i

TITLE PAGE

NUMERICAL TREATMENT OF SINGULAR AND
DISCONTINUOUS INITIAL VALUE PROBLEMS.

BY

UMAR AHMED EGBAKO,
M. TECH/96/0033

A MASTER'S DEGREE PROJECT SUBMITTED TO THE
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE,
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA. IN PARTIAL
FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF
MASTERS OF TECHNOLOGY (M. TECH) MATHEMATICS.

NOVEMBER, 1998.



ii

@ertification

This is to certify that this research project has been
read and approved as meeting cthe requirements of the Department
of Mathematics and Computer Science, Federal University of
Technology, (FUT) Minna, for the award of Master of Téchnology

in Mathematics.

PROFESSOR K.R. ADEBOYE DATE
Supervisor
PROFESSOR K.R. ADEBOYE ’ DATE

H.0.D (Maths/Comp.Sc)




iv .
ACKNOWLEDGEMENT

I am very much indebted to the Department of Mathematics
and Computer Science, Federal University of Technology (FUT),
Minna for giving me the opportunity to carry out this project.
I am barticularly grateful to my mentor and Supervisor,
Profegssor K.R. Adeboye for his iﬁtelleqtual guidance. I am
debteé to Professor Adeboye for taking the time to read through
the whole script. "His useful comments and constructive
criticisms and sﬁggestions have hade this research work
possible.

I am grateful to the entire staff of the Departmept of
Mathematics and Computer Science, FUT, Minna, for their co-
operation and assistance. .

I am also indebted to Dr. Francis N. Gana for his
encouragement and assistance.

Were I to acknowledge the whole extent of my indebtedness
to others, I should transfer to ' 'this point the bibliography
which appears as an appendix. But passing over those to whom I
am indebted through their published work, I feel it my duty, as
it is my previlege, to mention two names in particular. To
Prof. S.0. Fatunla I owe my introduction to the subject; to
Professor K.R. Adeboye my initiation into research and many
“acts of kind encouragement.

I am grateful to Mal. Ismaila M. Egbako, Mr. Gabriel R.S.
and many of friends whose names do not appear hefe for their
moral support.

Above all, 1I. give glory to Almighty Allah for His

guidance, wisdom and protection.




Few
]

ABSTRACT
This research project was conceived within the framework
of the philosophy that there are some initial value problems in
which some components of the solution contain discontinuities.
In this attempt some topical review of earlier tfeatments

of singular and discontinuous initial value problems were

made.

A two-step numerical integrator is presentea based on the
inverse polynomial methods. The numerical results for the
integrator are contrasted with‘ some earlier works. The

integrator converges rapidly when used to solve initial wvalue
problems with discontinuities / singularities in the solutions.
The integrator is zero-stable and is well suited for singular °

and discontinuous initial value problems.




vi

TABLE OF CONTENTS
Title page i
Certification ii
Dedication 1l
Acknowledgement v
Abstract \%
Table of Contents vi
CHAPTER ONE
General Introduction And Basic Mathematical ideas.
1.1 Historical Background 1
1.2 Definitions
1.3 The Linear Multistep Methods 11
CHAPTER TWO
General Review of Numerical Methods for Singular And Discontinuous System.
2.1 Literature Review - 22
2.2 Overview of Non-Polynomial Methods 27
2.3 Overview of A convergent Explicit One-step Methods 30
24 Overview of Inverse Polynomial Methods 33
2.5  Overview of A fifth Order L-stable Numerical Methods 36
CHAPTER THREE
Development of A New Numerical Integrator For Singular and Discontinuous Systems.
3.1 - Introduction 40
3.2 The Proposed Numerical Integrator e
3.3  Convergence of the Method 45
CHAPTER FOUR:

Numerical Solutions for Singular And Discontinuous Systems
4.1 Specific Numerical Examples of Singular and Discontinuous

Systems using the New Scheme. 48
42  Comparison of the Results with some established scheme a2
43  Error in Computational Results 55
CHAPTER FIVE

Computer Programmes for Solution of Singular and Discontinuous Systems.
5.1 Computer Programmes for the problems discussed in Chapter Four 58

52  Discussion of the Results 68
53 Summary, Conclusion and Recommendation 68
5.3.1 Summary and Conclusion 68
5.3.2 Recommendations 70

References 71



CHAPTER ONE
General Introduction and Basic Mathematical Ideas
1.1  Historical Background

A branch of mathematics which has enjoyed - almost three
centuries of rigorous life and whosé early history tends more
and more to be masked by the density of its later growth is
Differential Eqﬁation. Yet our hazy knowledge of the birth
and infancy of the science of differential equation condeﬁses
upon a remarkable date, the 11th November, 1675, when Leibniz
first set down on paper the equation

fy dy = »y?,
thereby not merely solving a simple differential equation,
which was in itself a trivial matter, but what was an act of
great moment, forging a powerful tool, the integral sign.

Thé eérly history of the infinitesimal calculus abounds
in instances of problems solved through the agency of what
were virtually differential equations; it is even true to say
that the problem of integration which ‘may be regarded as the
solution of‘ the simplest of all types of differential
equations, was a practical pfoblem. Particular cases of the
inverse problem of tangents, that 1is the problem of
determining a curve whose tangents are subjected to a
ﬁarticular law, were successfully dealt with Dbefore the
invention of the calculus.

But  the historical value of science;depends not upon the
~number of particular phenomena it can present but rather upon
the péwer it has of coordinating diverse facts and subjecting

them to one simple code. That was what Newton considered when




he classified differential equétions of the first order, that
time known as fiuxional equations, into three clasSes:

The first clss 1is composed of thoée equations in which
two fluxions x' and y'and one fluent x or vy, are related.

For example
y =f(x) or dy =f(x)
dx

and y =fly) or dy =f(y)
: dx

The second class composed of those equations which involve
two fluxions and two fluents. That is
y' = f(x,y) or dy = f(x,y)"
dx
The third class is made up of equations which involve more
than th fluxions; these are known as partial differential
equation.

By the end of ﬁhe seventeenth century practically all
the known elementary metﬂods of solving differential
equations of the first order had been brought to light. The
_problem.of determing the orthogonal trajectories of a one-
parameter family of curves was solved by John Bernoulli in
1698; the problem of oblique trajectories presented no
further difficulties. In early years of eighteenth century a
number of problems thch led to différential equations of the
second or third orders were discovered. In 1696 James
Bernoulli formulated the isoperimetric problem, or 'the
problem of determing curves of a given perimeter which

shall under given conditions , enclose a maximum- area. Some




iii

DEDICATION

This work is dedicated to my beloved wife, Hajara A.A. and

my children Mohammed, Yakubu and Salamatu Ahmed.




vi

TABLE OF CONTENTS
Title page 1
Certification , i
Dedication i
Acknowledgement \%
Abstract \
Table of Contents vi

CHAPTER ONE

General lr‘ltroduction And Basic Mathematical ideas.

1.1 Historical Background ]
1.2 Definitions 8
1.3 The Linear Multistep Methods 11

CHAPTER TWO
General Review of Numerical Methods for Singular And Discontinuous System.

2.1 Literature Review - 22
2.2 Overview of Non-Polynomial Methods 27
2.3 Overview of A convergent Explicit One-step Methods 30
2.4  Overview of Inverse Polynomial Methods 33
2.5  Overview of A fifth Order L-stable Numerical Methods 36
CHAPTER THREE

‘Development of A New Numerical Integrator For Singular and Discontinuous Systems.
3.1 - Introduction 40
3.2 The Proposed Numerical Integrator 44

3.3  Convergence of the Method 45

CHAPTER FOUR:
Numerical Solutions for Singular And Discontinuous Systems
4.1 Specific Numerical Examples of Singular and Discontinuous

Systems using the New Scheme. 48
42  Comparison of the Results with some established scheme - 52

4.3  Error in Computational Results 35

CHAPTER FIVE

Computer Programmes for Solution of Singular and Discontinuous Systems.

5.1 Computer Programmes for the problems discussed in Chapter Four 58
52 Discussion of the Results 68
53 Summary, Conclusion and Recommendation 68
5.3.1 Summary and Conclusion 68
5.3.2 Recommendations 70

References 71



five years later he published equation of the third order.
The probiem of trajectories 1in a general sense and in
particular trajectories defined by the knowledge point
gave rise to differential equations of the second order.
Thus for example, John Bernoulli, discussed an equation which

would be written as

d?y 2y

dx2 %2
and stated that it gave rise to three types of curves,

parabola, hyperbola and a class of curves of third order.

Numerical Methods of Ordinary Differential Equations

Of all the ordinary differential equations of the first
order, only certain very special types admit of explicit
integgation, and when an equation which is not of one or
other” of these types arises 1in a préctical problem the
investigator has to fall back upon purely numerical methods
of approximating the required solution.

Consider the differential equation

dy = £(x,y) or y = f(x,y).
dx

It will be supposed that the initial value (x,,Y,) 1s not
singular with respect to the equation, and that a solution
exists which can be developed in Taylor series, thus:

K = hy + by + b3 + waty'V+ ...
2 3! 41




where h = x - x, and K =y - y, and h is sufficiently small.

7
Now the coefficients 1in the Taylor series may be

calculated as follows:

y = £(x,y),

”

y =0f + £ _of
Ox oy,
2t 2£0°f £2 9%f (of of ) Of
y' o= # 4 . % F .
ox2 0x0y 6y2 O0x oy )oy,

and so on ....
but the increasing complexity of these'expressions renders
the process impracticable. The actual method adopted im
practice is Runge's method which is an adaptation of Gauss'
method of numerical integration. Four numbers Kqi, Ky, K3, K4
are defined as follows:

K; = hf(xqg + yg )

K, = hf(xg + ah, vo + BKj)

K3 = hf(xy + agh, yé + B1ky + uokyp)

Kgq = hf(xy +ash, yy + Boky + moky + 85k3)
‘where the nine constants a, B,... 85, and four weights Rq,
Ry, Rg R,y are to be determined so that the expression

R1K; + RyKy + R3K3 + RyK, agrees with the Taylor series

up to and including the term in h%.
The method above can be extended to systems of any

number of equations of the first order, and therefore. to




equations of order higher than the first. For a system of
two equations.

dy = £(x,y¥,2), dz = g(x,y,2)
dx dx

if the initial values are that

Y = Ygr Z = zg when x = X, then Runge's method for

the increment K and L which yg and zy receive when x4 is

increased by h are

Kl. = hf (XOI Yor ZO) ’
Ky = hf(xg + %h, yg + ¥Kg, zg + %)
K3 = hf(Xo + 3sh, yo + Bkz, Zp & 5L2)

K4 = hf(Xo + h, Yo + k3, Yo + L3)

Ly = hg(xg, vq, 2g)
L2 = hg (X.O + 3sh, Yo + l’ikl r 20 ¥ ;éLl )
L3 = hg(Xo, + 3sh, Yo + ;ékz, Z0 + ;§L2)

L4 = hg(xo + Ry, yO F k3, Zo b i L3)

K =1 (ki+ 2k, + 2kg + k3)
6

L =l(L1+2L2+2L3+L4).
6

In its original form the method discussed above is due to
Runge; later mgdifications are due, among others to Kutta.

Hence the method is later called Runge-Kutta method.




1.1.2 Singular Solutions

Singular solutions were discovered in a rather
surprising manner. Brook Taylor set out to discover the
solution of a certain differential equation which, in modern
symbolism, would be written as:

(1 + x2)2(dy)2 = ay3 - ay?
dx

A

He substituted y = u™vH, where

u and v were new variables and A and pu contants to be
determined, and so transformed the equation into:

(1 + x2)2( pa dv + Av d,u)2 = 4ux+2v“+2 - 4uiv?
dx dx :

In this equation there are three elements whose choice is

unrestricted, namely A, p and v;u is then the new dependent
variable

Firstly let
v =1+ x2
then, dividing through by (1 + x2)2, the equation becomes

(2uxu + Av dy)2r = 4urt2¢Ho 4y2
dx

Now let A = -2, p = 1 and the equation reduces to

(2xu - 2v du)2 = 4v - 4u2,
dx

that is

(1 + x2) u2 - 2xuv du + v2 (du)2 = v
ax dx

or, since v =1 + x2,




u? - 2xu du ¢ v (dw)? = 1
as¢ dx

Now, if this equation is differentiated with respect to x,

the derived equation is

2d2u (v du - Xu)

dx?  dx

and breaks up into two equations namely

dZu =0, vdu - xu = 0
dx2 dx

The first gives d?u
- = a’

A
where a is constant; when this value is substituted in the
differential equation for u, the later degenérates into the
algebraic equation; (u - ax)? = 1-a?.
The general solution of the original equation is
therefore

u2 (ax + \/l—az)2

The second equation,

vdu - xu = 0,
dx

taken in conjunction with

uZ - 2xu du + vidu)? =1
dx dx

gives 1 = u? - 2x2u2 + x2y?
v v

Or v = uZ (v - x2) = u?

u2




This is truly a solution of the original equation, but it
cannot be derived from the general solution by attributing a

particular value to a. It is therefore a singular solution.

1.2 Definitions

In this project the following "definitions shall be
adopted. .
1.2:1 Differential Equation

A differenti.al equation is a relationship between the
diffegehtial dx and dy of two vairables x and vy. Such
relationship in general explicitly involves the variable x
and y together with other sumbols a, b, c...; which represent
constants. In _other words, differential equations can be
understood to include any algebraical or transcendental
equalities which involve either differentials or differential
coefficients. But it should be understood tﬁat differential

equation is not an identity.

1:.2.2 Initial Value Problems
The general form of the ordinary differential equation
can be put in the form

L[Y] =r (le2.+1)

where L is a differential operator and r is a given function
of the independent variable x. A linear differential
equation of order n can be expressed in the form

n "
LIY] = Xfp(x)yP(x) = r(x) {12:2]

=\




in which fp(x) are known functions. The general non linear

differential equation of order n can be written as

Flx, v,V 5 ¥ oo. y@ 1) g™y =0 (1.2.3)

or yM™(x) = flx,y,y sy ... y® 1 (1.2.4)

where X €la,b]

The general solution of the ﬁth order ordinary
differential equation contains n independent arbitrary
constants. In order to determine the arbitrary constants in
the general solution if the n conditions are prescribed at
one point, these are the initial conditions. The
differential equation together with an initial conditions is
called the 1initial wvalue problem.. Thus, the nth order

initial value problem can be expressed as

yR(x) = £(x,y,y ,y" ... y(B71))

yP(x5) = yo(p), Bl 1, Z consee 8 = 1
If the n conditions are prescribed at more than one
point, these are called Dboundary conditions. The
differential equation together with boundary condtions 1is

called boundaryfva;ue problem.
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1.2.3 Numerical Methods

Consider the differential equation

5
k1

y' = f(x,¥)s ¥(Xg) = yg — (1.2.6)
x €la,bl]

The numerical methods for the solution of the
differential equation (1.2.6) are the algorithms which will
produce a table of approximate values y(x) at certain equally
spaced points <called, grid or mesh points along the x
coordinate. Each mesh point in terms of the prévious point

is determined by the relationship

Kpgq = xn+h, n=20,1,2 ...... N -1

Xg =a,Xy = b
where h 1is called the étep length. Alternatively, we may
write
+nh, n=1,2 ... N

The numerical methods for finding solution of the
initial value problem of equation (1.2.6) may be broadly
classified into the following two types: |

(1) Singlestep Methods: These methods enable us to

find approximation to the true solution y(x) at x,;; if

Ynr y'n and h are known.

(ii) Multistep Methods: These methods use recurrence

relations,.which express the function value y(x) at

Xn+1 in terms of the function values y(x) and

derivative values Y'(x) at x,;7 and at previous mesh

points.
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1.3 The Linear Multistep Methods
Consider the initial value problem for a first-order
differential equation:

y' = f(x,y), yla) =A _______ (1.3.1)

We seek a solution in the interval as<x<b, where a and b are
finite and we assume that f(x,y) satisfied the following
conditions:

(i) f(x,y) is a real function
(ii) f(x,y) is defined and continuous in the
intervél. x €la,b], ye (-, o)
(iii) there exists a constant L such that for any
x€[a,b] and for any two numbers y; and yj
I£ (%, y1) ~£ (%, y5) |< Lly;-ysl,
where L 1is called Lipschitz constant.

Then for any yp the initial value problem (1.3.1) has a

unique solution y(x) for xe[a,b]. Consider the sequence of
points {x,} defined by x, = a 4 nh, n = 0,1,2..... , where h
is the step length. An important property of the majority of
computational methods of the solution (1.3.1) 1is that of
discretization; that is, we seek an approximate solution, not

on the continuous interval a<x<b, but on the discrete point

{xp}, n=20,1,2....,b-a}. Let y, be an approximation
h

to the theoretical solution at x,, that is to y(x,) and let
ftn, = f(xXnh,¥p). A computational method to determine the
sequence {y,} which takes the form of a linear relationship

between fn+j' 920,032 . s« Ky is «called a 1linear

Yn—j ’

multistep method of step number k, or a linear k-step method.
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The general linear multistep method may, therefore, be

written as

k , ‘
Zajyn+j=hZijn+j — (173.2)
3=0
where aj and Bj are constants; we assume that ag#0 and that

not both ag and'Bo are zero.

The problem of determining the solution y(x) of the
initial wvalue problem (1.3.1) can be replaced by that of
finding a sequence {y,}, which satisfies the difference
equation (1.3.2). Such equations are not easy to handle. 1In
order to compute the sequence {y,} numerically, we must have
a set of some startipg values yo,¥1s.-.¥x-1- In the case of
one-step method, only one such value, Yor is needed and we
usually choose Yo = A.

The difference method (1.3.2) is said to be explicit if
By=0, o,#0 and implicit if By#0 and ap#0 for an explicit
method, (1.3.2) yields the current value  y,,), directly in

terms of ypi4, fp49 3=0,1....k-1. While an implicit method

calls for the solution at each stage of the computation of

the equation.

Yn+k = thf(Xn+kl Yn+k) t 9 (1.3.3)

where g 1s a known function of the previously calculated

values ypyq, fpy4q, n =0,1... k-1.

We finally turn to problem of determining the

coefficients aj,Bj which appeared in (1.3.2). Any specific

linear multistep method may be derived in a number of

different ways. We shall consider some different approaches
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which throw 1light on the nature .of the approximation

involved.

1.3.1 Derivation Through Taylor Expansion

Consider the Taylor expansion for y(x,+h) about x,.

y(x, + h) = y(xy)+hy' (x ) +h2y" (xp)+h3 v'"(xp) +....
21 3!

Truncating this,k expansion after two terms and subtitute for
y'(x) from the differential equation (1.3.1), we have

y(xp + h) =y(xp) + hflx,,y(xy)] —— (1.3.4)
Eduation (1.3.4) gives an approximate relation between exact
values of the solution of (1.3.1). It is also a relationship
between the exact solution and approximate solution of
(1.3.1). If we replace y(x,), Y(xXp+h) by ¥n, ¥Ypn4+1
respectively to give

¥pil = Y¥ntbE, — . $1.3.5)

This 1is an explicit linear one-step method known as

Euler's rule. The error associated with it is given in the

expression
B2 y"(xy) + b3y "(xy) + o.......
21 3!

Now, if we consider Taylor expansions for y(x,+h) and

y (x,-h) about x.,:

y (x) +hy ' (x) +h%y" (x) +h3y" " (%) +. ..
21 3!

y (xp+h)

y(xp-h) = yixp)- hy' (xg) +B2y" (xp) -_B3y" " (xp)+. ..
2! 31
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Subtracting, we obtain

yix,+h) -~ yix,~h) = 2hy'(xn) + h3y'"(xn)+ .....
3

Using the same argument as above, we obtain a linear

multistep method

e Yntl - ¥p-1=2nf; __ (1.3.6)

If we replace n by ntl in (1.3.6) we get

Yn+2 ~ ¥Yn = 2hfp4y (1.3.7)

which 1is called the Mid-point rule. Its 1local truncation

error is defined by

We can use similar approach to defive any linear multistep
method of given specification. Suppose we wish to establish
the most accurate one-step implicit method,

Yni1 + oy = hiBifpyq + Bofply
we write its associated approximate relationship
y(xp+h) +agy (x,) = hiBy' (xp+h) +Boy' (xp)] _ (1.3.7)
and choose ag, By, By so as to make the aproximation accurate

enough. Using the following expansions:

y(xy, + h) = y(xy) + hy (xg) + b2y (Xg) + «....
21
y (xy + h) =y (xy) + hy (xg) + b2y (xq) +
21
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Substituting in (1.3.7) and collecting the terms of the left-

hand side gives .

Co¥ (%) +C1hy ' (xp)+ Cph?y" (xp) + C3h3y" ' (x) + ...=0
where Cy, = 1 +ag, C; = 1-(B1-Bg), Cp =% - B;, C3 = 1 - 4B,
| 6

Therefore, to make the approximation in (1.3.7) accurate

enough, we choose ap= -1, f1= By = * hence C3 = -_1 .

12
Then the linear multistep is now

Yn+l1 - ¥Yn T h/2(fn+l + fn) . (1.3.8)

which is called the Trapezoidal rule and its local truncation

error is

+ 1 h3 y"'(xn) e
12

1.3.2. Derivation Through Numerical Integration

Consider: Xn+2

Y(Xp42) - v(xy) = [ y (x)dx ____ (1.3.8)

Xn

Using the differential equation (1.2.6) we can replace y'(x)
by f(x,y) in the integrand. By using Newton-Gregory forward

interpolation formula,

Pix) = P(x, + th) = £, + r Afn + rir-1) Azfn+ .....
3 21
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we make the approximation

Xn+2 Xn+2 2
vy _ _ 1 2
[y ixrax = [pooax = Jie, + r £, + Yor(r-1)A2f,1h dr.
n Xp 0

= h(2f. + 2 Af. + 1A%f )
n n n
3

Expanding Af, and A2fn in terms of f, fn,.q, fh4p and
substituting into (1.3.8) we have
Yn+2 — ¥Yp = b (£ + 4f41 + £4) _ (1.3.9)
3 »
which is Simpson's rule.

Similarly, if we replace (1.3.8) by the identity

Xn+2
V%2 ) - Y(xpe1) = | y' (%) dx

n+1l

and put y'(x)= P(x) as defined above, we obtain

Yoeo = Ype1 = B [5fpen + BE 4 — E5f — . (1,3.10)
12

which is a two-step Adams-Moulton methods.

1.3.3 Derivation Through Interpolation

Suppose we wish to derive the implicit two-step method

(1.3.9)s Let y(x), the solution of (1.3.1), be approximated

locally in the range xp < X< X,.5 by a polynomial (G(X). If
G (x) interpolates the pointé (xn+j' yﬁ+j), j = 0,1,2 and the

derivative of G(x) coincides with the prescribed derivative
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fn+j for j = 0,1,2. Then the conditins imposed on G(x) are
thus
G(Xpsj) = Yneqe 6 (%) = Eypq0 J = 01,2 _ {1.3.13).
There’ are six conditions in all. Let G(x) be a
polynominal of four degree. That is, G(x) = ax? + bx3 + cx?

+ dx + e Eliminating the five coefficients a, b, ¢, d, e,

between the six equations in (1.3.11) yields the identity

Yn+2 — Yp = b (f40 + 4E,41 + fn),'which is the linear
3 .

multistep method in (1.3.9).
Suppose G(x) is a polynomial of degree two, namely
G(x) = ax? + bx + c

If we impose the following conditions

Yn = G(x3), V441 = GlXg41)s £5 = G’ (x4)

and
T
f541 = G (X547)
So that Y5 = G(xj) = asz + bxj+ c
and . Yj+1 = G(Xj+l) = G(Xj +h)

= a(xy + h)%2 + b(xy + h) +C

= a(x?j + 2hx5 + h?) + bxy + bh + C

.1 = ax:2 + 2ax. 2 :
Yy+1 ax4y“ + 2axyh + ah® + bxy + bh + C

H L _ .
£ = G (xj) f 2axj + b

4 ' e .
fj+l = G (Xj + h) = 2a(xj+h) + b

= 2ax- + 2ah + b

J
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then Y41 ~ ¥4 = (ax2j + bxj + C) + 2ahxj + ah, + bh -

(axj + bx: + C)

J

2ahxy + ah? + bh

h(2axy + 2ah + b) - ah?

hfj,; - ah?

Il

Y941 - Y4 T ~h (fj+1 " fj)r put j = n
2

we have Yn+1 = ¥n + b (fq41 + £4)
2

which is the trapezoidal rule (1.3.8)

1.3.4 Convergence of Linear Multistep Methods

A Dbasic property required for an acceptable linear
multistep method is that the solution {Y,} generated by.the
method converges 'in some sense to the theoretical solution
y(x) as the step length, h, approaches zero.

Definition (1.3.1): The linear multistep method (1.3.2)

is said to be convergent for all y, of the {y,} if and only

if
lim y, = y(x,), for all xela,b],
h=-=>0

and for all solutions {y,} of the difference equation (1.3.2)
satisfying starting conditions

= Au(h) for which 1lim Au(h) = A,
h-->0

Y

p=20,1,2 ..... k-1.




19
1:3.5 Order and Error Constant

With linear multistep method (1.3.1), 1if we associate

the linear difference operator L defined by

k

Lly(x),h] = T [logy(x+ijh) - h B3y’ (x+jh)], ---(1.3.12)
J=0
where vy (Xx) is an arbitrary function, continuously

differentiable on [a,b]. Expanding the test functibn y (x+jh)
and its derivative y' (x + jh) as Taylor series about x, and

collecting terms in (1.3.12) gives

Lly(x), h] = Coy(x) + Chy' (x) + ...+ Cq hd y(@ (x) +
----- (1.3.13)

wheretthe Cq are constants.

Definition (1.3.2): The difference operator (1.3.12) and the

associated linear multistep method (1.3.2) are said to be of

order P if, in (1.3.13), Cg= C; = ...= Cp=0, Cp,; * O.

p
Since Cpyp #0, it implies that Cpiy has an absolute

significance. We call Cp;q the error constant.

1:.3.6 Local And Global Truncation Error

Definition (1.3.3): The local truncation error at xp,;y

of the method (1.3.2) 1is defined to be the expression
L[y(xn); h] given by (1.3.12), when y(x) is the theoretical

solution pf the initial wvalue problem (1.3.1). In other

words, the truncation error is the quantity T which must be
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added to the true representation of the computed quantity in
order that the result be exactly equél to the quantity we are
seeking to generate.

That is, y(true representation) + T = y(exact).

In general we define the truncation error
Tnsek = Cpe1 PPPL yPHL) () + 0 vP*2) __ (1.3.14)

where p is the order of the method.

The global truncation error involves all. the truncation

errors made at each application of the method, and depends in
a complicated way on the coefficients of the method and on
the initial value problem. It is this error which convergence
demands shall tend to zero as h -->0, n -->w,

nh = x, = X, - a remaining fixed.

1.3.6 Consistency and Zero - Stability

The linear multistep method (1.3.2) 1is said to be
consistent if it has order P > 1.

We now introduce the first and second characteristic
polynomials of'the linear multistep method (1.3.2) defined as

p(r) and c(r) respectively, where

p(r)

I
™
R
{
[
J

} (1.3.15)

C(r)

I
™M
TR
e
I
(Vo
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Thus, a linear multistep method is consistent if and only if

p(1) = o, p'(1) = 6(1).

If follows that for a consistent method, the first
characteristic equation p(r) always has a root at +1. And for
a method to be zero-stable the root of the first
characteristic polynomial p(r) has modulus greater than one,
and if every root with modulus one is simple. thus a linear
multistep method is said to be convergent if it is consistent

and zero-stable.
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CHAPTER TWO

General Review of Numerical methods for Singular and Discountinuous
8 Systems
2.1 Literature Review -

The study of numerical treatment for singular and

discountinuous initial value problem had been carried out

»

by ﬁambert and Shaw([5]. They préposed that the
theoretical solution to the initial value problem

y = £(x,y), y(0) =0
be represented by a perturbed polynomial of the form

plAa + x|N , N e€{0,1..... L}
Fix) = Py (%) + { Or

pla+x N, N e{0,1..... L}

They defined Py (x) as a polynomial of degree L and the

second term on the right hand side as the ‘peyturbation
term. A and N are the singularity parameters, with A
controlling the location of the singularity and N
determining the nature of the singularity. -

Shaw[6] later extended or improved on the theoretical
solution by a perturbed polynomial. He proposed the
adoption of a multistep method, thereby eliminating the
need to generate the higher derivatives analytically. 1In
his improved method, singularity parameters cén be
obtained by solving a pair of non-liner equations.

Lambert and Shaw[7] provided an alternative procedure
that was based on a local repreéentatin of the theoretical

solution to y' = f(x,y) by a specialised form of rational

function
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F(x) = Bypix)
(b+x) ;
where Pp(x) 1is a polynomial of degree m. Thus,

accordingly, thé integration formulas which emanated from
this rational function can cope with special sihgular

initial value problem.

Luke et al [8] suggested in his study that the
rational function thought of by Lambert and Shaw can be
replaced by a generalized rational function

£ix) = Eu_LxJ_
Qp (x),

Here the singularities are specified by the =zeros of
Qp (%) .

The theory of ordinary non-linear differential
equations offers no clue as to the point or location and
the nature of singularities in the solution of an
equation. Gear and Osterby(9) proposed an efficient
method based on a local error estimatofs to detect and
locate "a point of discountinuity without wusing the
singularity function. They made a provisin to pass the
discountinuity and restart the integration process.

. Fatunla[10] discussed the numerical treatment for
singular and discountinuous initial value problems by
adopting the generalised rational function of Luke
(1975) . Fatunla suggested a rational function of a
specigl kind and represented the theoretical solution y(x)

locally by
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Fk(X) = A e
k
=L
where A, aj are real coefficients. In this case the

singularity can be obtained from the poles of Fp(x).

Hence, he developed a one-stép method to approximate the
solution of the initial value problem. Fatunla's one-step
method reduces the problem of the solution of non linear
.equat;ons at every integration step which is characterised

by thé Lambert and Shaw methods.

Fatunla [10] alsolsuggested the use of non—polynomial
methods in dealing with singular and discontinuous initial
value problems. Here he adopted the specialised form of"
rational function of Lambert and Shaw [1968]. The
specialized rational function of Lambert and Shaw was

defined as

F(x) = Pp (%)
—_—
(b + x)
where Pp(x) 1is a polynomial of degree m. Fatunla re-

defined the above rational function as
’ Pp (X)
F (x) = 7
Qy (X)

where Pp (x) and Q. (x) are polynomials of degree m and v

respecitvely.
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The polynomial Pn(x)  and Qy (X) are given as’
- .
Putx) = ZXaxt
r=0
and v
Qy(x) =1+ X byxt
r=1

He specified the singularities by the zeros of Q. (x) and

developed a two-step method to approximate the solution of

the initial value problem with the error function Env (X),
given by -

Emv(xn+j) =0, jJj=20,1....s+1.

Adeboye[1l1l] studied a convergent one step method for
initial value problems in which some components of the

solution contain discontinuities based on the Obrechkoff's

method. He adopted the Obrechkoff's general one-step
method
q . . p . .
Y41 = Yy + Z aghlyl g + T bjh(lly (1)
i=1 i=1

and developed a one-step method by solving for a; and bj

in the Obrechkoff's general one-step method. Adeboye's
explicit on-step method is given by '

Y1 = Yn + hiy

h2
1-h2f

where h is the step length and f, = y}n. Even though,

Adeboye did not specify the singularity function, the one-
step method above is convergent and it is an improvement

on Fatunla's prédiptor formula or a two-step integrator
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1
2v%p41 - 2¥p¥ns1 * DY n41¥n
Yn+2 = s

\}
2Yn+1 ~ 2¥n T hY nna

Fatunla and Aashikpelokhai[l12] developed a one-step

method which was based on rational approximation for
initial value problems. The integrator does not involve
the solution of linear equations. Faﬁunla [13] developed a
fourth order integrator which is very effective at solving
stiff and highly oscillatory initial value problems.
However, integrator cannot cope well with singular initial
value problems. .Hence, Fatunla and Aashikpelokhai[l2]
thoughtA of an 1integrator which can cope with singular
problems as well as stiff problems and hence developed a
fifth-order one-step method based on an oberator U and

defined by

[1 + qyx + apx?+ q3x3) U(x) = Py + Pyx + Pyx?

subject to the constraints
Ulx

n+j] = Yn+jl ] =10,1

They finally came up with the integrator

vy + 60uy 1) h + [ay(D)_ + 300y(2) 1n2 - cy h3
Yn+1 <

60U + Ah + BhZ + ch3
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2.2 Overview of Non-Polynomial Methods
The non-polynomial method was first suggested by
Lambert and Shaw([5]. They proposed that the theoretical

solution to the initial value problem of the form

y = f(x,y), Yoy = Yo —— (2,2.1)

be represented by either of the following perturbed

polynomials

ol A+x lN, N e€(0,1..... m) or
F(x) = Pp(x)+ { ~{2.22)

alA+x |NloglA+x|, Neg 0,1,..m

with Pp(X) a polynomial of degree m. They defined
m .
Ppix) = Zajxd ___ (2.2.3)
=0 |

and the second term on the right hand side being the
perturbation term. A and N are the singularity parameters,
with A controlling the location of the singularity, while

N determines the nature of the singularity.

Lambert and Shaw obtained a one-step methods of order

(m+1) by imposing the constraints

F(xnﬂ:) - = ¥(Xpyy), 3 = 0,1
F(s) (xp) = y (s) Epde & = Oplyseeimel
on the interpolating functions (2.2.2). Thus
m m
yn+l=Yn +> hjy('j)n+ (A +xn)m+1yn (m+1) [(1+b )N-I_Z_B_Nj_l (b) j]
j=13! ﬁNm Atxy 3=13 Atx
and

yn+1=Yn +Z hj y(j)n(—l)M—N(B +xn)m+l¥n(m+1) X

i=13! N! (M-N)!
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1 j=1

[+ 2"log(+ ) -S§pN,  (u)I = 1. }]

Abx, Arx, 3=131 (asx)dr=0 N-p! = seeme- (2.2.4)

FY

where * B mj= -1Y seses (m-3j), j > O.

They defined the local truncation error

- BN—'m-l
tpar = Z { yOp- _ i-m-2 ¥n("‘”)} hJ ———(2.2.5)
J=m+2 (Arx,)I=m=L it

The singularity parameters can be obtained by the
following:-

g (m1)2

Np=m +1 +

yn (m+2) 2 - yn (m+1) yn (m+3)

and } —=~rz.2.5)
y”(m+2) '

N(n)= == Xn +

le (m+2) 2 - yn (m+l) yn (m+3)

Shaw[%] extended the discussion above to multistep
methods, thereby eliminating the need to generate the
higher derivative analytically. In this case, the
singularity parameters can be obtained by solving a pair
of non linear equations. |

Luke et al [8] suggested the adoption of a

generalized rational function :

Pp (%)
F(x)=
Qp (%)
He specified the singularities function by the zeros of

Qp (x) .
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Fatunla[10] defined the polynomials Pp(x) and Q,(x) as

T agxt (2.2.7a)

£ =0

P (%)

and Qp (x) = i1 + X bya® . (2.2.7b)

r=1

He specifiéd the error function Em,n(x) as follows
Em, n (x) = Qn(x)y(x) = Pp(x) _____ (2.2.8)

On differentiating with respect to x, he obtained

E'mn(x) = Qn(X)y'(X) + Qn'(x)y(x) - P'm(x) (2.2.9)

He illustrated the development of integration algorithm
with a case where m = n = 1 in (2.2.7) which gives

Ell(X)O = (1 + b1X) Y(X) = (ao + 31X) _(2.2.10)

and E'77(x) = (1+byx) y' (x) + byy(x) - a; (2.2.11)

Imposing the constraints
E11 (Xp4q) = 0y
That iS, Ell(xn+1) =0

and x, = 0, Xp4q = Jj

in (2,2,10) and (2.2.11) and replacing y'j by hy'j

Yn = ao .................... (i)
}
(1+b1)yn+1 = ao + al ................ (ii) }2.2.12
; , } -
(142b7) Ypea = g + 287  eenveevennnn (iii) }

(1+b1)hy'n+1 + b1Yﬁ+l S Y (iv)
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Substitute (i) and (iv) in (ii) gives

) '
Yn+1 - Yo ~ BY ni1
by = e (2.2.13)

hy n+1
Adopting (ii) in (iii) gives

(142b7) Yp4p = (14b1)ype1 + @] — (2.2.14)

Inserting (iv) and (2.2.13) in (2.2.14) he obtained what

he called predictor formula

2 ]
Y n+1 ~ 2YnYn+1 t hY pn41 ¥Yp
Fodlt = . suwssesses (2.2.15)

A
2Yn+1 ~ 2¥n ~ hy p4q

We shall adopt the above integration formula to
perform some numerical experiments in chapter four of this

work.

2.3 Overview of A Convergent Explicit One-step Method

Adeboye[1ll] developed a convergent explicit one-step
method based on the Obrechkoff's one-step method.
Obrechkoff developed an absolutely stable implicit one-
step method of maximum order 2p, based on the first p
derivatives of ‘the Taylor's series expansion of y for the

solution of initial value problem.

y =AY, Y(0) = Yo

He gives the interval of stability as (-o, 0).
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Adeboye[11] modified the Obrechkoff's method thus:

Obrechkoff's general one-step method is defined by

q p .
Yn+1 = ¥n * Z aihly(l)n+1 > bihly‘l)n — (2.3.1)
i=1 i=0
Hence
2 2
Yp#l = ¥n *E aghly o + Topgndyldl, (2.3
i=1 i=0

that is from (2.3.1), g=1,2, p=0,1,2.

From (2.3.2) he obtained

Yn+l = Yn * (@ + bphy ' + (aj+ap + by)h?y" (2.3.3)

The Taylor's series expansion for y,,; is given by

' "
Yn+1 = ¥n + hy , + h? Yo

2

. B
i.e. Yp41 = ¥ +t hy o + h2 Vi + s+
2

(2.3.4)

Equating the coefficients of equal powers of h in (2.3.3)
and (2.3.4), we obtain

a1+b1=l'
‘al‘+a2+b2=‘»§

The above equations have four unknowns. He fixed one

of the unknowns arbitrarily to reduce the equation to a

one-parameter family of solutions. Hence, in putting by, =

0, then

al 1-b1
32 = l'ﬁ-a1=']'§—l+b1=b1—]’§.
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Substituting in (2.3.3), we obtained

1 ” ) L
Yp41 = Yn + (1-D)y pyq + h%(b - %)y, + hbyy , --2.3.5)

Equation (2.3.5) is a one-parameter family of second order
methods. 7

Adeboye[11] illustrates the development of an
explicit one-step scheme for initiai value problems by

considering the initial value problems

v' = v%, v =1  ____ (2.3.6)

I

and \% 1l + y2, Y(O) =1 —— (2B}

In the solutions of (2.3.6) and (2.3.7) there are
',;

discoﬁtinuities at x = 1 and x = n/4 respéctively. He
adopted the method (2.3.5) by differentiating (2.3.6) and

(2.3.7) to obtain
y" = 2yl — (2.3.8)
Substituting for (2.3.5), yp41 "its equivalence of y") in |
(2.3.8), we obtain
Yntl = ¥n + (1-b1)y nyq + 2(by - M)ypy1y pgp + hbyy'p
Expanding yp;1 in powers of h about x5, and using only
the first term of the expansion gives
Yne1 = ¥n * (1-by)y'p + 202 (by = M)ypeqy ey + BD1Y g
He further put by = 1 to‘obtain

_ 2 Y
Yn+1 = ¥n * B ¥Y'ny1 Ynerbhy p

] L
Yn+1 < (1-h? Y n+1) =.¥YphYy p
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7T O (e R—— O Yzl S e ...(2.3..9)
1-h? y' g 1-h2fn

The method (2.3.9) is a second order one-step scheme
for initial value problems of class one. The scheme is
convergent. We shall illustrate the adoption of the above
scheme to some initial value problems in chapter féhr of

this write up.

2.4 Overview of Inverse Polynomial Methods

Even though the scheme based on rational
approximations are quite effective for the solution of
singular initial value problems, the derivation of these
schemes are very tedious and complicated. In view of
this, Fatunla[l0] suggested the use of inverse .rational
function. He approximated theoretically the solution y(x)

to the initial value problem

y' = f(x,y), Y(0) = Yo

locally by
Fk(X) = A .
k .
1+3% asxd, kz1 __ (2.4.1)
L2 |

where A, aj are real coefficients to be determined.

He defined the error function Ek(x) as
: k :
Ep(x) = (1 + X aij)y(x) - A _______ (2.4.2)
3=l
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which on differentiation gives

k k _ -
E'k(x) = (1 + Zajxj)y'(x) + (T jajxj"l)y(x
: j=1 j=1

(243}

The imposition of the constraints

Eg (Xpei) = 00 1= 0,1 «ouun. k

and the transformation

X =X + th , gives the integration formula

Yn
Yn+k = . (2.4.4)
; K .

=1
He obtained the numerical values of the components of the
k-vector a = (a, a2....ak)T, by ensuring that the

interpolating function (2.4.1) satisfies the differential

equation at k points

{xn+j' j =0, 1l..... k - 1 }. This implies

E (Xp4q) =0, 1 =0, 1 ..... k-1__  (2.4.5)
He adopted the transformation x = xg + th in (2.4.5) and
replaced Y‘i by hy'i to obtain linear system of k
dimension:
'Ra =b_____ (2.4,6)

where R is a k by k matrix with its elements specified as

Rjj = hy 113 + 31371y, i = 0,1... k-1

(2.4.7)
and b is a k-vector whose ith element is -

b;= -hy'y, 1i=20,1...k-1 ___ (2.4.8)
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The system (2.4.6) has unique solution if

det (R) # 0.
If the det(R) = 0, then there is a strong indication

of a singularity. The singularity can be obtained from the

poles of Fy(x).

Fatunla developed a one-step method by setting k = 1
in system (2,4.4). that is,

Yn
Yn+1l = RSSO r e (2.4.9]
(1 + al)

- Using (2.4.6), he obtained

Rp1a1 = bo —_ (1)
From (2.4.7),
Ro1 = Yo —(ii)
and from (2.4.8),
bg = -hy o (iii)
Substituting (ii) and (iii) into (i) gives
ap = -hy g/¥g
Substituting for (ag) in (2.4.9) gives

Vo2

Vn#l = ——
v
Yn_hYn

He specified the local truncation error by

(Gsypy n - yzn)
Eney = h?, |y(x)| + |y (x)| # 0
yn - hy'p
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This suggests that (2.4.10) is at least of order P21,

- provided |yl # O. In a situation where y, vanishes the

meshzise h, can be adjusted. We shall perform numerical

experiment using the integrator (2.4.10) in chapter four.

2.5 Overview of A fifth Order L-Stable Numerical Methods

Fatunla and Aashikpelokhai[l2] developed a one-step
method for first order initial value problems. Thé
integrator does not 1involve the solution of 1linear
equations. Fatunla [13] developed a highly accurate
fourth order explicit one-step numerical scheme which is

L-stable. The method is given by

Vi1 = oy, +REy, +se, D) (2.5.1)
where the matrices R and.S are defined as

R = ard - a1y

S = o + vy
and the diagonal matrices ¢ , yw have entries giﬁen by

eanh - 1
¢l = i= 1, (l)m

apjlajjy + apjl

=g8_ K =
e 2i 1

Wi = | i=1, (n

azilay; + azjl
The stiffness/oscillatory parameters a;jy and apy are

evaluated using
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— —_ —_

rf(?) f(l.) r—a ) -a r—f(a)
ni ni 2i L ni

_fSi) Fni | %2 T3y L.fff) |

The integrator (2.5.10) is very effective at solving
stiff and highly oscillatory initial value problems.
Hence Fatunla and Aashikpelokhai[l2] thought of an
integfator which can cope well with singular problems as
well as stiff problems. They developed the integrator by

considering the operator U defined by

(1+ g% + qux2 + q3x3)U(x) = Py +Pyx +Pox2 ... (2.5.2)

subject to the constraints
U(Xn+J) = Yn+j, :]= 0,1 ________ (2.5.3)

They further inposed the condition

The integrator is a one - step method. Therefore it

is expected to use the value y, to compute Yp+1 @s an
approxination to y(xp;q). To achieve this, they determined
the relationship between y, and yp;; using Taylor series
expansion of y(X,,1) and y,,; about X = X, with

By = Xp4] = Xp  eeeeeecneennn (2.5.5)

To evaluate (q;, 4,93 Py, P1,Pp) and for y ;1 to be

good approxination to y(X,;71), they impose the constraints

that the power series of
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2 0 3
Yne1 =1 ph DL (-1 1+ T gghPmen)Priy (2.5.6)
a=0 i=0 =1 ‘
and
[oe) .
y(Xpe1) = X hfyS(x) - —mmee- (2.5.7)
r=0 r! ’ where x, = nh,
y () (x) = dfy(x) |
dx*t .|x=Xn. must concide for hY, r=0,1...5.

This demand makes the integrator to be, of order at least
five. Equating the terms of the Taylor series given by

(2.5.6) and (2.5.7) gives

Py = ¥y W | e (2.5.8)
P} Xpn41 = h¥n) + 91Yn¥n+l ----(2.5.9)

2!

(a1+a2+a3)h

PiBaa] ™ st e (2.92.11)
60 (uq+usy+usy)
(b1+b2+b3)h2

Qxlpp = mmmmmme—eeo (2.5.12)
60(u1+u2+u3)
(C1+C+C3)h3

a3x3p41 = C - (2.5.13)

560(u1+u2+u3)
where the aj, bj, cj and u; are given by

a; = %6 yn'® [2y,V2 - yp@yp]

a, = 60 yph [yny - 4ty ] }-——-- (2.5.14)
asz 180 yn,'2y(3)yp® -y yn V]
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bl = 15 yn(4)[4yn(3)2 yn(l).— yn(4)yn]

by = 12 y ™ [y, Oy, - 3yPly (1] }-——-(2.5.15)
cq = 15 y, i [ynujynu)_zynm)yn(M]

cp = 10 yu'® [dy,®%yy - 3yp@yp'®] }--——-(2.5.16)
c3 = 3 yp'" [6y, -y vy (]

ug = 3 ¥u't lyp'“'yn-—2yp "]

uy, = 4 ynpu) [3yn?'¥n™) = yp'vg] }v ————— (2.5.17)
u3 = 3 yn(2)[4yn(3)y(1)n—6yn(2)2]

Adopting these results in. (2.5.2) and (2.5.3) they

obtained the integrator,

60Uy, ‘Y'h +(ay, (1) +30uy, (2) 102 - cy n3
Yn+l%' Yn = _ - -(2.5.18)
- 60U +Ah + Bh? + ch3

where 3
A = aj
i=1
}
3
B=2XDb;
i=1 }
}
3 } ———(2.5.19)
g =X ¢y } |
i=1
e
3
U=2 uy
i=1

and the a;, by, cj and.ui are as given respectivély by
(2.5.14 -2.5.17) .

The integrator (2.5.18)1is convergent and L-stable.
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CHAPTER THREE
3.0 DEVOLOPMNET OF A NEW NUMERICAL INTEGRATION
FOR SINGULAR AND DISCONTINOUS SYSTEMS
3.1 INTRODUCTION

Fatunla [10] suggested the adoption of a rational

“function
5 F (x) = P (x) , where
QOp (%)
m : n
P, (x) = 2 a,x® and Q (x) = 1 + 2, bxF
r=0 r=0

He approximated the theoretical solution y(x) to the
initial value problem :

y' = F(x,y) , y(0) = yg —————————- (3.1.1)
locally by
A K21,  =———————— (3.1.2 )
Fr(x) =
k
L + Zaj X:J 7
j=1

where A, a

g are real constants.

Fatunla's interpolating function (3.1.2 1is modified

thus:
We can also approximate the theoretical solution y(x)
locally by
A , K B 1, (313}
Fp(x) =
k-1
1 + Zaj xJ ;
=0

where A, aj are real coefficients. That is
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y (x) = Fy(x)

From equation (3.1.3) we define the error equation as

k-1
Ek(x) = (1 + Zaj x])y(x) - A ——————— -(3.1.4)
- j=0

If we'differentiate (3.1.4) with respect to x, we have

k-1 k-1
E'y™®) = (1 +Zay x3) vy () +(3 TagxI™h yx) ---- (3.1.5)
§=0 3=0

We now impose the following constraint
By (®p+3) = 0 1 =0, 1=~ Xk -1
and also adopt the transformation

X, = 0, ¥ .. = J in equation (3.1.4) in order to obtain the
n n+7j

value of A in the numerator of (3.1.3)

That is
k-1

(1 + X ay xJ )y(x) - A =g (X
=0
k-1
= (1 + Zaj(0))y(0) - A =0
j=0 -
k-1
y(0) + y(0) Xa5(0) - A =0
3=0

y (0) = A =0
y (0) = A

Therefore A = ¥y,
With A = Y., then (3.1.3) becomes
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Yn _
Ve 18 & o, T (341486}
k=1
1 + z aj Xj
J=0
In order to obtain a k - step non linear multi- step

formula, we simply replace x by k in (3.1.6. Thus,

Ynik = ¢ B3 1 seomcomen (3,1.7)

1+ X aj kj
3=0

It now remains to find the numerical values of the

components of the k - vector a = (aj,ap,asz °'°ak-1)T- We cén

achieve this by ensuring that the interpolating function
(3.1.3) satisfies the differential equation at K points

{xn+i' i U= O 1,2,... k—l}a

This implies,

B (xp41)=0, i =0 1,.... kel = —=—=--—v (3.1.8)

If we adopt the transformation, x, = 0, xn+i=i in equation

(3.1.8) and replacing Yi' by hyi' we obtain the following

linear system in k dimension.

RE = B cesduunsans (3.1;9),

where R is a'k by.k matrix, and b is a k-vector. The
elements of matrix R and vector b ére specified as follows

using (3.1.5) and the transformation above.
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That is ,
k=1 k-1
(1 +L a5 x3 ) vy (x) + GE agxd™h) yx)= £" (¥
j=0 ‘ . =0
k-1 k-1
Then y' (x) + (Zay x))y' (x) + (3XayxI™1) y(x)=0
J=0 j=0

] ] ' 2 .
3 Al 5 5
h;d y;  + 333-1 y; = hyy'

| ' P
Rij = Bbyd yy + 333-1v. 3 }os(3.1.10)

and by = -hy; , i =0, 1..... 2 (3.1.11)

The system (3.1.9) has a unique solution

if det.(R) # 0 e (3.1.12)

In a situation where det (R) o 0, there 1is a strong

indication of the existence of singularity, and we can over

step this singularity by adjusting the step-size.
The singularity can be obtained from the poles of Fy (x)
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3.2 THE PROPOSED NUMERICAL lNTEGRATOR
The proposed integrator shall bé a two-step numerical

integrator. That is by setting k = 2 in (3.1.7). we have
- Y

n
Yn+z <
1
1+ 3 2jaj
3=0
h Y,
Inig = e TSt (3.2.1)
1 +ag5 % 284

We shall now find the value of ap and aj; using equations
(3.1.10) and (3.1.11)

That iS, ROO ao = bo ________ (3.2.2)
But ROO = 0 and bo = - h yo'

Since Rpg = O, there is no unique solution to (3.2.2) by

(3.1.12) above. Hence there is an indication of existance of

singularity. To overstep this we go further to find the value

of ai and consider ap to be zero.

That is Rll al = bl ——————— (3.2.3)

1
Ryjj= hy 1 + v
|

b; =hy,

(hy'1 tyijla; = —hy'l
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_ hy'l
ap = mmmmmmmeme- ( 3.2.4)
hy' | + vy

Inserting (3.2.3) into (3.2.1), we have

Yn Yn
Ynt+z = =
2hy"' hy'1+ yq- 2hy 1
4 -
hy'y + v hy'y + v
yn(hy'1+ Y1)
. Yp4r = -———--(3.2.5)
3 v1 - hy g |
Yn(hy'n+l t Ynt1)
Yn+o =
Yn+l ~ hy'n+1
Yn(hfni1 + Yns1)
Voisg B @2 c————— T (3.2.0)

Yn+1 ~ Pinya

(3.2.6) 1is the proposed two-step numerical integrator.

3.3 CONVERGENCE OF THE METHOD

Theorem: A two-step numerical integrator of the form
Yn(Bfnseg + Ypea)

Y42 = @ - TTT= (3.3.1)
Yn+1 - Bfp4a

is convergent if and only if :
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is il Is consistent
ii.  itiszero stable
PROOF
We shall eétablish the convergence of the method by

showing that the method is consistent and zero - stable.

i. The integrator (3.3.1) can be written as

Yn(hfner + vper)

Yn+2 : :
Yn+1 ~ bfpyg

Yn+z (Wne1 = Bfpy) = yp(hfpyq + ypeq)

Yn+: Yn+1 ~ B¥n+e fhe1 = hypfner + YnYnea

Yn+2 Yn+1l = Yn¥Yn+1 = h¥nfn+1 + hyniefnieg
yn+1(yn+2 - YH) = hfn+1(Yn +yD+2]

So that yn+1(yn+2 . Yn)
= by, === (3.3.2)

yH +Yn+2

We now consider the first and second characteristics

equations p(r) and o(r) of (3.3.2)

That is,

plE}y = -
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(r2+1 ) (3 r2-1)-(r3 -r)( 2r)

And p (r) =
(r2+1)2
p(l) = (1+1)(3-1)- (1-1)(2) = 2x2-0 = 1
(1+1)2 4
Now, O(r)= r
This implies that o (1) =1
~ Hence p'(l) -o(1l) = 1-1 =0

Since,
p'(1)= 0 and p' (1) - o(r) = 0,

it implies that the integrator is consistent.

ii. From the first characteristics equation of (3.3.2).

r (r?2 - 1)
p(r) = =0
r2 + 1

It implies that r(r2-1) = 0.
Hence r = 0 or r = rx 1
| Since the first characteristics equation 6f p(r) has
root with modulus less than one and the roots with modulus
one each are simple roots, then the integratof is zero -
stable.

Therefore the two step numerical integrator is
convergent since it is shown to Dbe consistent and zero-

stable.
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CHAPTER FOUR
40 NUMERICAL SOLUTIONS K dR SINGULAR AND
DISCONTINUOUS SYSTEMS.
4.1 SPECIFIC NUMERICAL EXAMPLES OF SINGULAR AND
DISCONTINUOUS SYSTEMENS USING THE NEW SCHEME
Here we shall solve some initial value problems in which
some compnents of the solution contain.discontnuities.

Problem I. Solve y' =1 + y2, y(0) =1

Soluti

The exact solution is y = tan (x+_m )
4
we use h = 0.05 and generate y1 from the exact solution.

That is, y; = tan (0.05 + _x ) = 1.10535559
‘ 4

 From the integrator (hf i1 + Ype1)

Yn+27 =
Yn+1 ~ hipyg

Thué, for example by putting y, = 1.10535559, we obtain:

Yo (hf; + vyy) 1.216446139
Yo = = = 1.223462647
y; - hf, 0.9942650412
yp (hf, + y,) 1.490357231 .
¥3 .= = = 1.356572579
y, - hf, 1.098619605

Table 4.1 shows the performance of the integrator against

the theoritical solution.
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0.10
B.1%5
0.20
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0.90
0.95
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TABLE 4.1
EXACT SOLUTION NEW SCHEME
1.10535559 1.10535559

1.223048888
1.356087851
1.508497647

1.685796417

1.8957655123
2.2.14974764

2.464962757
2.868884028
3.408223442
4.169364046

5.331855223

7.3404436575

11.6813738
28.23825285
-68.47966835
-15.45789164
-8.687629547
~6.,020299716
-4.588037825

1.223462647
1.356572579
1.509573919
1.687119434
1.898012479
2.152670853
2.469554488
2.875314481
3.418434019
4.1854220

5.360482452

7.398142675

11.83889669

29.24158055
-62.8918434
-15.13357206
-8.576871132

~5,96331911

-4,552159575

There is a"simple'pole (singularity) at the point x=

K .
4
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Problem II Solve y' = y2, y(0) =1

Solution :
The exact solution is y = _1 .

1-x
We use unique meshsize h = 0.1 and generate y;.

That i8 , ¥ = -1 . = 1.11111111.
1 -1

There is discontnuity at the point x =1

With y; = 1.11111111 we obtain

YO(hf1+Y1) 1.234567901
Yo = = = 1.250000
Y, ~ hfl 0.987654321

Thus, table 4.2 shows the performance of the integrator

against the theoritical solution.

Table 4.2

X EXACT SOLUTION NEW SCHEME
0 1 1
0.1 1.11111111 © 0 1.11111111
G,8 1.250000 ©1.240000
0.3 1.428571428 1.428571428
0.4 1.66666667 1.66666667
0.5 2.000000 2.000000
0.6 2.500000 2.500000
0.7 3.333333 3.3333333
0.8 5.000000 5.000000
0.9 10.000000 ' 10.000000

1.0 ® g [e’¢)
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PROBLEM III Solve y = xy2, y(0) = 2

Solution
The theoritical solution to this proble is y = . It has
1-x2
éimple poles (singularities)- at the point x = %*1. The

meshsize for this problem is h = 0.1. By generating

y] = 2 = 2.02020202,
1-(0.1)2

thenfwe obtain by the integrator y, = 2.082474227

Table 4.3 shows the performance of the integrator aganist the

theoritical solution

Table 4.3
X EXACT SOLUTION  NEW SCHEME
0 2.00000 2.000000
0.1 2.02020202 2.02020202
0.2 2.08333333 : 2.0824744227
Qa3 2.197802198 2.195796171
0.4 2.380952381 2.376183322
0.5 2.66066667 2.657045863
0.6 3.1250600 : 3.106887568
0.7 , 5.921568627 3.874638377
0.8 5.5555556 5.41943779
0.9 10.52631579 9.80597169
1.0 + oo ¢ 86.55115567
1.1 -9,.523809524 -12.35782902

i -4.545454545 -9.663164322
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For the initial value problem

y = 1ty

2

y(0) =1,

the performance of the integrator is

(10],

table 4.4 below.

Adeboye

[II]

Table 4.4

Comparison of the results with some established

and Fatunla and Aashikpoelokhai

compared with Fatunla

[12] in

X EXACT SOLUTION NEW SCHEME FATUNLA[10] ADEBOYE([11] FATUNLA

0.10
0.20
0.30
0.40
0.50
0.60
0.65
0.70
0.75
0.80
0.90
1.00

" The

122304888
1508497647
1 8957655123
2.464962757
3.408223442
5331855223
7.3404436575
11.83889669
28.23825285
68.47966835
-8.6876295
-4.588037

1.223462647
1.509573919
1.898012479
2.469554488
3.418434019
5.360482452
7.398142675
11.83889669
29.24158055
-62.8918434
-8.575971
-4.552159

1.23530451
1.537684973
1.951571978
2.56946039
3.621678307
5.888280275
8.446889
14.774102
57.272939
-30.7186028
-7.521752
-4.244590

&

AASHIKPELOKAT (1]

1.223433967
1.5099500011
1.89853126
2.469199634
3.417521518
5.35733987
7.39121204
11.81602726
29.064451
-64.0294308
-8.581515
-4.550432

1.22304888
1.50849765
1.89576512
2.46496276
3.40822344
5.33185522
7.34043658
11.6813738
28.2382529

-68.4796683

-8.6876295
-4.588037

table above verifies that Fatunla and Aashikpelokai [12]

has b%tter performance than the new scheme, FAtunla [10] and

Adeboye [11].
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We now compare the performance of the integrator with
Adeboye [11] and Fatunla [10] for the solution of the initial

value problem y' = y2, y(0) =1 in table 4.5

TABLE 4.5

X EXACT SLOLUTION NEW SCHEME ADEBOYE [11] FATUNLA [10]

0 1.000000 1.00000 1.000000 1.0000000
0.1 1.11111111 $.1303 1102 1.31111313.11 1:11113111132
0.2 1.250000 1.2499988 1.24993925 1.24993925

0.3 1.428571428 1.428571428 1.428571428 1.373632654

0.4 1.6666667 1.6666667 1.666665 1.592365127
0.5 2.00000 2.0000000 1.9999990 1.893951333
0.6 2.50000 2.5000000 2.500000 2.336466749
0.7 3.333333 343333333 3.333333° 3.048811424
0.8 5.000000 5.0000000 4, 9989998 4.386028938
0.9 10.000000 10.0000000 10.0000000 . 7.812703145
1.0 ® © o] 35.71853141

Table 4.5 shows that both the integrator and Adeboye [11]
performed better for the above initial value problem. The
iocal truncation error is zero in each step. This implies
that the two schemes are better. Fatunla[l0] performance
compared with theoretical solution indicates that the scheme
' perfoEms well at the first few steps. There are some
signi%icant gloﬁal errors before the poinf of discontnuity.

In table 4.6 we compare the performance of the
integrator with Adeboye[l11] and Fatunla[10] for the initial
value problem: . |

y = vy?%, y(0) =2
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TABLE 4.6

X EXACT SLOLUTION NEW SCHEME ADEBOYE[11] FATUNLA [10]

0  2.000000 2.00000 2.000000 2.0000000
0.1 2.02020202 2.02020202 2.000000 2.000000
0.2 2.08333330 2.08247420 2.0481927 2.0408163
0.3 2.19780222 2.195798620 2.1501350 2.1276596
0.4 2.3809523 .2.3761833 2.3210178 2.272772
0.5 2.666667 2.6570458 2.5523643 2.5000004
0.6 3.1250000 3.1068876 3.0302021 2.8571429
0.7 3.1250000 3.8746384 3.789992701 3.4482759
0.8 5.5555556 5.4194374 5.3314222 4.5454545
0.9 10.5263158 9., 8059072 9.8437399 7.14285715
1.0 @ 86.5511557 145.1418592 20.00002
1.1 =9.5238085 =12.35782902 -10,73996318 -19.999098
1.2 -4.5454544 -9.6631643 -7.24731337 -6.2499998

Table 4.6 shows the high performance of the
integrator and Adeboye [11] over that of Fatunla [10] at
the uniform meshsize h = 0.1. Fatunla [10] gives rise to
results which are still less accurate than the integrator

and Adeboye[1l1l].
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4.3 ERRORS IN COMPUTATIONAL RESULTS

The local truncation errors existing in the

computation of problem I is shown in table 4.7 below. The
local truncation error is computed by

Error = | y(x,h) - y(x)|, where y(x) is the theoritcal
solution by the

solution and y(x,h) 1is the numerical

scheme.

) TABLE 4.7

X EXACT SOLUTION ERROR IN ERROR IN ERRORIN  ERRORIN
INTEGRATOR FATUNLA[10] ADEBOYE[11] FATUNLA &
AASHIKPEKALI [12]

0.10  1.22304888 4.137(-4) 1.228(-2) 3.857(-4) 2.0 (-10)
0.20  1.508497859 1.076(-3) 2.918(-1) 1.002(-3) 2.0 (-10)
0.30 8.895‘765123 2.247(-3) 5.580(-2) 2.087(-3) 2.0(-10)
0.40  2.46962757 4.592(-3) 1.045(-1) 4.237(-3) 2.0(-10)
0.50  3.40822344 1.021(-2) 2.135(-1) 9.321(-3) 3.0(-10)
0.60  5.331855223  2.863(-2) 5.564(-1) 12.604(-2) .5.0(-10)
0.65  7.34046575 5.771(-2) 1.107(0) 5.072(-2) 7.0(10)
0.70  11.6813738 1.003(0) 3.092(0) 1.349(-1) 1.0(-9)
0.75  28.23825285 5.587(0) 2.903(]) 8.276(-1) 4.0(-9)
0.80 -68.4796683 3.243(-1) 3.776(1) 4.053(-1) 2.0(-10)
090  -8.68766295 1.107(-1) 1.666(0) 1.062(-1) 2.0(-10)
1.0 -4.588037 3.587(-2) 3.421(-1) 7.643(-3) 2.0(-10)
Index a(-b) = a x10° -

From the,K table we notice - that Fatunla and

Aashikpelokai[1l2] results show exceedingly high

performance. The global errors are highly negligible. We
also observe that the table shows that smaller meshsize h

produce small global errors at each mesh point.
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Table 4.8 shows the computational errors in the
integrator, Adeboye[ll] and Fatunla[l0] for problem II
above.

Problem II: y' = y2, y(0) =1
TABLE 4.8
x EXACT SOLUTION ERROR IN ERROR IN ERROR IN
INTEGRATOR ADEBOYE([11l] FATUNLA[10]
0 1.0 0 0 0
0.1 1.111111111 0 0 0
g,2 1.25000 0 0 6.075({=5)
0.3 1.428571428 0 0 9.492 (—-2)
0.4 1.6666667 0 0 7.430(-2)
0.5 2.000 0 0 1.060(-1)
0.6 2.5000 0 0 1.635(~1)
0.7 3.3333 0 0 2.845(-1)
0.8 5.0000 0 0 6.1409(-1)
0.9 10.000 0 0 2.187(0)
1.0 ® 0 0 -

Wle observe from the table above the exceedingly high

accuracy in the results of the integrator and Adeboye[l1l].

We also notice that smaller meshsize h produce smaller

global errors.

We compute the computational errors in the result. of

problem III as it is shown in table 4.9 below.

Problem III y'

= xy2, y(0) = 2.
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TABLE 4.9

X  EXACT SOLUTION  ERROR IN ERROR IN ERROR IN

INTEGRATOR  ADEBOYE[11] FATUNLA[10]
0 l2.0 0 0 0
0.1 2.02020202 0 -2.02(-1) -2.02(=1)
0.2 2.08333333 -8.591 {-4) =3.514{-2) -4 .,.25(-2)
03 2.197802 —2.2261(;3) -4.788(-2) -7.036 (=2)
0.4 2.3809523 =4 . 769 {=3) =5.993 (-2) -1.082 (1)
8.5 2.666667 -9.621(-3) -7 .43 (=1} -1.666(-1)
0.6 S!‘_3.125000 ~1.811 {-2) —9.479(-2)' -2.678(-1)
0.8 ? 5.555556 =] «36L{~1} =2.241{~1) -1.01(0)
0.9 10.526318 =7+ 205{=1) -6.826(=1) -3+ 383 {0)
1.0 o | - - -
1.1 -9.5238095 2.834(0) 1.216(0) 1.0476(1),

1.2 -4.5454545 =85. 1177 {(~0) =2 7018 {0) -1.7045(-0)

The values above suggest that the integrator and
Adeboye[11] perform better than Fantula[l0]. Therefore the

integrator is a feasible numerical method.
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CHAPTER FIVE
- COMPUTER PROGRAMS

5.1 Computer Programs for the Problems Discussed in Chapter Four

PROGRAM PROBI (input,output);

USES
CRT;
CONST
NOOFPTS = 50;
Pl =3.141592654;
VAR .
EXACTY, X, Y {DUMMY VARIABLES} : ARRAY[0.NOOFPTS] OF REAL,;
STEP : REAL;
INITX, FINALX : REAL;
LASTI, 1 : INTEGER,
~ COUNTER : REAL;
CH : CHAR,;

{*f*************************#***************#*******#********* ********}

- FUNCTION F(X, Y : REAL ) : REAL;
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM
=FX,Y) }
VAR SUPF : REAL;
BEGIN
F:=1+SQR(Y); {PROBLEM TO BE SOLVED}
END;

FUNCTION YEXACT( X : REAL ) : REAL;

{THIS FUNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y)
}
VAR

THETA : REAL;
BEGIN

THETA = X + Pl/4;

YEXACT := SIN( THETA )/ COS( THETA ); { THE EXACT SOLUTION OF F(X,Y) }
END;

PROCEDURE DISPRES( N: INTEGER );

VAR
PAGENO, LINENO, TOTLINE, J: INTEGER,
ERROR : REAL;

BEGIN ’
CLRSCR;
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TOTLINE := 25,
WRITELN("' X EXACT NEW ERROR");

WRITELN("' SOLUTION SCHEME');

LINENO :=2;

FOR J:=0TO N DO

BEGIN '

WRITE( X[J]:6:3,' ,2YEXACT( X[J]):10:7," ', Y[J]:10:7,' '),
EXACTY[J]:= YEXACT(X[J]),
ERROR = EXACTY[J]-Y[J];
WRITELN( ERROR:10:7);
LINENO := LINENO + 1;
IF LINENO = TOTLINE - 1 THE
BEGIN :
CH = READKEY,
CLRSCR;
PAGENO = PAGENO + 1;
LINENO = 1;
END({IF};

END;

END;
{******#****************************}
BEGIN {MAIN}

'CLRSCR; .
WRITE( 'PLEASE ENTER THE STEP LENGTH: '),
READLN( STEP ),

WRITE('PLEASE ENTER THE INITIAL VALUE OF X: '),

READLN( INITX ), ‘
WRITE('PLEASE ENTER THE LAST VALUE OF X: '),
READLN(FINALX);

WRITE('PLEASE ENTER THE VALUE OF Y AT "INITX:5:3,":");
READLN( Y[0] );

WRITE( 'PLEASE ENTER THE VALUE OF Y[1]: '),

READLN( Y[1]);

X[0] := INITX;

X[1] :=INITX + STEP;

COUNTER = INITX + STEP;

1:=2;

WHILE COUNTER <= FINALX DO

BEGIN '
COUNTER := COUNTER + STEP;
X[1]=X[I-1]+STEP;
Y[I]:=Y[I-2]*(STEP*F(X[I-I1LY[I-1])+Y[I-1]),
Y[I]=Y[1]/(Y[1-1]-(STEP*F(X[I-1],Y[I-1])));
I=1+1;

END,;

LASTI =1-1,;

DISPRES(LASTI),

CH := READKEY,
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END.

e s s sk ook koK ok KoK KK K K Kok ok ko ok ok ok ok ok ks sk ok skl skl ok sk ok ok ok ko o sk ook sk ok sk ok ok ok ok kok ok

PROGRAM PROB?2 (input,output);

USES
_CRT;
CONST
NOOFPTS = 50,
Pl =3.141592654,
VAR
EXACTY, X, Y {DUMMY VARIABLES} : ARRAY[0.NOOFPTS] OF REAL;
STEP, MINH, MAXH, INCR : REAL; ’
INITX, FINALX : REAL;
X0, YO : REAL;
K, LASTI, I : INTEGER;
COUNTER : REAL;
CH : CHAR;

{****************************************************#******** *******}

FUNCTION F(X Y : REAL ) : REAL;
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM
=F( ¥)
VAR SUPF : REAL,;
BEGIN
F :=SQR(Y) ; {PROBLEM TO BE SOLVED}
END;

{**#******#*************************************#**}

FUNCTION YEXACT( X : REAL ) : REAL;

{THIS FUNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y)
}
BEGIN
YEXACT :=1/(1-X); { THE EXACT SOLUTION OF F(XY) }
END;
{#**********************************}
PROCEDURE DISPRES( N: INTEGER );
VAR
PAGENO, LINENO, TOTLINE, J : INTEGER,;
ERROR : REAL;
BEGIN
CLRSCR;
TOTLINE := 25;
WRITELN(' X EXACT NEW  ERROR');
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WRITELN(' SOLUTION SCHEME');
LINENO :=2;

FOR J := 0 TO N DO

BEGIN

WRITE( X[J]:6:3,' ");

IFJ=10 THEN
WRITE('INFINITY  INFINITY")

ELSE

BEGIN
WRITE(YEXACT( X[J]) :10:7," )
WRITE(Y[J]:10:7," ' );

END;

EXACTY[J ] = YEXACT(X[J]):

ERROR = EXACTY[J]-Y[J];

IF J =10 THEN
WRITELN
ELSE
WRITELN( ERROR:10:7);

EXACTY[J]:=YEXACT(X[J]);
LINENO := LINENO + 1,
IF LINENO = TOTLINE - 1 THEN
BEGIN '
CH := READKEY;
CLRSCR;
PAGENO := PAGENO + 1;
LINENO :=1;
END{IF};
END;
END;
{*****************#*******#*********}
BEGIN {MAIN}
CLRSCR;
WRITE( 'PLEASE ENTER THE STEP LENGTH: ');
READLN( STEP ), .
WRITE('PLEASE ENTER THE INITIAL VALUE OF X: ');
READLN( INITX ),
WRITE('PLEASE ENTER THE LAST VALUE OF X: ),
READLN(FINALX);
WRITE( 'PLEASE ENTER THE VALUE OF Y AT " INITX:5:3,":");
READLN( Y[0] ),
WRITE( 'PLEASE ENTER THE VALUE OF Y[1]:');
READLN( Y[1]);

X[0] := INITX;
X[1] := INITX + STEP:
COUNTER := INITX + STEP;
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= Py

WHILE COUNTER <= FINALX DO

BEGIN
COUNTER := COUNTER + STEP,
X[1]=X[1-1]+STEP,
Y[I]:=Y[1-2]*(STEP* F( X[I - l]Y[I-l])+Y[I-l])
Y[I]1:=Y[1]/(Y[I-1]-(STEP*F(X[I-1L,Y[I-1])));
I=1+1; ‘

END;

LASTI:=1-1;

DISPRES(LASTI);

CH ;= READKEY;

END

3 3k 3k 3k ok 3k 3k e ok 3k 3k 3k ok 3k ok ok 3k ok k- 3k ok ok 3k ke 3k ok 3k sk sk ok 3k i sk ok ok ke k ok 3k ok 3k 3k Kk ok ok ok K ok ok ok ok ok ok ok ok kokok ok

PROGRAM PROBS3 (input,output);

USES
CRT;
CONST
NOOFPTS = 50,
Pl =3.141592654;
VAR
EXACTY, X, Y {DUMMY VARIABLES} : ARRAY[0..NOOFPTS] OF REAL;
STEP, MINH, MAXH, INCR : REAL;
INITX, FINALX : REAL;
X0, YO : REAL;
K, LASTI, I : INTEGER;
COUNTER : REAL;

CH : CHAR,;

FUNCTION F(X, Y : REAL ) : REAL;
{THE DIFFERENTIAL EQUATION TO BE SOLVED IS OF THE FORM
Y'=FX,Y) }
VAR SUPF : REAL,;
BEGIN
F =X * SQR(Y) ; {PROBLEM TO BE SOLVED}
END;

{*************************#****#************#******}

FUNCTION YEXACT( X : REAL ) : REAL,;

UTHIS FUNCTION GENERATES RESULTS FOR THE EXACT SOLUTION OF THE
DIFFERENTIAL EQUATION UNDER CONSIDERATION (SEE FUNCTION F(X,Y)
}
{VAR
THETA : REAL;
BEGIN
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{ THETA =X + Pl/4;}
YEXACT :=2/(1-SQR(X)); { THE EXACT SOLUTION OF F(X,Y) } |
END;
{***********************************}
PROCEDURE DISPRES( N: INTEGER ),
VAR
PAGENO, LINENO, TOTLINE, J : INTEGER,
ERROR : REAL;
BEGIN
CLRSCR,;
TOTLINE = 25;
WRITELN(' X  EXACT NEW ERROR'");
WRITELN("' SOLUTION SCHEME');
LINENO =2;
FORJ:=0TO N DO
BEGIN
WRITE( X[J]:6:3," "),

IF J = 10 THEN
WRITE( 'INFINITY )
ELSE
WRITE(YEXACT( X[J]) :10:7," ");
WRITE(Y[J]:10:7,"' ');
EXACTY[J]:= YEXACT(X[J]),
ERROR = EXACTY[J]-Y[J];

IF J =10 THEN
WRITELN
ELSE
WRITELN( ERROR:10:7);,

LINENO = LINENO + 1;
IF LINENO = TOTLINE - 1 THEN
BEGIN
CH := READKEY;
CLRSCR;
PAGENO := PAGENO + 1;
LINENO =1,
END{IF};
END;
END;
{**#********************************}
BEGIN {MAIN}
CLRSCR;
WRITE( 'PLEASE ENTER THE STEP LENGTH: '),
READLN( STEP ),
WRITE('PLEASE ENTER THE INITIAL VALUE OF X: '),
READLN( INITX ),
WRITE('PLEASE ENTER THE LAST VALUE OF X: '),
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READLN(FINALX);
WRITE( 'PLEASE ENTER THE VALUE OF Y AT 'INITX:5:3," ' );
READLN( Y[0] );

WRITE( 'PLEASE ENTER THE VALUE OF Y[1]: '),

READLN( Y[1]);

X[0] := INITX; .

X[1]:=INITX + STEP;

COUNTER = INITX + STEP;

1:=2;

WHILE COUNTER <= FINALX DO

BEGIN
COUNTER := COUNTER + STEP;
X[1]:=X[I-1]+STEP,
YL = Y[1-2]*(STEP* FCX[I- 1,Y[I-1]) + Y[ 1-1]);
Y[I]=Y[1]/(Y[I-1]-(STEP*F(X[I-1],Y[I-1])));

=I+1; :

END;

LASTI =1-1;

DISPRES(LASTI);

CH := READKEY;

END.
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y =1 + sqr(y), y(0) =1

X Exact ' New Error
Solution Scheme
0.0000 1.0000000 1.0000000 0.0000000
0.0500 1.1053556 1.1053556 -0.0000000
0.1000 1.2230489 1.2234626 -0.0004138
0.1500 1.3560879 1.3565726 -0.0004847
0.2000 1.5084976 1.5095739 -0.0010763
0.2500 1.6857964 1.6871194 -0.0013230
- 0.3000 1.8957651 1.8980125 -0.0022474
0.3500 2.1497476 2.1526709 -0.0029232
0.4000 2.4649628 2.4695545 -0.0045917
0.4500 2.8688840 2.8753145 -0.0064305
0.5000 3.4082234 3.4184340 -0.0102106
0.5500 4.1693640 4.,1854221 -0.0160580
0.6000 5.3318552 5.3604825 -0.0286273
0.6500 7.3404366 7.3981428 -0.0577062
0.7000 11.6813738 11.8388970 -0.1575232
0.7500 28.2382529 29.2415826 -1.0033297
0.8000 -68.4796678 -62.8918387 -5.5878292
0.8500 -15.4578961 -15.1335715 -0.3243246
0.9000 -8.6876295 -8.5768710 -0.1107586
0.9500 -6.0202997 -5.9633190 -0.0569807
1.0000 -4.5880378 -4 ,5521595 -0.0358783




y = Sqr(y), y(0) =1

X EXACT

SOLUTION
0.0000 1.0000000
0.1000 1.115331%
0.2000 1.2500000
0.3000 1.4285714
0.4000 1.6666667
0.5000 2.0000000
0.6000 2.5000000
0.7000 3.3333333
0.8000 5.0000000
0.9000 10.0000000
1

.0000 INFINITY

T A
g

y = Sqr(y), y(0) =1

X EXACT
SOLUTION
0.0000 ~1.0000000
0.1000 1.1331211%
0.2000 1.2500000
0.3000 1.4285714
0.4000 1.6666667
0.5000 2.0000000
0.6000 2.5000000
0.7000 3.3333333
0.8000 5.0000000
0.9000 10.0000000
1.0000 INFINITY
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NEW
SCHEME
.0000000
+1111111
.2500000
.4285714
.6666667
.0000000
.5000000
» 3333333
9999959
« 9999995
FINITY

NEW
SCHEME
.0000000

«1111111.

.2500000
.4285714
.6666667
.0000000
.5000000
.3333333
« 9999999
- 9999995
FINITY

ERROR

[eNeoNoNeNoNoNoNeoNoNe]

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000001
.0000005

ERROR

[eNoNoNeololoNoNoloNa)

.0000000
.0000000
.0000000 .
.0000000
.0000000
.0000000
.0000000
.0000001
.0000001
.0000005
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y = x * sqr(y), y(0) = 2
X EXACT NEW ERROR
SOLUTION SCHEME

0.0000 2.0000000 2.0000000 0.0000000
0.1000 2.0202020 2.0202020 0.0000000
0.2000 2.0833333 2.0824742 0.0008591
0.3000 2.1978022 2.1957962 0.0020060
0.4000 2.3809524 2.3761833 0.0047691
0.5000 2.6666667 2.6570459 0.0096208
0.6000 3.1250000 3.1042747 0.0207253
0.7000 3.9215686 3.8733800 0.0481886
0.8000 5.5555556 5.4138502 0.1417054
0.9000 10.5263158 9.7919394 0.7343763
1.0000 - INFINITY 85.7856389

1.1000 -9.5238095 -12.3760542 2.8522447
1.2000 -4.5454545 -13.1279990 8.5825445
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5.2 DISCUSSION OF THE RESULTS

The numerical values for problem one above
suggest that the integrator is a feasible numerical method
for treating initial_ value problems with discontinities/
singularities.l We observe from the computational errors
that smaller meshsize +h, produce smaller global errors.

However, the integrator being two-step, is expected to

use the values of y, and yp;; to compute Yn+2 4as an
approximation to Yy (Xp4p). To achieve this we simply

generate the value of y,;q1 using the exact solution. The

integrator couverges rapidly when used to solve certain
initial value problems with singularities.

The numerical values as shown 1in the results of
problem two indicate also that the integrator is a good
‘numerical. methods. The results show the exceedingly high
pefformcane of the integrator. The integrator gives
- accurate results nearly as good as the theoretical results.

Also in problem three we constrast thé results and
observe that the integrator performs well in this class of
initial value problemé therefore the integrator is well
suited for initial value problems with discontinuities or

singularities.

5.3 SUMMMARY , CONCLUSION AND RECOMMENDATION
5.3.1  SUMMARY AND CONCLUSION

We shall conclude this projéct by summarising the
details of the previous chapters:. I chapter one, we
discussed the general histofical background of the subject

differential equation. In chapter one also we give some
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discussions about the development of some important linear
multi-step methods such as Euler's rule, Mid-point rule,
trapezoidal rﬁle, A&ams—Moulton methods etc. We also
discussed the derivation of some finite difference schemes
for solving partial differential equations.

Chapter two is mainly the literature review on the
treatment of singular and discontinuous initial wvalue
problems. The overview of some methods of treating singular
and discontinuous system such as non- polynomial methods,
inverse polynomial, explicit convergent one-step method,
and a fifth order L-stable numerical methods were made.

A new scheme for treatipg singular and discontinuous
systems was established in chapter three. The integrator is
zefo stable and consistent. Hence, it 1s convergent. The
. new scheme 1is proposed to cope with singular and
discotitinuous intial value problems. It may not cope with
stiff and oscillatory differential equation.

Some numerical ekperiments were performed in chapter
four using the new integrator. ﬁe also compared Fhe
performance of the new integrator with the theorjgcal
solutions. The integrator converges rapidly for certain
initial value problems.

Finally some computer programmes were written to solve
the initial value problems discussed in chapter four. The
results of fhe programmes as contrasted with  the
theoritical solutions show that the integrator is a good

numerical method.
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5.3.2 RECOMMENDATION

The area of mathematical formulation of physical
phenomena in electical engineering, simulation, control
theory and economics often gives or leads to an initial
value problem of the form y' = f(x,y) , y (0) = ygq- The
fundamental concern is always the computation or solution
of such problems. However, most of the conventional
integrator formulas, i.e linear multistep methods perform
very inefficiently'in the treatment of a singularity. In
order to circumvent this problem it is important to provide
alternative strategies so as to establish algorithms which
will perform well in the treatment of singularities. To
achieve this, it is recommendable to research into the

subject of this research work and earlier works.
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