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ABSTRACT 

This research project was conceived within the framework 

of the philbsophy that there are some initial value problems in 

which some components of the solution contain discontinuities. 

In this attempt some topical review of earlier treatments 

of singular and discontinuous initial value problems were 

made . 

A two - s tep nume rical integrator is presented based on the 

inverse polynomia l methods. The numerical results for the 

integrator are contrasted with some earlier works . The 

integrator converges rapidly when used to solve initial value 

problems with discontinuities / singularities in the solutions. 

The integrator is zero-stabl e and is well suited for singular 

and discontinuous initial valJe problems. 
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CHAPTER ONE 

General Introduction and Basic Mathematical Ideas 

1.1 Historical Background 

A branch of mathematics which has enjoyed -almost three 

centuries of rigorous l~fe and whose early history tends more 

and more to be masked by the density of its later growth is 

Differential Equation. Yet our hazy knowledge of the birth 

and infancy of the science of differential equation condenses 

upon a remarkable date , the 11th November , 1675, when Leibniz 

first set down on paper the equation 

t hereby not merely solving a simple differential equation, 

which was in itself a trivial matter , but what was an act of 

great moment , forging a powerful tool , the integral sign . 

The early history of the infinitesimal calculus abounds 

in instances of problems solved throu gh the agency of what 

were virtually differential equations ; it is even true to s a y 

that the problem of integration which "may be regarded as the 

solution of the simplest of all types of differential 

equations , was a practical problem . Particular cases of the 

inverse problem of tangents , that is the problem of 

determining a curve whose tangents are subjected to a 
-. 
particular law , were successfully dealt with before the 

invention of the calculus . 

But - the historical value of science depends not upon the 

number of particular phenomena it c~n present but rather upon 

the p6wer it has of coordinating diverse facts and subjecting 

them to one simple code . That was what Newton considered when 
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he classified differential equations of the fi r st order , that 

time known as fluxional equations , into three c lasses . 

The first clss is composed of those equ ations in wh i ch 

two fluxions x ' and y ' and one fluent x or y, are related . 

For example 

, 
y = f(x) or k = f(x) 

dx 

and y = fey) or ~ = fey) 
dx 

The second class composed of those equations which involve 

two fluxions and two fluents . That is 

y f(x , y) or .d¥ 
dx 

f (x , y) . 

The third class is made up of equations which involve more 

than two fluxions ; these are known as partial di fferential 

equation . 

By the end of the seventeenth century practically all 

the known elementary methods of solving differential 

equations of the first order had been brought to light . The 

problem of determing the orthogonal traj ectories of a one 

param~ter family of curves was soived by John Bernoulli in 

1698 ; the problem of oblique trajectories presented no 

further difficulties . In early years of eighteenth century a 

number of problems which led to differential equations of the 

second or .third orders were discovered . In 1696 James 

Bernoulli formulated the isoperimetric problem, or the 

problem of determing curves of a given perimeter which 

shall under given conditions , enclose 'a maximum area . Some 
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fi ve years later he published equation of the third order . 

The problem of trajectories in a general sense and in 

partitular trajectories def~ned by the knowledge point 

gave rise to differential equations of the second order . 

Thus for eX,ample , John Bernoulli , discussed an equation which 

would be written as 

dX2 x 2 

and stated that it gave rise to three types of curves , 

parabola , hyperbola and a class of c u rves of third order . 

Numerical Methods of Ordinary Differential Equations 

Of all the ordinary differential equations of the first 

order , only certain very special types admit of explicit 

integ~ation , and when an equation which is not of one or 

other of these types arises in a practical problem the 

i nvestigator has to fall back upon purely numerical methods 

of approximating the required solution . 

Consider the differential equation 

d¥ = f(x , y) or y = f (x , y) • 
dx 

It will be supposed that the initial value (xo ' Yo) is not 

singular with respect to the equation , and that a solution 

exists which can be developed in Taylor series , thus : 

, 2 " 
K = hy + h y 

2! 

3 '" + h y 
3! 

+ ~4 y ' V + 
4! 
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where h = x - xo , and K y - Yo and h is sufficiently small . 

Now the coefficients in the Taylor series may b e 

calculated as follows : 

" , y 

and 

but 

y f(x , y) , 

" y 

02f 

at + f ---.at 
UX uy , 

2 fo2f 

+ 

Dx2 oxDy 

so on .... 

the increasing 

f2 o2f (Of 

+ + + 
oy2 ox 

complexity of 

of)of 

f __ 0 

oy ) oy , 

these expressions renders 

the process impracticable . The actual method adopted in 

practice is Runge ' s method which is an adaptation of Gauss ' 

method of numerical integration . 

are defined as follows : 

hf(xO Yo 

hf (xO + a h , 

where the nine constants a, p,... 02 ' and fo u r weight s R1 , 

R2 , R~ R4 are to be determined so that the expression 

RIKI + R2K2 + R3K3 + R4 K4 agrees with the Taylor series 

up to and including the term in h4 . 

The method above can be extended to systems of any 

number of equations of the first order , and therefore . to 
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equations of order higher than the first . Fo r a sys t em o f 

two equations . 

d¥ = f(x , y , z) , dz = g(x , y , z) 
dx dx 

if the initial values are that 

Y = YO ' z = zo when x xo ' then Runge ' s method for 

the increment K and L which YO and zo receiv e when Xo is 

increased by hare 

K1 hf(xO ' YO ' zO) ~ 

K2 hf(xO + ~h , YO + ~O ' zo + ~L ) - 1 

K3 hf (xO + ~, YO + ~k2 ' zo + ~L2) 

K4 hf(xO + ~h , YO + k3 ' YO + L3) 

',( 

L1 hg (xO ' YO , zO) 

L2 hg(xO + ~h , YO + ~k1 ' zo + ~Ll) 

L3 hg(xO ' + ~, YO + ~k2 ' 

L4 hg(xO + h , YO + k3 ' zo 

K l (k1+ 2k2 + 2k3 + k3) 

6 

zo 

+ 

L l (L 1 + 2L2 + 2L3 + ~4) . 

6 

+ ~L2) 

L3 ) 

In its original form the method discussed above is due to 

Runge ; later m,?difications are due , among others to Kutta . 

Hence the method is later called Runge - Kutta method . 
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1.1.2 Singular Solutions 

Singular solutions were discovered in a rather 

surprising manner . Brook Taylor set out to discover the" 

solut ion of a certain d i fferential equation which , in moder n 

symbolism, would be written as : 

He substituted y = u A v Il, where 

u "and v were new variables and A and Il contants to be 
determined , and so transformed the equation into : 

(1 + x2)2( IlU ~ + AV du)2 = 4uA+2v ll+2 - 4u2v 2 

dx dx 

In this equation there are three elements whose choice is 

unrestricted , namely A, Il and v ; u is then the new dependent 

variable 

Firstly let 

v = 1 + x 2 

then , dividing through by (1 + x 2 )2 , the equation becomes 

(2pxu + AV .d¥) 2 , 
dx 

Now let A = - 2 , p = 1 and the equation reduces t o 

that is 

(2xu - 2v du) 2 
dx 

4v - 4u2 , 

(1 + x 2 ) u 2 - 2xuv du + v 2 (du)2 v 
dx dx 

or , since v 
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l / - ? x u du I V (du) 2 = 1 
dx dx 

Now , if this equation is differentiated with respect to x, 

the derived equation is 

2d2u (v du - xu) 
o 

dx 2 dx 

and breaks up into two equations namely 

d2u = 0 , vdu - xu = 0 

dx 2 dx 

The first gives d 2u 
a , 

where a is constant ; when this value is substituted in the 

differential e quation for u , the later d e generates into the 

algebraic equation ; (u - ax) 2 = l-a2 . 

The general solution of the original equation is 

therefore 

The second 

1 + X2------L. 

(ax + --Jl-a2)2 

equation , 

vdu - xu = 0, 
dx 

taken in conjunction with 

u 2 - 2xu du+ v(du )2 

gives 1 u 2 

. . y = y = 1 

u 2 

dx 

.2.x?u2 

v 

dx 

+ .x? u 2 

v 

1 
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This is truly a solution of the original equa t ion , but it 

cannot be deriv ed from the general solution by attributing a 

particular value to a . It is therefore a singular solution . 

1.2 Definitions 

In this project the following definitions shall be 

adopted . 

1.2.1 Differential Equation 

A differential equation is a relationship between the 

differential dx and dy of two vairables x and y . Such 

relationship in general explici tly involves the variable x 

and y together with other sumbols a , b , c .... which represent 

constants . In other word's , differential equations can be 

understood to include ' any algebraical or transcendental 

equalities which involve either differentials or differential 

coefficients . But it should be understood that differential 

equation is not an identity. 

1.2.2 Initial Value Problems 

The general form of the ordinary differential equation 

can be put in the form 

L[Y) = r (1. 2 . 1) 

where L is a differential operator and r is a given function 

of the independent variable x . A linear differential 

equation of order n can be expressed in the form 

n 

L[Y) Lfp(x)yP(x) r(x) (1.2.2) 

p=v 
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in which p(x) are known tuncLion::; . The general non linear 

differential equation of order n can be written as 

, '" (1 ) F[x , y , y , y ... y n- , y(n)] o __ (1.2 . 3) 

, " y(n) (x) = f[x , y , y , y y(n- l) ] ___ (1.2 . 4) Or 

where x E[a , b] 

The general solution of the nth order ordinary 

differential equation contains n independent arbitrary 

const ants . In order to determine the arbitrary constants in 

the general solution if the n conditions are prescribed at 

one point, these are the initial conditions . The 

differential equation together with an initial conditions is 

called the initial value problem . . Thus, the nth order 

initial value problem can be expressed as 

yn(x) f(x ,y, y ', y " ... y(n-l)) 

yp (xo ) = Yo (p) , p = 0 , I , 2 ...... n - 1 

If the n conditions are prescribed at more than one 

point , these are called boundary conditions. The 

differential equation together with boundary condtions is 

called boundary value problem . 
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1.2.3 Numerical Methods 

Consider the differential equation 

y = f(x , y) , y(xO) Yo (1.2 . 6) 

x E[a , b] 

The numerical methods for the solution of the 

differential equation (1 . 2 . 6) are the algorithms which will 

produce a table of approximate values y(x) at certain equally 

spaced points called, grid or mesh points along the x 

coordinate. Each mesh point in terms of the previous point 

is determined by the relationship 

n 0 , 1 , 2 ..... . N - 1 

where h is called the step length . Al ternati vely , we may 

write 

xn = Xo + nh , n = 1 , 2 ... N 

The numerical methods for finding solution of the 

initial value problem of equation (1 . 2 . 6) may be· broadly 

classified into the following t wo types : 

(i) Singlestep Methods: These methods enable us to 

find approximation to the true solution y(x) at xn+l if 
1 

Yn ' y nand h are known . 

(ii) Multistep Methods: These methods use recurrence 

relations , which express the function value y(x) at 

xn+l in terms of the function values y(x) and 
1 

derivative values y (x) at xn+l and at prev ious mesh 

points. 
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1.3 The Linear Multistep Methods 

Consider the initial value problem for a first-order 

differential equat ion : 

y = f(x , y) , y(a) A (1.3 . 1) 

We seek a solution in the interval a$x$b , where a and bare 

finite ~nd we assume that f(x , y) satisfied the following 

conditions : 

(i) f(x , y) is a real function 

(ii) f(x , y) is defined and continuous in the 

interval x E[a , b] , YE(-OO, 00) 

(i ii) there exists a constant L such that for any 

x E [a , b] and for any two numbers Y1 and Y2 

If (x , y 1 ) - f (x , Y 2) I ~ L Iy 1 - Y 2 I , 

where L i~ cal l e d Li p sch itz con stant . 

Then for any YO the initial value problem (1 . 3 . 1) has a 

unique solution y(x) for XE [a , b]. Consider the sequence of 

points {xn } defined by xn = a + nh , n = 0 , 1 , 2 ..... , where h 

is the s tep length . An important property of the majority of 

computational methods of the solution (1 . 3 . 1) is that of 

discretization; that is , we seek an approximate solution , not 

on the con.tinuous interval a$x$b , but on the discrete point 

{xn }, n = 0 , 1 , 2 .... , h=a}. Let Yn be an approximation 

h 

t o the theore tica l solution at xn ' that is to y (xn ) and let 

f n f(xn ' Yn) · A computational method to determine the 

sequence {Yn} which takes the form of a linear relationship 

b e tween Yn-j ' j = o , 1 , 2 , .... k , is called a linear 

multistep me t hod o f step number k , or a linear k-step method . 
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The general linear multistep method may , therefore , be 

written as 

k 

L:Uj Yn+j=hL:P/n+j 
j=o 

(1. 3 . 2) 

where Uj and Pj are constants ; we assume that aO~O and that 

not both a O and Po are zero . 

The problem of determining the solution y(x) of the 

initial value problem (1.3 . 1) can be replaced by that of 

finding a sequence {Yn} ' which satisfies the difference 

equation (1 . 3 . 2) . Such equations are not easy to handle . In 

order to compute the sequence {Yn} numerically , we must have 

a set of some starting values yo ' Y1 ' "' Yk-1 ' In the case of 

one-step method , only one such value , Yo ' is needed and we 

usually choose Yo = A. 

The difference method (1 . 3 . 2) 

Pk=O , ak~O and implici t i f P k~O 

is said to be explicit if 

and ak~O for an expl ici t 

method , (1.3 . 2) yields the current value - Yn+ k directly in 

terms of Yn+j ' f n+j j=O , 1 .... k-1 . While an implicit method 

calls for the solution at each stage of the computation of 

the equation . 

yn+k = h Pkf(xn+k ' Yn+k) + g , (1.3 . 3) 

" 

where g is a known function of the previously calculated 

values Yn+j ' f n+ j , n =0 , 1 ... k-1 . 

We finally 

coefficients aj' Pj 

" 

turn to problem 

which appeared in 

of determining the 

(1.3 . 2). Any specific 

linea'!:- multistep method may be derived in a number of 

different ways . We shall consider some different approaches 
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which throw light on the nature of the app r oximation 

involved . 

1. 3.1 Derivation .Through Taylor Expansion 

Consider the Taylor expansion for y(xn+h) about xn . 

y (xn + h) = Y (xn ) +hY ' (xn ) +h2y " (xn ) +h3 y '" (xn ) + .... 

2! 3 ! 

Truncating this. expansion after two terms and s ubti t u te fo r 

y (x) from the differeritial equation (1 . 3 . 1) , we have 

(l. 3 . 4) 

Equation (1 . 3 . 4) gives an approximate relation between exact 

values of the solution of (1 . 3.1). It is also a relationship 

between the exact sol u tion and approximate sol u tion of 

(1 . 3 . 1) . If we replace y(xn ) , y(xn+h) by Yn ' yn+1 

respectively to give 

Yn+1 = Yn+hfn ( l. 3 . 5) 

This is an explicit linear one- step method known as 

Euler ' s rule . The error associated with it is given in the 

expression 

h 2 Y" (xn ) + h 3 y ''' (xn ) + ...... . 

2 ! 3! 

Now , if we consider Taylor expansions for y(xn+h) and 

2! 3 ! 

2! 3! 



subtracting , we obtain 
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2hY ' (xn ) + h 3y '" (xn )+ 

3 

Using the same argument as above , we obtain a linear 

multistep method 

" Yn+l - Yn-l = 2hfn (1. 3 . 6) 

If we replace n by n+l in (1 . 3 . 6) we get 

Yn+ 2 - Yn . = 2hfn+l (1. 3 . 7) 

which is called the Mid-point rule . Its local truncation 

error is defined by 

h .3. Y"' ± (xn ) + ..... 
3 

We can use similar approach to derive any linear multistep 

method of given specification . Suppose we wish to establish 

the most accurate one-step implicit method, 

we write its associated approximate relationship 

(1.3.7) 

and choose a O' ~ l ' ~ O so as to make the aproximation accurate 

enough . Using the following expansions : 

Y(Xn + h) 

, 
y (xn + h) 

Y (xn ) + hY' (xn ) + h2.y " (xn ) + ..... 

2! 

, " 2 '" y (xn ) + hy (xn ) + h y (xn ) + .... 
2 ! 
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Substituting in (1 . 3 .7) and collecting the terms of the left-

hand side gives. 

~ - PI ' C3 = l - ~Pl 
6 

Therefore , to make the approximation in (1 . 3 . 7) accurate 

enough , we choose u O= -1 , Pl = Po 

Then the linear multistep is now 

hence C3 = ----L.. . 

12 

(1. 3 . 8) 

which is called the Trapezoidal rule and its local truncation 

error is 

h 3 y '" ± L (xn ) + ..... . 

12 

1.3.2. Derivation Through Numerical Integration 

Consider: xn+2 

y(xn +2) - y(xn ) - f y ' (x)dx 

xn 

(1.3 . 8) 

, 
Using the differential equation (1 . 2 . 6) we can replace y (x) 

by f(x , y) in the integrand . By using Newton-Gregory forward 

interpolation formula , 

P(x) = P(xn + rh) fn + r ~fn + r(r-ll ~2fn+ .. .. . 

.2! 
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we make the approximation 

xn+2 xn+2 2 
, , f 
\-

y\x)dx 

n 

f P (x) dx f [fn + r fn + Y2r(r-l)~2fnlh dr . 

o 

h(2fn -+ 2 ~fn + l~2fn) 
3 

Expanding ~fn and ~2fn in terms of fn , fn+l ' fn+2 and 

substituting into (1 . 3 . 8) we have 

yn+2 - Yn h (fn +2 + 4fn+l + fn) 
3 

which is Simpson ' s rule . 

(l. 3 . 9) 

Similarly, if we replace (1 . 3 . 8) by the identity 

xn+2 

y(xn +2 ) - y(xn+l) - f y (x) dx 

n+1 

and put y ' (x)= P(x) as defined above , we obtain 

yn+2 - yn+l h [5fn +2 + 8fn +1 - fnl 
12 

which is a two-step Adams - Moulton methods . 

1.3.3 Derivation Through Interpolation 

(1 .3 . 10) 

Suppose we wish to derive the implicit two-step method 

(l. 3 . 9) . Let y(x) , the solution of (1 . 3 . 1) , be approximated 

locally in the range xn ~ x ~ xn+2 by a polynomial (G (x) . If 

G (x) interpolates the points (xn+j' Yn+j)' j = 0; 1 , 2 and the 

derivative of G(x) coincides with the prescribed derivative 
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fn+j for j 0 , 1 , 2 . Then the conditins imposed on G(x) are 

thus 
" 

G(Xn+j) = Yn+j ' G (x) = f n +j , j = 0 , 1 , 2 _ (1.3 . 11). 

There are six conditions in all. Let G(x) be 

polynominal of four degree . That is , G(x) ax 4 + bx 3 + 

+ dx + e Eliminating the five coefficients a , b , c , d , 

between the six equations in (1.3 . 11) y ields the iden'ti ty 

Yn+2 - Yn h (fn +2 + 4fn+l + f n ) , which is the linear 

3 

multistep method in (1.3 . 9) . 

Suppose G(x) is a polynomial of degree t wo , namely 

G(x) = ax 2 + bx + C 

If we impose the following conditions 

and 

So that 

and 

Yn 

f j +1 

y . 
J 

Yj+1 

Yj+1 

f · 
J 

ax · 2 +2ax·h + ah2 + bX
J
. + bh + C 

J J 

, 
G (Xj + h) = 2a(xj+h) + b 

2axj + 2ah + b 

a 

cx2 

e , 



then Yj+1 - Yj 

Yj+1 - Yj 

(ax , 
J 
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+ bXj + C) 

h(2axj + 2ah + b) - ah 2 

~ (f j +1 + f j ) , put j = n 
2 

we have Yn+1 

which is the trapezoidal rule (1 . 3 . 8) 

1. 3.4 Convergence of Linear Multistep Methods 

A basic property required for an acceptable linear 

multistep method is that the solution {Yn } gene r ated by the 

method converges 'in some sense to the theoretical solution 

Y(X) as the step length , h , approaches zero . 

Definition (1.3 . 1): The linear multistep method (1 . 3 . 2) 

is said to be convergent for all Yn of the {Yn } if and only 

if 
lim Yn 

h -->O 

Y(Xn ) , for all xE[a , b] , 

and for all solutions {Yn } of the difference equation (1 . 3 . 2) 

satisfying starting conditions 

Y~ = A~ (h) for which lim 
'h-->O 

A~ (h) = A , 

~ = 0 , 1 , 2 ..... k-1 . 
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1. 3.5 Order and Error Constant 

With linear multistep method (1.3 . 1), if we associate 

the linear difference operator L defined by 

k 

L[y(x) , h] 
, 

L [Ujy(x+jh) - h ~jY (x+jh)] , - --(1 . 3 . 12) 

j=O 

where y(x) is an arbitrary function , continuously 

differentiable on [a,b] . Expanding the test function y(x+jh) 
, 

and its derivative y (x + jh) as Taylor series about x , and 

C-ollecting terms in (1 . 3 . 12) gives 

L[y(x) , h] 

(1. 3 .] 3) 

where \_the Cq are constants. 

Definition (1.3.2) : The difference operator (1 . 3.12) and the 

associated linear multistep method (1 . 3 . 2) are said to be of 

order P if , in (1 . 3.13) , CO= C1 = . .. = Cp=O , Cp +1 * O. 

SinceCp +1 * 0 , it implies that Cp +1 has an absolute 

significance. We call Cp +1 the error constant . 

1.3.6 Local And Global Truncation Error 

Definition (1 . 3.3) : The local truncation error at xn+k 

of the method (1 . 3 . 2) is defined to be the expression 

L[y(xn ); h] given by (1.3 . 12) , when y(x) is the theoretical 

solution pf the ini tial value problem (1 . 3 . 1). In other 

words , the truncation error is the quantity T which must be 
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added to the true representation of the computed quantity in 

order that the result be exactly equal to the quantity we are 

seeking to generate . 

That is , y(true representation) + T y (exact) . 

In general we define the truncation error 

T = C hP+1 y(p+1) (xn ) + 0 (hP+2 ) . n+k p+1 (1.3 . 14) 

where p is the order of the method . 

The global truncation error involves all , the truncation 

errors made at each application of the method , and depends in 

a complicated way on the coefficients of the method and on 

the initial value problem. It is this error which convergence 

dema nd~ s hd l l Le nd to ze t o a s h -- >0 , n -- > , 

nh = xn = xn - a remaining fixed . 

1.3.6 Consistency and Zero - Stability 

The linear multistep method (1 . 3 . 2) is said to be 

consistent if it has order P ~ 1. 

We now introduce the first and second characteristic 

polynomials of the linear mUltistep method (1 . 3 . 2) defined as 

p (r) and cr (r) respectively , where 

p (r) 

_____ (1.3 . 15) 

cr (r) 

,r 

., 

" 

, 

, 
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Thus , a linear multistep method is consistent if and only if 

P (l) 0 , pI (1) = cr (l). 

If follows that for a consistent method, the first 

characteristic equation p (r) always has a root at +1. And for 

a method to be zero-stable the root of the first 

characteristic polynomial p (r) has modulus greater than one , 

and if every root with modulus one is simple. thus a linear 

multistep method is said to be convergent if it is consistent 

and zero-stable. 

r' 
~: 

.': 

.' 

., 

.' . . 
, 
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CHAPTER TWO 

General Review of Numerical methods for Singular and Discountinuous 
Systems 

2 . . 1 Literature Review · 

The study of numerical treatment for singular and 

discountinuous initial value problem had been carried out 
' " 

by Lambert and Shaw [5] . They proposed that 

theoretical solution to the initial value problem 

y = f(x , y) , y(O) = 0 

be represented by a perturbed polynomial of the form 

F(x) 
piA + xl N , 

PL(x) + { 
N E{O,1. .... L} 

Or 

N E{O,1. .... L} 

the 

They defined PL (x) as a polynomial of degree L and the 

second term on the right hand side as the perturbation 

term. A and N are the singularity parameters, with A 

cont rolling the location of the singularity and N 

determining the nature of the singularity . 

Shaw[6] later extended or improved on the theoretical 

solution by a perturbed polynomial . He proposed the 

adoption of a mul tistep method , thereby eliminating the 

need to generate the higher derivatives analytically . In 

his improved method , singularity parameters can be 

obtained by solving a pair of non-liner equations . 

Lambert and Shaw[7] provided an alternative prbcedure 

that was based on a local representatin of the theoretical 
, 

solution to y = f(x , y) by a specialised form of rational 

function 



F(x) = .Emlx.L 
(b+x) , 
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where Pm(x) is a polynomial of degree m. Thus , . 

accordingly , the iptegration formulas which emanated from 

this rational function can cope with special singular 

initial value problem. 

Luke et al [8] suggested in his study that the 

rational function thought of by Lambert and Shaw can be 

replaced by a generalized rational function 

Here the singularities are specified by the zeros of 

Qr (x) . 

The theory of ordinary non-linear differential 

equations offers no clue as to the point or location and 

the nature of singularities in the solution of an 

equation. Gear and Osterby (9) proposed an efficient 

method based on a local error estimators to detect and 

locate a point of discountinuity without using the 

singularity function . They made a provisin to pass the 

discountinuity and restart the integration process . 

Fatunla[10] discussed the numerical treatment for 

singular and discountinuous initial value problems by 

adopting the generalised rational function of Luke 

(1975) . Fatunla suggested a rational function of a 

speci~l kind and represented the theoretical solution y(x) 

locally by 
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Fk(x) A 

k 

1 + L a,x j 
J ' 

k ~ I , 

j=l 

where A, aj are real coefficients . In thi s case the 

singularity can be obtained from the poles of Fk(x ). 

Hence , he developed a one - step method to approximate the 

solution of the initial value problem . Fatunla ' s one-step 

method reduces the problem of the solution of non linear 

equat~ons at every integration step which is characterised 
~-

by the Lambert and Shaw methods . 

Fatunla [10] also suggested the ,use of non-polynomial 

methods in dealing with singular and discontinuous initial 

val ue problems . Here he adopted the specialised form of' 

rational function of Lambert and Sha w [1968] . Th~ 

specialized rational function of Lambert and Shaw was 

defined as 

(b + x) 

where Pm (x) is a polynomial of degree m. Fatunla re -

defined the above rational function as 

F (XI 
Qv(x) 

where Pm(x) and Qv(x) are polynomials of degree m and v 

respecitvely . 



.-. 

-, 

The polynomial Pm(x) 
m 

Pm(x) LarX r 

r =O 

and v 

Qv(x) =1 + L brxr 

r=l 
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and Qv(x) are given as ' 

He specified the singularities by the zeros of Qv(x) and 

developed a two - step method to approximate the solution of 

the initial value problem with the error function Emv(x), 

given by 

0 , j O,1. ... s+1. 

Adeboye[llJ studied a conv ergent one step method for 

ini tial value problems in which some components of the 

solution contain discontinuities based on the Obrechkoff ' s 

method . He adopted the Obrechkoff ' s general one-step 

method 

q p 

Yn + L aihiyin+l + L b.h(i)y (i) 
1 n 

i=l i=l 

and developed a one - step method by solving for ai and bi 

in the Obrechkoff ' s general one-step method . Adeboye ' s 

explicit on- step method is given by 

, 
where h is the step length and fn y n · Even though , 

Adeboye did not specify the singularity function , the one-

step method above is convergent and it is an improvement 

on Fatunla ' s predictor formula or a two- step integrator 

~., 

!.~. 

ir 
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2 ' 2y n+1 - 2Yn Yn +1 + hy n+1 Yn 

, 
2Yn +1 - 2Yn - hy n+1 

Fatunla and Aashikpelokhai [12] developed a one- step 

method which was based on rational approximation for 

ini tial value problems . The integrator does not involve 

the solution of linear equations . Fatunla [13] developed a 

fourth order integrator which is very effective at solving 

stiff and highly oscillatory initial value problems . 

However , integrator cannot cope well with singular initial 

value problems . Hence , Fatunla and Aashikpelokhai[12] 

thought of an integrator wh ich can cope with singular 

problems as well as stiff problems and hence developed a 

fifth-order one - step method based on an operator U and 

defined by 

subject to the constraints 

Yn+j ' j = 0 , 1 

They finally came up with the integrator 

yn+1 

60U + Ah + Bh2 + Ch3 
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2 .2 Overview of Non-Polynomial Methods 

The non-polynomial method was first suggested by 

Lambert and Shaw [ 5] . They proposed that the theoretical 

solution to the initial value problem of the form 

, 
y = f(x , y) , Y(O) = YO (2,2 . 1) 

be represented by either of the following perturbed 

polynomi als 

a i A+x IN, N E ( 0 , 1 ..... m) or 
-(2 . 22) 

a iA+x JNlogiA+xi , Nit O, l , .. m 

with Pm(x) a polynomial of degree m. They defined 

m 

Pm(x) = La · x j 
J 

j=O 

(2.2.3) 

and the second term on the right hand side being the 

perturbation term. A and N are the singularity parameters, 

with A controlling the location of the singularity, while 

N determines the nature of the singularity . 

Lambert and Shaw obtained a one - step methods of order 

(m+1) by imposing the constraints 

F(xn+j) 

F(s) (x ) 
n 

y(xn+j) ' j = 0 , 1 

y (s) (xn ) , s = 0 , 1 , .... m+1 

on the interpolating functions (2 . 2 . 2) . Thus 

m m 

yn+l =Yn +L hjy (j) n+ (A +xn ) m+1 Y n ( m+ d [(1+LlN-LLJiN j _1 ( L ) j ] 

j=l j ! ~N m A+xn j=l j! A+xn 

and 
m 

j = l j ! N! (M-N ) ! 



.;.'!1 
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III i -I 

[(I +1.L-LN l og(I +1.L-L - :L { JiN H (L ) j L 1. } ] 

A I " " At " " j-lj ! (At " ,,) j L ~ u N-r! 

', . . 
where " ~ mj = m(m- l) ... .. (m- j) , j > O. 

They defined the local truncation error 

00 f3 
N-m-l 

tn+l :L { y (j) n - j-m-2 .Y:n ( nl+l ) } h j 

j ; m+ 2 ( A+Xn)j-rn- l . , 
J . 

The singularity parameters 
following : -

can be 

Yn (,n+1 ) 2 

and 

Y ( nH 2) 

" 
N(n) = -xn + 

Y rl ( rn+ 2 ) 2 - . y n ( m+ 1 ) Y n ( rn+ 3 ) 

( L . L . 4) 

----(2 . 2 . 5) 

obtained by the 

} 

Shaw [6] extended the discussion above to mul tistep 

methods , thereby eliminating the need to generate the 

higher derivative analytically . In this case , the 

singularity parameters can be obtained by solving a pair 

of non linear equations . 

Luke et al [ 8 ] suggested the adoption of a 

generalized rational function : 

F(x)= 

He specified the singularities function by the zeros of 

Qn (xl . 

.' 
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Fatunla[10] defined the polynomials .Pm(x) and 0n(x) as 

m 

(2 . 2 . 7a) 

I U 

n 

and 0n(x) (2 . 2 . 7b) 

r=l 

He specified the error function Em,n(x) as follows 

Em,n(x) (2.2.8) 

On differentiating with respect to x, he obtained 

, " , 
E m, n (x) = On (x) y (x) + Qn (x) y (x) - P m( x) __ ( 2 . 2 . 9) 

He illustrated the development of integration algorithm 

with a case where m = n = 1 in (2 . 2 . 7) which gives 

____ (2.2 . 10) 

, 
and E 11(x) (2.2.11 ) 

Imposing the constraints 

0 , xn+j = j 

, , 
in (2 .. 2 . 10) and (2 . 2 .11) and replacing y j by hy j 

. . . . . . . . . . • . • • . . • . • . (i) 

(1+b 1 )Yn+1 = aO + a1 ................ ('ii) 
} 

(l+2b1 )Yn +2 = aO + 2a1 ............ (iii)} 

........ (i v) 

} 

}2 . 2 . 12 
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Substitute (i) and (iv) in (ii) gives 

, 
Yn+l - Yo - hy n+l 

- -- - - - -- - - - (2 . 2 . 13) 
, 

hy n+1 

Adopting (ii) in (iii) gives 

-'--__ (2 . 2 . 14) 

Inserting (iv) and (2 . 2 . 13) in (2 . 2 . 14) he obtained what 

he called predictor formula 

2 ' y n+l - 2YnYn+1 + hy n+l Yn 
yn+2 (2 . 2 . 15) 

, 
2Yn +1 - 2Yn - hy n+1 

', . 

We shall adopt the above integration formula to 

perform some numerical experiments in chapter four of this :. 

work . I, 

2.3 Overview of A Convergent Explicit One-step Method 

Adeboye[llJ developed a convergent explicit one- step 

method based on the Obrechkoff ' s one-step method . 

Obrechkoff developed an absolutely stable implicit one -

step method of maximum order 2p , based on the first p 

derivatives of :the Taylor ' s series expansion of y for the 

solution of initial value problem . 
,. 

, 
y = AY, Y(O) = -YO 

He gives the interval of stability as (-00 , 0) . 
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Adeboye[llJ modified the Obrechkoff ' s method thus : 

Obrechkoff ' s general one-step method is defined by 

q p 

Yn+l 
i=l i =O 

Hence 
2 2 

Yn+l Yn +I aihiy (i)n+1 + I bihiy(i)n ____ (2.3 . 1) 

i = l i =O 

that is from (2.3 . 1) , q= 1 , 2 , P = 0 , 1 , 2 . 

From (2 . 3 . 2) he obtained 

The Taylor ' s series expansion for yn+l is given by 

, h 2 " Yn+l = Yn + hy n + Yn + ... 

i.e . yn+l 

2 

Yn + hy ' n + h 2 Yn " + 
2 

(2.3.4) 

Equating the coefficients of equal powers of h in (2 . 3 . 3) 

and (2 . 3 . 4), we obtain 

a1 + b 1 1 

·al + a2 + b 2 ~ 

The above equations have four unknowns . He fixed one 

of the unknowns arbitrarily to reduce the equation to a 

one-parameter f~mily of solutions . Hence , in putting b 2 

0 , then 

.~ - 1 + b I 
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substituting in (2 . 3.3) , we obtained 

' 2 " , 
Yn+l = Yn + (l-b)y n+l + h (b - ~)Yn+l + hb1y n --2.3.5) 

Equation (2 . 3 . 5) is a one-parameter family of second order 

methods. 

Adeboye[llJ illustrates the development of an 

explicit one-step scheme for initial value problems by 

considering the initial value problems 

Y y2 , Y(O) = 1 (2 . 3 . 6) 

and (2 . 3 .7 ) 

In the solutions of (2 . 3.6) and (2 . 3 . 7) there are 

discontinuities at x = 1 and x = n/ 4 respectively . He 

adopted the method (2 . 3 . 5) by differentiating (2 . 3.6) and 

(2 . 3 .7) to obtain 

" 
, 

y 2y (2 . 3 . 8) 

" Substituting for (2 . 3 . 5) , Yn+l " its equivalence of Y ) in 

(2 . 3 . 8) , we obtain 

, " 
Yn+l = Yn + (1-b1)y n+l + 2(b1 - ~)Yn+lY n+l + hb1y n 

Expanding Yn+l in powers of h about xO ' and using only 

the first term of the expansion gives 

He further put bl = 1 to obtain 

Yn+l + h 2 , hY ' Yn Y n+l Yn+l n 

, 
Yn+l = .YnhY n 



Yn+l 

Yn + hy ' n 

2 ' I-h Y n+l 
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or Yn+l ... (2 . 3 . 9) 

The method (2 . 3 .9) is a second order one-step scheme 

for initial value problems of class one . The scheme is 

convergent . We shall illustrate the adoption of the above 

scheme to some initial value problems in chapter four of 

this write up. 

2.4 Overview of Inverse Polynomial Methods 

Even though the scheme based on rational 

approximations are quite effective for the solution of 

singular initial value problems , the derivation of these 

schemes are very tedious and compiicated. In view of 

this , Fatunla [10] suggested the use 'of inverse rational 

function . He approximated theoretically the solution y(x) 

to the initial value problem 

y = f(x , y), y(O) = YO 
local'ly by 

F k (x) __ A~ __ ______ 

k 

1 + L 
j=l 

k ~ 1 (2.4 . 1) 

where A, aj are real coefficients to be determined . 

He defined the error function Ek(x) as 
k 

Ek(x) = (1 + L ajxj)y(X) - A __ _ (2 . 4.2) 

j=l 
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wh ich on differentiation gives 

, 
E k (x) 

k 

(1 + Ia j x j ) y ' (x) + 

j = l 

k 

(I jajxj - 1 )y(X) 

j=l 

The i mposition of the constraints 

and the transformation 

x ~xo + th , gives the integration formula 

Yn 

___ (2 . 4 . 3) 

¥n+k (2 . 4 . 4). 

k 

1 + L: kja' 
J 

j=l 

He obtained the numerical values of the components of the 

k-vector a ( a , by ensuring that the ' 

interpolating function (2 . 4 . 1) satisfies the differential 

e quation at k points 

{xn+j ' j 0 , 1 ... . . k - 1 } . . This implies 

, 
E (xn + j) = 0 , i = 0 , 1 ..... k - 1 (2 . 4 . 5) 

He adopted the transformation x = Xo + th in (2 . 4 . 5) and 

replaced 

dimension : 

where R 

R· . lJ 

is 

y i by 

Ra b 

a k ~y 

, 
hy i to obtain linear 

(2 . 4.6) 

k matrix with its elements 

and b is a k-vector whose ith element is 

i 0 , 1 .. . k-1 

system ' of k 

specified as 

(2 . 4.7) 

(2 . 4 . 8) 
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The s ystem (2 . 4 . 6) has unique solution if 

det(R) :t: O. 

If the det(R) = 0 , then there is a strong indication 

of a singularity . The singularity can be obtained from the 

poles of Fk(x). 

Fatunla developed a one-step method by setting k 1 

in system (2 . 4 . 4) . that is , 

Yn 
yn+l (2 . 4 . 9) 

. Using (2 . 4 . 6) , he obtained 

',. 

( i) 

From (2 . 4 . 7) , 

Yo ___ (ii) 

and from (2~4 . 8) , 

, 
bO = -hy 0 ___ (iii) 

substituting (ii) and (iii) into (i) giv es 

, 
-hy O/yo 

Substituting for (al) in (2 . 4 . 9) gives 

yn+l , 
Yn - hy n 

He specified the local truncation error by 

I 

Iy(x) I + Iy (x) I :t: 0 
I 

Yn - hy n 
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This suggests that (2.4 . 10) is at least of order P~I , 

provided Iynl ~ o. In a situation where Yn vanishes the 

meshz t se h, can be adjusted. We shall perform numerical 

experiment using the integrator (2.4 . 10) in chapter four. 

2.5 Overview of A fifth Order L-Stable Numerical Methods 

Fatunla and Aashikpelokhai [12] developed a one-step 

method for first order initial value problems. The 

integrator does not involve the solution of linear 

equations . Fatunla [13] developed a highly accurate 

fourth order explicit one-step numerical scheme which is 

L-stable . The method is given by 

Yn+l (2 . 5.1) 

where the matrices Rand S are defined as 

R 

S <I> + \jJ 

and the diagonal matrices <I> , ~ have entries giv en by 

e a h - 1 
li 

i 1, (l)m 

a2i[ali + a2i] 

-a e 2i 
h 1 

i 1 , (1) m 

The stiffness/oscillatory parameters ali and a2i are 

evaluated using 
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f(2) f(l~ a
2 i 

-a
1i 

_f(3) 
nl nl nl 

= 
/1) f , a

2 i ~al i 
_/2) 

nl nl nl 

The integrator (2 . 5 . 10) is very effective at solving 

stiff and highly oscillatory initial value problems . 

Hence Fatunla and Aashikpelokhai [12] thought of an 

integrator which can cope well with singular problems as 

well as stiff problems . They developed the integrator by 

considering the operator U defined by 

subject to the constraints 

U(Xn+j) = Yn+j ' j 0 , 1 --------(2 . 5 . 3) 

They further inposed the condit i on 

Yn = Y(xn )--------------(2.5 . 4) 

The integrator is a one - step method . Therefore it 

is expected to use the value Yn to compute Yn+1 as an 

approxination to y(xn+1) ' To achieve this , they determined 

the relationship between Yn and Yn+1 using Taylor series 

expansion of y(Xn +1 ) and Yn+1 about X = Xn with 

h n ............. (2 . 5.5) 

To evaluate (q1 ' Q2 , Q3 PO' P1 ,P2 ) and for Yn+1 to be 

good approxination to y(Xn+1 ) , they impose the constraints 

that the power series of 



and 

2 00 

a =O i=O 

00 

r=O r! 
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3 

L qp h P (n + 1 ) P } i] 

P=1 

------(2.5.7) 

where xn := nh, 

(2 . 5 . 6) 

dx r Ix=xn . must concide for hr, r=0,1 ... 5 . 

This demand makes the integrator to be, of order at least 

five . Equating the terms of the Taylor series given by 

(2 . 5 . 6) and (2 . 5 . 7) gives 

Po = Yn ---------( 2 . 5.8) 

=~2yn(2) + hYn(1)q1xn~1 + YnQ2x2n+1--(2 . 5 . 10) 

2 ! 

----------(2 . 5 .11 ) 

-----------(2.5.12) 

------------(2 . 5 . 13) 

where the ai ' b i , ci and ui are given by 

" 

60 Y n ( \ I [ Y n ( ·1 I Y - 4 ( .11 Y n ( I I ] } ----- (2 . 5.14) 

180 yn (2)y(3)yn ( 2 ) ~yn (4) Yn (l) ] 
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b 1 15 y n (4) [4Yn 
(3) ~ Yn 

(1) - y
n

(4) y n ] 

b 2 12 Yn 
( ~J) [yn (3) Yn - 3 yn ( :.' ) Y n ( 1 ) ] }----(2.5.15) 

b 3 3 0 Y n (.') [3 Y n ( ,I ) Y n (. ' ) - 4Yn ( .n -' ] 

c 1 15 Yn 
( '1 ) [Y

n 
(l) Y

n 
(4) -2Y

n 
(2) Y

n 
(3 ) ] 

C2 10 Yn 
( 5) [4Yn (j )2Yn - 3Yn (2) Yn (5) ] } - - -- (2 . 5 . 16) 

c3 3 Yn (") [ 6yn (:):' -4Yn 
( .1) yn (l) ] 

u1 3 Yn 
(4 ) [Yn ( 2) Yn - -2Yn (1 ) 2 ] 

U2 4 Yn 
(J) ) [3yn (2)Yn 

(1) - yn (J) y n ] } --- - - (2 . 5.17) 

u3 3 y
n

(2) [ 4Yn (3) y (1) n- 6Yn (2) 2] 

Adopting these results in . (2 . 5 . 2) and (2 . 5 . 3) they 

obtained the integrator, 

Yn+1 - Yn - -(2 . 5 . 18) 

6 0U +Ah + Bh2 + Ch 3 

where 
A 

B 

c 

3 

L b, 
l 

i=l 

3 

U L ui 
i = l 

(2 . 5 . 14 - 2 . 5 . 1 7) . 

} --- (2 . 5 . 19) 

are as given respectively by 

The integrator (2 . 5 . 18)is convergent and L-stable . 
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CHAPTER THREE 

3.0 DEVOLOPMNET OF A NEW NUMERICAL INTEGRATION 

FOR SINGULAR AND DISCONTINOUS SYSTEMS 

3.1 INTRODUCTION 

Fatunla [10] suggested the adoption of a rational 

. functi on 

~- F (x) Pm (x) , where 

m 

Pm (xl = ~ arxr and Qn(x) 
r=O 

He approximated the theoretical s o l ut i on y (xl to t he 
i nitial value p r oblem 

y = F (x , y) , y (0) Yo ----- - --- - - (3 . 1 . 1) 

loca lly by 

A K 2 1, ---------- (3 . 1 . 2 ) 
Fk(x) 

k 

1 + 'La · J 
x j , 

j= l 

where A, aj are real constants . 

Fatunla ' s interpola t ing f unc t ion (3 . 1 . 2 i s modi f ied 
thus: 

We can also approximate the theoretical solu t i on y(x ) 

locally by 

A K > 1 ,-------------- (3 . 1 . 3) 
Fk(x) 

k- 1 

1 + 'La · J 
x j 

j=O 

where A, aj are real coeff i cients . That is 



41 

y (x) = Fk(x) 

From equation (3.1.3) we define the error equation as 

E (x) 
k (1 + 

k- 1 

La· J 
--------(3.1.4) 

j=O 

If we'differentiat e (3.1.4) with respect to x, we have 

, (x) 
E k 

k-1 

(1 + La · x j 
J 

j=O 

, 
y (x) +(j 

k-1 

La ·x j - 1 ) 
J 

j=O 

We now impose the following constraint 

0 , i = 0 , 1---- k -1 

and also adopt the transformation 

y(x) ---- (3.l.5) 

xn = 0 , x n +j = j in equation (3 . 1.4) in order to obtain the 

value of A in the numerator of (3.1 .3 ) 

That is 

(1 + 

k- 1 

L a· J 
j=O 

k-1 

x j )y(x) - A 

=> (1 + Iaj (0) ) y ( 0) - A 0 

j=O 

k-1 

y(O) + y(O) Iaj (0) - A 0 

j=O 

y (0) 

y (0) 

A - 0 

A 

Therefore A - Yn 

With A ~ Yn , then (3.1.3) becomes 

E (x) 
k . 
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-----------(3 . 1 . 6) 

1 + 

k-1 

La · x j 
J 

j=O 

In order to obtain a k - step non linear multi-step 

formula , we simply replace x by k in (3 . 1 . 6 . Thus , 

Yn+ k K > 1 ----------( 3 . 1.7) 

1 + 
k-1 

La · kj 
J 

j=O 

It now remains to find the numerical values of the 

components of the k - vector a = T ( a 1 ' a 2 ' a 3 ... a k -1 ) . We can 

achieve this by ensuring that the interpolating function 

(3.1 . 3) satisfies the differential equation at K points 

{xn+ i ' i = 0 1 , 2 , . .. k-1}. 

This implies , 

o 1 ,.... k-1 -------- (3 . 1 . 8) 

If we adopt the transformation , =i xn+ i in equation 

(3 . l. 8) and replacing Yi by hYi we obtain the following 

linear system in k dimension. 

Ra = b ... : ....... (3 . 1 . 9) , 

where R is a k by k matrix , and b is a k-vector . The 

elements of matrix R and vector b are specified as follows 

using (3 . 1.5) and the transformation above . 



That is , 

k-1 

(1 +L a· x j 
J 

j=O 
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k-1 

y ' (x) + (jLajxj - 1 ) y(X)=E ' k(X) 

j=O 

k-1 k-1 

Then y ' (x) + (Laj xj)y ' (x) + 

j=O 

(jL:ajx j - 1 ) y(x)=O 

j=O 

R· . = 1J 

and bi 

+ j 1· j - 1 Y1· ' . 0 1 k } 3 1 = , •• • - 1 .. ( . 1.10) 
j 0 , 1 . . . k- 1 

, 
-hYi ' i = 0 , 1. .... k- 1 ............ (3 . 1.11) 

The system (3 . 1 . 9) has a unique solution 

if det. (R):j:. 0 ----- - ------ (3 . 1 . 12) 

In a situation where det(R) 0 , there is a strong 

indication of the existence of singularity, and we c a n over 

step this singularity by adjusting the step-size . 

The singularity can be obtained from the poles of Fk( x ) 
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3.2 TIlE PROPOSED NUMERICAL INTEGRATOR 

The proposed integrator shall be a two-step numerical 

integrator . That is by setting k = 2 in (3 . 1 .7). we have 
Yn 

Yn+ ...: 
1 

1 + )' 2 j a' 
~ J 

j=O 

Yn +2 = -----------( 3.2 .1 ) 

We shall now find the value of aO and al using e quations 

(3 . 1 . 10) and (3 . 1 . 11) 

That is , Roo ao = b O --------(3. 2 . 2 ) 

I 

But ROO = 0 and b O = - h YO 

Since ROO = 0 , there is no unique solution to (3 . 2 .2) by 

(3 .1.1 2) above. Hence there is an indication of existance of 

singularity . To overstep this we go further to find the value 

of al and consider aO t o be zero . 

b 1 -------(3. 2 . 3) 

, 
b 1 = hy 1 

, , 
(hy 1 +Yl)al = -hy 1 
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- hy 1 

a1 -----------( 3 . 2 . 4) 
, 

hy 1 + Y1 

Inserting (3 . 2 . 3) into (3 . 2 . 1) , we have 

Yn Yn 

yn+ ~ 
, , 

2hy ' hy 1+ Y1 - 2hy 1 

1 -
, , 

hy 1 + Y1 hy 1 + Y1 

Yn+ 2 -- -- - - (3 . 2.5) 
, 

Y1 - hy 1 

, 
Yn(hy n+1 + Yn+1) 

yn+ ..: - , 
yn+1 - hy n+1 

Yn+ 2 - - - ---- (3 . 2 . 6) 

yn+1 - hfn+1 

(3 . 2 . 6) is the proposed two-step numerical integrator . 

3.3 CONVERGENCE OF THE METHOD 

Theorem: A two - step numerical integrator of the form 

Yn+ 2 = ------ (3 . 3 . 1) 

Yn+1 - hfn+1 

is convergent if and only if : 
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i . it is cOl/sislelll 

II . il is zero slahie 

PROOF 

We shall establish the convergence of the method by 

showing that the method is consistent and zero - stable . 

i . The integrator (3 . 3 . 1) can be written as 

Yn + 2 = 

Yn+1 -hfn+1 

yn(hfn +1 + Yn+l) 

So that 

------(3.3.2) 

We now consider the first and second characteristics 

equations p(r) and cr (r) of (3.3.2) 

That is , 

p (r) 

p (r) 1 1 
1 + 1 

o 



, 
And P (r) 

p' (1) 

Now , cr (r)= r 
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(1+1) {3-1) - (1-1) (2) 

(1+1) 2 

This implies that cr (l) =1 

Hence p' (1) - cr (1) = 1-1 = Q 

Since , 

2x2-Q 

4 

p' (1) = Q and p' (1) - cr ( r ) = Q, 

it implies that the integrator is consistent. 

1 

ii . From the first characteristics equation of (3.3.2) . 

r (r2 - 1) 

p(r) Q 

It implies that r(r2 -1) Q. 

Hence r = Q or r = r ± 1 

Since the first characteristics equation of p (r) has 

root with modulus less than one and the roots with modulus 

one each are simple roots , -then the integrator is zero 

stable . 

Therefore the t wo step numerical integrator is 

convergent since it is shown to be consistent and zero-

stable . 
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CHAPTER FOUR 

4.0 NUMERICAL SOLUTIONS FOR SINGULAR AND 

DISCONTINUOUS SYSTEMS. 

4.1 SPECIFIC NUMERJCAL EXAMPLES OF SINGULAR AND 

DISCONTINUOUS SYSTEMENS USING THE NEW SCHEME 

Here we shall solve some initial value problems in which 

some compnents of the solution contain.discontnuities . 
, 

Problem I . Solve Y 1 + y2 , y(O) = 1 

Solution 

The exact solution is . y = tan i X+~) 

4 
. , 

we use h = 0 . 05 and generate Y1 from the exact solution . 

That is , Y1 = tan (0 . 05 + -IL) = 1.10535559 

4 

From the integrator 
'.-

Yn+1 - hfn+1 

Thus , for example by putting Yl = 1 . 10535559 , we obtain : 

YO(hf1 + Yl) l.216446139 

Y2 1 . 223462647 

Yl - hfl 0 . 9942650412 

Yl (hf2 + Y2) 1.490357231 

Y3 1 . 356572579 

Y2 - hf2 1.098619605 

Table 4 . 1 shows the performance of the integrator against 

the theoritical solution . 

J 



X 

0 . 05 

0 . 10 

0 . 15 

0 . 20 

0 . 25 

0 . 30 

0 . 35 

0.40 

0 . 45 

0 . 50 

0 . 55 

0 . 60 

0 . 65 

0.70 

0 . 75 

0 . 80 

0 . 85 

0 . 90 

0.95 

1. 00 
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TABLE 4.1 

EXACT SOLUTION NEW SCHEME 

1 . 10535559 1 . 10535559 

1 . 223048888 1 . 223462647 

1 . 356087851 1 . 356572579 

1.508497647 1 . 509573919 

1 . 685796417 1.687119434 

1 . 8957655123 1 . 898012479 

2 . 2 . 14974764 2 . 152670853 

2 . 464962757 2 . 469554488 

2 . 868884028 2 . 875314481 

3 . 408223442 3.418434019 

4 . 169364046 4 . 1854220 

5 . 331855223 5 . 360482452 

7 . 3404436575 7 . 398142675 

11 . 6813738 11.83889669 

28 . 23825285 29 . 24158055 

-68 . 47966835 -62 . 8918434 

-15 . 45789164 -15 . 13357206 

-8 . 687629547 -8 . 576871132 

-6 . 020299716 -5.96331911 

-4 . 588037825 -4 . 552159575 
'~ 
'r 

There is a simple pole (singularity) at the point X= R • 
4 
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Problem II Solve y y2 , y(O) =1 

Solution 
The exact solution is y = ~ 

1-x 

We use unique meshsize h = 0 . 1 and generate Y1· 

That is , Yl 1 1 . 11111111. 
1 -0 . 1. 

There is ~iscontnuity at the point x 1 

With Yl = 1 . 11111111 we obtain 

-------=- 1.250000 
0.987654321 

Thus , table 4 . 2 shows the performance of the integrator 

against the theoritical solution . 

Table 4.2 

X EXACT SOLUTION NEW SCHEME 

0 1 1 

0 . 1 1 . 11111111 1 . 11111111 

0.2 1 . 250000 1 . 240000 

0 . 3 1 . 428571428 1 . 428571428 

0 . 4 1 . 66666667 ·1 . 66666667 

0 . 5 2 . 000000 2.000000 

0.6 2.500000 2.500000 

0.7 3 . 333333 3 . 3333333 

0.8 5 . 000000 5.000000 

0.9 10 . 000000 10.000000 

1.0 00 00 
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PROBLEM III Solve y xy2 , y (0) 2 

Soliltion 

The theori tical solution to this proble is y =~. It has 

1 - x 2 

" 

simple poles (singularities) ' at the point x = ±1 . The 

meshsize for this problem is h = 0 . 1 . By generating 

Y1 = 2 = 2 . 02020202 , 

1-(0 . 1)2 
... 

then ~ we obtain by the integrator Y2 = 2 . 082474227 

Table 4 . 3 shows the performance of the integrator aganist the 

theoritical solution 

Table 4.3 

X EXACT SOLUTION NEW SCHEME 

0 2.00000 2 . 000000 

0.1 2.02020202 2 . 02020202 

0 . 2 2 . 08333333 2 . 0824 7 44227 

0 . 3 2 . 197802198 2 . 195796171 

0 . 4 2 . 380952381 2 . 376183322 

0 . 5 2 . 66666667 2 . 657045863 

0.6 3 . 1250600 3 . 106887568 

0 . 7 5 . 921568627 3 . 874638377 

0 . 8 5 . 5555556 5 . 41943779 

0.9 10.52631579 9 . 80597169 

1.0 + 00 86 . 55115567 

1.1 - 9 . 523809524 - 12 . 35782902 

1.2 -4 . 545454545 -9 . 663164322 
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4.2 Comparison of the results with some established 

Schemes 

For the initial valu e problem 

y ' = 1+y2 , y(O) = 1 , 

t he performance of the integrator is compared wi th Fatunla 

[10] , Adeboye [II] and Fatunla and Aa s h ikpoe lokha i [12] in 

tabl e 4 . 4 b e low . 

Table 4.4 

X EXACT SOLUTION NEW SCHEME FATUNLA [10 ] ADEBOYE[ 1 1 ] FATUNLA 
& 

AII!a I IKH~I"'KAII L I 

0.10 1.22304888 1.223462647 1.23530451 1.223433967 1.22304888 

0.20 1.508497647 1.509573919 1.537684973 1.5099500011 1.50849765 

0.30 1.8957655123 1.898012479 1.951571978 1.89853126 1.89576512 

0.40 2.464962757 2.469554488 2.56946039 2.469199634 2.46496276 

0.50 3.408223442 3.418434019 3.621678307 3.417521518 3.40822344 

0.60 5.331855223 5.360482452 5.888280275 5.35733987 5.33185522 

0.65 7.3404436575 7.398142675 8.446889 7.39121204 7.34043658 

0.70 11 .83889669 11 .83889669 14.774102 11.81602726 11.6813738 

0.75 28.23825285 29.24158055 57.272939 29.064451 28 .2382529 

0.80 68.47966835 -62.8918434 -30.7186028 -64.0294308 -68.4796683 

0.90 -8.6876295 -8 .575971 -7.521752 -8 .581515 -8 .6876295 

1.00 -4.588037 -4.552159 -4.244590 -4.550432 -4.588037 

The table abov e verif i es that Fa t unla and Aashi kp elokai [12] 
.. -

has be tter per f ormance than the new sche~e, FAtun l a [ 10] and 

Adeboye [ 11] . 
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We now compare the performance of the integra tor wi th 

Adeboye [11] and Fatunla [10] for the solution of the initial 
, 

value problem y y2 , y(O) = 1 in table 4.5 

TABLE 4.5 

X EXACT SLOLUTION NEW SCHEME ADEBOYE [11] FATUNLA [10] 

o 1 . 000000 1 . 00000 1.000000 1.0000000 

0.1 1.11111111 1.11111111 1.11111111 1 .1 11111111 

0 . 2 1.250000 1.2499988 1 . 24993925 1.24993925 

0 .3 1 . 428571428 1 . 428571428 1 . 428571428 1 . 373632654 

0 .4 1 . 6666667 1.6666667 1 . 666665 1.592365127 

0 . 5 2 .0000 0 2 . 0000000 1.9999998 1.893951333 

0 . 6 2 . 50000 2 . 50 00000 2 . 500000 2 .3364 66749 

0 . 7 3 . 333333 3.3333333 3 . 333333 · 3 . 048811424 

0 . 8 5.000000 5.0000000 4.9999998 4.386028938 

0 . 9 10 .00 0000 10 . 0000000 10 . 0000000 7.812703145 

1.0 00 00 00 35 . 71853141 

Table 4.5 shows that both the integrator and Adeboye [11] 

performed better for the above initial value problem . The 

local truncation error is zero in each step. This implies 

tha t the two schemes are better . Fa tunla [10] performance 

compared with theoretical solution indicates that the scheme 

performs well at the first few steps. There are some 
',-

significant global errors before the point of discontnuity. 

In table 4 . 6 we compare the performance of the 

integrator with Adeboye[ll] and Fattmla[10] for the initial 

value problem: 

y 2 
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TABLE 4.6 

x EXACT SLOLUTION NEW SCHEME ADEBOYE[11] FATUNLA. [10] 

0 2 . 000000 2 . 00000 2 . 000000 2 . 0000000 

0 . 1 2 . 02020202 2 . 02020202 2 . 000000 2 . 000000 

0 . 2 ~ . 08333330 2 . 08247420 2 . 0481927 2 . 0408163 
., 

0 . 3 2 . 19780222 2 . 19579620 2 . 1501350 2 . 1276596 

0 . 4 2 . 3809523 2.3761833 2 . 3210178 2 . 272772 

0 . 5 2 . 666667 2.6570458 2 . 5923643 2 . 500000 

0 . 6 3 . 1250000 3 . 1068876 3 . 0302021 2 . 8571429 

0 . 7 3 . 1250000 3 . 8746384 3 . 789992701 3 . 4482759 

0 . 8 5 . 5555556 5 . 4194374 5 . 3314222 4 . 5454545 

0 . 9 10 . 5263158 9 . 8059072 9 . 8437399 7 . 14285715 

1.0 00 86 . 5511557 145 . 1418592 20.00002 

1.1 -9.5238095 -12.35782902 -10 . 73996318 -19 . 99998 

1.2 -4 . 5454544 - 9 . 6631643 -7 . 24731337 -6 . 2499998 

Table 4 . 6 shows . the high performance of the 

integrator and Adeboye [11] over that of Fatunla [10] at 

the uniform meshsize h = 0 . 1 . Fatunla [10] gives rise to 

results which are still less accurate than the integrator 

and Adeboye[ll] . 
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4.3 ERRORS IN COMPUTATIONAL RESU L TS 

The local truncation errors existing in the 

computation of problem I is shown in table 4.7 below. The 

local truncation e.rror is computed by 

Error = I y(x,h) - y(x) I, where y(x) is the theoritcal 

solution and y(x,h) is the numerical solution by the 

scheme . 

TABLE 4.7 

X EXACT SOLUTION ERROR IN ERROR IN ERROR IN ERROR IN 

0.10 1.22304888 

0.20 1.508497859 

0.30 8.895765123 

0.40 2.46962757 

0.50 3.40822344 

0.60 5 .33 1855223 

0.65 7.34046575 

0.70 11.6813738 

0.75 28.23825285 

0.80 -68.4796683 

0.90 -8.68766295 

1.0 -4.588037 

INTEGRATOR FATUNLA[lO] ADEBOYE[ll] FATUNLA & 
AASHIK.PEKAII121 

4.137(-4) l.228(-2) 3.857( -4) 2.0 (-10) 

1.076(-3) 2.918(-1) 1.002(-3) 2.0 (-10) 

2 .247(-3) 5.580(-2) 2.087(-3) 2.0 (-10) 

4.592(-3) l.045(-1) 4.237(-3) 2.0(-10) 

1.021( -2) 2 .135(-1) 9.321(-3) 3.0(-10) 

2.863(-2) 5.564(-1) 2.604(-2) 5.0( -10) 

5.771(-2) 1.107(0) 5.072(-2) 7.0(10) 

1.003(0) 3.092(0) l.349( -1) 1.0(-9) 

5.587(0) 2.903(1) 8.276( -1) 4.0(-9) 

3.243(-1) 3.776(1) 4.053(-1) 2.0(-10) 

1.107(-1) 1.666(0) 1.062( -1) 2.0(-10) 

3.587(-2) 3.421(-1) 7.643( -3) 2.0(-10) 

Index a(-b) a xlO 6 

From the table we notice . that Fatunla and 

Aashikpelokai[12] results show exceedingly high 

performance. The global errors are highly negligible. We 

also observe that the table shows that smaller meshsize h 

prodrice small global errors at each mesh point. 
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Table 4 . 8 shows the computational errors in the 

integrator , Adeboye[ll] and Fatunla[10] for problem II 

above . 

Problem II : y 

x EXACT SOLUTION 

o 1.0 

0 . 1 1 . 111111111 

0 . 2 1.25000 

0 . 3 1.428571428 

0 . 4 1 . 6666667 

0 . 5 2 . 000 

0 . 6 2 . 5000 

0 . 7 3 . 3333 

0 . 8 5 . 0000 

0 . 9 10 . 000 

1.0 00 

y2 , y(O) = 1 

TABLE 4 . 8 

ERROR IN ERROR IN 
INTEGRATOR ADEBOYE[ll] 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

ERROR IN 
FATUNLA [10] 

o 

o 

6.075( - 5) 

5 . 492(-2) 

7 . 430(-2) 

1.060(-1) 

1 . 635( - 1) 

2.845(-1) 

6 . 1409(-1) 

2 . 187(0) 

We observe from the table above the exceedingly high 

accuracy in the results of the integrator and Adeboye[ll] . 

We also notice that smaller meshsize h produce smaller 

global errors. 

We compute the computational errors in the resul t " of 

problem III as it is shown in table 4 . 9 "below . 

Problem III y ' = xy2 , y(O) = 2 . 
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TABLE 4 . 9 

X EXACT SOLUTION ERROR IN ERROR IN ERROR IN 

INTEGRATOR ADEBOYE[ll] FATUNLA[lO] 

0 2 . 0 0 0 0 

0 . 1 2 . 02020202 0 -2 . 02(-1) -2 . 02(-1) 

0 . 2 2 . 08333333 -8 . 591(-4) -3 . 514(-2) -4.25( - 2) 

0 . 3 2 . 197802 -2 . 2261(-3) -4 . 788(-2) -7 . 036(-2) 

0 . 4 2 . 3809523 -4 . 769(-3) - 5.993( - 2) -1.082( - 1) 

0 . 5 2 . 666667 - 9 . 621(-3) - 7 . 43( - 1) -1 . 666( - 1) 

0 . 6 'r 3 . 125000 -1.811( - 2) -9 . 479( - 2) -2 . 678(-1) 
' r 

0 . 8 5 . 555556 - 1.361 (- 1) -2 . 241(-1) -1.01(0) 

0 . 9 10 . 526318 -7 . 205( - 1) - 6 . 826( - 1) -3 . 383(0) 

1.0 00 

1.1 -9 . 5238095 2 . 834(0) 1.216(0) 1.0476(1) , 

1.2 -4 . 5454545 -5 . 1177(-0) - 2 . 7018(0) -1 . 7045( - 0) 

The values above suggest that the integrator and 

Adeboye[11J perform better than Fantula[10J . Therefore the 

integrator is a feasible numerical method . 
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CHAPTER FI VE 

COMPUTER PROGRAMS 

5.1 Computer Programs for the Problems Discussed in Chapter Four 

PROGRAM PROB 1 (input,output); 

USES 
CRT; 

CONST 
NOOFPTS = 50; 
PI = 3.141592654; 

VAR 
EXACTY, X, Y {DUMMY V ARlABLES} : ARRA Y[O .. NOOFPTS] OF REAL; 
STEP : REAL; 
INITX, FlNALX : REAL; 
LASTl, I : INTEGER; 

.. COUNTER : REAL; 
CH: CHAR; 

{*~*********************************************************** ********} 

FUNCTION F(X, Y : REAL ) : REAL; 
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM 
Y' = F(X, Y)} 

VAR SUPF : REAL; 
BEGIN 

F := 1 + SQR(Y) ; {PROBLEM TO BE SOLVED} 
END; 

FUNCTION YEXACT( X : REAL) : REAL; 

{THlS FUNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE 
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y) 
} 
VAR 

THETA: REAL; 
BEGIN 

THETA := X + PII4 ; 
YEXACT := SIN( THETA) / COS( THETA); {THE EXACT SOLUTION OF F(X, Y) } 

END; 

PROCEDURE DISPRES( N: INTEGER); 
VAR 

PAGENO, LlNENO, TOTLlNE, J : INTEGER; 
ERROR : REAL; 

BEGIN 
CLRSCR; 
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TOTLINE := 25 ; 
WRITELN(' X 
WRITELN( , 
LlNENO := 2; 

EXACT NEW ERROR'); 
SOLUTION SCHEME'); 

FOR J := 0 TO N DO 
BEGIN 

WRlTE( X[J]:6:3,' ',YEXACT( X[J] ) : 10:7,' 
EXACTY[ J ] := YEXACT( X[ J ] ); 
ERROR := EXACTY[ J ] - Y[ J ] ; 
WRlTELN( ERROR: 10:7); 
LlNENO := LINENO + 1; 
IF LlNENO = TOTLINE - 1 THEN 
BEGIN 

CH := READKEY ; 
CLRSCR; 
PAGENO := PAGENO + 1; 
LlNENO := \ ; 

END {IF }; 
END; 

END; 
{***********************************} 
BEGIN {MAIN} 

CLRSCR; 

" Y[J]:1O:7,' '); 

WRITE( 'PLEASE ENTER THE STEP LENGTH: ' ); 
READLN( STEP ); 
WRlTE(,PLEASE ENTER THE INITIAL VALUE OF X: ' ); 
READLN( INlTX ); 
WRITECPLEASE ENTER THE LAST VALUE OF X: '); 
READLN(FINALX); 
WRlTE('PLEASE ENTER THE VALUE OF Y AT ',INITX:5 :3,': '); 
READLN( Y[O] ); 
WRlTE( 'PLEASE ENTER THE VALUE OF Y[ 1]: , ); 
READLN( Y[l] ); 

X[O] := INITX; 
X[l] := INITX + STEP; 
COUNTER := INlTX + STEP; 
1 := 2; 
WHILE COUNTER <= FINALX DO 
BEGIN 

COUNTER := COUNTER + STEP; 
X[ I ] := X[ I - 1 ] +- STEP; 
Y[ I) := Y[ I - 2) * (STEP * F( X[I - J) ,Y[I-l) ) + Y[ 1- 1 ]); 
Y[ I] := Y[ I] / ( Y[ I - 1 ] - ( STEP * F(X[I-l] ,Y[I-l])); 
I := I + I ; 

END; 
LASTI := 1- I ; 
DISPRES(LASTI); 
CH := READKEY; 
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END. 

*************************************************************** 

PROGRAM PROB2 (input,output); 

USES 
CRT 

' . ' 
CONST 

NOOFPTS = 50; 
PI = 3.141592654; 

VAR 
EXACTY, X, Y {DUMMY VARIABLES} : ARRAY[O .. NOOFPTS] OF REAL; 
STEP, MINH, MAXH, INCR : REAL; 
INITX, FINALX : REAL; 
XO, YO : REAL; 
K, LASTI, I : INTEGER; 
COUNTER : REAL; 
CH : CHAR; 

{************************************************************* *******} 

FUNCTION F(X, Y : REAL ) : REAL; 
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM 
Y' = F(X, Y) } 

VAR SUPF : REAL; 
BEGIN 

F := SQR(Y) ; {PROBLEM TO BE SOLVED} 
END; 

{**************************************************} 

FUNCTION YEXACT( X : REAL ) : REAL; 

{THIS FUNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE 
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y) 
} 
BEGIN 

YEXACT := 1 / ( 1 - X) ; {THE EXACT SOLUTION OF F(X, Y) } 
END; 
{***********************************} 
PROCEDURE DISPRES( N: INTEGER ); 
VAR 

PAGENO, LINENO, TOT LINE, J : INTEGER; 
ERROR : REAL; 

BEGIN 
CLRSCR; 
TOTLlNE := 25 ; 
WRITELN(' X EXACT NEW ERROR' ); 
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WRITELN( , SOLUTION SCHEME') ~ 

LlNENO: = 2; 
FOR J := 0 TO N DO 
BEGIN 

WRlTE( X[J]:6:3,' '); 

IF J = 10 THEN 
WRITE( 'INFINITY INFINITY') 

ELSE 
BEGIN 

WRITE(YEXACT( X[J] ) : 10:7,' '); 
WRITE(Y[J]: 10:7, ' '); 

END; 
EXACTY[ J ] := YEXACT( X[ J ] ); 
ERROR := EXACTY[ J ] - Y[ J ] ; 

IF J = 10 THEN 
WIUTELN 

ELSE 
WRlTELN( ERROR: 10:7); 

EXACTY[ J ] := YEXACT( X[ J ] ); 
LINENO := LINENO + I; 
IF LINENO = TOTLINE - I THEN 
BEGIN 

CH := RE ADKEY; 
CLRSCR; 
PAGENO := PAGENO + 1; 
LlNENO := 1; 

ENO{IFJ; 
END; 

END; 
{***********************************} 
BEGIN {MAIN} 

CLRSCR; 
WRITE( 'PLEASE ENTER THE STEP LENGTH: ' ); 
READLN( STEP ); 
WRITE('PLEASE ENTER THE INITIAL VALUE OF X: ' ); 
READLN( INITX ); 
WRITE(,PLEASE ENTER THE LAST VALUE OF X: '); 
READLN(FINALX); 
WRITE( 'PLEASE ENTER THE VALUE OF Y AT ',INlTX:5:3,': ' ); 
READLN( Y[O] ); 
WRlTE( 'PLEASE ENTER THE VALUE OF Y[l]:'); 
READLN( Y[l] ); 

X[O] := INlTX; 
X[l] := INITX + STEP; 
COUNTER := INITX + STEP; 
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WHILE COUNTER <= FINALX DO 
BEGIN 

COUNTER := COUNTER + STEP; 
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X[ I ] := X[ I - I ] + STEP; . 
Y[ I] := Y[ I - 2] * (STEP * F( X[I - 1],Y[I-IJ) + Y[ I-I J); 
Y[ I] := Y[ I] / (Y[ 1- 1 ] - (STEP * F(X[I-I] ,Y[I-l]))); 
( := I + 1; 

END; 
LAST! := 1- 1; 
DISPRES(LASTI); 
CH := READKEY; 

END 
*************************************************************** 
PROGRAM PROB3 (input,output); 

USES 
CRT; 

CONST 
NOOFPTS = 50; 
PI = 3. 141592654; 

VAR 
EXACTY, X, Y {DUMMY VARIABLES} : ARRAY[O .. NOOFPTS] OF REAL; 
STEP, MINH, MAXH, INCR : REAL; 
INITX, FINALX : REAL; 
XO, YO : REAL; 
K, LAST!, I : INTEGER; 
COUNTER : REAL; 
CH : CHAR; 

FUNCTION F(X, Y : REAL ) : REAL; 
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM 
Y' = F(X, Y)} 

VAR SUPF : REAL; 
BEGIN 

F := X * SQR(Y); {PROBLEM TO BE SOLVED} 
END; 

{**************************************************} 

F:UNCTION YEXACT( X : REAL ) : REAL; 

lTllJS I;UNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE 
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y) 
} 
{VAR 

THET A : REAL; 
} '\ 

BEGIN 
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{ THETA := X + PV4 ;} 
YEXACT := 2 / ( I - SQR(X) ); {THE EXACT SOLUTION OF F(X, Y) } 

END; 
{***********************************} 
PROCEDURE,D1SPRES( N: INTEGER); 
YAR 

PAGENO, LINENO, TOTLINE, J : INTEGER; 
ERROR : REAL; 

BEGIN 
CLRSCR: 
TOTLINE := 25 ; 
WRlTELN(' X EXACT NEW ERROR' ); 
WRlTELN( , SOLUTION SCHEME' ); 
LINENO: = 2; 
FOR J := 0 TO N DO 
BEGIN 

WRlTE( X[J]:6 :3,' '); 

IF J = 10 THEN 
WRlTE( 'INFINITY') 

ELSE 
WRlTE(YEXACT( X[J] ) : 10:7,' '); 

WRITE(Y[J]: 10:7,' '); 
EXACTY[ J ] := YEXACT( X[ J ] ); 
ERROR := EXACTY[ J ] - Y[ J ] ; 

IF J = 10 THEN 
WRITELN 

ELSE 
W RITELN( ERROR: 1 0: 7); 

LINENO := LINENO + 1; 
IF LlNENO = TOTLINE - 1 THEN 
BEGIN 

CH := READKEY; 
CLRSCR; 
PAGENO := PAGENO + 1; 
LINENO := 1; 

END{IF}; 
END; 

END; 
{***********************************} 
BEGIN {MAIN} 

CLRSCR; 
WRITE( 'PLEASE ENTER THE STEP LENGTH: ' ); 
READLN( STEP ); 
WRlTE('PLEASE ENTER THE INITIAL VALUE OF X: ' ); 
READLN( INlTX); 
WRITE(,PLEASE ENTER THE LAST VALUE OF X: '); 
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READLN(FINALX); 
WRlTE( 'PLEASE ENTER THE VALUE OF Y AT ',INITX:5:3,': ' ); 
READLN( Y[O] ); 
WRlTE( 'PLEASE ENTER THE VALUE OF Y[ 1]: , ); 
READLN( Y[l] ); 

X[O] := INITX; 
X[l] := INITX + STEP; 
COUNTER := INITX + STEP; 
1 := 2; 
WHILE COUNTER <= FINALX DO 
BEGIN 

COUNTER := COUNTER + STEP; 
X[ I ] := Xr I - I ] + STEP; 
Yll J :- Yll - 2 J ... ( STEP'" F( XlI - I J, Yll-l J ) + Yll - I J ); 
Y[ I] := Y[ I] / ( Y[ 1 - ] ] - ( STEP * F(X[l-l],Y[l-l])); 
1 :=1+ 1; 

END; 
LAST! := I - 1; 
DISPRES(LASTl); 
CH := READKEY; 

END. 
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Y = 1 + sqr (y) , y (0) = 1 
x Exact New Error 

Solution Scheme 
0.0000 1.0000000 1 . 0000000 0.0000000 
0.0500 1.1053556 1 . 1053556 -0.0000000 
0.1000 1.2230489 1.2234626 -0.0004138 
0.1500 1.3560879 1.3565726 -0.0004847 
0.2000 1.5084976 1.5095739 -0.0010763 
0.2500 1.6857964 1.6871194 -0.0013230 
0.3000 1.8957651 1.8980125 -0.0022474 
0.3500 2.1497476 2.1526709 -0.0029232 
0.4000 2.4649628 2.4695545 -0.0045917 
0.4500 2.8688840 2.8753145 -0.0064305 
0.5000 3.4082234 3.4184340 -0.0102106 
0.5500 4.1693640 4.1854221 -0.0160580 
0.6000 5.3318552 5.3604825 -0.0286273 
0.6500 7.3404366 7.3981428 -0.0577062 
0.7000 11.6813738 11.8388970 -0.1575232 
0.7500 28.2382529 29.2415826 -1.0033297 
0.8000 - 68.4796678 -62.8918387 -5.5878292 
0.8500 -15.4578961 -15.1335715 -0.3243246 
0.9000 -8.6876295 -8.5768710 -0.1107586 
0.9500 -6.0202997 -5.9633190 -0.0569807 
1.0000 -4.5880378 -4.5521595 -0.0358783 
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y = Sqr (y) I Y (0) = 1 

X EXACT NEW ERROR 
SOLUTION SCHEME 

0.0000 1.0000000 1.0000000 0.0000000 
0.1000 1.1111111 1.1111111 0.0000000 
0.2000 1.2500000 1.2500000 0.0000000 
0.3000 1.4285714 1.4285714 0.0000000 
0.4000 1.6666667 1.6666667 0.0000000 
0.5000 2.0000000 2.0000000 0.0000000 
0.6000 2.5000000 2.5000000 0.0000000 
0.7000 3.3333333 3.3333333 0.0000001 
0.8000 5.0000000 4.9999999 0.0000001 
0.9000 10.0000000 9.9999995 0.0000005 
1.0000 INFINITY INFINITY 

'y 

y = Sqr (y) I Y (0) = 1 

X EXACT NEW ERROR 
SOLUTION SCHEME 

0.0000 1.0000000 1.0000000 0.0000000 
0.1000 1.1111111 1.1111111. 0.0000000 
0.2000 1.2500000 1.2500000 0.0000000 
0.3000 1.4285714 1. 4285714 0.0000000 
0.4000 1.6666667 1.6666667 0.0000000 
0.5000 2.0000000 2.0000000 0.0000000 
0.6000 2.5000000 2.5000000 0.0000000 
0.7000 3.3333333 3.3333333 0.0000001 
0.8000 5.0000000 4.9999999 0.0000001 
0.9000 10.0000000 9.9999995 0.0000005 
1.0000 INFINITY INFINITY 



X 

0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
1.0000 
1.1000 
1. 2000 

Y 

',. 

= x * sqr (y) , y (0) 

EXACT 
SOLUTION 
2.0000000 
2.0202020 
2.0833333 
2.1978022 
2.3809524 
2.6666667 
3.1250000 
3.9215686 
5.5555556 

10.5263158 
INFINITY 

-9.5238095 
-4.5454545 
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= 2 

NEW ERROR 
SCHEME 

2.0000000 0.0000000 
2.0202020 0.0000000 
2.0824742 0.0008591 
2.1957962 0.0020060 
2.3761833 0.0047691 
2.6570459 0.0096208 
3.1042747 0.0207253 
3.8733800 0.0481886 
5.4138502 0.1417054 
9.7919394 0.7343763 

85.7856389 
-12.3760542 2.8522447 
-13.1279990 8.5825445 
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5.2 DISCUSSION OF THE RESULTS 

The numerica l values for problem one above 

suggest that t h e int e grator i s a feasible numerical method 

for treating ini tial value problems with discontini ties/ 

singularities . We observe from the computational errors 

that s maller meshsize ,h, produce smaller global errors . 

However, the integrator being two-step, is expected to 

use t he va lue s o f Yn and Yn+l to compute Yn+2 a s an 

approximation to y(xn+2l. To achieve this we simply 

generate the value of Yn+l using the exact solution. The 

integrator couverges rapidly when used to solve certain 

initial value problems with singularities . 

The numerical values a s shown in the results of 

problem two indicate also that the integrator is a good 

nume r ica l me thod s . The r esul ts show the exceedingly high 

performcane of the integrator . The integrator gives 

a c c urate results nearly as good as the theoretical results . 

5 1so in problem three we constrast the results and 

observe that the integrator performs well in this class of 

ini tial value problems therefore the integrator is well 

sui ted for initial value problems with discontinuities or 

singularities . 

5.3 SUMMMARY, CONCLUSION AND RECOMMENDATION 

5 . 3. 1 SUMMARY AND CONCLUSION 

We shall conclude this project by s ummarising the 

details of the previous c h apters . In chapter one~ we 

discussed the general historical backgr o und o f the s ubject 

differential equation. In chapter one also we give some 
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discussions about the development of some important linear 

multi-step methods such as Euler ' s rule , Mid-point rule , 

trapezoidal rule , Adams-Moulton methods etc . We also 

discussed the derivation of some finite difference schemes 

for solving partial differential equations . 

Chapter two is mainly the literature review on the 

treatment of singular and discontinuous . initial value 

problems . The overview of some methods of treating singular 

and discontinuous system such as non- polynomial methods , 

inverse polynomial , explici t conve.rgent one-step method , 

and a fifth order L-stable numerical methods were made. 

A new scheme for treating singular and discontinuous 

systems was established in chapter three . The integrator is 

zero stable and consistent. Hence , it is convergent . The 

new scheme is proposed to cope with singular and 

discohtinuous intial value problems . It may · not cope with 

stiff and oscillatory differential equation . 

Some numerical experiments were performed in chapter 

four using the new integrator. We also compared the 
~ 

performance of the new integrator with the theor\cal 

solutions . The integrator converges rapidly for certain 

initial value problems . 

Finally some computer programmes were written to solve 

the initial value problems discusied in chapter four . The 

results of the programmes as contrasted with the 

theori tical solutions show that the integrator is a good 

numerical method . 
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5.3.2 RECOMMENDATION 

The area of mathematical formulation of physical 

phenomena in electical engineering , simulation , control 

theory and economics often gives or leads to an ini tial 
, 

value problem of the form y = f (x , y) y (0) Yo ' The 

fundamental concern is always the computation or solution 

of such problems . However , most of the conventional 

integrator formulas , i . e linear multistep methods perform 

very inefficiently in the treatment of a singularity . In 

order to circumvent this problem it is important to provide 

alternative strategies so as to establish algorithms which 

will perform well in the treatment of singularities . To 

achieve this , it is recommendable to research into the 

subject of this research work and earlier works . 
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