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ABSTRACT 

Several works have been done on the methods of obtaining ' reliable ' solutions to 

mathematical problems. The extent of reliability of solutions obtained to any given mathematical 

problem is usually connected to the method, approach and tool utilized. In this work, a novel 

approach of obtaining reliable numerical solutions through a contemporary high level programing 

language, C++, is employed. 

Bearing in mind that a lot of time is spent in computation manually or through the use of 

a pocket calculator, this project work is set out using C++ to reduce drastically processing time 

and effort. 

A wide range of numerical analysis problems are considered. These include: root-finding, 

linear and non-linear equations and approximation of continuous functions by Least Square, 

Legendre and Chebyshev Polynomials. On discussion of several schemes available, the 

corresponding C++ program is constructed and tested, and results thus obtained are subjected to 

pairwise comparison and analysis . At the end, the C++ program definition and approach 

constructed can be applied to the construction of codes for other related schemes on numerical 

analysis. 



CHAPTER! 

INTRODUCTION 

1.1 NUMERICAL ANALYSIS 

The subject of numerical analysis is concerned with the derivation, analysis and implementation of 

methods for obtaining reliable numerical solutions to mathematical problems. The adjective 'reliable' is 

used to indicate that it is essential to have confidence in any results obtained and an assessment of 

reliability can form part of the analysis of a method. In subsequent chapters we shall apply numerical 

methods to a variety of problems including finding some or all of the roots of an algebraic equation, solving 

a set of linear simultaneous equations and calculating the value of a definite integral. At this point a 

number of preliminary observations on the words 'derivation', 'analysis' and 'implementation' can be made. 

The 'derivation' stage is concerned with deriving and describing the sequence of numerical steps which 

it is expected will eventually lead to the required numerical results. The complete description ofthese steps, 

perhaps written in some pseudo-programming language, is called an algorithm. This stage mayor may 

not be easy and often intuition and experience will play an important role. As a single example of a 

derivation, we may cite the so-called trapezium rule in which we try to estimate the value of the defmite 

integral 

b b>a (1.1) 
I = f f (x ) dx 

a 

In Fig. 1.1 (a), we plot the curve, y=f(x). Then, remembering the interpretation of a definite integral, if 

A is the point (a,f(a)) and B is the point (b,f(b)), we can say that an approximation to I is given by the 

shaded area. 

" " 

(a) (b) 

Pia. 1.1. 
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This corresponds to the area of the trapezium with base b-a and vertical sides f(a) and feb); that is, 

b - a (1.2) 
I ~ [f(a) + f(b)] 

2 

One now needs to ask immediately about the precision of the approximation (1.2). Trying to find an 

answer to this question forms a part of the 'analysis' stage to which we are making reference. For the 

present it can be observed that the error is represented by the unshaded part of the area under the curve. 

It may be 'small' in the sense that the trapezium rule of approximation is sufficiently accurate for the 

purpose at hand, or it may be unacceptably large as illustrated in Fig. 1.1 (b). It is important to realise that, 

in general , it would be difficult to find this error. What one can do, however, is to try to find a bound for 

it; that is, if E denotes the error, we try to find a positive number M for which we can assert that I E I ~ 

M 

Intuitively, one would expect that an improvement in precision can be obtained by dividing the 

interval of integration into a number of sub-intervals and then applying the trapezium rule to each sub

interval in turn. 

While C++ programming language will be used to implement several numerical methods, sufficient 

attention will be paid to efficiency; by this it means that time and storage requirements must not be 

excessive. Suppose that we wish to estimate (1.1) using the trapezium rule with f(x)=2x3-3x2+4x+ 1. 

Clearly, one needs to evaluate 2a3-3a2+4a+ 1 (and, of course, 2b3-3b2+4b+ 1) and this would appear to 

involve six multiplications, one subtraction and two additions. However, by expressing f(a) as ((2a-

3)a+4)a+ 1 we can reduce the number of multiplications to just three. Although this may seem a fairly 

small reduction in the number of operations (and hence the time taken to evaluate the expression) for high 

degree polynomials the savings achievable are very large indeed. 

1.2 MATHEMATICAL FORMULAE 

There are occasions when a numerical answer can be obtained satisfactorily using a known mathematical 

result. A simple example of this is furnished by the calculation of 

a 

I = J 0 cos (x) dx 
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where a is a given number. It can easily be verify that I=sin(a) and, using a pocket calculator, say, I can 

be computed for any given value of a (to an accuracy which will depend on the particular calculator used). 

However, there are also occasions when a valid mathematical result is not always useful for computational 

purposes or is even useless. A simple example of the ftrst situation is furnished by the problem offinding 

the roots of the quadratic equation 

We can write these down formally as 

- b + Vb 2 - 4 ae 
x 

2 a 

and 

Vb 2 - b - - 4 ae 
x 

2 

2 a 

To show that these results may not be satisfactory for computational purposes, we suppose a, band c are 

such that b2 is very much greater than 4ac. Then the calculation of XI (if b>O) or xlif b<O) involves 

forming the difference of two nearly equal numbers (since v (b2-4ac ) ~ b) with the consequence that there 

will be a loss of signiftcant figures. As an example, the equation x2-200x+5=0 has roots 100±v 9995 

which, working to six significant figures , gives 100.000 ± 99.9750, that is 199.975 or 0.0250 and the 

second root is comparatively inaccurate. (This root may be obtained more accurately by observing that 

the product of the roots is 5 so that the second root can be estimated as 51199.975 .) 

1.3 THE IDEA OF ITERATION 

Iteration is an important numerical technique and we introduce the idea by deriving in a simple way a 

possible method for the estimation ofthe mth root of a given positive number a. Consider m=2, so that the 

square root is required, and suppose that an initial approximation, xo' to v a is available. 

(For example, if a=50 we could take xo=7.) Since Xo is an approximation to va then so is alxo and, 

moreover, ifxo> va then alxo<J a and conversely. This suggests that a better approximation to a can be 

calculated as 
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a 
x -(x + --) 

o 
2 x 

o 

We can repeat the argument with Xl in place ofxo and obtain a new approximation as 

x 
2 

1 a 
-(x + -) 

1 

2 x 

Proceeding in this way we can summarise the method as 

a n = 1,2, ... 
x -(x + 

n n - 1 

2 x 
n - 1 

so that from Xo we can generate a sequence of numbers X l> x2, ... which can be easily written as {Xy,} . This 

is another example of the derivation of a numerical method. The method is called iterative (that is, 

repetitive) and, among other things, such methods always require an initial approximation (in some 

methods, more than one) to the quantity we wish to find , in this case J a. 

1.4 ERRORS 

1.4.1 Sources of Error 

We note the following sources of error, most if not all of which wi II be present in a computation of any size. 

(I exclude from detailed discussion the blunder due to human error in programming or implementation and 

the malfunction due to a computer error through hardware or through some failure in a software system 

that is supposed to be reliable). 

(i) We have said that we are trying to obtain numerical answers to a mathematical problem. The 

mathematical problem will very probably have arisen as a part of modelling some situation in the 

physical, life or sciences. 

(ii) Many numerical processes involve a truncation error. Examples of this situation include the use 

of a finite number of terms from an infinite series or the use of an approximation to estimate the 
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value of a given definite integral (and the unshaded area under the curve in Fig. 1.1 can be 

regarded as the truncation error in applying the trapezium rule). 

(iii) Some or all of the initial data of the problem may be subject to uncertainty. The measurement of 

length, weight, etc will produce data whose accuracy is limited by the calibration of the equipment 

being used. 

(iv) The numbers we work with will be subjectto rounding-off and we now spend some time examining 

some elementary ideas concerned with rounding-off, the representation of numbers in a binary 

computer, and the way in which a computer performs the basic arithmetic operations of addition, 

subtraction, multiplication and division . 

1.4.2 Rounding-off Errors 

Thinking of the decimal case for the time being, some rational numbers require an infinite number 

of digits after the decimal point. Examples are 5/3 and 2217 where we have the fixed point representations 

1.6666 ... and 3.1428571428571... In the second case it can be verified thatthe sequence of digits 142857 

repeats indefmitely. In practice, we can work only with numbers containing a finite number of digits and 

we can work only with numbers containing a finite number of digits and we can approximate 2217 by, say, 

the number 3.142857 with error 0.00000014 ... We say that 3.142857 is 2217 correct rounded to six 

decimal place accuracy and 0.00000014 .. . is known as the rounding-off error. Another way of describing 

the accuracy of3.142857 is to say that it is 2217 correct to seven significantfigures. If we express a 

number in its normalised floating point format, the number of digits after the point gives the number of 

significant figures. Thus 0.00000014(=0.14xl0·6) is 0.000000142857 ... correct to eight decimal places 

but only two significant figures. We note that rounding-off errors may occur even when it is possible to 

express a decimal number using a finite number of digits. Thus, an exact number in which we are 

interested might be 187.452963 but, because oflimitations imposed by computing machinery, suppose we 

can work only with six digits available for the mantissa. The approximation to this number is 

0.187453xl03 and a rounding error of 0.37xl 0.4 has been incurred. 
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2.1 About C++ 

CHAPTER 2 

INTRODUCTION TO C++ 

The C++ programming language was designed by B. Stroustrup and published in his book The C++ 

Programming Language in 1986. C++ has been derived from the well-known programming language C. 

The original version ofwhich we can write in a C program to increment a variable C. The original version 

ofC was published by B. W. Kernighan and D. M. Ritchie in The C Programming Language in 1978. The 

second edition of their book, published in 1988, was a revised edition of the language, known as ANSI C. 

The languages C++ and ANSI C are closely related, and both are successors to the original C language. 

Although C++ is a much younger language than C, its use is already widespread, and its popularity will no 

doubt increase considerably as a result ofthe excellent quality of popular compilers such as Turbo C++ 

from Borland. 

One ofthe attractive aspects of C++ is that it offers good facilities for object-oriented programming (OOP), 

but, as a hybrid language, it also permits the traditional programming style, so that programmers can shift 

to object-oriented programming if and when they feel the need to do so . In this regard, C++ differs from 

some purely object-oriented languages, such as Smalltalk and Eiffel. Viewed from the angle of many C 

programmers, C++ is simply ' a better C '. Besides the important class concept, essential to OOP, there are 

many other points in C++ that are not available to C programmers. To mention just a few, related to 

functions, we have function overloading, inline functions, default arguments, type-safe linkage, and the very 

simple requirement that functions be declared before they are used . In ANSI C, the old practice of using 

undeclared functions is still allowed in order to keep many exiting C programs valid; in C++ it is not. 

The point just mentioned and some others make C++ much ' safer' than C, but unlike Pascal, C++ offers 

the same flexibility as C. This use of the word safe refers to what happens with incorrect programs. In this 

regard, assembly language is extremely ' unsafe ', butthis does not mean that programs written in assembly 

language cannot be perfectly correct and reliable. They can, and so can C programs. Most experienced 

programmers want as much control over the computer system as is possible and will therefore prefer Cor 

C++ to Pascal. 

In general, realistic and easy-to-use programs are not always easy to read. It is very difficult not to make 

errors when complicated programs need to be modified. With C++, this situation is much better than with 

some other languages in that we can define our own language extensions, known as classes. We write these 

in separate modules (called implementations), and simply use such language extensions in our main 

programs, or rather, in our application modules, which can then be kept much simpler than would be the 
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case otherwise. For example, a program that performs arithmetic with complex numbers is likely to be 

complicated if it is to be programmed in a language that does not support type complex with its associated 

operators +,-, *,/. Although C++ has no built-in facilities for complex arithmetic, we can define ourselves 

in such a way that application programs can be written easily as facilities were supported by the language 

itself. we can say that in this way we are extending the language. User-defined language extensions have 

the advantage of flexibility. 

2.2 Our First C++ Program 

Let us begin with the C++ program EXAMPLE!, which reads two integers a and b from the 

keyboard to compute both u =(a+b)2 and v = (a-b)2 

1* EXAMPLE!: A program to compute the squares of the sum and the difference of two given imageries. 

*1 

#include <iostream .h> 

main 0 

{ 

cout « "Enter two integers: "; II Displays integer request 

int a, b: 

} 

cin» a » b; II Reads a and b 

int sum = a + b, diff = a - b, 

u = sum * sum, v = diff * diff; 

cout < < "Square of sum : " < < U < < endl: 

cout « "Square of difference: "« v « endl; 

After typing this program using a program editor, we save it as the file EXAMPLE 1.CPP. The filename 

extension .cpp distinguishes it from C programs. Turbo C++, for example, actually consists of both a C 

and a C++ compiler, and it depends on the filename extension which one is used. Since our program 

contains several elements that are specific to C++, it must be compiled with a C++ compiler: a compiler 

for plain C would display many error messages. 

After compiling and I inking. we can execute the program. Then the following text appears on the computer 

screen: 

Enter two integers: 

One can now enter, for example, 
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10010 

After pressing the Enter key, the following appears: 

Square of sum : 121 00 

Square of difference: 8100 

We can easily check these values: with a = 100 and b = 10, it follows that sum = 110 and diff= 90, and 

by squaring these we fmd 12100 and 8100 as the values ofu and v, respectively. 

We can write C++ programs only if we are familiar with some' grammar rules ' . Let us now briefly discuss 

these rules as far as they apply to our example. It is good practice to start any program with comment. This 

can be done in two ways. The notation also available in C is to let comment begin with the two characters 

1* 

and to let it end with the same characters in reverse order: 

*1 

These two character pairs mayor may not be on the same program line. By contrast, there is a way of 

writing comment that is new in C++: we let comment begin with the two characters 

II 

The end of the line is then simply the end of the comment. As it can be seen, both ways of writing comment 

have been used in program EXAMPLE 1. 

After the final characters *1 of the comment at the top of this program, we find the following include line: 

#include <iostream.h> 

We say that this line ' includes ' the file iostream.h, which is a so-called header file (hence the file-name 

extension .h) for ' stream input and output' . The contents of this header file logically replaces this include 

line of their own. For example, you cannot write mainO at the end of this line. 
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In this regard include lines form an exception to a general rule that says that, as far as the C++ compiler 

is concerned, program text may be split up over several lines as we please. For example, we can replace 

the line 

Int sum =a+b, diff=a-b; 

With the following two lines: 

Int sum = a + b, 

diff = a-b; 

We can even split these lines further, but that would obviously not improve readability. When splitting a 

line into two new lines, we say that we insert a new line character. Similar characters are the blank (that 

is, the space character) and the tab. Collectively, these three characters are called white-space characters. 

Every C++ program contains one or more function , one of which is called main . (Note that we do not use 

the term ' function ' in the abstract, mathematical sense; instead, a function denotes a concrete program 

fragment, that is, a sequence of characters!) In our example, the main function is the only one. It has the 

form 

MainO 

{ .. . 

} 

Functions may or may not have parameter. We write them between parentheses, as is done here. The ' body 

of every function is surrounded by braces {}. It is good practice to write the two braces of a pair either on 

the same line, or in the same (vertical) column, with everything in between indented as shown in 

EXAMPLE I. After the open brace { of a function, we write so-called statements. As long as we are not 

using compound statements, every statement ends with a semicolon. You can count six semicolons in 

program EXAMPLEl , each is the end ofa statement. We very often write precisely one statement on a 

line. However, there may be more than one statement on a line, and a statement may take more than one 

line, as this statement shows: 

Int a, b; 
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Without being initialized immediately after this declaration their values are undefined . A completely 

different statement is 

Caut « "Enter two integers: "; 

It is the typical c++ way of displaying some piece of text on the video screen. We say that cout is the 

standard output stream, to which we can send characters by means of the operator « . Note that this 

operator is written as a character pair which looks like an arrow head that points to the left. It therefore 

suggests that the characters between the double quotes in "Enter two integers:" are sent to the steam cout. 

Instead of saying that we 'send characters to the output stream cout' (or to the video scene), we sometimes 

say that we print these characters. Analogously, the statement 

Cin» a » b; 

Reads two values from the standard input stream (that is, form the keyboard), and stores them into the 

variables a and b. The character pair» may be associated with a arrow head pointing to the right, so the 

values go from cin to a and b. When executing this statement, the machine will be waiting for input, so we 

can now enter the two integers as requested. 

After u and v have been computed, the values are printed as follows : 

Caut < < "Square of sum : "< < U < < endl: 

Caut < < "Square of difference :" < < v < < endl: 

We use endl to indicate that we are at the end of the line. Instead of endl, we could also write \n , or \n". 

In the first of these lines, the output would have been 

Square afsum :12100Square afdifference: 8100 

In the actual output, shown in the following' demonstration' of the program, you may notice that the 

numbers 12100 and 8100 are not properly aligned: since their first digits are in the same position . However, 

their final ones are not. 

Enter two integers : 100 10 
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Square of sum : 12100 

Square of difference: 8100 

2.3 Definitions and Basic Illustrations 

2.3.1 Objects and Instantiation 

An object is an item declared to be of class type. For example, the following statements create two 

objects using the Gunk: 

Class Gunk 

{ 

II 

}: 

Gunk gl, g2; 

Int i; 

The variables gl and g2 are objects. However, i is not an object. Although the predefined data 

types have characteristics of classes, they do not support important object features . For example, you 

cannot derive a new class from the types float or long int. Generally, the term object refers to variables and 

constants that have class type. An object is also known as an instance of a class. C++ is an object-oriented 

programming language because it shifts the focus of the programmer from the functions a program 

performs to the objects the program creates. 

The process of creating an object is called instantiation. A pointer or reference to an object 

provides indirect ways to access an object, but the pointer or reference does not cause an object to be 

created. 

The instantiation of values with global and file scope occurs before the first statement of main is 

executed. Local values are instantiated upon their definition . 

2.3.2 Data Members 

A data declaration inside of a class, struct, or union is a data member of that structure. Data 

members cannot be declared as auto, register, or extern; they can be en urns, bit fields , and other intrinsic 

or user-defined types. Data members can be objects in their own right. Moreover, only objects of previously 

declared or defined classes can be members. A class may not define data members which would be 

instances of itself; however, a class can contain references and pointers to instances of itself. 

Each object has a unique set of instance variables that correspond in name and type to the data 
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members defined by its class. A variable associated with an object is called an instance variable. The same 

syntax is used both to access an object's instance variables and to access the data members of a struct in 

C. Objects are self contained; the instance variables of one object have no effect on the instance variables 

of other objects. 

2.3.3 Function Members 

A function declared within the definition ofa class is called a member function. The definition of 

a class contains prototypes for its member functions. Prototypes for member functions follow the same 

syntax as the prototypes used to declare nonmember functions. Generally, a programmer controls access 

to the internal data structure and operations of a class through the member functions. 

Member function definitions have a slightly different header format than non-method functions. 

The name ofthe class with which a method is associated is added as a prefix to a method function 's name. 

The scoping operator,::, separates the class name from the function name. Several classes may have 

functions of the same name, and this syntax indicates the class associated with the method-function 

definition. 

The following program shows how this syntax is used to distinguish between methods of the same 

name that declared in different classes. 

#include <stio.h> 

class CI 

{ 

private: 

int i: 

Public: 

Void set(int x): 

Void print( ): 

}; 

class c2 

{ 

private 

intj; 

public: 

void set (int x); 

void print ( ); 
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}; 

void CI: : set (int x) 

} 

j = x; 

} 

void CI : : print ( ) 

{ 

print f ( " % d " ,j ); 

} 

void C2 : : set ( int x) 

{ 

} 

void C2 : : print ( ) 

} 

print f (" % x " ,j ); 

} 

int main () 

{ 

CI a: 

C2 b: 

a. set ( 100) : 

b. set ( 100); 

a. print (); 

b. print (); 

II cal1s CI : : set 

II cal1s C2 : : set 

II cal1s CI : : print 

II cal1s C2 : : print 

The classes C 1 and C2 both define the methods set and print. Implementations of these methods 

include the name of the associated class in the header to identify the class that includes them. 

Nonoperator methods are called using the same syntax you would use to access a data member of 

class. Member functions are called for a specific object by giving the name ofthe object, the member access 

operator (the period), and the name ofthe member function. 
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2.3.4 The Implicit Object 

A call to a member function is associated with a specific object using the member access operator. 

The object for which a member function a member function is invoked is known as the implicit object. A 

pointer to the implicit object is passed as a "hidden" first argument in the call to a member function ; it ' s 

automatically defined for any non-static member function . 

For example, this class 

Class line 

{ 

public; 

Line (int len = 0); 

Line operator = (int len) 

Private: 

Int Length ; 

} : 

The members of the implicit object can be accessed in two ways . For example, 

Line : : operator = could be operated like this: 

Line Line: : operator = ( int len) 

{ 

Length = len ; 

} 

The assignments to length refer to the instance variables of names of those names that are part of 

the implicit object. No qualification is needed; the compiler assumes that unqualified instance-variable 

references are associated with the implicit object. This is known as inferred member access, because the 

programmer does not specify the object with which the instance variables are associated. The operator 

member function could be changed to reference the instance variables of the implicit objea1l sin g the 

pointer. In that case, the definition would look something like this: 

Line Line: : operator = (int len) 

{ 
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Length = len; 

} 

There is no practical difference between inferred and direct member access. In some cases, direct 

member access can be the clearer of the two, especially when there are many objects at work within a 

member function. 

2.3.5 Class Scope 

The term scope refers to the area in a program where a given identifier is accessible. The three 

most common types of scope in C are global, file, and local. Identifiers defined within a function or {} 

block are only accessible within that function or block and are said to have local scope. Identifiers 

declared outside of a ration to give them file scope. An identifier with global scope can be accessed 

from any where within a program; an identifier with file scope is visible only within the file in which it 

is declared. 

The purpose of scope is to control access to identifiers. To control how members of classes are 

accessed, C++ has introduced the concept of class scope. All can reference any other member of the 

same class. This is part of encapsulation, 

The member functions of a class have unrestricted access to the data members of that same 

class. Access to data and function members of a class outside of the class scope is controlled by the 

programmer. The idea is to encapsulate the data structure and functionality of a class so that access to 

the class's data structure from outside of the class's member functions is limited or unnecessary. 

Access Specifiers 

As discussed above, a class defines a group of members that can reference each other. Access 

specifiers are used to control the visibility of class members outside of the class scope. The access 

specifiers public and private are keywords that designate different kinds of external access to the members 

of a class. The public section lists those members that can be referenced from outside of the class 's scope; 

the private section lists those members that can only be referenced inside the class scope. For example, the 

main function can call the four functions listed in the public section of the rational class definition ; 

however, main cannot reference the two data members or the Reduce function that are listed in the private 

section. Using public and private, a programmer can control the visibility of an object's members. 

A class may have multiple private and public sections. Each access specifier is in effect until the 

next access specifier (or the end of the class) is encountered . For example: 

Class government 
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{ 

Private: 

Float graft: II graft is private 

Public: 

Float taxes: II taxes are public 

Private: 

Float slushfund: II slushfund is private 

}: 

Access specifiers are not required. Unless an access specifier indicates otherwise, the members of 

a struct are public, the same holds true for C++. The a and b of the members of this struct default to public 

access, while the c and d members are private: 

Struct xyz 

{ 

II these members default to public access 

int a. b: 

Private: 

Int c. d: 

} : 

The only semantic difference between a struct and a class members default to private access. So. 

Changing the struct to class in the example above would change the access. Of the a and b members to 

private. 

If class and struct are nearly identical. Why would anyone use class instead of struct? The choice 

is based on fitting the keyword to use. When encapsulating data and function . We are creating a class in 

object-oriented programming terms. Therefore, it seems logical to use the class syntax to accurately 

describe what our program is doing. When working strictly with data structures that don't have member 

functions, it's better to use the struct keyword. 

In designing my classes. I've made all the data members private and all but one of the functional 

members public. By making the data members private, I have restricted access to those members to the 

member functions defined for the class. As a general rule, data members are always private. The member 

functions are then made public. So that they provide the interface to work with rational objects. 
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2.3.6 Constructors 

When an object is created, space is allocated for it in memory. In many classes, the programmer 

wants to have values automatically assigned to an object's data members when that object is created. 

Furthermore, an object may have to perform other. More complex operations when it is instantiated. 

A constructor is a special member function that literally builds objects. When an object is 

instantiated. A constructor is called to allocate space, assign values to data members, and perform other 

housekeeping tasks for a new object. Nearly every class you create will have one or more constructors . To 

choose which constructor to call, the compiler compares the arguments used in an object's declaration to 

the constructors' parameter lists. This process is identical to that used to chose between other overloaded 

functions. 

A constructor is a member function with the same name as its class. It may have parameters like 

any other function, but it cannot have a return value. This restriction is imposed because constructors are 

usually called when defining a new object when there's no syntax for retrieving or examining a return value 

generated by a constructor. 

Here's an example of a class that has constructors : 

Class integer 

{ 

Private: 

Int value: 

Public: 

Integer (int x): 

II other methods ... 

} : 

Integer:: integer(int x) 

{ 

Value = x: 

} 

The integer class defines a single constrllctor that has an integer parameter. When an integer object 

is declared, it mllst have an argument following its name in order to provide parameters for the constructor. 

For example: 

Integer il (10): II correct declaration 
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Integer i2 : II error! Needs an argument 

It's possible to make the declaration of i2 legal by defin ing a defau It argument for the constructor' s 

x parameter, or by defining a default constructor (see below) with no parameters. In some cases, this 

eliminates the need to create multiple constructors. 

Constructors for global and static objects are called before the main function is executed . Automatic 

objects are constructed when their declarations appear. For example: 

Void function ( ) 

{ 

static integer i 1 (8): 

integer i2 (2): 

II other statements 

The program constructs iI before main is called. 12 is constructed each time function is called. 

2.3.6 Destructors 

A destructor is a member function with the same name as the class, and a leading tilde (~). A class 

has only one destructor function, which has no arguments and no return type. A destructor performs the 

opposite function of a constructor, cleaning up after an object is no longer needed (such as freeing up 

dynamic memory allocated by the object). Some objects may need to do some final housekeeping. For 

example, a display window object would probably erase itself from the screen when it is destroyed. 

Here ' s an example of a class with a destructor: 

Class chunk 

{ 

private: 

void * p: 

public: 

chunk (unsigned int alloc): 

~chunk ( ) : II destructor 

} 

chunk::chunk (unsigned int alloc) 
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{ 

p = new char [alloc]: 

} 

chunk::-chunk () 

{ 

delete p: 

} 

The destructor is called whenever an object is destroyed. Global, file scope, and static objects are 

destroyed at the end of a program; automatic objects are destroyed at the end of their scope. For example: 

Chunk chg (100): 

Int main () 

{ 

static integer is (10); 

integer ia (23); 

int x = 0; 

II some code 

if (1* some condition */) 

} 

chunk cha (50): 

II some more code 

return 0: 

} 

Before main is called, chg and is are constructed. ia is constructed when main is called. Cha is 

constructed only when the if statement is true; it is destroyed at the end of the block in which it is defined. 

When main terminates, ia is, and chg are destroyed . A call to the exit function also destroys any global or 

static objects; depending upon the compiler, a call to exit mayor may not destroy existing automatic objects. 

If a destructor is not defined for a class, the compiler generates a default destructor that does 

nothing. For many classes, such as rational , a do-nothing default destructor is all that is required. 
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2.3.7 Inline Member Functions 

Like any other C++ function, a member function can be an inline function. There are two ways to 

make a member function inline: by applying the inline keyword to the function definition, or by defining it 

within the class definition. For example: 

Class whatsis 

}: 

{ 

private: 

int i: 

public: 

void set (int x) 

} 

=x: 

{ 

int get ( ): 

inline int whatsis::get () 

{ 

return i : 

} 

Both member function defines the function inside of the class definition, making it inline. The 

definition of get is qualified by the inline keyword . 

2.3.8 Conversions 

Intrinsic types have a predefined set of conversions. You can assign an int value to a long variable, 

or add a long value to a float. Conversions are either implicit or explicit. An implicit conversion is made by 

the compiler, such as when an int value is assigned to a long variable. Exp licit conversions occur when a 

cast is userl..to fuI-.&iillllllpdll!tt'tinversion Explicit conversions are often used in function calls to pass 

arguments that have different types from the corresponding parameters . 

The class types one define do not acquire conversions to other types; that is something that must 
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be done personally. C++ provides ways to define both implicit and explicit conversions. An implicit 

conversion is defined by a conversion constructor, and an explicit conversion is defined by a conversion 

operator or cast operator. 

Conversion Constructors 

An implicit conversion is defined by providing a conversion constructor for a class. The conversion 

constructor changes an argument of the type being converted into an object of that class. For example, the 

following conversion constructor would convert an int value into a rational value: 

Rational :: rational (int i) 

{ 

Numerator = i : 

Denominator = 1: 

} 

This is a one-way conversion that takes a value or object of one type and coverts it to an object of 

the class. Conversion constructors cannot be used to convert class objects to other types, and they can be 

used only in assignments and initializations. 

Conversion Operators 

However, conversion operators can be used to convert objects to other types, and they can also be 

used for purposes other than assignments and in itial izations. A conversion operator cannot have parameters 

or a return type. Its name is given in the following format: 

Operator type ( ): 

Type represents the name of the type to which an object will be converted. A conversion operator 

that converts a rational number to a floating-point value would be defined like this: 

Rational:: operator float ( ) 

{ 

float result: 

result = float (Numerator) / float (Denominator): 

return result: 
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} : 

2.3.9 Member Objects 

A class that has member objects is called an enclosing class. Member objects need to be constructed 

when an object of the class enclosing them is constructed. This is done by specifying a member-initialization 

list for object members in the definition of the constructor for the enclosing class. This example should 

clarify things: 

Class foo 

{ 

private: 

int i: 

public: 

foo () {i = 0: } 

}: 

class bar 

{ 

private: 

int i: 

public: 

bar (int x) { i = x:} 

} : 

class snafu 

{ 

private: 

foo f: 

bar bl: 

bar b2: 

public: 

II constructor creating member objects 

snafu () : bl (1), b2(2) {} 

} : 
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A colon separates the member-initialization list from the function header in the definition of snafu's 

constructor. The member-initialization list comes after the colon and before the actual function statements. 

Each object that requires initialization has its name listed along with a list of arguments for the object's 

constructor. If multiple member objects exist, their initialization can be listed in any order, separated by 

comas (as shown above). 

When an object of class snafu is instantiated, constructors are called for its three member objects. 

Because the constructor class foo does not have arguments, there is no need for f to be in the member

initialization list. B 1 andb2 both require an argument for their constructor. So they are listed. C++ does no 

guarantee the order in which member objects are constructed. 

It ' s important to remember that an enclosing class must have a constructor if there are any object 

members that require constructor arguments. Although snafu's constructor contains no statember

initializations list can be provided. This means that a class such as snafu cannot rely upon a default 

constructor. 

2.3.10 Static Members 

A member ofa class can be declared static. For a data member, the static designation means that 

there is only one instance of that member. A static data member is shared by all objects of that class and 

exists even ifno objects of that class exist. For instance: 

#include <stdio.h> 

class pumplin 

{ 

private: 

int weight: 

static int total-weight: 

static int total number: 

public: 

pumplin (int w) 

} 

weight = w: 

total_ weight += w: 
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} : 

total number ++: 

} 

- pumpkin () 

{ 

total_weight .= weight: 

total number..: 

} 

Il initialization of static members 

int pumpkin::total_weight = 0: 

int pumplin::total_number = 0: 

int main () 

{ 

pumpkin pl(15). P2 (20). P3(l2): 

pl . Display ( ): 

p2. Display ( ): 

p3 . Display (): 

} 

When a pumpkin object is created, its weight is added to total_weight, which is a static member of 

the pumpkin class . Another static member, total_number, is incremented as a count of the number of 

pumpkin objects in existence. Both static members of pumpkin are initialized outside of the class definition; 

C++ does not considers initialization to be in violation of their private status. Note thatthe name of the class 

and the are initialized. 

When called, a member function declared with the static keyword is not associated with a specific 

object. Because an object is not required, a static member function does not have a pointer. The static 

member functions for a class can be called whether or not an object of that class has been instantiated. Static 

member functions are used to act globally on all objects of a class. To display the two static data members 

of the pumpkin class, the following function could be added to the class definition: 
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Static void pumpkin::total_display() 

{ 

printf ("%d pumpkins weigh %d pounds{"\n", 

} 

total_display could be called with either of the following statements: 

pumpkin ::total_display () : 

pI. total_display (): 

In the second statement, total_display is called as if were a regular method . The first statement is 

considered the better form; remembering that static methods are not associated with a specific object, so 

using the first form is a more direct approach than using the second form. 

2.3.11 Inheritance and Polymorphism 

Two concepts are importantto realizing the full power of object-oriented programming: inheritance 

and polymorphism . Inheritance allows classes to build upon existing classes. Polymorphism treats objects 

of related classes in a generic manner. We have already covered stand-alone classes, which provide for 

programmer designed data abstraction . Now let ' s look at how C++ implements inheritance and 

polymorphism. 

Inheritance 

First, a quick terminology refresher is in order. A class that inherits from another class is called a 

derived class. The class from which it inherits is known as a base class. Any class my be a base class; 

what's more, a class may be a base class for another class. It is through this mechanism that class 

hierarchies are built. 

A derived class lists the name of its base class in its definition. It looks something like this: 

Enum BugColor (Red, Green, Blue, Yellow, Black): 

Class Bug 

{ 

private: 

int legs : 
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BugColor color: 

Public: 

Buh(int numLegs, BugColor c): 

Void Draw (): 

} : 

class HumBug: public Bug 

{ 

private: 

int Frequency: 

public: 

HumBug( int numLegs. BugColor c. int Freq): 

Void Hum (): 

} : 

The inclusion of public Bug in the definition of HumBug says that HumBug is derived from Bug. 

The public keyword indicates that all public members of Bug are also public members of HumBug. 

Any HumBug objects will have the three data members: Legs, Color, and Frequency. While 

HumBug defines a method of its own, it also inherits the methods defined for Bug. Therefore the following 

function is valid: 

Void func () 

{ 

Bug b(6.Blue): 

Humbug h(10. Green. 1000): 

b.Draw (): 

h.Draw (): 

h.Hum (): 

} 
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CHAPTER 3 

NON-LINEAR ALGEBRAIC EQUATIONS 

3.1 INTRODUCTORY REMARKS 

In this chapter we are concerned with the problems offinding one or more of the roots of the algebraic 

equation (while applying C++); 

f(x) =0 (3.1) 

where f(x) is some given real-valued function. We shall assume that f(x) possesses all the necessary 

analytical properties (particularly with regard to continuity) for the methods we develop and analyse to be 

mathematically valid. We recall that a root of(3.1) is a number a such that f(a )=0; in practice we shall 

aim to calculate an estimate of a correct to some prescribed precision. 

EXAMPLE 3.1 

(i) f(x) == e-X 
- sin(x) = 0 

(ii) f(x) == x 3 -3x+ 1 =0 

(i) The problem offinding the roots of the equation is made easier when we express the equation as 

corresponding to the intersections of the graphs y = e-X and y = sin(x). The functions can thus be sketched 

without difficulty below 

5In(-,,) 

fig 3.1 
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The following deductions can be made: 

a) There are no negative roots of the equation since for x<O, e-X> 1 and Isi n(x)1 :5: 1 and there can be no 

intersections. 

b) There are infinite number of positive roots since for x > 0, 0 < e'X < 1 and sin(x) oscillates 

indefinitely between -1 and 1. 

c) Since e-X decreases very rapidly (e-" ~ 0.043 , e-2
" ~ 0.0019) the root (apart from the first) get closer 

and closer to the zeros of sin(x); that is x = nn: n= 1,2, .... Moreover, those for odd n are just less than nn and 

those for even n just greater than I11t. 

(ii) The second equation is a (cubic) polynomial equation since f(x) is a polynomial of degree three. It 

therefore follows thatthree roots are tenable albeit with diverse behaviours but satisfying f( a) = 0 with f( a) 

*0 

The diagram below illustrate that while there existan 'isolated' root, the others are separated in some sense. 

y = f(x) 

. . ~ -11----:1"'----.. )( 

(b) Not simpie 

~1 .. )( 

(c) Not Isolated 

Most of the methods of solution are iterative in nature. The idea of iteration was introduced in section 1.3 

and, as presented there, it depends on the availabi li ty of an initial estimate of the value of the root. Some 

methods, however, will require the provision of two, or more, starting values. Using the initial information, 

we generate a sequence of values which hopefully will converge to the root we seek. 

Before implementing an iterative method, the following four items need to be investigated. 

(i) We must establish the conditions under which the sequence of iterates generated by the method will 

converge to the root. 

(ii) If the iteration is convergent we need to know how and when to stop the iterative process. This, of 

course, depends on the accuracy we are demanding and we have to formulate a termination 

criterion which can be easily implemented. 

(iii) There may be several iterative schemes which are equally acceptable in that they are all expected 

to converge to the root in question, starting from the same initial approximation. We need to 
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determine whether one method is preferable to another and are led to the notion of trying to 

formulate some measure of computational efficiency. 

(iv) If the chosen method is to be programmed, good programmingpractice must be observed to ensure 

that the storage and time requirements are not excessive. In addition, we must take account of as 

many eventualities as possible when designing a piece of C++ code to ensure that it does not halt 

due to a run-time failure. 

3.2 FUNCTIONAL ITERATION 

3.2.1 Introduction 

The starting point here is to rewrite (3.1) in the form 

x = <p(x) (3.2) 

so that if u is a root of (3.1) then u = <pC u). There wil I usually be several obvious ways in which the given 

equation can be rewritten in the required form and, indeed, if we are prepared to modify slightly the problem, 

there will be an infinity of ways. 

EXAMPLE 3.2 

(i) x3-3x+l=0 can be rewritten as x=(x3+1)/3 or as x=1 /(3-x2). 

(ii) x+ln(x)=O can be rewritten as x=-ln(x) or as x=e-X
• 

(iii) x3-3x+ 1 =0 can be rewritten as 

x=(l-k)x+k(X3+ 1 )/3, where k ('" 0) is some chosen value. 

Suppose we have an initial approximation, xo, to the root u whose value we wish to determine. We can 

generate a sequence of iterates {Xn} using the iterative process 

Xn= <p (xn_,) n=I ,2, ... 

but before using it, we must try to establish the conditions under which the iterates converge to u. 

Some insight into the question of convergence can be gained by graphical arguments (see Fig. 3.2). Using 

the same axes, we draw the graphs of y=x 
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B 

(a) (bl 

If - ~)() 
y 

--f'----':-.l...-1::__~:__--- .• 

(c) 

Fig. 3.2 

and y = <p(x). The points of intersection of these two curves give the roots of (3 .1). We describe the 

progress of the iteration for Fig. 3.2(a) and by the same construction the other cases can be verified . 

Let Xo be the chosen starting value. Then A is the point on the curve y= <p(x) with coordinates (xo, <p(Xo) 

and B is the point on the straight line y'-'x ohtained by drawing a line through A parallel to the x-axis . The 

coordinate ofB is therefore ¢ (xJ and, since B lies on y=x, the x coordinate ofB is also ¢ (xo)' However, 

1= ¢(xo) and so we are able to mark the position of XI by drawing a line through B parallel to the y-axis . 

We now repeat the argument. C is the point on y=<» (x) with coordinates (XI' <»(x l)) and D is the point on 

=x with coordinates (¢(xl),¢(X I )). Since X 2 =¢ (XI) we are able to mark the position of X 2 and the 

argument can be repeated once more. The diagram displayed suggests the iteration is converging and the 

same is true for case (b) although we note that the iterates are osci lIating about the root. In (c) and (d) the 

iteration is diverging, that is, successive iterates are getting further away from the root. The key thing to 

note here is that, near the root, 1¢'(x)I<1 in (a) and (b) but in (c) and (d) 1¢'(x)l> I. 

~.2.2 A CONVERGENCE THEOREM 

THEOREM 3.1 

Suppose the equation X = q>(x) has a root a and that, on the interval! defined by a-a ~ x ~ a+a, q>'(x) satisfies 

the condition 

I q>'(x)1 ~ L < I. 

hen, for any Xo E I 
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I) "" E I n = 1,2, ... ; 

Ii) limxn = a; and 
n ~ CX) 

iii) a is the unique root of x = cp(x) in I 

Proof 
i) Suppose ""-I E 1. 

Now "" = cp("" -I ) and a = cp( a) so 

"" - a = cp(xn -I ) -cp( a) 

=(""_I-a)cp'(; n-I) 

clearly; n-I lies between a and ""-I. 
Since"" -I E I it follows that; n-I E I and hence that 

I"" - al = Ixn _I-al lcp '(; n-I)I ~ Llxn_I-al· 

(3.3) 

(3.4) 

Since L < 1, it follows that Xn E 1. By hypothesis, Xo E I and so part(i) of 
the theorem is proved. 

II Here, we use the result (3.4) repeatedly. We have 
IXn - al ~ LI""_I-al 

~L2Ixn_2-al 
L . ~ Lnlxo- al. 

Since L < 1, lim Ln = 0 which implies that lim I"" - al = 0 and hence 
n ~ CX) 

that lim Xn = a. 
n ~ CX) 

111 assume to the contrary and suppose the equation x = cp(x) has another 

root jJ(:f. a) lying in I. Then 

a - jJ = cp(a) - cp(jJ) 

=( a - jJ )cp' (lJ ) 

Clearly lJ lies between a and jJ and hence lies 

in 1. We know that Icp'( lJ )1 < 1 from the conditions of the theorem and so 

I a - jJ I =1 a - jJ Ilcp'( lJ )1<la - jJ I 

which gives a contradiction. 
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3.2.3 A Program for functional iteration 

II a program to find the root of the equation x-exp(-x) = 0 using functional iteration 
#include<stdio. h> 
#include <math. h> 
mainO 
( 
int converged; 
float xn,xnminus l,tol; 
int iter, itermax; 
scanf("%f %f%d If, &xn, &tol, & iter max); 
printf("Starting value is %jln",xn); 
printf(''Accuracy Tolerance is %jln ",tol); 
printf("Maximum number of iterations allowed is %d\n", iter max) ; 
iter = 0; 
do 
( 
iter = iter + 1; 
xnminus1 = xn; 
xn = exp(-xnminus1); 
converged= abs(xn-xnminus1) < tol; 
} while(converged II (iter == itermax)); 

if( converged == 1 ) printf("Converged after: %d iteration to: %j\n", iter,xn);else 
printf("no convergence after: %d\n", itermax); 
} 

Sample data 
O.S O.OOOOS 20 

sample output 

starting value S.00000e-1 
accuracy tolerance S.OOOOOe-S 
max number of iterations allowed 20 
convergence to specified tolerance after IS iterations to S.671S7e-l 

3.3 NEWTON-RAPHSON ITERATION 

3.3.1 Derivation 

Suppose we have an approximation x n-I To a simple root x = a of the equation f(x)=O. 

Let a = x n_1 + h. Then, since f( a ) = 0 we have 

0= f( X n_1 + h) = f( X n_1 ) + hf(x n_I)+ ... 

using Taylor's Theorem. Ignoring the rest of the terms we see that an approximation to h can be obtained 

as - f(x n -I )/f '( x n -I) and so we take the next approximation to the root as 

f(Xn - 1) 
xn = x n_1 - f'( ) Xn - I 
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Using this for n = 1,2, ... we have a process known as Netwon-Raphson iteration . We notice that each 

iteration involves the valuation off(x) and its first derivative at the previous iterate and, since we are now 

using more information about the function than before, we might hope to obtain some benefits 

3.3.2 Termination Criteria 

In implementing Newton-Raphson iteration there are a number of important devices which should be 

included in a robust program. The termination criterion will usually monitor the absolute difference between 

the successive iterates, I X n_ X n_1 I, and also perhaps If( xn)l, continuing until either or both of these are 

sufficiently small to ensure that a satisfactory estimate of the root is found. Ifthe magnitude of the numbers 

is not known in advance it is best to use a relative criterion in wh ich I x n _ X n _) III x n I and If( x n ) / F 

I are monitored, where F is some estimate of the value off(x) near the root which can be obtained during the 

iteration or preset before the calculation begins. 

As usual, in implementing an iterative process the number of iterations should be counted and the process 

stopped if this number exceeds some pre-assigned value. 

It is necessary here to observe that a computer implementation ofNewton-Raphson iteration will result in 

the values f(x n_) ) and f'( xn _l ) being obtained to limited precision only. The values used in the termination 

criteria must take account of this restriction so that an accuracy which is impossible to satisfy is not 

specified. 

In Newton-Raphson iteration it is usual also to monitor the behaviour of If '( x n)1 . If the value of 

f ' ( x n _I) becomes small in some sense, the program user should be made aware of this fact through an 

appropriate message although the iteration may be allowed to continue. A small value off'( xn _)) may be 

symptomatic of the presence ofadouble root, or a root of even higher multiplicity, orofthe existence of two 

or more roots which are close together, or of the absence of a root. These situations are illustrated in Fig. 

3.6 

y y y 

)( x x 

(a) Double root (b) Two close roots (c) No real roots 
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3.3.4 A program for Newton-Raphson iteration 

II a program to find a root of the equation x-exp(-x)=O using newton-raphson iteration 

#include<iostream.h> 

#include<math.h> 

float f(float x) 

{ 

float f= x-exp( -x); 

return f; 

} 

float fdash(float x) 

{ 

float fdash = 1.0 + exp(-x); 

return fdash; 

} 

mainO 

{int monitoriterations,converged,smallfdash; 

float xn,xnminus 1 ,festimate,fxnminus 1 ,fdashxnminus 1 ,to l,twotol,changeiniterates; 

char charater; 

int iter,itermax; 

cout «"Enter starting value,accuracy tolerance,maxnumber of iteration allowed,est.value of 

function"«endl; 

cin » xn,tol,itermax,festimate; 

do 

{ cin.get( charater); 

} whi le(charater!= '\n'); 

monitoriterations == 1; 

cout« "starting value = "«xn« endl; 

cout« "accuracy tolerance = " «tol« endl; 

cout« "maximum number of itration allowed = "« itermax « endl; 

cout« " estimeted value of the function at the root=" «festimate« endl; 

smallfdash == 0 ; 

twotol = tol+ to!; 

if (monitoriterations) cout «" xn 

iter =0; 
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} 

do 

{ iter = iter + 1; 

xnminusl=xn; 

fxnminus 1 =f(xnminus 1); 

fdashxnminus 1 = fdash(xnminus 1); 

xn = xnminusl = fxnminusllfdashxnminusl ; 

if (monitoriterations) cout « xn« " "« fxnminus 1« endl ; 

if (abs(xn)<tol) changeiniterates=abs(xn-xnminus 1 );else 

changeiniterates=abs((xn-xnminus 1 )/xn); 

converged = changeiniterates + abs(fxnminusllfestimate)<twotol ; 

if (smallfdash! =0) small fdash = abs( fdashxnm in us 1 )<to I; 

} while (converged II (iter ==itermax)); 

if(smallfdash)cout«"Warning! the derivative of the function became less than "« tol« 

"at least one iteration point "« endl; 

if (converged) cout « "convergence to specified iteration after:" 

« iter« "iterations"« endl ;else 

cout « "no convergence to the specified tolerance after "« itermax« "iterations "« endl ; 

Sample d..at! 

0.5 0.00005 20 

sample output 

starting value 

accuracy tolerance 

1.0 y 

max number of iterations allowed 

5.00000e -1 

5.00000e -5 

20 

estimated value of the function at the root 

xn 

5.66311e -1 

5.67143e -1 

5.67143e -1 

f(xminusl) 

-1.06531e -1 

-1.30466e -3 

-2 .55182e -7 

convergence to specified tolerance after 
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3.4 POLYNOMIAL EQUATIONS 

3.4.1 Introduction 

Here we are concerned with estimating some or all of the roots of the equation f( X) = 0 where f( X) 

is a polynomial of degree m in X, that is, 

(3.5) 

We assume that the coefficients ao' a1, ••• , am are all real. The polynomial equation has m roots, some 

or all of which may be complex. We recall that if complex roots are present they occur in conjugate pairs, 

that is, if a + ijJ is a root then so is a - ijJ . 

Any of the methods which have been considered in this chapter may, in principle, be used to estimate the 

real roots of a polynomial equation and some ofthem may be adapted to deal with complex roots. Complex 

roots, however, are usually best determined using special techniques not discussed here. 

The subject of root-finding in the case of polynomial equations is very large and attempt will not be made 

to give an exhaustive survey. Rather we concentrate on a number ofbasic ideas concerning the evaluation 

of a polynomial and its first derivative, the division of a polynomial by a polynomial of degree 2 and the 

extremely important notion of the conditioning of a polynomial equation . 

3.4.2 Evaluation of a Polynomial and its Derivative 

Suppose we wish to evaluate the polynomials f(x) and f '(x) for some real number . (This would be 

required, for example, if we were employing Newton-Raphson iteration to find the root off(x) = 0). The 

starting point is to use the nested form of a polynomial which, for (3.5) is 

(3.6) 

Using (3 .6) the evaluation off(x) at the point x= can be described by the recursive algorithm 

37 



bm- 1 = a m 

bi = a i +1 + Abi+1 i = m - 2,m - 3, ... ,0 (3 .7) 

J(A) = ao + Abo 

which defines a sequence of intermediate values bm- 1 ,bm- 2 , .•• ,bo. 

EXAMPLE 3.3 

If m = 3 we have 

and hence, from (3.7) 

b2 = a3 

b, = a2 + Ab2 (= a2 + AaJ 
bo = a, + Ab, (= a, + A(a2 + AaJ) 

I(A) = ao + Abo(= ao + A(a, + A(a
2 
+ Aa

3
))) 

For the purposes of hand computation, we can set out the coefficients of successive powers of X in a row, 

supplying a zero entry if any power of X is missing. The bi sand f ( /L ) are then formed in a 

straightforward way. 

EXAMPLE 3.4 

To evaluate f(x) = x5_6x3+x2+7 x-4 at the point x = 2 we form the following table 

x=2 2xl + 0 2 x 2- 6 2x(-2)+1 2 x (-3)+7 2 x 1- 4 

=2 = -2 = -3 =1 = -2 

(b4
) (b3

) (b2
) (b ') (bo) f(2) 

and deduce that f(2) = -2 . 
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We now show that the bi s defined by (3.7) have a significance which is of interest. The following theorem 

defines a process which is known as synthetic division. 

THEOREM 3.2 

I(x) - I(A) m-I ; 
~--'------=----..:.--'- = L b;x 

X - A ;=0 

(3.8) 

Where the his is are defined by (3 .7) . 

The proof of this theorem is straightforward and depends on multiplying the right-hand side of (3 .8) by 

X - A, and showing the result equals f (x) - f (A, ). Rearranging (3.8) further we have 

m- l 

J(x) = (x-.-t) 2)/ + J(.-t) (3.9) 
i=O 

so that if x = A = a, a root of the equation f( x) = 0 , the remaining roots may be found as the roots of 

the deflated equation 

m- l 

g(x) = 2)/ =0 (3.10) 
i=O 

This suggests that we can determine the real roots of a polynomial equation one at a time using the 

appropriate deflated equation after each root is found. The process can be quite unsatisfactory in practice, 

however. Suppose we have found the first root correct to some precision. Call this value a . Since f( a 

) will not be exactly zero, the bi s in the deflated equation will not be exact and the root of this equation will 

also be calculated correct only to the required precision. The cumulative effect of the errors introduced at 

each deflation can be disastrous and this superficially attractive process can be recommended . 

We now return to equation (3.9) and indicate how f ' (x) can be evaluated at a point using the bis which are 

generated in finding f( A ). Differentiating (3.9) formally we have 

f'(x) = (X - A )g'(x) + g(x) 
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where g(x) is defined by (3.10). Thus, f ' ( A )= g( A ) and we use the nested form of g(x) in order to 

findf ' (A). 

EXAMPLE 3.5 

To evaluate the derivative off(x)=x5 _6x3 +x2 +7x- 4 at the point x = 2 we evaluate the coefficients ofthe 

deflated equation as shown in Example 3.4 and form the follow ing table 

x=2 2 x 4-2 2 x 6-3 

=6 =9 

( c,) (co) 

2 x 9+ 1 

=19 

g(2) 

where the CiS are the coefficients in the next deflated equation. We deduce that f ' (2)=g(2)= 19 so that ifx=2 

is a first estimate of a root of the equation f(x)=O and Newton-Raphson iteration is employed, the next iterate 

is given by 

X 2 =2-(-2)/19=2.105 

to four significant figures. 

3.4.3 A program for Polynomial evaluation 

II a program to evaluate a polynomial and its derivative at a point 

# include<iostream. h> 

# include<iomanip.h> 

void main(void) 

{ double alpha,b,c; 

int m; 

const int MAXN = 100; 

double a[MAXN] ; 

int i; 

cin » m; 
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for(i =O;i<=m;i++) cin » a[i] ; 

cin » alpha; 

cout « "the polynomial coefficient are (constant term first )" « endl ; 

for (i=O; i<=m;i++) cout« a[i]« endl ; 

cout « " evaluation point is :" « alpha« endl; 

b= arm] ; 

c=O.O; 

for(i= m-2;m-2>=i ;i--) 

{ 

c= (b+(alpha*c)); 

b= (a[i+ l]+(alpha*b)); 

} 

cout «" value of the polynomial at this point is "« b« endl ; 

cout « " value of the polynomial derivative at this point is "« c « endl; 

} 

Sample data 

5 

-4.0 

2.0 

7.0 

Sample Output 

1.0 -6.0 0.0 1.0 

the polynomial coefficients are ( constant term first) 

-4 .00000e 0 

7.00000e 0 

1.00000e 0 

-6.00000e 0 

O.OOOOOe 0 

1.00GOOe 0 

evaluation point is 2.00000e 0 

value of the polynomial at this point is 

value of the polynomial derivative at this point is 

-2.00000e 0 

1.90000e 1 

This program avoids storing the coefficients of the first deflated equation explicitely. Each time a new hi 
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is found it overwrites the value currently held in the real variable b, but not before the old value has itself 

been used to update c. The real variable c is used to store the coefficients of the second deflated equation 

in a similar manner. 

3.4.2 Synthetic Division of a Polynomial by a Quadratic 

Let x 2 + px + q be the given quadratic. Then we wish to find the coefficients c; and remainders Rand 

S in the identity 

m m-2 

f(x) == Ia;x; == (x2 + px + q )Z::CiXi + Rx + S. 
i=O i=O 

m m- I 
On equating coefficients of x , x 

cm- 3 = am_ 1 - pCm- 2 

ci = ai+2 - PCi+1 - qCi+2 

R = a1 - pCo - qC1 

S=ao-qco' 

, ... in turn we obtain the following results 

i = m- 4,m- 5, ... ,0 

If we introduce fictitious values cm = cm- 1 = ° and let c_I = R , these results can be expressed 

compactly as 

i = m - 2,m- 3, .. . ,-1 

The coefficients c and the remainders Rand S are, of course, functions of p and q. If we can find values of 

p and q such that R{p,q) = S{p,q) = 0, then x 2 + px + q will be a quadratic factor of f(x) and on 

solving x2 + px + q = ° we will have two of the (possibly complex) roots of f(x) . The way in which 

appropriate values ofp and q can be found is contained in Bairstow' s method . The discussion has to be 

deferred until we have given an introduction to the problem of solving a pair of non-linear simultaneous 

equations. 
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3.4.4 Conditioning 

Small changes in the initial data could produce relatively large changes in the solution and, in such a case, 

we say that the problem is ' ill-conditioned '. In the context of the polynomial equation 

m 

2:a;x; = 0 
;=0 

(3.11 ) 

the initial data are the coefficientsao,a1, ... ,am . In general there will be a rounding error in the 

representation of each of these coefficients in a computer but there may be other uncertainties, for example, 

if they were the result of some previous computations which are not exact. We suppose that aj is in error 

byanamount 5a;: i=O,I , ... ,m. Ifa isanexactrootof(3.11)and a + Sa is the corresponding root 

of the perturbed equation 

m 

~:Cai + 5a;)x j = 0 
i=O 

we would like to try to relate Sa to the perturbations 5a i . Reference is made to Ralston and 

Rabinowitz (1978) for complete detai Is and merely observe here that even small perturbations can have a 

dramatic effect on the zeros of polynomials of high degree. 

EXAMPLE 3.6 

The polynomial of degree 20 

f(x)=(x+ I )(x+2) .. . (x+20) 

has zeros at - 1, - 2, .. . , - 20 . The perturbed polynomial f(x)+2-23
X

I9 which corresponds to a perturbation 

of about 10-7 in the coefficient of x 19 has zeros which apart from these corresponding to -I , -2, ... , -5 are 

dramatically different from those of the original polynomial ; indeed ten of the zeros become five conjugate 

complex pairs. This example, due originally to Wolkinson (1959), emphasises that there may be severe 

difficulties in estimating the roots of a polynomial equation of high degree. 
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CHAPTER 4 

LINEAR SIMULTANEOUS EQUATIONS 

4.1 INTRODUCTION 

Usually, small set of linear simultaneous equations are solved by hand in which the unknowns are 

successfully eliminated until the equation is obtained where only one of the unknowns is involved. This 

unknown can then be determined and the remaining unknown found successively by a process ofbackward 

substitution. 

In practice it is often necessary to solve large sets of equations in which tens, hundreds and possibly 

thousands of unknowns are involved. There are a number of reasons why it is importantto analyse methods 

for the solution oflarge sets. One is that we must consider the computational effort involved; for example, 

in elimination methods the number of elementary arithmetic operations increases very rapidly with the 

number of unknowns and so an efficient algorithm must be used. Further, this very large number of 

arithmetic operations increases very rapidly with the number of unknowns and so an efficient algorithm must 

be used . Further, this very large number of arithmetic operations present a potentially serious problem: each 

operation in general wi II not be exact and, unless we organ ise the calculation properly, the cumulative effect 

of these rounding errors could lead to serious inaccuracies in the results . In other words, we may have a 

serious problem of numerical instability. In addition, the problem of ill -conditioning may be present. Here 

the initial data of the problem are the coefficients of the unknowns and the numbers on the right-hand side 

of each equation. These will often be subject to uncertainty and small changes in them may well cause 

relatively large changes in the computed solution. Similar effects can be produced by rounding-off errors 

introduced during the computation. It is therefore necessary to ask whether the reliability of a computed 

solution can be assessed in some way. 

There are two different classes of method for the solution of linear simultaneous equations. Methods such 

as elimination followed by back-substitution are referred to as direct methods, the solution being obtained 

within the limits imposed by rounding-off errors in a predetermined number of stages . For a direct method 

it is, therefore, possible to state beforehand the number of elementary arithmetic operations required to 

obtain a solution as a function of n, the number of equations (or, equivalently, the number of unknowns). 

The other methods that we consider are iterative in nature. For such methods it is, of course, necessary to 

try to establish the conditions under which they will converge. A sequence of successive approximations 
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to the solution will be produced from a given set of initial values . Hence it will not be possible to predict 

the number of arithmetic operations that will be involved; this wi II depend on the accuracy being demanded 

and on how good the initial approximation is. 

4.2 NOTATION 

A set ofn linear simultaneous equations in the n unknowns x \, X2 , .. . ,Xy, can be written in the form 

Q 2' X , t Q22 X 2t . .. t Q 2nXII = b 2 
(4.1) 

so that '\i is the coefficient ofx in the ith equation. The system (4.1) may be expressed more compactly 

as 

n 

L Q yXj = bi 
j = \ 

i=I ,2 .... ,n (4.2) 

(so that ifi=l , (4.2) gives the first equation in (4 .1), and so on) or, making use of matrix notation, as 

Ax=b 

where A is an n x n square matrix containing the coefficients on the left-hand side of( 4.1) and is defined by 

Q " Q '2 . •• Q ,,, 

A= 

Q" ,Q" 2 •. . Q",, 
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The right hand side vector 

bT = (b l ,b2,···,bn) 

Consists of the right-hand sides of the system (4.1) and 

is the vector of unknowns. 

It is useful at this stage to identify a number of special matrices. The matrix A is said to be 

symmetric if a;j =aji : ij= 1 ,2,00.,n. It is said to be tridiagonal ifthere are at least some non-zero elements on 

the principal diagonal, on the co-diagonal immediately above and on the co-diagonal immediately below, but 

all other elements are zero. Thus, for a tridiagonal matrix aij = 0 for H I> 1 :ij=1,2,00.,n . A is said to be 

lower (upper) triangular ifa;j=O for j> iU <i):ij=1 ,2,00 .,n. Thus, in a lower triangular matrix all the elements 

above the principal diagonal are zero; in an upper triangular matrix all the elements below the principal 

diagonal are zero. A matrix A for wh ich the condition 

n 

laiil> I laijl 
j=l 
j~i 

i= 1,2,00 .,n 

is satisfied is said to be strictly diagonally dominant. This definition means that for each row of the matrix, 

the magnitude of the element on the diagonal exceeds the sum of the magnitudes of the remaining elements 

in the row. If the condition 

n 

l aii l ~ I laijl 
j=l 
j~i 

i=I ,2,00. ,n 

is satisfied, with inequality holding for at least one value of i, then A is said to be diagonally dominant. 

EXAMPLE 4.2 

The foregoing definitions are exemplified by the following 4 x 4 matrices 
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1 2 3 4 1 200 1 200 

256 7 3 450 2 3 4 0 

366 9 067 8 o 4 5 6 

4 7 9 10 o 0 9 10 o 0 6 7 

( a ) symmetric ( b ) Tridiagonal ( c) Symmetric and 

tridiagonal 

100 0 123 4 10 -1 -2 4 

230 0 056 7 3 9 0 -5 

456 0 008 9 1 -1 -6 -2 
7 8 9 10 o 0 0 10 1 1 -2 5 

(d) Lower (e) Upper (f) Strictly diagonally 

triangular triangular dominant 

10 -1 -2 4 10 -2 0 0 

4 9 0 -5 -2 -6 -1 0 

1 -1 -6 -2 0 -1 3 1 

1 1 -2 5 0 0 1 4 

(g) Diagonally ( h) Symmetric, tridiagonal and 

dominant strictly diagonally dominant 

A lower (upper) triangu lar matrix in which every e lement on the diagonal is equal to unity is said to be unit 

lower (upper) triangular. A lower (upper) triangu lar matrix in wh ich every element on the diagonal is equal 

to zero is said to be strictly lower (upper) triangular. A matrix which has non-zero entries on the diagonal 

only is said to be diagonal. The diagonal matrix in which every non-zero entry is equal to unity is referred 
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to as the identity (or unit) matrix and is denoted 1. (Using the normal rules of matrix multiplication, we have 

that, for any square matrix A, Al = fA = A.) 

Finally, we introduce two qualitative terms. We refer to a matrix as beingfoll if it has at most a 

small number of zero elements. We refer to it as sparse ifit has a large number of zero entries. These zero 

elements may occur in a regular pattern in the sense that there is a relation involving the row and column 

indices which defines the zero elements. Thus a 1 OOxl 00 tridiagonal matrix (which contains at most 298 

non-zero entries) would be described as a sparse matrix in which there is a regular pattern 

(aij = 0 for Ii - jl > 1 : i,j = 1,2, ... ,n). 

4.3 GAUSS ELIMINATION AND BACK-SUBSTITUTION 

4.3.1 Discussion of the basic method 

Gauss elimination is a systematic way of solving the system (4.1) llsingthe techniques employed in Example 

4.1. We describe the method in the context ofthe set of four linear simultaneous equations 

4 

IayXj = bi i = 1,2,3,4 (4.3) 
j=1 

the generalisation being obvious. Writing the system (4.3) in its full form we have 

( I ) ( I) ( I ) ( I ) b ( l ) a l I X I + a l2 X2 + a l3 X3 + a l4 X4 = 1 

( I) ( I) ( I ) ( I ) b ( l ) a21 XI + a22 X2 + a23 Xl + a24 X4 = 2 

( I) (I) ( I) ( I) b ( l ) a31 XI + a32 X2 + a33 Xl + a34 X4 = 3 
(4.4) 

( I) ( I) ( I ) ( I ) b (l) a 41 XI + a42 X2 + a43 Xl + a44 X4 = 4 

where we have added a superscript (1) to each coefficient aij and each right-hand side hi ' This superscript 

is not an iteration number but its value will change as the elimination process proceeds. Its purpose will 

soon become apparent. 
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We begin by eliminating Xl from the second, third and fourth equations. Assuming ai:) '* 0 we subtract 

( I ) ( I) . . . , I k ( 1)/ ( I ) 
the multiple a 21 / all Ofthe first equation from the second equatIOn. Simtiar y, we ta e a 31 all 

times the first equation from the third equation and a~ : ) / a ~ : ) times the first equation from the fourth 

equation. This transforms the system (4.4) to 

where 

and 

( I ) ( I) ( I) ( I ) _ b ( l ) 
all XI + a l2 X z + a l3 X J + a l4 X 4 - I 

(2) (2) (2) b (2) a22 X z + a23 X J + a24 X 4 = 2 

(2) (2) (2) b (2) a32 Xz + a33 X J + a34 X4 = 3 

(2) (2) (2) b (2) a42 X z + a43 XJ + a44 X 4 = 4 

(I) 

a (2) = a ( l) _ !:!i.La(l) 
ij ij a ( l) If 

II 

i,j = 2,3,4 

iJ= 2,3,4 

(4.5) 

(4.6) 

(4.7) 

In the first stage ofthe elimination process the first equation in (4.4) remains unchanged. We now 

enter the second stage in which the first two equations of (4.5) are unaltered but X2 is eliminated from the 

last two equations. This is achieved by subtracting ag) / a~;) times the second equation from the ith 

equation for i=3 ,4 (provided that a~;) '* 0). This yields the system 
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( I) ( I ) (I) ( I) - b ( l ) 
all X I + a l2 X 2 + a13 X J + a l4 X 4 - I 

(2) (2) (2) _ b (2) 
a 22 X 2 + a 23 X J + a 24 X 4 - 2 

a (3) x + a (3) x = b (3) 
33 J 34 4 3 

a (3)x + a (3) x = b (3) 
43 J 44 4 4 

where 

and 

(2) 
(3) _ (2) a i2 (2) 

a ij - a ij - a (2) a 2j 
22 

(2) 
b .(3) = b .(2) _ a i 2 b(2) 

1 1 (2) 2 
a 22 

i,j=3,4 

i,j=3,4 

(4.8) 

(4.9) 

(4.10) 

Finally, we eliminate X4 from the last equation in (3 .8) by taking a~~) / aj~) times the third equation away 

from it to give 

(I) ( I) ( I) ( I) _ b ( l ) 
all X I + a l2 X 2 + a l3 X J + a l4 X 4 - I 

(2) (2) (2) b (2) 
a 22 X 2 + a 23 X J + a 24 X 4 = 2 

(3) (3) b (3) a33 X J + a34 X 4 = 3 
(4.11 ) 

a (4) x = b (4) 
44 4 4 
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where 

( 3) 
(3) (3) a43 (3) 

a 44 = a 44 - (3) a 34 
a33 

(4.12) 

and 

(4.13) 

To summarise, the effect of the basic Gauss elimination process is to transform the original system (4.4) into 

the equivalent system (4.11 ) in which the matrix of coefficients is upper triangular. The solution is now 

obtained by a process of back-substitution: X4 is obtained from the final equation in (4 .11), X3 from the last 

but one, and so on . 

The equation which is used for elimination purposes at a particular stage is known as the pivotal equation. 

(Thus, in (4.4), the first equation, which is used to eliminate XI from the other equations, is the pivotal 

equation). In the pivotal equation, the coefficient of the term which is to be eliminated elsewhere is known 

as the pivot (so that in (4.4) a~: ) is the pivot). The equations (4.6), (4 .7), (4.10), (4.12) and (4.13) are 

referred to as the updating formulae. The generalisation of these formulae to the case of n linear 

simultaneous equations in n unknowns is quite straightforward . We have 

(k- l ) 
(k) _ (k- l ) a i ,k- l (k- l ) 

alJ - a U - a (k- l ) a k- l ,j 
k- l ,k- l 

i, j = k,k + 1, ... ,n 

a (k- l ) 
b (k) = b (k- l ) _ i,k- l b (k- l ) 

i i a (k- l ) k- l 
k- l ,k- l 

l = k,k+ 1, ... ,n 

whilst 

(4.16) 

is the general form for back-substitution. 
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EXAMPLE 4.3 

Gauss elimination applied to the system 

(i) X - X - 2x = - 5 I 2 3 

Stage 1: 

(I)' 

(ii)' 

(iii)' 

Stage 2: 

XI - X 2 - 2X3 = - 5 

- 3X3 = -9 

Back-substitution : 

X3 = -9/ - 3 = 3 

x2 = (12 - 3x3 ) / 3 = 1 

(= (i)) 

1 
(= (ii)- - x (i)) 

1 

1 
(=(ii)- - x (i)) 

1 

(=(i)') 

(=(ii)') 

4 
(=(iii)' - - (ii)') 

3 

XI = (- 5 + x2 + 2x3 ) /1 = 2 

As mentioned in the introduction to this chapter, for a direct method it is possible to predict the total number 

of elementary arithmetic operations involved. It can be shown that the operations count for Gauss 

elimination is dominated by n3 /3 multiplications and additions/subtractions. Hence the effort in solving a 

linear system of equations by this method increased rapidly with n. 
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Although the numerical evaluation of a determinant is an operation which is rarely required, we make the 

observation that the value of the determinant of the matrix in the final system (4.11) is the same as that for 

the original coefficient matrix A. Moreover, it follows immediately that this value is just 

ai: )a~;)ag)a~:) . The extension of this result to the general case is obvious. 

At each stage of the elimination process we have made the assumption that the pivot ai~i) is non-zero. 

If ai:) =0 the process just described will break down . However, ifthis situation arises, at least one of 

a~? ,aj:) and a~:) must be non-zero and one of these may be useful as the pivot instead of ai:) 

This new pivot then defines a new pivotal equation. At the end of the first stage, ai~) may be zero but, 

if this is so, at least one of a aj;) and a~;) will be non-zero and so it will be possible to select a new 

. F' II 'f ( I ) 0 3 h' h non-zero PIVOt. lOa y,1 all = ,a43 ,w IC must be non-zero can betaken as the pivot. Evenifnone 

ofthe pivots is identicaIly zero, it is possible that they may be very small in magnitude and consequently the 

I · I' (k- I) / (k- I) 
mu tIp lers ai ,k- I a k- I,k-J may be large. 

4.3.2 A program for Gauss Elimination 

II a program for gauss elimination 

# include<iostream.h> 

#include<iomanip.h> 

#define MAXN 50; 

mainO 

{ 

int i,j ,k,n; 

float a[50][50] ; 

float b[50]; 

float x[50]; 

float muit,sum; 

cin »n; 

for(i=I; i<=n;i++) 

forU=I; i<=n; j++) cin»a[i][j]; 
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{ 

} 

} 

for(i=i ; i<=n; i++) cin» b[i] ; 

cout« " the coefficient matrix is "«endl; 

for(i=i; i<=n; i++) 

forU=I ; j <=n; j++) 

cout« a[i][j] ; 

cout«endl; 

cout« " the right hand side rec-tor is "« endl; 

for(i=i ; i<=n;i++) cout« b[i]; 

cout « endl; 

for(k=2; k<=n; k++) 

for(i=k; i <=n; i++) 

{ 

} 

{ 

} 

muit = a[i][k-l]/a[k-l][k-l] ; 

b[i] = b[i] -muit*b[k-l] ; 

for U=k ;j <=n; j++) a[i][j]=a[i][j]- muit*a[k-l] [j] ; 

for (i=n; n>=i;i--) 

sum= b[i]; 

forU=i+ l ;i<=n; i++) 

sum= sum-a[i][j]* x[j]; 

x[i]=sumla[i][i]; 

cout«endl ; 

cout« "the solution vector is "« endl; 

for(i=l ;i<=n;i++) cout«x[i] ; 

cout« endl; 

Sample Data 

3 

1.0 -1.0 -2 .0 
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1.0 

1.0 

-5.0 

2.0 

3.0 

7.0 

1.0 

-1.0 

2.0 

Sample Output 

the coefficient matrix is 

1.00000e 0 

1.00000e 0 

1.00000e 0 

-l.OOOOOe 0 

2.00000e 0 

3.00000e 0 

the right hand side vector is 

-5.00000e 0 7.00000e 0 

the solution vector is 

2.00000e 0 1.00000e 0 

4.4 ITERATION 

-2.00000e 0 

1.00000e 0 

-1.00000e 0 

2.00000e 0 

3.00000e 0 

4.4.1 Derivation of the Jacobi and Gauss-Seidel Schemes 

Before considering direct methods for the solution of the system (4.1) further we examine ways of setting 

up iterative processes which will , hopefully, converge to the required solution. These methods can be 

particularly useful if the coefficient matrix is sparse. 

Suppose that we wish to solve the set of three linear simultaneous equations 

i = 1,2,3 ( 4.17) 

for the three unknowns Xl' X 2 and X 3 . Let xl 0] ,X~ 0] and x1°] be initial approximations to Xl' X 2 

and X 3 respectively. Then, assuming that all' a22 and a33 are all non-zero, the system (4 .17) may 

be rewritten as 

Xl = (bi - a\2x2 - aI3x3 )/ all 

X 2 = (b2 - a21 x I - a23x3 )/ a22 

X3 = (b3 - a3 Ix, - a32xJ/a33 

( 4.18) 

55 



and this suggests the iterative scheme (jacobi iteration) 

k= 1,2, .. .. ( 4.19) 

where the subscript indicates an iteration number. Thus, a sequence of approximations 

{( Xl kl, x~k l ,x~k l ):k = 0,1, .. . } is generated and under suitable circumstances it will converge to the 

required solution. 

EXAMPLE4.S 

The system 

4xI + X2 - X3 = 12 

- XI + 3x2 + X3 = 6 

2xI + 2X2 + 5X3 = 5 

has the solution XI = 2, X2 = 3, X3 = -1 . If the initial approximation is xlOl = x~Ol = x~Ol = 0, 

the first application of Jacobi iteration yields xlll = 12/4= 3,X~ll = 6/ 3= 2,X~ll = 5/5= 1. 

The next iteration gives 

xl2l = (12 - 1 X 2 - (-1) x) / 4 = 1114 = 2.75000 

x~2l = (6 - ( - 1) X )3 - 1 xl) /3 = 8/3 = 2.66667 

x~2l = (5 - 2 X 3 - 2 X 2) /5= - 5 / 5 = -1.00000 

Further iterations are listed in Table 4.1 correct to six significant figures. 
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Table 4.1 

Jacobi k Gauss-Seidel 

k 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3.00000 2.00000 1.00000 3.00000 3.00000 -1.40000 

2 2.75000 2.66667 -1.00000 1.90000 3.10000 -1.00000 

3 2.08333 3.25000 -1.16667 1.97500 2.99167 -0.986667 

4 1.89483 3.08333 -1.13333 2.00542 2.99736 -1.00111 

5 1.94583 3.00972 -0.991667 2.00038 3.00050 -1.0003 5 

6 1.99965 2.97917 -0.982222 1.99979 3.00005 -0.999933 

7 2.00965 2.97917 -0.991528 2.00000 2.99998 -0 .999994 

8 2.00363 3.00039 -1.00144 2.00001 3.00000 -1.00000 

9 1.99954 3.00169 -1.00161 2.00000 3.00000 -1.00000 

10 1.99918 3.00038 -1.00049 

11 1.99978 2.99989 -0.999823 

12 2.00007 2.99987 -0 .999868 

13 2.00007 2.99998 -0.999976 

14 2.00001 3.00001 -1.00002 

15 1.99999 3.00001 -1.00001 

An immediate extension of the scheme (4.19) is to make use of the new iterates as soon as they become 

available. This gives the process (Gauss-Seidel iteration) 

k= 1,2, .... 
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so that, for example, in the second equation of the system (4.22) the most recently computed estimate, 

x; , of x, is used to find x~ 

EXAMPLE 4.6 

Consider the system of equations of Example 4.5 and again let x\ Ol = x10l = x10l = O. Then, as before, 

xl'l = 3 but now 

x11] = (6 - ( - 1) X 3 - 1 X 0) /3 = 9/3 = 3 

and 

x1'l = (5- 2 x 3- 2 x 3)/5= -7/5= -1.4 

Table 4.1 lists further iterations and we note that Gauss-Seidel iteration has obtained the solution (2.00000, 

3.00000, -l.OOOOO)after just 9 iterations whereas, at the same stage, Jacobi iteration stilll has some way to 

go. Further, after two iterations both the Jacobi and Gauss-Seidel schemes give X12l = - 1 and then move 

away from this value before the converging to it ultimately. We conclude that when monitoring iterates it 

is important that we measure the overall convergence of the values 

{{X\ kl ,x1kl ,x1kl ):k = 0;1, ... } and we investigate ways of doing this in subsection 4.4.3. 

Jacobi and Gauss-Seidel iteration can be readily extended to the case ofn linear simultaneous equations in 

n unknowns. Jacobi iteration takes the form 

1 = 1,2, ... , n; 

k = 1,2, ... 
(4.20) 

whilst Gauss-Seidel iteration is 

i = 1,2, ... , n; 

k = 1,2, ... 
(4.21 ) 
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In both cases we have assumed aii t 0: i = 1,2, ... , n. 

As in the iterative schemes discussed in Chapter 3, it is necessary to examine the conditions under which 

a suitable scheme will converge and, if convergent, to formulate a suitab le termination criterion. 

4.5.2 A Convergence Theorem 

THEOREM 4.1 

In the set of n linear simultaneous equations 

n 

I aijXj = bi 
J=1 

i= 1,2, ... ,n 

suppose the matrix of coefficients is strictly diagonally dominant, that is, 

laiil> f !aij! 
1=1 
jici 

i= 1,2, ... ,n 

Then Jacobi and Gauss-Seidel iteration converge from arbitrary initial estimates of the unknowns, that is, 

[0] [0] [0] 
for any X I , x2 , ... , X n • 

The proof of this theorem is not particularly difficult but, without some formal concepts from linear algebra, 

it is very lengthy (see Johnson and Riess (1982) for further details). The theorem shows the importance of 

the class of strictly diagonally dominant matrices . However, we note that strict diagonal dominance is a 

sufficient but not necessary condition for convergence and consequently these iterative schemes may 

converge for other sets of equations. 

EXAMPLE 4.7 

The coefficient matrix of Example 4.5 is strictly diagonally dominant and hence we would expect Jacobi 

and Gauss-Seidel iteration to converge for this particular problem. The results contained in Table 4.1 bear 

this out. In Example 4.1, the coefficient matrix is not strictly diagonally dominant and we can say there is 

no guarantee that Jacobi and Gauss-Seidel iteration will converge. We cannot guarantee that they wi II both 

diverge but , starting with X\O] = X~O] = X~O] = 0, Jacobi iteration gives 

X\ 10] = 302.125, X~lO] = - 1 06.188, x~ lO] = 217.375 whilst Gauss-Seidel iteration gives 
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X~lO] = 85011.3,x1
IO

] = -58568.9,x1
IO

] = -90697.4 and both processes are clearly diverging 

from the true solution. In the system 

4xI + 2X2 + X3 = 12 

2xI + 3x2 - X3 = 7 

2xI + 2X2 + 2X3 = 8 

the coefficient matrix IS agam not strictly diagonally dominant. However, starting with 

X [O] - X[O] - X[O] - 0 
1 - 2 - 3 - , J a cob i t era t o n g i v e s 

x\18] = 3.00000,X1
18

] = 1.00001,x1
18

] = 2.00002 and Gauss-Seidel iteration gIves 

X\15] = 3.00000, X1
15

] = 1.00000, X1
15

] = 2.00000. (All figures here have been quoted correctto 

six significant figures). SincethetruesolutionisX1 = 3,x2 = 1,x3 = 2 we can say that both Jacobi and 

Gauss-Seidel iteration converge for this problem given the starting value X[O]T = (0,0,0). 

4.4.3 Termination criteria 

We first consider ways of determining the size of a vector y. Three possible measures are 

(i) the sum of the absolute values of the components ofy 

(4.22) 

(ii) the square root ofthe sum of the squares of the components ofy 

( 

n 2) 1/2 

LY; , 
;=1 

(4.23) 

(iii) the maximum absolute component ofy 

maximum Iyd . (4.24) 

1 ~ i ~ n 
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The quantities (4.22), (4.23) and (4.24) are, in turn, referred to as the L rnorm, Lr norm and L 00 -norm of 

y. Whilst these are not the only ways of quantifying the size of a vector, they are the ones most commonly 

used in numerical analysis. 

Now, in Example 4.6, we noted that a convergence criterion for an iterative process must be based on the 

convergence of each ofthe iterates XJk] : k = 0,1, ... , i = 1,2, ..... Ifwe use (4.24) to test for convergence 

an iterative method such as Jacobi or Gauss-Seidel would be continued until 

(4.25) 

where c is some chosen tolerance. It may be preferable to use a relative, as opposed to absolute, accuracy 

criterion. 

If the chosen iteration is slowly convergent there are likely to be difficulties. It is noted that a convergence 

criterion based on ensuring that the absolute value of the difference between successive iterates is less than 

some tolerance does not guarantee that the root has been found to this accuracy. Here, if the iterative 

process is continued until (4.25) is satisfied, there is no guarantee that 

holds. In such a case it may be preferable to examine the residual vector r[ k] whose components are 

defined by 

n 
r[k] = b - L a . i k] 

I I . lj J 
J - I 

I = 1,2, ... ,n 

and formulate a criterion based on some measure of this vector. However, in the case of a badly conditioned 

set of equations it is clear that small residuals do not necessarily imply an accurate solution . 

4.4.4 A program forGauss-Seidel Method 

//a program for Gauss - Seidel Method 

#include<iostream.h> 

#include<iomanip.h> 

#include<math.h> 

#define MAXN 50; 
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class matrixtype 

{public: 

float matrixtype[50] ; 

}; 

class rhstype 

{public: 

float rhstype[50]; 

}; 

class itermaxtype 

{public: 

int itermaxtype; 

}; 

mainO 

{ matrixtype a; 

rhstype x; 

rhstype b; 

float tol ; 

int ij,n ; 

itermaxtype itermax; 

void gausseidel (int n,matrixtype a, rhstype x,rhstype b,float tol ,itermaxtype itermaxl); 

cin» n; 

for (i=l'i<=n'i++) ' , , , 

for U=l ;j <=n;j++); 

cin» a[i] [j] ; 

for (i=l;i<=n;i++) cin» b[i] ; 

for (i= l ;i<=n;i++) cin» x[i] ; 

cin» tol» itermax; 

cout« endl; 

cout« "the coefficient matrix is "« endl' 

for (i= l ;i<=n;i++) 

{ 

for U= 1 ;j <=n;j++) cout« a[i] [j]« endl ; 
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} 

} 

cout«endl; 

cout« "the right hand side vector is "« endl; 

for (i=l ;i<=n;i++) cout« b[i]« endl« endl; 

cout« "the initial approximation is "« endl ; 

for (i=l ;i<=n;i++) cout« x[i] « endl« endl ; 

cout« "accuracy tolerance "« tol« endl ; 

cout« "Maximum number of iteration allowed "« itermax« endl; 

gausseidel(n,a,b,x,tol,itermax); 

cout« endl; 

cout« "the solution vector is "«endl; 

for (i=l;i<=n;i++) cout«x[i]«endl; 

void gausseidel (int n,matrixtype a, rhstype x,rhstype b,float tol ,itermaxtype itermaxl); 

{ rhstype xold; 

int converged; 

int iter; 

float sum; 

int ij ; 

iter =0; 

do 

{ iter = iter+ 1 ; 

for (i=l ;i<=n;i++) xold[i]= x[i]; 

for (i=l;i<=n;i++) 

{ 

sum = 0.0; 

for (j = 1 ;j <=n;j++) 

if (i<>j) sum = sum + a[i][j] *x[j] ; 

x[i[ = (b[i] -sum )/a[i][i]; 

} 

i=O; 

do 

{ i=i+l ; 

converged = abs(x[i] -xold[i]) < tol 
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} while «i=n) II (converged == 0»; 

} while «converged) " (iter== itermax»; 

cout« endl; 

if ( converged == 0) cout« "no convergence to specified tolerance 

after"«iter«"iterations"« endl; 

} 

Sample Data 

3 

4.0 -2.0 

2.0 3.0 

2.0 -2.0 

12.0 7.0 

0.0 0.0 

0.00005 

25 

1.0 

-1.0 

2.0 

8.0 

0.0 

Sample Output 

the coefficient matrix is 

4.00000e 0 

2.00000e 0 

2.00000e 0 

-2 .00000e 0 

3.00000e 0 

-2.00000e 0 

the right hand side vector is 

1.20000e 0 7.00000e 0 

the initial approximation is 

O.OOOOOe 0 O.OOOOOe 0 

accuracy tolerance 

1.00000e 0 

-1 .OOOOOe 0 

2.00000e 0 

8.00000e 0 

O.OOOOOe 0 

5.00000e -5 

maximum number of iterations allowed 25 

convergence to specified tolerance after 13 

the solution vector is 

3.00000e 0 9.99986e -1 1.99998e 0 

iterations 
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4.4.5 Computational Efficiency (Complexity) 

The number of elementary arithmetic operations involved in each iteration, whether Jacobi or Gauss-Seidel, 

is proportional to n 2 
. The overall cost of each scheme is then determined by the number of iterations 

required to achieve convergence. Using the same initial approximation it is possi ble to compare the 

efficiency of these two schemes and, in this sense, it is usually the case that Gauss-Seidel iteration is more 

efficient than Jacobi (see Table 4.1). Other iterative schemes have been proposed which aim to keep the 

number of iterations required as low as possible. 

Consider the generalised form of the system (4.18) 

i = 1,2, ... ,n 

Suppose that we choose some value p and multiply through by this number. 

Adding Xi to both sides and rearranging we have 

1 = 1,2, ... ,n 

and this suggests the iterative scheme. 

X[k] = (1- p)X[k - l] + P(b - fax[ k] - f ax[k- I]) / a . (4.26) 
I I I . lj) .. lj) II 

) = 1 ) = ) + 1 

i = 1,2, ... , n; 

k = 1,2, .. . 

(Compare this with equation 4.21) known as successive over-relaxation (SOR). The choice of the parameter 

p is a matter of advanced analysis and we can do no more than state here that, for certain classes of matrix, 

it is possible to find the optimum value of p in order to achieve rapid convergence, and that for other classes 

it may be possible to find a value for p which is near the optimum. 
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We conclude this subsection by observing that it is possible to formulate and use the Aitken acceleration 

scheme in the present context. Three successive iterates, X[ k] , X[ k+ l] and X[k +2] are required and the 

components XJk], XJk+l] and XJk +2 ] can be combined to give a new initial approximation which is 

used to generate two further iterates and so on . 

The question can now be asked that how does programming in C++ improve the complexity? 

From table 4.1 it is clear that Gauss-Seidel iteration converges quickly compared to Jacobi and for a longer 

array of variables in which solutions are required, manual computation using a desktop calculation might 

not suffice due error factor. Therefore, the advanced coding features of C++ which provide compact matrix 

operands, structured and object oriented programming engenders tremendous improvement in computational 

efficiency with regard to processing time, accuracy and convergence. 

4.4.6 A Further Discussion of Iterative Methods 

Before leaving iterative methods we give a very brief indication of the way in which a fuller analysis of some 

iterative schemes might be undertaken. 

Consider the system of equations (4.1) and assume that a i i t 0: i = 1,2, ... , n. The coefficient matrix A 

may be split as 

A=L+D+U 

where 0 is a diagonal matrix with elements all' a22 , ••. , ann on the diagonal and Land U are strictly 

lower and upper triangular matrices, respectively, defined by 

0 0 0 0 a l2 
... a

ln 

a 21 0 0 0 0 . . . a
2n 

L= u= 

anI a n2 
.. . 0 0 0 0 

This means that the original system may be expressed as 

(L+ D+ U) x = b 
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and this can be rewritten in a number of ways to provide different iterative schemes. In particular, we have 

D x = - (L + U) x + b 

which suggests the scheme 

and this is Jacobi iteration. It follows immediately that Gauss-Seidel iteration takes the form 

(4.27) 

However, on premultiplying (3.27) by D and rearranging, we have 

(D+ L)X[k] = - UX[k-l] + b 

and so Gauss-Seidel iteration may also be written as 

Now, consider the system (3 .26). Multiplying through by a, these equations may be written, in matrix form 

as 

Dx[k] = (1- P )Dx[k- I] + pb - pLX[k] - pUX[ k- l] 

Rearranging, we have 

or 

Hence, it is possible to express each of the iterative schemes that we have considered in the form 

X[k] = .Mx[k-I] + g (4.28) 

where 

(i) for Jacobi iteration M = - D-1(L + U) and g = D-1b; 

(ii) for Gauss-Seidel iteration M = - (D + Lt I U and g = (D + Lt I b; 

(iii) for SORM= (D+ pLr1((1- p)D- pU) and 
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Equation (4.28) allows us to study the convergence of all of our iterative methods within a general 

framework. Let ck denote the error in X[k] ,so that 

where x is the solution to the original system (4.1). Then from (4.28) we must have 

x= Mx+ g 

so that subtracting (4.28) from (4.29) we find that 

ck = MCk _l 

Continuing the process 

(4.29) 

where Co is the error in the initial approximation x[ 0] . Hence, the iterative process will converge if Mk 

tends to the zero matrix (that is, the matrix whose entries are all zero) as k increases. 

4.5 FACTORISATION METHODS 

4.5.1 Introduction 

In this section we return to the development of direct methods for the solution of a system of linear 

simultaneous equations. We shall need to use matrix notation and some elementary results of matrix algebra. 

We begin by considering the solution of three equations in three unknowns for which the coefficient matrix, 

A, is given by 

[ all a l2 a13l A= a21 a22 a23 

a31 a32 a33 

Let L, D and U be the three matrices 
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II Ul2 U13] 

U= 0 1 u23 

o 0 1 

that is, Land U are unit lower and upper triangular respectively and D is diagonal. We now investigate 

whether it is possible to find values for the components of L, D and U such that 

LDU = A. (4.30) 

If we perform the matrix multiplications on the left-hand side of (4.33) and then equate corresponding 

elements row-by-row, we obtain the following results. 

The results for row 1 enable dl ,U12 and Ul3 to be found in turn; those for row 2 enable /21 , d2 and ~3 

to be found in turn and those for row 3 enable 13 1,/32 and d3 to be found in turn . 

EXAMPLE 4.8 

Consider the system of equations of Example 4.1. Then the coefficient matrix for this problem is 

II -1 -2] 
A = 1 2 1 

1 3 -1 

so that 
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Hence 

Ul2 = a l 2 1 d l = - 111 = - 1 

u l3 = a l3 1 dl = - 211 = - 2 

121 = a 2l Idl = 1/1= 1 

d 2 = a22 -/21d1U1 2 = 2-1 x I x (-1) = 3 

U23 = (a23 -/2 IdIUI 3 )ld2 = (I-I x I x (-2)) / 3= 1 

131 = a 3l 1 dl = 1/1 = 1 

132 = (a32 -/3IdIUI2)ld2 = (3-1 x I x (-1))/3= 4/3 

d 3 = a33 - 13ldlUl3 - 132d2~3 = -1- 1 x 1 x (- 2) - 4/3 x 3 x 1 = - 3 

~ ~l 
4/3 1 r~ ~ ~l r~ -: -~l 

o 0 3 0 0 1 

This result should now be checked by first forming Z = DU and then A = LZ 

If all = 0 then d l = 0 which means U12 , Ul3 ,121 and 131 cannot be found and the process breaks 

down. If all t 0 but d 2 = 0, it will not be possible to compute U23 and 132 . Now, 

d2 t 0 is the same as a lla 22 - a 21 a l 2 t O. But this means that the determinant of the minor 

of A must be non-zero. Extending these results further we have the following theorem. 
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THEOREM 4.2 (without proof) 

In the n x n matrixA suppose that the determinant of each sub-matrix AI' A2 , ••• , An is non-zero where 

and so on. Then there exists a unique factorisation A = LDV, where L and Vare respectively unit lower and 

upper triangular and D is diagonal with non-zero diagonal elements. 

However, two of its consequences shall be examined. The first is that the product DV is an upper triangular 

matrix so a unique factorisation of A into a unit lower triangular matrix and an upper triangular matrix exists. 

Similarly, the productLD is a lower triangular matrix so a unique factorisation into a lower triangular matrix 

and a unit upper triangular matrix exists. 

4.5.2 The Methods of Doolittle, Crout and Choleski 

In the previous subsection we observed that if the matrix A satisfies the conditions of Theorem 4.2 a unique 

resolution A =LV exists where L is unit lower triangular and V is upper triangular. If A has three rows and 

three columns we have 

Uu u12 U13 

o U22 U22 

o 

au a12 a l3 

a21 a22 a23 

a31 a32 a33 

(4. 31) 

The entries in L and V can either be found by forming the LDV decomposition of A (where, here, V is unit 

upper triangular) and computing DV or directly by multiplying out the left-hand side of (4.31) and equating 

corresponding elements in the equation to find U II , U I2 , U l3 , 121 , U22 , ~3' 13 1 ,/32 and U 33 in that order. 

Given that the LV decomposition of a matrix A exists, the system of equations (4 .1) may be written as 
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LUx=b 

or (4.32) 

Ly=b 

where y satisfies the equation 

Ux=y (4.33) 

Hence, the solution vector x may be found by factorising A into the product LU and then 

(i) forming the intermediate vector y from (4.32) using forward substitution, 

(ii) forming x from (4.33) using back-substitution. 

In detail , for a system of three equations in three unknowns we have, for stage (i) 

so that 

1 00 YI bl 

l21 1 0 Y2 = b2 

l31 l31 1 Y3 b3 

YI = bl 

l21YI + Y2 = b2 

l31YI + l32Y2 + Y3 = b3 

and YP Y2 and Y3 can be found in turn. For stage (ii), we have 

UII UI2 U\3 XI YI 

o ~2 ~) X2 = Y2 

o 0 U33 x) Y) 

gtvmg 
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U33 X 3 = Y3 

U22 X 2 + U23 X 3 = Y2 

UIIX I + U I2 X 2 + u13 x3 = YI 

and now x 3 ' x2and XI can be found in turn. 

The process based on the LU factorisation of A and the subsequent solution of equations (4.32) and (4.33) 

is known as Doolittle's method. Formally, for a system of n equations in n unknowns we have 

and then 

Uij = alj j= 1,2, ... ,n 

Iii = ail / UII i = 2,3, ... ,n 

i - I 

Uij = aij -l:)ikUkj j = i,i + 1, ... ,n 
k=1 

i = 2,3, ... ,n 

j = i + 1, i + 2, ... , n 

i-I 

Y · = b. - " r .y . 
1 1 ~ 1) ) 

i = 1,2, ... ,n (4. 34) 
j = 1 

X · = (Y' - ~ u ··x .J / u ·· 1 1 ~ 1) ) 11 

j =i+ 1 

i = n,n - 1, ... ,1. (4. 35) 
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EXAMPLE 4.8 

The coefficient matrix of Example 4.1 may be expressed as 

1 -1 - 2 

121 

1 3 -1 

1 00 

11 0 

1 4/3 1 

Hence, if bT = (-5,7,2) 

Yl =-5 

Y2 = 7 - 1 x (-5) = 12 

Y3 = 2 -1 x (-5) - 4/3 x 12 =-9 

and 

X3 = -9/-3 = 3 

X 2 = (12 - 3 x 3) / 3 = 1 

Xl =(-5-(-2)x3-(-1)x1)/1 

1 - 1 - 2 

o 3 3 

o 0 - 3 

There are three observations which must be made. The first is that there is a close connection between the 

Doolittle method as we have described it and the basic Gauss Elimination process described in subsection 

4.3 .1. The upper triangular matrix U is the matrix of coefficients defined by (4.14) and the off-diagonal 

components of the matrix L are the multipliers appearing in the same equation. In fact, we have 

i = k,k + 1, ... ,n;k = 2,3, ... ,n. 

The intermediate vector is the vector defined by equation (4.15). It is not difficult to verify this association 

in the case of three equations in three unknowns but the general proof is lengthy and we shall not pursue the 

matter further. The second observation is that it will be necessary to consider some reformulation of the 

method so that pivoting strategies can be included. Finally, we note that once we have the LUfactorisation 

of aMatrixA any problem containing this coefficient matrix may be solved by making use of equation (4.34) 
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and (4.35) only and we refer back to the process of the iterative refinement of an approximate solution 

described in subsection 4.4.2. 

The method of Crout can be developed in a similar manner to that of Doolittle. It depends on the resolution 

A=LU, where L is lower triangular and U is unit upper triangular. Choleski's method makes use of the 

resolution A = LLT for a symmetric matrix, which L is lower triangular. 

Factorisation methods can be of special value when the matrix A has a special form and we give an example 

of this by considering the case ofa tridiagonal matrix. 

4.5.3 Factorisation of a Tridiagonal Matrix 

Let A be the tridiagonal matrix 

a1 C1 0 

d2 a2 C2 

A= 

dn-1 an- 1 Cn-1 

0 dn an 

with the ais on the diagonal , the CiS on the co-diagonal immediately above and the diS on the co-diagonal 

immediately below. All other entries are zero. We seek a resolution of A of the formA =LUwhere 

a l 0 1 Yl 0 

d2 a 2 1 Y2 

L= u= 

dn-1 a n- l 1 Yn- l 

0 dn an 0 1 

In this definition of the lower triangular matrix L, the zeros indicate that all entries except those on the 

diagonal and the co-diagonal immediately below are identically zero. Similarly, the upper triangular matrix 

U has non-zero entries only on the diagonal an the co-diagonal immediately above. 
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On multiplying out and equating elements we find that 

a 1 =a1 

ai- 1ri- l = Ci - 1} i = 2,3, ... ,n 
dr · 1 +a· =a · / / - / / 

(4.36) 

From this system we can find a1 ,r 1 ,a2 ,r 2' ''' and so on in turn provided that no a i = O:i = 1,2, ... ,n 

(and this condition is satisfied if A is positive definite). Now, let A be the coefficient matrix in the system 

(4.1). The solution vector x may be obtained by first solving 

Ly=b 

for the immediate vector y and then solving 

Ux=y. 

The forward substitution process for y is simply 

Yl = b)a1 

Yi = (bi - diYi-l)/ai i = 2,3, ... ,n 

whilst the back-substitution for x is 

Xn = Yn 

Xi = Yi - riXi+l i = n-1,n- 2, ... ,1. 

(4.37) 

(4.38) 

We note that the number of multiplications involved in each of the stages (4.36), (4.37) and (4.38) is 

proportional to n. This compares very favourably with the basic Gauss elimination process where the 

operations count is proportional to n 3 
. In addition, if the tridiagonal matrix is diagonally dominant the 

method can be shown to be numerically stable, so that no pivoting strategy is required. 
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Ifthe matrix A is symmetric as well as tridiagonal , that is 

a l ci 
0 

ci a 2 c2 

A= 
cn- 2 a n_1 

cn_1 

0 cn_1 an 

and the conditions of Theorem 4.2 are satisfied, the factorisation A = LLT exists where 

PI 0 

ql P2 

L= 

qn-2 P n-I 

0 qn-I Pn 

and 

PI = ra: 
q,;, : J(: ~'~:2_1)} i = 2,3, ... n. 

If A is positive definite the values Pi: i = 1,2, ... , n are guaranteed to be real, and not complex, numbers. 

A tridiagonal matrix is an example of a band matrix. For such matrices, aij = O:li - JI > k for some k. 

The value 2k+ 1 is known as the band width of the matrix. Clearly the ideas introduced here may be readily 

extended to the case k> 1. 

78 



4.5.4 A program for the factorisation of Tridiagonal Coefficient Matrix 

//a program for the solution of a system of linear equations in which the coefficient matrix is tridiagonal 

#include<iostream.h> 

# include<ioman i p. h> 

#include<math.h> 

#define MAXN 50; 

class indextype 

{public: 

int indextype; 

}; 

class vector 

{public: 

float vector[50]; 

}; 

mainO 

{ vector a,b,c,d; 

indextype i,n; 

void readtriding (indextype n,vector a,c,d); 

void printtridiag (indextype n, vector a,c,d); 

void factorise (indextype n, vector a,c,d); 

void forwardsub (indextype n,vector a,d,b); 

void backsub (indextype n, vector b,c); 

cin» n; 

readtridiag (n,a,c,d); 

for (i=1 ;i<=n;i++) cin» b[i] ; cout« endl ; 

cout« "the coefficient matrix is "« endl ' , 

printtridiag (n,a,c,d); 

cout«endl; 

cout« "the right hand side vector is "« endl; 

for (i=l ;i<=n;i++) cout« b[i] ; 

cout« endl ; 

factorise (n,a,d,b); 

forwardsub(n,a,d ,b ); 

backsub (n,b,c); 
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} 

coout« endl ; 

cout« "the solution vector is "«endl; 

for (i=l;i<=n;i++) cout« b[i) ; 

cout« endl; 

} 

void readtridiag(indextype n,vector a,c,d); 

{ 

for (i=1 ;i<=n;i++) 

{ 

if (i<> 1) cin» d[i) ; 

cin»a[i) ; 

} 

void readtridiag(indextype n,vector a,c,d); 

{ 

for (i=l;i<=n;i++) 

{ 

} 

} 

for(j= 1 J <=i-2;j++) cout« O.O; 

if (i<> 1) cout« d[i) ; 

cout«a[i); 

if (i<>n) cout«c[i) ; 

for (j=i+2j<=n;j++) cout« O.O; 

cout« endl; 

void factorise (indextype n,vector a,c,d); 

{ indextype i; 

} 

for (i=2;i<=n;i++) 

{ 

} 

c [ i-I) =c [ i-I ]I a[ i-I) ; 

a[i) = a[i)-d[i)*c[i-l) 

void forwardsub (indextype n, vector a,d,b); 
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{ indextype i; 

b[ 1 ]=b[ 1 ]/a[ 1]; 

for (i=2;i<=n;i++) b[i]=(b[i] -d[i] *b[i-l J)/a[i] 

} 

void backsub (indextype n,vector b,c); 

{ indextype i; 

for (i=n-l ;i>= 1 ;i--) b[i] = b[i] - c[i]* b[i+ I } } 

} 

Sample D.rua 

3 

2.0 2.0 

-4.0 -3 .0 2.0 

1.0 3.0 

2.0 3.0 11.0 

Sample Output 

the coefficient matrix is 

2.00000e 0 2.00000e 0 O.OOOOOe 0 

-4.00000e 0 -3 .00000e 0 2.00000e 0 

O.OOOOOe 0 1.00000e 0 3.00000e 0 

the right hand side vector is 

2.00000e 0 3.00000e 0 1.l0000e 0 

the solution vector is 

2.00000e 0 -1 .00000e 0 4.00000e 0 
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CHAPTERS 

APPROXIMATION OF CONTINUOUS FUNCTIONS 

5.1 INTRODUCTION 

This Chapter looks atthe approximation of a continuous function over finite and infinite intervals. There are 

often very good reasons for wishing to do this, not least of which is that the function may be difficult, and 

hence expensive, to evaluate. Ifit were possible to replace such a function accurately with, say, a low degree 

polynomial then the situation would be somewhat improved. 

There are two distinct ways of approaching approximation. First, the fu nction could be evaluated at a set 

of points and the problem is then transformed to fitting an approximating function to a discrete set of data 

values. Second, an overall approximation cou ld be sought and it is this class of problems that concerns us 

here. 

Quite unashamedly most of the worked examples in this chapter are concerned with the approximation ofthe 

exponential function eX, usually on the interval [0,1]. This choice is governed by the fact that the 

exponential function possesses a number of desirable properties which make it an ideal candidate for 

i lIustrating the main features ofthe methods discussed. In particular, the mathematics involved (for example, 

differentiation) can be kept reasonably simple. 

5.2 TAYLOR SERIES APPROXIMATION 

Perhaps the simplest way of obtaining an approximation to a function f(x) is provided by its Taylor Series 

expansion. Suppose that we are interested in the behaviour of f ( x) over the finite interval [a, b] and let Xo E [a, b] 

be some chosen point. Then Taylor's theorem (Theorem 1.1) gives 

(5.l) 
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where q is some interior point of the open interval ]xo,x[(if x> xo) or ]x,xo [(if x < xo) .. If this 

series is convergent then, provided that n is large enough, the polynomial 

(5.2) 

which is of degree at most n (f{ n) (xo) may be zero) can be used as an approximation to J(x}. 

EXAMPLE 5.1 

Consider the function f{x) = eX and let [0, 1] be the interval of interest. Since each derivative of eX is eX 

itself, the Taylor series for this function expanded about the point x = ° gives 

234 

eX = eO + xeo + ~eo + ~eo + ~eq q E]O,X[. 
2 6 24 

Hence 

gives a polynomial approximation of degree 3 to e . 

Having obtained a polynomial approximation we would like to know how good it is. From equations (5.1) 

and (5.2) we have that the error En (x) in the approximation of f( x) by Pn (x) is given by 

(5.3) 

On its own, the error function defined by (5.3) does not provide us with much information since we do not 

know the value of S. However, in principle, provided that successive derivatives ofJ(x) do not grow at too 

fast a rate then, by increasing n, a point wi ll be reached where the denominator in (5.3) will begin to 

dominate. (But there can be severe computational problems, see Example 5.3). This does mean that we need 
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to be able to compute the appropriate derivative values which is likely to be a tedious operation (although it 

is possible that the derivatives wi II satisfy a recurrence relation). In addition algebraic errors can easily creep 

in when forming derivatives. 

In function approximation we often look not for the actual error in approximation, which is usually not 

computable, but for an upper bound on this quantity. We shall see in Example 5.2 that such bounds are often 

over-pessimistic and should be treated with some caution. Nevertheless they do allow us to use the 

underlying numerical methods with some degree of confidence. Here, suppose that we can bound the n+ 1 'st 

derivative ofJ(x) on the interval [a,b], that is, we can determine a value Mn+l such that 

Then Ix - Xo I :::; b - a so that 

provides a bound on the error in the approximation of f( x) by Pn (x) . 

EXAMPLE 5.2 

For the approximation of eX by the polynomial 1 + x + (X2 / 2) + (X3 / 6) 

(Example 5.1) we have 

4 

E (x)= ~e~ 
3 24 

which is everywhere positive in [0,1]. We can therefore draw the qualitative conclusion that the polynomial 

approximation will be less than eX for all X E [0,1] . Further, 

max lexi = e ~ 2.71828 

O :$x:$ ] 

and so 
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(5.4) 

In Table 5.1 we list some actual errors which support the above conclusions. Clearly, for small values of 

xthe error bound (5.4) is a gross overestimate of the actual error incurred but it does least guarantee that the 

error wi ll be no greater than this quantity. 

It is possible to use Taylor series approximations in a computer program to evaluate standard functions. We 

add successive terms unti l a point is reached at which all subsequent terms are small enough to be ignored. 

However, care must be taken as the next example shows 

Table 5.1 

x 

0 1.00000 

1 
1.28403 

4 
1 

1.64872 
2 

3 
2.11700 

4 
1 2.71828 

P3(X) = 1 + x 

+ x 2/2 + x 3/6 

1.00000 

1.28385 

1.64583 

2.101 56 

2.66667 
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EXAMPLE 5.3 

Suppose that we wish to determine an approximation to e- x 
valid on [0,10]. Expanding about the point 

° we have 

2 3 4 
x X X x e- =1-x+ - - - + - - . .. (5.5) 

2 6 24 

which is convergent power series for all x. Now 

e- 10 = 4.53999 x 10-5 

to six significant figures. Let us see what happens if we try to evaluate the Taylor series for x= 1 0, 

accumulating terms until the first one whose absolute value is less than 5 x 10-8 
, say, is encountered. If 

we use ~ to denote the ith term then 

i 

T = ~(_1) i 
/ ., 

l. 
i=O,I, . . . 

and we note that the recurrence relation 

X T=- - T 1 / . / -

1 
i = 1,2, .. . 

(5.6) 

(5.7) 

holds with 1'0 = 1. Using (5.7) to compute the individual terms instead of (5.6) will help to keep the 

operations count down . As soon as i > I ° the terms start to decrease in value . However, in order to reach 

such a stage we need to compute terms such as 

T _ 103 
_ 1000 

.13 ---- ----

6 6 

and, to six significant figures, ~ = -166.667. The rounding-off error here OJ x 10-3 
, is greater than 

the value we are trying to compute and hence if we work to this accuracy the result obtained will be 

completely meaningless. (If it were possible to work to greater precision we would find that the very large 

terms which occur early on in the series cancel each other out.) These difficulties may be overcome by either 

. . - 10 (_1)10 (a) wrltmg e as e , evaluation (5.5) for x = 1 and raising the result to the tenth power, or 
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(b) writing e- Io as 1/ elo , using the Taylor series expansion for eX withx=10 and then forming the 

reciprocal of the result. 

Before leaving this section we observe that with Taylor series approximations we are effectively solving the 

problem offindingthe polynomial of degree at mostn whose first n derivatives agree with those off(x} at the 

point x = Xo For example, from (5.2) we have 

( )
n-2 

d
2 

() 1"( )/"'() x-Xo I (n) () dx2 Pn x = Xo Xo + ... + (n-2)! Xo 

and hence 

We shall make use of this fact in section 5.8 when considering certain types of rational approximation. 

5.3 LEAST SQUARES APPROXIMATION 

5.3.1 Introduction to best approximation 

One of the most important concepts that we are concerned with in this chapter is the idea of a best 

approximation, that is, an approximating function which is, in some sense, the best of all those in its class. 

For example, there are infinite number of straight lines which we might choose to take as an approximation 

to a given function and we need some criterion for deciding which to accept. Letf(x} be a continuous function 

on the finite interval [a,b]. Then we wish to determine values of a I (the intercept along the y-axis) and a 2 

(the slope) which ensure that 

PI (X) = a l + a2x 

is a good approximation to f (x) everywhere in [a, b]. We need, therefore, to formulate a condition for 

deciding which are the optimal values, a; and a;, of the parameters a l and a2 that is, we need to define 

a measure such that, with respect to it, 

. () . . PI X = a l +a2x (5 .8) 

is the best possible straight line approximation to f(x}. 
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Consider the residual function 

r(x) = f(x) - PI (x). 

Then, as a measure of the error in the approximation of f ( x) by PI (x) we cou Id use 

maximum Ir( x)1 
(S.9) 

that is, the maximum absolute discrepancy betweenf(x} and PI (x) in [a ,b] . . The best approximation 

(S .8) is therefore defined to be that which gives the minimum value of(S .9); that is, we aim to minimise (S.9) 

with respect to the intercept and slope. Clearly, the optimal values a; and a; will be such that 

maximum If(x)- a; - a;xl::; maximum If(x)- a l - a2xl 

for all values of a l and a 2 . (There is a direct relationship between the measure (S .9)and the 00 - norm 

of a vector (equation (4.24)). We do not pursue the details here but remark that (S .9) is known as the 00 -

norm of the residual function . 

The measure (S .9) is not the only one that can be used and an alternative is 

(S.10) 

The optimal values of a l and a 2 which mlJ1lmlse (S.10) define the least squares straight line 

approximation tof(x}. Throughout this and the next two sections it is (S . l 0) which provides the measure on 

which our numerical methods are based. The use of(S.9) and other measures is discussed in section S.7. 

5.3.2 Least Squares 

In the previous subsection we considered the approximation of a continuous functionf(x} on a finite interval 

[a,b] by a straight line. In the general case we seek values of the coefficients ai' a2 , • • • , an which ensure 

that 

n 

= L a jx j- I 

j= 1 
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is the best polynomial approximation of degree n - 1. Using the least squares criterion this means that we 

. fi *.. aIm to IOd values a l ,a2 , •.• ,an , which give 

minimum f 2 

.df(X)- Pn-l(X)) <lx. a 1 ,a2 , · .• ,an 

(5.11) 

Then we wish to minimise I(a) with respect to the parameters a
1
,a

2
, . .. ,an ' We recall that for a 

function of one real variable, at a stationary point (that is, a maximum or minimum) the tangent (that is, the 

derivative) is equal to zero. For a function of more than one real variable the situation is similar except that 

now we have to talk in terms of partial, instead of full , derivatives. The necessary conditions are 

i = 1,2, . . . ,n. (5.12) 

The solution a * of(5.12) gives a turning point of I( a) and it is fairly easy to show (we need to look at 

second derivatives also) that we actually get a minimum. For simplicity, from here on, we drop the asterisk 

attached to the best approximation. 

In order to see what the equations defining the least squares polynomial approximation looks like, we return 

to the approximation ofj(x) by a straight line. Here n = 2 and we need to find a l and a 2 such that 

that is, 
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-2 t(f(x)-(a l ta2x))dx=O 

-2 t(f(x)- (al t a2x))x dx = 0 

Rearranging these equations and dividing by 2 we obtain 

aI11dx+a21xdx= 1 f (x)dx 

a l 11 dx+a2 1X2 dx= 1 xf(x)dx 

which is a system of two linear simultaneous equations in the two unknowns a l and a 2 

In the general case we need to solve the system of equations 

and so, rearranging, we get 

taj 1 Xi- IX j-1 dx = 1 Xi- If(x) dx 
j= 1 

or, in matrix form, 

where 

Aa=b 

bi = 1 Xi- If(x) dx 

A - 1 i- I j- I dx 
ij - x x 

i = 1,2, .. . ,n 

i, j = 1,2, .. . ,n. 
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i = 1,2, .. . ,n 

i = 1,2, .. . ,n 

(5.15) 

(5.16) 

(5.13) 

(5.14) 



Usually it will be possible to evaluate the integrals (5.15) using integration by parts. The entries (5 .16) in 

the coefficient matrix can be easily found since 

_ [ Xi
+

j
-
I ]b A. -

1) • • 1 
l+} -

a 

bi+ j- I _ a i+ j- I 

i + j-1 
i,j = 1,2, .. . ,n. (5.17) 

The equations (5.13) are known as the normal equations. Having set up the matrix equation the solution to 

the least squares approximation problem may be obtained using, for example, Gauss elimination (although, 

as we shall see shortly, the situation is not quite as straightforward as it appears at first sight). We observe 

that the coefficient matrix A is symmetric and th is property shou Id be borne in mind if a factorisation method 

is used (see section 5.6) . 

EXAMPLE 5.4 

In this example we consider the approximation of the function eX on the interval [0,1] by a quadratic using 

the least squares criterion. To find the optimal values of the coefficients in 

P2(X) = a l + a 3x + a3x2 

we have to set up a system of three equations in three unknowns in which the coefficient matrix is, from 

(5 .17), given by 

1 
A .. =---

1) • • 1 
l+} -

i,j = 1,2,3 ( 5.18) 

(since a = 0 and b = 1). To obtain the elements of the right-hand side vector we note that 

(5.19 ) 

and 

(5.20) 
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Hence, the system of normal equations for the unknowns a I' a 2 and a 3 takes the form 

[

1 1/2 

1/2 1/ 3 

1/3 1/4 
1/

3l 1/4 

1/5 

Eliminating a l from the second and third equations gives 

1/2 1/
3 l 

1/12 1/12 

1/12 4/ 45 

e-l 

= ~(-e+3) 
2 

~(2e - 5) 
3 

Finally, eliminating a 2 from the third equation, we have 

[~ 1/2 1/ 3 l 
1/12 1/12 

o 1/180 

Now, using back-substitution, we obtain 

e-l 

= ~(-e+3) 
2 

~(7e -19) 
6 

180 
a3 = 6(7e -19) = 30(7e -19) ~ 0.83918 

a 2 = 12( 1( -e + 3) - Ii a 3 ) = -12(18e - 49) ~ 0.85113 

a l = e -1-1a2 - -}a3 = 3(13e - 35) ~ 1.01299 

so that, to five decimal place accuracy, the least squares quadratic approximation to eX on [0, 1] is 
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P2{X) ~ 1.01299 + 0.85113x + 0.83918x2. 

5.3.3 A program for Least Squares Approximation 

//a program for the least squares approximation of exp(x) on [0,1] by a polynomial 

#include<iostream.h> 

#include< iomanip.h> 

#include<math .h> 

#define MAXN 50; 

#define M 5; 

class rhsindextype 

{public: 

int rhsindextype; 

} ; 

class matrixindextype 

{public: 

int matrixindextype; 

} ; 

class rhstype 

{public: 

float rhstype[50][5] ; 

} ; 

class matrixtype 

{public: 

float matrixtype[50] [50]; 

}; 

class rownumtype 

{public: 

matrixtype rownumtype[50] ; 

} ; 

mainO 

{matrixindextype ij ,n; 

rhsindextype p; 

93 



matrixtype a,savea; 

rhstype alpha, b; 

rownumtype rownum; 

float e, residual ; 

void gausselim (matrixindextype n, matrixtype a, rhsindextype m,rhstype b,rownumtype rownum); 

void backsub (matrixindextype n, matrixtype a, rhsindextype m, rhstype x,b, rownumtype rownum); 

cin» n; 

b[I][I]=1.7; 

b[ 1 ][2]= 1. 72; 

b[I][3]=1.718; 

b[1][4]=1.7183 ; 

b[1 ][5]= 1. 71828; 

e=exp(1.0); 

for (i=2;i<=n;i++) 

for (p=l;p<=m;p++) 

b[i][p]=e-(i-l.O)*b[i-1 ][p] ; 

for (i=1;i<=n;i++) 

{ 

a[i] [i]= 1.0/(2 *i-1.0); 

for Q=i+ 1 ;j<=n;j++) 

{ 

a[i][j]= 1.0 /(i+j-l.O); 

a[j][i]=a[i][j] 

} 

} 

for (i=1;i<=n;i++) 

forQ=1J<=n ;j++) 

savea[i][j]=a[i][j] ; 

saveb=b; 

gausselim (n,a,m,b,rownum); 

backsub (n,a,m,alpha,b,rownum); 

for (p=1 ;p<=m;p++); 

{ 

cout«endl; 
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} 

cout« "using "« "decimal place accuracy "« endl; 

cout« "the right handside vector is"« endl ; 

for (i=l;i<=n;i++) cout« saveb[i][p]« endl« endl; 

cout« "and the solution vector is "« endl ; 

for (i=l ;i<=n ;i++) cout« alpha[i][p] « endl« endl; 

cout« "the residual is "« endl ; 

for (i=l;i<=n;i++) 

{ 

} 

residual = saveb[i] [p] ; 

forU= 1 ;j <=n;j ++ ) 

residual = residual- savea[i][j]*alpha[j][pJ; 

cout«residual; 

} 

cout« endl; 

cout« endl ; 

void gausselim (matrixindextype n, matrixtype a, rhsindextype m,rhstype b,rownumtype rownum); 

{ 

} 

void backsub (matrixindextype n, matrixtype a, rhsindextype m, rhstype x,b, rownumtype rownum); 

} 

Sample D..ata 

3 

Sample Output 

USIng decimal place accuracy 

the right hand side vector is 
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1.70000e 0 l.01828eO 6.81718e-1 

and the solution vector is 

-9.06606e -1 1.1600ge 1 -9.58148e 0 

the residual is 

1.1920ge -6 7.15256e-7 5.96046e -7 

using 2 decimal place accuracy 

the right hand side vector is 

1.72000e 0 9.98282e -1 7.21718e-l 

and the solution vector is 

1.19341eO 

the residual is 

4.76837e -7 

-1.59217e-l 1.81860eO 

2.3841ge -7 2.3841ge -7 

using 3 decimal place accuracy 

the right hand side vector is 

1.71800e 0 1.00028e 0 7.l7718e -1 

and the solution vector is 

9.83398e -I 

the residual is 

2.3841ge -7 

1.01685e 0 

2.3841ge -7 

usmg 4 decimal place accuracy 

the right hand side vector is 

6.78536e -1 

2.3841ge -7 

1.71830e 0 9.99981e -1 7.18318e-l 

and the solution vector is 

1.0 1492e 0 

the residual is 

4.76837e -7 

8.40348e -1 

2.3841ge -7 

usmg 5 decimal place accuracy 

the right hand side vector is 

8.49630e -1 

2.38419 -7 

1.71828e 0 1.00000e 0 7.18278e-l 

and the solution vector is 
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1.01281e 0 8.52125e -I 8.38215e -I 

the residual is 

4.76837e -7 4.76837e -7 3.57628e -7 

5.3.4 III-Conditioning of the Normal Equations 

We now look at Example 5.4 and the program ofthe previous subsection in more detail. For polynomial 

approximation on [0,1] the general form of the coefficient matrix is given by (5.22). This matrix is the nth 

principal minor of the infinite Hilbert matrix and it is well know that an equation of the form (5.14) involving 

this matrix is likely to be very ill-conditioned. 

Ifwe look at the sample output of program 5.3.3 we see that if the accuracy to which bl is computed is 

decreased by just one decimal place the solution vector changes by a much greater factor. The residual vector 

indicates that the elimination and back-substitution processes have worked quite well; the observed behaviour 

ofthe solution vector is due to the problem itself, not the method of solution. Investigating the matter further, 

the program of 5.3.3 was executed for values of n = 3,4, ... ,7 and Table 5.2 lists the results for the case in 

which b is rounded to five decimal places. 

h=- ~ ~ - '+ 
For~al to three an~the polynomial coefficients start to look something like the first few terms in 

the Taylor series expansion of eX about the point x=O (see Example 5.1). However, from n=5 onwards 

there is no consistency at all in the results and, in fact, they appear to be getting significantly worse. What 

we, are in effect saying is that the ill-conditioning property ofthe problem becomes more pronounced as n 

IDcreases. 
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Table 5.2 
----------------- --------------- ----------

n 

------------------------------------------

3 4 5 6 7 
------------------------------------------

a 1 1.01279 0.996249 0.949770 - 0.188766 27.7324 
a2 0.852254 1.05074 1.98015 36.0004 -1009.63 
a3 0.838089 0.341889 - 3.84013 - 241.345 9354.44 
a4 0.330798 6.83584 638.958 - 35252.9 

as - 3.25241 -713.348 63042.8 
a6 283.712 - 53376.4 

a7 17229.8 

To overcome these difficulties we must reformulate the problem and we now consider ways of doing this. 

5.4 USE OF ORTHOGONAL POLYNOMIALS 

5.4.1 Legendre Polynomials 

In the previous section we saw that polynomial approximation of a function on the finite interval [a, b] leads 

to the derivation ofa system of equations which may well be ill -conditioned. We now look at ways of getting 

round this difficulty and observe first of all that the situation would be considerably healthier if the coefficient 

matrix were not full but diagonal. The solution vector could then be read off directly. Now only would we 

avoid the pitfalls ofill-conditioning but we would also reduce considerably the operations count involved in 

solving the system of equations. We shall see shortly that such a situation can be readily achieved by 

employing a fairly simple transformation of the problem. 
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In order to proceed further we introduce a sequence of polynomials, ~ (x ):n = 0,1, ... , known as the 

Legendre polynomials. These polynomials can be defined via the three term recurrence relation 

() 2n - 1 () n - 1 () ~ X = XP"_I X ---Pn- 2 X 
n n 

n = 2,3, ... (5.24) 

with the starting values 

PcJ(x) = 1; ~(x) = X ( 5.25) 

and it is fairly easy to see that Pn (x) is a polynomial of degree n. Legendre polynomials possess a property 

which is very important in the present context, namely they are orthogonal on the interval [-1,1) of the 

product of two Legendre polynomials is zero unless they happen to be the same. Formally, we have 

11 Pn(x) Pm (x) dx = ° 
and also that 

dx= 2 
2n+ 1 

n =f. m 

n = 0,1, ... (5.26) 

This definition ofthe orthogonality offunctions should be compared with the corresponding definition for 

vectors. Recall that two vectors are orthogonal if their scalar product is zero. Here, the scalar, or inner, 

product is the integral of the product of two polynomials and we write 

n,m = 0,1, ... . 

EXAMPLE 5.5 

From (5.25) we have that 

and so PcJ(x) and ~(x) are orthogonal. From (5.24) 
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1; (x) = l x.x _l = l (3x2 - 1). 
2 2 2 

Now 

and 

and hence P2 (x) is orthogonal to both Po (x) and ~ (x) . 

Now, suppose that we wish to find the least squares approximation of the form 

P2(X) = a, + a2x + a3x2 

to the continuous function f(x) on the interval [-1 ,1]. Then rearranging (5.27) we have 

so that 

where 

x2 
= ~(2P2 (x) + 1) = ~(2P2 (x) + Po (x) ) 

P2(X) = a,PO(x) + a2P, (x) + a3 t(2P2(X) + Po (X )) 

= (a, + t a3 )Po(x) + a2P, (x) + t a3P2 (x) 
= p,Po(x) + P2P, (x) + P3P2(X) 

(5.28) 

We have, therefore, transformed P2 (x) from a linear combination of the monomials {I, x, x2 } to a linear 

combination of the first three Legendre polynomials. 
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From the material of section 5.3, the least squares quadratic approximation of the form (5.28) to the function f ( x ) 

on the interval [-1,1] is given as the solution to a minimisation problem. We need to find the values 

of /31,/32' and /33 which minimise the quantity. 

Proceeding in exactly the same way as before we end up with the matrix equation 

where 

A/3= b 

Aij = 11 ~_I(X)lj_l(X) dx = (~_I(X),Pj_ l(X)) 

bi = tf(X)~-I(X) dx = (f(X)'~_ I(X)) 

(5.29) 

i,j = 1,2,3 

i = 1,2,3 

But, from the orthogonality property of the Legendre polynomials, we have that the coefficient matrix has 

non-zero entries only on the diagonal so that, using the result (5 .26), 

i = 1,2,3. 

The solution to our last squares approximation problem is now in terms of Po (x), P.. (x) and ~ (x) .. In 

order to find out what the solution looks like as a straightforward quadratic we need to solve the system 

which gives 
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EXAMPLE 5.6 

Suppose that we wish to find the least squares quadratic approximation to eX on [-J , 1]. Then the 

polynomial coefficients in P2 (x) = PI Po (x) + P2 ~ (x) + P3 ~ (x) are given by 

PI = t 11 eX Po( x) dx = t 11 eX dx = t( e - e- I) 

P2 = f Lex ~(x) dx = f l(x dx = 3e- 1 

P3 = f Lex ~(x) dx = fLex t(3x2 -l)dx = f(e- 7e- l) 

using integration by parts. Hence the quadratic approximation is 

so that 

P2 (x) = t( e- e- I) + 3e- Ix + f( e -7e-1 )t(3x2 -1). 

a -.1f3 -.li 
3 - 2 3 - 4 

a2 = P2 = 3e 

a l =/32 -t/33 =t(e-e-I)-~(e-7e- I)=*(-3e+33e- l) 

P2 (x) = * ( -3e + 33e -I) + 3e -I x + f ( e - 7 e -I )X2 . 

The generalisation of the above is obvious and it is clearly advantageous to be able to express an 

approximating polynomial in terms of orthogonal polynomials . We no longer need to compute all of the 

entries in the coefficient matrix but just those on the diagonal. This has important consequences for the 

storage requirements of a least squares approximation program; the two-dimensional n X n array of 

coefficients is no longer required. Although in Example 5.6 we converted the polynomial to standard form 

this is not really necessary and in subsection 5.4.3 we give code for evaluating a polynomial expressed as a 

linear combination of Legendre polynomials at a point. 

102 



Unless we are very fortunate the domain of interest is unlikely to be [-1 , 1] and we need to take 

account of this. One simple way is to map the given range [a,b], say, onto [-1 ,1] using the mapping 

2x-a-b 
z=----

b-a 

Alternatively we could use polynomials which are orthogonal on the interval [a, b]. This does nto mean that 

we need to know a large set of orthogonal polynomials; it is possible to generate from the monomials a 

sequence of polynomials which are orthogonal on a given interval using a technique known as the Gram

Schmidt orthonormalisation process. 

5.4.2 Polynomial Orthonormalisation 

Suppose that we wish to generate the sequence of polynomials {Q(x) : i = O,1,2} with Q(x) of degree 

i such that the Q (x)s are orthogonal on [a, b]. Define 

Qo(x) = coo 
Q, (x) = clQ + Cll X 

Q2(X) = c20 + c2Jx + C22 X2 

Now, orthogonality implies that 

(Qo(x),QJ(x)) = fQo(x)QJ(x) dx = 0 

(Qo( X ),Q2 (x)) = f Qo(x )Q2 (x) dx = 0 

(QJ(X),Q2(X)) = fQJ (X)Q2 (x) dx = 0 

and this gives a system of three equations for the six unknowns {Cij} For the time being we choose 

coo = clO = c20 = 1 arbitrarily and then the system (5.30) defines Cll ,C2l and c22 uniquely. 
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EXAMPLES.7 

To find a sequence of three polynomials which are orthogonal on [0,1] we have 

so that CII = -2 . Then 

[ 
2 3]1 X X C C = x+C -+C - =1+-.1.L+--.R 

21 2 22 3 2 3 
o 

and 

o = ( Qo (x ), Q2 (x)) = ! (1- 2x )[ 1 + C2I X + C22 X 2
] dx 

= !(1+(C21 -2)X+(C22 -2c21 )x2 -2C22 X3) dx 

= [x + (C21 - 2)~ + (C22 - 2C21)~ _ C22 ~]1 
2 3 2 0 

1 1 1 
= 1 + - (C21 - 2) + - (C22 - 2C21 ) - - c22 

2 3 2 
1 1 = --C2I - -C22 • 
6 6 

Hence C2I = -C22 andtherefore,from(5.31)c22 = 6 and C2I = -6. We conclude thatthe polynomials 

are 
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Qo(x) = 1 

QJ(x) = 1- 2x 
Q2 (x) = 1- 6x + 6x 2 

• 

Having generated a sequence of polynomials which are orthogonal on a given interval the solution to the 

corresponding least squares approximation problem may be obtained using a straightforward extension of 

the material of the previous subsection. All that we need to do is to replace the Legendre polynomials with 

the orthogonal polynomials we have just generated and integrate over [a, b] instead of [-1,1]. In the matrix 

equation (5.29) which defines the coefficients in the polynomial P2 (x) = /31 + /32 X + /33x2 the matrixA 

has components 

i,j = 1,2,3 

and is diagonal. The entries in the right-hand side vector are given by 

i = 1,2,3 

and hence the solution vector may be found directly since its components are 

A = (f(x), Q_I(X)) 
I (Q_I(X), Q_I(X)) 

i = 1,2,3. (4.32 ) 

Note that in the last three equations the definition of the inner product has been modified to take account of 

the fact that the domain of interst is now the general interval [a,b]. 

EXAMPLES.8 

Fro m Example 5 . 7 we k now t hat the polynomials 

Qo (x) = 1, QI (x) = 1 - 2x and Q2 (x) = 1- 6x + 6x 2 
are orthogonal on [0,1]. Therefore the 

coefficients In the least squares polynomial approximation of the form 
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/31 = 1 eX dx I 1 dx = e - 1 

/32 = 1e
x
(1-2 x)dx1 1(1-2x)2dx =3(e-3) 

/33 = 1 eX (1 - 6x + 6x
2 }tx I 1 (1- 6x + 6x2 r dx. = 5(7 e - 19). 

Qo(x),Q, (x), .. . ,Qn_2(X) 

Hence 

P2 (x) = e - 1 + 3( e - 3)(1 - 2x) + 5(7 e - 19)(1 - 6x + 6x2). 

This solution should now be compared with that of Example 5.4. 

The generation of higher order polynomials which are orthogonal on [a,b] follows in an obvious manner. 

Suppose that we have already obtained the polynomials Qo(x ),QI (x), ... , Qn-2 (x) which are such that 

(Q (x), Qj (x)) = ° i,j = O,I, ... ,n - 2. 

Then to ensure that Qn- I (x) is orthogonal to we let 

with cn- 1.0 = 1 and find values for cn- I,I,cn_I,2" .. ,cn- I,n- I such that 

i = O,I, ... ,n - 2. 

Equation (5.32) is now valid for all values of i and hence the last squares polynomial approximation to the 

functionf(x) on [a,b] may be found immediately. 

At the start ofthis subsection we chose to set the first term of each orthogonal polynomial to be one. We 

could set the coefficient of Xi in Q (x) to be one instead and then find the remaining terms. Other 

106 



variations of the basic method are of course possible. An alternative approach however is to impose the 

additional constraints 

(Q(x),Q(x)) = 1 i = 0,1, .... (5.33) 

The original orthogonality conditions plus the normalising conditions (5.33) give a system of equations which 

uniquely defines the coefficients of the Q (x )s. The polynomials so generated are now said to be 

orthonormal on the interval [a,b]. 

EXAMPLE 5.9 

Using (5.30) and (5.33) it can be shown that the polynomials 

Qo(x) = 1 

Q\ (x) = J3 - 2& 
Q2(X) = J5 - 6fu + 6JSx2 

are orthonormal on [0,1]. We note that these polynomials are the same as those derived in Example 5.7 apart 

from the presence of a multiplying factor in Q\ (x) and Q2 (x). Indeed a straightforward way of 

generating orthonormal polynomials is to generate a sequence of orthogonal polynomials {Q (x)} and then 

( )
V2 

divide Q (x) by the normalising factor Qi (x), Q (x) . One can now check that the polynomial 

were used in Example 5.8). 

Ifwe express a least squares approximation polynomial in terms of orthonormal polynomials the matrix in 

the equation defining the coefficients is now the identity matrix and so the solution vector is just the right 

hand side vector. 

5.4.3 A program for Polynomial evaluation 

Iia program to evaluate a polynomial expressed as a linear combination of legendre polynomial at a point 

Ilusing the three term recurrence relation 
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#include<iostream.h> 

#include<iomanip.h> 

#include<math.h> 

#define MAXN 50; 

class indextype 

{public: 

int indextype; 

} ; 

class coeffsvector 

{public: 

float coeffsvector[50]; 

} ; 

float evaluate(float x, indextype n,coeffsvector coeffs) 

{ 

} 

mainO 

{ 

float pn,pnminus 1 ,pnminus2,sum; 

indextype i; 

pn=x; 

pnminusl =l.0; 

sum = coeffs[O] + coeffs[l]*x; 

for (i=2;i<=n;i++) 

{ 

pnminus2 = pnminus 1; 

pnminusl = pn; 

pn = «2.0*i-l.0)*x*pnminus 1-(i-I.0)*pnminus2)/ i; 

sum = sum + coeffs[i]*pn 

} 

evaluate = sum 

return evaluate; 
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indextype i,n; 

coeffsvector beta; 

float x; 

cin» n; 

for (i=O;i<=n;i++) cin» beta[i]; 

cin» x; 

cout« endl ; 

cout« "the coefficients of the legendre polynomials are "« "(constant term first "« endl ; 

cout« endl ; 

for(i=O;i<=n;i++) cout« beta[i] ; 

cout« endl; 

cout« "and when evaluated at the point"« x« "this give"« evaluate(n,beta,x)« endl; 

} 

Sample Data 

4 

0.25 0.75 -0.25 -0 .75 0.50 

0.5 

Sample Output 

the coefficients of the legendre polynomials are ( constant term first) 

2.50000e -1 

7.50000e -1 

-2.50000e -1 

-7 .50000e -1 

5.00000e -1 

and when evaluated at the point 5.00000e -1 this gives 8.39844e -1 
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5.5 GENERALISED LEAST SQUARES METHODS 

5.5.1 Weighted Least Squares 

Whilst in practice an approximating function is usually a polynomial there is no reason at al l why we should 

be restricted in this way. In certain circumstances it may prove profitable to use a linear combination of 

functions other than monomials (or, equivalently, orthogonal polynomials). Just what form these other 

functions should take we return to later and for the moment we consider in an abstract sense a more general 

approach to least squares approximation . 

Let {¢i (X ):i = 1,2, .. . ,n} be a set of known functions which we refer to as expansion functions (or basis 

functions). Let 

n 

L(a,x) = I aj¢j (x) (5.34) 
j= t 

be a linear approximating function. By linear we mean that the parameters a/J = 1,2, .. . ,n (the 

expansion coefficients) appear linearly in (5.34). Polynomial approximation is therefore a special case of 

the more general form being considered here and corresponds to the choice 

J = 1,2, .. . ,n 

if the polynomial is expressed in the 'normal' form. 

In section 5.4 we saw that if the domain of interest is [-1 m 1] the choice 

j= 1,2, ... ,n 

(where lj-t (x) is a Legendre polynomial) leads to the polynomial coefficients being found as the solution 

to a system of equations in which the coefficient matrix is diagonal. The aim here is to achieve a similar 

situation for the more general case. For the moment the on ly condition that we impose on the basis functions 

is that they be linearly independent, that is, it must not be possible to express one ofthe basis functions as 

a linear combination of the others. (Without this restriction the coefficient matrix will be singular). 

The least squares approximation of the form (5.34) to the functionf(x) on the finite interval [a,b] 

minimises with respect to the a j S the quantity 

2 

f(j(x)- L(a,x)) dx. (5.35) 

110 



This basic definition may be modified by introducing a weighting function w(x»O so that (5.35) becomes 

2 

t(f(x)- L(a,x)) w(x)dx. 

This weight function allows us to have some control over the approximating function; it can be used to 

emphasise (or reduce) the square error (f( x) - L( a, x) t over certain sections of [a,b]. In addition it 

allows us to use polynomials which are orthogonal on [-1 ,1] other than the Legendre polynomials (see 

subsection 5.5.2). 

Corresponding to (5.11) we introduce the function 

I( a) = t (f ( x ) - L( a, x)) 2 w( x )dx 

which we wish to minimise with respect to a 1 ,a2 , .. . ,an . As before, at a minimum 

= -2 r(f(X)- ~aA(x)J ¢,(x)w(x) dx i=1,2, ... ,n 

or, rearrangmg, 

taj t ¢;(X)¢j(X)W(X) dx = tf(x)¢;(x)w(x)dx 
j= l i =1,2, ... ,n 

and these are the normal equations corresponding to (5.13). To keep the notation as simple as possible we 

introduce the inner product 

(g(x) ,h(x)) = tg(x)h(x)w(x)dx 

for any two functions g(x) and h(x). Then, the optimal values of the a jS are given by 

111 



taA¢i (x),¢j (X)) = (f(X)'¢i(X)) 
j=1 

or in matrix form as 

where 

Aa= b 

AU = ( ¢i (x), ¢j (x)) 

bi = (f ( x), ¢i ( x)) 

( 4.36) 

i,j = 1,2, .. . ,n 

i = 1,2, .. . ,n. 

i = 1,2, .. . ,n 

The ideas of orthogonality can be exteOOed to this rmre genernI are if\\e say that a ~ofOOsis functions { ¢i ( x ): i = 1,2, ... , n} 

is orthogonal on the interval [a,b] with respect to w(x) if 

Further, we say that the set is orthonormal if 

f ¢>/ (x)w(x)dx = 1 

Ifwe use orthogonal basis functions the coefficient matrix in (5.36) will be diagonal and the solution vector 

can be obtained immediately. In subsection 5.4.2 we saw that it is possible to generate a sequence of 

polynomials orthogonal on [a,b] with respect to the weight w(x)= 1 from the monomials. The ideas presented 

there are now applied to the more general case. 

5.5.2 Gram-Schmidt Orthonornalisation process 

Let If/i(x):i = 1,2, ... ,n be a set of basis functions defined by 

i-I 

If/i(X) = ¢i(X)- LCuIf/Ax) i=2,3, ... ,n 
j=1 
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so that lfIi (x) is a linear combination of { ¢;( x):) = 1,2, ... , i} . For the function lfIi (x) to be orthogonal 

we need to find values for the cijs such that 

Now, suppose that we construct the lfIi (x)s one by one in the order IfIl (x), 1f12 (x), ... so that at the 

i - 1th stage the functions { IfI k (x): k = 1,2, ... , i-I} form an orthogonal set. Then 

(lfIk (x), lfIi(X)) = f IfIk (x )lfIi( x )w( x) dx 

= f V',(x{ ¢;(x)- ~CijV'j(x)) w(x) dx 

= f IfI k (x )¢i ( X ) w( x) dx 

k = 1,2, .. . ,i-1 

remembering that (lfIk (x), IfIj(x)) = 0:) = 1,2, . . . ,k -l,k + 1, ... ,i-1. 

Hence lfIi (x) will be orthogonal to IfIl (x), 1f12 (x), .. . , lfIi-l (x) if 

and so the process 

i = 2,3, ... ,n (4.37) 
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can be used to generate a sequence of orthogonal functions from the basis {(A (x ):1,2, ... , n} . 

The process (5.37) is known as the Gram-Schmidt orthogonalisation process and it can be used to generate 

a sequence of orthogonal functions starting with any I inearly independent basis. Ifwe normalise at each stage, 

( )
1/2 

that is divide Ifi (x) by Ifi (x), Ifi (x) , then the new functions will form an orthonormal basis. 

EXAMPLE 5.11 

Let[a,b] = [-1,1] and choose w(x) = (1_X2r J/2 Then, starting with the monomials 

tPi(X) = Xi-1:i = 1,2, ... we have 

now 

Ifl(X) = 1 

(l,x) 
1f2(X)=X--( ) 1. 1,1 

(l,x) = r G dx. ll"l-x· 

make the c han g e o f variable 

dx=-sin(u)duand ~1-x2 =~1-cos2(u)=sin(u). Then 

Hence 

The next polynomial in the sequence, If 3 (x), is given by 
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and we have 

2 

(xx)=(lx2)= r x dx=7r , , 11 I 2 2 
\"1- X 

(1,1) = 1 1 dx = 7r 

1.J1-x2 

(x,x')= l,~l~X' dx=O. 
Hence 

5.5.3 Chebyshev Polynomials 

In Example 5.11 we generated the sequence of polynomials 1,x,x2 - t which are orthogonal on [-1,1] with 

( )
-1/2 

respect to the weight function 1 - x 2 
. Now consider the polynomials 

i = 0,1, . . . (5.38) 

so that we have 

10 (x) = cos( 0) = 1 

T; ( x ) = cos( cos -I ( X ) ) = x 

:z; (x) = cos( 2 cos -I (x) ) = 2 cos2 
( cos -I (x) ) -1 = 2X2 -1 

and so on. Then these polynomials are also orthogonal on [-1,1] with respect to the weight function 

( 
2)- 1/2 1- x since 
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, 
I 

(7;(x),~. (x)) = r COS(iCos- l(x))COS(jCOS-I(x)) 1 dx 
1 .J1-x2 

= r cos(iu) cos(Ju) du = ° i :1= j i,j = 0,1, ... 

Now, using a standard result, we have 

CO~ i COS - I (x) ) + CO~ (i - 2) cos -\ (x) ) 

= 2 CO~ (i - 1) cos - I ( X )) CO~ cos - I ( x) ) i = 2,3, ... 

so that 

or 

(5.39) 

and so these polynomials satisfy a three term recurrence relation. From (5.39) it is clear that T/ x) will be of 

degree i and the next two polynomials in the sequence are 

7;(x)=4x3 -3x 

~ (x) = 8x4 
- 8x2 + 1. 

The polynomials T/x) are known as Chebyshev polynomials and are from a multiplicative constant they are 

the same as those generated by the Gram-Schmidt orthogonal isation process. The next example shows how 

Chebyshev polynomials may be used in least squares approximation. 

EXAMPLE 5.12 

Suppose that we wish to find a least squares approximation to eX on [-1,1] of the form 

P3{X) = a1Ta{x) + a2~{x) + a3I; (x) + a47;{x) where the 7; (x )s are Chebyshev polynomials. Now 
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t T,(X)T,(X).j 1 , dx = r cos'(iu)du = \ ~/' ::.\ (5.40) 
1- x 

so that if we use a weighted inner product with w(x) = (1- x2 r I/2 the coefficient matrix in (5.36) is 

diagonal. We have immediately that 

so that 

a = 1- r eXTo(x) dx = 1.26607 
1 1r 11 ,}1-x2 

a = £ r e
X

7J(x ) dx = 1.13032 
2 1r 11 ~ 

a = ~ r eXTd x) dx = 0.271495 
3 1r 11 ,}1-x2 

a =..4. r eX7J (x) dx = 0.0443368 
4 1r 11 ~ 

P3(X) = 1.26607 + 1.13032x + 0.271495(2x2 - 1) + 0.0443368(4x3 - 3x). 

The integrals which define ai' a 2 , a 3 , and a 4 have been evaluated not analytically but numerically to six 

significant figures . The subject of numerical integration is not discussed here but the reader may be interested 

to know that an eight-point Gauss Chebyshev rule was employed. 

5.5.4 Choosing a basis 

Before leaving least squares approximation it is important that something be said about the choice of basis 

functions. It is advisable to obtain as much information as possible about the overall form ofthe function to 

be approximated and then choose a basis which reflects any know behaviour. For example it may be known 

that the function is even (odd) and hence there is no point in including odd (even) functions in the basis set. 

Thus a suitable choice of basis functions for the approximation of cos(x) over 

[-n/2,n/2] would be 1,x2 ,x4 
, ... or, better still , the po lynomials produced by the Gram-Schmidt 

orthogonalisation process from this set. Another situation that might arise is that in which the function is 
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periodic on [- Jr, Jr]. In such a case it is natural to use as an approximating function a linear combination 

of periodic functions. 

5.6 APPROXIMATION ON NON-FINITE INTERVALS 

We now look at the problem of approximating a functionf(x) over an interval for which one, or possibly both, 

ofthe end points is not finite. To find a least squares approximation the approach is exactly the same as that 

outlined elsewhere in this chapter but we must employ an appropriate weight function. We simply derive the 

normal equations and then solve for the polynomial coefficients. Once again orthogonal polynomials can be 

used to keep the amount of computational effort involved to a minimum. 

Suppose that we wish to approximate f(x) over the interval ]-00, 00[. Then with respect to the inner product 

(5.41 ) 

the polynomials defined by the three term recurrence relation 

Hn(x) = 2xHn_1 (x) - 2(n - 1)Hn_2 (x) n = 2,3,00' 

with 

are orthogonal and are known as the Hermite polynomials. Ifwe seek an approximation of the form and 

use the inner product (5.41) the coefficient matrix in the normal equations is diagonal and so the ais can be 

found as 

It can be shown that 

i=1,2, ... ,n. 

For semi-infinite intervals we consider without loss of general ity [0, oo[ since any other semi-infinite range 

can easily be mapped onto this interval. With respect to the inner product 

(5.42 ) 
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the polynomials defined by the three term recurrence relation 

Ln(x) = (2n -1- x)Ln_' (x) - (n -It Ln_2 (X) n= 2,3, ... 

with 

are orthogonal and are known as the Laguerre polynomials. Using (5.42) the coefficients in the least squares 

approximation of the form are given by 

It can be shown that 

i = 1,2, .. . ,n. 

5.7 ALTERNATIVE CRITERIA FOR BEST APPROXIMATION 

5.7.1 Lp approximation 

In the last four sections we have looked at least squares approximations in which the measures (5.1 0) (or a 

generalisation of it) has been used to determine the optimal values of the coefficients in the approximating 

function. As we remarked in subsection 5.3.1 other measures (such as (5.9)) are possible and we now 

investigate the class of measures which define the Lp approximations. 

Recall that the (unweighted) least squares approximation to a given function on the finite interval [a, b] gives 

minimum f(f(x) _ L(a x)) 2 dx 
a) ,a2 J" .,a n 1 ' 

that is, the integral of the square ofthe residual function r( x) = f (x) - L( a, x) is minimised with respect 

to the coefficients at, a2 , . .. , an . The leastfirstpower solution minimises not the integral of the square but 

the integral of the absolute value of the residual, that is, it gives 

minimum flf(x) - L(a, x)1 dx 
a l ,a2 ,·· ·,a n 1, 

whilst the Chebyshev (or minimax) so lution gives 
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minimum maximum / () ( ) / f x -La,x 
a l ,a 2 ,.· ',an aSxSh 

(5.43) 

and here the maximum absolute value of the residual is minimised . (The quantity (5.43) is a generalisation 

ofthe measure (5.9) .) 

Figure 5.1 illustrates the difference between least squares, least first power and minimax approximation. 

The function f(x) is to be approximated by the straight line PI (x) = a l + a 2x. Fig 5.I(a) shows an 

arbitrary straight line approximation and 5 .1 (b) the corresponding residual function . To obtain the least 

squares solution we need to find those values of a l and a2 which minimise the area under the curve r2 (x) 

ofFig.5.1(c) between a and b. The least first power solution gives the minimum area under the curve ir( x)1 

ofFig.5.1(d) whilst for the minimax solution the maximum deviation of the curve r( x) in Fig. 5.1(b) from 

the x-axis within [a ,b] needs to be minimised . Note that in the lastthree diagrams ofFig.5.1 the given curve 

crosses, or touches, the x-axis at the points at which the curves y = f( x) and y = a l intersect in 

Fig.5.1(a). 

The three approximations considered so far in this subsection are members of the Lp family of 

approximations. Formally we have the Lp approximation tof(x) on [a,b] gives 

minimum maXimum/ () ( )/P f X - L a,x dx 
at ,a2 ,.· ·,an a'Srsb 

(5.44) 

and this definition may be generalised further by the insertion of a weight function, w(x) , inside the integral. 

It can be shown that as P~ 00 the approximation which gives (5.44) tends to the minimax (or Loo ) 

approximation which we now consider in detail. 

5.7.2 Minimax approximation 

In Example 5.11 and subsection 5.5.3 we introduced a sequence of polynomials, the Chebyshev polynomials, 

( )
- 1/2 

which are orthogonal on [-1,1] with respect to the weight w( x) = 1 - x2 
. These polynomials play an 

important role in the computation of minimax polynomial approximations and begin this subsection by stating 

a very important property that they possess. 
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THEOREM 5.1 (Minimum deviation) 

Ofall polynomials ofdegreen with leading coefficient one, ~(x )/2n
-

1 has minimum maximum amplitude 

(that is , smallest deviation from zero) on [- I, I] . 

A proof of this theorem may be found in Ralston and Rabinowitz (1978). It is fairly easy to see from the three 

term recurrence relation (4.39) that ~(x)/2n-1 is a polynomial of degree n with leading coefficient l. 

Now 

max 1 T" ( x)1 = 1 

y 

)' 

y 

(e) 

y 

(d) 

Fig. 5.1 
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polynomial qn (x) of degree n and let Pn-l (x) be that polynomial which gives 

minimum maximum 
n 

qn{x) - Laixi-1 
.Then if the leading coefficient of qn(x) is 1 

rn{x) = qn{x) - Pn-) (x) 

Which is also of degree n must, by the minimum deviation theorem, be equal to T" (x)/ 2n
-) and so the 

coefficients which define Pn (x) may be obtained by equating terms. 

EXAMPLE 5.13 

To find the minimax polynomial approximation of the form 

lJ{x) = a) + a2 x + a3x2 + a4 x3 

to X4 on [-1,1] we write 

so that a4 = O,a3 = 1,a2 = O,a) = -t and so P3(X) = x2 
- i. Note that we have 'lost' the 

leading term here; this is to be expected since from (5.39), it is clear that the polynomials 

To(x),'l;(x),~(x), ... involve only even powers ofx whilst the polynomials ~(x),7;(x),Ts(x), ... 

involve only odd powers. 

The approximation of a polynomial of degree n by a polynomial of degree one less provides an insight 

into the computation of Chebyshev approximations, a more general result being provided by the following 

theorem. 
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THEOREM 5.2 (Characterisation theorem for Loo approximation) 

Let /(x) be a continuous function on the finite interval [a,b] and let Pn - I (x) be the corresponding 

minimax polynomial approximation of degree at most n - 1 . Then the residual function 

r(x) = /(x) - Pn- I (x) equioscillates on n + 1 distinct points in [a,b] . (See Fig. 5.3.) 

This theorem (Phillips and Taylor (1973») can be extended to a much wider class of basis functions 

subject only to a few minor constraints - see Powell (1981) for further details. Moreover it can be shown 

(Powell, 1981) that if a polynomial can be found such that the residual function equioscillates on n+ 1 

points of [-1,1] then that polynomial must be the minimax approximation. Algorithms which use the 

equioscillation property to find a minimax approximation are rather complex in nature. However we now 

show that it is possible to find a polynomial approximation which almost satisfies the Chebyshev criterion 

without difficulty. 

5.7.3 Chebyshev Series Approximation 

In section 5.2 a polynomial approximation to j(x) was obtained by truncating its Taylor series 

expansion. Clearly we can also express the Taylor expansion as a linear combination of Legendre or 

Chebyshev polynomials and truncate that inste~d . 
. _ .... . ' . +1 

-1 -+----~--~----_+----~~------_1-.+1 
x 

-1 

Minimax approximation 

(n = 3) 

Fig. 5.3 
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Let 

00 

f{x) = I I a;I;{x) 
i=O 

(The prime on the summation sign indicates that the first term in the series is halved . This is a 

conventional nicety only and merely serves to make life easy for us later on.) Now since the Chebyshev 

polynomials are orthogonal on [-1,1] with respect to the weight (1- X
2

) - 1/2 we have 

I f{x)~{x) I 00 I 1 
LI ~ 2 dx = L I aJ;{x)~{x) ~ dx 

1- X i=O 1- x 2 

00 I 1 
= I 'ai LI7;{x)~{x) ~ dx 

i=O 1- x 2 

J[ 

= - a . j = 0,1, .... 
2 } 

(note the effect of the prime in relation to the result (5.40). Making the usual change of variable we have 

aj = ~ r f( cos(B)) co~jB)dB. 
J( 

(5. 45) 

To obtain the Chebyshev series coefficients a j : j = 0,1, .... we do not need to know any of the 

derivatives of f{x) . However, we do need to be able to evaluate the integrals in (5.45) and the easiest 

way to do this is to use one of the numerical techniques described in Chapter 6. In particular, the N-panel 

trapezium rule gives 

j = 0,1, ... 

with 

k = O,I, ... ,N 

where the primes on the summation sign indicates that both the first and the last terms are to be halved. 
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Suppose now that we truncate the Chebyshev series expansion so that 

n-I 
Pn-I (x) = L' a);{x) 

i=O 

may be regarded as a polynomial approximation of degree at most n-I to f{x) . Then the residual 

function is given as 

ao n-I ao 

r{x) = f{x) - Pn-I (x) = L' a);{x) - L' a);{x) = La);{x). 
i=O i= O i= n 

If the series converges rapidly then the form of r{x) will be dominated by the term an~ (x) provided 

that a suitably large value of n has been taken. This means that the residual function behaves like a 

Chebyshev polynomial so that, effectively, Pn-I (x) is the minimax approximation to f{x) . 

Chebyshev series approximation on intervals other than [-1 ,1] is quite straightforward as the next example 

shows. 

EXAMPLE 5.14 

Suppose that we wish to find a Chebyshev series approximation to eX valid on [0,1]. Then we need to 

make the change of variable 

z = 2x - 1. (5.46) 

Now x = (z + 1) /2 so we need to compute the Chebyshev coefficients for e(z+ I)/ 2 and, using the 

program of the next subsection, the first five terms are 

ao/2 = 3.50677 

al = 0.850391 

a2 = 0.1 05208 

a3 = 0.00872238 

a4 = 0.000542785 

126 

------... 



The series is converging at a reasonably fast rate and if we truncate after the term involving a3 , to give 

the residual will be dominated by the term a4T:t (2x - 1) . Note that the change of variable (5.46) must 

be used when evaluating the Chebyshev polynomials. Now, from the definition (5.38) 1T:t (2x - 1)1 < 1, 

so that 

maximum 

Looking at the output from the preceeding we see that leX - P3 (x)1 takes a value which is close to 

la4 1 at five points and that the sign of the residual at these points is alternately positive than negative. 

5.7.4 A program for Cbebyscbev Series Approximation 

Iia program to evaluate Chebyshev series coefficients and to check the approximate 

Ilequioscillation property of a truncated series 

#include<iostream.h> 

#include<iomanip.h> 

#include<math.h> 

#define MAXHIGHESTCOEFFICIENT 50; 

#define TOL 0.000005 ; 

class indextype 

{public: 

int indextype; 

} ; 

class coeffsvector 
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{public: 

float coeffsvector[SO]; 

}; 

float f(float x) 

{ float f; 

} 

f= exp(x); 

return f; 

float g(float theta) 

{ 

} 

float g; 

g=f« cos(theta)+ 1.O)*O.S)*cos(i *theta); 

return g; 

float evaluate(indextype n, coeffsvector coeff, float x) 

float pn,pnminus 1 ,pnminus2,sum; 

indextype i; 

pn=x; 

pnminusl=1.0; 

sum = coeffs[O] + coeffs[l ]*x; 

for (i=2;i<=n;i++) 

pnminus2 = pnminus 1; 

pnminusl= pn; 

pn = «2.0*i-I.O)*x*pnminus 1-(i-I .O)*pnminus2)/i; 

sum = sum + coeffs[i]*pn 

} 

evaluate = sum 
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} 

mainO 

{ 

return eval uate; 

float halfpi,pi,step,xvalue,approximatevalue; 

indextype i,hihghestcoefficient; 

int j,numberofevaluationpoints; 

int converged; 

coeffsvector coefficients; 

void trapeziurnrule(float integrate(float x),float lower,upper,tolerance,int maximundepth,int 

monitorprogress ); 

pi=4.0 * arctan(1.0); 

halfp = pi *0.5; 

cin»highestcoefficient,numberofevaluationpoint; 

cout«endl; 

for (i=O;i<=highestcoefficient;i++) 

{ 

tapeziumrule(g,O.O,pi ,tol, 1 O,false,converged,coefficient[i]); 

coefficients[i]=coefficients[i]/halfpi; 

if (converged==O) cout«"approximate to the "« i«"coefficient "«tol«endl; 

} 

cout«"the chebyshev polynomial coefficients are "«"(constant term first)" « endl; 

cout«endl; 

for (i=O;i<=highestcoefficient;i++) 

cout«coefficient[O] *0.5; 

cout«endl«endl; 

cout«"table of approximate function values"«endl; 

cout«endl; 

cout«" x approximate value 

step = 1.0/(numberofevaluations-l); 

xvalue=xvalue +step; 

error"«endl; 
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approximatevalue=evaluate(highestcoefficient-I ,coefficient,2.0*xvalue-I .O); 

cout< <xval ue< <end I < <approximateval ue< <f(xval ue )-approxi mateval ue 

} 

} 

II this procedure is missing 

void trapeziumrule(float integrate(float x),float lower,upper,tolerance,int maximundepth,int 

monitorprogress ); 

{ 

} 

Sample Data 

4 9 

Sample Output 

the chebyshev polynomial coefficients are ( constant term first) 

3.50677e 0 

8.50391e-1 

1.05208e -1 

8.72246e -3 

5.42886e -4 

table of approximate function values 

x 

O.OOOOOe 0 

1.25000e -1 

2.50000e -I 

3.75000e -1 

5.00000e -1 

6.25000e -1 

approximate value 

9.99481e -1 

1.13365e 

1.28431e 0 

1.45473e 0 

1.64818e 0 

1.86793e 0 
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5.18557e-4 

-5.01618e -4 

-2.83301e -4 

2.63886e -4 

5.43621e -4 

3.16132e -4 



7.50000e -1 

8.75000e -1 

l.OOOOOe 0 

2.11725e 0 

2.39942e 0 

2.7177Ie 0 

5.7.5 Least First Power Approximation 

-2.53918e -4 

-5.4787Ie -4 

5.74272e -4 

Finally in this section we look at the least power approximation problem. The solution to this problem is, 

in certain circumstances, surprisingly easy to calculate as shown by the following theorem. 

THEOREM 5.3 

Let f(x) be a continuous function on the finite interval [-1 , 1] and let P n- i (x) be the least first power 

polynomial approximation to f(x) of degree at most n - 1. Suppose that the residual function 

r( x) = f( x) - P n-i (x) has precisely n zeros. Then the position of each zero is independent of 

f(x) and is given by 

f} = cos (~J 
I n+l 

i = 1,2, ... ,no 

This theorem (proof in Powell, 1981) says that, provided certain conditions are satisfied, the computation 

of an L1 approximation reduces to finding values for the polynomial coefficients such that 

i = 1,2, ... , n. 

that is, we need to find values for the coefficients which ensure that the approximation passes through the 

coordinates {( f}i' f( f}i )) : i = 1, 2, ... , n}. This type of problem is known as interpolation problem 

and is discussed in the next chapter. The following example indicates the way in which the process works. 

EXAMPLE 5.15 Consider the approximation of eX on [0,1] . For the general [ a, b] the zeros of the 

residual function are given by 

1 1 ( iff J f) . = - (a + b) + - (b - a) cos -
I 2 2 n+l 

1 = 1,2, ... ,n 
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so that for [0,1] 

Choosing n = 3 it is fairly easy to see that the polynomial 

P2(X) = (x - 82)(x - 83) e OI + (x - 81)(x - 83) e02 
(8[ - 82 )( 8[ - 83 ) (82 - 81)(82 - 83 ) 

+ (x - 81)(x - 82 ) e03 
(83 - 8[)( 83 - 82 ) 

passes through the coordinates {( (}1 ,eO; ), ((}2' e02 ), ((}3' e03 )} 

Rearranging we get 

Note that Theorem 5.3 says that P2 (x) is the LI quadratic approximation on [0,1] to any function which 

satisfies the conditions of that theorem and which passes through the given coordinates. 

The result of Theorem 5.3 holds provided that the residual function has precisely n zeros. This is not as 

stringent a condition as it might seem at first sight since the condition holds if the first n derivatives of 
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j(x) are continuous on [-1,1] and j(n)(x) is everywhere positive in [-1 ,1] (and this means that the 

solution obtained in Example 4.15 is valid). The points {B;: i = 1,2, ... , n} (the interpolation points) are 

the interior points of [-1 ,1] at which T;,+l (x) takes on its maximum value. They are also the zeros of 

Un (x), the Chebyshev polynomial of the second kind of degree n. The polynomials 

{UJx) : n = 0,1, ... } are orthogonal on [-1 ,1] with respect to the weight function 

w(x) = ~( 1- x2
) and may be defined by 

Uo(x) = 1; U1(x) = 2x; 

UJx) = 2x Un_1(x) - Un_2(x) n ~ 2. 
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c++ RIlN TIME PERFORMANCE COMPARED ill VISUAL BASIC AND FORTRAN 

Comparative analysis of C++ runtime performance is herewith conducted with Visual Basic and Fortran. 

A problem to calculate the sum of solution of a polynomial of degree 20 evaluated at point 1 to 100000 

step 1 is used to obtain average processing speed of the three compilers as a means of justifying 

comparative advantage of C++. Below are the C++ codes and the results obtained with similar execution 

in Visual Basic and Fortran. 

I I -------------------------------------------------------------------------------------------------------------------

II program to compute the sum of solution of a polynomial of degree 20 evaluated at point 1 to 100000 

#include <stdio.h> 

#include <math.h> 

#include <iostream.h> 

#include <time.h> 

I I -----------------------------------------------------------------------------------------------------------------

int main(void) 

{ 

int x; 

double result, total; 

time_t tl , t2, t3; 

tl = time(NULL); 

for (x = 1; x < 10001 ; x++) 

{result = x 1\ 20 + X 1\ 15 + x 1\ 13 - 2 * X 1\ 16 + x 1\ 8 - 20 * X 1\ 5 + 10 ; 

total = total + result; 

return x; 

} 

t2 = time(NULL); 

t3=t2-tl ; 

prinf ("Result of evaluation, starttime, endtime, and time difference are %s", total, tl , t2, t3 ; 

} 

I I ----------------------------------------------------------------------------------------------------------------
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PROCESSING SPEED 

VISUAL C++ VISUAL BASIC MSFORTRAN 

l.58 secs 3.47secs 5.22secs 

Deduction 

From this simple analysis, Visual C++ is indeed a better and faster compiler. 
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GENERAL REMARK 

Obtaining reliable numerical results of any given mathematical problem is clearly a 

factor of the iterative technique or mathematical model utilized. From the work done on 

this project, it is a big relief that very tedious repetitive and cumbersome manual 

calculations are simplified with C++. For example, the process of finding the solution in 

n unknowns of a linear simultaneous equation which is proportional to n2 irrespective of 

whether Jacobi or Gauss - Seidel (method is adopted) is without any doubt a 

cumbersome manual calculation with n say, 100. In this case, it not only suffices to use 

C++ (which object orientation engender high processing speed) but that the iterative 

technique with faster convergence rate (Gauss - Seidel) be utilized to save processing 

time. 

The same argument can be put forward concerning the process of finding a root of a 

function using functional iteration and Newton - Raphson iteration. Pairwise comparison 

of the two processes indicate a very quick convergence after just 3 iterations in the later 

approach while convergence was achieved with the former after 15 iterations. The 

implication of this is very clear in that for every given non-linear algebraic equation in 

which a root is desired, the best iteration program to use is the Newton - Raphson 

iteration program. 

Also, the simplicity of the class and object coding feature of C++ makes it possible to 

develop structured programs for the approximation of numerically defined functions and 

finding solutions to ordinary differential equations. 
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RECOMMENDATION 

It has been demonstrated that solution to every mathematical problem can be obtained 

through a numerical step-by-step algorithmic approach. For such approaches it has also 

been demonstrated that there exists structural coding know how in C++ which can easily 

be used to reduce run time and to obtain reliable results to specified degree of 

confidence. It is therefore recommended that 

1) students of mathematics and statistics be exposed adequately to C++ OOP 

programming as a veritable tool for mathematical computing. 

2) C++ be applied to complex mathematical calculations in engineering, hydrology, 

astrology etc. 

3) further works be encouragedfor the application of c++ to advanced 

mathematical models. 
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