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ABSTACT 

Undoubtedly most, jf not all~ decision-making is part of an ending history of actions. 

Earlier choices have affected the present!t current decisions will influence the future, 

and so on. As a result, all models must be viewed as imbedded in an unbounded 

horizon. Several of the dynamic models we have studied so far simply ignored the 

future beyond a designated horizon perio~ and sometimes a planning horizon 
, 

theorem could be established to demonstrate that such a procedure might yield an 

optimal current decision. 

Other models attempted to account for the future by selecting certain. terminal 

conditions (such as a specified minimum level of work force or productive capacity). 

In contrast to these models, this project assume that the planning horizon is limitless. 

In order to derive definite answers for models with an unbounded horizon, we 

deemed it necessary to add a restrictive assumption termed "an assfunption of 

Stationarity" 

The scope of optimization algorithm with . unbounded horizon is broad and 

encompasses many topics. This project selects these portions of the subject, which 

present a logical and coherent body of knowledge for classroom presentation of self­

study. The emphasis on successive approximations in function space (value 

iteration), successive approximation in policy space (policy iteration) and 

applications of optimization with unbounded horizon. 

VI 



TABLE OF CONTENTS 

Certification .............................................................................. I 

Dedication ............................................................................. :.. 11 

Acknowledgment... . .. ... . . .. . ... ... . ... . .. . ..... ... .... .... .... .. . ... .. . ... . .. .. . . .. .. . ill - IV 

Abstract .................................................................................. V 

Table of Contents ....................................................................... vi - vii 

1.1 

1.2 

CHAPTER ONE 

BRIEF OVERVIEW OF OPTIMIZATION THEORY 

Motivation for studying optimization 

Optimization as a branch of Mathematics 

1-7 

7-8 

1.3 What is optimization .. . . . . . .. . .. .. . . . . . .. . . . . . . ... .. . . . . ... . . . ... .. . . . . ... . .... 9 - 9 

1.3.1 Typical Practical Examples of Optimization problems ........... ... 9 - 11 

1.4 Basic Concepts of Optimization .......................................... 11-15 

1.5 Classification of Optimization problems ................................. . 16 - 22 

1.6 Optimization Techniques ......... .... ..... ....................... . ... . .. ... 22 - 25 

CHAPTER TWO 

UNBOUNDED HORIWN OPTIMIZATION ALGORITHMS 

2.1 Introduction to unbounded horizon optimization . . . . .. . . . . . . .. . . . . . . . . . . 26 

2.2 Models with a limitless vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 27 

2.2.1 Optimal Stationery Policies . .. . ... ........... .. . ...... ... .. . ... .. .. . . ... . .. .. .. 27 - 28 

2.3 Subtleties of infinite streams .. ..... .. .. .... . .. ... .. . ...... ....... .. .. ....... .... 28 - 30 

2.3.1 Utility of Money ............................................................. 30 - 32 

2.3.2 Average Return .............................................................. 32 - 34 

2.3.3 Present Discounted Value ..................................................... 35 - 40 

2.3.4 Equivalent Average Return ..................................................... 41 - 43 

2.3.5 Remarks on Infinite Returns ..................................................... 43 - 44 

2.4 Successive Approximations ................ , '" . .... . . ... .. .. . . . . .. .. .. .. . .. .... 44 - 46 

2.5 Successive Approximations in function space ........................... 46 - 48 

2.5.1 Commentary .. . ...................... ........... ............. M . . . . ...... ............. 48 - 49 

2.5.2 Monotone Convergence ............................................................ 49 - 50 

2.6 Successive Approximation in policy space .................................... 50 - 52 

2.6.1 Average Return per period ......................................................... 52 - 54 

vii 



CHAPTER THREE 
APPLICATION OF OPTIMIZATION WITH UNBOUNDED HORIZON 

3.1 Practical significant of model assuming stationarity over an unbounded 
horizon ......................................................................... 55 

3.2 An Example Timber harvesting model......................................... ... 58 

3.2.1 Single Decision 

3.2.2 Illustration 

3.2.3 Unbounded Horizon ............................................................... . 

3.3 Infinite Stage Regeneration Model 

3.3.1 Finite Horizon 

3.3.2 Unbounded Horizon 

3..3.3 Remarks 

~.l 
{2 
4.3 

5.1 
5.2 
5.3 
5.4 

Introduction 
Results 
Remarks 

Flowchart 
Results 
Summary 
References 

CHAPTER FOUR 
COMPUTATIONAL RESULTS 

CHAPTER FIVE 
FLOWCHART AND SUMMARY 

Vlll 

58 

59-60 

60-62 

62-63 

63-64 

64-66 

66 

67 
68-75 
76-77 

79-83 
84 - 91 
92-93 
94- 95 



CHAPTER ONE 

BRIEF OVERVIEW OF OPTIMIZATION THEORY 

1.1. MOTIVATION FOR STUDYING OPTIMIZATION 

There exist an enormous variety of activities in the everyday world, which can 

usefully be described as systems, from actual physical systems such as chemical 

processing plants to theoretical entities such as economic models. The efficient 

operation of these systems often requires an attempt at the optimization of 

various indices, which measure the perfonnance of the system. Sometimes 

these indices are quantified and represented as algebraic variables. Then values 

for these variables must be found which maximize the gain or profit of the 

system and minimize the waste or loss. The variables are assumed to be 

dependent upon a number of factors. Some of these factors are often under the 

control, or partial control, of the analyst responsible for the performance of the 

system. 

The process of attempting to manage the limited resources of a system can 

usually be divided into six phases (i) Observation (ii) definition of the problem 

(iii) Construction of a mathematical model which reflects the important aspects 

of the system; (iv) model solution; (v) implementation of the solution 

selected; and (vi) the introduction of a strategy which monitors the performance 

of the system after implementation. 

(i) OBSERVATION: 

The first step in the optimization process is the identification of a problem that 

exists in the system (organisation). The system must be continuously and 



closely observed so that problems can be identified as soon as they occur or are 

anticipated. Problems are not always the result of a crises that must be reacted 

to, but instead frequently involve an anticipatory or planning situation. The 

person who normally identifies a problem is the manager, since the manager is 

the one who works in the vicinity of places where the problems might occur. 

However, problems can often be identified by a management scientist, a person 

skilled in the techniques of management science and trained to identify 

problems, who has hired specifically to solve problems using optimization 

techniques. 

(ii) DEFINITION OF THE PROBLEM 

Once it has been determined that a problem exists~ the problem must be clearly 

and concisely defined. An improperly defined problem can easily result in no 

solution or an inappropriate solution. Therefore, the limits of the problem and 

the degree to which it pervades other units of the organisation must be included 

as part of the problem definition. Since the existence of a problem implies that 

the objectives of the firm are not being met in some way, the goals (or 

objectives) of the organisation must be clearly defined. A stated objective helps 

to focus attention on what the problem actually is. 

(iii) MODEL CONSTRUCTION 

An optimization model is an abstract representation of an existing problem 

situation. It can be in the form of a graph or chart, but most frequently, an 

optimization model consists of a set mathematical relationship. These 

mathematical relationships are made up of numbers and symbols. 
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As an example, consider a business firm that sells a product. The product costs 

$5 to produce and sells for $20. A model that computes the total profit that will 

accrue from the items sold is 

Z = $20x - 5x 

In this equation x represents the number of units of the product that are sold, 

and Z represents the total profits that results from the sale of the product. The 

symbols x and Z are variables. The term variable is used because no set 

numerical value has been specified for those items. The number of units sold x, 

and the profit, Z, can be any amount (within limits); they can vary. These 

variables can be further distinguished Z is a dependent variable because its 

value is dependent on the number of units sold. Alternatively x is an 

independent variable, since the number of units sold is not dependent upon 

anything else (in this equation). 

The numbers $20 and $5 in the equation are referred to as parameters. 

Parameters are constant values that generally coefficients of the variables 

(symbols) in an equation. Parameters usually remain constant during the 

process of solving a specific problem. The parameter values are derived from 

data (i.e., pieces of information) from the problem environment. Sometimes the 

data are readily available and quote accurate. For example, it would be 

assumed that selling price of $20 and product cost of $5 could be obtained from 

the firm's accounting department and would be very accurate. 

The equation as a whole is known as a functional relationship (also called 

function and relationship). The term is derived from the fact that profit, Z, is a 

function of the number of units sold, x. As such, the equation relates profit to 

units sold. 

3 



Since only one functionat· relationshir.t> ttxists·· in this example, it is- also, the 

model. In tins case, the relationship is a model of the determinatinn-of profit~ 

for the finn. However,. this model does not really re licate a problem. 

Therefore, we will expand our example to create a problem si ation. 

Let us assume that the product is made from steel and the bu iness firm has 100 

pounds of steel available. If it takes 4 pounds of steel to m e each unit of the 

product, then, we can develop an additional mathemati al relationship to 

represent steel utilization. 

4x = 100 pounds 

This equation indicates that for every unit produced, 4 0 the available 100 

pounds of steel will be utilized. Now our model consists of two relationships. 

Z = $20x - 5x 

4x = 100 

In this new model we say that the profit equation is an objective function, and 

the resource equation is a constraint. In other words the objective of the firm is 

to achieve as much profit, Z, as possible, but the firm is constrained from 

achieving an infinite profit because it is limited to the amount of steel available. 

To signify this distinction between the two relationships in this model, we will 

awd~d ..... tlolJbl.We....L£J.LolMllQ~wa.JI.&<· ni@a....Ln.u.owta~t~io!.!Jn!..:..... _ _ . ____ _ 

Maximize '? = $20x - 5x 

Subject to 4x = 100 

This model now represents the manager's problem of detennining the number 

of units to produce. We will recall that we defined the number of units to be 

produced as x. Thus, when we determine the value of x, it represents a 
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potential (or recommended) decision from the manager. As such, x is also 

known as a decision variable. 

(iv) MODEL SOLUTION 

Once models are constructed ill optimization, they are solved usmg the 

optimization techniques that are briefly discussed in this project. An 

optimization solution technique usually applies to a specific type of model. 

Thus, the model type and solution method are both part of the optimization 

technique. 

Weare able to say that a model is solved, since the model represents a problem. 

When refer to model solution we also mean problem solution. 

Using the example model developed in the previous section, 

Maximize Z = $20x - 5x 

Subject to 4x = 100 

the solution technique is simple algebra. Solving the constraint equation for x, 

4x = 100 

100 =>x = -
4 

:. x = 25 units 
Substituting the value of 25 for x into the profit function results in the total 

profits: 

Z = $20x - 5x: 

= 20 (25) - 5(25) 

= $375 

Thus, if the manager decides to produce 25 units of the product, the business 

firm will receive $375 in profit. Note, however, that the value of the decision 
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variable dpes not constitute an actual decision; rather it is infonnation that 

set v~ a'5'"" tr"' recunnnendation or guideline- in helping the manager make a 

decision. 

Some optimization techniques do not generate an answer or recommended 

decision. Instead, they provide descriptive results: results that describe the 

system being modeled. 

(v) IMPLEMENTATION OF RESULTS 

The optimization technique provides infonnation that can aid the manager in 

making decision. Of course, the manager does not rigidly apply the results of 

the optimization model solution without contemplation. The infonnation 

obtained must be combined with the manager' s own expertise and experience in 

making the ultimate decision. If the manager does not use the infonnation 

~~rived from the optimization technique, then the results are not implemented 

" (i.e., they are not put to use). If the results are not implemented then the effort 

and resources that went into problem definition, model construction and 

solution are wasted. As such, this step in optimization process cannot be 

ignored. An effort must be made to ensure that the results will be used 

(assuming that the results are applicable). 

(vi) OPTIMIZATION AS AN ONGOING PROCESS 

Completion of the five steps described above does not necessarily mean that the 

optimization process has been completed. The model results and the decisions 

based on the results provide feedback to the original model. The original 

optimization model can then be modified to test different conditions and 

decision the manager thinks might occur in the future. Or, the results may 

indicate that a different problem exists that had not been considered previously, 
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thus the original model can be altered or reconstructed. As such, the 

optimization process can be continuous rather than simply providing one 

solution to one problem. 

1.2 OPTIMIZATION AS A BRANCH OF MA THEMA TICS 

It can be seen from the previous section that the theory of optimization is 

mathematical in nature. Typically it involves the maximization or minimization 

of a function (sometimes unknown), which represents the perfonnance of some 

system. This is carried out by the finding of values for those variables (which 

are both quantifiable and controllable), which cause the function to yield an 

optimal value. A knowledge of linear algebra and differential multivariable 

calculus is required in order to understand how the algorithms operate. A 

second knowledge of analysis is necessary for an understanding of the theory. 

Some of the problems of optimization theory can be solved by the classical 

techniques of advanced calculus - such as Jacobian methods and the use of 

Lagrange multipliers. However, most optimization problems do not satisfy the 

conditions necessary for solution in this manner. Of the remaining problems 

many, although amenable to the classical techniques, are solved more 

efficiently by methods designed for the purpose. Throughout recorded 

mathematical history a collection of such techniques has been built up. Some 

have been forgotten and reinvented; others received little attention until 

modem-day computers made them feasible. 

The bulk of the material of the subject is of recent origin because many of the 

problems, such as traffic flow, are only now of concern and also because of the 

large number of people now available to analyze such problems. When the 
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material is catalogued into a meaningful whole the result is a new branch of 

applied mathematics. 

1.3 WHAT IS OPTIMIZATION 

The fundamental problem of optimization IS to amve at the best possible 

decision in any given set of circumstances. Of course, many situation arise 

where the "best" is unattainable for one reason or another; sometimes what is 

' best" for one person is "worst" for another; more often we are not at all sure 

what is meant by ' best". The first step, therefore, in a mathematical 

optimization problem is to choose some quantity, typically a function of several 

variables to be maximized or minimized, subject possible to one or more 

constraints. The commonest types of constraints are equalities and inequalities 

which must be satisfied by the variables of the problem, but many other types of 

constraints are possible; for example, a solution in integers may be required. 

The next step is to choose a mathematical method to solve the optimization 

problem; such methods are usually called optimization techniques or 

algorithms. 

The choice of optimization technique is by no means obvious, for the theory 

and practice of optimization has developed rapidly since the advent of 

electronic computers in 1945. It came of age as a subject in the mathematical 

curriculum in the 1950' s when the well-established methods of the differential 

calculus and the calculus of variation were combined with the highly successful 

new techniques of mathematical programming, which were being developed at 

that time. 
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The optimization problems that have been posed and solved in recent years 

have tended to become more and more elaborate, not to say abstract. Perhaps 

the most outstanding example of the rapid development of optimization 

techniques occurred with the introduction of dynamic programming by Bellman 

in 1957 and the maximum principle 1958. They were designed to solve the 

problem of the optimal control of dynamical systems. Both dynamic 

programming and the maximum principles are closely related to the calculus of 

variations, and hence to each other. 

The simply - stated problem of maximizing or minimizing a given function of 

several variables has attracted the attention of many mathematicians over the 

past twenty-five years or so. The direct search methods of solution, which 

involve function evaluations and comparisons only, are usually simpler though 

less accurate for the same computational effort, than the indirect or gradient 

methods, which require values of the function and its derivatives. Both types of 

method are still undergoing development, with the major emphasis being on the 

search for efficient and reliable algorithms to deal with general non-linear 

functions. 

1.3.1. TYPICAL PRACTICAL EXAMPLES OF OPTIMIZATION 

PROBLEMS 

(i) Statistics 

The frequency function of a population is completely determined once its 

parameters are known. F or example, the binomial distribution is completely 

determined by the parameters n (the probability of success in a single trial). An 

important problem in statistics is to estimate the population parameters, given a 

random simple drawn from the population. If the form of the frequency 
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function is assumed, then values for its parameters may be determined by 

forming the likelihood function, which gives the probability that the given 

sample came from a population with the assumed frequency function. The 

likelihood function is thus a function of unknown parameters. The values of the 

parameters are non-estimated by maximizing the likelihood with respect to 

these parameters, subject to any constraints that may be present. The resulting 

optimal values of the parameters are known as maximum likelihood estimates. 

The method may be applied to function of discrete or continuous variables. 

(ii) AERODYNAMICS 

There are many optimization problems concerned with the design, performance 

and flying qualities of aircraft. The aircraft designer must minimize the 

structural weight, subject to the structure having sufficient strength and stiffness 

to carry the critical design loads safely. The cruising altitude should be chosen 

so as to minimi ze fuel consumption; it often happens that a steady climb is 

more economical than flight at constant altitude. Aircraft are designed for 

many different purposes, and in particular cases it may be important to 

(i) Minimize the take-off run, (ii) maximize the rate of climb, (iii) maximize 

the ceiling, (iv) maximize the endurance, (v) minimize the wave drag in 

supersonic flight. All these problems are subject to various constraints, which, 

in certain cases, may be so severe that no optimization problem remains. 

(3) CHEMICAL ENGINEERING:-

The manager of a chemical plant has to decide on his major objective in mining 

the plant. Should he maximize output? Is this consistent with maximizing 

profit? To answer these questions requires the solution of at least two 

optimization problems. The answer to the second question may be 'No', for 
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lower output could mean better quality output, greater than efficiency and more 

valuable by - products. 

(4) OPERATIONAL RESEARCH 

The application of optimization techniques to industrial and commercial 

problems forms part of the subject of operational research.. The fundamental 

problem of stock control is to choose a stock level and a stock replacement 

policy, which maximize overall profit. The usual assumptions are that losses 

are incurred if either too much or too little stock is kept. The demand may be 

known exactly or its frequency function may be assumed. A related problem is 

that of renewing obsolescent machinery while maintaining maximum 

efficiency. 

(5) ECONOMICS 

How many new power stations should be built in Britain between now and the 

year 2010? How many of them should be atomic power stations? These 

questions lead to very complicated optimization problems; it is not at all clear 

which quantities should be maximized or minimized and it is even less clear 

what constraints should be imposed. Nevertheless, problems of this kind 

obviously need careful study before the crucial decisions are taken. 

1.4. BASIC CONCEPTS OF OPTIMIZATION 

The problem of maximizing or minimizing a given function 

Z = f(x) 1.4.1. 

Subject to the given constraints. 

Qi (x)~, = or ~ b - ---- 1.4.2. 
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IS called the general constrained optimization problem. The function Z 

appearing in (1.4.1) is called the objective function . In (1.4.2.), the number of 

independent equality constraints must be less than n, the number of variables, 

otherwise the problem is over specified. 

Inequalities of ~ and ~ types can always be converted into equation by 

introducing slack and surplus variables, respectively. For example, the 

inequalities. 

9 1 (x)~, b1, 9 2 (x) ~ b2 ----- 1.4.3 . 

are respectively equivalent to 

9 ] (x) + Xn+l = b], 9 2 (x) -Xn+2 = b2 1.4.4. 

provided that the slack variable xn+ 1 and the surplus variable Xn+2 satisfy 

Xu+l ~ 0, Xu+2 ~ 0 1.4.5. 

The variables Xj are called main variables whenever it IS necessary to 

distinguish them from the slack and surplus variables x n+] . Constraints of the 

type (1.4.5) are called non-negativity restricti~ns ; in some problems they are 

also imposed on the main variables. Although it is perfectly correct to regard 

non-negativity restrictions as constraints to be included among those of (1.4.2), 

it is often found convenient to treat them separately. In general, the effect of 

substituting (1.4.4) and (l.4.5) for (1.4.3) is to simplify the constraints at the 

expense of an increased number of variables; this substitution is often extremely 

useful. 

Strict inequality constraints have been omitted from (1.4.2.). TIns is not a 

serious limitation in practice, since any constraint of < or > type can be 

replaced by one of~, = or ~ type by means of some simple manipulations. For 

example, the constraint 9k (x) < bk 

12 



is for all practical purposes equivalent to 

Qk (x) ~ bk - E 

Where E is a suitably small positive constant. The most important reason, 

however, for restricting the constraints (1.4.2) to the~, = and ~ a type is a 

theoretical one: many fundamental results in optimization theory no longer 

apply when strict inequality constraints are introduced. 

There is no essential difference between a max1m1zmg and a minimizing 

problem, for the values of the Xj which maximize f(x) also minimize -f(x). 

Thus every maximizing problem can be formulated as a minimizing problem, 

and vice versa. 

Since there is not at present, nor is there ever likely to be a single recommended 

method for solving every general constrained optimization problem, it is 

important to take advantage of any special features that a given problem may 

posses. It is therefore useful to classify the special cases of the general 

problem. 

The most obvious special case is the general unconstrained optimization 

problem, in which there are no constraints, and the problem is merely to find 

values of the Xj which maximize f(x). Many modem optimization techniques 

are designed specifically to solve the general unconstrained optimization 

problem, for given a constrained optimization; techniques exist which make it 

possible to write down an equivalent unconstrained problem. Thus the 

description of an optimization problem as "unconstrained" is a convenient 

mathematical classification, but may be a misnomer. 
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When every constraint ill (1.4.2) IS an equation, we have the classical 

optimization problem: 

Maximize Z = f( x) 

Subject to gl (x) = bn 

1.4.6(a) 

1A.6(b) 

In this problem, the function f and Qi are assumed to possess continuous first -

order partial derivatives with respect to all the variables. Functions with this 

property are said to belong to the class C 1• Necessary conditions for a 

maximum can be found by the classical analytic method of Lagrange 

multipliers; if we assume further that the functions f and Qi posses continuous 

second-order partial derivatives with respect to all the variables, i.e. f, Qi Ee2, 

then sufficient conditions for a maximum can also be found. An important 

advance in optimization theory took place in 1951 when Kuhu and Tucker 

extended the classical method of Lagrange multipliers to problems with 

inequality constraints and non-negativity restriction. 

If both f(x) and all the Qi(X) are linear functions of the Xj, we have a linear 

programming problem. Linear programming is still one of the two principal 

reasons for this: first, it has many hundreds of useful applications and, 

secondly, extremely large problems can now be solved on electronic computers 

by means of the simplex method. The simplex method, which was devised by 

George B. Dantzig in 1947, is an algorithm for the solution of the general linear 

programming problem. 

The function f(x) is said to be separable if it is of the form 'Lf .(x .). Ifboth 
. J J 
J 

f(x) and all the Qi (x) are separable, we have a separable programming problem. 
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Maximize 1.4.7(a) 

Subject to I,g.(x) ~ , = or ~ bi ----- 1.4.7 (b) 
i 1 

Special methods are available for the solution of this problem. These methods 

essentially reduce the separable programming problem to a linear programming 

problem. Also, general methods tend to be more efficient than usual when they 

are applied to the separable programming problem, owing to the lack of 

interaction between the variables. 

If either f(x) or one or more of the 9i (x) is non linear in any of the variables, 

we have non linear programming problem. Thus every constrained optimization 

problem defined by (1.4.1.) and (1.4.2) is either a linear programming problem 

or a non-linear programming problem. 

If f(x) is a quadratic function of the xj where all the 9i (x) are linear in the Xj, 

we have a quadratic programming problem. Many algorithms have been 

devised for the solution of this type; most of them rely on an extension of the 

simplex method. 

The first step towards choosing an appropriate optimization technique to solve a 

given problem is to find out whether the problem belongs to any of the special 

categories mentioned above. Among other factors affecting the choice of 

method are the time available for a solution, the accuracy required, the 

computer facilities available, the relative ease with which f, g, Vf, V g can be 

evaluated, and whether the variables Xj are continuous or discrete. 
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1.5. CLASSIFICATION OF OPTIMIZATION PROBLEMS 

Optimization problems can be classified in several ways as described below: 

(1) CLASSIFICATION BASED ON THE EXISTENCE OF CONSTRAINTS 

As indicated earlier in this project, any optimization problem can be classified 

as a constrained or an unconstrained one depending upon whether the 

constraints exist or not in the problem. 

(ii) CLASSIFICATION BASED ON THE NATURE OF DESIGN VARIABLES 

Based on the nature of design variables encountered, optimization problems can 

be classified into two broad categories. In the first category, the problem is to 

find values to a set of design parameters, which make some prescribed function 

of these parameters minimum subject to certain constraint. For example, the 

problem of minimum weight design of a prismatic beam subject to a limitation 

on the maximum deflection can be stated as follows: 

Find x ~ {~}. which minimizes 

f(x) = plbd 

Subject to the constraints 

btip (x) ~ bmax 

b 2:: 0 and d 2:: 0 

where p is the density and btip is the tip deflection of the beam. Such problems 

are called parameter or static optimization problems. In the second category of 

problems, the objective is to find a set of design parameters, which are all 
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continuous functions of some other parameter, which minimizes an objective 

function subject to the prescribed constraints. 

(iii) CLASSIFICATION BASED ON THE PHYSICAL STRUCTURE OF THE 

PROBLEM 

Depending upon the physical structure of the problem, optimization problems 

can be classified as optimal control and non-optimal control problems. An 

optimal control (Oe) problem is usually described by two types of variables, 

. namely, the control (design) and the state variables. The control variables 

govern the evolution of the system from one stage to the next and the state 

variables describe the behaviour of the system in any stage. Explicitly, the 

optimal control problem is a mathematical programming problem involving a 

number of stages, where each stage evolves from the previous stage in a 

prescribed manner. The problem is to find a set of control or design variables 

such that the total objective function over the I number of stages is minimized 

subject to certain constraints on the state and control variables. It can be stated 

as follows: 

Find X, which minimizes: 

f(X) = L f(x.,y.) 
i=1 1 1 1 

Subject to the constraints 

qi (Xi, Yi) + Yi = Yi+l; i = 1,2, ... ,1 

; k = 1, 2, .. , ,1 

; j = 1, 2, ... ,1 

where Xi is the ith control variable, Yi is the ith state variable and fi is the 

contribution of the ith stage to the total objective function; gj, hk and qi are 

functions of Xj, Yk and Xi and Yi respectively. 
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(iv) CLASSIFICATION BASED ON THE NATURE OF EQUATION INVOLVED 

Another important classification of optimization problems is based on the 

constraints. According to this classification, optimization problems can be 

classified as linear, nonlinear, geometric, and quadratic programming problems. 

This classification is extremely useful from the computational point of view 

since there are many methods developed solely for the efficient solution of a 

particular class of problems. Thus the first task of a designer would be to 

investigate the class of problem encountered. This will, in many cases, dictate 

the types of solution procedures to be adopted in solving the problem. 

(a) NON - LINEAR PROGRAMMING PROBLEM 

If any of the functions among the objective and constraint functions in eqn 

(1.4.1) is non-linear, the problem is called a non-linear programming problem. 

This is the most general programming problem and all other problems c.:n be 

considered as special cases of non-linear programming problem (NLP) 

~)GEOMETIUCPROGRAMMINGPROBLEM 

Definition 1.5.1 

A function hex) is called a posynomial if h can be expressed as the sum of 

power terms of the form 

C al l al2 aln 
IXI X2 --- Xn 

Where CI and aij are constants with c) >0 and Xj >0. Thus a posynomial can be 

expresses as: 

h() C al l al2 aln C aN2 aNn 1 5 3 x = IXI X2 --- Xn + ---+ NXI --- Xn ----- . . 
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Definition 1.5.2 

A geometric programming (GMP) problem is one in which the objective 

function and constraints are expressed as posynomials in X. 

Thus the geometric programming problem can be posed as follows: 

Find X, which minimizes 

f(x) = 1°c/ n /iil, c>O, Xj>O 
1=1 lJ=1 J 

subject to 

N. 

gix) = .t ai ·[ [1 x~ik ] ~ 0, aij>O ------ 1.5.4 
1=1 ~ k=1 

j. =1 2 --- m " , 
where No and Nj denote the number of posynomial terms in the objective and jth 

constraint function, respectively. 

© QUADRATIC PROGRAMMING PROBLEM 

Definition 1.5.3 

A quadratic programming problem is a non-linear programming problem with a 

quadratic objective function and linear constraints. It is usually formulated as 

follows: 

Find x, which minimizes 

n n n 
F(x) = c + L q.x. + L L Q .. x.x. -----1.5.5 

i=1 1 1 i=lj=1 IJ 1 J 

subject to 
n 
L a .. x. = bj , j=I,2,---,m 

i=1 IJ 1 
X· >0 l' = 1 2 --- n 1- , ", 

where c, % , Qij, aij and bj are constants. 
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(d) LINEAR PROGRAMMING PROBLEM 
If the objective function and all the constraints ill eqn (IA.I) are linear 

functions of the design variables, the Mathematical programming problem is 

called a linear programming (LP) problem. A linear programming problem is 

often stated in the following form 

xl 
X2 Find X = 
M 

_1.5.6 

n 
which minimizes f(x) = L c.x . 

i=l 1 J 
subject to the constraints 

n 
L a 'kxk = bj, j= 1,2,---,m and Xi ~o, i = 1,2,---,n 

k=l J 
where Cj, aik and bj are constants. 

(V) CLASSIFICATION BASED ON THE PERMISSmLE VALUES OF THE 

DESIGN VARIABLES 

Depending on the values permitted for the design variables, optimization 

problems can be classified as integer and real-valued programming problems. 

If some or al of the design variables Xl, X2, ---, Xn of an optimization problem are 

restricted to take on only integer (or discrete) values, the problem is called an 

integer programming problem. On the other hand, if all the design variables are 

permitted to take any real-value, the optimization problem is called a real­

valued programming problem. 
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(vi) CLASSIFICATION BASED ON THE DETERMINISTIC NATURE OF DESIGN 

VARIABLES 

Based on the deterministic nature of the variables involved, optimization 

problems can be classified as deterministic and stochastic 

STOSCHASTIC PROGRAMMING PROBLEM 

A stochastic programming problem is an optimization problem in which some 

or all of the parameters (design variables and/or preassigned parameters) are 

probabilistic (non-deterministic or stochastic) 

(vii) CLASSIFICATION BASED ON SEPARABILITY OF THE FUNCTIONS 

Optimization problems can be classified as separable and non-separable 

programming problems based on the separability of the objective and constraint 

functions. 

Definition 1.5.4 

A function f(x) is said to be separable if it can be expressed as the sum of n 

single variable functions fl(x),f2(x)~---,fn(x)~ that is~ 

n 
f(x) = L f(x .) ----- l.5.7 

. 1 1 1 1= 

So, a separable programming problem is one in which the objective function 

and the constraints are separable and can be expressed in standard form as : 

n 
Find x, which minimizes f(x) = L f.(x.) ----- 1.5.8 

. 1 1 1 
1= 

subject to 
n . 

gix) = L g .. (x.) ~ bj , J= 1,2,---,m 
i=l Jl 1 

where bj is a constant. 
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(viii) CLASSIFICATION BASED ON THE NUMBER OF OBJECTIVE FUNCTIONS 

Depending on the number of objective functions to be minimized, optimization 

problems can be classified as single and multi-objective programming 

problems. According to this classification, the previous classifications of 

optimization problems are single objective programming problems. 

MULTI-OBJECTIVE PROGRAMMING PROBLEM 

A multi-objective programming problem can be stated as follows: Find x which 

minimizes f1(x),f2(x),---,fk(X) subject to gj{x) ~ 0; j = 1,2,---,m 

Where f j ,i2,---,ik, denote the objective functions to be minimized 

simultaneously. 

1.6 OPTIMIZATION TECHNIQUES 

The various techniques available for the solution of optimization problems are 

so many that we may not be able to list all of them here. 

The classical methods of differential calculus can be used to find unconstrained 

maxima and minima of a function of several variables. These methods assume 

that the function is differentiable twice with respect to the design variables and 

derivatives are continuous. The classical methods of optimization are useful in 

finding the optimum of continuous and differentiable functions . These methods 

are analytical and make use of the techniques of differential calculus in locating 

the optimum points. Since some of the practical problems involve objective 

functions that are not continuous and/or differentiable, the classical 

optimization techniques have limited scope in practical applications. 
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F or problems with equality constraints, the Lagrange multiplier method is 

frequently used. But this method, in general, leads to a set of non-linear 

simultaneous equations, which may be difficult to solve. 

When the problem is one of minimization or maximization of an integral, the 

methods of calculus of variations can be used to solve it. The calculus of 

variations is concerned with the determination of extreme (maximal and 

minima) or stationary values of functional. A functional can be used to solve 

trajectory optimization problems. The calculus of variations is almost as old as 

calculus itself and is a powerful method for solution of problems in several 

fields like statics and dynamics of rigid bodies, general elasticity, vibrations, 

optics, and optimization of orbits and controls. 

The techniques of non-linear, linear, geometric quadratic or inter programming 

can be used for the solution of the particular class of problems indicated by the 

name of the technique. These are all numerical methods wherein an 

approximation solution is sought by proceeding in an interactive manner by 

starting from an initial solution. 

The linear programming is an optimization method applicable for the solution 

of problems in which the objective function and the constrains appear as linear 

functions of the decision variables. The constraint equations in a linear 

programming problem may be in the form of equalities or inequalities. In 

applying the linear programming technique, first, the problem must be 

identified as being solvable by linear programming, second, the unstructured 
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problem must be formulated as a mathematical model; and, third, the model 

must be solved using established mathematical techniques. 

The geometric programming technique is a relatively new method for solving a 

class of non-linear programming problems. It is used to minimize functions, 

which are in the form of polynomials subject to constraints of the same type. It 

differs from other optimization techniques in the emphasis it places upon the 

relative magnitudes of the terms of the objective function rather than the 

variables. Instead of finding the optimal values of the design variables first, 

geometric programming first finds the optimal value of the objective function. 

This feature is especially advantageous in situations where the optimal value of 

the objective function may be all that is of interest. In such cases, the 

calculation of the optimum design vectors can be omitted. Another advantage 

of geometric programming is that it often reduces a complicated optimization 

problem to one involving a set of simultaneous linear algebraic equations. The 

major disadvantage of the method is that requires the objective function and the 

constraints in the form of polynomials. 

The stochastic programming deals with situations where some or all parameters 

of the optimization problem are described by stochastic (or random or 

probabilitistic variables rather than by deterministic quantities. Depending on 

the nature of equations involved (in terms of random variables) in the problem, 

a stochastic problem is called a stochastic linear or dynamic or non-linear 

programming problem. The basic idea used in solving any stochastic 

programming problem is to convert the stochastic problem into an equivalent 

deterministic problem. The resulting deterministic problem is then solved by 
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using the familiar techniques like linear, geometric, dynamic and non linear 

programmmg. 

Another optimization technique is multi objective and is a situation when two 

or more opponents are competing for the achievement of conflicting goals, a 

competitive problem exists. Generally, in such problems, the losses of one 

opponent signify the gains of the others. Naturally, the objective function 

depends on a set of controlled as well as uncontrolled variables where the 

uncontrolled variable depends on the strategy of the competitor. The resulting 

optimization problem can be solved by using the game theory. 

The critical path method (CPM) and the programme evaluation and review 

technique (PERT) are network methods, which are useful in planning, 

scheduling and controlling a project. These methods, are called network 

methods since in both the methods, the various operations necessary to 

complete the project and the order the operations are to be performed are shown 

in a graph called a network. Critical path method (CPM) is useful for projects 

in which the durations of the various operations are known exactly whereas 

PERT is designed to deal with projects in which there is uncertainty regarding 

the durations of the various operations. 
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CHAPTER TWO 

UNBOUNDED HORIZON OPTIMIZATION ALGORITHMS 

2.1 INTRODUCTION TO UNBOUNDED HORIZON OPTIMIZATION 

A decision process with an unbounded horizon is one that has infinitely many 

stages. Although such situations rarely occur in practice, they are convenient 

models for analyzing processes that have no obvious terminal point. The 

following condition is generally assumed for such processes. 

ASSUMPTION OF STATIONARY 

Now states that the decisions, returns, and states associated with the process are 

the same in every stage. 

For processes that conform to this assumption, optimal policies depend only on 

the states and not on the stages. Whatever decision is optimal for state U in 

stage 1 will also be optimal for state U in stage 100, since all the underlying 

conditions remain invariant. 

The stationarity assumption is restrictive in that it does not allow interest rates, 

costs~ charges~ or any other quantity to change as long as the process continues 

into the future. An optimal policy, therefore, remains optimal only so long as 

the stationarity assumptions remain valid. 
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2.2 MODELS WITH A LIMITLESS VISTA 

Unquestionably most, if not all, decision-making is part of an unending history 

of actions. Earlier choices have affected the present, current decisions will 

influence the future, and so on. In this light, all models must be viewed as 

imbedded in an unbounded horizon. Several of the dynamic models we have 

studied so far simply ignored the future beyond a designated horizon period, 

and sometimes a planning horizon theorem could be established to demonstrate 

that such a procedure might yield an optimal current decision. Other models 

attempted to account for the future by selecting certain ' terminal' conditions 

(such as a specified minimum level of work force or productive capacity). In 

contrast to these models, the illustrations in this project assume that the 

planning horizon is limitless. 

In ord~r to derive any definite answers for models with an unbounded horizon, 

it is necessary to add a restrictive assumption~ broadly, the hypothesis is termed 

an assumption of stationarity. In the simplest cases, you assume that all 

economic return functions, decision possibilities and external phenomena (like 

demand requirements) are identified every period. 

2.2.1 OPTIMAL STATIONARY POLICIES 

Assuming stationarity, we can safely intuit the meaning of "making a current 

decision in the face of an unbounded horizon" . What may surprise us is that 

our intuition is of limited help in fathoming how to make optimal decision. 

To illustrate, consider a finite horizon dynamic programming model. At any 

period we need to know only the state of the system and number of stages 

remaining. Optimality of any strategy is judged according to the sum of a finite 

stream of returns. Now let the horizon be unbounded, so by definition the 
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"number of periods remaining" is always the same, and any strategy employed 

over the horizons results in an unending stream of returns. Since for every 

strategy this stream may grow without bound as the horizon lengthens, you 

need a way to compare the strategies. Of course, if one strategy accumulates 

more returns than another for every horizon length, no problem of comparison 

occurs. But typically one strategy looks better for certain finite horizon and 

worse for others, so the resolution is by no means obvious. Thus, a limitless 

vista raises two pertinent questions about determining an optimal solution. 

(i) What criterion is appropriate for judging the relative desirability of 

different infinite streams of returns? 

(ii) Is it optimal in a limitless vista to consider only stationary strategies, that 

is, ones depending solely on the current state of the system? 

This chapter focuses on answenng (i). We will critically examme several 

frequently used criteria for evaluating infinite streams. We shall also see in 

chapter three how to apply these criteria to a simple but important regeneration 

model. In studying the solution of this model, we will discover several 

numerical methods of successive approximation that can be applied to more 

general problems of optimization in an unbounded horizon. 

2.3 SUBTLETIES OF INFINITE STREAMS 

Businessmen, economists, and mathematicians have argued for centuries over 

how to assess infinite streams of returns. We will easily see why in the 

example below, and we should try to articulate the economic in sights and 

managerial significance of these illustrations. 
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Experience has shown that most decision makers cannot intuitively make 

consistent judgments streams of returns. As a consequence, most businessmen 

turn to formulas for providing at least a preliminary screening or ranking of 

decision alternatives. We too will apply formulas that convert an infinite 

stream of returns into a single number so as to indicate the relative merit of the 

associated alternative. But before doing so, we want to make sure that we see 

some of the substantive issues involved in different methods for choosing 

among infinite streams. Only with this knowledge in mind can we appreciate 

both the strengths and limitation of the simple to apply formulas . 

This point investigates two questions that are central to optimization ill a 

dynamic setting. 

(i) When is an evaluation formula appropriate for comparmg different 

strategies? 

(ii) Does such a formula always reduce an infinite stream to a single 

number that can be used as the basic for comparison? 

These points are treated in considerable details below, since the associated 

problems can be quite subtle. 

We investigate three criteria of merit. The first is average return per period. 

Actually~ this criterion arises most often when the economic measure is cost. 

Then the selection rule recommended is to choose an alternative having the 

least average cost per period. The second criterion is present discounted value. 

As we will soon see~ these two criteria do not always select the same 

alternative, and occasionally give rise to some nasty technical problems. 
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The third criterion is called equivalent average return. The idea is probably 

new to us, and is important in operations research models because it provides 

the mathematical connection between the other two criteria. Often we can 

derive the form of an optimal policy using this criterion, and then with this 

result we can calculate specific numerical solutions for either the average return 

per period or the present value criterion. 

2.3.1 UTILITY OF MONEY 

We often hear it said that a dollar is worth more than a dollar a year from today. 

Why? This maxim is based on several considerations. The decision- maker 

may find the sheer utility or personal worth of a current dollar is greater now 

than later. F or example, consider a company that has paid its stockholders a 

regular quarterly dividend for 25 years. The firm may be very reluctant to forgo 

paying out a current dividend, even if it can promise to pay it eventually, 

perhaps with interest added. This difference in the utility of money at district 

points in time is the heart of the problem of making commensurate several 

unending streams of returns. 

Actually, the same comparability problem exists in finite horizon models. In 

the dynamic programming models we might have studied simply ignored the 

difficulty of comparability. Since it was always possible to sum the profits or 

costs over the bounded horizon, the resultant criterion function attached a 

unique finite number to each policy and made optimization straightforward. 

Here you can no longer ignore the comparability difficulty, even if you want to. 

Since the sum is now over an unbounded horizon, the total returns are infinite 

for most strategies. As we might imagine, any nmve approach for comparing 

several infinite streams of returns can succeed in only the simplest of cases. To 
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illustrate, comparing policies, in one way or another for each and every finite 

horizon length does not always work. The following example shows why. 

Example: 2.3.l. 

Suppose we must choose one of the profitable alternatives that are described in 

fig. 2.3.1 by the sequence of returns ( = profits) for each period, starting with the 

present. At the current period we receive a profit of 3 from A and B, 4 from G 

etc. In the next period, we obtain a profit of 2 from A, a profit of only 1 from 

B, etc. 

It is reasonable that we would rule out F right away, since we can do strictly 

better each period with A. In other words, A dominates F. It is also plausible 

to argue we could just as well eliminate E; since D returns a greater 

communication profit at any period. But we cannot eliminate G. Although its 

cumulative return after period 2 is not as good as that of A and B, its profit in 

period 1 is strictly the best among all policies. If we require as large a return as 

possible in the current period, then G is the optimal choice. 

How would we select among A, B, C and D? In the second period, C looks 

most attractive. For every even-numbered period, D gives a better cumulative 

return than B. In the third period, B provides a cumulative return of 7 as 

against 6 for A and C and 6 2/3 for D. What is more, B is "ahead" of A, C and 

D at every period 3 + 6n, for n = 0, 1, 2, ... choosing among streams such as 

these is more the rule than the exception when models with unbounded horizon 

are considered. 
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PERIOD 

Policy 1 2 3 4 5 6 ---

A 3 2 1 3 2 1 ---

B 3 1 3 1 3 1 ---

C 1 6 -1 1 6 -1 ---

D 2 2/3 2 2 2 2 2 ---
E 1 3 1 3 1 3 ---

F 1 1 1 1 1 1 ---

G 4 0 0 4 0 0 ---

Figure 2.3.1. Infinite streams of returns. 

2.3.2 AVERAGE RETURN 

We must make further assumptions in order to state that either ~ B, C, D, or 

G is best. For example, we could make the additional postulate that a unit of 

return received in any period is just as good as a unit received in any other 

period. "Just as good" means there is just no benefit of any sort in having the 

return earlier instead of later. How would this assumption resolve the problem? 

It is reasonable now to look at the average return per period, letting the number 

of periods grow without limit, and prefer the alternative with the largest 

average. For ~ we would compute 2/1, (3 + 2)/2, (3 + 2 + 1)/3, . .. ; for B we 

would similarly calculate 3/1, (3 + 1 )/2, (3 + 1 + 3)/3, ... ; These calculations are 

summarized in Fig. 2.3.2 As we show in the advanced material below, the 

average profit per period tends towards 2 for A, B, C and D, and toward 1 Ih 
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for G. In other words, if you let the number of periods be large enough, the 

average will be arbitrarily close to 2 for A, B, C, and D, and to 1 1/3 for G. 

Therefore, if we make the special added assumption that you have no time 

preference for returns, the policies A, B, C and D look equally attractive, even 

though they are not equally good for each and every finite horizon, and policy 

G looks inferior. 

The general terms in the sequences for the average return per period are: 

(i) A 

B 

C 

D 

3+6n 
I+3n 

, 

3+4n 
I+2n 

, 

I+6n 
I+3n' 

2 
2+ -

3n 

G . 4+4n 
. 1 +3n ' 

5+6n 
2+3n 

, 

4 + 4n 
2+2n 

7+6n 
2+3n ' 

4+4n 
2+3n' 

6+6n 
3+3n 

6+6n 
3+3n ' 

4+4n 
3+3n 

for n = 0, 1, 2, ... 

forn = O, 1, 2, .. .. .. 

for n = 0, 1, 2, .... . . 

for n = 1, 2, 3, .... . . 

for n = 0, 1, 2, .... . . 

Thus, when n ~ 00, each term approaches 2 for A, B, C and D, and 11/3 for G. 

Period 

Policy 1 2 3 4 5 6 7 8 9 ---

A 3 2I;2 2 21/4 21/5 2 21h 21/8 2 ---

B 3 2 i T/3 2 2115 2 2T/7 2 21/9 ---

C 1 3I;2 2 23/4 23/5 2 16h 23
/ 8 2 ---

D 22h 21h 27:19 11/6 12/15 21/9 27:/21 i /12 22/27 ---

E 4 2 11/3 2 11/3 11/3 15h 11 /2 11h ---
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Fig. 2.3.2. Average Return per period. 

The most obvious drawback of using average return per period as selection 

criterion is its complete insensitivity to the level of returns over a finite number 

of periods. To illustrate, suppose we can select a policy that has returns 

identical to those in policy A except that in period 1 the return from the 

alternative policy is 100. Using solely the criterion of average return per 

period, we would judge that policy A and alternative policies are equally 

desirable, since over an unbounded horizon, the first -period advantage of the 

alternative policy is rendered inconsequential. There are other limitations to 

this criterion as well, which we explore next. 

Assuming that we want to employ the criterion, can we always be sure that a 

given stream will have a well-defined average return per period, as the number 

of periods grows without limit? For example suppose that the two streams for 

A and B are modified to have a multiplication trend: 

Policy A *: 3,2,1),2,1 6A,2,6,4,2 

Policy B*: 3,1,3,1 ,3,1 6,2,6,2,6,2 

9,6,3,9,6,3l 

9,3,9,3,9,3J ---2 .3.0 

Although we may reason by analogy that the two streams should remain equally 

desirable, the rule of looking at average profit per period falters, since the 

averages grow beyond bound as the number of periods grows without limit. 

Therefore, if we want to rely on average per period criterion for a measure of 

optimality, we must also assume that there exists a unique finite limiting 

average for the particular return streams we are companng. In ' many 

applications this assumption is reasonable. 
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2.3.3 PRESENT DISCOUNTED VALUE 

An alternative approach for making different infinite streams commensurate is 

to deal with the so-called present discounted value (or present worth) of the 

returns. 

If the stream of returns is 

------ 2.3 .1. 

its merit should be judged, according to the present discounted value criterion, 

in terms of the sum~ 

Present Value R + aR + 2 R + + n-1R + -1 2 a 3 .... a n .... -

2.3 .2 

Where i % is the interest rate per period and a - [1 + CI100)] - 1 is the single 

period discount factor. The higher the interest rate i, the smaller the value of a . 

There is an environmental assumption we can make to justify the approach. 

Suppose we can borrow or lend as much money as we desire and whenever we 

wan at a fixed compound rate of interest i% per period. (of course, we are 

eventually required to pay any debt we incur). For example, let the annual rate 

be 5%. Then if we borrow a dollar today, we must pay back either (1 + 0.05) 

dollars a year from today, or (1 + 0.05) 2 dollars two years from today, or 

(1 + 0.05) -n dollars n years from today. By the same token, a dollar received n 

years from today is really only worth (1 + 0.05) -n dollars right now. If we 

presently had (1 + 0.05) - n and lent it at 5% interest compound, we would be 

paid back a dollar n years from today. 
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Here is why this environmental assumption justifies employing present value. 

Consider the choice between two policies with different present values. For he 

moment, suppose that we selected the policy with the smaller present value. 

Because our utility of money may differ from period to period, we may want to 

borrow and lent in various periods to redistribute the returns. 

For example, we may wish to have the benefit of R2 right now rather than a 

period. Consequently, we can borrow aR2 at present, and then pay back R2 

when it becomes available. Similarly, we may want to lend for several periods, 

and later receive the payment with compound interest earned. As we think 

about it, we will see that the value of the entire stream really is summarized by 

the number representing how much we could obtain at present by committing 

the entire proceeds of the stream for payment. 

Now suppose instead that we selected the policy with the larger present value. 

By assumption, we can borrow and lend, committing the resources of this 

stream, so as to attain the same benefits we desired with the other alterative, and 

in so doing we could have some additional value left over. In other words, any 

pattern we can obtain with the smaller present - value policy we can also obtain 

with the larger. The difference between the two values is a net benefit. To sum 

up, we do best by selecting a strategy that gives maximum present value, 

regardless of our personal time preference for money. 

Of course, rarely if ever is the environmental assumption about borrowing and 

leading exactly satisfied, but it is often a fair enough approximation to provide 

adequate answers. Other kinds of argument can be advanced in support of a 

present - value criterion. For example, in practical applications, a feature 
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commending formula (2.3 .2.) is that returns in the distant feature are weighted 

by a small factor, and consequently have less impact on the decision. We can 

see in fig. 2.3.3. below how the values of a n drop rapidly as the interest rate 

and n increase. But remember, present value or any other formula can be 

justified only by making particular assumptions regarding the decision -

maker' s time value of money. 

i% 
n 5 10 20 
1 0.952 0.909 0.833 
5 0.783 0.621 0.402 
10 0.614 0.385 0.161 
15 0.481 0.239 0.065 
20 0.377 0.149 0.026 
40 0.142 0.022 0.001 
Fig 2.3.3. 

Now we must examme the present - value formula to see whether any 

additional assumptions have to be imposed for it to be a workable criterion. 

Start by checking whether the sum of an infinite number of terms in (2.3 .2) 

always yields a finite value. To begin, suppose all the returns are identical: 

Present - Value R + aR + a2 R + a3 R + -------- 2.3.3 

R -- ForO < a < 1 
a-I -

------- 2.3.4. 

The coefficients in equation 2.3.3. are simply a geometric series giving the 

value in equation (2.3.4). Notice the restriction a < l. If a is close to 1, then 
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the present-value is a large number, but it is finite. If a = 1, then the sum in 

equation 2.3 .3 is unbounded for R "* 0, and equation (2.3.4) is ill defined. 

Next evaluate policies A, B, C, D and G in fig. 2.3.1 for 0 < a < 1, 

Policy A : 3 + 20. + 10.2 + 30.3 + 20.4 + 10.5 + ... . ----- 2.3.5. 

2 
(3 +2 + 1 2) (1 + 3 + 6 + ) = 3 + 20. + 1 a a a a a .... 3 

I-a 
- --2.3.6. 

Policy B -----2.3 .7. 

2 4 3-0. 
(3 + 10.) (1 + a + a + .... ) = 2 

I-a 
----- 2.3.8 

Policy C ------2.3 .9. 

2 3 6 1+60.-0.2 
(1 + 60. - a ) (1 + a + a + .... ) = 3 

I-a 
---2.3.10. 

PolicyD 2/ 22 - X a 2 3 + 20. + a + . . .. - 2 3 + 2 • 
I-a 

---2.3.11. 

Policy G : 4 + 40.3 + 40.6 + .... = 4 3 ---2.3.12. 
I-a 

To compare A and B we can look at the difference between their present 

values: 

P. V. (A) - P.V. (B) 
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a 3+a -------- >0 forO< a<l ---2.3.l3 
(1+a)(1+a + a 2

) l - a 2 

Thus, even though B has a greater cumulative return than A in period 3 + 6n, 

for n = 0, 1, 2, ... , the discounted value of A is larger for all 0<0.< 1. The same 

procedure yields 

P.V. (A) - P.V. (C) -

P. V.(A) - P. V.(D) 
(l-a)(1+2a) 

3(1+0.+0.2) 

------ 2.3 .14. 

------- 2.3 . 15 

Therefore, A is also attractive than C and D for all 0 < a < 1. If we compare B 

and D, we obtain 

P.V.(B) - P.V.(D) - -22h + 20.+ 3 ---------2.3.l6. 
1+0. 

Hence B is more advantageous when a < Yz and D is better when a > Yz. Consider 

the situation when a = 1;2. Then according to equation 2.3 .16, the two policies are 

equally good. For any finite horizon n, the present value of policy B is strictly 

better than that for policy D if n is odd (1, 3, 5, .. . ), and the reverse is true if n is 

even (2, 4, 6, ... ). Therefore, we would be indifferent to these policies only when 

the horizon is unbounded. 

When you compare A and G you find 

P.V.(A) - P.V.(G) -
3+20.+0.2 4 

1-0.3 1-0.3 

> 0 for a > -12 - 1 ::= 0.414 -------2.3.17 

39 



Thus A is better only if a > ....}2 - 1, otherwise G is preferred. If the interest rate is 

very high, so that (1 is correspondingly small, then receiving a return of 4 in the 

first period of policy G outweighs the later gains available from policy A. In 

general, as we let a become small, the early returns are the most important, and 

when (1 = 0 in the limit, all that matters is first period return R 1. 

So far we have seen that usmg a present-value criterion may occasionally 

distinguish two streams in a surprising way. But the approach has always given a 

definite answer, because all the summations in the present value formula equation 

(2.3.2.) yielded a finite number. Was this merely the result of a felicitous selection 

of return streams? The answer is yes. 

The kinds of difficulties with the average return criterion have their counterparts 

for present worth. We can see such examples below. On the other hand, 

troublesome cases for the average-return criterion may not cause difficulties for a 

discounted stream. Consider the example of the upward trending return stream 

policy B* in (2.3.0), which did not have a finite average return per period. The 

present - value calculation can be shown to give 

Policy B*:(3 + (1 + 3(12 + (13 + 3(14 + as) x[ 1 + 2(a6
) + 3(a6

) 6 + ... ] ---- 2.3.18. 

= (3 + (1) (1 + a2 + (14) 1 - ------- 2.3.19. 
(1-a6)2 

Which is finite for 0 ~ a < 1. The present value for policy A * in (2 .3.0) is also 

finite . 
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2.3.4 EQUIVALENT AVERAGE RETURN 

Before concluding the discussion on how to attach a value to an infinite stream 

of returns, we need to study one other approach that relates the two notions of 

average and discounted value. 

The idea is to construct an infinite stream of returns that has the same present 

value as the original stream. The return (before discounting) in each period will 

be identical, so that this constant value can be interpreted as the equivalent 

average return of the stream. Specifically, suppose pea) is the present value of 

policy X for a specified value of a. Then consider a new stream of returns 

Rn = (1 - a) pea) for all n --------- 2.3.20 

For this stream 

Rl + R2a + R3a2 + .... = (1 - a) Pea) (1 + 0.+ 0.2 + .... ) = Pea) ------2.3.21. 

The stream in (2.3.20) has the same present value as policy X, then, and 

(l-a)P(a) is the equivalent average return always leads to the same decision as 

does best present value because the equivalent average returns are simply the 

present values of all the alternatives multiplied by the same constant (1 - a). 

Applying the idea to the earlier examples, you obtain the equivalent average 

returns: 

(I-a)(3+2a+a2) 
Policy A: 

l-a3 

P li B · (1- a)(3 + a) 
o cy. 2 

I-a 

(I-a)(l + 6a-a2) 
Policy C : 

I-a3 
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3+a 
I+a 

----2.3.22 



P li G · 4(1- a) 
o cy. 3 

I-a 

4 

The significant point is that whatever average return per period is well defined, 

we always obtain it by letting a converge from below to 1 in the formula for 

equivalent average return. 

Thus, letting a = 1 in (2.3 .22) yields 

Policy A : 2 

Policy D : 2 

Policy B : 2 

Policy G : 4h 
PolicyC : 2J 

-----2.3.23 

Which are the averages values for A, B, C, D and G obtained previously. 

Sometimes equivalent average return is well defined for a = 1 when average 

return per period is not well defined. Unfortunately, equivalent average return 

is not always well defined for a = 1; an example is policy B * . 

The criterion of equivalent average returns ranks A, B, C and D is being equally 

desirable when a = 1. Are they? This is a question of personal opinion and 

not scientific fact; the decision-maker alone must provide the answer. A strong 

case can be made, however, for saying that for a = 1, A is optional, C and D are 

nearly optimal, and B should be eliminated for equations (2.3.13), (2.3.14), and 

(2.3.15), we can conclude that for a close to 1, the present value of A is greater 

than that for B, C and D. For a = 1 in (2.3.14) and (2.3.15), the difference 

between the present values is zero, so we might say that C and D are almost as 

good. But for B, when a = 1 in (2.3.13), the difference is 1/6. Thus, even 

though A and B have the same equivalent average return, their present values 

differ by 1/6 as a approaches 1. For this reason, we may want to discard B. 
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In summary, the criterion of equivalent average return gives the same average 

return per period when the latter is well defined. Equivalent average return 

frequently will be adopted as a criterion function in the models of this and later 

chapters; but do not forget that its relevance for selecting an optimal policy in 

an unbounded horizon is assumed (in the above example, policy B does offer a 

greater cummulative return every sixth period, starting with the third. The 

equivalent average returns completely discounts this advantage.) Furthermore, 

keep in mind that additional postulates are required to ensure that the present 

value of each policy is always a unique finite number. And finally, remember 

that if several policies have the same equivalent average return when a = 1, 

there still may be good reason for preferring one of these policies to the others. 

2.3.5 REMARKS ON INFINITE RETURNS 

The discussion in this section reached the following conclusions about selecting 

an optimization criterion for dynamic models: 

(i) A method of comparing streams of returns must include an assumption 

about the time value of money. 

(ii) A technique that attempts to reduce any infinite stream to a unique finite 

number may not work for all such streams. 

(iii) Even when a technique does reduce two different streams to the same 

number, the two policies may not be equally desirable if other economic 

considerations are examined. 

At this point, we may wonder how realistic the preceding specific numerical 

examples really were. Of course, they were contrived, but we should not 

discredit them on that account. As tax experts and professional investment 
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analysts can assure us, every corporation does face critical decision that in 

effect are choices among alternative infinite streams exhibiting behaviour 

similar to that in the examples. Such situations give rise to full-blown versions 

of the perplexities we studied, and commonly occur in firms undergoing rapid 

growth or facing steadily rising costs. 

2.4 SUCCESSIVE APPROXIMATIONS 

In this section, we initiate the discussion of numerical techniques for solving 

extremal equations that arise in dynamic programming models having 

unbounded horizon. 

Consider the functional equation 

f = minimum [Uk f + Rk] for 0 <u < 1 ------- - 2.4.1. 

where k is the alternative and R is the cost of alternative k. 

Remember, saying that we want a solution to (2.4.1.) really means we want a 

value for the unknown f that satisfies the equation; in addition, we would like to 

have an alternative k that yields this value of f. Three solution approaches are 

frequently suggested. 

The first emanates from the dynamic context of the underlying model. The idea 

is to see whether a policy that is optimal for a very long, but finite, horizon 

yields a solution value for f, when used over an unbounded horizon. The 

second idea is to guess a value for f. Then compute the quantity on the right­

hand side of (2.4.1.) using this guess, and see whether the equation is satisfied. 

If not, let the result of the computation be a revised guess, and repeat the 

process. The third idea is to guess a policy that may be optimal over an 

unbounded horizon. Then solve for the corresponding present value, and use it 
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as a trial value for f see whether the equation is satisfied. If not, let the new 

guess be the policy that gives a minimum on the right-hand side of 2.4.1 and 

repeat the process. We consider the first approach in this section and the other 

two in the sections and chapter to follow. 

In all these methods, each guess can be viewed as an approximation to the 

solution. If the guess satisfies the extremal equation, we are done. If not, we 

must guess again. This iterative process is given the label succeSSIve 

approximation. 

Perhaps the most obvious approach for finding a policy that yields a solution to 

the functional equation (2.4.1) is to solve the finite horizon model. 

fn = minimum [a~n -k + Rk] for 0 <a < 1 ------- 2.4.2 
K= 1, 2, .... . , N 

for a very large value of n. Can we be sure that for any n large enough, a kn that 

results from (2.42) will also satisfy (2.4.1)? As we try each successively larger 

n, does a single k remain optimal? If the horizon n is long enough, is an 

optimal unbounded horizon policy also optimal as the initial decision? It is 

significant that for the regeneration model these equations have affirmative 

answers. 

THEOREM 2.4.1. REGENERATION MODEL HORIZON 

There exists a finite value n * such that for any finite horizon n > n *, if 

fn = a kn fn _ kn + Rkn then f = akn f + Rkn ------- 2.4.3 

f = a kf + Rk then f = ak fk _ n + Rk --------2.4.4 

Thus (2.4.3) asserts that any strategy kn that is optimal for the current decision 

when the horizon n is large enough (greater than n*) is also an optimal 
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stationary strategy for an unbounded horizon. And (2.4.4) asserts the reverse 

proposition. By performing the calculations of (2.4.2) according to a certain 

computation format, we can ascertain n * . The details of the approach are 

extraneous to the purpose of this project, and therefore are omitted here. 

2.5 SUCCESSIVE APPROXIMATIONS IN FUNCTION SPACE (VALUE 

ITERATIONS) 

The guiding idea of the proceeding method was to find an optimal stationary 

policy, k, for an unbounded horizon by examining an increasing sequence of 

values of n. In contrast, the notion below is to successively approximate the 

function value f in the extremal equation. Accordingly the process is termed 

value iteration. 

Let f be an initial guess for f. Then the technique 1S to compute 

f l i , ... according to the recursion . 

f+l = minimum[ atr + Rk] for O~a<l -------2.5.1 
k=1,2,3, ... ,N (value iteration) 

where -f is the trial value for f from iteration n. (If the optimization in the 

extremal equation indicates "maximum" then the corresponding change is made 

in (2.5.1). An example of the method is given below. 

Although the algorithm (2.5.1) is well specified, three question arise about its 

application: 

(i) Does the value of f always approach the value of f that satisfies the 

extremal equation? 

(ii) If so, is there a finite n such that F equals f? 
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(iii) If alternative k is chosen in (2.5.1) for two successive approximation is it 

optimal ? 

To answer these, suppose for the moment all Rk > 0. If you let f = 0, then it 

can be proved that f+ I > f, so that f are a monotonically increasing sequences 

of approximations. And for n sufficiently large, f is arbitrarily close to the 

optimal value f. In general, however, there is no finite n such that f equals f, 

and further, an alternative may be chosen on the right - hand side of (2.5.1) for 

two or more successive approximations but need not be optimal in an 

unbounded horizon. 

Example 2.5.1 

The following illustrates how the approximation method works when Rk > o. 
letN= 5 and 

Rl = 8.7 

&t = 19.7 

R2 = 12.7 

Rs = 28 .7 

Then we can determine that solution is 

R3 = 14.7 } 
2.5.2 

a = 0.8 

f = um K K = minimum [43 .50, 35.28, 30, 33.39, 42.84] = 30.00 Minim [R ] 
K = I,A,5 1 - 0.8 

So that k = 3 is optimal 

----- 2.5.3 

The function space calculation in recursion (2.5.1) yield, for n = 1,2,3, and f =0 

f = minimum [a k . ° + Rk] = 8.7 for k = 1 
k=1, ... ,5 

f2 = Minimum [0.8(8.7) + 8.7, 0.64 (8.7) + 12.7,0.53(8.7) + 14.7, 

0.41(8.7) + 19.7, 0.33 (8.7) + 28.7] 

- 15.66 for k = 1 ------- 2.5.4 

f3 = Minimum [0.8(15 .66) + 8.7, 0.64 (15.66) + 12.7,0.51 (15.66) + 
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14.7, 0.41(15.66) + 19.7, 0.33 (15.66) + 28.7] 

= 21.33 for k = 1. 

F or iterations n > 3 

t = 25.53 f5 = 27 .57 f> = 28.76 f7 = 29.37 

f = 29.68 f = 29 .84 f O = 29.91 f l = 29.95 

f2 = 29.97 f3 = 29.98 f 4= 29.99 f 5 = 29.99 

all for k = 3 

2.5.1 COMMENTARY 

2.5.5 

The example shows in (2.5.4) that a policy (k = 1) can be selected for several 

successive approximations but not be an optimal solution for the unbounded 

horizon. You can alter the example so that k = 1 is selected for an arbitrarily 

large number of approximations by reducing RI close enough to 6. The 

calculations in (2 .5.5) indicate that there is a fast rate of convergence of f n to f, 

but that fn does not equal f for any finite n. 

Observe that for a = 1, the process breaks down. For every n, a k is selected if 

it produces the minimum Rk, and such a k does not usually agree with the 

solution that minimizes the average cost per period Rklk. 

The value iteration method given in (2.5.1) actually works for any values of Rk 

and initial guess f o. But then the sequence of :f values is not always 

monotonic. An alternative approach for selecting f does always result in a 

monotonically decreasing sequence of approximations, that is f n+ 1 :S f n . The 

idea is to guess an optimal policy, and let f O be the corresponding present value 

for this policy. 
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If the policy we guessed proves optimal in calculating f 1, then f O = f 1 = f. But 

if a new policy is strictly better in calculating f 1, then the recursion (2 .5.1) 

proceeds as before and f n +1 < f n. The method is illustrated next. 

2.5.2 MONOTONE CONVERGENCE 

Consider the example in (2.5 .2) and assume your initial guess is k = 1. Then 

f o = Rl 

l-a1 - 43.50 ------- 2.5.6 

and for n = 1, 

rt = Minimum [0.8(43.50) + 8.7, 0.64(43.50) + 12.7, 0.51(43.50) + 14.7, 

0.41(43.50) + 14.7, 033(43.50) + 28.7] 

= 36.88 fork = 3 

for iterations n > 1 

f = 33.50 

f5 = 30.45 

f = 30.05 

f3 = 31.78 

fi = 30.22 

f = 30.02 

---------- 2.5.7. 

t = 30.90 

f7 = 30 .11 

f O = 30.01, all for k = 3. 

We can alter the example, by reducing Rt close to 17.7, so that k = 4 is selected 

for an arbitrarily large number of approximations. Had we started the process 

by guessing k = 3 then f l = 30.00 for k = 3. 

The motivation for letting f 0 = 0 in the application of recursion (2 .5.1.) was 

mainly numerical convenience. We would not gain much insight from a verbal 

description of the approximation process with this starting point. However, 

letting f 0 be the present value of an initially guessed policy does lead to a key 

idea. The amount f 0 in (2.5.6) represents the present value of adopting the 

policy k = lover an unbounded horizon. Suppose that instead of k = 1, our 
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immediate decision is k = 3, and thereafter we always let k = 1. The present 

value of this strategy is r in (2.5.7). Analogously, f in (2.5.8) actually 

represents the present value of letting k= 3 for the first two regeneration 

decision, and letting k = 1 subsequently. This observation suggests another 

mode of approximation, discussed in the next section. 

2.6 SUCCESSIVE APPROXIMATIONS IN POLICY SPACE 

(POLICY ITERATION) 

Suppose in calculating the right-hand side of the recursIon (2.5.1) in the 

previous section, we find a policy that makes a strict improvement over the one 

associated with f n. This means that using this policy is an improvement over 

using the previous policy for the immediate decision. It is plausible, and 

correct, that using the new policy throughout the entire unbounded horizon 

would be even better than employing it only for the immediate decision. Then 

f+ 
1 can be calculated as the present value of repeatedly the new policy. This 

process is known as approximation in policy space or simply as policy iteration, 

since each iteration considers a new trial stationary policy for the unbounded 

horizon. 

The resultant sequence of f is monotonically decreasing and a strict 

improvement occurs at every iteration; therefore we never return to a policy 

once it has been discarded. Since there is a finite number N of distinct 

stationary policies, the approach must terminate in a finite number of iterations. 

As soon as a policy remains optimal for two successive approximations, we 

may stop the calculations, and f equals the optimal value f satisfying the 

extremal equation. As we will see, the price we pay to obtain a finite algorithm 

is the effort involved in calculating fn + 1 for a new policy at each iteration. 
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The algorithm is 

Step 1: Select an arbitrary initial policy and let n = 0 

Step 2: 

Step 3: 

Step 4: 

Given the trial policy, calculate the associated 

fD = Rk (present value of trial k over an unbounded horizon) 
l-ak 

Test for an improvement by calculating 

Minimum [a k fD + Rk] = a kI f D + Rk/ 
k=1 2 --- N " , 

2.6.2 

Terminates the iterations if a kI fD + RkJ = fD. Otherwise, revise 

the policy k '. Increase n to n+ 1 and return to step 2 with the new 

trial policy. 

Observe that whereas the very process of approximation in function space leads 

immediately to successive trial values for f, now these must be computed 

separately from (2.6.1). Notice also that the test for termination in step 4 is 

satisfied if k 1 is the same as the trial policy in step 2. That is, the calculations 

cease whenever kl is the same for two successive approximation. 

Example 2.6.1. 

To illustrate the approach, consider 

R] = 8.7, R2 = 12.7, R3 = 14.7, Rt = 19.7, Rs = 28.7 ------- 2.6.3 

Which is the same as example (2 .5.1) that is, equation 2.5.1 of the previous 

section. 

As before, take your initial policy guess to be k = 1, so that fO = 43.50. The test 

calculation in (2.6.2) is the same as (2.5.7) in the previous section. Thus in the 
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value formula (2.6.1) we now find f1 = 30.00 for k = 3. The second application 

of the test quantity (2.6.2) yields 

Minimum [0.8(30.00) + 8.7, 0.64(30.00) + 12.7,0.51(30.00) + 14.7, 

0.41(30.00) + 19.7,0.33(30.00) + 28.7] = 30 for k 1 = 3---- 2.6.4 

so that the process terminates . 

2.6.1 A VERAGE RETURN PER PERIOD 

As usual, to obtain the corresponding method for a = 1, it is helpful to recast 

the procedure in terms of equivalent average return. The analogy to the value 

formula (2.6.1) is simply 

R 1 
---.lL for a = 1 

kl 
------- 2.6.5 

Note that ifRk depends on a' then the value ofRk at a = 1 is used in calculating 

the ratio on the right side of(2.6.5.) 

The expression on the left in the test quantity 2.6.2 becomes 

-------- 2.6.6. 
k = 1,2, ... ,N 

but when we let a = I, the bracketed expression is independent ofk. To rectifY 

the situation, observe the following. If ki minimizes a function g(k), then k1 

also minimizes ag(k) + b for a > O. Let g(k) be the expression in the brackets 

of2.6.6. 

a = (1 - ar l 
, and b = _gn (1 - a) -1 . Make this transformation in 2.6.6 so that the 

following optimization, analogous to the test in 2.6.2 is approximate. 
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Minimum 
K=I ,2,---,N 

Minimum [ - kg n + Rk] = _klg n + Rk . for a = 1 
k = 1,2, ... , N 

------ 2.6.7 

Once again, we must use the value of Rk appropriate for a = 1, if in fact Rk 

depends an a . 

To summarise, the technique is 

Step 1: 

Step 2: 

Step 3: 

Select an arbitrary initial policy, and let n = 0 

Given the trial policy, calculate the associated 

Rk 
(average cost per period of k) 

k 

Test for an improvement by calculating 

------- 2.6.8 . 

Minimum [ - k1g n + Rk] = - k 19 n + Rk1 (select k 1) ----- 2.6.9. 
K=I,2,---,N 

Step 4: Terminate the iterations if - k 19 n + Rk 1 = O. Otherwise revise 

the trial policy to k 1. Increase n to n + 1, and return to step 2 with 

the new trial policy. 

To see how the method works, apply the algorithm to the example 2.6.1 . The 

sequence of calculations is 

(i) gO = Rl/1 = 8.7 for k = 1 as the initial policy 

(ii) Minimum [-1(8.7) + 8.7, - 2(8.7) + 12.7, -3(8.7) + 14.7, -4(8.7) + 19.7 
-5(8.7) + 28.7] = -15.1 for k 1 = 4 

(iii) gl = 1414 = 4.925. 

(iv) Minimum [-k(4.925) + Rk] = -0.025 for k 1 = 3 
k = I, . .. , 5 
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(v) g2 = R3/3 = 4.9 

(vi) Minimum [-k(4.9) + Rk] = 0 for k1 = 3 
k = 1, """, 5] 

Notice the same policy kl =3 is indicated for two successive iterations, thereby 

causing termination at step 4, and kl = 3 is optimal. 

We may not really be indifferent between two policies that look equally good 

according to the test in (2.6.9). For example, if we add another decision k = 6 

with return ~ = 2, R3 = 29.4, this policy has the same value of g when a = 1 

as does policy k = 3, but for a < 1. 

R 6 R 3 _ R 3 > R 3 -------- -
1- (16 1- (13 1 + (13 2 

So far 0 <a < 1 the present value from k = 6 always exceeds the present value 

for k = 3. Thus, although k = 3 is optimal according to the test in (2.6.9), we 

may really prefer k = 6. 
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CHAPTER THREE 

APPLICATIONS OF OPTIMIZATION WITH UNBOUNDED HORIZON 

3.l. PRACTICAL SIGNIFICANCE OF MODELS ASSUMING 

STATIONARITY OVER AN UNBOUNDED HORIZON 

These introductory comments are meant to help us make a transition from the 

point of view of the linear programming models we have ever studied. Whereas 

most industrial applications of the linear programming models we have seen are 

oriented to planning decisions in the face of large-scale complex situations, 

dynamic programming models are typically applied to much smaller-scale 

phenomena. The following illustrations typify dynamic programming decision 

models: 

Inventory reordering rules indicating when to replenish an item and by 

what amount. 

Production-scheduling and employment-smoothing doctrines applicable 

to an environment with fluctuating demand requirements. 

Spare-parts level determination to guarantee high efficiency utilization of 

expensive equipment. 

Capital budgeting procedures for allocating scarce resources to new 

ventures. 

Selection of advertising media to promote wide public exposure to a 

company's product. 

Systematic plan or search to discover the whereabouts of a valuable 

resource. 

Scheduling methods for routine and major overhauls on complex 

machinery. 

Long-range strategy for replacing depreciating assets. 
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In the case of models assuming stationarity over an unbounded horizon, we well 

may wonder whether models assuming stationary over an unbounded horizon 

have much practical significance since stationarity rarely exi.sts for an extended 

period of time. We will distinguish two types of applications to show their 

importance. 

The first type pertains to situations in which dynamic optimization models are 

used to improve day-to-day operating decision, such as replenishing inventory 

and scheduling production. 

For example, consider a firm that monitors its inventory-level daily and 

reorders an item every few weeks when the stock level reaches a critical point. 

Suppose, as is frequently true, that for at least twelve months the items demand 

rate and the ordering and holding cost functions are stable. Then it is 

reasonable for the firm to use the same inventory replenishment rule during 

three to six months, and at the end of that time to revise its inventory policy 

based on a new twelve -month forecast. (Another important consideration also 

justifies this mode of operation. If the firm stocks hundreds of different items 

it would be too time-consuming and disruptive to recompute a new 

replenishment rule at frequent intervals for every item. The cost of doing so 

would far outweigh any efficiency savings from the improved decisions.) 

How, then, should the company set each specific replenishment rule.? One 

possibility is to determine for a horizon length N = 365 days, the minimum cost 

fN(i) and optimal policy when entering inventory is i, and for the first few 

months employ the replenishment policy associated with N = 365. But given 
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the stationarity assumptions, an unbounded horizon model can provide equally 

excellent answer, and typically requires much less calculation. 

Accordingly, one justification for employing a stationary, unbounded horizon 

model is that in the context of daily operations, the approach is both effective 

and a relatively easy way to derive optimal decisions for the initial interval of 

time. 

The second type of application pertains to situations m which dynamic 

optimization models are used to make recurring strategic investment decisions, 

as in the replacement of expensive equipment. Large pieces of machinery may 

be replaced as seldom as every 15 or 20 years. Consequently, when the next 

replacement is necessary, completely new types of machinery are likely to be 

available. How then, should the current investment decision be made? One 

possibility of course, is simply to ignore that fact that the equipment eventually 

must be replaced. This can be misleading and hazardous, as witnessed by the 

following illustration, based on an actual case. 

A food processmg company facing production bottlenecks realized it could 

alleviate its problem by either pre stocking inventory during the slack season for 

sales during the peak season, or by purchasing new equipment to expand its 

production capacity. When the ever-recurring cost associated with the increased 

early season inventory was compared with the initial cost of the added 

equipment, it seemed preferable to purchase the machinery. However, as soon 

as the equipment decision was analysed to take account of ever-recurring future 

replacements, it turned out to be far the less attractive, even with optimistic 

projection of subsequent replacement costs. 
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3.2 AN EXAMPLE TIMBER HARVESTING MODEL 

Weare now ready to see the applications of the various ideas we have learned 

about optimization in an unbounded horizon. In this section, we will use the 

ideas in the previous chapter to solve a particular optimization problem. 

A Timber Company is planning the forestation of a new area of land. The firm 

has estimated that a tree fell at the start of the Kth period of growth yields a net 

return Nk 2: O. To keep the discussion simple, assume that all expenditures on 

planting and maintaining a forest are negligible as compared with the cost of 

harvesting and transporting trees at the beginning of period K. Further, suppose 

all the trees are to be cut in the same period. Consequently, Nk represents the 

revenue received less the costs of cutting all the trees. Assume Nk is available 

at the start of period k, and k = 1 refers to the current period when the 

forestation commences. 

3.2.1 SINGLE DECISION 

The discount factor ak
-
1 is applied to obtain the present value of the return, so 

the optimization problem is 

Maximize ak
-
1 Nt 

k = 1,2,3, ... 
--------------- 3.2.1 

The formulation (3.2.1) assumes that after the forest is harvested, replanting 

does not take place. In other words, the problem as stated so far involves a 

single decision: when to cut down the trees. 
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Suppose K is a value of k that solves (3 .2.1), and assume that the sequence 

a<N1, a lN2, a2N3, .. . has the property. 

aON l ~alN2 < ... < ak-2 Nk-l < ak-1 Nk > akNk+l2:..ak+l Nk+2 > ... , --------3.2.2 

so that the present value is increasing as k goes from 1 to K and then is 

decreasing for larger k. Then the inequalities 

( k-2 N k-l N ) d ( k-l N k N ) . lify th di . a k-l < a k an a k ~a k+l SlffiP to e con nons. 

N k _1 < a < N k ------------3.2 .3 
Nk - N k+1 

Therefore the value K can be found by calculating the ratios N k starting 
N k +1 

with k = 1, and terminating as soon as a ratio is at least as large as a . 

3.2.2 ILLUSTRATION 

Consider the case in which 

Nk = a-bkwhere 0 < b <1 and a > b. -------- 3.2.4 

(plot values ofNk for a = 0.75, b = 0.5, and k = 1,2,-----, 8) then (3 .2.3) can be 

simplified to 

bk-l > a(l-a) > bk 

l-ab 
-------- 3.2.5 

This case brings up a new difficulty. Let a = 1, so that the middle term in 

(3 .2.5) equals O. Then there is no finite value for K satisfying (3.2.5), since 

bk>O for all k. However, bk is arbitrarily close to 0 for k sufficiently large. Thus 

when a = 1, it is not meaningful to write, "maximize" in (3 .2.1) if Nk is 

specified by (3 .2.4) . We can see why a finite maximum does not exist in this 

circumstance ifwe refer to the graph ofNk. 
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To illustrate (3.2.5) by a numerical example, suppose 

Nk = 0.85 - (0.78) k and u = 0.8 ------------ 3.2.6 

Then K = 4 satisfies (3.2.5). Let P.V. (k) denote the present value u k-\ then 

P. V. [1] = 0.070 P.V. [2] = 0.193 P.V.[3] = 0.240 

P.V. [4] = 0.246 P.V. [5] = 0.230 ----------- 3.2.7 

3.2.3 UNBOUNDED HORIZON 

Now consider what happens when the forest is replanted in the period following 

the harvest, and thereafter the process is repeated infinitely often. If, each time, 

the forest is cut at the beginning of k periods growth, the present discounted 

value of the return stream over an unbounded horizon is 

F (k) -

So that 

F(k) = 

P.V. [k] (1 + U K + U 2K+ ... ) 

P.V. [k] + P.V.[k] (U K + U 2K + . . .. ) 

P.V. [k] + U K P.V. [k] (U K + u 2K+ . .. ) 

P.V. [k] + U K F (k) 

P.V.[K] 
1- Uk 

--------------- 3.2.9 

3.2.8 

An optimal policy over the unbounded horizon is one that maximizes F (k). Let 

the maximal value ofF(k) be denoted by F, which we can according to 

F Maximum 
Maximum P.V.[K] ____________ 3 2 10 
k = 1,2,3,A 1- Uk . . 

given the formula for F(k) in (3.2.9). An immediate implication of(3 .2.10) is 
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F~ 
P.Y.[K] 

---------------- 3 .2. 11 
I-ak 

for every k, or, equivalently, 

F ~a K F + P. V.(k) ------------- 3.2.12 

for very k, where the equality holds in (3.2.11) and (3.2.12) for an optimal 

policy. This in tern in plies that the value for F must satisfy 

F = Maximum (aKF + P.V.[k]) ------------- 3.2.13 

Suppose (3.2.10) yields k = kl as an optimal policy and assume that the 

sequence 
P.y'[I] P.y'[2] 

I-a 
has the property 

, 2 '" .. 
I - a 

P.V.[I] < ________ < p.V.[Kl] > p .V.[K1 + 1] > -------3 2 14 
1- a - 1-a k1 - 1- ak +1 - • • 

Then the inequalities for kl_l, kl, and k 1 + 1 in (3.2.14) lead to the one analogous 

to (3.2.3), namely. 

-------------3 .2 .15 

The value kl can be found by calculating the right-hand side of (3.2.15), 

starting with k= 1, until the ratio is at least as large as a. For each k, the ratio 

will be larger than Nk / Nk+l , which was calculated to obtain k in (3.2.3). Hence 

kl ~ k, ----------- 3.2.16 

Which means that the forest is usually harvested more often in the unbounded 

horizon case (and never less often). 
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When a = 1 in (3.2.15), the inequalities can be written as 

Nkl _
l 

K I -l < 
N kl 

1 < ----------- 3.2.17 

K I 

implying that kl is a policy yielding the maximum average return per period. 

For the numerical example in (3.2.6), an optimal policy is kl = 2 and 

F(I) = 0.350 

F(4) = 0.417 

F(2) = 0.536 

F(5) = 0.342 

F(3) = 0.492 

3.2.18 

where F(k) is the value of (3.2.9). This in the unbounded horizon situation, if 
we erroneously employed the solution k = 4 from the single decision case, we 
would receive only 0.417 = 0.78 of the truly optimal present value. 

0.536 

3.3 INFINITE STAGE REGENERATION MODEL 

We have already seen a few applications of optimization with unbounded 

horizon. One of such example is the timber harvesting and replanting problem 

in the pervious section. Each time the forest is cut, the problem regenerates 

itself in the sense that the Timber company must again decide how long to wait 
, 

until the next harvest period. Another illustration is the problem of equipment 

replacement discussed in section 3.1. There regeneration occurred each time a 

machine was replaced. Consequently, the decision variables are really the 

successive intervals between replacements. Instead of pursuing any particular 
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example in further detail, we will now treat them all in the context of a general 

model. 

Suppose each time the decision process regenerates itself, the decision maker 

can choose among N alternatives, which are indexed k = 1,2,------, N. Assume 

that if alternative k is selected at a regeneration period t, then the next 

regeneration occurs at period t + k, and let 

Rk = cost of Alternative k ------- 3.3.1 

valued at the start of its regeneration period. Note that (3.3.1) embodies a 

stationarity assumption Rk does not depend on the particular period when the 

regeneration occurs. Also observe that since Rk is to be interpreted as a cost, the 

sense of optimization will be minimization. 

3.3.1 FINITE HORIZON 

= { present value of an optimal regeneration policy in which =} 
alternative must be chosen when n periods remain unite the 

end of the planning horizon 

Suppose that we choose Alternative k. Then we immediately incur the cost Rk, 

and assuming that we act optimally at the next regeneration point, n-k, we 

subsequently incur the cost U~n _ Ie, where the factor Uk properly discounts the 

future cost to the present. Hence, an optimal choice when there are n period 

remaining until the end of the horizon is a policy that minimizes the sum 

Uk fn _ k + Rk, and the corresponding minimum value is fn. Assuming that n > N, 

we can characterize fn recursively by the relation. 

fn = mmlmum [uk fn _ k + Rk], fo = 0 for 0< u ~1 ----------3.3 .3 
k=1 ,2, .. . ,N 
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(if n < N then the minimum is restricted to k = 1 2 -------- n) , , , , 

Actually, if the costs of Alternative k occur throughout k periods, then each Rk 

would also depend on a; but we let this fact remain implicit and use the 

abbreviated symbol Rk instead of Rk(a). 

To see how (3.3.3) works, suppose k=l is optimal for all horizon lengths n. 

Then (3.3.3), yields 

fn = a fn-1 + Rl = a [a fn - 2 + R d + R 1 

a [(a fn - 3 + R1) + Rd + Rl 

... = R] + a R] + ... + an - 1 R] 

}- 3.3.4 

3.3.2 UNBOUNDED HORIZON 

Now suppose the planning horizon for the regeneration process is unbounded. 

Each time regeneration occurs, the decision-maker continues to face an 

unlimited horizon. It can be proved by rigorous argument that there exists an 

optimal strategy (or policy) and is stationary: choose the same alternative k at 

each regeneration point. Then if a :1= 1, the appropriate generalization of (3.3.3) 

IS 

f = Minimum [ak f + Rk] for 0< a < 1 --------- 3.3.5 
k=1,2,----,N 

3.3.3 REMARKS 

Recall that in (3.2.13) of the previous section, we considered an example of a 

similar optimization relation, the only important difference being the sense of 
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optimization. There P.V.[k], being a present value, did depend on a .. We also 

note that here the largest value possible for k is assumed a priori to be N. 

The relation (3.3 .5) is an example of what is called a FUNCTIONAL OR 

EXTREMAL EQUATION. It is the value of f that is unknown, and (3.3.5) 

states the optimization relation is that f must satisfy, given that a stationary 

strategy is used. When dealing with extremal equations, we must always 

consider the following: 

1. Does the equation possess a finite solution? 

ll. If so, is the solution unique? 

111. If so, is f the maximal discounted return among all (not necessarily) 

policies 

To see the relevance of these questions, suppose a =1, contrary to the restriction 

on the right in (3.3 .5). If we assume all Rk >0, then no finite value for f satisfies 

(3.3.5). But if instead, we assume all Rk = 0, then any finite value for f will 

satisfy (3.3.5). Therefore, the functional equation (3.3.5) is not appropriate for 

a= 1. 

We can view (3.3.5) as stating that fmust satisfy. 

F ~ ak f + Rk or f ~ Rk K for all k, ------------- 3.3.6 
1- u 

and equality in (3.3.6) must hold for at least one value of k. it follows that a 

unique finite solution to the extremal equation (3.3.5) does exist and equals 

f Minimum Minimum [Rk ] 
K = I,2,A ,N I-UK 

------------ 3.3.7 

An optimal stationary policy corresponds to any Alternative k that yields the 

optimal value for f. 
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We can also derive (3.3 .7) on the basis of stationarity. Since it is optimal to 

employ the same Alternative k every time regeneration occurs; the present 

value of the policy is 

~ ------------ 3' 3 8 K •• I - a --

Thus an optimal policy is one that minimizes this quantity, as indicated in 3.3.7 

So far, the infinite stage problem has been solved assumin,g a:;t:l, and we 

discovered that 3.3.5 is not appropriate for a = 1. However, we can extend the 

analysis to a = 1 by employing the criterion of equivalent average return 

suggested in chapter two. 

66 



CHAPTER FOUR 

COMPUTATIONAL RESULTS 

4.1 IN1RODUCTION 

These introductory comments are meant to help us understand that computer 

'programs have been put in place in this project that will assist us easily compute 

and select optimal strategy discussed in chapter two. 

A computer program is also developed to solve a real life problem (Timber 

Harvesting model) discussed in chapter three. We are now ready to see results 

generated by computer using solved examples of this project. 
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R1=8.7 ,R2=12.7 ,R3=14..7 ,R4=19.7 ,R5=28.7 ,R6=30.7 ,R7=35.7 ,R8=38.7 ,R9=4O.7 ,RlO=42.7 , 

K 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 

alpha 

.1 
.1 
.1 
.1 
.1 
.1 
.1 
.1 
.1 
.1 

Table 4..1.1 

f 

8.7 
12.787 
12.82787 
12.82828 
12.82828 
12.82828 
12.82828 
12.82828 
12.82828 
12.82828 

n 

o 
1 

2 
3 
4 
5 
6 
7 
8 
9 

1IIIl.'-,R2=12.7 ,R3=14..7 ,R4=19.7 ,R5=28.7 ,R6=30.7 ,R7=35.7 ,R8=38.7 ,R9=4O.7 ,RlO=42.7 , 

1 
1 
1 
1 
1 
1 
1 
1 

alpha 

.2 

.2 

.2 
l 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

Ta!fe-4..1.2 

f 

8.7 
10.44 
10.788 
10.8576 

152 
ttr.8743 
10.81486 
10.S74f1 
10.874 
10.875 
10.875 

n 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 ,R5=-.7 ,rt6=30.' ,&7=35.7 ,R8=38.7 ,R9=4O.7 ,RlO=42.7 ~ 

alpha f n 

---------------------------------------------~---------------
.3 8.7 0 
.3 11.31 A 
.3 12.093 2 
.3 12.3279 3 
.3 12.39837 4 
.3 12.41951 5 
.3 12.42585 6 
.3 12.42776 7 
.3 12.42833 8 
.3 12.4285 9 
.3 12.42855 10 
.3 12.42856 11 
.3 12.42857 12 
.3 12.42857 13 

Table 4..1.3 
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R1=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 ,R5=28.7 ,R6=30.7 ,R7=35.7 ,R8=38.7 ,R9=40.7 ,RlO=42.7 , 

K alpha f n 
------------------____________ • __________ • ____ ". __ ._-_ ... w •• ____ 

1 .4 8.7 0 
1 .4 12.18 1 
1 .4 12.572 2 
1 .4 13.7288 3 
1 .4 14.19152 4 
1 .4 14.37661 5 
1 .4 14.45064 6 
1 .4 14.48026 7 
1 .4 14.4921 8 
1 .4 14.49684 9 
1 .4 14.49874 10 
1 .4 14.4995 11 
1 .4 14..4998 12 
1 .4 14.49992 13 
1 .4 14.49997 14 
1 .4 14.49999 15 
1 .4 14.45 16 
1 .4 14.48 17 
1 .4 14.492 18 
1 .4 14.4968 19 
1 .4 14.49872 20 
1 .4 14.49949 21 
I .4 14.4998 22 
1 .4 14.49992 23 
1 .4 14.49997 24 

.4 14.49999 25 

.4 14.5 26 
l .4 14.5 27 

Table4.l.4 

1=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 ,R5=28.7 ,R6=30.7 ,R7=35.7 ,R8=38.7 ,R9=40.7 ,RlO=42.7 , 

alpha f n 
-----______ 1 

.5 8.7 0 

.5 13.05 1 

.5 15.225 2 

.5 16.3125 3 

.5 16.73906 4 

.5 16.79238 5 

.5 16.79905 6 

.5 16.79988 7 

.5 16.79998 8 

.5 16.8 9 

.5 16.8 10 

Table 4.1.5 
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Rl=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 ,RS=2&.7 ,R6=30.7 ,R7=35.7 ,RS=3&.7 ,R9=40.7 ,RlO=42.7 , 

K alpha f n --.. --------.. -------------,.. .. _--------... --------------.. ----.... ----... 
1 .6 8.7 0 
1 .6 13.92 1 
1 .6 17.052 2 
3 .6 18.38323 3 
3 .6 18.67078 4 
3 .6 18.73289 5 
3 .6 18.7463 6 
3 .6 18.7492 7 
3 .6 18.74983 8 
3 .6 18.74996 9 
3 .6 18.74999 10 
3 .6 18.75 11 
3 .6 18.75 12 

Table 4.1.6 

fU=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 IRS=2&.7 ,R6=30.7 ,R7=35.7 ,RS=3&.7 ,R9=40.7 ,RlO=42.7 , 

alpha f n 

-----------------------------
.7 8.7 0 
.7 14.79 1 

I .7 19.153 2 
J .7 2L2fi948 3 
I .7 21.99543 4 

.7 22.24443 5 

.7 22.32984 6 

.7 22.35914 7 

.7 22.36919 8 

.7 22.37263 9 

.7 22.37381 10 

.7 22.37422 11 

.7 22.37436 12 

.7 22.37441 13 

.7 22.374412 14 

.7 22.37442 15 

.7 22.37443 16 

.7 22.37443 17 

Table 4.1.7 
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R1=8.7 ,R2=12.7 ,1t3=14.7 ,R4=19.7 ,R5=28.7 ,R6=30.7 ,R7=35.7 ,R8=38.7 ,R9=40.7 ,R10=42.7 , 

K alpha f n 

--------------------------------------------------------------------.---

1 .8 8.7 0 
1 .8 15.66 1 
1 .8 21.228 2 
3 .8 25.56874 3 
3 .8 27.79119 4 
3 .8 28.92909 5 
3 .8 29.51169 6 
3 .8 29.80999 7 
3 .8 29.96271 8 
3 .8 30.04091 9 
3 .8 30.08095 10 
3 .8 30.10145 11 
3 .8 30.11194 12 
3 .8 30.11731 13 
3 .8 30.12006 14 
3 .8 30.12147 15 
3 .8 30.12219 16 

~ .8 30.12256 17 
.8 30.12275 18 

J .8 30.12285 19 
J .8 30.1229 20 
J .8 30.12292 21 
1 .8 30.12294 22 
J .8 30.12295 23 
1 .8 30.12295 24 

Table 4.1.8 
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R1=8.7 ,R2=12.7 ,R3=14.7 ,R4=19.7 ,15=28.7 ,RI=30.7 ,R7=35.7 ,R8=38.7 ,R9:40.7 ,RlO=42.7 , 

K alpha f n 
----------------------------------------------------------..-----~ 

1 .9 8.7 0 
1 .9 16.53 1 
1 .9 23.577 2 
1 .9 29.9193 3 
1 .9 35.62737 4 
3 .9 40.67235 5 
3 .9 44.35014 6 
3 .9 47.03125 7 
3 .9 48.98578 8 
3 .9 50.41063 9 
3 .9 51.44935 10 
3 .9 52.20658 11 
3 .9 52.7586 12 
3 .9 53.16102 13 
3 .9 53.45438 14 
3 .9 53.66824 15 
3 .9 53.82415 16 
3 .9 53.93781 17 
3 .9 54.02066 18 
3 .9 54.08106 19 
3 .9 54.12509 20 
3 .9 54.15719 21 
1 .9 54.18059 22 
J .9 54.19765 23 
) .9 54.21009 ~4 
I .9 54.21916 25 
J 19 54.22577 26 
J .9 54.23059 27 
1 .9 54.2341 28 
l .9 54.23666 29 
) .9 54.23853 30 
\ .9 54.23989 31 . 

.9 54.24088 32 

.9 54.2416 33 

.9 54.24213 34 

.9 54.~4251 35 

.9 54.24279 36 

.9 54.24299 37 

.9 54.24314 38 

.9 54.24325 39 

.9 54.24333 40 

.9 54.24339 41 

.9 54.24343 42 

.9 54.24346 43 

.9 54.24348 44 

.9 54.2435 45 

.9 54.24351 46 

.9 54.24352 47 

.9 54.24353 48 

.9 54.24353 49 

Table 4.1.9 
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n f K Alpha . 
************************************************************ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

15.66 
21.228 
25.56874 
27.6376 
28.85045 
29.47143 
29.78937 
29.95216 
30.03551 
30.07818 
30.10003 
30.11122 
30.11695 
30.11988 
30.12138 
30.12215 
30.12254 
30.12274 
30.12284 
30.12289 
30.12292 
30.12294 
30.12295 
30.12295 

Tabel4.2.1 

1 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 
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" f k alpha 
************************************************************ 

1 10.26 1 .8 

2 13.908 1 .8 
3 16.8264 1 .8 
4 19.16112 1 .8 
5 21.0289 1 .8 
6 22.52312 1 .8 
7 23.7185 1 .8 
8 24.6748 1 .8 
9 25.43984 1 .8 
10 26.05187 1 .8 
11 26.5415 1 .8 
12 26.9332 1 .8 
13 27.24656 1 .8 
14 27.49725 1 .8 
15 27.6978 1 .8 
16 27.85824 1 .8 
17 27.98659 1 .8 
18 28.08927 1 .8 
19 28.17142 1 .8 
20 28.23714 1 .8 
21 28.28971 1 .8 
22 28.33177 1 .8 
23 28.36542 1 .8 
24 28.39234 1 .8 
25 28.41387 1 .8 
26 28.4311 1 .8 
27 28.44488 1 .8 
28 28.4559 1 .8 
29 28.46472 1 .8 
30 28.47178 1 .8 
31 28.47742 1 .8 
32 28.48194 1 .8 
33 28.48555 1 .8 
34 28.48844 1 .8 
35 28.49075 1 .8 
36 28.4926 1 .8 
37 28.49408 1 .8 
38 28.49526 1 .8 
39 28.49621 1 .8 
40 28.49697 1 .8 
41 28.49758 1 .8 
42 28.49806 1 .8 
43 28.49845 1 .8 
44 28.49876 1 .8 
45 28.49901 1 .8 
46 28.49921 1 .8 
47 28.49937 1 .8 
48 28.4995 1 .8 
49 28.4996 1 .8 
50 28.49968 1 .8 
51 28.49974 1 .8 
52 28.49979 1 .8 
53 28.49983 1 .8 
54 28.49986 1 .8 
55 28.49989 1 .8 
56 28.49991 1 .8 
57 28.49993 1 .8 
58 ~.49994 1 .8 
59 28.49995 1 .8 
60 28.49996 1 .8 
61 28.49997 1 .8 
62 28.49998 1 .8 
63 28.49998 1 .8 

Table 4.2.2 
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4.2 REMARKS 

The guiding idea of the proceeding results is to successively approximate the 

function value f in the extremal equation 

F+
1 

= minimum [a~ + Rk] for ° ~ a < 1 ------- 4.1.1 

K= 1, 2, ... .. , N 

Accordingly, the process is termed value iteration. In this method, we let f be 

an initial for f Then the technique is to compute a sequence of approximations 

f ,r ,f3, ... , according to the recursion (4.1.1). Where f is the trial value for f 

from iteration n, k is the alternative and Rk is the cost of alternative k and that 

that is why our (4.1.1) is minimum. 

In the proceeding results, we let f=o and all Rk >0, so that f are monotonically 

increasing sequence of approximations. We can observe that there is no finite n 

such that f equals f, and further, an alternative may be chosen on the right hand 

side of (4.1.1) for two or more successive approximations but need not be 

optimal in an unbounded horizon. 

Table 4.1.1 shows that a policy (k=2) can be selected for several successive 

approximations and may even be optimal solution for an unbounded horizon. 

Similarly, Tables 4.1.2, 4.1.3, 4.1.4, show that a policy (k=I) can be selected for 

several successive approximations and may be optimal solution for an 

unbounded horizon. However, Tables 4.1.5,4.1.6,4.1.7,4.1.8,and 4.1.9 show that 

a policy (k= 1) can be selected for several successive approximations but need 

not be an optimal solution for the unbounded horizon. 

We can easily see that it is possible to select k= 1 as an optimal strategy for an 

arbitrary large number of approximations by reducing Rl below below 7 as can . 
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be seen in table 4.2.l. This simply means that the optimality of a strategy 

depends to some extent on the cost of the strategy. In other words, when a cost 

of a strategy is small, there is high probability that the strategy may be optimal 

even over an unbounded horizon. 

Tables 4.1.1 to 4.1.8, indicate that there is a fast rate of convergence of f to f, 

but that f does not equal f for any finite n. However, in Table 4.l.9, the 

convergence is not at fast rate. 

We equally observe that for a= 1, the process breaks down. For every n, a k is 

selected if it produces the minimum Rk . So from the above tables, we can draw 

the following conclusions: 

(i) That the value iteration method given in (4 .l.1) actually works for any 

values ofRk (Rk >0) and initial guess f. 

(ii) When a is chosen very small (the discount factor), there is a fast rate 

of convergence of f to f 

(iii) That a policy (k= 1) can be selected for several succeSSIve 

approximations but need not be optimal solution for the unbounded 

horizon. However, it can be optimal solution for an unbounded 

horizon if a (discount factor) is chosen close to o. 
(iv) That a policy (k = 1) can be an optimal solution for a finite horizon 

regardless of the values of a, n and f 

(v) We can easily conclude from the above tables that a policy (k=3) is 

the best strategy and an optimal solution for an unbounded horizon. 
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CHAPTER FIVE 

FLOWCHART AND SUMMARY 

5.1 FLOWCHART 

It is said that "a picture is worth a thousand words" and so it is with programs. It is much 

easier to understand the flow of operations from one to the other if we see a diagram than if 

we hear a description. A flowchart is a diagram of a process. It consists of symbols, 

indicating operations; and connecting lines, indicating how the process moves from operation 

to operation. Differently shaped are symbols are used for different types of operations 
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( START ) 
}-

N=O:U=O 

N=N+l 

INPUTR(N) 

YES 

U=U+l 

OPT(U)=R(U)/l-(O.8)U 
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INPUT OPT(U), U 

Optimum when Opt is 
at the minimum 

INPUT J 

q = 0: 1= 0 
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YES 

YES 



f{q)=R(I) 

fq=f{q) 

Print f{q) 

L..-/ __ lNP_ UT
--r-

R(N) ______ 7 
~ 

q=q+l 

f{q)=(Alpha)k*fg+R(q) 

Print f{q) 

YES 
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Optimal when f( q) is 
minimum at a particular value 
ofq 

* 1=1+1 

Fq=f(q) minimal 
q=O= 0: 1= 0 
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YES 



YES 

START 

INPUT I 

S=Q 

INPUT beta, 
alpha,a,b 

S=S+1 

K =log(beta-(Apha*beta»/ 
{l.88*alpha)llog b 

PRINT K, S, 
a,alpha, betaa, 
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.. 
Itef5i1g form Fie 

Graph Computlltion 

fa I .• 
N .... I ril ,..---....::.:.=J .87 

,.0 01 Iteration r--.J 

J AkJha 
I .8 

Print 
COlf1lUle Reds 
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alpha k 
**"*'*************""********************************************************* 

1.75 0.5 0.8 
.85 0.78 0.8 3 
.88 0.79 0.8 3 
99 0.89 0.8 "3 
.66 Q..54 0.8 2 

0.1 .i 2 
.96 0.92 .8 4 
98 0.97 0.8 4 
99 0.65 0.8 2 
~ 0.87 0.8 4 
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~===.-.---

Graph Computation 

II 
~II-

Print 

a a_ 
.85 

b It --a. 
1 .78 

Nit ~ --:.._--:---
0.07 
0.2416 
0.375«8 

.85 .78 2 

.85 .78 3 
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• b k Nk 
~************.**********.***.********************************** 

5 
5 

15 
35 
IS 
15 
15 
l5 

.78 

.78 

.78 

.78 

.78 

.78 

.78 

.78 

1 
2 
3 
4 
5 
6 
7 
8 

0.07 
0.2416 
0.375448 
0.47984944 
0.5612825632 
0.624800399296 
0.67434431145088 
0.712988562931686 

***************************************************************************** 
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Fig. S.2.1A Graph Showing The Relationship of Net return with Time 
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fig. 5.2.2 A Graph Showing he relationship of Net Return with Time 
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5.3 SUMMARY 

The methods of successive approximation in both function space and policy 

space are applicable to solving the extremal equation for the problem of finding 

a best route from each node k to the ternrinal. We should note two points of 

difference in the application of value iteration to the regeneration model and to 

the network model. In the regeneration model there was only one unknown, and 

therefore only one extremal relation, whereas in the network model there are p­

I unknowns and extremal equations. In contrast the horizon in the regeneration 

model was unbounded and value iteration does not necessarily converge in a 

finite number of iterations, whereas finite convergence does occur for a shortest 

route in the network. 

However, successive approximation methods are to be applied to extremal 

equations for dynamic programming models with unbounded horizons that 

satisfy the assumptions: 

(i) The decision outcomes are deterministic 

(ii) The state of the system is examined at discrete points in time 

(iii) Both the decision and state variables are discrete and have a finite 

number of possible values 

(iv) The system parameters are stationery 

However, it is helpful to view certain real situations as if decisions can be made 

any moment, not only at discrete points in time given m assumption (iii) above. 

For example, during "rush hours" a supermarket manager may decide to open 

an additional customer checkout stand whenever he sees the waiting lines 

getting too long. Obviously, he is not restricted to making this decision only at 

periodic mtervals, such as every five minutes. In these situations the various 
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successive approximations approaches we have studied can be adapted to 

ovide workable optimization techniques. 

Assmnption (iii), relating to the variables being discrete and finite-valued, is 

often .imposed for either analytical computational convenience. Frequently, 

however, a real system can be modeled just as well by letting the decision and 

state variables be continuous, and even unbounded 

The regeneration model in chapter four demonstrated how the numerical 

soJution of a functiona1 equation can be s.implified :if we have information about 

the form of an optimal policy. 
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