations. As noted by Lambert (1973); 

"in order to find a method which admits an error estimate which is linear in the kr, 
and this holds for a general non-linear differential equation, or system of equation, it is 
necessary to make a sacrifice in the form of additional functions evaluations". 

SHAMPINE and ALLEN (1973), developed a subroutine for solving the fourth-order R-

K method'which was different from Ralston's fourth order R-K method. 

9 



HAiRER and WANNER (1981), showed that R-K method could be extended to orders 

five and six which have the properties of order, stability and efficiency of implementation 

to high extent. These authors classified all algebraically stable methods of an arbitrary 

order and give various relationships between contractivity and order of implicit methods. 

ONUMANYI, et aI (1981), developed software for a methqd of finites approximations 

for the numerical solution of differential equation, which was based on the Tau method. 

According to them, problems with complex initial boundary conditions or mixed 

conditions involving combinations of functions and derivative values, can be dealt with 

by means of their program. Accordingly, encouraging results have been obtained in the 

solutions of problems with regions of rapid variation, oscillatory behavior and in the 

presence of stiffness. 

BURRAGE (1987), examine the stability properties ofsome special class of multi-valued 

methods known as multi-step R-K methods. He further constructed some families of 

algebraically stable methods of arbitrarily high order for the solution of the first order 

initial value problems. In particular, Burrage has studied the order conditions of these 

methods, and has shown that one can always construct methods of order, 2s + r-l, where 

2s denotes the highest order possible, and r-l, the number free parameters existing in the 

methods. 

DORMAND, et al (1989), considered the application of Runge-Kutta interpolation to 

global error estimation They brought some special formulae of orders two, four, and six 

and went on to show that a pseudo-problem, which is based on dense output values within 

anyone step and reliable global error estimates could be mesh-points, by using the special 

R-K formulae. 

KEELING, (1989), constructed an implicit Runge-Kutta method with a stability function 

having distinct real poles. Such methods offer computational speed up when used on 

10 



parallel machines (multiprocessor computers) with a modest number of processor. 

Sometime, the method is called multiple implicit Runge-Kutta (MIRK) and hence due to 

the so-called order reduction phenomenon, the poles of the (MJRK) are required to be 

real. 

BUTCHER and CASH (1990), derived a special class of implicit R-K methods of the 

numerical solution of stiff IVP. They derived the formulae from simple implicit methods 

by adding one or more extra diagonally implicit stages for the derivation they considered 

singly implicit methods and in particular diagonally implicit methods. 

They established that each class of methods offers some advantages over the 

methods as well as some disadvantage for diagonally implicit methods, their limitation of 

the stage order to 1, and the difficulty of finding high order for the methods as whole, or 

of constructing realistic local error estimates, makes these methods unlikely candidates 

for incorporating into highly accurate and efficient software. 

JULY AN and PIRO (1992), investigates the dynamics of a continuous time system, 

described by an ordinary differential equation. They attempted to elucidate the dynamics 

of the Runge-Kutta methods,_ by the application of the techniques of dynamical system 

theory to the maps produced in the numerical analysis. Their aim was to investigate what 

pitfalls there ffi!1Y be in the integration of non-linear and chaotic systems. 

ADEWALE (1998), derived a new five-stage explicit one-step R-K method of drder four . 
fpr the numerical solution of IVPs. The new methods aid computation through the use of 

whole numbers instead of fractions as observed in existing methods of this form. This is 

helpful, when the computations are performed manually as it reduces the number of 

operations involved in the evaluation of the krs. He also provided a computer program 

that uses the new schemes, to solve IVPs. 

11 



The'new method with its corresponding Butcher tableau is as below: 

o 

1 -3 5-1 

1 3 0 -3 1 

116 0 2/3 1/12 1112 

GARDA and YAKUBU (1999), derived a new R-K formulae of order five, which does 

not require the use of error control strategy, but has better approXimations than some 

existing R-l<. formulae. 

12 



ADEBOYE, K.R and OCHOCHE, A (2006), developed a fIfth order six-stage Runge-

Kutta method for solving initial value problem. The strength of the new scheme is that, it 

gives solutions that are very close to the exact solution, even closer than some popular 

existing methods which are known to be highly efficient: Some initial value problems 

were solved using the new scheme and the results help to establish its very high degree of 

accuracy. 

The new six-stage Runge-Kutta methods of order five is 

Where 

k,~ f( x" + : ,Y" -h( 0.2571070Sk ,-+{). 045073 568k, +0.3 5303779lk ,-0.341486157k,) J 

13 



2.2 Numerical Methods For Initial Value Problem (IVPs) 

In the previous chapter, we made an introduction into what numerical methods 

(solution techniques) for solving (lVPS) are all about. A great many of such methods 

have been developed, and yet many more are still being' produced. Although all the 

methods have certain fundamental properties common to them all of them are classified 

into different -sub-classes, with specific characteristics peculiar to each class. It is this 

. 
classification of numerical method (solution techniques) we shall discuss in this chapter. 

2.3 One-step Methods 

One-step methods are numerical methods that determine the solution at the 

support times through the reccursive formula 

Yn+J = Yn + h<P(tn,Yn;h},n E N. ...... ........ .. (2.0) 

i. e 

k= 1 in the formula 

k 

I aiy n+j= h¢ t<y n+k'Y n+k-J , ...... ,Y n,t n ;h) 
}=o 

There are two families of one-step methods: 

Method of Taylor and method of Runge-Kutta, i.e method of Taylor type are 

further classified into Euler method and method of Taylor of greater order. liowever, 

Euler method, if we take the first two terms of the Taylor series, which describes the 

exact solution at Xn+l 

to compute 

14 



After n steps it yields 

Y,,+I = Y" + hf" ........ .. (2.1) 

Equation (2.1) above is called Euler's formula or the Euler method, the simplest of the 

numerical methods for solving first order differential equations. 

Although Euler method is simple in procedure, it is lacking in accuracy especially away 

from the starter value of the initial condition. And it is of use only for very small values 

of the interval h Stroud (1996). 

Similarly, methods of Taylor of greater order, In order to obtain a numerical 

method with greater order of accuracy than the Euler method, we could just as well take 

more terms of the Taylor's series expansion. A method of second order like this: 

- +h I ~ 1/ 

Yn+I-Y" !Y" + 2 Y" 

Since Y;, = /(x",Y,,) = /" then 

This implies the truncation error 

h2 hk 
More generally, a k-order numerical method is Y I=Y +hif +_ Y" + __ __ _ yk 

n+ II 1/ 2 II k! II 

With a truncation error 

15 



2.3.1 Runge-Kutta Methods 

The idea of extending the Euler method, by allowing for a multiplicity of 

evaluations of the function f within each steps, was originally proposed by Runge (I 895), 

further contributions were made by Heun (1900) and by Kutta (1901). 

Given Y n as an approximation to y(xJ, where y satisfies the differential equation 

system. 

y'(x) = !(x,y),y(xo) = Yo,!: RxRm ~ Rm 

The appro.ximation y n+l to y{y n+l) is computed by evaluating 

s 

YIt+l=Yn+hLb;k, ....................... ... .... (2.2) 
;=1 

where 

k;= !(Xn+C;h,Yn+hIaijk;) ,i = 1,2, .. ... . . ,s .. .... .. (2.3) 
) =1 

Lambert (I 991) 

An alternative term of the above, is, 

s 

Ym-l=YIt +h'LbJ(xlt +cjh,Yt},i = 1,2,,,,,,s 
j=1 • 

where 

s 

1'; = Yn + h La;j(x,,+cth,Yt),i = 1,,2, ..... ,s ... .. ...... .. (2.4) 
1=1 

The two forms are equivalent by making the interpretation 

Lambert (1991) 
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The integer S is the number of stages of the method and measure it's complexity, since 

the number of the evaluations of f per step equals s. The set (a'j,bi) i= l, .. ,s of constants 

characterize a particular method of this type. 

The quantities Yi are approximations to solutions values y(x) to x ranging through various 

values near xn• Also f(Y i) are approximations to y; (x) at the same values x. 

Patrizia (200 I). 

Runge-Kutta methods are often represented using the Butcher array as follows: 

Cs Is a2s··,,·,,·,,· .ass 

An S-stage Runge-Kutta method is completely specified by its butcher array as 

The components ofC are the row sums of A 

Lambert (1991) 

From the definition a Runge-Kutta is consistent when 

.1· 

I b,=l Lambert (1991) 
i= 1 

And when Yn+1 depends only upon the evaluations of the previous points f(Yi); i=O, I '" ... n, 

if aij = 0 for all I ::; i::; j ::; s, it is called EXPLICIT. Otherwise it is said be IMPLICIT. 

We present below some explicit Runge-Kutta methods: 

One Stage: 

The general s-stage Runge-Kutta method (1.9) becomes I-stage if we set b2 = b) = 0 
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then 

YII+I = y(x,,) + hbJ ......... _ ........ _(2.5) 

From the Taylor expansion follows that the best one can do is set b l = I, hence 

En+1 = 0(h2). 

Thus there exists only one explicit one-stage Runge-Kutta method of order I, namely 

Euler's Rule. Lambert (1991) 

Two Stage: 

If we set b3 = 0, the method becomes two stage 

y(x ll+l ) = y(xJ + h(b l + b2 )1 + h2 b2c2 F + ~ hJ b2ciG + 0(h 4 
} •• •••••••• ••• .• ••• .• (2.6) 

Where 

F:= fx + ffy, G:= fxx + 2ffyy + ffyy Lam bert (1991) 

On comparison with the expansion for y(Xn+I), 

y(x
ll
+l ) = y(xJ+ hi + ~h 2 F + ~hJ(Ffy + G)+ 0(h 4 

} ••••••••••. . ••• • • ••••• (2.7) 

we see that order 2 can be achieved by choosing 

bl +b2 = 1, b2c2 = 1/2 

There exist an infinite family of explicit two-stage 

Runge-Kutta method of order 2 

Two solutions yield well~known methods: 

(i) The modified Euler (or improved polygon) method 

bl= 0, b2 = 1, C2= Ih 

it Butcher array is 

° 

° 
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:1 

:.r----------------------------------

(ii) The improved Euler (or Helin) method 

bl = b2 = 'Ii, C2 = 1 

It Butcher array is 

o 

1 1 

Three stage: 

By satisfying the following coefficient conditions one can achieve order 3 

b l+b2+b3 = I 

b2C2 + b3C3 = 1/2 

b2 Ci+ b3 C; = 1/3 

b3b2a32 = 1/6 

Two particular solutions lead to well known methods 

(i) Heun ' s third order formula. 

it Butcher array is 

1;4 0 314 

(ii) Kutta's third order formula 

it has the Butcher array 

o 

1 -1 2 

19 
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Four Stage: 

The most popular Runge-Kutta scheme is the classical Runge-Kutta method of order 

four (4), so popular is this method that when one sees a reference to a problem having 

been solved by the Runge-Kutta method, it is most certainly the classical Runge-Kutta 

method that has been used . 

It has the following Butcher array. 

o 

o 0 

The classical Runge-Kutta scheme is as fol lows: 

Where 

The absence of k, in the evaluation of k), and absence of k, k2 in the evaluation of 

~ may have played a role in making this method popular. However, Lambert (1991) 

suggests another reason for the popularity of the method: 
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"in the pre-computer days, computations were performed on purely mechanical 
devices. Multiplication or division was tiresome business on such machines. Since the 
main computation is in the evaluation of the functions to produce the ki' s. That the Ci' s 
and 8i's are always either 1 or Y2 increased the chances of any division in the evaluation of 
f terminating quickly". 

2.4 Multistep Methods: 

As stated in the previous chapter, we can write a numerical method for solving 

IVPs in the general form: 

Ie 
La 1'Y"+1'= h; t<Yn+",yn+Ie-l' ......... ;Y",t ,, ;h) .................. (2.8) 
1'=0 

Yi = ~(h) for i = 0, .. .. ,k-l 

If k> 1 in the above formula then the numerical method is called multistep, because it 

determines the solution at the support times using k values. Patrizia (200 1). 

Linear multistep method. (LMM): 

Let Yn be an approximation to the theoretical solution at Xn, that is, to y(Xn), and let 

fn=ftxn,yn,). Then, we say a linear multistep method of step number k, or a linear k-step 

method is a computational method for determining, the sequence [Yn] that takes the form 

of linear relationship between Yn+j, fn+j, j = 0,1, ....... ,k 

Thus the general LMM may be written 

Ie Ie 
La p'1I+1'= hLP / ,,+/"" ............. (2.9) 
1'=0 1'=0 

Where Uj and pj are constants; we assume a IFI and that not both a 0 and 130 are zero. 

2.4.1 Adam-Bashforth Method 

We consider the general Adams multi-step method 

Ie 
Y ,,+I=Y 11 +h LP j'(X,,+l-i'Y "+1_) .... · ...... ·· .. ...... ··(2.10) 

1'=0 

to approximate the solution y at Yn+l, the equation (2.10) represent k-step method, since if 

uses the k-previous values of the computation in order to compute the next value. 
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If the coefficient ~k is zero i.e ~k =0, then equation (2.10) define Yn+l explicity 

interms of previous k values and such a method is called an explicit method or Adam-

Bashforth method. 

An k-step Adam-Bashforth method has global truncation error of order 0 (If). 

Examples are 

(i) 1- step Adam-Bashforth method which is Euler' s rule 

Yn+l=Yn+hfn 

(ii) 2- step Adam-Bashforth method which is midpoint rule 

Yn+2-Yn= 2hfn+l 

(iii) 2-step Adam-Bashforth method 

2.4.2 Adam-Moulton Method: 

If the coefficient ~k is non-zero i.e ~k * O; the equation (2.10) define Yn+l implicitly, 

thus is called implicit method or Adam-Moulton Method. 

An k-step Adam-Moulton Method is of order O(hk+l) 

Examples 

(i) I-step Adam-Moulton Method is the Trapezoidal Rule 

(ii) 2-step Adam-Moulton Method is the Simpson's rule 
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CHAPTER THREE 

3.0 DERIVATION OF QUASI-RUNGE-KUTTA METHODS 

3.1 Finitc Diffe."cnce Method Error Term 

A finite Difference is a mathematical expression of the form j(x -I- b) - j(x -I- a). If 

a finite difference is divided by b-a one gets a differential quotient. 

The approximation of the derivatives by finite difference plays a central role in 

finite difference methods for the numerical solution of differential equations, especially 

boundary value problems (IVPs). 

In mathematical analysis, operators involving finite differences are studied. A 

difference operator is an operator which maps a function F to a function whose values are 

the corresponding finite differences only three forms are currently considered, forward, 

backward and central differences. 

A forward difference is an expression of the form. 

~" lrKx) = f(x + h)- f(x) 

Depending on the app l ication, the spacing "h" it may be variable or held constant. 

A backward difference uses the function values at x and x-h, instead of the values at x+h 

and x 

Finally, the central difference is given by 

An important application offinite difference is in numerical analysis, especially in 

numerical ordinary differential equations wh ich aim at numerical solution of ordinary 

equations. The idea is to replace the derivatives appearing in the differential equation by 
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finite difference that approximatc thcm. The rcsulting methods are ca lled finite dilTerencc 

methods. 

The derivatives of a function F at a point x is defined by the limit. 

j
.,() 1. f(x+h) - f(x) 

x = UTI 
-' .... 0 h 

If h has a fixed (non-zero) value, instead of approaching zero then the right hand side is 

h 

hence, the forward difference divided by h approximate the derivatives when h is small. 

The error in this approximation can be derived from Taylor's theorem. 

Assuming that F is continuously differentiab le, the error is 

/j. It [J Xx) _ f' (x ) = 0 (h) (h - ) 0) 
h 

The same formula holds for the backward difference 

However, the central difference yields a more accurate approximation. It errors is 

proportional to square of the spacing (if F is twice continuously differentiable) 

Higher - Order Difference 

In an analogous way one can obtain finite difference approximations to higher 

order derivatives and differential operators. 

For example, by using the above central difference formula for f(x+~)and f(X-~) 

and applying a central difference formula for the derivative off at x, we obtain the central 

difference approximation ofthe second derivativc of f 
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More generally, the nih - order forward, backward and central differences are respectively 

given by 

~;:[rXx) = ~J-I)' C)/(x + (n - i)h), 
;=0 

\7;lrXx) = ~)-I)' /(x-ih), 
;=0 

:. d" / (x) = ~;: [/ ](x) + O(h) = \7;:[/ Xx) + O(h) = a;; [j Xx) + O(h 2 ) 

dx" h" h" h" 

3.2 Refinement Process For Euler Method 

We consider the Euler method 

y"+,=y,,+h/,, ...... ............... (3.0) 

The Error term is 

y,,+,-y,,-h/,i·················(3·I) 

We expand Y,,+I in Taylor's series 

h2 h3 

i e = +h I + - /I + - 11/ (3 2) . YII+1 Y":>,,, Yn Y,,···························· 2 . 6 

Note Y;, =/" 

Then substitute equation (3.2) into equation (3.1) 

We have 

h2 /I h3 11/ 

Y , - Y - hI' ~ Y + hlJ' + - Y n + ~ + - - - - - - -y - h'l' 
,,+ " 'J II " J n 2 6 " 'J " 
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h2 /I h3 III YII YII = --+-- +---- - -- --
2 6 

Now, representing Y;, in terms of};, 

. " F' I.e YII = J n 

Therefore 

= h[jIl+1 /2- 1:,} ................... ....... ... (3 .3) 

Add equation (3.3) to equation (3.0) above, we have 

Y,,+I = YI/ + h1:, + hfl/+' I 2- h1:, 

Again, we find the Error term of equation (3.4) 

... YI/+
1 

- y" - h!,,+112 ....................... (3.5) 

We now, expand YI/+I and 1:'+112 in Taylor's series 

I.e 

h2 /I h3 III 

h ' YI/ YI/ (3 6) Y -Y + '1) + --+--+------- . 
1/+1 " ""1/ 2 8 

h 2
/" h31:" 

f = I' +-'-' +-1/-+-------(3 7) 
1/+112 J 1/ 2 8 . 

Then substitute equation (3.6) and (3.7) into equation (3.5) 
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Y -y -hI" =y +hy' +~y" +~y'" + ____ y - hr _ h
2 

/" -~/,,, +--
11 + 1 11 fj 11 +1/2 II II 2" 6 II II fj n 2 II 8 11 

[
h3 h3] 

:. y,,+1 - y" - hf,,+112 = 6 - 8 f,;' 

!!-.-/''' =!!-.- },,+1I 2 -}" f' j, ' 3 3 [ r' 1"' ] h
2 

[ ] 

24" 24 ~ = 12 ,,+1/2 - " 

=~[fn+I-2f"+1I2+f,,]=~rf -2f +1" ] 
12 h2 6\) "+1 ,,+112 }" 

h3 h 
:. 241,; = "6fj;'+1 - 2f,,+112+ 1,,1. ..................... (3.8) 

Again, we add equation (3.8) to equation (3,5) above, 

We have 

h 
:. y,,+1 = y" +"6 [[n+1 + 4f,,+112+ 1,, } .................. ( 3.9) 

Now, we consider 

Y"+,=Y,,+hf,, ............. (3.10) 

h 21,' 
has the Error term _ n_ + 0(h 3 

) 

2 

but 

Substitute equation (3.11) into equation (3.10), we have. 
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YI/+I=YI/+ ~ [[1/+ 11/+1 J ........................... ... ( 3.12) 

To find the Error term of eq uation (3.12). we expand YI/+I and 111+1 into Taylor ' s series. 

I.e 

, h
2 

" h
3 

11/ h
2 

j . h
2 [I, hif,' h2J:" ] Y + hv + - Y + - Y +-- - --Y - - - - + + - +---" ./'" 2 II 6 n 11 2 II 2 II II 2 " 

, 3 2' 

. + h ' + ~ " + ~ 11/ _ _ 2h I' _ ~ I' _ ~ 1''' + 
.. YI/ YI/ 2 YI/ 6 YI/ YI/ 2 J 1/ 2 J 1/ 4 J 1/ 

_ ~ 1''' = [h6
3 

_ h
4

3

] {',," - h
3 

!," 4 JI/ J, =12· 1/ 

Not 11/ = 1''' e y" JI/ 

Therefore equation (3.12) becomes 

YII+1 = YI/ + ~ [1" + 1,,+1]-~ 1,:' ............................... (3. 13) 
2 12 

But - I," = - JI/+1 13 J" = _ [I" +(' ] h3 h3 [I" _ {"] h 2 

12 " 12 X 4 J,,+113 ill 

= h
2 

[1,'+1 - 11/+1/2] _ !i[11/+113 - 1,,] 
4 X 4 X 

h . 
= 4"[61,,+1 - 61,'+1 /3 - 31,,+113 + 3111] 

Substitutes equation (3.14) into equation (3.13) above . 

We have, 
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:. Y,,+I = y" + ~ [- 4/"+1 + 9/,,+11 3 - I, 1························(3.15) 

3.3 Refinement Process For Mid-Point Method 

We consider the mid point method 

:. Y,,+2 = y" + 2hI,+I·······················(3. I 6) 

We expand Y,,+2 and /,,+: to find the Error term 

2h ' 4h2 " 8h
3

", 2h[ ( h,f' + ~ f" 1 :. y" + v" + 2 y" + 6 y" + - - - - y" - j" + 'J" 2 j " 

h3 

:. The Error term is - (" 3 j" 

___ Y - 2hf - 2h 2 f' _ h3 f" 
" fj 11 J" J" 

" JI1+1 / 2- J n . I , h
3 

h
3 

[ f' f'] 2h 2 12 1" ="3 % = - 3- [1,,+112 + 1" ] 

= ~ [2I,+1 + 4/,,+112 + 2I, J ...... ...... ......... ...... ..... (3. I 7) 

We substitute equation (3. I 7) into equation (3. I 6) above. 

:. Y,,+2 = Y" + 1 [8j;,+1 - 41,'+112 + 21,,1· .. ........ .. ........ .. (3.18) 

Again, we consider 

2hf h
3 

(II Y,,+2=Y,,+ 'J 'HI+ - j" ............. .... ....... (3. I 9) 
3 
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~ (" = ~[/"+I -2/" + /',-1] 
3 J" 3 h 2 

= 1U;,+1 -2/" + /,,_J ........... ......... .......... (3.20) 

Substitute equation (3.20) into equation(3.19) above. 

I.e 

h 
=)Y,,+2=Y,,+"} [7/ 11+1- 2/,,+ /"-1 J ..................... ..... (3.21) 

Again, consider 

Y n+2 = Y" + 2hj"+1 +!{ /,;' ... .. ............ ...... (3.22) 
3 

4h2 [/" /" ] 
= 7 ,,+7 /12 - " 

= 4h2 [/"+1 -/,,+7 /12] _ 4h2 [/',+1 - /,'] 
7 5X2 7 h 

h3
/," h 

: . -3'-' = 3S [28/',+1 - 48/,,+7 /12+20/,,1. .............. (3.23) 

Substitute (3.23) into equation(3.22) above. 

I.e 
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" 

" 

" 

YII+2 = YII +21-111+1 + 3
h
5 [281,,+1- 481,,+7112 + 201,,] 

. Y = y +~ [98 ( 1 -48 ( 7/12 +20;· } ..... ......... ... (3.24) 
.• 11+2 11 35 J 11+ J n+ 11 

Again, we consider 

Y =y +2h( I +~ ( " .. .. .. .. .... ..... ....... ........................ (3.25) 
11+2 II fj n+ 3 j 11 

• 3 ? 

h ~ 1"" h [ (' 1"'] 5h- [I"' (/ ] :3 j II =:3 j 11+3/5 - j" = 9 j 11 +3/5 - j II 

= ~[1,1+1 -/11+3/5 ] _ ~[1,'+ 1 - 1,,] 
9 2% 9 h 

. h
31,:' h 

.. - 3 - = 18 [151,'+1 - 25/ n+3 / 5+ 10J,,l. ...................... (3 .26) 

Therefore, Equati on (3.2 5) becomes 

h 
YII +2 = YII + 2lf,'+1 + 18 [1 5 /n+1 - 25/ 11+3/5+ 101,, ] 

h 
YII+2 =y" + - [511,'+1 + 10J,,-25/ 1I+3/J ··· ........... (3.27) 

18 

3.4 Refinement Process For Multi-Step Method 

we consider the scheme: ' 

Y"+2 =YII+I +!: [3J,I+I - J,J .... ... ...... ......... ... ..... ... . (3.28) 
2 

The Error term is 

h 
YII +2 - YII+ I - - [31,'+1 - 1,J .. ... .... .. ............ ........... (3.29) 

2 

We expand Y"+2 ,Y 11+1 and /11+1 in Taylor's seri es 

I.e 
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2h ' + 2h 2 , + 4 h3 11/ h' hl " h.J 11/ _ 3h r _ 3h
2 

1" _ 3h
3 

1'" h I' 
=> y" + y" Y""3 y" - y" - y" - 2 y" - (5 y" 2 J" 2 J" 4 J" +"2 J" 

: . [ 4h
3 

_ h
3

] 11/ _ 3h~ r" = 5h~ r" 
3 6 y" 4 J" 12 In 

The Error term is 5h
3 

1'," 
12 JII 

5h
3 
J::' 5h ) [1n+1 - 2J:, + J:,-I ] 5h [J: J: J: 1 12 = 12 h 2 = \2 ,,+1 -2 ,,+ ,,-I ..... .. ....... (3.30) 

We substitute (3.30) into equation (3.29) 

I.e 

h 
Y,,+2 =Y,,+I + \2 [23J:'+1 -16J:, +5J:,_J ... ... ..... .. ........... (3.31) 

Again, consider 

Y,,+2 =Y,,+I + ~[3J:'+1 - .t:, ]+ 51~3 .t::' ............. (3.32) 

5h
3 

1''' = ~[.t::+7 / 1 2 - .t:: 1 = ~[I" -j" ] 
12 J" 12 711/ 7 J,,+7 /12 " 

/ 12 

12h 5h r .. ] 
= --:;- [J,'+I - 1n+7 /12 ]-7 Lf ,,+1 - J:, 
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5h) /,,11 h [ 1 
--=-77/',+1 -12/"+'lJ2 +5/,, } .............. (3.33) 

12 

Substitute (3.33) into eqn (3.32) 

h 
Y,,+2 = Y,,+I + 14 [21/" +1 -7/" + 14/" +1 - 24/,,+7 /12+ I O/,,] 

h 
:. Y"+2 = Y"+I + 14 [35/',+1 + 3/" - 24/ ,,+7 /12 ]. ....... ....... ..... (3.34) 

3.5 Convergence Of The Methods 

Numerical method is convergent if 

lilTI lTIaX lie" II = 0 ......................... (3.35) 
11->0 ,,=O.I...x 

To prove that a linear multistep method is convergence, it is suffic ient for us to 

show that the method is consistent as well as zero-stable. 

CONSISTENCY 

A numerical method is consistent if the local truncation error satisfies. 

lilTI e n+k=O ... ...... .... ... ......... (3.36) 
11->0 

The necessary and sufficient conditions, which must be satisfied by a numerical method 

to be consistent are. 

k 

La l=O 
;=0 

And 

rp J fy(t ,,+k ), At ,,+k- I ): ....... ·,At,,), t,,;O] = f(y(t " )) .................. .(3.37) 

Lja j = 0 
j=O 
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k 

Which using the first characteristics polynomial p(~) = :La I ·~ 1 

1=0 

c; E c, it is possible to write the two qualities in the usual fo rm 

p(t)= 0 .... .. .... (3.38) and 

<l>j[y(t,,+k)'y(tn+k_ I), ............. ,y(I,,),I,,;O]=j( ( )) (339) pl(\) yIn ... ...... ... . 

Patrizia (200 I ) 

for linear multistep methods, consistency demands that 

(i) p(J) = 0 

k 

(ii) pi (I) = 0-(1); where o-(c; ) = LJ3J~ J ................ (3.40) 
/=0 

ZERO-STABILITY 

A numerical method IS said to be zero-stability when it satisfies the ROOT 

CONDITIONS. 

ROOT CONDITIONS: 

A numerical method is said to satisfy the ROOT CONDITION if all of the roots 

of the first characteristic polynomial have modulus less then or equal to unity and those 

with modulus unity are simple. Lambert ( \99 1) 

From the above facts, we conclude that the necessary and sufficient conditions for 

a linear multistep method to be convergent are that it be consistent and Zero-stable. That 

is, it must satisfy the following conditions; 

(i) p(\) = 0 

(ii) 
¢ /y(t n+k )' y(t ,,+k-I ), ..... . y(I ,,),1 n ;0) = j( (I )) 

p'(\) Y " 

(iii) No root of the equation: p(c;) = 0 has modulus greater than I and every root with 

modulus I is simple. 
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k 

Where p(;) = I aj ;j .................. (3.41) 
)=0 

Scheme 1 

h 
Y"+2=Y"+3[7/ 1/+1-2/1/+ /"J .... ............... (3.42) 

The error term is 

h 
Y,,+2 -Y,,= 3[7/,,+1- 2/,,+ /"J ................ (3.43) 

Convergence 

To prove that scheme 1, given by equation (3.42) converges, it is sufficient for us to show 

that it is consistent as well as zero-stab le. 

Consistency 

From eq uation (3.43), the first characteristic pol ynomial p(;) is given by 

2 

pC;) = I a;; ' ... ......... .. .. (3.44) 
,=0 

2 

p'(;) = I ja j;,-I 
,=0 

2 

p(l) = I a j= 1-1 = 0 ... ... ........ (3.45) 
j=O 

2 

p'(l) = Ija) = 2(1) - 0(1) = 2 ............. . (3.46) 
j-O 

The second characteristic polynomial 0-(; ) is given by 

;=0 

2 7 2 1 1 
0"(1)= If3 =---+-=-=2 .. .. ... .... .... .. (3.47) 

)=0 ' 3 3 3 6 

From eq uations (3.45), (3.46) and (3.47), we have 

(i) p(l) = 0 
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(ii) p'(l) = 0-(1). ............. {3.48) 

hence, scheme I is consistent 

Zero-stability 

For scheme 1 to be zero stable it must satisfy the zero-stability condition. 

Zero-stability conditions are 

(i) Each root of the first characteristic polynomial must be of modulus not greater 

than I 

(ii) Any root with modulus I must be simple. 

i.e (.; + 1)('; -I), we have two real roots 

Either'; = -lor'; = 1, thus'; = - 1,1 which satisfy the zero stability condition. 

Hence, since scheme 1 satisfied these conditions, 

(i) p(l) = 0 

(ii) p'(I) = 0-(1) 

(iii) Zero -stability condition 

We conclude that scheme I is convergent. 

Scheme 2 

h 
Y,,+2= y" +"3 [8f ,,+1-4 f II+I ./2+2f,]. .............. .. (3.49) 

The error term is 

Y II+2-Y,,= ~[8fll+I-4f,,+1I2+2f,J. ............. (3.50) 

Consistency 

From equation (3.50), the first characteristic polynomial p(.;) is given by 
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2 

p(~)= Ia ,~J ................ (3.51) 
.1 =0 

p(~)= e-I 
p(I)= I - I = 0 ........... .. .. (3.52) 

p,(~)= 2~ 

p'(l) = 2(1) - 0(1) = 2 ....... ..... (3.53) 

The second characteristic polynomial O"(~ ) is given by 

, =0 

8 4 2 6 
O"(~ ) = - - - - - = - = 2 ..... ........ (3.54) 

3 3 3 3 

From equations (3.52), (3.53), and (3.54), we have 

(i) p(I) =O 

(ii) p' = 0-(1) 

Hence scheme 2 is consistent. 

Zero-stability 

The roots of the first characteristics polynomia l are p(~) = e -I 

i.e (~+ I)(~ - I), we have two real roots 

Either ~ = - I or ~ = 1 

Thus ~ = - 1,1 which satisfy the zero stability condition 

We conclude that scheme 2 is convergent. 

Scheme 3 

h . 
YI/+Z=Y n + 18[51/1/+1+20/ ,,-25/1/+3 ' J ····· ···· ·· ···· ·(3.55) 

The Error term is 
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h 
YI/+2 -YI/= 18 [51 /1/+1+201 1/-25/1/+3 /5 J .................. (3.56) 

Consistency 

From equation (3.56), the first characteristic polynomial p(; ) is given by 

2 

p(; ) = La);' 
;=0 

p(;) =;2 _I 

p(J) = I-I = 0 .... .. .......... (3.57) 

p'(I) = 2; 
p'(I) = 2(1) = 2 ...... .. ............. (3.58) 

The second characteristic polynomial 0"(; ) is given by 

)=0 

51 20 25 46 0"(1) = - + - - - = - = 2.555556 ........................ (3.59) 
18 18 i8 18 

From equations (3.57),(3.58) and (3.59), we have 

(i) p(l) = 0 

(ii) p'(l) ~ 0-(1) ..................... (3.60) 

Hence scheme 3 is inconsistent 

Zero-sta bility 

The roots of the first characteristics polyromial of scheme 3 

pC; ) =e-I 
i.e(; + 1)(; -I), 

We have the two real root either ; = -lor I 

Since scheme 3 satisfies the zero stability conditions, but is inconsistent, we conclude that 

scheme 3 is divergent. 
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Scheme 4 

h 
Y,,+2 =Y,,+ 35 [98j,,+1- 48j,,+7I 12+20j,J ...... .............. (3.61) 

The Error term is 

h 
Y,,+2-Y,,= 35 (98 ),,+1-48 j,,+7 /12+2O j'J .. ... ...... .. ... ...... (3.62) 

Consistency 

From equation (3 .62), the first characteristic polynomial p(; )is given by 

./=0 

pC;) = e -I 

p(1) = I-I = 0 ...... ........ (3.63) 

p'(;) = 2; 
p'(l) = 2 ... ... ... ... ... : ..... .. (3.64) 

The second characteristic polynomial 0"(;) is given by 

j=O 

98 48 20 70 
0"(;) = - -- + - = - = 2 ... ............ (3.65) 

35 35 35 35 

From equations (3.63), (3.64) and (3.65) we have 

(i) p(I) = O 

(ii) p'(l) = 0"(1} ...... ....... .. (3.66) 

Hence scheme 4 is consistent 

Zero-stability 

The roots ofthe first characterist ic polynomial p(; ) are 

i.e (c; + I)(q -I) we have two rea! roots either c; = -\ or \ 

Thus; satisfies the zero-stab il ity cond it ion, hence scheme 4 is convergent. 
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Scheme 5 

YII+2=YII+I+ I~ [23/ 1I+1- 16/,,+5/,,_1} ······· .. ······ .. ······ (3 .67) 

The error term is 

h 
Y,,+2-Y,,+I= 12 [23/"+1- 16/,,+5/,,J ................ (3.68) 

Consistency 

From equation (3.68), the first characteri sti c polynomial p(q) is given by 

j=O 

=)p(q) =e-q 
p(l) = I -I = 0 ........ .... (3.69) 

p'(q)=2q-1 
p'(I) = 2(1) - I = 1 .. .. ....... (3.70) 

The second characteristic polynomial O"(q) is given by 

;-0 

23 16 5 12 O"(J) = - - - + - = - = I .. ..... ....... ....... (3.7 I) 
12 12 12 12 

From equations (3.69), (3.70) and (3 .71 ), we have 

(i) p(l) = 0 

Hence scheme 5 is consistent 

Zero-stability 

The roots of first characteristic polynom ial p(q) are 

p(~)=~2_~ 

i.e~(~ -I) 

Either q = 0 or q = I 
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Since ~ satisfies the zero stability condition we conclude that scheme 5 is convergent. 

Scheme 6 

YI/+2= YI/+I+ I: [35/1/+1+3/1/-24/ 1/+7 /12}·· ······ .. ·····(3.73). 

The Error term is 

h 
Y I/+2 -Y 1/+1= 14 [35/1/+1+3/ 1/-24/,,+7 /12}··· ·· ·· ······ ··· ··.(3.74) 

Consistency: 

From equation (3.74), the first characteristic polynomial p(q) is given by 

.1 =0 

p(q)=e -q 
p(l) = I-I = 0 ........ ...... .. .. (3.75) 

p'(q) = 2q-1 

p'(I) = 2(1)-1 = 1 .................... (3.76) 

The second characteristic polynomial o-(q) is given by 

) =0 

35 3 24 14 
0-(1)= - + - -- = - = 1 ........... ..... ..... (3.77) 

14 14 14 14 

From equations (3.75),(3.76) and (3.77), we have 

(i) p(l) = 0 

(ii) p'(l) = 0-(1). ..................... (3.78) 

Hence since scheme satisfies the above condition, we said that scheme 6 is consistent 

Zero-stability 

The roots ofthe first characteristic polynom ial p(q) 

p(q) = e-q 
q(q - I) 
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Either r; = 0 or r; = I 

Since; satisfies the zero-stability condition 

We conclude that scheme 6 is convergent. 
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CHAPTER FOUR 

4.0 NUMERICAL APPLICATION AND COMPARISON OF RESULTS 

4.1 Numerical Applications 

We use the 6 derived methods to solve differential equation. To start, we solve the 

follow ing differential equation . 

Y' = x + y;y(O) = 1,h = 0.1 ........... .... .... (4.1) 

Starting values 

As with all k-step methods (k> 1) we face the probl~m of generating additional 

starting values. Also, we demand that these stalting values should be calcuiated to 

accuracy at least as high as the local accuracy of the main method. This means that any 

method we use to calculate the starting values must itself require no starting values other 

than Yo . 

In this work, we decide to use the exact solution to evaluate the stalting values 

Y",n = 0,1,2 as the case may be. 

Given the initial values problem (IVP) as 

y'=x+ y;y(xo)=1,h=0.1 

Let consider 

Y"+I=y,,+h!I1+112 ... . ...... .... (4.2) 

Note 

f,,+a= f [x,,+ah'YI1+ah/,,],n = 0,1,2 ......... . 

/0 = I 
:. /[0.05;1 + 0.05(1)] 
=)0 .05 + 1.05 = 1.10 

11 /2= 1.10 
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:.YI = 1+0.1(1.10) = 1.11 

YI= 1.11 

Y2=Y ,+hl312 

13/2 = I( x'+~;Y'+~/') 
I F-X1+YI= 0.1 + 1.11 = 1.21 

:.f 3/2= 1[0.1 + 0.05;1.1 ) + 0.05(1.21)] 

1 312= 1.3205 

:.Y2= 1.11 + 0.1(1.3205) 

Y2= 1.24205 

Y3=Y2+h!512 

1 512= I( X2+~;Y2+%/2) 
I r X2+Y2= 0.2 + 1.24205 = 1.44209 

1512= 1(0.2 + 0.05;1.24205 + 0.05(1.44209)) 

:·Y3= 1.24205 + 0.1(1.564525) 

Y3= 1.39846545 

Y4=Y3+ hI7 12 

I 7Ir I( X3+~;Y3+~/3) 
I r X3+Y3= 0.3 + 1.39846545 = 1.69846545 

1 712= [0.3 + 0.05;1 .39846545 + 0.05(1.69846545)] 

1 712= 1.833388723 

:.y 4 = 1.39846545 + 0.1(1 .833388723) 

Y4= 1.581804322 

Y5 = Y 4 + hi 9/2 

_ ( h. h 1 
1 9/ 2- I X4+"2'Y4+"2/4 ) 

I j=X4 +y 4= 0.4 + 1.581804322 = 1.981804322 

1 9/2= 1(0.4 + 0.05;1.581804322 + 0.05(1.981804322)) 

1 912= 2.130894538 

:. Y5 = 1.581804322 + 0.1(2.130894538) 

Y5 = 1.794893775 
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Y6 = Y5 + hf1ll2 

~1 /2 = 1 [X2 + ~; Y5 + ~ 15] 

15 = X5 + Y5 = 0.5 + 17.94893775 = 2.294893725 

~1 / 2 = 2.459638464 

: . Y6 = 1.794893775 + 0.1(2.459638464) 

: . Y6 = 2.040857621 

Y7 = Y6 + h~ 312 

~ 312 = 1[X6+ ~;Y6+ ~16 ] 
16 = X 6 + Y6 = 0.6 + 2.040857621 = 2.640857621 

~3 / 2 = 1[0.6 + 0.05;2.040857621 + 0.05(2.640857621)] 

~3 / 2 = 2.822900502 

. : . Y7 = 2.040857621 + 0.1(2.822900502) 

Y7 = 2.323147671 

Y8 = Y7 + h~ 5 / 2 

~512 = 1 [X7 + ~;Y7 + ~ 17] 
17 = x7 + Y7 = 0.7 + 2.323147671 = 3.023147671 

~5 / 2 = 1[0.7 + 0.05;2.323147671 + 0.05(3.023147671)] 

:. Y8 = 2.323147671 + 0.1(3.224305055) 

Y8 = 2.645578176 

Y9 = Y8 + h~ 712 

~ 7 / 2 =1(Xs +~;Ys +~1s ) 
1s = Xs + Ys = 0.8 + 2.645578176 = 3.445578176 

~7 / 2 = [0.8 + 0.05;2.645578176 + 0.05(3.445578176)] 

~7/ 2 = 3.667857055 

: . Y9 = 2.645578176 + 0.1(3.667857055) 

Y9 = 3.012363884 
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Y/O = Y9 + 1~9i2 

~9/2 = I ( X9 + ~;Y9 + ~ 19) 

19 = X9 + Y9 = 0.9+3.012363884 = 3.912363884 

1'9/2 = 1(0.9 + 0.05;3.0 12363884 + 0.05(3 .912363884)) 

~9 / 2 = 4.157982078 

:. Y, o = 3.012363884 + 0.1(4. 1 57982078) 

Y/O = 3.428162092 

Scheme 1 

Y,,+2 = y" + ~ [7/'1+, - 2/" + /',-J n = 1,2 ........ ..... ~ ........ (4.3) 

0.1 f I" Y3 = y, + - [7 2 -2J\ + 10] 
3 

Let Y\ = 1.1 103, Y2 = 1.2428 

O 0.1 f Y3 = 1.11 3+)[7 2 -2~ + 10] 

10 = Xo + Yo = 1 

~ = x, + Y\ = 0.1 + 1.1 1 03;2~ = 2.4206 

12 = x2 + Y2 = 0.2 + 1.2428 = 1.4428;712 = 10.0996 

0.1 [ ] :. Y3 = 1.1103 + - 10.0996 - 2.4206 + 1 
3 

Y3 = 1.39960 

Y4 = Y3 +~[(7/3 - 212 + ~)] 
3 

~ = 1.2103 

12 = 1.4428;212 = 2.8856 

13 = X3 + Y3 = 0.3 + 1.39960 = 1.69960;713 = 11 .89720 

:. Y4 = 1.2428 + ~ [11 .89720 - 2.8856 + 1.2103] 
3 

= 1.2428 + 0.34073 

Y4 = 1.58353 
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Ys = Y4 + ~ [(714 - 2/3 + 12)] 
3 

12 = 1.4428 

13 = 1.69960;2/2 = 3.3992 

14 = X4 + Y4 = 0.4 + 1.58353 = 1.98353;714 = 13.8847 1 

:. 1.3996 + ~ [13.88471 - 3.3992 + 1.4428] 
3 

= 1.3996 + 0.39761 0333 

Ys = I. 797210333 

Y6 =Y4 +~ [7Is - 2/4 +/J 
3 

/3 = 1.69960 

/4 = 1.98353;2/4 = 3.96706 

/s = Xs + Ys ;0.5 + 1.797210333 = 2.297210333;7 Is = 16.08047233 

:. Y6 = 1.58353 + ~ [16.08047233 - 3.96706 + 1.69960] 
3 

= 1.58353 + 0.43963744 

Y6 = 2.043963744 

Y7 = Ys + ~ [7/6 - 21s + IJ 
3 

14 = 1.98353 

Is = 2.29721 0333;2/s = 4.594420666 

/6 = x6 + y6 = 0.6 + 2.04393744 = 2.643963744;716 = 18.50774621 

:. Y7 = 1.797210333 +.21 [18.50774621- 4.594420666 + 1.98353] 
3 

= 1.797210333 + 0.529894984 

Y7 = 2.327105318 
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Ys = Y6 +.2:! [717 - 216 + 15] 
3 

15 = 2.297210333 

16 = 2.643963744;216 = 5.287927488 

17 = X7 + Y7 = 0.7 + 2.327105318 = 3.027105318;717 = 21.18973722 

Ys = 2.043963744 +.2:! [21.18973722 - 5.287927488 + 2.29721 0333] 
3 

= 2.043963744 + 0.606634002 

Ys = 2.650597746 

Y9 = Y7 + QJ. [71s - 217 + 16] 
3 

16 = 2.643963744 

17 = 3.027105318;217 = 6.054210636 

1s = Xs + Ys = 0.8 + 2.650597746 = 3.450597746;71s = 24.15418422 

:. Y9 = 2.327105318 +.2:! [24.15418422 - 6.054210636 + 2.643963744] 
3 

= 2.327105318 + 0.691464577 

Y9 = 3.018571088 

YIO =yS+.2:![719 -21s + 17] 
3 

17 =3.027105318 

1s = 3.4505597746;21s = 6.901195492 

19 =x9 + Y9 =0.9+3 .018571088 =3.9 18571088;719 = 27.42999762 

:. YIO = 2.650597746 + .2:![27.42999762 - 6.90 1195492 + 3.0271 05318] 
3 

= 2.650597746 + 0.7851969 

YIO = 3.435794647 

Scheme 2 

Y"+2 = y" + QJ. [8/'1+1 - 41n+1 /2 + /,In = 0,1,2 .. ............. (4.4) 
3 . 
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Let YI = 1.11 

2/0 = 2 

/1 = 0.1+1.11 = 1.21 

8.1;9.68 

.1; /2 = /[0 + 0.05;1 + 0.05(1)] = 1.1;4/112 = 4.4 

:' Y2 =1+QJ[9.68+2-4.4] 
3 

Y2 = 1.2426667 

h 
Y3 = YI + - [8}; - 21; - 4hl2 ] 

3 
2.1; = 2(1.21)= 2.42 

/ 2 = x2 + Y2 = 0.2 + 1.2426667 = 1.4426667;8/2 = 11.5413336 

/ 312 = /[0.1 + 0.05,1 . 11 + 0.05(1.21)] = 1.3205;4/312 = 5.282 

0.1 [ ] : . Y3 = 1.11 + - 11.5413336 + 2.42 - 5.282 
3 

= 1.11 + 0.28931111 

Y3 = 1.3993111 1 

Y4 =Y2 + O~I [8/3 + 2/2 - 4/512 ] 

8/3 = 8(0.3 + 1.39931 111) = 13.59448889 

2/2 = 2(0.2 + 1.2426667) = 2.8855554 

4/5/2 = 4/[0.25,1.2426667 + 0.05(1.442777778)] = 6.2592222356 

:. Y4 = 1.2426666 + QJ [13.59448889 + 2.8855554 - 6.2592222356] 
3 

Y4 = 1.583454074 

Y5 = Y3 + QJ [8/ 4 + 2/3 - 4/712 ] 
3 

8/4 = 8(0.4 + 1.583354078) = 15.86683259 

2/3 = 2(1.69931111) = 3.39862222 

4/7/2 = 4/(0.35,1.39931111 + 0.05(1.69931111)) = 7.33 7106666 

:. Y5 = 1.3993111 1 + QJ [15.86683259 + 3.39862222 -7.337 1 06666] 
3 

Y5 = \. 7969227170 
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0.1 [ ] Y6 =Y4 + - 8fs +2/4 - 4/9/2 
3 

8/5 = 8(0.5 + 1.7969227170) = 18 .3 7538174 

2/4 = 2(0.4+ 1.583354078) = 3.966708148 

4/9/2 = 4/[0.45,1.583354078 + 0.05(1.983354407)] = 8.530087128 

:. Y6 = 1.583354078 + O~ 1 
[18 .37538174 + 3.966708148 - 8.530087128] 

Y6 = 2.04375417 

0.1 [ ] Y7 =Y5 + - 8/5 +2/5 - 4fr 1l2 
3 

8/6 = 8(0.6 + 2.04575417) = 21.15003336 

2/5 = 2(0.5 + 1.7969227170) = 4.593845434 

4fr 115 = 4/[0.55,1.7969227170 + 0.5(2.296922717)] = 9.847075411 

: . Y7 = 1.7969227170 + 2J. [21.1500336 + 4.593845434 - 9.847075411] 
3 

Y7 = 2.326816163 

Ys = Y6 + 2J. [8/7 + 2/6 - 4fr3l2 ] 
3 

8/7 = 8(0.7 +2.326816163)= 24.2145293 

2/6 = 2(0.6 + 2.04375417) = 5.2870834 

4fr J12 = 4/[0.65,2.04375417 + 0.05(2.64375417)] = 11.30376751 

:. Ys = 2.04375417 + 2J. [24.2145293 + 5.2870834 - 11.30376751] 
3 

Ys = 2.6503631714 

Y9 =Y7 +2J.[8/s + 2/7 ;- 4fr5 /2 J 
3 

8/s = 8(0.8 + 2.6503631714) = 27.60290537 

2/2 = 2(0.7 + 2.326816163) = 6.053632326 

4fr5 /2 = 4/[0.75;2.326816163 + 0.05(3 .026816163)] = 12.91262788 

:. Y9 = 2.326816163 + 2J.[27.60290537 + 6.053632326 - 12.91262788] 
3 

Y9 = 3.018279824 
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YIO = Yg +.2J [8/9+2/8 - 4.1;7/2 ] 
3 

8/9 = 8(0.9 + 3.018279824) = 31.34623859 

2/s = 2(0.8 + 2.6503631714) = 6.900726343 

4.1;712 = 4/[0.85;2.6503631714 + 0.05(3.45036317 I)] = 14.69152532 

0.1 [ ] :. YIO = 2.6503631714 + - 31.34623859 + 6.900726343 - 14.69152532 
3 

YIO = 3.45544494 

Scheme 3: 

h 
Yn+2 = Y" + 35 [98/n+1 - 481,,+7112 + 20J,,],n = 0,1,2 ............ (4.5) 

Y2 =yo +.2J[98.1; +20/0 -48/7112 ] 
35 

981; =98(0.1+1.11)=118.58 

20/0 =20(1)=20 

48/7112 = 48(1.1166666667) = 53.60000042 

Y2 = I +.2J [118.58 + 20 - 53.60000042] 
35 

Y2 = 1.24280 

Y3 = YI +.2J [98/2 + 20.1; - 48.1;9112 ] 
3 

98/2 = 98(0.2 + 1.24280)= 141.3944 

20/1 = 20(1.21) = 24.2 

48.1;9 /12 = 48/[0.158333;1.11 + 0.058333(1.2 I)] = 64.26799996 

: . Y3 = 1.11 + O~ I [141.3944 + 24.2 - 64.26799996] 
-' 

Y3 = 1.399504 

Y4 = Y2 + .2J[98/3 + 20/2 - 48/JIIIJ 
35 

98/3 = 98(1.699504) = 166.551392 

20/2 = 20(1.44280) = 28.856 

48.1; 3/12 = 48[0.258333;1.24280 + 0.583333(1.44280)] = 76.09423996 

:. Y4 = 1.24280 + ~ [166.55 I 392 + 28.856 - 76.09423996] 
35 

Y4 = 1.58369472 
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Ys =Y3 +~[98/4 + 20/3 -48/4311 2 ] 
35 

98/4 = 98(1.98369472) = 194.4020826 

20h = 20(1.699504) = 33.99068 

48/
43112 

= 48[0.358333;1.399504 + 0.0583333(1.69504)] = 89.13480291 

:. Ys = 1.399504 + ~ [194.4020826 + 33 .99008 - 89.1 3480291] 
35 

Ys = 1.79738217 

Y6 = Y4 + ~~1 [98/5 + 20/4 - 48/55112 ] 

98/5 = 98(2.29738217)= 225.1434527 

20/4 == 20(l.98369472) = 39.6738944 

48/55112 = 48/[0.45833333 ;l.583694 72 + 0.05833333 (l.983694 72)] = 103.571687 

:. Y6 = 1.58369472 +~[225.1434527 +39.6738944 -103.571687] 
35 

Y6 = 2.044396595 

Y7 =Ys +QJ [98/6 +20/s -48/67112 ] 
35 

98/6 = 98(2.644396595) = 259.1508663 

20/s = 20(2.29738217) = 45.9476434 

48/67112 = 48/[0.5583333;1.79738217 + 0.0583333(2.29738217)] = 119.5070391 

: . Y7 = 1.79738217 + QJ [259.1508663 + 45.9476434 - 119.5070391] 
35 

Y7 = 2.327643:585 

Y8 = Y6 + ~[98/7 + 20/6 - 48/89112] 
35 

98/7 = 98(3 .027643585)= 296.7090713 

20/6 = 20(2.644396595) = 52.8879319 

48/89112 = 48/[0.65833333 ;2.044396595 + 0.05833333 (2.644396595)] = 137.1353412 

:. Y8 = 2.044396595 +~[296 . 7090713 +52.88793 19 -137.1353412] 
35 

Y8 = 2.651429897 
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Y9 = Y7 + ~[98/s +20/7 - 48'/;01112 ] 
35 

98/s =98(3.35142987) = 328.4401273 

20/7 = 20(3.027643585) = 60.5528717 

48/101 /12 = 48/[0.75833333;2.327643585 + 0.05833333(3 .027643585)] = 156.600906 

:. Y9 = 2.327643585 + ~ [328.440 1273 + 60.5528717 - 156.600906] 
35 

Y9 = 3.019611321 

YIU =ys + ~[98/9 + 20/s - 48'/;13/12 ] 
35 

98/9 = 98(3.919611321)=384.1219095 

20/s = (3.35142987) = 67.0285979 

48/ 13112 = 48/[0.85833333;2.651429897 + 0.0583333 3(3.35142987)] = 177.8526317 

: . YIO = 2.651429897 + 2J. [384.1219095 + 67 .0285979 - 177.8526317] 
35 

YIO = 3.437195236 

Scheme 4: 

h 
YI1+2 = YI1 + IS [51/'1+1 + 10 /" - 25/',_315 1 n = 0,1,2 .... .. ...... ..... (4 .6) 

Y2 = Y o + ~~1 [51/, + 10/0 - 25 / 3/5 ] 

51/, = 51(1.21)= 61.71 

1010 = 10 (1) = 10 

25/3 / 5 = 25/[0.06 ;1+0 .06(1)]= 28 

:. Y 2 =1+.2J.[61.71+10-28] 
18 

Y 2 = 1.24283333 

0.1 
Y3 =YI + - [51/2 + IO./; -25/8/ 5 ] 

18 
51/2 = 51(1.44283333) = 73.58449983 

10.!; = 10(1.21)= 12.1 

25/S/ 5 = 25/[0.16;1.11 + 0.06(1 .21)] = 33.565 

: . Y3 = 1. 11 + 2J. [73.58449983 + 12.1 - 33.565] 
18 

Y3 = 1.399552778 
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Y4 =Y2 +~[511) + 1012 -25.1; 3/5 ] 
18 

511) = 51(1.699552778) = 86.67719168 

1012 = 10(1.44283333) = 14.4283333 

25.1;3 15 = 251[0.26;1.24283333 + 0.06(1.44283333)] = 39 .73508325 

:. Y4 = 1.24283333 + ~ [86.67719168 + 14.4283333 - 39.73508325] 
18 

Y3 = 1.583780231 

Y5 =Y3 +~[5 114 + 10/ 3 -25.1; 8/5 ] 
18 

51/4 = 51(1.983780231) = 101.1727918 

10/3 = 10(1.699552778) = 16.99552778 

25.1;8/5 = 25/[0.36;1.399552778 + 0.06(1.699552778)] = 46.5314862 

:. Y5 = 1.399552778 + ~ [1 0 1.1727918 + 16.99552778 - 46.5314862] 
18 

Y5 = 1.797498172 

Y6 = Y4 + ~~ [5 1/5 + 10/ 4 -25/2315 ] 

51/5 = 51(2.297498172) = 117.1724068 

10/4 = 10(1.983780231) = 19.83780231 

25/231 5 = 25/[0.46;1.583780231 + 0.06(1.983780231)] = 54.07017612 

:. Y6 = 1.583780231 + ~ [I 17.1724068 + 19.83780231 - 54.070 17612] 
18 

Y6 = 2.044558192 

Y7 =Y5 +~[5116 + 1015 -25/2815 ] 
18 

5116 = 51(2.644558192) = 134.8724678 

10/5 = 10(2.297498172) = 22.97498172 

25/2815 = 25/[0.56;1.797498172 + 0.06(2.297498172)] = 62.38370156 

.:. Y7 = 1.797498172 + ~ [134.8724678 + 22.97498172 - 62.38370 156] 
18 

Y7 = 2.327852329 
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Ys = Y6 + ~~ [51/7 + 10/ 6 - 25/3315 ] 

18 
51/7 = 51(3.027852329) = 154.4204688 

10/6 = 10(2.644558192) = 26.44558192 

25/
3315 

= 25/[0.66;2.044558192 + 0.06(2.644558192)] = 71.58079209 

:. Ys = 2.044558192 + QJ. [154.4204688 + 26.44558192 -7 1.58079209] 
18 

Ys = 2.6516985 I 8 

Y9 =Y7 + QJ.[5 I/ s +10/7 - 25/3815 ] 
18 

51/s = 51(3.451698518) = 176.0366244 

10/7 = 10(3.027852329) = 30.27852329 

25/3815 = 25/[0.76;2.327852329 + 0.06(3.027852329)] = 81.73808672 

: . Y9 = 2.327852329 + QJ. [176.0366244 + 30.27852329 - 81.73808672] 
18 

Y9 = 3.019918073 

YIO =Ys +QJ.[51/9 +10/s -25/4315 ] 
18 

51/9 = 51(3.919918073) = 199.9158217 

10/s = 10(3.451698518) = 34.51698518 

25/4315 = 25/[0.86;2.651698518 + 0.06(3.451698518)] = 95.97000228 

:. YIO = 2.651698518 + QJ. [199.9158217 + 34.51698518 - 95.97000228] 
18 

YIO = 3.437602941 

Scheme 5: 

Y II+2 = YII+ I + 1~ [23/',+1. -16/" + 5/,,_, ],n = 1,,2 ..... .... .. ........ (4.7) 

0 .1 f f YJ = Y2 + - [23 2 - 16 I + 5 f o ] 
12 

Let YI = 1.1103, Y2 = 1.2428 

5/0 = 5(1) = 5 

16.t; = 16(1.2103) = 19.3648 

23/2 = 23(1.4428) = 33.1844 

:. Y3 = 1.2428 + QJ. [33.1844 - 19.3645 + 5] 
12 

Y3 = 1.39963 
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Y4 =Y3 + ~; [23 / 3 -16/2 +5/,] 

5/, = 5(l.2103) = 6.0515 

1612 = 16(1.4428) = 23.0848 

23/3 = 23(l.69963) = 39.09149 

:. Y4 =l.39963 + 0.1[39.09149 -23 .0848 +6.0515] 
12 

Y 4 = l.58344825 

Y5 =Y4 +.2J.[2314 -1613 +512] 
12 

512 = 5(1.4428) = 7.2 14 

1613 = 16(\.6993) = 27.1888 

2314 = 23(1.98344825) = 45.61930975 

0.1 [ ] :. Y5 = 1.58344825 + - 45.61930975 - 27.1888 + 7.214 
12 

Y5 = 1.797152498 

Y6 =Y5 + 0.1 [231 -16/6 +5/sJ 
12 

51, = 5(l.6993) = 8.4965 

16/4 = 16(l.98344825) = 3l.735172 

23 15 = 23 (2 .297152498 ) = 52.83450715 

Y6 = 1.797152498 +.2.J.[52.83450715 -31.735172 + 8.4965] 
12 

Y6 = 2.04378446 

Y7 =Y6 +~ [2316 - 1615 +51J 
12 

514 = 5(1.98344825) = 9.91724125 

1615 = 16(2.297152498) = 36.75443997 

2316 = 23(2.64378446) = 60.80704258 

:. Y7 = 2.04378446 + ~ [60 .80704258 - 36.75443997 + 9.91724125] 
12 

Y7 = 2.326866492 
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Ys =Y7 +~[23/7 - 16/6 +5/sl 
12 

515 = 5(2 .297152498) = 11.48576249 

16/6 = 16(2.64378446) = 42.30055136 

23/7 = 23(3 .026866492) = 69.61792932 

: . Ys = 2.326866492 + ~ [69.6 1792932 - 42.30055136 + 11.48576249] 
12 

Ys = 2.650225996 

Y9 = Ys + ~[23 /s - 16/7 + 5/J 
12 

5/6 = 5(2.64378446 ) = 13 .2189223 

16 / 7 = 16(3 .626866492 ) = 48.42986387 

23 Is = 23 (3 .450225996 ) = 79.35519791 

:. Y9 = 2.650225996 + ~ [79.35519791 - 48.42986387 + 13 .2 189223] 
12 

Y9 = 3.018094799 

Y,o =Y9 +~[23/9 - 16/s + 517] 
12 

517 = 5(3.626866492) = 15.13433246 

16/s = 16(3.450225996) = 55.20361594 

23/9 = 23(3.918094799) = 90.11618038 

:. Y ,o = 3.018094799 + ~ [90.11618038 - 55.20361594 - 15.13433246] 
12 

YIO = 3.435152273 

Scheme 6: 

Y,,+2 = y,,+, + ~; [35/" +',+3/" - 24/'1+7112 1n = 1,2 ......... ... ............ (4 .8) 

y, = 1.11 

Y2 =y, +~ [35J; +3/0 -24/',+7112 ] 
14 

35 J; = 35(1.21) = 42.35 

3/0= 3(1)=3 

24/7112 = 24/[0.0583333;1 + 0.05833333(1)] = 26.79999984 

:. Y2 = 1.11 + ~ [42.35 + 3 - 26.79999984] 
14 

Y2 = 1.2425 
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Y3 = Y2 + 2.:![35/2 + 3~ - 24.1;9112 ] 
14 

35/2 = 35(1.4425) = 50.4875 

3/1 = 3(1.21) = 3.63 

24~ 9/12 = 24/[(0.15833333;1.11 + 0.0583333(1.21)] = 32.13399982 

: . Y3 = 1.2425 +.2:! [50.4875 + 3.63 - 32.13399982] 
14 

Y3 = 1.399525001 

Y4 =Y3 +.2:![35/3+3/2 - 24/31112] 
14 

35/3 = 35(1.699525001) = 59.48337504 

3/2 = 3(1.4425) = 4.3275 

24/311 12 = 24/[0.2583333;1.2425 + 0.0583333(1.4425)] = 38.0394998 

0.1 [ ] :. Y4 = 1.399525001 + - 59.48337504 + 4.3275 - 38.0394998 
14 

Y4 = 1.583606257 

Ys = Y4 +2.:![35/4 +3/3 -24/43 /12 ] 
14 

35/4 = 35(1.983606251) = 69.42621849 

3J; = 3(1.69952500 I) = 5.098575003 

24/431 12 = 24/[0.3583333;1.3995205001 + 0.05833333(1.69952500 I)] = 44.56793481 

:. Ys = 1.58360251 +.2:! [69.42621849 + 5.098575003 - 44.56793481] 
14 

Ys = 1.797583815 

Y6 = y s + .2:![35/s +3/4 -24/ss112 ] 
15 

35/s = 35(2.297583815) = 80.41543353 

3/4 = 3(1.983606251) = 5.950818753 

24/ss/12 = 24/[0.45833333;1.583606251 + 0.05833333(1.983606251)] = 51.78359854 

:. Y6 = 1.797583815 +.2:! [80.41543353 + 5.950818753 - 51. 78359854] 
14 

Y6 = 2.044602694 

Y 7 = Y 6 + ~41 [35/6 +3/s -24/67112 ] 

35/6 = 35(2.644602694) = 92.56109429 

3/s = 3(2.29583815) = 6.89261445 

24/67 112 = 24/[0.5583333;1.797583815 + 0.0583333(2.297583815)] = 59.75862864 

Y7 = 2.32813993 
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Ys = Y7 + QJ [35/7 + 3/6 - 24/791 12 ] 
14 

35/
7 

= 35(3.02813993) = 105.9848976 

3/
6 

= 3(2.644602694) = 7.933808080 

24/ = 24/[06583333)2.044602694 + 0.0583333(2.644602694] = 68.57290814 79112 . 

:. Ys = 2.32813993 + ~ [I 05.9848976 + 7.9338082 - 68 .57290814] 
14 

Ys = 2.651245337 

Y9 =Ys +~ [35fs +3/7 -24/91 /12 ] 
14 

35/M = 35(3.451245337) = 120.7935868 

3/7 = 3(3.02813993) = 9.08441979 

25/911 12 = 25/[0.7583333;2.32813993 + 0.05833333(3.02813993)] = 78.314751 

:. Y9 = 2.651245337 + ~[120.7935868 + 9.08441979 - 78.314751] 
14 

Y9 = 3.019554283 

YIO = Y9 + ~[35/9 + 3/8 -24.1; 03112 ] 
14 

35/9 = 35(3.919554283) = 1.37.1843999 

3/8 = 3(3.451245337) = 10.35373601 

24.1;03/12 = 24/[0.8583333;2.65124337 + 0.0583333(3.451245337)] = 89.061628 

:. YIO = 3.019554283 + ~[137.1843999 + 10.35373601- 89.061628] 
14 

YIO = 3.437104808 
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4.0 Comparison of Results 

In the same way we solve the following problem y' = x + y;y(O) = 1,h = 0.1 using 

the six new scheme::, . Their results are obtained and compare for accuracy. The problem is 

solved on computer using Microsoft excel software package. 

The results obtained from the six new schemes are compared with the exact 

solution and 3- stage Runge-kutta method. Note that Range-Kutta method is taken as a 

reference method. 
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X 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

TABLE 4.1 

PROBLEM: Y' = x + y;y(o) = l;h = 0.1 

EXACT: YECx) = 2ex-x-1 

Exact solution Yn+2 = Yn + 2hfn+1 £RROR 

1.110341836 1.1103 4.0836£-05 

1.242805516 1.24206 7.45516£-04 

1.399717615 1398712 1.005615£-03 

1.583649395 1.5818024 1.846995£-03 

1.597442541 1.7950724 2.370141£-03 

2.0442347601 2.0408168 3.42080 I £-03 

2.327505415 2.3232357 4.269715£-03 

1.651081857 2.6454639 5.167957£-03 

3.019206222 13.0123284 6.877822£-03 

3.436563657 3.279295 8.634157£-03 

Yn+1 = Yn +~[kl +3kJ 
4 

I 1103333333 

1.242786666 

1.399643897 

1.583556447 

1.797327133 

2.044096037 

2.327333485 

2.650876197 

3.01896004 

3.436270638 
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£RROR 
Yn+2 = Y + ~ [7 fn+1 - 2fn + /',-1 ] 

ERROR i 
I 
I 
; , 
I 

8.503E-06 1.1103 4.1836£-05 i , 
1 
i 

1.885£-05 1.2428 5.516£-06 
! 

7.3718£-05 1.39960 1.17615£-04 

9.2940£-05 1.58353 1.19395£-04 

1.15408£-04 1.797210333 2.32221 £-04 
I 

-

1.41564£-04 2.043963744 2.73857£-04 

1.7193£-04 2.327105318 4.00097£-04 , , 
I 

2.05373E-04 2.650597746 4.84111 £-04 

2.4642E-04 3.018571088 6.35134£-4 I 
i 

2.93019£-04 3.435794647 7.6901£-04 I 
I 



TABLE 4.2 

PROBLEM: y' = x+ y;y(O)= l;h = 0.1 

EXACT: Y E(X) = 2ex 
- x-I 

Exact solution y,,+2 = y" + 2hfn+\ 

0.1 1.110341836 1.1103 

0.2 1.242805516 1.24206 

0.3 1.399717615 1.398712 

0.4 1.583649395 1.5818024 

0.5 1.797442541 1.7950724 

0.6 2.044234601 2.0408168 

0.7 2.327505415 2.3232357 

0.8 2.651081857 2.6454639 

0.9 3.019206222 3.0123284 

1.0 3.436563657 3.4279295 

---- -- -

ERROR 
YI1+2 = YI1 + ~[8/'7+\ - 4In+;; + 21n ] 

ERROR 

4.1836E-05 1.11 3.41836E-04 

7.45516E-04 1.2426667 1.3889E-04 

1.005615E-03 1.39931111 4.06505E-04 

1.846995E-03 1.583454078 1.95317E-04 

2.370141 E-03 1.796922717 5.19824E-04 

3.420801E-03 2.04375417 4.83431 E-04 

4.269715E-03 2.326816163 6.89252E-04 

5.6217957E-03 2.650363 i 714 7.18686E-04 

6.877822E03 3.01827824 9.26398E-04 

8.634157E-03 3.4554494 1.8885743E-02 
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TABLE 4.3 
PROBLEM: y/ = x+ y;y(O)= 1;h = 0.1 
EXACT: Y E(X) = 2ex 

- x - 1 

X Exact solution y n+2 = Y n+ 2hln+l 

0.1 1.110341836 1.1103 

0.2 1.242805516 1.24206 

0.3 1.399717615 1.398712 

0.4 1.583649395 1.5818024 

0.5 1.797442541 1.7950724 

0.6 2.044237601 2.0408168 

0.7 2.327505415 2.3232357 

0.8 2.651081857 2.6454639 

0.9 3.019206222 3.0123184 

1.0 3.436563657 3.4279295 

ERROR h 
YIl +2 = Yn + 35 [98fn+l - 481n+7 /12 + 201n] 

ERROR 

4.1836E-05 1.1 1.0341836E-02 

7.45516E-04 1.24280 5.516E-06 

1.005615E-03 1.399504 2.13615E-04 

1.846995E-03 1.583689472 4.5325E-05 

2.370141E-03 1. 797382 17 6.0371E05 
I 

3.420801 E-03 2.044396595 1.58994E-04 I 

4.269715E-03 2.327643585 1.3817E-04 

5.6217957E-03 2.651429897 3.4804E-04 

6.877822E03 3.019611321 3.49101E-04 

8.634157E-03 3.437195236 6.31579E-04 

- -
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~r1LJ](j~~.~'~--------

PROBLEM: y' = x + y;y(O) = l ;h = 0.1 
EXACT: Y E(X) = 2ex 

- x-I 

X Exact solution y n+2 = yn+2 + 2h/"+1 

0.1 1.110341836 1.1103 

0.2 1.242805516 1.24206 

0.3 1.399717615 1.398712 

0.4 1.583649395 1.5818024 

0.5 1.797442541 1.7950724 

0.6 2.044237601 2.0408168 

0.7 2.327505415 2.3232357 

0.8 2.651081857 2.6454639 

0.9 3.019206222 3.0123184 

1.0 3.436563657 3.4279295 

ERROR h 
Yn+2 = y" + 3" [51/n+1 +20/" -25/11+3/ 5 

ERROR 

4.836E-05 1.1 1.0341836E-02 

.-
7.45516E-04 1.24283333 2.7814E-05 

1.005615E-03 1.399552778 1.64837E-04 

1.846995E-03 1.583780231 1.30836E-04 

2.370141E-03 1.797498172 5.5631E-05 

3.420801E-03 2.044558192 3.20591E-04 

4.269715E-03 2.327852329 3.46914 E-04 

5.6217957E- 2.651698518 6.16661 E-04 
03 
6.877822E03 3.019918073 6.55853E-04 

8.634157E-03 3.437602941 1.039284E-03 

--
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i..--.-.------1 A!5"Cf:. 4:~ 

PROBLEM: y' = x+ y;y(O)= l;h = 0.1 
EXACT: Y EeX) = 2ex 

- x - I 

X Exact solution h 
yn+2 = Yn+1 + 2" [3In+1 - In] 

0.1 l.110341836 l.1103 

0.2 1.242805516 1.2428 

0.3 1.399717615 1.398705 

0.4 1.583649395 1.58137075 

0.5 1.79744254 1 1.795919758 

0.6 2.044237601 2.041239184 

0.7 2.327505415 2.322629073 

0.8 2.651081857 2.64396 1475 

0.9 3.019206222 3.009424243 

1.0 3.436563657 3.423639805 

ERROR h 
Yn+2 = Yn+1 + 12 [23ln+1 -16/" + 5/n_l ] 

ERROR 

4.1836E-05 1.1103 4.1836E-05 

5.516E-06 1.2428 5.516E-06 
, 

1.012615E-03 1.39963 8.7615E-05 

2.278645E-03 1.58344825 2.01145£-04 

1.522784£-03 1.797152498 2.90043£-04 

2.998418E-03 2.04378446 4.53 141 £-04 

1.214683£-03 2.326866492 6.38923£-04 

7.120382£-03 2.650225996 8.55861 £ -04 

9.837978E-03 3.018094799 1.1 67421 £-03 

1.2923852£-02 3.43512273 1.440927£-03 
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X 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

l.0 

TABLE 4.6 
PROBLEM: y' = x+ y;y(O) = l;h = 0.1 
EXACT: Y EeX) = 2ex 

- x-I 

Exact solution 
YI1+2 = YI/+I + ~ [3/'1+1 - 1,,] 

1.11 0341836 1.1103 

1.242805516 1.2428 . 

1.399717615 1.398705 

1.583649395 1.58137075 

1.797442541 1.795919758 

2.044237601 2.041239184 

2.327505415 2.322629073 

2.651081857 2.643961475 

3.019206222 3.009424243 

3.436563657 3.423639805 

£RROR 
Y,,+2 = Y n+1 + 1: [35In+1 - 31" + 20 

£RROR 

4.1836£-05 1.11 1.0341836£ -02 

5.516£-06 1.2425 3.055 16£-04 

1.012615£-03 1.399525001 1.97605£-04 

2.278645£-03 1.583606251 4.3144£-05 

1.522784£-03 1.797583815 1.41 272£-04 

-
2.998418£-03 2.044602694 3.65093£-04 

1.214683£-03 2.32813993 6.34515£-04 

7.120382£ -03 2.651245337 1.6348£ -04 

9.837978£-03 3.019554283 2.92063£-04 

1.2923852£-02 3.437104808 5.41151 £-04 

------~ 
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4.1 Analysis Of Results 

From the Table above, the 3-stage Runge-Kutta method and the new schemes are 

more accurate than the old scheme, as th ey both produces less error [up to 4 decimal 

places] than the old scheme with error [up to 3 decimal places). However, the new 

schemes are better because they are I ess rigorous in computation and have less 

e-kutta method computational steps than the 3-stage Rung 

4.2 Estimation of Error 

When solving an initial value probl em we can achieve better results by varying 

the step size, Mathew (1992), stated that on e way to guarantee accuracy of an initial value 

g step sizes h and liz h and compare answers at problem is to solve the problem twice usin 

the mesh P?ints corresponding to the larger sizes. 

: We solve the differential equation y' = x + y; y(O) = 1, using the six new methods 

, 
at different step sizes: 0.1 and 0.05. The res ults obtained are as follows: 

TABLE 4.7 

PROBLEM: y' = x + y;y(O) = 1 

SCHEMEl 

. ERROR 

X h =0.1 

0.1 4. 1836E-05 

0".2 5.516E-06 

O.~ 1. 1761S0E-04 

0.4 1. 1 93950E-04 

O.S 2.32221 E-04 

0.6 2.738S7E-04 

0.7 4.00097E-04 
. 

0.8 4.84111E-04 

0.9 6.36134E-04 

1.0 7.6901E-04 

h 

O. 

O. 

6. 

1. 

2. 

3. 

=0.05 

OOOOE+OO 

OOOOE+OO 

369674E-06 

384452E -05 

262239E-05 

292693E-OS 

4.5 00701E-05 

914550E-05 

66011E-05 

91111E-05 

5. 

7.5 

9.4 
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TABLE 4.8 

PROBLEM: y' = x + y;y(O) = 1 

SCHEME 2 

ERROR 

X h=O.l h=0.05 

0.2 l.3889E-04 3.582787E-06 

0.4 l.95317E-04 1.297789E-05 

0.6 4.83431E-04 2. 620024E-05 

0.8 7. 18686E-04 4.452837E-05 

1.0 1. 8885743E-02 6.960880E-05 

TABLE 4.9 

PROBLEM: y' = x + y;y(O) = 1 

SCHEME 3 

ERROR 

X h=O.l 

0.2 5.5160E-06 

0.4 4.5325E-05 

0.6 1.58994E-04 

0.8 3.4804E-04 

l.0 6.31579E-04 

TABLE 4.10 

PROBLEM: y' = x + y;y(O) = 1 

SCHEME 4 

h=0.05 

4.6658637-05 

7. 1446160E-05 

7.5592420E-05 

5.7844768E-05 

1.4584462E-05 

ERROR 

X h=O.1 h=0.05 

0.2 2.7814E-05 4.0834528E-05 

0.4 1.30836E-04 1.0112339E-04 

0.6 3.20591E-04 1.8704635E-04 

0.8 6. 16661E-04 3.06706610E-04 

1.0 l.03984E-03 4.7062378E-04 
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TABLE 4.11 

PROBLEM: y' = x + y;y(O) = 1 

SCHEMES 

ERROR 

X h=O.1 h=0.05 

0.2 5.5160E-06 0.0000+00 

0.4 2.011450E-04 2.6470768E-05 

0.6 4.53141E-04 6.4716830E-05 

0.8 8.55861E-04 1. 1859986E-04 

1.0 1.440927E-03 1.9317018E-04 

TABLE4.U 

PROBLEM: y' = x + y;y(O) = 1 . 
SCHEME 6 

ERROR 

X h=O.1 h=0.05 

0.2 3.055160E-04 4. 148045E-05 

0.4 4.3144E-05 1.559357E-04 

0.6 3.65093E-04 3. 190551E-04 

0.8 1.6348E-04 5.467672E-04 

1.0 1.792493E-03 8.5%782E-04 

For the differential equation y' = x + y;y(O) = 1, using scheme 1 as example, the error for 
I 

h = 0.1 at x = 1 (bilile 4.7) is 7.6901 x 10-4. This error is reduced to 9.491111 x 10'!! when 

h = 0.05 (table 4.8). The same trend is noticed for the other five methods, this further 

shows us that the rate of convergences increases as step length h decreases. 
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CHAPTER FIVE 

5.0 DISCUSSION, CONCLUSION AND RECOMMENDATION 

5.1 Discussion 

In this work we have been able to derive new Quasi - Runge - Kutta methods by 

refinement process. 

These methods are 

1. 
h 

Yn+2 = Yn +"3 [7 f n+1 - 2fn + fn-I ] 

2. 

3. 

4. 
h 

Yn+2 = Yn + 18 [51fn+1 + 10 /" - 25/'1+3 /5] 

5. 

6. 

We have also solved differential equation using the six new methods. To assist us 

in solving differential equations, a computer implementation program using Microsoft 

excel software package was used. 

5.2 Conclusion 

Since we have used the methods to solve different equation, we can conclude that 

the six new Quasi-Runge-Kutta methods are accurate as they produce results which are 

comparable to those produced by other similar methods C3-stage runge-kutta and linear 

multi-step methods). 

70 



5.3 Recommendation 

The main business of numerical analysis is to provide us with computational 

methods for the study and solution of mathematical problems. 

However, most numerical methods give answers that are only approximations to 

the desired solution. Consequently, numerical results are seldom free of errors. It is 

recommended that further work be done in this direction to develop methods with higher 

accuracles 
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