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ABSTRACT

- One of the major tasks of numerical analysis is that of solving differential equations.
The goal, target and objective of numerical analysis are to replicate the exact solutions or at
least produce solutions that are very close to exact solutions. Hence, the closer such solutions
are to the exact solutions, the better the method. In this research work, we examine the
existing processes, how they are derived and their limitations. Based on such analysis, we
derived, some Quasi-Runge-Kutta methods, through a refinement process, for the solution of
initial value problems. For acceptability, the schemes so derived are tested for consistency,
zero-stability, and convergence. Also provided, is an example of initial value problem solved
with the new methods and their results help to establish their high degree of accuracy.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background Of The Study:

The use of simple operations to find approximate solutions to complex problems
constitutes the main goal of numerical analysis. One of the major tasks of numerical
analysis is that of solving differential equations, which are just felationships involving an
independent variable X, a dependent variable y, and one or more differential coefficients

of y with respect to x — An example of differential equation is

Differential equations represent dynamic relationships, i.e quantities that change,
and are thus frequently occurring in scientific, engineering, as well as social problems.
The solution of a differential equation thus provides solution to the physical problem it
represents.

Solutions to differential equations were derived using analytical or exact methods.
Those solutions are often useful as they provide excellent insight into the behavior of
some systems. However, analytical solutions can be derived for only a limited class of
problems. These include those that can be approximated with linear models and those that
have simple geometry and low dimensionality Consequently, analytical solutions are of
limited practical value Because most real life problems are non-linear and involve
complex shapes and processes. |

In such cases, where differential equation defies solution analytically, an
approximate solution is often obtainable by the application of numerical methods.
Numerical methods are techniques by which mathematical problems are formulated so

that they can be solved with arithmetic operations. This means that the relevant particular




solution is obtained as a set of function values for the range 9f values of the independent
variable, This set of points is an approximation of exact solution at these points.
A variety of methods have been derived for solving differential equations. These
methods can b; classified into two:
One-step and mt.xltistep methods.
| One-step methods permit the calculation of y;.;, given the differential equation
and y;. They utilize information at a single point x; to predict a value of the dependent
variable y;.; at a future point x;:;. Runge-Kutta methods are members of this family.
Multi-step methods require additional values of y other than at i. Multi-step
methods are based on the insight that, once the computation has began, valuable
information from previous points is at our disposal. Some famous sub-classes are Adam-
Moulton and Adam-Bash forth methods. Various feasons determine the choice of one
method over another, two obvious criteria being speed and accuracy. However, the advent
of fast and efficient digital computers has increased dramatically the role of numerical
methods in solving scientific, engineering as well as social problems. Scheid (1998).

1.2 Definitions:

1.2.1 Differential Equation
A differential equation is an equation involving an unknown function and one or

more of its derivatives. It is a relationship between an independent variable x, a dependent

variable y, and one or more differential coefficients of y with respect to x, e. gzx—y =x+y

1.2.2 Initial value Problem (IVPs)
A first order differential equation, y’ = f(x+y), together with an initial condition,
Hx,)=y, constitutes an initial value problem,

y =f(x,y)y(x0),x 50 Byessensnssnnrs (1.2)



1.2.3 Numerical Solution Techniques:

We wish to solve the standard initial value problem given by equation (1.2) above.
Since analytical or exact solutions are not always possible to find, it is essential to work
with techniques which work without then. One approach is the numerical analysis, which
tries to find good algorithms to approximate solutions. This simply means finding
procedures by which computers can do the solving forus. .
1.2.4 Numerical Method:

A numerical methods can be defined as a differential equation that involves a
number of consecutive approximations yn+j, j=0,1...k, from which it will be bossible to
comfmte sequentially the sequence y,, {n=0,1,2...n}. Lambert (1991). Although

numerical methods for IVPs can take many forms, all of them can be written in the

general form,
k
>ay,.,= htbf(y,, koY metseeeree VX B) con o (1.3)
Jj=0
yi=pith),i=0,1, ......k-1 .............(14)
Where subscrip't f indicates that the dependence of ¢ on Yaw, Yaskel...........¥n, X iS

through the function f(x,y) and [p; (h)] i=0,1... ... k-1 are the initial points.
Patrizia (2001).
1.2.5 Convergence:
A numerical method is convergence if
lim , = y(x)
h—0
For all x over the finite interval [x,,x,] i.e if the sequence of improved values converge

to the true value of y. A method is not convergent is said to be DIVERGENT.

Patrizia (2001).




1.2.6 Local Truncation Error
The local truncation Error ta1 of the one-step scheme is given by

b = W% )- ¥(x,)-hgx,, y(x, 1)
Where y(x) is the true solution to the IVP.
The local truncation error simply put, is the amount by which the true solution of the IVP
fails to satisfy the first order differential equation, under the simplying assumption that
the previous solutions are exact. i.e », =Hx.).
1.2.7 Total Truncation Error

The total truncation error is the difference between the solution y(xn+1) and yn+1
(The solution calculated after n+1 steps).

Cn+1: //y(x..ﬂ)-y.ﬂ// RN -

1.3 Aims And Objectives:
The aim of this study is to derive High Order Quasi-Runge-Kutta methods by a
Refinement Process for the solution of initial value problems.
The objectives of the study include the following:
i) To derive new methods which have less computation steps than the Runge-
Kutta methods.
i)  To verify the accuracy of the methods by making comparison with the exact
.solulions and reference method (Runge-Kutta methods).

ili)  To use the methods to solve some differential equations.




CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Overview

The family of One-step methods for solving initial value problems offers a wide
range of methods which are further grouped into subclassés. A great many methods have
been developed in this direction, and yet other are still being developed. Many have
undergone changes to improve their accuracies, or their error control strategies or shed
more liglit on their behaviors in general.

‘ DAVID RUNGE (1895), in his paper on the numerical solutions of differential
equations put forward a method for solving first order differential equations (Specifically,
IVP), that achieved a higher order than the linear multistep methods (LMM), by
sacrificing the linearity of the algorithm while preserving its one-step nature. His method
involves extending the approximations of the improved Euler method further, so as to
obtain a one-step method having a higher order of accuracy. This is because one-step
methods, have the advantage of permitting a change of mesh length at any step, since no
starting process is required. Since the time of Runge, many researchers have taken
advantage of the flexibility of the method to derive schemes either to improve accuracy or
error control strategies.

HEUN (1900), put forward the following third-order formula for a three stage method.
h
yml 5 yn = Z(kl +3k3)

klzf(xnyn)
h h
k= +—,y,+—k

2h 2h
k=f (xn+?;yn+?k2)



|
He reckoned that Runge’s work could be further extended to include terms up to order h?
previously ignored by Runge.

WILHELM KUTTA (1901), extended the method of Runge further to systems of
equations. Thus, this method has come to be known as the R'unge-Kutta method. Kutta’s

third order rule is given by

i "
Yuri—Ys= Z(kx +4k, +k,) i

k=1 (%,7,)

h h
k2= f(xnfz;yn-'-EKl)
ky=f(x,+h,y,—2hk,)

According to Lambert (1973); “it is most popular third order Runge-Kutta
Method, for desk computations (largely because the coefficient ' is preferable to Y,
which appears frequently in Heun’s method)”.

MERSON (1957), was the first to propose the idea of deriving a special R-K method,
which would admit an easily calculated error estimation, which does not depend on

quantities calculated at previous steps. Merson’s method is

h
Yar1—Va= E(Kl + 4k ,+k )

kl= f(xn’yn)
k2= f(xn+!31;yn+§kl)

h h
k3= f(xn+-3-;yn+-6—(kl +k2)

h h 3
k= +—;y,+—k +=hk

ks = f(x,+h,y, —hk, +2hk,)

and it is defined by the butcher tableau below:




1 /3 1 /3
bl % %
A Yo g

1 % o h 2

Yo o o s .
The above method, has order four and an estimate for the local truncation error given by
30 Ta+1 =h (-2k; + 9ka+8kstks)

This method has been widely used for non-linear problems, although the error estimate is
valid only when the differential equation is linear in both x and y, that is of the form:
y'=ax+by+c |

Merson’s idea, is to derive R-K methods of order r and r+1, which share the same set of
vectors (k;).

BUTCHER J.C (1963, 1976), in a long series of papers starting in the mid-sixties, has
developed various theories out of the Ruge-Kutta method. Notable among his theories
are,

@) An S-stage explicit R-K method, cannot have order great than s, '

(i)  There exists no five-stage explicit R-K method of order five he also established
the order condition for all class of Runge-Kutta method. Below is the
representation of Runge-Kutta scheme, in Matrix notation, a form know as the

Buicher Tableau. Recall the general S-stage Runge-Kutta method.

Vu—Yn=hY bk,

i=1

i=1




Call the b;’s the weights, the ¢;’s the abscissas, and the k;'s the slopes. Butcher defined the
s-dinmsiomlvectorscandbmdﬂ\esxsmatrixA,byc$[c;, €2,......Cs]" and b = [by,

by, .. bs]" and A = [a;]. Then method expressed conveniently as Butcher tableau

C |A = ci| an an aa.......ap
b ; C2|an axn a3..........8
C3 | M1 832 433.50 50000838
Cr| @1 @2 83..........8s '
by b bs..........bs
Will assume

5-1
=Y a,i=12,..5
Iz

One important use to which the Butcher tableau could be put, is in determining the type
of the method (i.e explicit, implicit, and semi-implicit).
i) If “A” is strictly lower triangular => explicit method; calculate k; explicitly; then
ks, e.t.c, up to ki,
i) If 3 a3=0,j>1=>implicit method:
Requires a system of sxs (non-linear) equations be solved per step.
i) Ifa;=0,J>1 and 3 a;# 0 => semi-implicit;
Requires s scalar (non-linear) equations be solved per step.
SCRATON (1964), derived a fourth-order estimate which admits an error which is valid
for a non-linear differential equation, unlike merson’s, the method is as below:

17, 81, 32, 250
= B el et e
Yo=Y .(162 ST T T )




kl=f(xn’yn)
2h 2h
= — —k
ko= f(x+=my =)
h h h
k3= f(xn+_3-syn+I-2—kl+zk2)

3h 3k
k=f [x..+T,y,+1—2§(23k,—81k2+90k3)]

9h Sh
k= +—.y +——[-345k,+2025k —1220k ,+544k
= flx, 10 3Yn 10000 [ 1 2 3 4‘]

He gave the estimate for the local truncation error as:

T, = hq%

Where

-1, 21 4, 25
= — +-—————--—k ——
B "ok, 15 1830

=£k1"ﬂkz ﬂ"3—il‘74
24 8 20 15
s=ki'k;

Although, Scraton’s estimate was more realistic than merson’s when applied to a
general non-linear differential equation, it has the disadvantage that it is not linear in the
krs. As aresult, it is applicable only to a single differential equation and does not extend
to a system equations. As noted by Lambert (1973);

“in order to find a method which admits an error estimate which is linear in the k.,
and this holds for a general non-linear differential equation, or system of equation, it is
necessary 1o make a sacrifice in the form of additional functions evaluations”.
SHAMPINE and ALLEN (1973), developed a subroutine for solving the fourth-order R-

K methodwhich was different from Ralston’s fourth order R-K method.




HAIRER and WANNER (1981), showed that R-K method could be extended to orders
five and six which have the properties of order, stability and efficiency of implementation
to high extent. These authors classified all algebraically stable methods of an arbitrary
order and give various relationships between contractivity and order of implicit methods.
ONUMANYI, et al (1981), developed software for a method of finites approximations
for the numerical solution of differential equation, which was based on the Tau method.
According to them, problems with complex initial boundary conditions or mixed
conditions involving combinations of functions and derivative values, can be dealt with
by means of the;r program. Accordingly, encouraging results have been obtained in the
solutions of problems with regions of rapid variation, oscillatory behavior and in the
presence of stiffness.

BURRAGE (1987), examine the stability properties of some special class of multi-valued
methods known as multi-step R-K methods. He further constructed some families of
algebraically stable methods of arbitrarily high order for the solution of the first order
initial value problems. In particular, Burrage has studied the order conditions of these
methods, and has shown that one can always construct methods of order, 2s + r-1, where
2s denotes the highest order possible, and r-1, the number free parameters existing in the
methods.

DORMAND, et al (1989), considered the application of Runge-Kutta interpolation to
global error estimation. They brought some special formulae of orders two, four, and six
and went on to show that a pseudo-problem, which is based on dense output values within
any one step and reliable global error estimates could be mesh-points, by using the special
R-K formulae.

KEELING; (1989), constructed an implicit Runge-Kutta method with a stability function

having distinct real poles. Such methods offer computational speed up when used on

10



parallel machines (multiprocessor computers) with a modest number of processor.
Sometime, the method is called multiple implicit Runge-Kutta (MIRK) and hence due to
the so-called order reduction phenomenon, the poles of the (MIRK) are required to be
real.

BUTCHER and CASH (1990), derived a special class of implicit R-K methods of the
numerical solution of stiff IVP. They derived the formulae from simple implicit methods
by adding one or more extra diagonally implicit stages for the derivation they considered
singly implicit methods and in particular diagonally implicit methods.

They established that each class of methods offers some advantages over the
methods as well as some disadvantage for diagonally implicit methods, their limitation of
the stage order to 1, and the difficulty of finding high order for the methods as whole, or
of constructing realistic local error estimates, makes these methods unlikely candidates
for incorporating into highly accurate and efficient software.

JULYAN and PIRO (1992), investigates the dynamics of a continuous time system,
described by an ordinary differential equation. They attempted to elucidate the dynamics
of the Runge-Kutta methods, by the application of the techniques of dynamical system
theory to the maps produced in the numerical analysis. Their aim was to investigate what
pitfalls there may be in the integration of non-linear and chaotic systems.

ADEWALE (19?8), derived a new five-stage explicit one-step R-K method of order four
for the numerical solution of IVPs. The new methods aid computation through the use of
whole numbers instead of fractions as observed in existing methods of this form. This is
helpful, when the computations are performed manually as it reduces the number of
operations involved in the evaluation of the krs. He also provided a computer program

that uses the new schemes, to solve I'VPs.

11



The:new method with its corresponding Butcher tableau is as below:

h
Yai=¥~ E(Zk 1 +8k sk +k 5)

kl'—"-f(xmyn)

h h
k= =y vk
2 j(xn+3 yn+3 l)

h h
k= j(x,,+5k,+y,,+—2-k2)

k=f (xn+h,y"+h(—3kl+5k2— 3»

k= f(x,+hy,+h(3k~3k,+k,))

0 :
Ya Vs

Y2 0 %

1 3 5 -1

1 3 03 1

1/6 0 2/3 1/12 1/12

GARBA and YAKUBU (1999), derived a new R-K formulae of order five, which does
not require the use of error control strategy, but has better approximations than some

existing R-K formulae.




ADEBOYE, K.R and OCHOCHE, A (2006), developed a fifth order six-stage Runge-
Kutta method for solving initial value problem. The strength of the new scheme is that, it
gives solutions that are very close to the exact solution, even closer than somc;, popular
existing methods which are known to be highly efficient. Some initial value problems

were solved using the new scheme and the results help to establish its very high degree of

accuracy.
The new six-stage Runge-Kutta methods of order five is

y“,=y,,+—9"—0[7k,+7k2+12ks+32k,+32k6]

Where
kl'= f(xn’yn)

k= f(x, +hy +hk,)

k= /(x,,+g,y,,+h(l.249655737k,—-0.749655737k2))

" .
k=f (x,,+—5-, v,~h(0.0.701544263 1k,~0.5600588106k ,—0.341486157k , ))

h
k=1 (x,,+z, y,,—h(0.25710705k,+0.045073568k2+0.3 53037791k ,-0.341486157k, ))

3h
k= f(x”+7, y,,-h(o.754830268k,—0.290909052k,-o.331676697k3—1.359792241k,,))




22  Numerical Methods For Initial Value Problem (IVPs)

In the previous chapter, we made an introduction into what numerical methods
(solution techniques) for solving (IVPS) are all about. A great many of such methods
have been developed, and yet many more are still being’ produced. Although all the
methods have certain fundamental properties common to them all of them are classified
into different sub-classes, with specific characteristics peculiar to each class. It is this

classification of numerical method (solution techniques) we shall discuss in this ’chapter.

23 One-step Methods

One-step methods are numerical methods that determine the solution at the
support times through the reccursive formula

Voa =V, +hO(t,, ;€N ..o (2.0)

ie

k=1 in the formula

J=o
There are two families of one-step methods:

Method of Taylor and method of Runge-Kutta, i.e method of Taylor type are
further classified into Euler method and method of Taylor of greater order. However,
Euler method, if we take the first two terms of the Taylor series, which describes the

exact solution at X,+;
LIS
y(xm-l): Z"jy (xn)

to compute

14



)'(xl)z)’(xo)'*'hy'(xo):}’o +hf, =y,

After n steps it yields

Vou =Yy +H e (2.1)

Equation (2.1) above is called Euler’s formula or the Euler method, the simplest of the
numerical methods for solving first order differential equations. |
Although Euler method is simple in procedure, it is lacking in accuracy especially away
from the starter value of the initial condition. And it is of use only for very small values
of the interval h Stroud (1996).

Similarly, methods of Taylor of greater order, in order to obtain a numerical
method with greater order of accuracy than the Euler method, we could just as well take

more terms of the Taylor’s series expansion. A method of second order like this:

2

p By
yn+I=yn+hyn + _z_yn

Since y, = f (x,,,y,,)= f, then
2

k.
yn+l=yn+hyn+7frl

This implies the truncation error

h3
E,= y(x.)~y.=;y"(¢) ~0(h*)

2 k
More generally, a k-order numerical method is y,, =y, +hf ,,+£72— Yy Fm— % v

With a truncation error

k+1

n l)!y""l (©).¢ €lx,.x,]

E,=y(x)-y=

15




2.3.1 Runge-Kutta Methods

The idea of extending the Euler method, by allowing for a multiplicity of
evaluations of the function f within each steps, was originally proposed by Runge (1895),
further contributions were made by Heun (1900) and by Kutta (1901).

Given y, as an approximation to y(x,), where y satisfies the differential equation

Al

system.

Y(x)= f(x,3),y(%) = ¥, f : RR" > R"

The approximation y,., to ¥(y,.,) is computed by evaluating

Vua=Vuth bk, o (22)
i=1
where

k= f(x”+c,h,y,,+h2agkiJ L I WO SR X |
J=1

Lambert (1991)
An altemative term of the above, is,
y,;+1=y.+h§b.‘f(x,+c,h1.li=1,2,,,,,,s ,
where
Y=y, +hY af ey i=h s o

i=1

The two forms are equivalent by making the interpretation

k =f(x,+chY)i=12,.....5

Lambert (1991)




The integer S is the number of stages of the method and measure it’s complexity, since
the number of the evaluations of f per step equals s. The set (a;;,b) i=1, .. ,s of constants
characterize a particular method of this type.
The quantities Y; are approximations to solutions values y(x) to x ranging through various
values near x,. Also f(Y;) are approximations to ‘ v (x) at the same values X.

Patrizia (2001).

Runge-Kutta methods are often represented using the Butcher array as follows:

Cifan QD ssrwsimens d|s

Calidni  A2Duewwwnmvms ays

Cs WaIS 2 T —— dss
T b

An S-stage Runge-Kutta method is completely specified by its butcher array as
C|A
pT
C = [c1,62...¢5] ", b= {by, ba,....bs] ", A = (ay)
The components of C are the row sums of A
Lambert (1991)

From the definition a Runge-Kutta is consistent when
> b=1 Lambert (1991)
i=1 .

And when y,+| depends only upon the evaluations of the previous points f(y;); i=0,1,.....n,
ifaj=o forall | <i<j<s,itiscalled EXPLICIT. Otherwise it is said be IMPLICIT.

We present below some explicit Runge-Kutta methods:
One Stage:

The general s-stage Runge-Kutta method (1.9) becomes [-stage if we set b,=b3=10
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then

Vou = y(x,,)+ 1, B ——— -(2.5)

From the Taylor expansion follows that the best one can do is set bj=1, hence

Ensi = o(h?).

Thus there exists only one explicit one-stage Runge-Kutta method of order 1, nam;ely
Euler’s Rule. Lambert (1991)

Two Stage:

If we set by = 0, the method becomes two stage
W(x,,, )= y(x, )+ hlb, +b,)f +h*bye, F + %h’bchG (/20 W (2.6)

Where
Fi=fy + ffy, G:= fix + 2ff,y + f,,  Lambert (1991)

On comparison with the expansion for y(xp+),
y(x,)=ylx,)+ hf+%h2F+%h3 (Ef, +G)+ 0 Lo 2.7

we see that order 2 can be achieved by choosing

bi =1, b=k

There exist an infinite family of explicit two-stage
Runge-Kutta method of order 2
Two solutions yield well-known methods:
(1) The modified Euler (or improved polygon) method
bi=0,br=1, 2= "5

it Butcher array is




(ii)  The improved Euler (or Heun) method
bi=ba=%,c=1
It Butcher array is
0
11
o V2
Three stage:
By satisfying the following coefficient conditions.. one can achieve order 3
by+bytbs =1
bscy + bics = LA
bac2+bsc? =15
bsbaaza = /s
Two particular solutions lead to well known methods
(1) Heun’s third order formula.

it Butcher array is

0
AN
10 s

% 0 %

(i)  Kutta’s third order formula

it has the Butcher array




Four Stage:

The most popular Runge-Kutta scheme is the classical Runge-Kutta method of order
four (4), so popular is this method that when one sces a reference to a problem having
been solved by the Runge-Kutta method, it is most certainly the classical Runge-Kutta
method that has been used.

It has the following Butcher array.

0

10 %

1[0 0 1
Yo ' Vs e

The classical Runge-Kutta scheme is as follows:
h
Ynar=Vat 6 (k|+2k2+2k3+k4 )
Where

kl=f(xn’yn)

h h
k,= +—,y,+—k
2 f(xn 2 yn+2 l)

h h
k= +—,y,+=k
3 f(xn 7 Yn 2 2)_

k= f(x,+hy,+hk,)
The absence of k; in the evaluation of ks, and absence of k; ks in the evaluation of

ks may have played a role in making this method popular. However, Lambert (1991)

suggests another reason for the popularity of the method:




“in the pre-computer days, computations were performed on purely mechanical
devices. Multiplication or division was tiresome business on such machines. Since the
main computation is in the evaluation of the functions to produce the ki’s. That the ¢;’s
and a;’s are always either 1 or ¥ increased the chances of any division in the evaluation of
f terminating quickly”.

24 Multistep Methods:

As stated in the previous chapter, we can write a numerical method for solving

IVPs in the general form:

yi=(h) fori=o,... k-1

If k>1 in the above formula then the numerical method is called multistep, because it
determines the solution at the support times using k values. Patrizia (2001).

Linear multistep method. (LMM):

Let ya be an approximation to the theoretical solution at x,, that is, to y(x,), and let
fi=f(Xn,¥n,). Then, we say a linear multistep method of step number k, or a linear k-step
method is a computational method for determining, the sequence [y,] that takes the form
of linear relationship between yp+;, fr+, j = 0,1, ...... .k

Thus the general LMM may be written

k k
Zoaij:hZﬁ/,ﬁf ............... (2.9)

Where o; and B; are constants; we assume « =1 and that not both o, and B, are zero.
24.1 Adam-Bashforth Method

We consider the general Adams multi-step method
k
b TR L, — (2.10)
7=0

to approximate the solution y at y,+;, the equation (2.10) represent k-step method, since if
uses the k-previous values of the computation in order to compute the next value.
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If the coefficient By is zero i.e Px =0, then equation (2.10) define y,+1 explicity
interms of previous k values and such a method is called an explicit method or Adam-
Bashforth method.

An k-step Adam-Bashforth method has global truncation error of order 0 (h¥).
Examples are
(i) 1 - step Adam-Bashforth method which is Euler’s rule
Yua=Yuthf,
(i)  2- step Adam-Bashforth method which is midpoint rule
Yma=Yn=2Hf
ie V,.,=y,+2hf .,

(iii)  2-step Adam-Bashforth method
h
Yne2=Y n+l+5(3f wi- . n)

242 Adam-Moulton Method:

If the coefficient By is non-zero i.e By 0; the equation (2.10) define y,; implicitly,
thus is called implicit method or Adam-Moulton Method.

An k-step Adam-Moulton Method is of order 0(h**")

Examples
@ 1-step Adam-Moulton Method is the Trapezoidal Rule

h
yn+2=yn+§(.fn+l+fn)
(i)  2-step Adam-Moulton Method is the Simpson’s rule

h
ym-2=yn+§(.fn+2+4fn+l+fn)




CHAPTER THREE
3.0 DERIVATION OF QUASI-RUNGE-KUTTA METHODS

3.1 Finite Difference Method Error Term

A finite Difference is a mathematical expression of the form f(x +b)— f(x +a). If
a finite difference is divided by b-a one gets a differential quotient.

The approximation of the derivatives by finite difference plays a central role in
finite difference metﬁods for the numerical solution of differential equations, especially
boundary value problems (IVPs).

In mathematical analysis, operators involving finite differences are studied. A
difference operator is an operator which maps a function F to a function whose values are
the corresponding finite differences only three forms are currently considered, forward,
backward and central differences.

A forward difference is an expression of the form.
AL x)= 7Gx+ k)= f(x)
Depending on the application, the spacing “h” it may be variable or held constant.
A backward difference uses the function values at x and x-h, instead of the values at x+h
and x
VLA6)= 16)- 1)
Finally, the central difference is given by
o,L/10x)= £+ h)= flx~1h)
An important application of finite difference is in numerical analysis, especially in

numerical ordinary differential equations which aim at numerical solution of ordinary

equations. The idea is to replace the derivatives appearing in the differential equation by




finite difference that approximate them. The resulting methods are called finite difference

methods.

The derivatives of a function F at a point X is defined by the limit.

/)= ljm 2L hh) =1

x=0

If & has a fixed (non-zero) value, instead of approaching zero then the right hand side is

Sleth)-f(x) _ a0 Kx)
h h

hence, the forward difference divided by /4 approximate the derivatives when 4 is small.
The error in this approximation can be derived from Taylor’s theorem.

Assuming that /' is continuously differentiable, the error is
S )= o) 1 0)

The same formula holds for the backward difference
BB - ot

However, the central difference yields a more accurate approximation. It errors is

proportional to square of the spacing (if / is twice continuously differentiable)

9, [Z:Kx) _ f'(x) _ o(hz )

Higher — Order Difference
In an analogous way one can obtain finite difference approximations to higher

order derivatives and differential operators.
For example, by using the above central difference formula for f (x+ g]and J (x—g)

and applying a central difference formula for the derivative of fat x, we obtain the central

difference approximation of the second derivative of f.




o 62[f](x flx+h)- (zx)+f(x——h).

(X)

More generally, the n'™ — order forward, backward and central differences are respectively

given by

NGE i Y () Gt (n= i)

i=l

V1K) =2 1) fx i)

i=0

ol =2 IYf(H(——t)]

i=0

Ld'f (x)= A:[ka)+0(h)= V:gkx)+ o(h)= 5"[fo) (hz)

L W=

3.2  Refinement Process For Euler Method

We consider the Euler method

Yud =Vt pevee o ecssineecicn (3.0)

The Error term is
y"+|_y”—hf". ................. o.l)

We expand y,,, in Taylor’s series

2 3

5 ’ h " "
iey, =y, +thy, + Yy,, + %yn ........................... (3.2)

Note y, =f,
Then substitute equation (3.2) into equation (3.1)

We have

"

h’ h'y
Yot — hf yn+hyn +~_—2.}i”_ n+ ——————— yn_hfn

6




Now, representing ! in terms of f,

ie y, =1,

Therefore

vy, ] R frt,
2 2 2

"
| 2 2 VOO (3.3)

Add equation (3.3) to equation (3.0) above, we have

YV =Y, +H, +h[fn+|/z_fn]

Yo =Y, HHf, +0f . Hf,

v Var W B cppeessersommanmsssenins (3:5)

We now, expand and in Taylor’s series
n+l RPTEV) Y

i.e
S AN

Yo =y, +hy! +—;'—+—-?—+ ——————— (3.6)
h2 ' h3 "

I 6)

Then substitute equation (3.6) and (3.7) into equation (3.5)




2 3

yn+l_yn—hfn+llz=yn+hy:t 2 6

AP

D g —hfn+l/2 =|:?_?:|f;r = ﬁ i
h’ R\ fonn = fa _hz[ , }

f 24[ h - 12 fu+|/z b 4

o 2fn+1/2+fn]

_‘h_2 f,,+|_2fn+l/2f" _Z'_
_]2[ £ ]6[&

W, h
57/ :g[f,,+l T ) W (3.8)

Again, we add equation (3.8) to equation (3,5) above,

We have

h
Yt = ¥y +hfn+l/2 +g[-fn+l °2fn+l/2+fn]

h
yn+l = yn +_6_[f:|+l.+4fn+llz+f;11

Now, we consider

yll+l=yn+hf'f

has the Error term

hf,
2

+0()

but

hzf h2 fn+| fn _
5 2[ ] 1 P T (3.11)

Substitute equation (3.11) into equation (3.10), we have.

h
yn+l=yn+hfn+5[fn+l + n]

hs , h .,
t=—Y, +—Y, e Y,

hf,

o, kK,
— — ) +__.
2 Lo 3 h i




Vou=V ot [f+ 3 P —— (3.12)

To find the Error term of equation (3.12). we expand y,,, and f ., into Taylor’s series.

i.e
h? n h? h2 h2 }
+hy, +—yr+—yr+————— -——f - +h +— T ———
Yuthy, + = Yut =Y, e L A
h? n 2h

sy, +—y +—y" -y - f ——f —— " +

A R S U e Y e e

W o B . nwon|,., -r

—6—y" 4 fn [6 4].fn - 12 fn
Note y;' = f,
Therefore equation (3.12) becomes
Vo =V, + [f 3 f,,+,] ............................... (3.13)

hJ h3 f I h2
But M o n+1/3 " RO ’ ’
<35 ,2[———% J oA |

hz[fnn Jusi1 h_z f;,+1/3—.f;1_
4 " 4 %

e _ a8
- 4 (zf;wl 2ﬁn+l/3) 4 (f;r+l/3 f;:)

h &
= Z[6f;v+1 - 6ﬁ:+1/3 _3fn+|/3 + 3fn]

AR TR Y V) RS ——— 6.14)

Substitutes equation (3.14) into equation (3.13) above.

We have,

Vet =Vn + [f +fn+|] [6fn+| =B feirs +3f;]




h
SV =V, +Z[_ 41 9 s = o b (3.15)

3.3 Refinement Process For Mid-Point Method
We consider the mid point method

S Yrig =V F2H g crerirsrensessinnes (3.16)

We expand y,,, and f .. to find the Error term

2 3 2
Ly + 2y By +—--—yn-2h[f.,+hfn' +£12—f""}

Sy, + 2y, 2 SRV =y, =2 S IS

n

n

3

. The Error termis —h:—)’— fr

h3 - hJ
127" _T[

’ = " #
f,,+|/2h/2 f" :,:2;1 [f»:mz"'f,;]

4h
S sitf ]2 o = 1,]

=§[2f”+, N ARYER ) A S (3.17)

We substitute equation (3.17) into equation (3.16) above.

h
S Vna2 = Vo + 20+ E[zfnn e A zfn]

h
S Vs =, +§[s FAREY S S, ¥ ) SR (3.18)

Again, we consider

hJ
y”+2=y"+2hf”+|+?f”” ........................ (3.19)




n "o !1_3_ fn+l _2f,, +Jn
'?fn - 3 |: h? }
=§[an =2f F [ Jeeerennnesecnnmneensinnd (3.20)

Substitute equation (3.20) into equation(3.19) above.

ie

h
yn+2=yn+2hfn+l+g[fn+l_2fn+fn—l]

=YY = y,,+§ [7f 2 f S b (3.21)

Again, consider

3

h
ALy a— (3.22)

Efn =£ fn'+7/l2—fn’ ]_2_
37" 3 7h12 Th

2
=%[/ﬂ+7nz . A ]

= 4h2 -/;HI _fn+7/I2 - 4h2 f;r+l —-f;l
7 5hl2 7 h

h
= 35148/ =481 10201, +201, ]

h

= 251287, =481 ,.7,,#201 ]
Wf ok
ke mag (287, =48/ .1/ 7#20f, ] oorrerrec. (3.23)

Substitute (3.23) into equation(3.22) above.

i.e




h
Vs = Vo + 200 + g[zsfnn 48 ) er + 20/;:]

h
= s =y 5z [987,,, —48f,.705 + 20, Focrrrvcnrrnnnndd (3.24)

Again, we consider

3

B
Yniza =V +2hfn+l +?fn

2
h?sfn" =};_3[f::+3/s"fn' ]=§z_[f7’+3/5_fn’ ]

- _SE_ fn+l —fn+3ls _ 5k’ [fnﬂ —f;r:l
9 21 9| h

25h 104
= W[fnﬂ _fn+3/S]—W[f"*l _f"]

A

h
= E[IS Lot =25F nsssH 10, Lo (3.26)

Therefore, Equation (3.25) becomes

h
yn+2 =yn +2hfn+l +l—8—[15fn+l —25fn+3/5+10fn]

h
Vosa = Vo + E[S 1fooi +10£, =251 55 Lovereonrnnnnsd (3.27)

3.4 Refinement Process For Multi-Step Method

we consider the scheme: -

h
Yoz = Voo +5[3 AN %) DO (3.28)

The Error term is

Vsz = Vs = g 7 ) SO (3.29)

Weexpand y,,,.y,, and fo: in Taylor’s serics

i.e




h? W, 3h
- /.

' " 4 L4 & " ! h ”
Y, +2hy, +2h%y, +§h’y,, -y, —hy, e T Y -—[f,,+hfn +5f" }+

N>

2 3
=y, +2hy, +2h%y +§h’y,’§’ -y, —hy, —h—)’Z B

o.M . h
) 6"

3h, 3
P i — — +_
2fn 2 f'll 4 fn 2fll

NV P VP
¥ 3 6 y’l 4 n 12 n

. SR ..
The Error term is = e

- %[f"“ TN 5 (3.30)

Shsfn" _5h3 fn+l_2fn+f—l
iz 12 h?

We substitute (3.30) into equation (3.29)

e

h 5h
Yisz = Vnni +§[3f;1+l _f;r]+l_2_[f;t+l _2./;1 +-/;1—l]
h
yn+2 =yn+| +E[18./;1+| —6f;, +5f;t+l _lo-f;z +5f;l—|]

h
Yoz = Vuur + E[23 Fow =16£, +5f, b (3.31)

Again, consider

h s5h .,
Ve = Pt F =Bt = Lo d o f s (3.32)
2 12
ShJ " 5h3 fn’+7/12 —fn' _ Shz ' '
i3 fn - 12[ 7h|2 = 7 [.fn+7/I2 fn ]

Sh% [fn+l_fn+7“2] 5h2/7/ [f,,+rf,, ]
sh’, - h

12h Sh
=_7—[fn+l —fn+7/l2]_7[fn+l _fn]
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h
= 7 [1 2fn+l - 12fn+7112—5fn+l + an]

Sk fN |
%:7[71‘,,” LT ANEY | | W— (3.33)

Substitute (3.33) into eqn (3.32)

h h
S V2 = Van + —2' [3fn+l - .fn]+ ; [7fn+l - 12fn+7/|2+5.fn]

h
yn+2 =yn+| +l_4[21f;'“ _7fn i l4.fn+l _24fn+7ll2+10fn]

h
" Ve = Ve + 1 LT AP . 7 ¢ S —— (3.34)

3.5 Convergence Of The Methods

Numerical method is convergent if

hm max”e"“ =3 ( 3.35)

h—-0 n=0,1.x

To prove that a linear multistep method is convergence, it is sufficient for us to
show that the method is consistent as well as zero-stable.

CONSISTENCY

A numerical method is consistent if the local truncation error satisfies.

lim | NO—— (3.36)

The necessary and sufficient conditions, which must be satisfied by a numerical method

to be consistent are.

&
Za = 0
=0
And

0, ) A i ey, 00= 70D (3.37)

k
Zj a,=0
=0
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k
Which using the first characteristics polynomial p(f) = Zarf f

=0
£ e ¢, itis possible to write the two qualities in the usual form

p(1)=0.......... (3.38) and

Df b’(‘m ), y(tm_l), ............. i y(t,,),t,, ;0] _ f(y(t » (3.39)
) | —

Patrizia (2001)

for linear multistep methods, consistency demands that

@) p1)=0
(i) o' (1)=o(1); where (&)= Zk(; - S (3.40)

ZERO-STABILITY

A numerical method is said to be zero-stability when it satisfies the ROOT
CONDITIONS.

ROOT CONDITIONS:

A numerical method is said to satisfy the ROOT CONDITION if all of the roots
of the first characteristic polynomial have modulus less then or equal to unity and those
with modulus unity are simple. Lambert (1991)

From the above facts, we conclude that the necessary and sufficient conditions for
a linear multistep method ‘to be convergent are that it be consistent and Zero-stable. That

is, it must satisfy the following conditions;
M p)=0

Lok s V(i )seenees £,):t,:0
¢ (V)5 0( : ) O ) )=f(y(t,,))
p'()

(i)

(iii)  No root of the equation: p(cf) = 0 has modulus greater than 1 and every root with

modulus 1 is simple.




k

Where p(&)=Y a & v (3.41)
=0

Scheme 1

y"+2=y"+§—[7 A2 Y A PSSO (3.42)

The error term is

Vusz—Vn= 2[7 F 2 i Jssssssesssenss (3.43)

Convergence

To prove that scheme 1, given by equation (3.42) converges, it is sufficient for us to show
that it is consistent as well as zero-stable.

Consistency

From equation (3.43), the first characteristic polynomial p(c_‘;’) is given by

PE) =200 ¢ (3.44)

P& =2 ja, s
J=0

p(l) = ia,:l-l S (3.45)

2

pP)=> ja, =21)=0(l) =2.............. (3.46)

J=0

The second characteristic polynomial o (&) is given by
2 s
a(§)=28,¢
J=0

o)=Y 8= % —% + = 2eeiiirerenminnnes (3.47)

-
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From equations (3.45), (3.46) and (3.47), we have

i  pl)=0




i p)=0()ene... (3.48)

hence, scheme 1 is consistent
Zero-stability
For scheme 1 to be zero stable it must satisfy the zero-stability condition.
Zero-stability conditions are

(1) Each root of the first characteristic polynomial must be of modulus not greater

than |

(i)  Any root with modulus I must be simple.
plg)=¢"-1
i.e (& +1)(&-1), we have two real roots
Either £ =—1lor & =1, thus & = 1,1 which satisfy the zero stability condition.
Hence, since scheme 1 satisfied these conditions,

M pl)=0

i) p1)=0)

(iii)  Zero —stability condition

We conclude that scheme 1 is convergent.

Scheme 2

h
O A LY P VR . (3.49)

The error term is

h
1LY JAE Y R (3.50)

Consistency

From equation (3.50), the first characteristic polynomial p(&)is given by




p(¢)= ga,é” ................ (3.51)

plg)=¢" -1
p)=1-1=0uccnrrend (3.52)
plg)=2¢

2)=2(1)-0(1)=2........... (3.53)

The second characteristic polynomial &(¢)is given by

From equations (3.52), (3.53), and (3.54), we have
M p)=0
(i) p=ofl)
Hence scheme 2 is consistent.
Zero-stability
The roots of the first characteristics polynomial are p(f) =& -]
i.e (& +1)(& —1), we have two real roots
Either £ =-lor £ =1
Thus & = —1,1 which satisfy the zero stability condition

We conclude that scheme 2 is convergent.

Scheme 3

B |
e ELV ULV LY U0 R— (3.55)

The Error term is
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h
Va=Vn= E[Sl £ o iF20f 257 o IRERR (3.56)

Consistency

From equation (3.56), the first characteristic polynomial p(£) is given by

pE)=2a,&’

plg)=¢7 -1
p1)=1-1=0urrreeeen (3.57)
p'1)=2¢
P0)=2(1)=2cconrrerrrrnnnn (3.58)

The second characteristic polynomial o(£)is given by

LB E!
o(e)=3 "
J=0
(1)=§1+@-?—5=ﬂ9=2.555556 ........................ (3.59)
18 18 i8 18

From equations (3.57),(3.58) and (3.59), we have
() p(1)=0

(i) o'(1)= a(i) .................... (3.60)

Hence scheme 3 is ihconsistent

Zero-stability

The roots of the first characteristics polyromial of scheme 3

pE)=¢ -1
oG +DE -1,

We have the two real root either £ = —1lor |

Since scheme 3 satisfies the zero stability conditions, but is inconsistent, we conclude that

scheme 3 is divergent.




Scheme 4
h
y,,+2=y,,+g[98f,,+,—48f,,+7,,2+20f,] .................... (3.61)

The Error term is

h
Vaa V= I8 A8 i i20f Jo (3.62)

Consistency

From equation (3.62), the first characteristic polynomial p(cf) is given by

p(&) =Za,s"

p&E)=¢& -1
p()=1-1=0..cooceren. (3.63)
p'(§)=2¢

P/ (1) = 2ot (3.64)

The second characteristic polynomial o(¢) is given by

G(§)=Zﬂ,§’
Q) =55 =35 55 = 55 = 2 (3.65)

From equations (3.63), (3.64) and (3.65) we have
o p0=0

i 20 ='0(1)..‘ ............. (3.66)

Hence scheme 4 is consistent
Zero-stability

The roots of the first characteristic polynomial p(&) are

plg)=¢"-1
i.e (£ +1)(&—1) we have two real roots either & =—1 or |

Thus ¢ satisfies the zero-stability condition, hence scheme 4 is convergent.
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Scheme 5

h
Vua=Vwrt o (237,161 45F 1 Joreeiis (3.67)

The error term is

h
V= 2 16 5 (3.68)

Consistency

From equation (3.68), the first characteristic polynomial p(&) is given by

p(§)=22:a,é”

=p&) =& -¢
p()=1-1=0....... (3.69)
p'E)=25-1

M =2()=1=1uuu.... (3.70)

The second characteristic polynomial o(¢) is given by

o($) =Zﬁj§j

0'(1)=12—23—3+—1%=%=1 ..................... (3.71)
From equations (3.69), (3.70) and (3.71), we have
@ p(M=0
i) PN)=0()rree.... (3.72)

Hence scheme S is consistent
Zero-stability

The roots of first characteristic polynomial p(¢) are

pE)=¢r - ¢
ieg(c~1)

Either £ =0or &£ =1
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Since ¢ satisfies the zero stability condition we conclude that scheme 5 is convergent.

Scheme 6

h
yn+2=yn+l+ 1_4[35fn+1+3fn_24fn+7/121 """""""" (373)

The Error term is

h
Vunr~Van=1g LT T g & N - (3.74)

Consistency:

From equation (3.74), the first characteristic polynomial p(&) is given by

P(§)= Za,é‘f

pl§)=¢"~¢
P1)=1-1=0..coeererrernes (3.75)
pl(€)=2£-1

P )=2(1)=1=1lwrrreernnnn.] (3.76)

The second characteristic polynomial o(¢)is given by

G(§)=Zﬂj§j
P 0 4 18
(1)_14 T 1a g e (3.77)

From equations (3.75),(3.76) and (3.77), we have
@ pl)=0
iy  PM)=0)eerrenne. (3.78)

Hence since scheme satisfies the above condition, we said that scheme 6 is consistent
Zero-stability

The roots of the first characteristic polynomial p(&)

pl&)=¢£*-¢
&E-1)




Either £ =0or & =1

Since f satisfies the zero-stability condition

We conclude that scheme 6 is convergent.
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CHAPTER FOUR

4.0 NUMERICAL APPLICATION AND COMPARISON OF RESULTS

4.1 Numerical Applications

We use the 6 derived methods to solve differential equation. To start, we solve the
following differential equation.

Y =x+y;00)=LA=0.1ccooorrmrrrn (4.1)
Starting values

As with all k-step methods (k>1) we face the problem of generating additional
starting values. Also, we demand that these starting values should be calcuiated to
accuracy at least as high as the local accuracy of the main method. This means that any

method we use to calculate the starting values must itself require no starting values other
than y,.

In this work, we decide to use the exact solution to evaluate the starting values

v,-n=0,1,2 as the case may be.

Given the initial values problem (IVP) as
VY =x+yyx,)=1,h=0.1
Let consider

yn+|=y,,+hf"+|/2 .............. (4.2)
Note

fn+a= f[x,,'*‘ah,y,,'i‘ahf,,],n = 0,1,2 ..........

Yi=yothf

F i Sltot 390431

fo=1

- f0.05:1+0.05(1)]
=)0.05+1.05=1.10
Su=1.10
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2y =140.1(1.10) = 1.11
y=1L11

Yo=yithf s,

h ﬁ
Jan =f(x|+'2‘=y1+2f|]

fEx+y=01+111=121

f 3= fl0.1+0.051.11+0.05(1.21)]
Fu=1-3205
~y,=L11+0.1(1.3205)

y,=1.24205

Y=y thf ),
» h_ 5
Jsi= f(x2+5;y2+5f2)
S 7x,+y,=0.2+1.24205 = 1.44209
f 5= f(0.2+0.05;1.24205 + 0.05(1.44209))

¥5=1.24205+0.1(1.564525)
y;=1.39846545

Va=ys+hf 4,
h  h

fuF f(xz"‘i;}ﬁ'*'if:)
S 7x,+y,=0.3+1.39846545 = 1.69846545
[/ [0.3+0.05:1.39846545 + 0.05(1.69846545)]
Fae1.835388723

v,=1.39846545+0.1(1.833388723)
y,=1.581804322

Ys =Yy +hf9/z
h
foF f(x4 =Yt f4)

f&x+y,=0.4+1.581804322 = 1981804322

S o= £(0.4+0.05:1.581804322 + 0.05(1.981804322))
fo/=2.130894538

. ys =1.581804322 + 0.1(2.130894538)

ys =1.794893775
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Ys = Ys +hfa
h h
Jun =f[xz +”2‘;y5 +‘2'f5:|

fo =X, + s =0.5+17.94893775 = 2.294893725
Sia = 2459638464

e = 1794893775+ 0.1(2.459638464)

Y =2.040857621

V1 =Y +hfy,

Jisn = f[xo +g;)’6 ""gfe}

fo =%+, =0.6+2.040857621 = 2.640857621

Sis2 = £10.6+0.05;2.040857621 + 0.05(2.640857621)]
frsr2 = 2822900502

"y, =2.040857621+0.1(2.822900502)

v, =2.323147671

Vs =Y, +hfis)s
h h
Jisn = fl:x7 +5;J’7 +Ef7:|
fr=x,+y, =0.7+2.323147671 = 3.023147671
S5z = f10.7+0.05;2.323147671+0.05(3.023147671)]
¥y =2.323147671+0.1(3.224305055)
Vs = 2.645578176

Yo =Yy thf1,
h h
Jan =f(xs +”2";}’s +5fs)

So =%+ y, =0.8+2.645578176 = 3.445578176
firi2 =[0.8+0.05;2.645578176 + 0.05(3.445578176)]
fin12 =3.667857055

" Yy =2.645578176 +0.1(3.667857055)

v, =3.012363884
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Vio = Yo +Hfisis
h
flo/z—f(xsz Vot .ﬂ))

fo =%, +y, =0.9+3.012363884 = 3.912363884
fon = £(0.940.05;3.012363884 + 0.05(3.912363884))
fro), = 4.157982078

Yo =3.012363884 +0.1(4.157982078)
V0 = 3.428162092

Scheme 1

Voez = [7f,,+, —2f, + fiiln =12, O (1)

0.1
y3=yl+T[7f2_2-fl+.ﬂl]
Let y, =1.1103, y, =1.2428
0.1
Vs =].|103+—3—[7f2 -2f, + fo1

Jo =% +y, =1
fi=x+y, =0.1+1.1103;2f, =2.4206
fi=x,+y, =02+1.2428 =1.4428;7 f, =10.0996

sy =1 1103+—[100996 2.4206+1]
y, =1.39960

Ys =Y +93'l[(7f3 -2f; +fl)]

f,=12103
£, =1.4428.2 1, = 2.8856
fi=x,+y, =0.3+1.39960 = 1.69960;7 /3 = 11.89720

22 2428+—[ll 89720 - 2.8856 +1.2103]

=1.2428+0.34073
y, =1.58353
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0.1
o=yt 0/ -21 +/5)]

f, =1.4428

£, =1.69960;2 f, =3.3992

fo=x,+y, =04+1.58353=1.98353;7 4 =13.88471

el 3996+—[13 88471-3.3992 +1.4428]

=1 .3996+0.397610333
ys =1.797210333

o +’_“[7f5 -2f,+ £l

f, =1.69960
£, =1.98353;2 f, = 3.96706
fo =%, +5;0.5+1.797210333 = 2.297210333;7 f, = 16.08047233

=1.58353 + —[16 08047233 —3.96706 +1.69960]

=1.58353 +0.43963744
Ve = 2.043963744

Ya y5+_[7f6 2f5+f4]

£, =1.98353
£, =2.297210333;2 f, = 4.594420666
£6=x6+y6=0.6+2.04393744 = 2.643963744:7 /, = 18.50774621

Sy, =1 797210333+——[18 50774621 -4.594420666 + 1 98353]

=1.797210333 +0.529894984
y, =2.327105318




0.1
Vg =Yg +T[7f7 -2 15 +fs]
fs =2.297210333

f, =2.643963744;2 f =5.287927488
fy =%, +y, =0.7+2.327105318 = 3.027105318;7 f; = 21.18973722

Ve =2.043963744 + 9:—;1[21 18973722 —5.287927488 + 2.29721 0333]

=2.043963744 + 0.606634002
¥y =2.650597746

0.1
Yo =V +—3‘[7fs -2/ '*'fe]
fo =2.643963744

[, =3.027105318;2 7 = 6.054210636
fs =X + ¥y =0.8+2.650597746 = 3.450597746;7 f, = 24.15418422

S Yy =2.327105318 + % [24. 15418422 - 6.054210636 + 2.643963744]

=2.327105318 +0.691464577
v, =3.018571088

Yo =y8+ 221, =2f,+ 1]

£, =3.027105318
£, =3.4505597746:2 f, = 6.901195492
£, =x, +y, =0.9+3.018571088 = 3.918571088.7 f, = 27.42999762

" Yy = 2.650597746 + 93‘—1 [27.42999762 - 6.901195492 +3.027105318]

=2.650597746 + 0.7851969
Vi =3.435794647

Scheme 2

0.1
Yoy = Vo F T[8 Fors =4S sess + Lu 1 =0,1,20 . - (4.4)

Y2 =MV +§[8.fl _4f|/2+2f0]
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Let y, =111

2f, =2

f,=01+1.11=121

81,9.68

fur = fl0+0.051+0.050)]=1.1:47,, =44

-l+——[968+2 4.4
y, =1.2426667

+385-2 - 4]
2f, =2(1.21)=2.42

£y =%, +y, =02 +1.2426667 = 1.4426667:8 f, =11.5413336
forn = f10.140.05,1.11+0.05(1.21)] =1.3205;4 £, = 5.282

Ly =1 ll+——[1154l3336+242 5.282]

=1.11+0.28931111
y, =1.39931111

Y= J’2+_[8f3+2fz 4f5»/z]

8f, = 8(0.3 +1.39931111)=13.59448889
=2(0.2+1.2426667) = 2.8855554
4f,,, =4£[0.25,1.2426667 + 0.05(1.442777778)] = 6.2592222356

5y, =1.2426666 + —[13 59448889 +2.8855554 — 6.2592222356]
y, =1.583454074

0.1

Vs =) +‘3_[8f4 +2f; _4f7/z]

8/, =8(0.4+1.583354078) = 15.86683259
=2(1.69931111) = 3.39862222

4f,, =4/(0.351.39931111+0.05(1.69931111)) = 7.337106666

=1.39931111+ %[15 86683259 +3.39862222 - 7. 337106666]

ys =1.7969227170




0.1
Ye =Ys +T[8f5 +2f, "4fqlz]

8/, =8(0.5+1.7969227170) = 18.37538174
=2(0.4 +1.583354078) = 3.966708 148
4f,,, =4/[0.45.1.583354078 + 0.05(1.983354407)] = 8.530087128

¥, =1.583354078 +—[18 37538174 +3.966708148 - 8.530087128]
¥, =2.04375417

0.1
Y5 =Yy +T[8fs +2f; _4f||/2]

8/, =8(0.6+2.04575417) = 21.15003336
2f, =2(0.5+1.7969227170) = 4.593845434
41,5 =4£[0.55,1.7969227170 + 0.5(2.296922717)] = 9.847075411

=1.7969227170 + —[21 1500336 +4.593845434 — 9.847075411]
y, =2.326816163

Y = Vs +—[8f7 +2f - 4f13/2]

8f, = 8(0.7 +2.326816163) = 24.2145293
=2(0.6+2.04375417) = 5.2870834
4f.,, =4 £]0.65,2.04375417 +0.05(2.64375417)] = 11.30376751

S yy =2.04375417 + —-—[24 2145293 +5.2870834 — 113037675 1]
Vg =2.6503631714

Yy = [Sfa +2f, =4 15,1

= 8(0.8 +2.6503631714) = 27.60290537
2 f2 =2(0.7+2.326816163) = 6.053632326
4f,,, =4£[0.75:2.326816163+0.05(3.026816163)] = 12.91262788

=2.326816163 + —[27 60290537 +6.053632326 — 12.91262788]
y, =3.018279824
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0.1
Yio =Yg t —3‘[8f9+2fs =4f,]

87, =8(0.9+3.018279824) = 31.34623859
2f, =2(0.8+2.6503631714) = 6.900726343
4., =4£[0.852.6503631714 +0.05(3.450363171)| = 14.69152532

=2.6503631714 + ——[31 34623859 +6.900726343 - 14.69152532]
o = 345544494

Scheme 3:

yn+2 [98fn+l 48fn+7/12 + 20./;:]’ n= 0’1’2 (45)

0.1
Ya=Xo "'3[98.7'1 +20f,-481;,,]
98/, =98(0.1+1.11)=118.58

20, =20(1)=20
48 f,,,, = 48(1.1166666667) = 53.60000042

y, =1+ % [118.58 +20 - 53.60000042]
y, =1.24280

0.1
Ys=W '*'T[gsfz +20f, - 481,51

98 £, = 98(0.2 +1.24280) = 141.3944
20, =20(1.21)=24.2
481, =48£[0.158333;1.11+0.058333(1.21)] = 64.26799996

sy =1 11+-—[141 3944 +24.2 - 64.26799996]
v, =1.399504

0.1
Ya =Y, +’g[98f3 +201, —481,,1,]

98 f, = 98(1.699504) = 166.551392
20 £, =20(1.44280) = 28.856
481,,,,, = 48[0.258333;1.24280 + 0.583333(1.44280)] = 76.09423996

Sy, =1.24280+ —[166 551392 +28.856 — 76.09423996]
y, =1.58369472




0.1
Y5 =Ys +?5‘[98f4 +20f; =48 fi312]

98 7, = 98(1.98369472) = 194.4020826
20/, =20(1.699504) = 33.99068
4811, = 48[0.358333-1 399504 +0.0583333(1.69504)] = 89.13480291

=1.399504 + — [1 94.4020826 +33.99008 - 89.13480291]
ys =1.79738217

0.1
Yo =Y +§[98f5 +20f, — 48,1

98 f, = 98(2.29738217) = 225.1434527
20 £, = 20(1.98369472) = 39.6738944
48 fi;,,, = 48£]0.45833333;1.58369472 +0.05833333(1.98369472)] = 103.571687

. =1.58369472 +—[225 1434527 +39.6738944 —103.571687]
y, =2.044396595

0.1
Y1 =Vs +'§[98f6 +20f; =48 f51]

98 f, = 98(2.644396595) = 259.1508663
20/, =20(2.29738217) = 45.9476434
48f,,,, = 48£[0.5583333;1.79738217 + 0.0583333(2.29738217)] = 119.5070391

5y, =1.79738217 + ——[259 1508663 +45.9476434 —119. 5070391]
y, =2.327643585

Vs = Yo +%[98f7+20f6—48f89/12]

98 £, = 98(3.027643585 ) = 296.7090713
201, =20(2.644396595 ) = 52.8879319
48 f,o,1, = 48£[0.65833333;2.044396595 + 0.05833333(2.644396595 )] = 137.1353412

= 2.044396595 +———[296 7090713 +52.8879319 —137.1353412]
y, =2.651429897




0.1
Yo=Yy +’§[98f; +20f, —48 fi01112]

98/, = 98(3.35142987) = 328.4401273
20 £, =20(3.027643585) = 60.5528717
481, = 487[0.75833333;,2.327643585 + 0.05833333(3.027643585)] = 156.600906

=2.327643585 + —[328 4401273 +60.5528717 —156.600906]
y, =3.019611321

0.1
Yio =V +¥[98f9 +20f; —481,13/12]

981, = 98(3.919611321) = 384.1219095
20f, =(3.35142987) = 67.0285979
48 f,.51, = 48.£[0.85833333;2.651429897 + 0.05833333(3.35142987)] = 177.8526317

Y = 2.651429897 + —[384 1219095 + 67.0285979 —177.8526317]
v, = 3.437195236

Scheme 4:

yn+2 [Slfn+l+lof 25fn 3/5]’" 012

0.1
i =y + 5L +10 £, 25 1,4
51f, = 51(1.21)= 61.71

10, =10(1)=10

25 1,5 =25 £[0.06:1+0.06(1)] = 28

.y, -1+—[61 71 +10 — 28]
y, =1.24283333

Vs = [51fz 10/, =257y5]

51f, = 51(1 .44283333) =73.58449983
10£, =10(1.21)=12.1
25f,,5 =25/[0.16;1.11+0.06(1.21)] = 33.565

. =1, 11+——[73 58449983 +12.1-33.565]
y, =1.399552778




0.1
Vi=), +1—8‘[51_f3 +IO_f2 —25ﬁ3/5]

51/, =51(1.699552778) = 86.67719168
10/, =10(1.44283333) = 14.4283333
25 frns =25 f[o.26-1 24283333 +0.06(1.44283333)] = 39.73508325

oy, =1.24283333 + s [86 67719168 +14.4283333 — 39.73508325]
y, =1.583780231

0.1
+ﬁ[51f4 +10/; =25f14/5]

51f, =51(1.983780231)=101.1727918
10/, =10(1.699552778) = 16.99552778
25 f,4)s = 25/]0.36;1.399552778 + 0.06(1.699552778)] = 46.5314862

-y, =1.399552778 + —[101 1727918 +16.99552778 — 46.5314862]
y, =1.797498172

0.1
Y6 = Vs +ﬁ[51f5 +107; =25 fos55]

S51f, =51(2.297498172) = 117.1724068
10/, =10(1.983780231) =19.83780231
25 f1y)s = 25 £[0.46:1.58378023 1+ 0.06(1.983780231)] = 54.07017612

=1.583780231 + —[1 17.1724068 +19.8378023 1 — 54.07017612]
y, =2.044558192

0.1
¥y =5 +7o (810 #1015 =25 /3551

51f, =51(2.644558192) = 134.8724678
10 £, =10(2.297498172) = 22.97498172
25 f,m =25 £[0.56;1.797498172 + 0.06(2.297498172)] = 62.38370156

Sy, =1.797498172 + —[l 34.8724678 +22.97498172 - 62. 38370156]
y, =2.327852329

54




0.1
Ys =DVs +’ﬁ;'[SIJ‘; +10f, =25 f335]

51f, =51(3.027852329) = 154.4204688
10£, =10(2.644558192) = 26.44558192
25f,,5 = 25/[0.66;2.044558192 + 0.06(2.644558192)] = 71.58079209

" Yy = 2.044558192 + % [154.4204688 + 26.44558192 — 71.58079209]
yg = 2.651698518

0.1
Yo =V1 +E[51fs +10£; =25 f155]

51f, =51(3.451698518) = 176.0366244
10, =10(3.027852329) = 30.27852329
25 f1s)s = 25 £[0.76;2.327852329 + 0.06(3.027852329)] = 81.73808672

o Vg = 2.327852329 + %[l 76.0366244 +30.27852329 - 81 .73808672]
¥y =3.019918073

0.1
Yo =DV +R‘[51f9 +10f5 =25 f355]

51, =51(3.919918073) = 199.9158217
10£, =10(3.451698518) = 34.51698518
25f15,5 = 25£[0.86;2.651698518 +0.06(3.451698518)] = 95.97000228

Y =2.651698518 + %[199.9158217 +34.51698518 —95.97000228]

¥,y =3.437602941

Scheme 5:

h
yn+2 =yn+l +1_2[23fn+l —16fn +5fn—l]’n =1”2

0.1
Py = .Vz+ﬁ[23 J3=16 £, %3 1,]

Let y, =1.1103,y, =1.2428

5f,=501)=5 .
16 £, =16(1.2103) = 19.3648
23 f, = 23(1.4428) = 33.1844

Ly, =1.2428+ %[33.1844— 19.3645 + 5]

y, =1.39963




Y y1+——[23f3—16f2+5fl]

51, = 5(1.2103) = 6.0515
16 f, = 16(1.4428 ) = 23.0848
23 f, = 23(1.69963 ) = 39.09149

. =1.39963 + —[39 09149 —23.0848 + 6.0515 |
y, =1.58344825

0.1
¥s=Yo+ 7234 -16f +51]

5f, =5(1.4428)=7.214
16/, =16(1.6993) = 27.1888
23 f, =23(1.98344825) = 45.61930975

. ys =1.58344825 + —[45 61930975 —27.1888 + 7.214]
v, =1.797152498

ve y5+—[23f —16f, +51,]

5/, =5(1.6993) = 8.4965
16 f, =16(1.98344825) =31.735172
23 f; = 23(2.297152498 ) = 52.83450715

ye = 1.797152498 +—[52 83450715 —31.735172 +8.4965 |
Ve = 2.04378446

0.1
Y1=Ys +1—2—[23f6 16 f; +5f4]

5/, = 5(1.98344825) = 9.91724125
16.f, =16(2.297152498) = 36.75443997
23f, = 23(2.64378446) = 60.80704258

=2.04378446 + —[60 80704258 —36.75443997 +9.91 724125]
y, =2.326866492




0.1
Yo=y,+ o [23f =16 +57]
5/, =5(2.297152498) = 11.48576249

16 f, =16(2.64378446) = 42.30055136
23f, = 23(3.026866492) =169.61792932

=2. 326866492+ s [69 61792932 -42.30055136 +11 48576249]
¥y =2.650225996

0.1
Yo =Y¥s +E[23fa -16 f; +5f6]

5f, =5(2.64378446 ) =13.2189223
16 f, =16(3.626866492 ) = 48.42986387
23 fy = 23(3.450225996 ) = 79.35519791

2y, = 2.650225996 + —[79 35519791 - 48.42986387 +13.2189223]
¥y =3.018094799

0.1
Yi=ys + 523/, =164, +51]
5/, =5(3.626866492) = 15.13433246

16 f; =16(3.450225996) = 55.20361594
23 f, =23(3.918094799) =90.11618038

Y = 3.018094799 + —[90 11618038 —55.20361594 —15.13433246]
Vo =3.435152273

Scheme 6:

0.1
Yns2 = Vo +]_4[35fn+l %3, -24fn+7/121n =12

y =111

0.1
Vs =Y, +—1‘4“[35f1 +3/, _24fn+7/12]
35f, =35(1.21) =42.35

3f, =3(1)=3
241, =24 £[0.0583333;1+0.05833333(1)] = 26.79999984

=111+ —[42 35+ 3—26.79999984]
y, =1.2425




0.1
Y3=Y¥a +'§[35f2 +3f, _24f|9/12]

35f, =35(1.4425) = 50.4875
3f, =3(1.21) = 3.63
24, =24 f[(O 15833333;1.11+0.0583333(1.21)] = 32.13399982

=1.2425 + = [50 4875 +3.63-32.13399982]
v, = 1.399525001

Ya=Ys +_'[35f3+3f2 24f3|/|2]

35f, = 35(1 .699525001) =59.48337504
£, =3(1.4425) = 4.3275
24 £, =24 £[0.2583333;1.2425 + 0.0583333(1.4425)] = 38.0394998

=1.399525001 + —-[59 48337504 + 4.3275 — 38.0394998]
y, =1.583606257

0.1
ys = yu+ B3 L4324 ]

35f, =35(1.983606251) = 69.42621849
3/, =3(1.699525001) = 5.098575003
24 1,5, =24 £10.3583333;1.3995205001 + 0.05833333(1.699525001)] = 44.56793481

~ys =1.58360251 +—[69 42621849 +5.098575003 — 44.56793481]
ys =1.797583815

0.1
Y& = Xs +E[35fs +3/, "24fss/12]

35f;, =35(2.297583815) = 80.41543353
3f, =3(1.983606251) = 5.950818753
24 fi,, =24 £10.45833333;1.583606251+0.05833333(1.983606251)] = 51.78359854

=1.797583815 +—[80 41543353 +5.950818753 -51. 78359854]

y, = 2.044602694

Vi =Yt %Tl[:wfs +3 /5 "24f67/|z]

35f, =35(2.644602694) = 92.56109429

3f5 =3(2.29583815) = 6.89261445

241, =24/10.5583333;1.797583815+ 0.0583333(2.297583815)] = 59.75862864

y, =2.32813993




0.1
Vs =7 +_1'Z[35f7 +3f "24f79/|2]

35f, =35(3.02813993) = 105.9848976
3f, =3(2.644602694) = 7.933808080
241, =241 [0.6583333)2.044602694 4 0.0583333(2.644602694] =68.57290814

“y, =2.32813993 4+ % [105.9848976 + 7.9338082 - 68.57290814]
y, = 2.651245337

0.1
Yo = Vs +_]Z[35fs +3f; "24f9|/|2]

35 f, =35(3.451245337) =120.7935868
3f, =3(3.02813993) =9.08441979
25 fo, = 25/10.7583333;2.32813993 + 0.05833333(3.02813993)] = 78.314751

S Yy =2.651245337 + %[120.7935868 +9.08441979 - 78.314751]
¥y =3.019554283

0.1
Yio =V '*'H[SS.ﬁ; +3f, "24f|o:mz]

35/, =35(3.919554283) = 1.37.1843999
31, =3(3.451245337) = 10.35373601
24 f,030 = 24 £]0.8583333;2.65124337 + 0.0583333(3.451245337)] = 89.061628

Y, =3.019554283 + %[137.1843999 +10.35373601-89.061628]
Y, =3.437104808




40 Comparison of Results

In the same way we solve the following problem y' =x+y; y(0)= 1,h=0.1 using

the six new schemes. Their results are obtained and compare for accuracy. The problem is

solved on computer using Microsoft excel software package.

The results obtained from the six new schemes are compared with the exact

solution and 3-stage Runge-kutta method. Note that Range-Kutta method is taken as a

reference method.




TABLE 4.1

PROBLEM: ' =x + y;(0)=1;2=0.1
EXACT: Y (x) = 2e*-x-1

X | Exact solution Ve =V, + 201, ERROR $h o B % [k| N 3k3] ERROR o, =g g [7f,,+1 _af fn-—]] ERROR
0.1 | 1.110341836 1.1103 4.0836E-05 11103333333 8.503E-06 1.1103 4.1836E-05
0.2 | 1.242805516 1.24206 7.45516E-04 1.242786666 1.885E-05 1.2428 5.516E-06
0.3 | 1.399717615 1398712 1.005615E-03 | 1.399643897 7.3718E-05 1.39960 1.17615E-04
0.4 | 1.583649395 1.5818024 1.846995E-03 | 1.583556447 9.2940E-05 1.58353 1.19395E-04
0.5 | 1.597442541 1.7950724 2.370141E-03 | 1.797327133 1.15408E-04 1.797210333 2.32221E-04
0.6 | 2.0442347601 | 2.0408168 3.420801E-03 | 2.044096037 1.41564E-04 2.043963744 2.73857E-04
0.7 | 2.327505415 2.3232357 4269715E-03 | 2.327333485 1.7193E-04 2.327105318 4.00097E-04
0.8 | 1.651081857 2.6454639 5.167957E-03 | 2.650876197 2.05373E-04 2.650597746 4.84111E-04
0.9 | 3.019206222 3.0123284 6.877822E-03 | 3.01896004 2.4642E-04 3.018571088 6.35134E-4
1.0 | 3.436563657 3.279295 8.634157E-03 | 3.436270638 2.93019E-04 3.435794647 7.6901E-04




TABLE 4.2
PROBLEM: ' =x+y;¥(0)=1;4=0.1
EXACT: Yg(x) =2¢*—x -1

Exact solution Vosr =V, +2hf, ERROR - g [8 74 f" y ) fn:| ERROR

0.1 | 1.110341836 | 1.1103 4.1836E-05 1.11 : 3.41836E-04
0.2 | 1.242805516 | 1.24206 7.45516E-04 1.2426667 1.3889E-04

0.3 | 1.399717615 | 1.398712 1.005615E-03 1.39931111 4.06505E-04
0.4 | 1.583649395 | 1.5818024 1.846995E-03 1.583454078 1.95317E-04
0.5 | 1.797442541 | 1.7950724 2.370141E-03 1.796922717 5.19824E-04
0.6 | 2.044234601 | 2.0408168 3.420801E-03 | 2.04375417 4.83431E-04
0.7 | 2.327505415 | 2.3232357 4269715E-03 | 2.326816163 6.89252E-04
0.8 | 2.651081857 | 2.6454639 5.6217957E-03 | 2.6503631714 7.18686E-04
0.9 | 3.019206222 | 3.0123284 6.877822E03 3.01827824 9.26398E-04
1.0 | 3.436563657 | 3.4279295 8.634157E-03 | 3.4554494 1.8885743E-02
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TABLE 4.3 |
PROBLEM: y'=x+y;y(0)=1;2=0.1
EXACT: Yg(x) =2e*—x -1

X | Exact solution Ver = Vi 2Hf, ERROR . % [9 87, —481. ., +20 fn] ERROR
0.1 | 1.110341836 | 1.1103 4.1836E-05 1.1 1.0341836E-02
0.2 | 1.242805516 | 1.24206 7.45516E-04 1.24280 5.516E-06
0.3 | 1.399717615 1.39é712 1.005615E-03 1.399504 2.13615E-04
0.4 | 1.583649395 | 1.5818024 1.846995E-03 1.583689472 4.5325E-05
0.5 | 1.797442541 | 1.7950724 2.370141E-03 1.79738217 6.0371E05
0.6 | 2.044237601 | 2.0408168 3.420801E-03 | 2.044396595 1.58994E-04
0.7 | 2.327505415 | 2.3232357 4.269715E-03 | 2.327643585 1.3817E-04 A
0.8 [ 2.651081857 | 2.6454639 5.6217957E-03 | 2.651429897 3.4804E-04
0.9 |1 3.019206222 | 3.0123184 6.877822E03 3.019611321 3.49101E-04
1.0 | 3.436563657 | 3.4279295 8.634157E-03 | 3.437195236 6.31579E-04
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PROBLEM: ' =x+ y;y(0)=1;2=0.1
EXACT: Yg(x) =2e"—x—1

X | Exactsolution | y . =y . +2hf, ERROR P g [5 Lf L 420/, —25F ., ERROR
0.1 | 1.110341836 | 1.1103 4.836E-05 1.1 1.0341836E-02
0.2 | 1.242805516 | 1.24206 7.45516E-04 | 1.24283333 2.7814E-05

0.3 | 1.399717615 1.3981712 1.005615E-03 | 1.399552778 1.64837E-04
0.4 | 1.583649395 | 1.5818024 1.846995E-03 | 1.583780231 1.30836E-04
0.5 | 1.797442541 | 1.7950724 2.370141E-03 | 1.797498172 5.5631E-05
0.6 | 2.044237601 | 2.0408168 3.420801E-03 | 2.044558192 3.20591E-04
0.7 | 2.327505415 | 2.3232357 4.269715E-03 | 2.327852329 3.46914E-04
0.8 | 2.651081857 | 2.6454639 5.6217957E- | 2.651698518 6.16661E-04
0.9 1 3.019206222 | 3.0123184 2?877822E03 3.019918073 6.55853E-04
1.0 | 3.436563657 | 3.4279295 8.634157E-03 | 3.437602941 1.039284E-03




PROBLEM: y' =x+ y;y(0)=1;2=0.1

EXACT: Yg(x) =2e*—x -1

A Rl PSR B B FE S TSI R
0.1 [1.110341836 | 1.1103 4.1836E-05 1.1103 4.1836E-05
0.2 | 1.242805516 | 1.2428 5.516E-06 1.2428 5.516E-06

0.3 | 1.399717615 1.398‘705 1.012615E-03 1.39963 8.7615E-05
0.4 | 1.583649395 | 1.58137075 2.278645E-03 1.58344825 2.01145E-04
0.5 | 1.797442541 | 1.795919758 1.522784E-03 1.797152498 2.90043E-04
0.6 | 2.044237601 | 2.041239184 2.998418E-03 2.04378446 4.53141E-04
0.7 | 2.327505415 | 2.322629073 1.214683E-03 2.326866492 6.38923E-04
0.8 | 2.651081857 | 2.643961475 7.120382E-03 2.650225996 8.55861E-04
0.9 13.019206222 | 3.009424243 9.837978E-03 3.018094799 1.167421E-03
1.0 | 3.436563657 | 3.423639805 1.2923852E-02 | 3.43512273 1.440927E-03
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TABLE 4.6
PROBLEM: )’ =x+y;3(0)=1;4=0.1
EXACT: Ye(x) =2e*—x -1

X | Exactsolution ), =y,,+|+g[3fn+x—fn] ERROR 1y, =yn+l+£[35fn+l _3f,+20)  PRROR
0.1 1.110341836 | 1.1103 4.1836E-05 111 1.0341836E-02
02 | 1242805516 | 12428 5.516E-06 12425 3.05516E-04
03 [ 1399717615 | 1.398705 T012615E-03 | 1.399525001 1.97605E-04
0.4 | 1583649395 | 1.58137075 3278645E-05 | 1.583606251 43144E-05
05 | 1797442541 | 1.795919758 1522784E-03 | 1.797583815 [41272E-04
0.6 | 2.044237601 | 2.041239184 2.998418E-03 | 2.044602694 3.65093E-04
0.7 2327505415 | 2.322629073 1214683E-03 | 232813993 6.34515E-04
0.8 | 2.651081857 | 2.643961475 7120382603 | 2.651245337 [.6348E-04
0.9 [3.019206222 | 3.009424243 9.837978E-03 | 3.019554283 2.92063E-04
10 | 3436563657 | 3.423639803 12923852E-02 | 3.437104808 541151E-04




d o

4.1

From the Table above, the 3-stage Runge-Kutta method and the new schemes are
more accurate than the old scheme, as they both produces less error [up to 4 decimal
places] than the old scheme with error [up to 3 decimal places]. However, the new

schemes are better because they are less rigorous in computation and have less

Analysis Of Results

computational steps than the 3-stage Runge-kutta method.

42 KEstimation of Error

When solving an initial value problem we can achieve better results by varying
the step size, Mathew (1992), stated that one way to guarantee accuracy of an initial value

problem is to solve the problem twice using step sizes h and !z h and compare answers at

the mesh points corresponding to the larger sizes.

- We solve the differential equation y’ = x + y; y(0) =1, using the six new methods

at different step sizes: 0.1 and 0.05. The results obtained are as follows:

TABLE 4.7

PROBLEM: y'=x+y,y(0)=1
SCHEME 1
. ERROR

X h=0.1 h=0.05
0.1 4.1836E-05 0.0000E+00
02 |55 l6E-d6 0.0000E+00
0.3 |[1.176150E-04 | 6.369674E-06
0.4 1.193950E-04 1.384452E -05
0.5 |[2.32221E-04 2.262239E-05
0.6 |2.73857E-04 3.292693E-05
0.7 4.00097E-04 4.500701E-05
0.8 4.84111E-04 5.914550E-05
0.9 6.36134E-04 7.566011E-05
1.0 7.6901E-04 9.491111E-05

67




TABLE 4.8

PROBLEM: y'=x+y;(0)=1
SCHEME 2

ERROR
X h=0.1 h=0.05
0.2 | 1.3889E-04 3.582787E-06
04 | 1.95317E-04 1.297789E-05
0.6 |4.83431E-04 2.620024E-05
0.8 | 7.18686E-04 4.452837E-05
1.0 | 1.8885743E-02 | 6.960880E-05

TABLE 4.9
PROBLEM: y' =x+ y; y(0) =1
SCHEME 3
ERROR
X h=0.1 h=0.05
0.2 | 5.5160E-06 4.6658637-05
0.4 | 45325E-05 7.1446160E-05

0.6 | 1.58994E-04 7.5592420E-05
0.8 | 3.4804E-04 5.7844768E-05
1.0 | 6.31579E-04 1.4584462E-05

TABLE 4.10
PROBLEM: y' =x+ y; y(0) =1
SCHEME 4
ERROR
X h=0.1 h=10.05

0.2 | 2.7814E-05 4.0834528E-05
0.4 | 1.30836E-04 1.0112339E-04
0.6 | 3.20591E-04 1.8704635E-04
0.8 | 6.16661E-04 3.06706610E-04
1.0 | 1.03984E-03 4.7062378E-04
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TABLE 4.11
PROBLEM: y'=x+y;y(0)=1
SCHEME 5

ERROR

X [h=01 h=0.05

0.2 |55160E-06 | 0.0000+00
0.4 |2011450E-04 | 2.6470768E-05
0.6 |453141E04 | 6.4716830E-05
0.8 |855861E-04 | 1.1859986E-04
10 | 1.440927E-03 | 1.9317018E-04 |:

TABLE 4.12
PROBLEM: y'=x+y,5(0)=1
SCHEME 6
ERROR ,
X h=0.1 h=0.05 |

0.2 |[3.055160E-04 | 4.148045E-05
0.4 | 43144E-05 1.559357E-04
0.6 |3.65093E-04 3.190551E-04
0.8 | 1.6348E-04 5.467672E-04 . |
1.0 [ 1.792493E-03 | 8.596782E-04

For the dlﬂ'erentlal equation y’ = x+ y; y(0) =1, using scheme 1 as example, the error for
h=0.1atx =1 (table 4.7) is 7.6901 x 10, This error is reduced t0 9.491111 x 10°° when
h=10.05 (table 4.8). The same trend is noticed for the other five methods, this further

shows us that the rate of convergences increases as step length h decreases.




CHAPTER FIVE
5.0 DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1  Discussion
In this work we have been able to derive new Quasi — Runge — Kutta methods by

refinement process.

These methods are

h
l' yn+2=yn+§[7fn+l—2fn+f—l]
h
2 e = v t3 A -4 +21]
h
3‘ yn+2 =yn+—3—5-[98fn+l_48fn+7/12+30fn]
' h
4. Yus2a =V +E[51f"+l +107, —25fn+3/5]
h
5. Vra = Ve + (23500 -161,+57,.1]

h
6. Yz = Van +§[35fn+l +3fn —24fn+7/12]

We have also solved differential equation using the six new methods. To assist us
in solving differential equations, a computer implementation program using Microsoft

excel software package was used.
52  Conclusion

Since we have used the methods to solve different equation, we can conclude that
the six new Quasi-Runge—Kutta methods are accurate as they produce results which are
comparable to those produced by other similar methods (3-stage runge-kutta and linear

multi-step methods).




53 Recommendation

The main business of numerical analysis is to provide us with computational
methods for the study and solution of mathematical problems.

However, most numerical methods give answers that are only approximations to
the desired solution. Consequently, numerical results are seldom free of errors. It is
recommended that further work be done in this direction to develop methods with higher
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