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ABSTRACT

In this work, we used the Extended Cutting Plane Algorithm (Gra-
dient Method) to solve Non-Linear Integer Programming Problem via
linearization. The method was used to linearize both the objective
and constraints functions and it was shown that the method gave more
rapid convergence to the optimum solution than the Hookes and Jeev’s
or the Bound and Branch methods.




CHAPTER ONE

INTRODUCTION TO OPTIMIZATION THEORY
1.1 GENERAL INTRODUCTION

1.1.1 PREAMBLE

Optimization is a concept to describe optimal and best way of achiev-
ing result amongst alternatives under given conditions.

Optimization is an aspect of Operations Research, a branch of Math-
“ematics which is concerned with the applications of scientific technique
and methods to decision making problems and finding ways of estab-
lishing the best or optimal solution to such problems.

Areas of applications of Optimization theory includes among oth-
ers: Constructions, Maintenance of Engineering systems, Cost — Profit
Manufacturing problems and 'Transportation problems.

An Optimization problem can take the following form:

Find

which minimizes f(z) subject to
gi(z) <0; i=1,2 ...n

hi(z) =0; k=1,2,...7n ,
(1.1)




F(z) is called the objective function while g;(z) hi(z) are the con-
straints functions.

The Optimization problem (1.1) is said to be linear if the objective
and constraints functions are all linear, and it is non-linear if any of
them is of non-linear relationship.

1.1.2 LINEAR OPTIMIZATION PROBLEM

Linear Programming Problems (LPP) can be of all-integer values,
mixed integer or zero-one problem. It is of the all-integer value type if
all the design variables
- Ty, T2y oy T
are constrained to take only integer values. It is of the mixed-integer
type when some of the variables are constrained to take integer values;
and it is of the zero-one type when all the design variables are allowed
to take on valuesof '.either one or zero.

A linear optimization problem can take the form:

Optimize
n
f(x1; 22y -0y Ta) = D Ci%5
j=1
subject to
n
Ea,-ja:j S b‘ia § o= 1, 2, v T
J=1
z; 20, j=1,12, ... n;z; ltegers

(1.2)

If m = n, the problem (1.2) is an all-integer problem, and if m < n
it is of the mixed integer type.




Example

Minimize
 f(z) =2z, + =,
subject to
3z; +x2 <10
2z, + 322 =6

(1.3)
1.1.3 NON-LINEAR OPTIMIZATION PROBLEM

When the objective and constraint functions are non-linear, the pro-
gramming problem is said to be non-linear.

The non-linear programming problem can be (i) polynomial or (ii)
general non-linear in nature.

The general non-linear programming problem can be all-integer or
mixed integer type.

A Polynomial Programming prpblem can take the form:

Minimize
o P
floi=do g (II:L',-") v e >0y gy >0
=1
subject to
Zaik (H.Tzik) S 0
aix >0

(1.4)




where ng, n; denote the number of polynomial terms in the objective
and j' constraint function respectively.

The Geometric Programming problem take the form (1.4) above
while the quadratic equivalent will take the form

" Minimize
m m n
f@) =c+) gm+) ) Qi
i=1 i=1 j=1
subject to
Zaijxj b, t=1,2,...m
z; 20, j=1, 2, ... m; ¢, ¢, Qij, aij and b; are constants
(1.5)
The general quadratic programming problem can also take the form:
Minimize
z2=z'Do+C'z
subject to
Az <bor 2>
x> 0
(1.6)
where

D = n x n matrix whicli can be assumed symmetric
A = m x n matrix - '

b = m — component column matrix

C = n — component row vector

Example — Geometric Programming Problem

Minimize i
f(@) = po(d} +dj +d5 +di

4




+dydy £ dids + dydg + dods + dody + dsdy)

subject to -
(1.7)
Example - Quadratic Programming Problem
Minimize
f(z) = %(w% + a5+ 23+ 23)

subject to

91(z) =21 + 225 + 323 + 42, =0

- 92(2) =21 + 225+ 523 + 624 —15=0
' (1.8)

‘The general non-linear programming problem can be expressed in
the form: ;

Find
T

et
Tr = | =
2 Te
Tn
which minimizes f(z) subject to
gi(x)>0; j=1,2 ...n

. (1.9)

The vector variables {z;} and {z.} are the sets of integer and continu-
ous variables respectively.




Example - General Non-Linear Programming Problem

Minimize
f(z1, m2) = 22 + 25
subject to
gi(z1, T2) = (21 —2)* + 2, —1=0

g2(z1, T2) =22 + (22 +1)2—2=0
(1.10)




1.2 CONSTRAIN FUNCTIONS

1.2.1 TYPES OF CONSTRAINTS

An Optimization problem that is subject to certain restrictions is
said to be a constrained optimization problem, it is unconstrainned if
otherwise.

Any constraint which is represented by the behaviour or perfor-
mance of the system is called behaviour of functional constraint while
any constraint represented by physical limitations on the design variable
like availability, portability and fabricability is called side or geometric
constraint.

1.2.2 CONSTRAINT SURFACES
The constraint, surfaces are classified as follow:

(1) gj(z) = 0 is the hypersurface called the composite constraint
surface. It divides the design space into two regions: g;(z) < 0

gj(z) >0
(i1) gj(z) > 0 is called the infeasible or unacceptable region.

(ii1) gj(z) < 0 is called the feasible or acceptable region.

1.3 CLASSIFICATION OF NON-LINEAR
OPTIMIZATION PROBLEM

1.3.1 CLASSIFICATION BASED ON THE NATURE OF
CONSTRAINTS

The non-linear optimization problem can take any of the following
form: '




(i) Non-linear optimization problem in one-dimension.

This can be of the form:
Minimize

f(z) = Zn:aﬂ?:

subject to
9i(x) = pj(x) = 6; <0
gezv=l 2 .. ni=1L%4 ... m
(1.11)

(i1) Non-linear optimization problem with inequality constraint.
This can be of the form:
Minimize
fl@)=(z1-1)*+ (z2+2)°
subject to
3—xz; — 215> 0

2—3x,+x2>0

Ty, T2 2 0
(1.12)
(iii) Non-linear optimization problem with equality constraint.
This can be of the form:
Minimize
f(fl?) T (xlv Ty oevy iL‘,,)
subject to
g(g)=0,7=1,2,...m

(1.13)

Usually m = n. if m j n the problem is said to be undefined and
there will be no solution.




(iv) Non-linear optimization problem which are unconstrained.
This can be of the form:

Minimize
f(iL') :ci‘l‘ZZQijSL‘.'xj
jzl, 2, .. n 7.‘—'-‘1, 2, css T

(1.14)

1.3.2 CLASSIFICATION BASED ON THE NATURE OF
DESIGN VARIABLES AND SYSTEMS

(i) Non-linear optimization problem which are based on the nature
of design variables.
i.e. Finding values to a set of parameters which make some pre-
scribed function of these parameters minimum or maximum sub-
ject to certain constraint.

e.g. find the maximum load (z; + 3 + z3) that can be supported
by the system if the weight of the supporting beam and the ropes

are negligible.
The design vector is

Ty

Tr = T

T3
This can be of the form:
Minimize

f(@) = —(z1 + 22 + 23)

subject to 1 + x93 + 3 > 0
or :I,'3—(.'It1+1.'2) >0

or i, T, I3 2 0

(1.15)




e, Il the eross sectional dimension of a rectangular beam is al-
lowed to vary along ils length:

Figare 1.1 A rectangular beam

The optimization problem can be stated as:

nﬂny-/modwu

delcind

which minimizes

subject, Lo

; /\lp|'r(’)l S 6max
0<1 <, b(1) 20, (1) 20

(1.16)
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(i1) Non-lincar oplimization problem which are based on the equa-
tions of design system.

e, Fguations expressing Lhe objective and constraint. anctions

(iti) Nou linear optimization problem which are hased on the physical
strueture of the design system.

e Bringing the speed of a system of motion under control

1.4 OPTIMALITY AND CONTROL PROBLEM

There are some control theory problems which are designed to bring
aboul some physical changes in a system. e.g. applying break fo a mov-
ing vehicle snddenly, to avoid collision or bring aboud, minimum impact

or foree, |2, [10].

Control sct Stale Space Output

Pl [ F L x Ly

Figure 1.2 - Engineering design of locomotive




An example is the engineering design of a locomotive as depicted in
the figure 1.2 above.

A linear optimization problem arising from above is:

Optimize
o(t) = u(t) — ug(t)
and by transformation may assume

z(t) = Az(t) + Bu(t)

- (3]

where

(1.17)

A general non-linear problem arising from the above can take the
form:

z'(t) = flz, u)
f(0,0)=0
(1.18)
For example
T =T+
.'1,"2 =-=27; +u; + 2uy
(1.18) can be expressed as _
2(t) = {t, o(t), u(t)} (1.19)

12




1.5 AIMS AND OBJECTIVE OF THIS STUDY

The aims and objectives of this study are:

1. To appraise the Extended Cutting Plane Methods in Optimiza-
tion theory and

2. To use the method for the linearization of non-linear objective

and constraint functions in Optimization theory.
L]
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CHAPTER TWO

GENERAL OPTIMIZATION TECHNIQUE FOR
NON-LINEAR PROGRAMMING PROBLEMS

2.1 INTERIOR PENALTY FUNCTION METHOD

Given the problem
Find
T
x
= .2 = { ! }
$ Te
Tn

which minimizes f(z) subject to the constraints
gJ(z) 20’ J i3 11 27 o wi JTT

(2.1)

z; and 7, are two vectors representing integer and continuous variables
respectively.

St and S, denote the feasible sets of integer and continuous variables
respectively. We expect that either of these sets can be empty if the
variables are all integers or all continuous [12].

To introduce penalty parameters, we define

Minimize Q(z, r, Sk) as
Qz, e, S) = F(@) + 2 > Gilas ()] + 5:Q(za)
i=1

(2.2)

14




7y, is the weighing factor called the penalty parameter and
m
e Y Gilgi(z)] (2.3)
i=1

is the contribution of the constraints to the @ function and is equiva-

lent to
1

9i(x)

nilcjlg,-(w)l & )'":l

this term is positive for all z satisfying

gj(x) > 0 and — oo whenever any of the constraints tend to zero value.
This implies that if the minimization of the @, function starts from the
feasible point, the point remains in the feasible region always.

The term SpQp is the penalty term with the weighing factor or
penalty parameter and Q(z4) will be the penalty anytime variables in
x4 take values other than integer values.

Therefore

(2.4)

3 - OifszSd
Qulze) = { >0 if z4¢ S

(2.5)
Essentially the function is to be minimized for a sequence of values
of . and Sy such that for k — oo we obtain:

min Qk(x7 Tk, Sk) — min f(ZL')

glz) 20 1=1,2 ... m
and
Qk(xl) iy 0
(2.6)

Generally the penalty function method can be defined as:
Given f(z), g1(z), g2(2), ..., gm(z) having continuous first partial
derivatives in JR" then a constraint problem

15




Minimize f(z)
subject to
91(x) <0, g2(2) 0, ..., gm(z) <O

(2.7)
can be solved as follow:

1. For each positive integer k suppose that zj is a global minimizer
of

Pi(x) = f(z) + kﬁé[g,-(w)lﬂ

(2.8)

2. It is to be shown that subsequent (z}) will converge to the solution
,

2.2 APPLICATION OF PENALTY FUNCTION
METHOD TO CONVEX PROGRAMMING PROBLEM

Suppose that f(z), g1(z), g2(x), ..., gm(x) are convex functions
with continuous first partial derivatives on IR" and suppose that f(z)
is coersive, i.e.

lim f(z)= 400 : (2.9) ;

fzl—r-+oo

If the convex programme given by equations (2.7) is consistent then
the dual programme is also consistent and: the minimum value of the
programme is given as [8], [12]

inf f{2): glzgysha=12 ..., m; ze R* (2.10)

If the constraint functions g;(z) have continuous first partial deriva-
tive, so also is the function given by

h(z) = [g* ()] (2.11)

16




Oh(z) 9(z). .
e Bl e Ox; '
and also the function given by

=1,2 ...,n (2.12)

Pe(x) = f(z) + k3 Jo} (@)P

i=1

for a bounded sequence {z}}
Pk(ll;'k) = -THIR {Pk(x) D Rn}

(2.13)

If {zy,} is a convergent subsequence then

VE(@) = V(@) + kS 20:() Vai(z) (214)

i=1

{xx;} are the convergent subsequence of {z;} and their limits are the
solutions of the problem

If {zx;} is the minimizer for P, () then

= Vij (xkj) = Vf(l’kj) 2l i?k,g,(x)Vg.(x) (215)
=1

2.3 METHOD OF TRANSFORMATION OF VARIABLES

Given a quadratic or polynomial programming problem of the form:

Minimize f(z) =% + 2z
subject to
giz)=1-2<0, ze R

(2.16)

17




Solution

If * = 1, the minimum value is given by z = 3

Applying pena]fy function method as in (2.8)
m

P() = F(o) + kY _lgi(=)]
=1

Pi(z) = 2® + 2z + k[(1 — 2))?
=2+ 2z + k — 2kx + kz?

or

|2+ 2c+k[1 -2z for z=1.
Tl 22+ 2 for z>1

Py.(z) is continuously differentiable everywhere, it is an increasing func-
tion at # = 1 and has a unique minimizer z* at x = 1; then

0= Pz) =2z +2—2k(1 —z)

z+1—-k+kz=0
k-1
T Trk
taking limit, x}, = 0 as k — oo
i.e. the sequence converges and the higher the value of k the closer is
k-1

x -
LTy

to becoming feasible.

18




2.4 ITERATIVE (NON-GRADIENT) METHOD USING
HOOKE AND JEEVE ALGORITHM [11]

We cousider an optimization problem of the form

Minimize f(xy, 72, ..., x,); a multrivariable non-linear function,
the algorithm is as follow:

Step 1

Choose an initial base point b; and step length h; for the respec-

tive ; and for numerical accuracy hj; can be chosen to equalise the
quantities

f(bi + hjej) — f(bi)

Step 2

After evalnating f(b;), call it exploratory success (s) if it gives a
decrease in the value of [{(x) and it is failure (f) if otherwise.

Step 3

Exploratory move for the variable z;

E(i) — Evaluate f(b; + hje;) if the move from b; to b; + hje;, be a
success; replace the base point, b; by b; -+ hje;, then evaluate f (bi+ hje;)
otherwise, i.e. failure retain the original base point b;.

E(ii) - Repeat E(i), for the variable z, by considering variables by +hae,
from the point b; + hie; considered to be a success in E(1).

19




Applying this procedure to cach variable z; in turn to arrive finally
at new base point b, after 2(n 1) functions.

E(iii) -~ If by = by for the step length h; return to E(i) and terminate the
algorithm when the step length have been reduced to a prescribed level.

Step 4

P(i) — Move from by to P — 1 = 2by — b, and it can continue with
new sequence of exploratory move about P;.

P(ii) - If the lowest function value obtained during the pattern and
exploratory process of P(i) is less than f(b;) then a new base point by
has been reduced then return to P(i) increasing the suffixes by a unit
otherwise the move is abandoned i.e. the pattern move from b3 then
contime with a new sequence of exploratory move about bs.

Step 5

Stop the iteration when the chosen stopping condition is recorded
eg. hy = hy <1/4

Example

Minimize f(x) = 4% — 3z 29 + 2% + 321 + T2

Solution

take by = (0, 0) as the initial base point
Iy = hy = 1 as initial step length

20




Denote exploratory move by E(z,) about the point z; and P(b,)

pattern move from the base point b,, let s and f denote success and
failure when f(x,) is evaluated at ;.

J(br) = 0 for (b))

J(1,0) =7(f)
J(=1,0) = 1 (f)
f( 1 ) 9(f)

E(by) is a snccess at, (—1, —1), the new base point is
= (=1, —1) and f(by) = -2

f( 1, —2) =3 (s)
J(=1, =1) = =2(s)
f(=1, =38) =-2 (s)
f(=1, 3) =22 (f)

then b; = (=1, =2) as the new base point, f(by) = —2
Making a further pattern move

P2 = 2b2 - b]_ = (—1, —3) f(P2 = =2

For E(P,) decreasing the step length by 1/2

(=172, =2) = =2 (5)

J(=1/2, =1/2) = -4 (5)

F(=172, 3/2) = 19/2 (1)

Py = (—1/2, —=3/2) = —4 (s) is the best pattern move then
P3 = 2b3 — by = (0, =2) f(Ps) =2

Evaluate E(b3) i.e

J(=1/4, =1/2) = =19/8 (s)

J(=1/4, =1/4) = —17/8 (s)

f(=1/4, =3/4) = —10/4 (s)

J(=1/4, 3/4) = =1 (s)

The function f(z) = 42% — 3zz5 1 2% + 3z, + T3 can be minimized
at (—=1/4, —3/4) being the least exploratory move.

21




Since the variables are independent each can be allowed to vary to

obtain of 6f
g 3 e B =0 (2.21)
Using (2.18) and (2.19) we obtain
OF _ df &, 9gi(z:) :
iy ml BN A=)
and aF
o, ) = (2:23)
and so 5 9
4408 =0 - 0 (2.24)

dx; 8\

Given (2.17) and (2.18) a sufficient condition for f(z) to have a
point z* is that

o *f (:1: A)
Q= hih : 2.25
Z;J—X; 7 Owidx; Iz, 9z; o2
or the Hessian 62f( N
x’
H = —————-—awi By (2.26)

evaluated at z = z* must be positive definite

2.6 KUHN TUCKER THEORY ON OPTIMALITY

The Kurn Tucker theory gives necessary condition for any quadratic
programming problem to have relative or global maximum, [4], [12]:

Given the problem:
Maximize z = 2'Dz + Cz
subject to i
g(r) =Az <b

23




A point (z*, A\*) is a global maximum if
f(z, A) =2'Dz + C'z + X\* (b — Ax)

and
Of(z*, X}y =2D+C—-AX" <0

The following conditions can be imposed:

(i) k—T(),
v =Yllz*, A") K0

(i) k — T'(id),
FRi=Vafle®, AN)2" <0

(iii) k — T (i),
vz} = Vel (a*, X') <0

(iv) k —T(wv),
NZny = Vo f(2*, M)A <0

24




CHAPTER THREE

CUTTING PLANE METHOD IN OPTIMIZATION

3.1 PREAMBLE

The cutting plane method is developed to solve non-linear program-

ming problems [1], [12]. The problem is linearized using the Taylor se-

~ ries expansion which leads to the approximation of the feasible reglon
by the linearized envelope or region.

3.2 GRAPHICAL SOLUTION TO LINEAR
PROGRAMMING PROBLEM (INTERIOR)

Given the problem

Minimize 2(.’1,‘1, 22) = —(5.’1,‘1 + 7$2)
subject to
4$1 = 11.’1,‘2 S 7

3$1—2$2S 12
v Iy >_0, z9 >0

z; and x are integers.

: (3.1)
Table 3.1

T 21-110 1 2 3 4 15
(77—x)/11 | 77| 73 | 70] 66 [6.3]| 6.0 [ 56|52
(Bey—12)/2| -9 |-75| 6 |-45] -3 |-15]| 0 |15

The feasible points in the feasible region are:
(0, 7), (0, =5.5), (3.5, 0), (6.5, 4.5)
Simultaneously, the solutions to the constraints are
858
T = m

= 6.6

25




: 183
= — =446
T
These are fractions but many real life problems are integers. So the
variabl;es are truncated.

2(z1, z2) = —(5z1 + Tz2)

= —(5% 4.46 + 7 x 6.6) = —68.5

max z(xy, T3) = 68.5

2(z1, x2) = —(5z1 + Tz9)

=—(bx4+4+T7Tx7)=-69

max z(z;, x2) = 69
3.3 GOMORY’S CUTTING PLANE METHOD

From the graphical illustration below of the last problefn in section
3.3, the feasible region is AOBCD with solution to 2(z, x3) = —68.5,

this is without integer requirement. But when truncated to integer
value

T = 4 To = 7 Z(IB]_, .’Bz) = —69

when

I = 5 Ty = 3 z(:z:l, 11:2) =-T4

using 7 = 4 and z3 = 7 to reduce or cut the original feasible region
AOBCD to AOCEF and further cutting could reduce the region. This

approximation lead to to a more feasible solution.
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3.4.1 GOMORY’S CUTTING PLANE ALGORITHM

An algorithm was developed by Gomory (1], [5], [11]; to solve All
integer or mixed integer programming problem with rational data. Con-
sider the problem

Optimize z = CTz

subject to
Az= B
x>0
Z1, T3, ..., Fq integers,
here z = ( )*
where £== (21, B3, .. 5 Lgis vy Bn) .
and

C =n x 1 matrix
A = n X n matrix
B =m x 1 matrix

It is All-integer if g = n

3.4.2 CONSTRUCTION OF GOMERY’S CUTS OR
CONSTRAINTS FOR ALL INTEGER PROGRAMMING
PROBLEMS

If the associated linear programming problem is solved with one of
the variables resulting in non-integer form, suppose that the variable
is 2; and is occuring in the i row of the optimal tableau, let the
corresponding equation of such row be given by

Z; + a‘jlyl -+ aj2y2 + ...+ d,-,,yp = Bj (3.2)

where
Yk, K =1, 2,..., p are the basic variables and
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@, k=1, 2,..., p are the coefficients of y; in this j* row and l_)j is
the value of z;, the solution is thus given by:

T = bj — Q1Y1 — Q2Y2 — ... — Q5pYp (33)
If [a] is the largest integer not greater than a € IR

a=|a]+d

e.g

/

1
3-=13]+<
3= B1+3
With this definition, the solution now takes the form:
z; = b4+ — {([@n]+aj )y + (@] +@y)yat- . .+ (@] +a5,)yp} (3.4)

Collecting the integer terms gives:

i = [bj] — [@nly — [@zely: — - .. — [aslyp
+{(®; — aj)ys — (B — @lp)ve — ... — (B — @l )y} (3.5)

and this gives the first part as

T = {(Bj) o (a'jl)yl o) (&j2)y2 g Tl (a'jp)yp} (3.6)

and it is an integer if all variables 3y, ¥2, ..., ¥, are integers which is
true by assumption.

For z; to be an integer the second part

B; e {5';1?/1 o a‘;'2?12 L a;‘p?/p} (3.7)

must be an integer but 0 < 5; <1as 5_’7- was assumed to be non-negative
integer. Also because 0 < aj; < 1 for i =1, 2, ...,p. Hence as the
Y1, Y2, ..., Yp are constrained to be non-negative integers it follows
that

5_,‘ - {d_.,-lyl At o d,-py,,} <0 (38)
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holds in any feasible region or integer solution and we introduce a slack
variable z such that

I—)j - {ajlyl - djzyz T a'jpyp} + Ty = (39)

Ty as an integer, equation (3.9) will now be added to the final tableau
of the set of constraints to obtain optimal solution to the modified LPP
using simplex method algorithm. '

Given the problem in (3.4.1), suppose that one of the constraints
has a non-integer variable, then equation (3.4) can be written as

b + b — 2, = 3" ajrax (3.10)
g=1
Since not all the variables y; may be constrained to be integer, then let
S+ == k; A5k & 0

S =k; ajx <0
(3.10) then takes the form:

[bs) + b —z, = Z a;kTy + Z(_ljkl‘k (3.11)
s+ e

and two cases emerge:

Case 1 s B
[bj] — b — . <0 (3.12)
Case 2 B B
[b;] — b, — 2, > 0 (3.13)
Case 1
[bj] — b, —z; <0 (3.14)
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Since [5,-1 is an integer, x; is constrained to be an integer in a feasible
region and bf; is a non-negative function hence

[B5] — =;

must be non-negative integer v, say.

[b] — b —z; =b; —v (3.15)
thus L
bj—v=3 Buye+ Y Gu - (3.16)
kes, keS_
Since v > 1, then
bi—v> > apyk+ Y @ik (3.17)
kesy keS-

From the definition of S and since y; > 0 for all & we have that

bi—12 ) anme (3.18)

as b; — 1 < 0 we get that

1< (=17 Y aeye (3.19)
keS- 3
which gives Aaiiala
bj S bj(bj = 1)_1 Z djkyk (320)
kes-
Case 2
[bj] - b; —z; >0 (3.21)

As z; is constrained to be an integer in a feasible region we have
that

[bj] — b; — z; = b +w (3.22)
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where w € (1, 2, ...) thus

Gitw= Y auyet+ Y ante (3.23)
keSy kes_
Since w > 0, then
U< Y apuet Y G - (3.24)
kesy kes-

From the definition of S, and since y; > 0 for all k we have that

bi—1< > @y (3.25)
kes-
which gives . N
b <0, = 1)1 Y any (3.26)
kes-

This inequality must be satisfied for z; to be an integer and this is
the Gomory cut or constraint to be introduced in the final tableau.
A slack variable z, is to be added to (3.26) as follow

; <O — 1) > anyk + 3, (3.27)
keS_

Asy, =0, k=1, 2, ..., p, we have that
Jir:—i)j

which is non feasible then it remains to apply the dual simplex algo-
rithm to remedy this outcome.
The above process is repeated until either

(i) A tableau is obtained where z; =0, i =1, 2, ..., ¢ are integers
in which case the corresponding is optimal or

(i1) The use of the dual simplex technique leads to the conclusion
that no feasible solution exists in which case we conclude that

the original mixed integer programming problem has no feasible
solution
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3.5.1 DAKIN’S METHOD OF BRANCH AND BOUND
ENUMERATION

Optimal solutions to any integer problem can be obtained by listing
all possible solutions and choosing the best i.e. by exhaustive enumer-
ation, it is also possible to examine the set of all possible solutions so
that whole sets of solutions can be discarded without specific evalua-
tion of the all the solution in each of the sets, this technique is known
as implicit enumeration.

An implicit enumeration is called the branch and bound enumera-
tion and is designed for integer programming [2].

Given a programming problem

Maximize CTz
subject to
Az=B
z>0
Ty, Ty -.., Ty
(3.28)
where £ = (21, %3, ..., Tqy ..., ZTn)T and

C=nxl,B=mxlandA=mxn

Solution to the above problem can be solved using Dakin’s method
enumerating as follows:

1 Solve the problem as Linear Programming problem ignoring in-
teger requirementsusing simplex method.

2 value of solutions obtained is the bound which is assigned to the
first point of the decision tree representing all feasible solution to
the original LP.
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The two constraints (3.31) are called the Dakin’s cut but z; cannot
take value b; in either of the two cases but two new points are
created in the decision tree both joined by lines to the original
point. '

The first represent all feasible solutions to problem 1 and the
second to problem 2.

Optimal solution to the original LP if it exists lie in one of these
sets S; and Sy, i.e. partitioning the feasible solution S to the
original problem into two sets S; and S — 2, so that

31U82—'_—S, 51052=¢

3.5.2 EXAMPLE I

Maximize z; + 2x,

subject to
221 + 222 < 7
2z { =T < )
x; integers.
(3.33)
By simplex algorithm:
Table 3.2
constraints | 1 | z3 | T3 | 74 | b;
T3 271 S et 7
Ty 2 -1 0 1 i3]
z 118589 40
Table 3.3
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constraints | x; | o | 3 T b;
7 11 Bl o [7/2
T4 0 [3/2|1/2|-1/2| 2
z 0} -1]|-3/2] 0 |7/2
Table 3.4
constraints | z1 | zo | 3 Ty b;
m 1101 1/6]1/3]13/6
To 0|1 |1/3]-1/3]| 4/3
z 0]0]-7/6|-1/3]29/6
feasible solution:
A AR

but this is not feasible and not optimal since z, and z, are non-integers.
A cut is introduced and z; can be written as

E——x —1z+ T
gy ot g gt
i.e.
2+—1--—x = —23+ =T
Be ok B LR
(3.34)
therefore B
[b;] =2
% 1
j=2i=1p=2 1
dj;l:'é'
0 1
aj2—§
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Y1 = T3, Yo = T4, Sy = {4}, S_= {3};
The cut now becomes

1 = j 5 | —Ried 1
8 6(5 1) (g)ﬂca + 3% — s
S S e | 1

— %273 <+ 53‘4 — Ty

giving rise to the tableau:

Table 3.5
constraints | z, | zo | =3 T4 b;
Ty 1400 b b1/3 1376
Ty 0| 1] 1/3 (-1/3] 4/3
z5 0]0]|-1/30|-1/3| -1
Z 00| -7/6 |-1/3]29/6
Table 3.6
constraints | z; | oo T3 T b;
T 1|0 ]29/180 | 5/18 | 2
Ty g 1 1/3 -1/3 | 4/3
Ty 0f{0}|-1/30 {-1/3] -1
z 010 -7/6 | -1/3129/6
giving
g1=2
e é
rovd
4 14 29
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3.5.3 EXAMPLE II

Maximize f((L‘l, $2) = 4.’!,‘1 % 3.'172

subject to
3z, +4ze < 12
4271 = 21'2 _<_ 9
;> 0,29 >0, z;, ¢ =1, 2 integers.
(3.36)
By simplex algorithm:
Table 3.7
T | Zo | x3 Ty b;
2| 0| 1 | 2/5]-3/10| 21/10
x| 110 |-1/5] -1/5 6/5
F480 10§ 2/533/10.¥111/10
Optimal solution
P - 1
s 1
TH = —1—(-)- =9 -+ 1-6
111 1
e — =114 —
/ 10 10
(3.37)
Take the largest of the z; and x5, i.e.
el 1
=2+ 10

the integer part is 2 and so

79<2, 1323
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and the decision tree will be designed as follow:

NS FPTRIN fio = W L
~X e

Figure 3.2
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The two new problems emanating from these new cuts are:

I Maximize 4z, + 372
subject to

3.'121 =l 4232 S |

45171 == 2$2 S_ 9
$2S2,$i20, ":11 2
(3.38)
II Maximize f(m']_, 1'2) = 4151 + 3.’172
subject to
3z, + 4z < 12
dgy — 25 <9
$2Z3,$i20, Z=1, 2
(3.39)

3.6 REMARKS

Problem I has optimal solution

& = .

174

zy =2

=1

Problem II has optimal solution

b = -3-

LT

g =3




=12

From the above the two problems still have non-integer solution,
hence the procedure is repeated.

Problem I — choose z; < 1 and z, > 2
we create new LP’s as

III Maximize 4z; + 3z,

subject to
3z1 + 4z < 12
4z — 229 <9
Tg S 27 I S 1
IV Maximize 4z, + 3z2
subject to
3z, + 4z, < 12
4z, — 22, <9
T2 < 27 T > 2
V Maximize 4z, + 3z
subject to
32‘1 + 4272 < 12
4$1 = 21172 S 9
2253, 7, L1
VI Maximize 4z; + 3z»
subject to
31, + dzp < 12
4z, — 22, <9
2253, 121
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Problem III - choose z; = 1 and z, = 2
f(zy, x2) = 4(1) + 3(2) = 10

Problem IV - choose z; = 2 and x5 = 2
J(@1, 22) = 4(2) +3(2) = 14

Problem V - choose z; = 1 and 2, = 3

f(zy, ) = 4(1) +3(3) = 13

Problem VI - choose z; = 1 and z5 = 3

[(zy, x9) = 4(1) +3(3) = 13




The decision tree is given helow:

e (s i 4 i O 8 s

! i i | R s o

IMignre 3.4
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Optimal solutions:

Problem 111

Problem IV

Problem V

Problem VI

Z; =

ga=2
ff=10
Pt =2
Zg =2
=14
2 =

z5 =3
=13
g1
¥g =3
=13




CHAPTER FOUR

EXTENDED CUTTING PLAN ALGORITHM FOR
NON-LINEAR PROGRAMMING PROBLEM

4.1.1 INTRODUCTION

The method adopted by Gomory for LPP can be extended to non—

linear programming problem, this is the main focus of this research
work. '

4.1.2 LINEARIZATION OF THE NON-LINEAR
OBJECTIVE FUNCTION

Given a problem

Minimize F(xla Ty «ny zn)
subject to
gj(xh L2y ---) xn) <0
it i AN |

(4.1)

A new variable z,,,; is introduced as the original problem is trans-
formed into an equivalent form [4], [12]

Find (21, 23, «+.5 Tny Tnt1)
which minimizes z, 4,
subject to
gj(:rl, X2y <y In) S 0
g=dad.....m
and
gm+1($1a T2y ---y @) = flz, zay ooy Bn) ¥ Zaii =0
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Generally, the original problem (4.1) may be stated as:

Minimize g
f(2) =C"z =3 ey
i1
subject to
9i(z) <0
=l 2 i m
(4.3)
where
Fi= (1"11 L2y «vvy T, xn)
C =m X 1 matrix -
4.1.3 EXAMPLE
Minimize f(z) = 22 — 22,3
subject to
1+ 32 <5
2171 — X9 S 3
(4.4)

Transforming the problem by introducing an additional variable x3
as illusrated above gives the simultaneous inequalities (i), (ii) and (iii)
below:

21+ 32 <5 (i)
201 — 19 < 3 (72)
T3 — 20,23 — 13 < 0 (i)
Solving the inequalities give
8 7 48

$1=§, 1‘2=§, $3=——9—
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Next we introduce slack variables into (i) and (ii) as follow:

T1+z2+23="5 (iv)
28y — T3+ 24=3 (v)
31
I +$2+$5=? (vi)
Table 4.1
Ty | T {T3| T4 [ T5| b;

T3 1 1 1 0 0 5

zib2 | -1.]10 1 0 3

vt 1 |1 [0 L esta beiys

- 1149 0 0 0

't 1 Feav' T 1 00 0 5

z| 0 1/2] 1 |1/2| 0| 772

zs{ofo0|1] 0 |-1]-16/3

2 3 U Lo 1) 1 R 5

- R L O B o 0 -2

7 0 R S S e 7

zs|oflo|1]| o |-1]-16/3

D448kl 0 0 5

== = f(z)=2,4+22=8

4.1.4 LINEARIZATION OF CONSTRAINT FUNCTION
OF A NON-LINEAR PROGRAMMING PROBLEM

The following steps can be used in linearizing the constraint func-
tions of a non-linear programming problem, [1], [18]:

Step 1 Start with initial point z; and set the iteration nimber asi = 1,
this point need not be feasible.
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Step 2 Linearize the constraint functiop gi(z) as
9i(z) = gi(=1) + Vgj(z) (1), §=1,2,...,n
Step 3 Formulate the approximating LPP constraint as
gi(z1) + Vgi(z1)T(z —2,) <0, j=1,2,...,n

Step 4 Solve the approximating LPP to obtain the solution vector z;.

Step 5 Evaluate the original constraints at z;y,. If

gi(zin) <e

where e is a prescribed small positive tolerance.

4.1.5 EXAMPLE

Minimize f(z) = 1 + 22

subject to
g(z1, T2) =22 — 4z, +22-3<0
(1)
Solution
Step 1 — Start with an initial solution z, )
Step 2 — To avoid unbounded solution let z; and z; be bounded as
1<z <1, -1<z,<1 (m)
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Step 3 — The problem becomes
Minimize f(.’B) =21 +2
subject to

—1<.'121<1, =1<z3<1

(iii)

v

Step 4 — Solving this LPP at (—1, 1) gives f(x) = 0

g(x1, ) = (=1 = 4(-1) 4+ (1)2=3=144+1-3=3>0
let the choice of e = 0.02
since
ey, 23)=3>e
then

Step 5 — we linearize about the point x5 as

g1(z) = gi(z2) + Vgi(z2)" (21 — 22) < 0

Jg
-6;1-—2231—4.1,‘2—-—6
dyg

5;—2'—,—41‘1-*-21:2_—2

91(z1, T3) = —6x) — 202+ 7
adding this constraint to the first two:

-1<z; <1, -1<z3<1, =621 —225,+7<0

Step 6 — Set the iteration number i = 2. (step 4 recalls); solve the LPP
ab a0 = s
—b6x1 — 202 +7=—63,—2+7=0
—'6.’L'l = -5
z, = 5/6 = 0.8333
which gives
fz(w) =1+ 29 = 11/6
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then step 5

gi1(z1) = 25/36 —20/6 = 107/36 < e

the iteration stops since g;(z;) < e.
Result in tabular form:

Table 4.2
New linearised solution of the F(z, +1) | g1(zy + 1)
constraints approximating LPP
-1 <gy <1 -1.000, 1.000 0 3
—l<zy<1 . -1.000, 1.000 0 3
—6x; — 229+ 7<0 0.8333, 1.000 1.8333 | -3je=0.02

4.2 GEOMETRIC INTERPRETATION OF THE
CUTTING PLANE METHOD [12] '

Given the one variable problem

Maximize f(z) = a1z
subject to
g9(z) <0

(4.5)

¢1 a constant and g(z) a non-linear function of .
This problem is represented by the following graph:
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The feasible region and the contour of the objective function are as
shown in the graph.
In order to avoid unboundedness of the solution we can introduce
additional constraints
<z

where [; and u; are lower and upper bounds repectively.
The programming problem then takes the form:
Maximize f(z) =iz .
subject to
i<z <y

(4.6)
The optimum solution of the approximating linear programming

problem can be taken as
== .ll

Next is to linearize the constraint g(z) about the point /; and add
it to the previous constraint, and the problem now takes the form:
Maximize f(z) = ¢z
subject to
h<z<wu

and
o)+ L@ 1) <o
(4.7)

The feasible region of x as a result of the constraints is given in the
graph below by
' Lhx<u

The optimum solution of the approximating linear programming prob-
lem is
2‘* = ll
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ligsnre 4.2

lineanization of ¢(x) above the point o 7,
A/ oo

Hv)y <0 5 u

L) ey tigr 42

Linearization of conslraint above the poin! /,
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4.3 SIMULTANEOUS LINEARIZATION OF THE
OBJECTIVE AND CONSTRAINT FUNCTIONS

4.3.1 INTRODUCTION

In this method, the objective and constraint functions are expanded
about a point using the Taylor series expansion in the following form:
Given a non-linear programming problem:
Maximize z = f(x)
subject to
9(z) <b;
(4.8)

This non-linear programming problem can be approximated to a
linear programming problem which is solved to obtain a trial point xs.
Repeating the procedure using z, in the place of z; until the problem
is reduced to the solution of a sequence of linear programming problem.

4.3.2 THE LINEARIZATIONS

Let z; be a feasible solution, then obtain dual form from (4.8)

F(z) = f(z1) + [V/(21)(x — )]

and
G(z) = gi(z1) + [Vg(z1)(z — 1))
(4.9)

a new variable y; can be introduced with a non restrictive sign as follows
y=-. gl =2z-m
we introduce the following notations:
a; = Va1 (zi)
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¢=Vf(z:)
2=2z— f(z)

(4.10)

substituting in (4.9) gives:

Maximize 2 = ¢'y
subject to
ay < b

(4.11)

y is unrestricted in sign.

To ensure the validity of the linear approximations, we impose upper
bounds on the magnitudes of the variables y; as

{yi} <m; (4.12)

Let y} be the optimal solution of the problem subject to the additional
constraint .

is then taken as the next trial point and the constraint a;, b; and ¢ are
evaluated at this point z; and a new linear programming problem sim-
ilar to (4.11) with conditions in (4.12) is formulated but no guarantee
that the new trial point will satisfy the constraints of the problem. To
absorb this, either decrease the upper bound m; or proceed to the next
stage ignoring x9 as not, being feasible. .

Iteration will terminate when the difference between two successive
solution is acceptably small, i.e.

{$i+1 - 1‘,‘} < € (414)

prescribed or when the difference between two successive values of ob-
jective function is small, i.e.

{Za—5n}<§ (4.15)
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is prescribed.
z, < 25 < T5 (4.16)

since y is unrestricted in sign but bounded in magnitude, we replace
variables y; by the non-negative variables

wj = Y; +M;j (4.17)
and then
17'; < zy; +W;
—m; < T;
(4.18)
where 75 is the j" component of z; and
—Mm; S w; — mj S mj (419)

then
max {zj — 15 + 7 0}

< wj; < min {2 — 15 + M5 2m;} (4.20)
this leads to the linear programming problem

Maximize 2 = ¢/(w — m)
subject to

(4.21)

where w = {w1, ---> Wn}

m = {ml, S mn}

w); = max {z; — 3y + ™M 0}
f)] 2 e . . 2m

wJ = min {"EJ Tj + my, 2
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4.3.3 EXAMPLE I

Maximize z = 2% — x,75 + 223

subject to
3.'L'1 + 4172 = 10
T3 — r2>1
Ty, 220
Solution

Take T, = [2, 1] to be the initial feasible solution, then
a; = Vgi(z1), by = b; — gi(z) =3, 2|

by =10 — [3z) 4+ 475 = 10— [6+4] =0
ag = [2x11, —2x] = [4, —2]

by=1-[22—12 = -2
c=Vf(z1) = 2211 — T12, —T11 +4z12] = [3, 2

the first constraint and non—negativity restriction for the above problem
imply that
0<z;<4and0<z,<3
therefore take
T, =0,z]=4,25=02,=3
to be the upper and lower bounds as defined earlier.
my = me = 1/2, m = [1/2, 1/2], the LPP then takes the form:
Maximize z2 = 3wy + 2wq
subject to
3wy + 4wy < by + anmy + argme = 7/2

Aw; — 2wy > by + agymy + agame = —1
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i.e.
Maximize Z = 3wy + 2w,
subject to
3wy + 4w, < 7/2
4w, — 21172 -1
0<w; £, 05w <11

Optimal solution is

LT o 9
hence
" 3 11 1 1 18 14
$2=$1+w1—m=[2a 1]+[’2§7 55]"[5, §]=[ﬁ, ﬁ]

The second iteration begins by replacing z, by za.
a; = [3, 4]

on = 2o, 20l = 200, 23] = [37 T3]
b = 5 = B wa — [335) + 4] =0

By = 1 =, — 2] =1 — [4( =) -2z 22)]

3 65
¢ = Vf(w;) = 3w; + 2w, = 32z, — Tyg], 2|~z +4T12] = ["5, 'ﬁ]
and so we have that:
R R T
subject to
3’[1)1 -+ 4’LU2 S 0
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36 28

At — — 1wy >

Y T w22
OSwlﬁl,OSwzsl

= am . 1

w1=2—6-,w2=—§

this completes the second iteration.

4.3.4 EXAMPLE II

Maximize z = 22?2 — 22,35 + 22 — 1

subject to
2z — 19 < 10
2} — 23139 + 25 < 6
Iy, To Z 0
Solution

Take z; = [3, 2] to be the initial feasible solution, then a; = Vg, (z,;)

9y
I e— 2
apy By
dg
a1 = 5;1—; =-1
g
a2 = 8% =
dg
= —— = —9
a22 0Tz
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a; = [2, 2], az = [-1, —2]

bi = b — gi(z)
61:10—[21;'1—272]:4

8226— [$f—2$1.’172+1'§] =§
c=Vfz)=[82
2=2— f(z;) =2z — (253 — 2z 125 + 22 — 1)
07, <20<2,<2 '
we take
2 =08 =@ gl a0 = 20 = [8, 2
as lower and upper bounds to satisfy the non negativity conditions. We
take also my = my = 1/2, and the problem takes the form:
Minimize 2 = ¢(w — m)

z = 8wy + 2w

subject to .

2wy + 2ws < by

—w; — 2wy < by

Bl = b1 + a;ymy + agmyg = 9/2
by = by + agmy + agemy = 8

1.e.
Minimize 2 = ¢(w — m) = 8w, + 2w,
subject to

2un + 2ws 39/2
—wy — 2wy < 8

0<w; £1,0Sw <1
Optimal solution is feasible at

.2 .4
w1=—2—,‘w2=——z
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Therefore:
Tp=21+w —m
25 41 By | 23 .3
2455+ 5 3] =[5~
=R )t 3= 13 73
This completes the first iteration.

For the second iteration, we replace =, by xo;

= [3’ 2]

as = [2z11 — 2212, —221; + 221,]

ik [2(?33) ¥ 2(%1), —% + 2(_:1)] e [125, 125]

bi == bi = C’C
b =9/2 2wy~ 2w9) =92~ [2(3) + 2] = -1

gt . ol Y § — [—%—2(—)] —0

0 = Vf(:v,-) = [43311 — 2113, —2x1) + 2219)

[4( - 3, 23 )+2( 31)]:[2(757, —;85]

therefore the problem becomes: Minimize z = %wl - %é'wg

subject to
185 185
e i
x 1. & 1
Y= Tae Y2 T T

T3 =T+ Wy —m

> -2+ % = -3 -3
[?’"IJ“ % "l 122 T3 T
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

This work shows that the Gradient method such as the Extended
Cutting Plane Algorithm is very useful in solving Integer Programming
Problem via linearization.

The method appears direct and easily applicable thongh with great
care for accuracy of results.

The method was used to linearize both the objective and constraints
functions giving more rapid convergence to the optimum solution than
the Hookes and Jeev’s or the Bound and Branch methods.

The application of convexity theory, imposition of necessary and
sufficient conditions as illustrated in the work provides a global or op-
timal feasible solution. The penalty function method using Lagrangian
and Kutn Tucker provided opportunity to appreciate the importance
of the Extended Cutting Plane Method when compared.

5.2 RECOMMENDATION

The Extended Cutting Plane Method using Taylor series expansion
could also be applied to any financial based problem. The Price -
Yield, Risk — Return relationship in any stock issue lead to a Quadratic
Programming Problem which can then be modified to know at what
price to trade and the yield expected on number of issues traded. This
highlighted problem naturally leads to All Integer, Mixed Integer or
Zero—One Polynomial Non-Linear Programming Problems which is the
main subject of this study.

Further research work can be carried out directly applying this study
to Stocks related and other financial problems.
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