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, ABSTRACT
One of the major problems of numerical analysis is that of solving differential

equations. A great many variety of methods have been developed which enable us to
provide solutions to many differential equations, even to those that have defied
solution analytically. In this research work, we examine existing processes, how they
are derived, how they are proved mathematically and their limitations. Based on such
analysis, we derive, through Taylor series expansion, a new 6-step implicit linear
multistep method of order eight for solving initial value problems. By éssigning
suitable values to the free parameters involved, we develop three different schemes.
For acceptability, the schemes so derived are tested for consistency and zero stability.
Hence, their convergence is established. Also provided are examples of initial value

problems solved with the new schemes.
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CHAPTER ONE

INTRODUCTION
1.1 PREAMBLE
The use of simple arithmetic operations to find approximate solutions to complex
problems constitutes the main goal of numerical analysis. And one of the major
problems of numerical analysis is that of solving differential equations, which are just
relationships involving an independent variables x, a dependent variable y, and one or

more differential coefficients of y with respect to x. An example of differential equation

will be

y 42y 4t xp=0

Differential equations represent dynamic relationships; i.e. quantities that change, and are
thus frequently occurring in scientific, engineering, as well as social problems. The
solution of a differential equation thus provides solution to the physical problem it

represents.

Traditionally, solutions to differential equations were derived using analytical, or exact
methods. These solutions are often useful as they provide excellent insight into the
behaviour of some systems. However, analytical solutions can be derived for only a
limited class of problems. These include those that can be approximated with linear
models and those that have simple geometry and low dimensionality. Consequently,
analytical solutions are of limited practical value because most real life problems are

nonlinear and involve complex shapes and processes.



In such cases, where a differential equation defies solution analytically, an approximate
solution is often obtainable by the application of numerical methods. Numerical methods
are techniques by which mathematical problems are formulated so that they can be solved
with arithmetic operations. This means that the relevant particular solution is obtained as
a set of function values for the range of values of the independent variable. This set of

points is an approximation of exact solution at these points.

The goal of finding numerical solutions to differential equations is to get a method that

will give an answer that will be (if possible) the same as the exact solution.

A broad variety of methods or schemes have been derived for solving differential
equations. These methods can be classified into two thus: One-step and multistep

methods.

One-step methods permit the calculation of y, 4, given the differential equation and y,.
They utilize information at a single point x; to predict a value of the dependent variable
¥+ at a future point x4, There are two families of one-step methods: methods of Taylor
and methods of Runge-Kutta. The methods of Taylor are further classified into Euler

method and methods of Taylor of greater order. (Chapra and Canale ,1998).

Multistep methods require additional values of y other than at i. Multistep methods are
based on the insight that, once the computation has begun, valuable information from

previous points is at our disposal. The curvature of the lines connecting these previous



values provides information regarding the trajectory of the solution. The multistep
methods exploit this information to solve ordinary differential equations (Chapra and

Canale, 1998).

Some famous sub-classes of multistep methods are, Adams-Moulton, Adams-Bashforth

and Predictor-Corrector methods.

Although there are many kinds of numerical methods; they have one common
characteristic: they invariably involve large numbers of tedious arithmetic calculations. In
fact, it is a business of solving hard problems by doing lots of easy steps (Chapra and

Canale,1998)

Various reasons determine the choice of one method over another, two obvious criteria
being speed and accuracy. However, the advent of fast and efficient digital computers has
increased dramatically the role of numerical methods in solving scientific, engineering as

well as social problems. (Scheid, 1998).

The application of computer algorithm to implement a new 6-step implicit linear

multistep method for initial value problems forms the basis for this project.

1.2 LITERATURE REVIEW
The family of multistep methods for solving initial value problems offers a wide range of

methods which are further grouped into sub classes. A great many methods have been



developed in this direction, and yet others are still being developed. Many have
undergone changes either to improve their accuracies, or their error control strategies, or
to shed more light on their behaviours in general.

DAHLQUIST (1956), made the first investigation that brings strict mathematical
analysis to the problem of the convergence of numerical solutions to initial value
problems, and ushered in a new era in the subject. In seeking the highest possible order
thet can be achicved by a lincar k-step method, the consistency condition is automatically
achieved, but we come across what is known as the ‘first Dahlquist barrier’; which arises
in attempting to satisfy the ‘root condition’ (Lambert,1973). The highest order that can be
attained by a linear k-step method is 2k if the method is implicit, and 2k-1 if it is explicit.
Linear k-step methods achieving such orders are called MAXIMAL. However, maximal
methods, in general, fail to satisfy the ‘root condition’ and are thus Zero-Unstable. The
following theorem thus encapsulates the first Dahlquist barrier.

Theorem: No zero-stable linear k-step method can have order exceeding k+1 when k is
odd and k+2 when k is even(I.ambert, 1973).

HULL and CREAMER (1963), pointed out that for the convergence of predictor-
corrector methods using a constant step size, an optimal step size should be small enough
to ensure convergence within two iterations of the corrector. In addition, it must be small
enough to yield a sufficiently small truncation error. At the same, the step size should be
large as possible to minimize runtime cost and round-off error. As with other methods for
ODES, the only practical way to assess the magnitude of the global error is to compare

the results for the same problem but with a halved step size.



GEAR (1971), developed a special series of implicit schemes that have very large
stability limits based on backward difference formulas. Extensive efforts have been
made to develop software to efficiently irﬁplement Gear’s methods. As a result, this is
probably the most widely used method to solve stiff systems.

LAMBERT (1973), showed that the highest order we can expect from a linear k-step
method is 2k if the method is implicit, and 2k-1 if it is explicit.

ONUMANYI et al. (1981), developed a software for a method of finite
approximations for the numerical solution of differential equations, which was based
on the Tau method. According to them problems with complex initial boundary or
mixed conditions involving combinations of function and derivative values, can be
dealt with by means of their program. Consequently, encouraging results have been
obtained in the solutions with regions of rapid variation, oscillatory behaviour and
stiffness.

FATUNLA (1987), derived some new predictor-corrector formulas using an arbitrary
step number k. According to him a matrix representation in the spirit of Gear was
incorporated so as to facilitate variable step, variable order modes. Accordingly for
even step numbers, the proposed algorithms are nearly symmetric and hence perform
better than the Adams- Bashforth- Moulton predictor - corrector formulas on
oscillatory initial value problems.

AWOYEMI (1994), derived a two-step method for the continuous solution of initial
value problems for the second order differential equations without first derivative
explicitly present. The method is based on collocation at the grid points and at one
off-grid point x,4y , (Xn, Xn4+¢). In addition, the Numerov’s method of order four is

recovered for any v, (0,2) v#£I at x= x4,



SIRISENA and ONUMANYI (1994), developed a continuous formulation of a
modified self-starting Numerov method for the second order differential equations.
According to them, the uniformly accurate discrete schemes obtained by evaluating
the continuous formula at certain points are solved simultaneously as block methods
for a uniform treatment of initial and boundary value problems.

SIRISENA et al. (1996), attempted to seek other alternatives to the class of Adams-
predictor-corrector method, two new families of linear multistep methods are
developed, one explicit and the other implicit. They are based on collocation at
arbitrarily selected mesh points and two point interpolation. The predictor schemes of
step numbers k= 2, 4, 6,... are symmetric which is also a desirable property for
¢<trapolation process. They have smaller error constants than the corresponding
Adams-Bashforth methods, implying greater accuracy, though their intervals of
absolute stability are located at the origin, due to symmetry. The corrector schemes on
the other hand are competitive with Adams-Moulton methods for the higher order
methods. The order of the proposed methods is p=t+m-1 where t=2 is the number of
distinct interpolation ‘points (x, and X,.,;) used. The number of distinct collocation
used 1s m=k-1 with collocation ot x = x4, ... ... , Xp4x.; for the predictor while m =k with
collocation at x= x,+; . Xy for the correctors.

ONUMANYI et al. (1997), discussed the improvements in the multistep methods for
solving ordinary differential equations (ODES). They stated that of recent, discrete
multistep methods have been extended to continuous forms based on multistep
collocation. According to them following the extension, continuous ones have more
ability to solve the ODES than the discrete ones, that ts, initial value problem (IVP) is
solved without looking for any other method to start the integration process. They



claimed that even the problem of overlap of solution models usually associated with
multistep finite difference methods is overcome, and on the same fixed meshes the higher
order methods can be applied successively by choosing different values of the step
number.

CHAPRA and CANALE (1998), showed that if the predictor and the corrector of a
multistep method are of the same order, the local truncation error, Ec, may be estimated

during the course of a computation by

0 M
Ee - _.’Hl 5yl+l (1.2)

As an example, using the corrector equation for the Hewn method,

X i3 X, YVis
yt+l=yi+f( ‘.y‘) g( . ly' (13)
Its local truncation error is analysed as
E, =-31yP(g,)=-4r1"(¢.) (1.4)

~ Where the subscript ¢ designates that this is the error of the corrector.

Also, the predictor for the non-self-starting Heun method is
Via = Yer + 2, 3,) (1.5)
Its local truncation error is taken as
£, =3ny0,)=117(E,) (1.6)

Where the subscript p designates that this is the error of the predictor.

Equation (1.6) above can be combined with the estimate of y;+, from the predictor step

(eqn.(1.5)) to yield:




True value = approximation + error
ie.
True value =y’ + 11 yO(¢ ) (1.7)
Using a similar approach, the error estimate for the corrector (eqn(1.4)) can be combined
with the corrector result y;,, to give
True value = approximation + error
ie.,
True value = y[y — £ 1 yP(£,) (1.8)
Eqn (1.7) can be subtracted from eqn (1.8) to yield
0=yih - you ~ 54 YI(E) (19).
Where ¢ is now between x, ; and x;,,. Now, dividing eqn (l..9) by 5 and rearranging the
result gives

] m
Yin ~ Yin 1.3 @)
— e - _—h B
: iy () (1.10)

The Right hand side of equations (1.4) and (1.10) are identical, with the exception of the
argument of the third derivative. If the third derivative does not vary appreciably over the
interval in question, we can assume that the right hand sides are equal, and therefore, the

left hand sides should also be equivalent, as in

E =-- }’:ou ~ Vi
5

CHAPRA and CANALE (1998), outlined two criteria that are typically used to decide

whether a change in step size is warranted.




First, if eqn (1.2) is greater than some prespecified criterium, the step size is decreased.
Second, the step size is chosen so that the convergence criterion of the corrector is
satisfied in two iterations. This criterion is intended to account for the trade-off between
the rate of convergence and the total number of steps in the calculation. For smaller
values of /, convergence will be more rapid but more steps are required. For larger A,
convergence is slower but few steps result. Experience (Hull and Creamer, 1963)
suggests that the total steps will be minimized if 4 is chosen so that the corrector
converges within two iterations. Therefore, if over two iterations are required, the step
size is decreased, and if less than two iterations are required, the step size is increased.
CHAPRA AND CANALE (1998), outlined some software libraries and packages that
have great capabilities for solving ODES and determining eigenvalues. According to
them, the following are some of the ways the packages can be applied for this purpose.
EXCEL

Excel’s direct capabilities for solving eigenvalue problems and ODES is limited.
However, if some programming is done (¢.g. macros), they can be combined with Excel’s
visualization and optimization tools to implement some interesting applications.
MATHCAD

Mathcad has a number of different functions that determine eigenvalues and eigenvectors
and solve differential equations.

MATLAB

As might be expected the standard MATLAB package has excellent capabilities for
determining eigenvalues and eigenvectors. However, it also has built in functions for

solving ODE. The standard ODE solverS include two functions to implement the



adaptive stepsize Runge-Kutta Fehlberg method. These are ODE23, which uses second-
and-third-order formula to attain medium accuracy,and ODE45, which uses fourth-and
fifth-order formula to attain higher accuracy.

IMSL

IMSL has a variety of routines for solving ODES and determining eigenvalues. The
IVPRK routine, for example, integrates a system of ODES using the Runge-kutta

method.

1.3 NOMENCLATURE AND DEFINITIONS
1.3.1 INITIAL VALUE PROBLEM

A first order differential equation, 3’ = A1, y), together with an initial condition, 3(t,)=ys,

constitutes an initial value problem:
y=ry)  Aw)=ye 131 (1.11)
The following theorem, whose proof may be found in Henrici (1962), states condition on
Aty) which guarantee the existence of a unique solution of the IVP (1.11)
Theorem:
Let At,y) be defined and continuous for all points (7,y) in the region D defined by #, < 1 <

tyv -0 <y <o, tyand ty finite, and let there exist a constant L, such that, for every ¢, ,

y* such that (1, y) and (1, y* ) are both in D,
[7(y)- 7y )< Lly-»'| (1.12)

Then, if y, is any given number, there exists a unique solution y(f) of the initial value

problem (1.11), where 3(?) is continuous and differentiable for all (z,y) in D.

10



The requirement (1.12) is known as a Lipschitz condition, and the constant L as a

Lipschitz constant .(LLambert,1973)

1.3.2 NUMERICAL SOLUTION

We wish to solve the standard initial value problem given by equation (1.11) above.
Since analytical or exact solutions are not always possible to find, it is essential to work
with techniques which work without them. One approach is the numerical analysis, which
tries to find good algorithms to approximate solutions. This simply means finding
procedures by which computers can do the solving for us. We seek a solution on the
interval |1, ty] of t where ¢, and 1y are finite. We assume that equation (1.11) has a unique
solution. The t-axes is discretized over a finite interval [, ty]; that is, the continuous
interval [z, #y] of 7 is replaced by the descrete point set, {t,}, defined by t,=t,+nh,
n=0,1,2,.....N=(b-ayh. The subdivision points #, are often equally spaced, that is
t,=t,+nh where the parameter h called the step length or step size is defined by

=
N

h——-t" L%,

We let y{t,) denote the exact solution y(f) of equation (1.11) at the point #, and y, to

denote the numerical slution at 1,

We seek to find a way of producing a sequence of values {y,} that approximates the
solution of (1.11) on the discrete point set {t,}; such a sequence constitutes a numerical

solution of the IVP (1.11) (Lambert, 1991)

11



1.3.3 NUMERICAL METHOD

A numerical method can be defined as a difference equation that involves a number of
consecutive approximations y,.;, j=0,7,......k from which if will be possible to compute
sequentially the sequence {y,/=07,2,...N}. (Lambert,1991). Although numerical

methods for IVPs can take many forms, all of them can be written in the general form

k
Zajymj :h¢/(yn+l’ymk—l)"‘yn"n;h) (113)
j=0
v, = p,(h) 1=0,... k-1 (1.14)

Where subscript f indicates that the dependence of @ on y,ip Yasr ..., Va1 i8 through the

- function Ar,y), and {u; (h)},—, .+, are the initial points (Patrizia, 2001)

1.34 ORDER OF ACCURACY
To enable us quantify the order of accuracy of a numerical approximation we consider

the Taylor series expansion of 3(f) € C” around ¢, , i.e.

Via = ) 0+ 2y (1)1 ) (115)

rl
Where £ € [t 1.+, ] and subtitute this into the numerical method under consideration .
Let f € C i.e. of the same order of the solution . Then we say that a numerical method is
r-th order accurate if the term in 4" in the Taylor expansion of the unknown is correctly
reproduced .This is indicated by O(4") .The oder » allows us to tell by how much the
results are improved when the step is reduced . In general, one prefers methods with a

large r , since a reduction of 4 promises a large gain in accuracy .

12



We note that the order » depends only on the method and not on the differential equation,
provided f satisfies the assumption. An obvious property to require of any numerical

method is that the approximation solution {y,}, defined by equation (1.13), gives the

exact solution over interval [, ty]. (Partrizia,2001)

1.3.5 CONVERGENCE

A numerical method is convergence if
lim y, = ()
for all ¢ over the finite interval [1,, 7], i.e. if the sequence of improved values converges

to the true value of y. A method is not convergent is said to be DIVERGENT

(Patrizia,2001).

1.3.3 LOCAL TRUNCATION ERROR

The leading order deviation is called LOCAL TRUNCATION ERROR at the nth-step
k
Emk = Zajy(tmj )~ h¢f(y(tmk )y(tmlul ) e ’y(tn ) tn; h) (116)
J=0

and the LOCAL UNIT TRUNCATION ERROR is given by

9, = Lo , (1.17)

n+k ’1

Starting at the exact value at t,, i.e. if it is calculated with single- step of integration at the

position (tn +U!).

These errors are local (that is, error per step). The total error usually builds up as one

moves away from the initial value y, and it is composed of the accumulated local

13



truncation error and of machine error. This last one is due to finite numerical accuracy of

the calculation, which depends on the computing and its method of rounding decimal

(round-off error).

1.3.4 GLOBAL OR TOTAL TRUNCATION ERROR
The total truncation error is the difference between the solution y(x,+,) and y, 4, (the

solution calculated after n+ / steps ):

€ ~ Ily(xnn )_ }’nu" (1'18)

The definition of convergence can be formulated using the total error: a numerical

method is convergent if

lim maxlle.]| = © (1.19)

RS0 ne01, N
It is natural to expect that the error will accumulate steadily as integration proceeds, but
that is not so. The stability of the problem can cause errors to decrease as well as to
inctrease.

A first thought on the appropriate level of accuracy, that might be needed for

convergence, is that 7, -> 0 as h > 0. In-depth remarks show that this is not going to

nsl

be enough. The appropriate level is to demand that 6,,, >0 as h— 0.

1.3.5 CONSISTENCY
A numerical method is called CONSISTENT if the local truncation error satisfies:

fimd,,, = 0 (1.20)

h-30

14




The necessary and sufficient conditions, which must be satisfied by a numerical method

(eqn 1.13) to be consistent are:

2.a,=0

and

GO E N S VXD R
"

((2,)) (122)

which using the first characteristic polynomial p(£)= ia &7, £eC, it is possible to
=0

rewrite the two equalities in the usual form

¢, GRS, (A W (R T - 7(1(1,)) (1.24)

p (1)

(Patrizia, 2001)
Specific condition for single class of methods are being found.
For linear multistep methods, consistency demands that
(i) p1)=0
(1) P)=0(1) ; where o(¢)=315,¢"

J=0

For general Range-Kutta methods, consistency demands that

e =1

i=1

(Lamert,1991)
We apply the above conditions to the following examples of numerical methods:

15




L Yoo #Yui =20, =4[ f(ty12. 7,02 )+ 81t ¥, )+ 312, 9,)]
2 Yoo Yoo = 4B/ y0n)- 212, 9,)]
3 b S %(kl +3k3)

where

k, =f(t,,,y,,)

ky = f{t, +3h,y, +hk,)
ky = f(t, +3h,y, +3hk,)

4. Vi1 = Y =%(kl +k2)

where

kl =f(tn’yn)
k, = f(t, +h,y, +1hk, + L hk,)

It is easily seen that condition (1.23) is satisfied for all of them. It is straightforward to

see that (1.24) holds for example (1). For example (2), we have,

pE)=& -, where p'(1)=1 and

8,060 50, 6)1,9) 1
0] -Sf(t..y(t. )

and the method is inconsistent. If it 1s applied to the initial value problem (1.11) it will

attempt to solve instead the problem y' =1 f(t,¥), t,)=y,. For examples (3) and
(4), it is clear that when h=0 and y, is replaced by y(t,), each of the k, reduces to f{1,,
&), and (1.24) is satisfied. Thus all of the examples except example (2) are

consistent. (Lambert,1991)

16




1.3.9 STABILITY
A numerical method is said to be STABLE if a small deviation from the true solution

does not tend to grow as the solution is iterated.

We consider a form of stability, which is concemed with the stability of the difference

gystem in the limit as /4 tends to zero.

Let {5, n=0,1,..,N} and {5, n=0,1,..,N} be any two perturbations of the discretized
Problem (i.c. difference equation generated by the method ) and let {y,, n=0,1,..,N} and
{y., n=0,1,..N} be the resulting perturbed solutions. Then if there exist positive
constants S and /1, such that, for all 4 € (0, h,]

v, - .

then the method is said to be ZERO-STABLE. (Lambert,1991)

5,-6,|<e 0<n<N (1.25)

<S8, whenever

It is a characteristic of non-zero stable methods, that decreasing the step-size actually
makes matters worse, i.e. the error grows at an increasing pace. Any error due to
discretization and round-ff could be interpreted as being equivalent to perturbing the
problem. The zero-stability is thus a requirement that the difference system be likewise
insengitive to perturbations. If the inequality (1.25) is not satisfied, then no acceptable

solution will be producd.

An algebraic alternative definition to the zero-stability is given using the ROOT

CONDITION.

17



A numerical method is said to satisfy the ROOT CONDITION if all of the roots of the
first characteristic polynomial have modulol ess than or equal to unity, and those modulo

unity are simple. (Lambert,1991).

Thus the necessary and sufficient condition for a numerical method to be zero-stable is

that it satisfies the root condition. (Lambert,1991)

The following linear multistep method is used to illustrate zero-stability:

Yoz (1 alyy + @y, = 4B~ a)f,, -1+ a)f]
The first characteristic polynomial for this method is:
pE)=¢" -+ ak +a=(E-1[¢ - a)
Thus, when a=0 the method is zero-stable and when a=-5 it is zero-unstable

(Lambert,1991)

From the above facts, we conclude that the necessary and sufficient condition for a
numerical method to be convergent are that it be consistent and zero stable. That is, it

must satisfy the following conditions:

() plt)=0

AL B BT VR SN

p(1)

(iii) No root of the equation: p(¢) = 0, has modulo greater than 1, and every toot with

(it

modulo is simple.

18
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70
low are some examples of convergent and non convergent schemes:

 Vuna+ Yo = 200 = 42 20 )4 81 (200 )+ 31,9,

or this method p(1) = 0; p'(1) = 4(1) = 3. Thus satisfying conditions (i) and (i7). The roots of
>)are >= 1, -2 ; which does not satisfy condition (i) and therefore Zero unstable. Hence,
e method is divergent.

2 Yuiz = Yo = 4B U, 7 )= 2710, 9,)]

ere,p (1) = 0;p'(1)=1, ®(1)=1/3. Hence, inconsistent (not satisfying condition (ii)). The

ts of p (>) satisfy condition (7i7). Thereby making it zero-stable. Therefore, it is divergent.
i = Ve = %(kl +3k3)

ere

,=f(t.,y,,)
=f(t,,+-}h, T +‘}th)
= f(t, +3h, y, +3hk,)

r this method, ib, =1(1+3)= % = 1. Thereby satisfying conditions (i) and (ii). The root of

>)=1, also satisfying condition (#i7). This makes the method both consistent and zero-stable.

efore it is convergent.

4 AIM AND OBJECTIVES
e aim of this study is to derive an optimal 6-step iﬁplicit LMM for the solution of TVPs.

e objectives of the study include the following:

To derive a convergent 6-step implicit linear multistep method, which is optimal.

. To verify the accuracy of the method by making comparison with the exact solutions and
own methods of similar steps.

1. To use the method to solve some differential equations.

19




CHAPTER TWO
NUMERICAL METHODS FOR SOLVING ORDINARY

DIFFERENTIAL EQUATIONS

2.1 NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS (IVPS)

In the preceding chapter, we made an introduction into what numerical methods for
solving TVPs are all about. A great many of such methods have been developed, and yet
many more are still being produced. Although all the metho;ls have certain fundamental
properties common to them all of them are further classified into different sub-classes,
with specific characteristics peculiar to each class. It is this classification of numerical

methods we shall discuss in this chapter.

2.2 ONE-STEP METHODS
One — step methods are numerical methods that determine the solution at the support

times through the recursive formula

Vor =V, tholt,y,ih),  neN (2.1)

ie. k=1 in the formula

R
Zajymj = h¢/(ymkvyml»-lv-"’ynvtn;h)

j=0

There are two families of one-step methods:
6))] Methods of Taylor

(ii)  Methods of Runge — Kutta
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The methods of Taylor type are further classified into Euler method and methods of
Taylor of greater order.
2.2.1 EULER METHOD

If we take the first two terms of the Taylor series, which describes the exact solution at

tns),
st oo
y(tml)_z_y (tn)
r=0 r
to compute
()= te)+ hy (1) = vo + Hfy = 3,
After n steps it yields

yn+l =yn + MI (2'2)
Equation (2.2) above is called the Euler’s formula or the Euler method; the simplest of
the numerical methods for solving first — order differential equations.
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Graphical Interpretation of Euler Method

B /
T
N
i
Yo
I M ¥
(@) +——— h ‘——*{ t
to t
FIG 2.1
If AT is the tangent to the curve at A, then
N W
AN )., "
L S
h =Yo
'~'NT=}’:,

At t=t, MT =y, + hy,

By Euler’s relationship, y, = y, + hy, ie. MT.

The difference between the calculated value of y, i.e. MT, and the actual value of the

function y, i.e. MB, at t = ¢, is indicated by 7B. This error can be considerable depending
on the curvature of the graph and the size of the interval A. It is inherent to the method
and corresponds to the truncation of the Taylor’s series after the second term.
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Although Euler method is simple in procedure it is lacking in accuracy, especially away
from the starter values of the initial condition. And it is of use only for very small values

of the interval / (Stroud, 1996).

In spite of its practical limitations, it is the foundation of several more sophisticated

methods.

2.2.2 METHODS OF TAYLOR OF GREATER ORDER

In order to obtain a numerical method with greater order of accuracy than the Euler
Method, we could just as well take more terms of the Taylor’s series expansion. A

method of second order looks like.

2

L
yn+1yn+hyn+_i~yn'

Since v, = f(x,,v,)= 1, then
2

5
Vs S ¥a t hfn # Tfn
This implies the truncation error
¥
E, = .V(ti )“‘}’1 e "6“}’ (6)” O(hs)
More generally, a K-order numerical method is:

h2 . hl’ N
= W, +—y, +.ot —
yn+l yn+ n+ 2 yn k’ yn




With a truncation error

About the convergence, the following is valid .
LEMMA: All the consistent One-step methods satisfy the root condition (Patrizia, 2001).

PROPOSITION: Given a numerical method of Taylor type, if ¢, y») satisfies the
Lipschitz condition and the method is consistent then, from the above lemma, the method

is convergent (Patrizia, 2001).
2.2.3 RUNGE - KUTTA METHODS

The idea of extending the Euler method, by allowing for a multiplicity of evatuations of
the function f within each step, was originally proposed by Runge (1895), further

contributions were made by Heun (1900) and by kutta (1901).

Given y, as an approximation to y (t,), where y satisfies the differential equation system,
y'(l)zf(t,y), .V(fo)z}’o, f:RXRm")Rm’

the approximation y,; to 3(#,+,) is computed by evaluating
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Yuur = Yo it hzblkl

=1

where } (2'3)
k= /{tu +chy, + hZayk,} {2t
jo ,
(Lambert, 1991)
An alternative form of the above, is,
Yo = yn + hiblf(tn + cih!rl)
i=1
where } (2'4)
o=y, 4 hYa v e ht) 112
J=t )

The two forms are equivalent by making the interpretation
k=ft,+eht) i=12..s

(Lambert, 1991)

The integer s is the number of stages of the method and measures its complexity, since
the number of evaluations of f per step equals s. The set  {a;, b}, -4, ..., s of constants
characterizes a particular method of this type.

25




v

The quantities ¥; are approximations to solution values y(¢) for ¢ ranging through
various values near f,. Also f{Y)) are approximations to y'( t ) at the same values £.

(Patrizia, 2001)

Runga-kutta methods are often represented using the Butcher array as follows:

¢ | % @ ‘ P
C, |@n Qn - e Ay
cl all alZ an

bl b2 bt

An s — stage Runge-kutta method is completely specified by its butcher array as

C | 4
b'l’

C=[escr...,e)b=[b), by ..., 0] ,A=(ay)
The components of C are the row sums of A
(Lambert, 1991)

rom the definition, a Runga-kutta is consistent when
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(Lambert 1991)

And when y,+, depends only upon the evaluations of the previous points f (V) =ar,....m
if a, = 0forall 1 <i<j<s,itis called EXPLICIT. Otherwise it is said to be IMPLICIT.

We present below some explicit Runge-kutta methods:
ONE STAGE
The general s-stage Runge-kutta method (2.3) becomes 1-stage if we set b, = b3 = 0.

Then

Y = Y(tn )+ hb, f

From the Taylor expansion follows that the best one can do is set b, = 1, hence
E,, = 0(n*).

Thus there exists only one explicit one-stage Runge-kutta method of order 1, namely

Euler’s Rule. (Lambert, 1991)
TWO STAGE

If we set b3 = 0, the method becomes two-stage
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B y(xn )+ h(bl + bz )f + hzbzczp + %h’bzc:G + dh‘)

where

Fi=f+f,, Gi=fo+2f, +1f,,

(Lambert, 1991)

On comparing with the expansion for y (x,+,),
Wy )=yl )+ 1f + 1P F 4 31077, + G)+ ofn* )
We see that order 2 can be achieved by choosing
brb,=1, ey =

There exists an infinite family of explicit two-stage Runge-kutta methods of order 2.

Two solutions yield well-known methods:

(i) The Modified Euler (or Improved Polygon) method
bl = 0, b) =1, C1= V:

Its Butcher array is
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(ii ) The Improved Euler (or IHeun) method
b1=b2=V:, 02=]

Its Butcher array is

THREE STAGE
By satisfying the following coefficient conditions one can achieve order 3.
b +b,+b =1
byc, +byey =Y
b,cs +b,cl =Y
bic,ay, = Y%
Two particular solutions lead to well-known methods:

(i) Heun’s third order formula.

Its Butcher array is
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(i) Kutta’s third order formula

It has the Butcher array
0
B
1 |-1 2
| % % %
FOUR STAGE

The most popular Runge-kutta scheme is the classical Runge-kutta method of order four
(4). so popular is this method that when one sees a reference to a problem having been
solved by “the Runge-kutta method”, it is almost certainly the classical Runge-kutta

method that has been used.
It has the following Butcher array:

0

Bih

B0 %

110 0 1

e KK %

The classical Runge-kutta scheme is as follows:
Yo =dnt %(kl +2k, + 2k, +k, )
where
kizf(xn.yn) k,=f(x,,+%,y,,+%k,)
k, = f(x, +%,y, +%k,) k, = f(x, + hy, + hk,)
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The absence of k; in the evaluation of k3, and absence of k), k; in the evaluation of k, may
have played a role in making this method popular. However, Lambert (1991) suggests
another reason for the popularity of the method: “In the pre-computer days, computations
were performed on purely mechanical devices. Multiplication or division was a tiresome
business on such machines. Since the main computation is in the evaluation of the
functions to produce the k;’ 5. That the ¢, s and a,” s are always either 1 or ¥ increased

the chances of any division in the evaluation of / terminating quickly”

2.3 MULTISTEP METHODS

As stated in the preceding chapter, we can write a numerical method for solving IVPs in

the general form:

k
Zajyruj = h¢f(yn+k’ymk—l""’yn’tn;h)

J=0

y,=p(h) for i=0,.k-1

If £ >1 in the above formula then the numerical method is called multistep, because it

determines the solution at the support times using k values. (Patrizia, 2001)
2.3.1 LINEAR MULTISTEP METHODS (1. MM5s)

Let y, be an approximation to the theoretical solution at ¢, that is, to 3(z,), and let
fu=Rtwy,). Then, we say a linear multistep method of step number k, or a linear k —step
method is a computational method for determining, the sequence {y,} that takes the form

of a linear relationship between yn.;, fosy, =01, ..., k
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Thus the general Imm may be written.

k k
Zajyn-tj:th]fmj (2'5)
J-0 J=0

Where a; and f, are constants; we assume a; = ] and that not both @, and 5, are zero.

We say that the method is explicit if £ = 0, and implicit if & = 0. (Lambert, 1973)

The above definition may be formulated in a more compact altemative notation. In
chapter one, we introduced the first characteristic polynomial p(¢) associated with the
general form of a numerical method. In the case of linear multistep methods we define a

similar polynomial o(%), which is said to be the second characteristic polynomial of
(2.5); i.e.

k
AE)=3 a s, oAe)- 258"
J=0 =0

Where & € C is a dummy variable.

Thus the Imm (2.5) can now be written in the form

p(E)y, = ho(E)f, (2.6)
Where E is the forward shift operator
E(yn)=yn+l fo" all ne N

It is easily established that the consistency condition is guaranteed if
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p(1)-0 and p'(1)=0o(1) (2.7)

(Lambert, 1973)

And the zero-stability should be verified through the root condition.

Within the general class (2.5) of linear multistep methods, there are several well known
sub-classes. The sub-class of methods of ADAMS TYPE are characterized by

plE)=¢" - &+

Since the spurious roots of p are all situated at the origin of the complex plane, methods
of Adams type are clearly zero-stable for all values of k. Methods of Adams type which
have the maximum possible accuracy are known as ADAMS MET!\IODS; if they are
explicit they are known as ADAMS-BASHFORTH METHODS, ;md if implicit as
ADAMS-MOULTON METHODS.

Then 1-step Adams-Bashforth method is Euler’s Rule,

ynﬂ =yn+hfnv

While the 1-step Adams-Moulton method is the Trapezoidal Rule,

=

Yot =Va = —(fMl +fn)

[}
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Other sub-classes are characterized by

e)=¢t -2

are clearly also zero-stable for all k. Explicit members of this sub-class are known as
NYSTROM METHODS, and implicit members as GENERALIZED MILNE-SIMPSON

METHODS. A well known example of a Nystrom method is the mid-point Rule

Yosa = VYau = th;nl,

and of a Generalized Milne-Simpson method is Simpson’s Rule.

h
Yz = ¥Yu = ';(fml +4fml +fn)

A sub-class that is important in dealing with stiffness consists of the BACKWARD
DIFFERENTIATON FORMULAE or BDF, which are implicit methods with

o(&)= pug*. (Lambert, 1991)

The following

k
Zl.AyMk == hf(}’uk)’

=

Where Ay, =y, -y,, and recursively A'y, = A(A"'y,) describes a general BDF
method. It can be proved that the method is convergent for only k = 1, ..., 6. (Patrizia,
2001)
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2.4  PREDICTOR - CORRECTOR METHODS

At each step of an implicit method we must solve for y, s,

k-1 k-1
Vs + Zoajymj = hplrf(tvulv’ Yosk )+ hz pjl;uj
J= J=0

In general this equation will be nonlinear in y,.;. One way of solving this equation is

Newton’s method (Mackenzie, 2000). A much simpler way of obtaining y, s is by using

the iterative algorithm.
1
y'(l?t‘) = hﬂkf(’mh yo(:o)k )" (ajymj o /’jfm/)v (2'8)

k-
=0
g=01...

_ \
Where y,{?,, denotes the approximation of y,,; after s iterations. The solution y,.; i8

therefore the fixed point of the function.

k-1

g(ymk )E hﬁl-f(tuh Vst )_ Z(a]ymj o ﬂjfmj)

70
The fixed point iteration (2.8) will converge to the unique solution in the sense that

=0

?ﬂb}.‘.ﬁ?’ - ¥,

for any arbitarary guess of y%, if the condition lg| <1, where differentiation is with
respect to y,u. If £ (4 ») is continuously differentiable and |%|<L then we are

guaranteed to have convergence so long as
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h < -—l~ (2.9)

LI,
This condition on the maximum value of 4 is only likely to be severe for problems with
large Lipshitz constants i.e. stiff problems. For non-stiff problem the step size will be
determined by accuracy considerations leading to step- sizes that will be smaller than

2.9).

In practice, a pre-assigned tolerance £ would be chosen and the iteration petformed until

) 6 | < g (2.10)

Yk

To speed up the rate of convergence we would like a cheap way of providing a good

initial guess for y,4. This could be done by using an explicit method to predict the value

of y©, . The fixed point iteration could then be used to correct the solution. There are

two ways that the cotrection stage could be catried out. First we could just iterate until
(2.10) is satisfied. This approach is called CORRECTING TO CONVERGENCE. The
overall method would therefore just be the implicit method as the effect of the explicit
predictor would be lost once convergence was reached. On the other hand we could
decide to only compute a fixed number of iterations of the correction stage and then pass
into the next step. The advantage of this approach is that we can know in advance how
much effort is going to be expended for each step. One other advantage is that this
apptoach is computationally less expensive than cotrecting to convergence. However,

gifice we are not guaranteed to have converged using a fixed numbet of iteration it is not
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clear exactly what method we have used now being a mixture of the predictor and
corrector. If we let P denote an application of the predictor, C a single application of the

corrector, and E an evaluation of £, then if we compute y,(,?,, from the predictor, evaluate
9=y (t,‘,,,, y,?l),,) and then apply the corrector once to get y,,, , the calculation is
denoted symbolically by PEC. If we decidg to carry out another correction step we need
to first evaluate £} = 7 (t,,*,,, y,(,?,) and then correct to get y%) . The total algorithm at
this stage is denoted by PECEC or P(EC)’. If we apply the corrector m times the
algorithm is denoted by (P(EC)™ After we have completed m correction steps we have
the option of evaluating 7% = 1 (t,,, i y,(,”:l) which will be used as part of the prediction

stage to calculate y,4,,. This mode of operation is denoted by P(EC)"E. This will give us

a slightly different algorithm to the P(EC)™ mode where £, is not updated using p)

To summarize the above let the k-step explicit predictor method denoted by

k-1 k-1
Ve + Zajyrnk = hz ﬂ_/fmj
Jj=0

J=0

and the implicit corrector method by

ko1 k-1
Ynit + Za;.vmj o hﬂkfnoj + hZﬂjfvu}

J=0 J=0

The P(EC)"E mode is defined as follows
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yo, + za,yn,} 2 hz T iy predict

Jj=0 J=0
Jor x=0,1....,m-1
124 = Pl 8) Evaluate
y;(::k‘)-"zajyn‘; hﬁt (‘) +hZ”j ,,(:"j) Correct
J=0 =0
fn(:'k) = f( mts Y.(:Z ) Evaluate

The P(EC)™ algorithm takes the form

8 +2a,y£":} = b3 ;£ predict
j=0
for s—O L...,m-1
# n(:z' = s ( ek }’S.i)g ) Evaluate
R4
D+ S ) = 1B ) + B B, Correct
Jj=0 Jj=0
 § ,.(:'g) =\ ( i Y,(.':l) Evaluate

We would like to derive an expression for the leading term in the truncation error of a
predictor — corrector method. We will concentrate on the analysis for the P(EC)™ mode of

operation as the P(EC)"'E approach is done similarly. Let assume that the predictor is of

order p* and has error constant C;.“ ie.

T = Co (0, )+ o)

and that the corrector is of order p and has error constant C,,, i.e.

Tor = Conh™ y70(e, )+ 072
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Mackenzie (2000), showed that we can deduce the following about the truncation error of

the predictor-corrector method.

1. If the order of the predictor is greater than or equal to that of the corrector, i.e.
p'>pand m>1then m+p +12p+2 and the leading term in the

truncation error is that of the corrector.

- If the order of the predictor is less than that of the corrector i.e.
p'=p-q<p and 0<gq< p-1,then the leading term of the local truncation
error is
(a) that of the corrector alone when m>qg+1 as m+ p-q=>p+2.

(b)  of the same order as that of the corrector but not identical if m = g as
mtp-qtl =p+l.
(c)  Of the form O (AP *Ny when m>q+1 as m+ p—q+1l<p+1.

From the above it is not clear what the ideal combination of predictor, corrector and the

number of correction steps should be. However, if we use the same order of predictor and

corrector then for free we can get an estimate of the local truncation error which could be

used to adaptively change the step size.

One example of a popular predictor — corrector algorithm is the following fourth — order

Adams — Bashforth — Moulton pair:

predictor . y,.,~ ¥, = 2(55F,,, - 59f,., +37f,., -91,)
corrector . Vira = Vni3 = 2’.—4(9,["&4 + Igfm! - an/'z + Jan )
Error estimate : Cshsy(s)(l")z -2 i - y'(ﬁ)‘)

Interval of absolute stability in PECE mode: (-1.25,0)
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CHAPTER THREE
DERIVATION OF A SIX-STEP IMPLICIT LINEAR MULTISTEP

METHOD (LMM)
3.1 THE SIX-STEP IMPLICIT LMM OF ORDER EIGHT
Although a number of ways for deriving a Imm exist, one of the best of such
methods is through Taylor series expansion. Lambert (1973) described the process
thus:

Let O be the linear difference operator defined by
k
Oly(t) s ] = X la, ¥t + jh)—hp,y (t+ jh)] 2.D
\ J-ﬂ

where y(1) is an arbitrary function, continuously differentiable on [a, b]. if we expand
y(t+jh) and its derivative y (t+7h) as Taylor series about t, and collecting like terms we
have

O[x(2); h]=coy(t)+ e,y () + 2y (6)+...+ ¢,k y (£)+ ... (22)
where ¢, are constants.
The constants c, are expressed in terms of the coefficients V}, Jjthus:

Co=auta, +a,+...a
¢, =a, +2a,. .. +ka,—(B+ B +B,+... B)
c, =1“ﬁ(a,+2’¢:¢,+3’a,+...lc’ak)—(/3l +2B,+.. . kB,)

s (2.3)

¢ =4l@+2'a;,+¥a, +. k)-8 + 27 B, +37 B, k7' B,)
g=2,3::.

we can use the above formulae to derive a linear multistep method of given structure

and maximal order.
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Suppose we choose to expand y(t+jh) and y(t+jh) about t+rh; where r need not

necessarily be an integer. We obtain
Ly(e); hl= Doyt + rh) v Dby (e+ rh)+ DAy (4 7h)+ ...+ DRy (t+rh)  (2.4)
If we employ the Taylor expansions

YO+ rh)= y ()4 ey (1) 4 .4 22 p @ (0)y
g=U12...

whete (1) = y(1); and substitute in (2.4), we obtain on equating term by term with (2.2)

¢y =D,
¢, =D, +rD,
¢, =D, +rD, + 5D,

- £
¢, =D, +rD, +...+ 5D,

cp+l = Dp+'l

il
+er+...+r’;mDo :

It follows that c, = ¢; = . .. ¢, = 0 iff Dg= Dy=... D=0

The formulae for the constants D, expressed in terms of «;, }; are
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Dy=a,+a +a,+...a,
D, =-ra,+(1-r)a, +(2-r)a, +...+ (k- r)a,
—(ﬂo"'ﬂt +ﬂ2 +---ﬂk)

D, =Ll-rre, +A-rya, s @-rYia, v k- )y )

—61—,,[(- BT B 2-r) B+ ....+(k—r)"'p,],
- i .

where r = 0 (2.6) reverts to (2.3). A judicious choice for  can sometimes reduce the

labour in deriving linear multistep methods.

In this research work, we wish to derive an optimal 6-step method. Therefore, all the
roots of the first characteristic polynomial p(£) must be on the unit circle. We know that

p(€) is a polynomial of degree 6. Hence, by consistency, it has one real root at +1 and

another real root at -1. The four remaining roots must be complex.

Hence we have
61 i +17 €2= '17 53 = 0‘4 ’ 64 = e-m gs = ¢'4 gﬁ = 3-‘4
Hence

pE) = -1+ - Jo-emt Je—e'® Jo-em' )
= (" -2cos6,¢° +20030,§—-IX§’ ~2cos 8, +1)
= £°% ~2c080,&E +&* ~2c030,&° +4c0s B, cos@,&* —2cos6,&°
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+2c08 0,67 - 4cos B, cosO,E* +2¢080,& ~ £ + 2c080,£ -1
= &%~ (2c0s0, + 2c0s0, )&* +(4cos 0, cos @, +1)E* — (4cosb, cos, +1)=*
+2(cos @, +2cos 8, )E 1

= £° +2(cosb, +cos8, )F* +(4cosb, cos, +l)f‘ (4cos, cos@, +1)E?
+2(cos @, +2cos 8, ¥ -1

Set cos@, = a, cos@, =b

s

plE)=E° —2(a+b)E® +(4ab + 1)E* — (dab + )& +2(a +b)E -1
=>

a; =+, a;=-2a+b), a,=(4ab+1), a,=0,
a,=—(4ab+1), a, =2a+b), a,=-1

We require the method to have order k+2. We now state the order requirement in

terms of the coefficients D, rather than in terms of the C,.

From (2.6) we have the following:

Dy=a,+a,+a,+a;+a,+as+a,
D, =-ra,+(1-nNa, +2-ra,+B-ra,+(4-Na,+(-Na,; +(6-ra;
"(ﬂo’*’ﬁ:"’ﬂz"‘ﬁs"‘ﬂa"‘ﬁs"‘ﬂs)
=tlerta, +A-P2a, + 2= P2a, + B-Nia, + (4-)2a, + (5- e, +(6-r)a,)
~FrB v A=NB+2-NB+B-NP + (4= 1)B, + (5=, +(6-1)B,]
D'—J-[(-r)’a,,+(l Na, +Q2-rN’a, +B-rN’a,+(4-r’a, +(5-r)a; +(6- r)’a,]
S B+ 0-1 B @ B G- B (A= B+ - 1) B+ (6-1 B,
~—[(—r) a,+(1- r* a, +(2- r’ a2+(3 r) a, +(4- ! a, +(5- i a, +(6- r) aé]
~ 3l By + A= B+ @Y B+ B By + (4= 1) B+ (5= 1) By +(6- 1) B, )
D, = t[-ray +(1-’ay+ 2= a, + B=r)a, + (4= ay + G- 1) as+(6- 1’
~ e B+ A= B =) By +B-P) By + (4= 1) B+ (5= 1) By +(6- 1) B, |
D, = 2[-nfa, + -, + 2=, + B-n'ay +(4-Pa, + (- e, +(6-r)ag
-%[(—f)’ﬂo+(1-’)’ﬂ:+(2—')’ﬁz+(3-f)’ﬂ;+(4—f)5ﬂ4+(5—f)5ﬂs+(6—f)5ﬂs]
=il ay +0-a, v -, + G-y + (=) + (S-r) a, +(6-1) a, ]
—iik—")‘ﬁo+(1—f)°ﬁn+(2—f)‘ﬁz+(3-")°ﬁ;+(4—r)‘ﬁ4+(5~r)‘ﬁs+(6~f)°ﬂs]
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D, = é[(—r)“a(, tA=1a, +(2-1)a, +3-r)'a, + (4-r)'a, + (5-r)a, +(6—-r)°a,]
e B - B BB B A= DB 51 B4 (6 1) ]
D, = -g[(—r)gao +(0-r’a,+2-r’a,+3-rV’a,+(4-r’a, +(5-r) a,+(6- r)’aG]
~% [(—r)g Bot (=1 P+ (21" Py +B-1)" Py +(4=1r)" P+ (5-1) By +(6- 1)’ ﬂs]

- Settingr=3and D, =0,9q=2, 3,4, 5, 6 7, 8we have,

- ~
e

-
aje

[
2

o T il G o
[

N
Al

S O
<
|

However, on inserting the values we have obtained for the «; into these equations we

have

‘3/}0 '“2ﬂ| _'Bz i ﬂa + 2ﬂ5 ¥ 3ﬂa =0

2B, +22 B+ P+ P, + 22 P, + 3P, = 228+ dab-16(a+ b)|
B +2 P - P+ P+ 2P +3 =0

3P 42 PP+ P+ 2 P+ 3 B, = 2[244 4 4ab - 64(a+ b)) >
~BB 2P -P,+P,+2°P,+3 P, =0

38,4258+ B, + P+ 2° P, +3° B, = 2[2188 + 4ab — 256(a + b)]
-3B,-2"B,-B,+B,+2° B, +3 B, =0

can satisfy the first, third, fifth and seventh of these equations if we choose

Bo=PuPr=Ps Po=Ps

The remaining three equations give

A4

[3 a,+2'a,+a, +a, +2’a, r3’a6] [-38,-28, -8, + p. +28, +38,]=0

—3’a0—2’a —~a,+a,+2’a,+3 a] 2,[3 ﬂ0+2 ﬂ,+ﬂ2+ﬂ4+2’ﬂ,+3’ﬂ6
Ex a,+2'a, +a,+2'a, +3‘a] ,,[3 By +2° P~ ﬂz+ﬂ‘+2’ﬂ,+3’ﬁ6] 0

-3a,-2’a, -a, ta, +2’a, —4-3‘0:6]— ‘,[3‘[}0 +2' B+ B, + B+ 2 B, +3‘ﬁsj
Béa, +2%a, +a, v a, + 20, + Fa|- 4|3 B, - 2° B, - B, + B +2° B, +3° B)=0
=4 [—3’ao ~2ay~a; va,+ 2 ay + 3’(16]—“3‘[}0 £ 25, + Pyt B+ 2B, +3°B,]
w =yt eyt ay a1 a1 e, A B 2B - Byt B 27 By 437 B=0

(2.7) We
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3°B,+2° B, + B, = 1[28+ dab - 16(a + b)] ' (2.8)

3B, +2' B, + B, = 1[244 + 4ab - 64(a +b)] (2.9)
3B, +2° B, + B, = 1[2188 + dab - 256(a + b)) (2.10)
From (2.8) we have

B, = 4[28+4ab-16((a +b)]- 95, - 45, (2.11)
Substituting (2.11) into (2.9)

818, +163, +1[28+ 4ab—16(a +b)|-98, — 48, = 1[244 + 4ab - 64(a + b))
728, +12p, = 1[244— 4ab - 64(a + b)]- 1[28 + 4ab - 16(a + b))
128, +12p, = [592-8ab -112(a +b)] (2.12)

Substituting (2.11) into (2.10)

7298, + 64, + 1[28+ dab ~16(a +b)]- 9, — 45, = 1[2188 + 4ab — 256(a +b)]
720, + 608, = 1{2188 + 4ab — 256(a + b)) - 1[28 + 4ab - 16(a + b)]
7208, + 60, = (6368 ~16ab — 656(a + b)) (2.13)

From (2.12) and (2.13), solving simultaneously,
72, +128, = 4[592 - 8ab -112(a +b)] X 60
7208, + 60, = (6368 —16ab — 656(a +b )] X12

43208, + 720, = 4[592 - 8ab - 112(a +b)]
86408, + 720 8, = 46368 —16ab — 656(a + b)|

- 4320, = 8% _ 190 g} — 32 (g 4 b)
b— §
By = 55278+ Sab +16(a+b)|= B (2.14)

Substituting (2.14) into (2.12)
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720, +12, = 1[592 - 8ab - 112(a + b))
12, = £[592 - 8ab - 112(a + b)| - +22:[8896 + 160ab + 512(a + b)]
=

p, = L:[160—8ab - 76(a+b)]= B, (2.15)

Substituting (2.14) and (2.15) into (2.11)

B, =428+ 4ab -16(a+b)]- 94, - 45,
B, =428 + 4ab - 16(a + b)) 53558896 + 160ab + 512(a + b))

— 451640 - 32ab - 304(a + b)]

Po = %5162 +167ab —272(a + )] = 3,

Finally, solving D, = 0 gives

~30y - 20, - a, +a, + 2a,+3a, -3, - (B + B + B, +ﬁl+ﬂs+ﬁa)=o
B, ="(ﬂo+ﬂ|+ﬁz + B, + P, +ﬂc)“3ao -20,-a,+a, +2as+3acr
By=-2APy+ B+ By} -3(-1)-22(a+ b))+ (4ab + 1)+ (4ab +1)- 22(a+ b)}+ 3(+1)

:(278 + 5ab + 16(a + b))+ % (160 - 8ab - 76(a + b))
3 2{+ (62 +167ab - 272(a + b)) }+8(1+ el
= f, = (3008 + 5688ab —1328(a + b)) (2.17)

We solve for the error constant, D,
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a f ]
D, = ;!1-[—3°a°—2°n, —a,+a, +2°a, 4 3906]-‘ L YhrZ PPt B+ 2P,
+3° B,
=2[-3a,-2°a,-a,]- 2p* 8, + 2, + 8,]
- z[-3°(-1) 2[a+b] (4ab +1)]- 2[3° {15 (278)+ Sab +16(a+ b )}
3 ——(160 8ab — 76(a+ b))} + {1 (62 + 167ab - 272(a + b))} |

105 IOS

= 2[19684 + 4ab +1024(a + b)]- 2[221%¢ 1 & ab — ’ﬁ(a+b)]

045
— 2| 6016 _ 736 . 8576 :
] as a5 ab 4 a5 (a } b)]

D, = - 546016 + 736ab — 8576{a + b )] 2.18

Since a = cosO) b =cos@ 0< 6,< m,0< ;< m aand b are restricted to the range
-1 <a</]and-1<b <]. Sothereis no allowable value for a and b which will cause D,
to vanish, that is cause the order of the method to cxceed 8; we also observe that there is

no allowable value for a and b which will cause s to vanish, thus making the method

explicit.

Our choice of values for a and 4 is guided by the fact that we like to minimize the error
constant as well as the need to develop a method that makes computation easier by

reducing te number of operations involved.

Although it is possible to get so many schemes out of the method we have developed, by

simply changing the variables a and b, we limit our work to three (3) schemes as follows:

SCHEME 1

The following values are therefore, assigned to the variables:

47



Since this causes two coefficients a, and &, to vanish.

Hence the following values are obtained for the coefTicients ¢,

ag =+l Bo =55 = Py
as =-7% B == P,
a, =0 p :i‘T‘é‘t')- VM
a,=0 B, =33
a,=0

@ =%

a,=-1

Substituting the values of a and b into (2.18), the Error constant is: -0.002489711924

And finally, we have the scheme:
ln%% 6 JIS 5= |260 O‘ 2033 3
yn 6_%yn+5+%ynl—yn:’{ : " !" '"] (219)
! ! |zso fmz + %‘2_51 n+l + 11340

SCHEME 2
Similarly, we generate another set of values for @ and b in order to get a second scheme.

The following values are, thercfore assigned to the variables:

a=%
b=-%

This causes two coefficients @ and «; to vanish. Hence the following values are obtained

for the coefficients e, /3 .
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ag=+1 a, =%, f,=Bu_p

60480
a; =0 a, =0 P =1%= P
a, =" a, =-1 P, =3 =P
a,=0 B, =3

When the values of a and b are substituted into (2.18) , we obtain the Error constant as: -
0.006010251323

And we have a second scheme:

33 13 7 _h‘J’“’Z’ '"‘+%% Mi_%% n+4‘%§% N3
y’l“ = /{Gyn+4 + /Gylﬂ'z - }'n - .!_.l “’ (2'20)
448 J n+2 + 3% fml + somof

SCHEME 3

In the same way, we obtain a third scheme by assigning the following values to a and 4.
a=4%

b=-4%

This causes four coefficients @, @, a, and @5 to vanish. Thus we have the following

values for the coefficients a;, f4

ag=+1 Bo = 55 = Bs
a, =0 P = sos =P
a, =0 B, =35= P,
a,=0 p, =8

=0
a, =0
a,=-1
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Substituting the values of a and 4 into (2.18), the Frror constant is: -0.006428571429

Hence our third scheme is as follows:

yms —yn * h[ﬁ%j;us + fg‘j:us + Tzc%fml +§fn+3 * f?sfmz + *gfml +'l¥6f;v] (221)

3.2 TEST FOR CONVERGENCE
SCHEME 1 (a=3/4,b=-1/3)
To prove that scheme 1, given by (2.19) converges, it is sufficient for us to show that it is

consistent as well as zero-satble.

CONSISTENCY

From (2.19), the first characteristic polynomial p(E) is given by ‘-

plE)= jZ:a F (2.22)
p(&)= jZf:ofa,éf"
p(1)=z°;a,=1—-%+%-1=o (2.23)
P(1)- gfa, - 6(1)- 5(2)+ 1(%)- 0(0)

= 8 = 2.666666667 (2.24)

The second characteristic polynomial oy¢) is given by
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ol¢)= 38,8’ (2.29)

oft) = zp

301 391 1117 38 1117 391 3400
T 1130 315 1260 2835 1260 315 11340
=2.666666667 (2.26)

From (2.23), (2.24) and (2.26) we have

@) plt)=0 }
(i) p'(1)=o(1)

Hence the scheme (2.19) (a = 3/4, b = -1/3) is consistent.

(2.27)

ZERO-STABILITY
PE)=E - %E +%E 1 (228) |
Eqn (2.28) tepresents the first characteristic polynomial of scheme 1 (2.19). We are

expected to show that no root of (2.28) has modulus greater than 1 and that every root
with modutus 1 is simple, to establish zero-stability.

Already we know that (2.28) has two real roots at +1 and -1, i.e., (% -1). To obtait the
remaining four complex roots we carry out long division to obtain
EY %L LT -%E+1=0

we divide through by £ to have
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£ -%E+1-%*11 k=0

62 +?l._%(§+%)+l= 0 (229)
let y=£+} (2.30)
Sfrom (2.30)

yi=£2 +34+42

(b2-2)=¢+ pt (2.31)

substituting (231) it o (2.29)

Y -2-%yir1=0
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T=¥y-1=0
=

/im ’/iJ“_’_e

_%t'%

SRIONE
=
y= (2.32)
Foee ;g (2.33)

substituting(2.32) into (2.30)

S+i=%

WU 42=3¢

2UP-3£42=0

—

3+9-16 3+/-7

Ty =8

—

_3+47 _3-41
= 2 i or g..__4___

substituting (2.33) into (2.30)

$+i=-%
¥*43=-%
3842£43=0
=y
b=

=

-2+/4-36  -2+4-32
6 a 6

g:’“:‘ﬁ: a ¢=-1—32J§,
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Therefore, the six roots of p (&) are,

& =+1
&H=-1

‘,,,___3+1/‘7[

& = 3-41 i » (2.34)

Next, we show that |[£,|<1, i=3, 4, 5, 6. It is obvious that K=k =4 2

e o ) ()]
f(%Jr%)x i (g‘)% = (1 1 (2.35)

from (2.35) it follows that = 3—ﬁi'=l

4
: _1+242 1 22 1y (253)]
If— : ’I : ?*T‘l . (*3—) (T]]
B %
- %+§] : (g) S @) =1 (2.36)
Similarly, from (2.36)
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=

-1-242
k‘l-__ 3 J_i = 1

Thus &, i=1, 2, 3, 4, 5, 6 satisfy the zero-stability condition.

Hence we conclude that scheme 1 (a = 3/4, b = -1/3) is convergent.
SCHEME 2 (a="7/8, b= -7/8)
CONSISTENCY

From (2.20), the first characteristic polynomial p(§) is given

pE)=Ta e (237)
J=0
=& -8t ur | (2.38)
=
pl)=1-2+8-1=0 (2.39)
And

pe)= 3"
=65 3843
= .

p()=6-2+2 1B 1875  (2.40)

The second characteristic polynomial oy4) is given by
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ofé)- gﬂ,a

Bk TARETHRE IR TR TR - TR
o(1)=1.875 (2.41)

And from (2.39), (2.40) and (2.41) we observe that

(@) p1) = 0
() p1) = o(1)

Hence scheme 2 (a = 7/8, b = -7/8) is consistent.

ZERO-STABILITY
We look for the roots of pr¢) ,

plE)=¢° -8+ B2

We know that p(¢) has two real roots, £ = +1 and & = -1, which implies that (£-1) is a
factot. We carry out long division and obtain,
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4_!1 2 =
§-28t41=0
Dividing through by &’

Substituting (2.44) into (2.42)

48T +4=0

=

g - ZEDEJETY - 44K
24)

7i«/1—5',
8

7+ 415
2 i

bt

=

G =

Similarly, substituting y = -7/4 into (2.43)

A 474+ 4=0
This gives

—T+ 15
&y = 8

i
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Therefore, the six roots of p(¢) (2.38) are

& =+1
& =-1
&= 7+8Ji_§
kg 7’;/Ei (249
‘fs = _7-;‘/{5’
~1-\15

i

i

fs =
And lastly, we show that |£|< 1, i=3,....6

T+ 415 . 7 15
e - )

= Zi-}.E == _4_9.+.!_5_
Js 82 V64 64
64
;_‘ﬂa) 3

In view of the symmetry of the roots, it implies |£| < 1, i=3,...,6. Thereby

establishing zero-stability.

And Hence, scheme 2(a = 7/8, b = -7/8) is convergent.
SCHEME 3 (a= 172, b=-1/2)

CONSISTENCY
From (2.1) above, the first characteristic polynomial is given as
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AE)=3a e (2.46)

=0

=1
pl1)=1-1=0 (2.47)
ple)= ]Z_}‘ofa,f’

=6¢°
p(1)=6(1)=6 (2.48)

The second characteristic polynomial o) is,

o(€)=3p,¢

J=0
4 162, 27 .. 68, 27 .,
“1a0° T10s° "1a0® t35° Y1a0° 1o
AL 162 27 68 27 162 41
140 105 140 '35 140 105 140
=6 (2.49)

162, 41 b
¢+ a0

from (2.47) (2.48), and (2.49) we observe the following

(@) pl1)=0
() p'(1)=o(1)

We therefore conclude that scheme 3 (a = 1/2, b = -1/2) is consistent.

ZERO-STABILITY
We find the roots of p(£)

plE)=¢5-1=0
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And we have the following real roots

§l=+17 §2=—1
=>

€-1) is a factor o ple)
The other factor of o) is : E*+E24+1. To find the other roots, we put
E 482 +1=0
Dividing through by &£°
¢’+§i2+1=o (2.50)
let y= ¢+é (2.51)
=
y’ = cf’ + -!—-4- 2
gz
yi-2=gts L (252)

substituting (2.52) int o (2.50)




¢ +1=¢
EP-£+1=0 .
52-(-1)i,/(—1)’-4
2
1+4/-3
2

1+43

= —]

2

=>

€’=1+J§

2

2

i

&

54-'-' i

Substituting y = -1 into (2.51)
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1

—-= -1
¢+:
£ 41=¢
E1+E4+1=0
~1+J-4
&=
2
_-1:43,
2
fs=-1;‘/§i
¢c=—l;‘/§i
Thus the six roots of p(£) are
{,:-H
& =-1
§3=l+2ﬁ'
-
&= 2 i
§5=-1;J§i
s = I;Jii

Lastly, we show that ||<1,i=3,4,5,6.

e 2 [ e
=) = 1
=R = K] = Il

This implies that the scheme is zero-stable. Therefore, the scheme (a = 1/2 , b = -1/2) i
"
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3.3 TEST FOR ABSOLUTE STABILITY

The linear multistep methods we have developed are optimal methods (i.e. of order k+2.
In this case, order 8). And as with all optimal methods they have no interval of absohute
stability (Lambert, 1973).
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CHAPTER FOUR
APPLICATION AND COMPARISON OF RESULTS

4.1 APPLICATIONS

We use the 3 schemes to solve various differential equations. To start with, we solve the
following differential equation

yo=xty; w0)=1, h=0.1 (4.1)
STARTING VALUES
As with all k-step methods(k>1) we face the problem of generating additional starting
values. Also, we demand that these starting values should be calculated to an accuracy
at least as high as the local accuracy of the main method. This means that any method we

use to calculate the starting values must itself require no starting values other than yo

In this work, we decide to use the Fourth Order Runge-Kutta method to evaluate the
starting values y, , n=0, 1, 2,...,5, since the Runge-Kutta methods constitute the most

efficient method for generating starting values for linear multistep methods.

The Fourth order Runge-Kutta method is given below:
Vout = Yo + Mk, + 2k, + 2k, + k,)
ki = f(xn’ .vn)
ky = f(x,+ %h,y, + Y hk,) (42)
k, = f(x,+%h y, + Y hk,)
k,=f(x,+hy,+hk,)

To use the above for generating y, y; .. . ., ys for problem (4.1) we have
=0
Xo=0
Yo-1
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k= f(x0,30)=1(0,)=0+1
ky=f(xo+ Vil yo + Vihk)) = £(0+0.5%0.1,1+0.5%0.1*1)
= £(0.05,1.05) = 0.05 +1.05
1.1
k3= f(x,+ %h vo+ k)= f(0+0.5%0.1,1+0.5*0.1*1.1)
= £(0.05,1.055) = 0.05 +1.055
=1.105
k= f(x,+h y,+ hk) = £(0+0.1,1+0.1*1.105)
= £(0.1,1.1105) = 0.1+ 1.1105
=1.2105

substituting v, i, k;

P = Yo + (L4 2(1.1) + 2(1.105) + 1.2105)
=1404£(6.6205) = 1+ 0.110341667
¥ =1.110341667

ky into (4.2) gives

n=1
S A =0.1
» =1.110341667
Y1 =0+ %k + 2k, + 2k, + ky) (4.3)
k= f(x, »)=7(0.1,1.110341667) = 0.1 + 1.110341667
=1.210341667

ky = f(x,+ Y% b,y + Y k)
= £(0.1+0.5%0.1,1.110341667 + 0.5%0.1*1.210341667)
= £(0.15,1.17085875) = 0.15 + 1.17085875
=1.32085875

ky = [+ % b,y + Y hky)
= £(0.1+0.5%0.1,1.110341667 + 0.5*0.1*1.32085875)
= £(0.15,1.176384605)
=1.326384605

ky = f(x, + h, y, + hky)
= £(0.14+0.1,1.110341667 + 0.1*1.326384605)
= £(0.2,1.242980128) = 0.2 +1.242980128
=1.442980158

On substituting ), b, k.. .., ks into (4.3)
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¥y =1.110341667 + 0(1.210341667 + 2(1.32085875) + 2(1.326384605) + 1.442980128)
=1.110341667 + 0.13246475
y; =1.242805142

h=2

% =02

v, =1.242805142

Y3 =93+ + 2k + 2k, + k) (4.4)

k= f(x3, y,)= £(0.2,1.242805142) = 0.2 +1.242805142
=1.442805142

ky=f(x,+Yh y, + Yhk))
= £(0.2+0.5%0.1,1.242805142 1 0.5*0.1%1.442805142)
= £(0.25,1.314945399) '
= 0.25+1.314945399
= 1.564945399
by = f(xy + Y% by yy + Y hky)
= £(0.2+0.5%0.1,1.242805142 4+ 0.5*0.1*1.564945399)
= £(0.25,1.321052412)
=0.25+1.321052412
=1.571052412
ky= f(xy+ by, + hky)
= (0.2 +0.1,1.242805142 + 0.1*1.571052412)
-~ £(0.3,1.399910383)
=1.699910383

And (4.4) becomes

$, = 1.242805142 +°(1.442805142 + 2(1.564945399) + 2(1.571052412 ) + 1.699910383)
=1.242805142 4 0.156911852

¥, =1.399716994

h=3

=03

¥, =1.399716994

Vi =3+ %y + 2k, + 2k, + k) (4.5)




k= 1 (x,, y,) = £(0.3,1.399716994)

=1.699716994
ky=f(xs+ Y h y,+ Y, hk,)
= £(0.3+0.5%0.1,1.399716994 + 0.5*0.1*1.699716994)
= f(0.35,1.484702844)
=0.35+1.484702844
=1.834702844
k= f(x,+ % h y, + Y% hk,)
= £(0.3+0.5%0.1,1.399716994 + 0.5 *0.1*1.834702844)
= £(0.35,1.491452136)
=0.35+1.491452136
=1.841452136
ky = [y v hy oy, v k)
= £(0.3+0.1,1.399716994 + 0.1*1.841452136)
= £(0.4,1.583862208)
= 0.4 +1.583862208
=1.983862208

Therefore (4.5) becomes
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¥y, =1.399716994 + 0.183931486
v, =1.583648480
n=4
x, =04
v, =1.583648480
Vs =Y+ %k, +2k, + 2k, + k,) (4.6)
k= f(x,, y,)
= £(0.4,1.583648480)
=0.4+1.583648480
=1.98364848
ky=f(x,+%h oy, + Y hk,)
= £(0.4+0.5%0.1,1.583648480 + 0.5*0.1*1.98364848)
= £(0.45,1.682830904)
=0.45+1.652830904
- =2.132830904
ky=f(x,+%h y, + ) hk,)

= £(0.4+0.5%0.1,1.583648480 + 0.5*0.1* 2. 132830904)
= £(0.45,1.690290025)
= 0.45 +1.690290025
= 2.140290025
ky=f(xq+h o+ hky)
= 7(0.4+0.1,1.583648480 1 0.1*2.140290025)
= £(0.5,1.797677483)
=0.5+1.797677483
=2.297677483

And (4.6) becomes

—~1.583648480 + ©1/(1.98364848 + 2(1. 32830904) +2(2.140290025) + 20297677483
= 1.583648480 + 0.213792797
v, =1.797441277
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THE PREDICTOR
We choose as our predictor, the fourth order Adams-Bashforth method:
yn-M = yn+1 + %4(55fn+3 . 59fn#2 + 37fn+l =5 9fn)
in order to solve the given problem (3 ' =x+y )
when n =2
5 =¥, + .55/, -591, +311,-9/,)
= £(0.2,1.242805142)

= 0.2 +1.242805142
=1.442805142

fi= f(xs, ¥3)
= £(0.3,1.399716994)
=0.3+1.399716994
=1.699716994

f4 = f(x4, V)
= £(0.4,1.583648480)
=0.4 +1.583648480
=1.98364848

I[s= f(xs, ys)
= £(0.5,1.797441277)
=0.5+1.797441277
=2.297441277

P =1.797441277 4 °%,[55(2.297441277) - 59(1.98364848) + 37(1.699716994) — 9(1.442805142)]
=1.797441277 + 0.246784551

y? = 2044225829

CORRECTORS

6-step implicit linear multistep method contains two free parameters(a and b). We
produced three(3) schemes by assigning values to these parameters. We now solve
given problem by each of these schemes and compare their accuracies thus:
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SCHEME 1 (a=3/4, b=-1/3)
yﬂ+6 /yms /yn+l +yn +h 1340 ms +%}fms —%LM +%fm$ _*%j;ui +§§f;m +]%fn'

Whenn=10

Vo= Hys =% vy A WSS RS - WSS - B S+ B+ 3881,
values for ys, y;, and y, are known from the calculated starting values. So also, £, . . .,
5

fo = f(xm yo)
= f(0,1)
=0+1
=]

Si = Fx, )
= £(0.1,1.110341667)
=0.1+1.110341667
=1.210341667

Jo = [(xs, ¥8) .
= £(0.6, 2.044225829)
= 0.6 + 2.044225829
= 2.644225829
= %(1.797441277) - %(1.110341667) + 1+ 0. l{n’% (2.644225829) + m (2.297441277)

-iug 9836484s)+ 3848 (1.699716994) - 1111 (1.442805142) + 21(1.210341667) + 2L (1)}

=1.572583008 + 0.471653178
yE =2.044236187

SCHEME 2 (a=7/8, b=-7/8)

e 17 o4 _ 281 _ -
Vo =WV mia — M Ynia ¥ Vo h 50180 n+6 T 380 S mes ~ dag S nad %%fru) g%fmz 280 net T 604 f }

Whenn =0
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== Jysya "!yeyz * Y +hﬁlm’%lofcp +ﬁ1f5 ..%!lf‘—l!if’ “%ﬁfz +%ﬁj; lo'loaao:"ofo}
= 3 (1.583648480) — 1, (1.242805142) + 1+ 0.1{U%2 (2.644225829) + 48 (2.297441277)

— 281(1.98364848) - 132 (1.699716994) - 281 (1.442805142) + 42 (1.210341667) + 124 (1))}

=1.702989385 + 0.341246651
y¢ = 2.044236036

SCHEME 3 (a=1/2, b=-1/2)

Vs =Vt M 10 18 L B s~ B Syt B S+ 8 S+ 351,
Whenn =10

IR BT AR YA S YRy

b =140.1 T5(2.644225829 ) + 12 (2.297441277 ) + £5(1.98364848 ) + £ (1.699716994 )
e +Z5(1.442805142 ) + 1 (1.210341667 ) + 45 (1)

=1+1.044236889
y¢ =2.044236889

4.2 COMPARISON OF RESULTS

In the same way we solve the following problems, using the three schetnes. Their
results are obtained and compared for accuracy in the following pages. The problems
are implemented on computer using Microsoft Excel software package.

1. y=x+y; »0)=1 h=0.1

2 Y=L HKO=L k=01

3. y=4n%, »O)=1 h=01

4. y =3x-6x+5; y0)=1, h=0.1

5. y=x"+2x"+3x", p0)=1, h=0.1
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PROBLEM: F=X+Y; Y(0y=1; h=0.1

EXACT SOLUTION: Y(X}=2"EXP(X}-X-1

X Y{X)
a=3i4, b=113 a=7/8, b=-7/8 a=1/2, b=A/2
EXACT Y(X) ERROR Y(X) ERROR Y(X) ERROR

0.0 | 1.0000000000 | 1.0000000000 | 0.0000000000E+00 | 1.0000000C00 | 0.0000000000E+00 | 1.0000000000 | 0.000000C000E+00
0.1 1.1103418362 | 1.1103416667 | 1.6948462878E-07 | 1.1103416667 | 1.6948462878E-07 | 1.1103416667 | 1.6948462878E-07
0.2 | 1.2428055163 | 1.2428051417 | 3.7461895075E-07 | 1.2428051417 | 3.7461895075E-07 | 1.2428051417 | 3.7461885075E-07
0.3| 1.3997176152 | 1.3997169941 | 6.2102693121E-07 | 1.3997169941 | 6.2102693121E-07 | 1.3997169941 | 8.2102693121E-07
0.4 | 1.5836463953 | 15836484802 | 9.1512116951E-07 | 1.5836484802 | 9.1512116951E-07 | 1.5836484802 | 9.1512116951E-07
0.5| 1.7974425414 | 1.7974412772 | 1.2642085803E-06 | 1.7974412772 | 1.2642065803E-06 | 1.7974412772 | 1.2642085803E-06
0.8 | 20442376008 | 20442361876 | 1.4132161703E-06 | 20442360367 | 1.5640398451E-06 | 2.0442368893 | 7.1145714031E-07
0.7 | 23275054149 | 23275025204 | 2.8945628872E-06 | 23275017844 | 3.6305474218E-08 | 23275027970 | 2.6179097690E-06 |
0.8 | 26510818570 | 26510783589 | 3.4080860688E-06 | 2.6510783329 | 3.5240506189E-06 | 2.6510785480 | 3.3079843345E-06 |
0.9| 3.0192062223 | 3.0152004614 | 5.7608878645E-06 | 3.0191990040 | 7.2183356430E-06 | 3.0191999381 | 6.2842580402E-06
1.0| 3.4365636560 | 3.4365566462 | 7.0107547572E-06 | 3.4365575986 | 5.0583367980E-06 | 3.4365562683 | 7.3885805181E-06 |
11| 3.9083320479 | 3.0083216889 | 1.0358962205E-05 | 3.0083199622 | 1.2055702603E-05 | 3.9083210361 | 1.1011780565E-05 |
12| 4.4402338455 | 4.4402212279 | 1.2617575122E-05 | 4.4402236468 | 1.0198845668E-05 | 4.4402219958 | 1.1849689056E-05
13| 50385933352 | 5.0385763860 & 1.6949279956E-05 | 5.0385745510 | 1.8784218881E05 | 5.0385768406 | 1.8494681973E-05
14| 57103999337 | 5.7103801780 | 1.9755707239E-05 | 5.7103833676 | 1.6566062193E-05 | 5.7103811441 | 1.8789605289E-05
15| 6.4633781407 | 6.4633529500 | 2.5189778107E-05 | 6.4633497956 | 2.8345026974E-05 | 6.4633527945 | 2.5346198219E-05
1.6 | 7.3080648488 | 7.3060359464 | 2.8902397775E-05 | 7.3080396496 | 2.5199228915E-05 | 7.3060362346 | 2.8614217014E-05
1.7 | 8.2478947835 | 8.2478589594 | 3.5824020866E-05 | 8.2478531024 | 4.1681091048E-05 | 8.2478579347 | 3.6848744299E-05 |
1.8 | 9.2002049288 | 9.2992538541 | 4.1274708437E-05 | 9.2992589103 | 3.6018491270E-05 | 9.2992543020 | 4.0626866555E-05
1.9 | 10.4717888846 | 10.4717380840 | 5.0800516968E-05 | 10.4717292061 | 5.9678501844E-05 | 10.4717377097 | 5.1174813139E-05
20| 11.7781121979 | 11.7780537315 | 5.8466353456E-05 | 11.7780627858 | 4.9412037782E-05 | 11.7780548023 | 5.7395610558E-05
21| 13.2323398251 | 13.2322688648 | 7.0960547497E-05 | 13.2322562777 | 8.3547452116E-05 | 13.2322682828 | 7.1542355320E-05
22 | 14.8500269089 | 14.8499456795 | 8.1319408944E-05 | 14.8499606151 | 6.6383748036E-05 | 14.8498470060 | 7.9992830319E-05
23 | 16.6483649006 | 16.6482678243 | 9.7085343281E-05 | 16.6482495600 | 1.1534875772E-04 | 16.6482669767 | 9.7932908339E-05
2.4 | 18.6463527613 | 18.6462423132 | 1.1044809521E-04 | 18.6462645674 | 8.8193876170E-05 | 18.6462441964 | 1.0856490735E-04
25 | 20.8649879214 | 20.8848572068 | 1.3071457665E-04 | 20.8648206964 | 1.5822501940E-04 | 20.8648564410 | 1.3148036366E-04




2.6 | 23.3274760700 | 23.3273275598 | 1.4851010909E-04 | 23.3273601907 | 1.1587931595E-04 | 23.3273293895 | 1.4668045978E-04

2.7 | 26.0594834497 | 26.0592887044 | 1.7474534302E-04 | 26.0592471700 | 2.1627975152E-04 | 26.0592868419 | 1.76607846866E-04
2.8 | 29.0882935422 | 29.0890948527 | 1.9868948952E-04 | 29.0891434872 | 1.5004498071E-04 | 29.08909687908 | 1.9675134766E-04
2.9 | 32.4482907389 | 32.4480579595 | 2.3277937285E-04 | 32.4479962035 | 2.9453539831E-04 | 32.4480559810 | 2.3475790909E-04
3.0 | 36.1710738464 | 36.1708097603 | 2.6408608579E-04 | 36.1708828835 | 1.9096282971E-04 | 36.1708132391 | 2.6060725960E-04




TABLE 4.2

PROBLEM: F=(1+Y){2+X); Y(Op=t; h=0.1
EXACT SOLUTION: Y(X}=2+X-1

X

a=3M, b=-1/3

a=1/2, b=-1/2

EXACT

Y(X)

| ERROR

Y(X)

ERROR

0.0

1.0000000000

1.0000000000

0.0000000000E+00

1.0000000000

0.0000C00000E+00

0.1

1.1000000000

1.1000000000

0.0000000000E+00

1.100C0000C00

0.0000000000E+00

0.2

1.2000000000

1.200000000C

0.000000000CE+00

1.2000000000

0.00C0000000E+00

0.3

1.3000000000

1.3000000000

0.0000000000E+00

0.0000000000E+00

1.3000000000

0.0000000000E+00

0.4

1.4000000000

1.40000000C0

| 0.000000C000E+CO

0.000000C000E+00

1.4000000000

0.0000000000E+00

0.5

1.5000000000

1.5000000000

| 0.000000C000E+00

0.0000000000E+00

1.5000000000

0.0000C00000E+00

0.6

1.6000000000

1.6000000000

| 0.0000000000E+00

0.0000000000E+0Q

1.6000000000

0.000000C000E+00 l

0.7

1.7000000000

1.7000000000

| 0.0000000000E+C0

0.000000000CE+0Q

1.7000000000

0.0000000000E+00 |

0.8

1.8000000000

| 0.0000000000E+0Q

0.0000000000E+00

1.8000000C000

0.0000000000E+00

| 0.9

1.8000000000

| 0.0000000000E+00

0.0000C00000E+00

1.80000000C0

0.00000000C0E+00

1.0

2.0000000000

| 0.CO00000000E+00

0.0000000000E+0Q

2.0000C0C000

0.0000C00000E+0Q

+.3

2.1000000000

| 0.0000000C00E+C0

0.0000000000E+00 | 21000000000

0.0000000000E+00 |

2.2000000000

| 0.00000000C0E+00

0.0000000000E+00

2.2000000000

0.0000000000E+00

1 1.3

2.3000000C00

| 0.0000000000E+0Q |

0.0000000000E+00

2.3000000000

0.000000C000E+0Q

1.4

2.4000000000

| 0.0000000C00E+00

0.00000000C0E+00

2.4000000000

0.0000000000E+00

1.5

2.5000000000

0.0000000000E+00

0.00000000C0E+00

2.5000000000

0.00000000C0E+00

1.6

2.6000000000

0.0000000000E+00

0.0000000000E+00

2.6000000000

0.0000000000E+00

1.7

2.7000000000

0.000C000000E+00

0.0000000000E+00

2.7000000000

0.0000000000E+00

1.8

0.0000000000E+C0

0.0000000000E+00

2.8000000000

0.0000000000E+00

1.8

0.0000000000E+00

0.0000000000E+0C

2.9000000000

0.0000000000E+00

20

0.0000000000E+00

0.00000000C0E+00

3.0000000000

0.0000000000E+00

21

0.0000000000E+00

0.00000000C0E+0Q

3.1000000000

0.0000000000E+00

22

0.0000000C00E+00

0.0000000000E+00

3.2000000000

0.0000000000E+00

23

0.0000000000E+00

0.0000C000C0E+0Q

3.3000000000

0.0000000000E+00

2.4

0.0000000000E+00

0.0000000000E+00

3.4000000000

0.0000000000E+00

25

0.0000000000E+00

0.0000000000E+00

3.5000000000

0.0000000000E+00

74




26

3.6000000000

0.0000000C00E+00

0.00000000C0E+00

0.0000000000E+00

3

3.7000000000

0.0000000000E+00

3.7000000000

0.0000000000E+00

0.0000000000E+00

2.8

3.8000000000

0.0000000C00E+00

3.8000000000

0.0000000000E+0C

0.0000000C00E+00

29

3.8000000000

0.000000000CE+00

0.0000000000E+00

0.0000000000E+00

3.0

0.0000000000E+00

4.0000000000

0.0000000000E+00

0.0000000000E+00

75




TABLE 43

PROBLEM: F=4XY'?; Y(O=1; h=0.1
EXACT SOLUTION: Y(X)}=(1+X*)

% Y(X)
a=3i4, b=A13 a=7/8, b=-718 a=1/2, b=A12
EXACT Y(X) ERROR Y(X) ERROR Y(X) ERROR
0.0| 1.0000000000 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00
01| 1.0201000000 | 1.0200999163 | 8.3740235413E-08 | 1.0200999163 | 8.3740235413E-08 | 1.0200099163 | 8.3740235413E-08
02| 1.0816000000 | 1.0815996645 | 3.3550094458E-07 | 1.0815096645 | 3.3550094458E-07 | 1.0815006645 | 3.3550004458E-07
0.3| 1.1881000000 | 1.1880992364 | 7.6362208823E-07 | 1.1880992364 | 7.6362208823E-07 | 1.1880992364 | 7.6362208823E-07
0.4 | 1.3456000000 | 1.3455986013 | 1.3986813359E-06 | 1.3455986013 | 1.3986813359E-06 | 1.3455986013 | 1.3986813359E-06
0.5| 15625000000 | 1.5624976976 | 2.3024470428E-06 | 1.5624976976 | 2.3024470428E-06 | 1.5624976976 | 2.3024470428E-06
0.6 | 1.8496000000 | 1.8495978929  2.1071298080E-06 | 1.8495075424 | 2.45706180864E-06 | 1.8495995447 | 4.5533008630E-07 |
0.7| 22201000000 | 2.2200981516 | 1.8483568627E-06 | 2.2200964953 | 3.5046751483E-06 | 2.2200993118 | 6.8822349020E-07 |
0.8| 26896000000 | 2.6885984215 | 1.5784759917E-06 | 2.6885972208 | 2.7791784922E-06 | 2.6895691149 | 8.8509088902E-07
0.9| 3.2761000000 | 3.2760986987 | 1.3012728237E-06 | 3.2760963052 | 3.6947909670E-06 | 3.2760984239 | 1.5761347201E-06
10| 40000000000 | 3.9999990162 | 9.8383706826E-07 | 3.9999975811 | 2.4188371315E-06 | 3.9999979918 | 2.0081629217E-06
11| 48841000000 | 4.8840981581 | 1.8418632008E-08 | 4.8840967202 | 3.2797895031E-06 | 4.8840967455 | 3.2544755930E-06
12| 59538000000 | 5.9535974469 | 2.5530844727E-06 | 5.9535080322 | 1.9677553009E-06 | 5.0535087717 | 1.2282875765E-06
13| 7.2361000000 | 7.2360967391 | 3.2608515799E-08 | 7.2380965878 | 3.4022265156E-06 | 7.2360981558 | 1.8442473371E-06
14| 876168000000 | 8.7615962507 | 3.7492648612E-06 | 8.7615978500 | 2.1500092213E-06 | 8.7615982078 | 1.7921617435E-06
15| 105625000000 | 10.5624956727 | 4.3272978019E-08 | 10.5624951201 | 4.8799002830E-06 | 10.5624969526 | 3.0473593657E-06
16| 12.67368000000 | 12.6735962988 | 3.7012086089E-08 | 12.6735968589 | 3.1411350534E-06 | 12.6735969586 | 3.0414207082E-06
17| 15.1321000000 | 15.1320963823 | 3.6176896288E-08 | 15.1320925581 | 7.4419399390E-06 | 15.1320950636 | 4.9364353139E-06
1.8 | 17.9776000000 | 17.9775963939 | 3.8061437712E-08 | 17.9775956647 | 4.3352589891E-06 | 17.9775975260 | 2.4740253792E-06
1.9| 21.2521000000 | 21.2520958930 | 4.1069518950E-08 | 21.2520899631 | 1.0036875629E-05 | 21.2520962936 | 3.7064239535E-06
20| 250000000000 | 24.9999955725 | 4.4274541793E-06 | 24.9999651624 | 4.8376380164E-06 | 24.9999968078 | 3.1922454156E-06
21| 292681000000 | 29.2680939912 | 6.0088282900E-06 | 29.2680881025 | 1.1897538226E-05 | 29.2680947794 | 5.2205605847E-08
22| 341056000000 | 34.1055933300 | 6.6700044954E-08 | 34.1055957348 | 4.2652129011E-06 | 34.1055854115 | 4.5885001470E-08
23| 39.5641000000 | 39.5640926544 | 7.3455959537E-08 | 39.5640866823 | 1.3317726157E-05 | 39.5640926835 | 7.3165207866E-06
2.4| 456976000000 | 45.6975926406 | 7.3584409287E-06 | 45.6975969072 | 3.0928104309E-086 | 45.6975957723 | 4.2277215755E-06
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2.5 | 525625000000 | 52.5624821577 | 7.8423257932E-08 | 52.5624845958 | 1.5404220747E-05 | 52.5624937303 | 6.2697053380E-06
2.6 | 60.2176000000 | 60.2175928744 | 7.1256417371E-068 | 60.2175978211 | 2.1788532223E-06 | 60.2175948951 | 5.1048865330E-08
2.7 | 68.7241000000 | 68.7240922089 | 7.7911376621E-06 | 68.7240808352 | 1.9064828791E-0S | 68.7240919232 | 8.076762696SE-06
2.8 | 78.1456000000 | 78.1455916661 | 8.3339246970E-06 | 78.1455881052 | 1.8947844893E-06 | 78.1455933373 | 6.6627318063E-06
2.9 | 88.5481000000 | 88.5480903074 | 9.6926423794E-06 | 88.5480757926 | 2.4207356077E-0S | 88.5480896261 | 1.0373880329E-05
3.0 | 100.0000000000 | 99.9999897082 | 1.0291754307E-05S | 99.9999983084 | 1.6915813177E-06 | 99.9999934915 | 6.5085275764E-06 |




TABLE 4.4

PROBLEM: F=aX’6X+5; Y{0)=1 ; h=0.1

EXACT SOLUTION: Y{X)=X>-3X*+5X+1

x Y(X)
a=3/4, b=-1/3 a=7/8, b=-7/8 a=1/2, b=1/2
EXACT Y(X) ERROR Y(X) ERROR Y(X) ERROR

0.0 | 1.0000000000 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00
0.1 | 1.4710000000 | 1.4710000000 | 0.0000000000E+00 | 1.4710000000 | 0.0000000000E+00 | 1.4710000000 | 0.0000000000E+00
0.2 | 1.8880000000 | 1.8880000000 | 0.0000000000E+00 | 1.8880000000 | 0.000000000CE+00 | 1.8880000000 | 0.0000000000E+00
0.3 | 2.2570000000 | 2.2570000000 | 0.0000000000E+00 | 2.2570000000 | 0.0000000000E+00 | 2.2570000000 | 0.0000000000E+00
0.4 | 2.5840000000 | 2.5840000000 | 0.0000000000E+00 | 2.5840000000 | 0.0000000000E+00 | 2.5840000000 | 0.0000000000E+00
0.5 | 2.8750000000 | 28750000000 | 0.0000000000E+00 | 2.8750000000 | 0.0000000000E+00 | 2.8750000000 | 0.0000000000E+00
0.6 | 3.1360000000 | 3.1360000000 | 0.0000000000E+00 | 3.1360000000 | 0.0000000000E+00 | 3.1360000000 | 0.0000000000E+00
0.7 | 3.3730000000 | 3.3730000000 | 0.0000000000E+00 | 3.3730000000 | 0.0000000000E+00 | 3.3730000000 | 0.0000000000E+00
0.8 | 3.5820000000 | 3.5820000000 | 0.0000000000E+00 | 3.5920000000 | 0.0000000000E+00 | 3.5820000000 | 0.0000000000E+00
0.9| 3.7980000000 | 3.7990000000 | 0.0000000000E+00 | 3.7980000000 | 0.00C0000000E+00 | 3.7990000000 | 0.00000000C0E+00
1.0| 4.0000000000 | 4.0000000000 | 0.0000000000E+00 | 4.0000000000 | 0.0000000000E+00 |  4.0000000000 | 0.0000000000E+00
11| 4.2010000000 | 4.2010000000 | 0.0000000000E+00 | 4.2010000000 | 0.0000000000E+00 | 4.2010000000 | 0.0000000000E+00
12| 4.4080000000 | 4.4080000000 | 0.0000000000E+00 | 4.4080000000 | 0.0000000000E+00 | 4.4080000000 | 0.0000000000E+00
1.3 | 4.6270000000 | 4.6270000000 | 0.0000000000E+00 | 4.6270000000 | 0.000000000CE+00 | 4.6270000000 | 0.0000000000E+00
1.4 | 4.8640000000 | 4.8640000000 | 0.0000000000E+00 | 4.8640000000 | 0.0000000000E+00 | 4.8640000000 | 0.0000000000E+00
15| 5.1250000000 | 5.1250000000 | 0.0000000000E+00 | 5.1250000000 | 0.0000000000E+00 | 5.1250000000 | 0.0000000000E+00
16| 5.4160000000 | 5.4160000000 | 0.0000000000E+00 | 5.4160000000 | 0.000000C0C00E+00 | 5.4160000000 | 0.0000000000E+00
1.7 | 5.7430000000 | 5.7430000000 | 0.0000000000E+00 | 5.7430000000 | 0.0000000000E+00 | 5.7430000000 | 0.0000000000E+00
1.8 | 6.1120000000 | 6.1120000000 | 0.0000000000E+00 | 6.1120000000 | 0.0000000000E+00 | 6.1120000000 | 0.0000000000E+00
1.9 | 6.5290000000 | 6.5290000000 | 0.0000000000E+00 | 6.5290000000 | 0.0000000000E+00 | 6.5290000000 | 0.0000000000E+00
20| 7.0000000000 | 7.0000000000 | 0.0000000000E+00 | 7.0000000000 | 0.0000000000E+00 | 7.0000000000 | 0.0000000000E+00
21| 7.5310000000 | 7.5310000000 | 0.0000000000E+00 | 7.5310000000 | 0.0000000000E+00 | 7.5310000000 | 0.0000000000E+00
22| 8.1280000000 | 8.1280000000 | 0.0000000000E+00 | 8.1280000000 | 0.0000000000E+00 | 8.1280000000 | 0.0000000000E+00
23| 8.7970000000 | 8.7970000000 [ 0.0000000000E+00 | 8.7970000000 | 0.0000000000E+00 | 8.7970000000 | 0.0000000000E+00
24| 95440000000 | 9.5440000000 | 0.0000000000E+00 | 9.5440000000 | 0.0000000000E+00 | 9.5440000000 | 0.0000000000E+00
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25

10.3750000000

10.3750000000 | 0.0000000000E+0Q | 10.3750000000

0.0000000000E+00 | 10.3750000000

0.0000000000E+00

26

11.2960000000

11.2960000000 | 0.00000000C0E+00 | 11.2960000000

0.000000C0C00E+00 | 11.2960000000

0.000C000000E+00

P9

12.3130000000

12.3130000000 | 0.0000000000E+00 | 12.3130000000

0.0000000000E+00 | 12.3130000000

0.00000C0000E+00

28

13.4320000000

13.4320000000 | 0.0000000000E+00Q | 13.4320000000

0.00000000C0E+00 | 13.4320000000

0.0000000000E+00

2.9

14.6590000000

14.6590000000 | 0.0000000000E+00 | 14.6590000000

0.000000C000E+00 | 14.6590000000

0.00000C0000E+00

3.0

16.0000000000

16.0000000000 | 0.0000000C0O0E+0Q | 16.0000000000

0.00000000QC0E+00 | 16.0000000000 |

0.0000000000E+0Q0




TABLE 4.5

PROBLEM: F=XAS5+2XA4+43XA3 ; Y(0)=1 ; h=0.1
EXACT SOLUTION: Y(X)=(X*/6}H2X°/5H3X" 74+

80

X Y(X) i
a=3/4, b=-1/3 a=7/8, b=-7/18 a=1/2, b=-1/2 5
EXACT Y(X) ERROR Y(X) ERROR Y(X) ERROR |
0.0 | 1.0000000000 | 1.0000000000 | 0.0000C00CCOE+00 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00 |
0.1 1.0000791667 | 1.0000793542 | 1.8749999997E-07 | 1.0000793542 | 1.87499999S7E-07 | 1.0000793542 | 1.8749989997E-07 |
0.2 | 1.0013388867 | 1.0013390833 | 4.1666666872E-07 | 1.0013390833 | 4.1668666672E-07 | 1.00133%0833 | 4.1666666672E-07
0.3 | 1.0071685000 | 1.0071691875 | 6.8750000004E-07 | 1.0071691875 | 5.8750000004E-07 | 1.0071691875 5.8750000004E-07 |
0.4 | 1.0239786667 | 1.0239796667 @ 9.9999999992E-07 | 1.0239796667 | 9.9999999992E-07 | 1.0239796667 | 9.9899999992E-07
0.5 | 1.0619791667 | 1.0619805208 | 1.3541666666E-06 | 1.0619805208 | 1.3541666666E-06 | 1.0619805208 A 1.3541666666E-06
0.6 | 1.1360800000 | 1.1360800000 | 0.0000000000E+00 | 1.1360800000 | 0.00000000COE+00 | 1.1360800000 | 0.0000C000COE+00
0.7 | 1.2669111667 | 1.2669111667 | 0.0000000000E+00 | 1.2669111667 | 0.000CO00000E+00 | 1.2668111667 = 0.0000000000E+00
0.8 | 1.4819626667 | 1.4819626667 | 0.0000000000E+00 | 1.4819626667 | 0.0000000000E+00 . 1.4819626687  0.0000000000E+00
09 | 1.8168445000 | 1.8168445000 | 0.0000000000E+00 A 1.8168445000 | 0.00000000C0E+00 | 1.8168445000 = 0.0000000000E+00
10 | 23166686867 | 2.3166666667 | 0.0000000000E+00 | 2.3166666667 | 0.0000000000E+00 | 2.3166666667 & 0.0000000000E+00
14 3.0375391667 | 3.0375391667 | 0.0000000000E+00 | 3.0375391657 | 0.0000000000E+00 | 3.0375391667 | 0.0000000000E+00
12 | 4.0481920000 | 4.0481920000 | 0.0000000000E+00 | 4.0481920000 | 0.0000000000E+00 | 4.0481920000  0.0000000000E+00
13 | 54317151667 | 5.4317151667 | 0.0000000000E+00 | 5.4317151667 | 0.0000000000E+00 | 5.4317151667  0.0000000000E+00
1.4 | 72874186667 | 7.2874186667 | 0.0000000000E+00 | 7.2874186667 | 0.0000000000E+00 | 7.2874186667 & 0.0000000000E+00
15 | 9.7328125000 | 9.7328125000 A 0.0000000C00E+00 | 9.7328125000 | 0.0000000000E+00 | 9.7328125000 | 0.0000000000E+00
16 | 12.9057066667 | 12.9057066667 | 0.0000000000E+00 | 12.9057066667 | 0.0000000000E+00 | 12.9057066667 | 0.0000000000E+00
17 | 16.9664311667 | 16.9664311667 A 0.0000000000E+00 | 16.9664311667 | 0.0000000000E+00 | 16.9664311667 | 0.0000000000E+00
18 | 221001760000 | 22.1001760000 | -7.1054273576E-15 | 22.1001760000 | 0.0000000000E+00 | 22.1001760000 A 0.0000000000E+00 |
19 | 285194511667 | 28.519451167 | 0.0000000000E+00 | 28.519451167 | 0.0000000000E+00 | 28.518451167 | 0.0000000000E+00 |
20 | 36.4866666667 | 36.4666666667 | 0.0000000000E+00 | 36.4666666667 | 0.0000000000E+00 | 36.4666666667 A 0.0000000000E+00 |
21 | 46.2168325000 | 46.2168325000 | 0.0000000000E+00 | 46.2168325000 | 0.0000000000E+00 | 46.2168325000 | 0.0000000000E+00
22 | 58.0803786667 | 58.0803786667 | 0.0000000000E+00 | 58.0803786667 | 0.0000000000E+00 | 58.0803786667 | 0.0000000000E+00 |
23 | 72.4060951687 | 72.4060951667 | 0.0000000000E+00 | 72.4060951667 | 0.0000000000E+00 | 72.4060951667 | 0.0000000000E+00 |
24 | 89.5841920000 | 89.5841320000 | 0.0000000000E+00 | 89.5841920000 | 0.0000000000E+00 | 89.5841920000 | 0.0000000000E+00 |




25 | 110.0494791667 | 110.0494791667 | 0.0000000000E+00 | 110.0494791667 | 0.0000000000E+00 | 110.0484791667 | 0.0000000000E+00 |
2.6 | 134.2846666667 | 134.2846666667 | 0.0000000000E+00 | 134.2846666667 | 0.0000000000E+00 | 134.2846666667 | 0.0000000000E+00 |
2.7 | 162.8237845000 | 162.8237845000 | 0.0000000000E+00 | 162.8237845000 | 0.0000000000E+00 | 162.8237845000 | 0.0000000000E+00 |
2.8 | 196.2557226667 | 196.2557226667 | 0.0000000000E+00 | 196.2557226667 | 0.000C0000000E+00 | 196.2557226667 | 0.0000000000E+00 !
2.9 | 2352278911667 | 235.2278911667 | 0.0000000000E+00 | 235.2278911667 | 0.0000000000E+00 | 235.2278911667 | 0.0000000000E+00
3.0 | 280.4500000000 | 280.4500000000 | 0.0000000000E+00 ' 280.4500000000 | 0.0000000000E+00 | 280.4500000000 | 0.0000000000E+00
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4.3 ANALYSIS OF RESULTS

In Table 4.1 the three schemes produced errors. For schemes 1 and 3 there 18 a steady
growth in the errors as the step increases. For the first few steps (i.e. y(0) — y(0.8) )
scheme 3 is slightly more accurate. This trend is reversed between (0.9) and y(1.2).
Again scheme 3 is better for y(1.2) — y(1.4). Thereafler, accuracy alternates between the
two schemes. Scheme 2 on the other hand does not show a steady rise in its etror as the
step increases. Rather, there is a fluctuation at each step. However, right from y(0.9),

whenever it decreases, it shows more accuracy than the other two.

In Table 4.2, we observe that all the three schemes do not exhibit any error (up to ten
decimal places).

In Table 4.3, the three schemes exhibit errors. The behaviour hete is similar to that
obtainedin Table 4.1. Notably, scheme 3 maintains a lead in accuracy between y(/.2) and

¥(2.1). For other step values, accuracy cuts across the three schemes.

The three schemes are very accurate as shown in Table 4.4; there is no error at all. This is
understandable since the solution of the differential equation is a polynomial of degree
three.

And lastly, all the three schemes produce accurate results in Table 4.5. Also, this is

according to expectation since the solution of the differential equation is a polyhomial of

degree six and the schemes are each of order six.
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CHAPTER FIVE

ERROR ESTIMATION

5.1 VARIABLE STEP SIZE

When solving an initial value problem we can achieve better results by varying the step
size. Mathews (1992), stated that one way to guarantee accuracy of an initial value
problem is to solve the problem twice using step sizes s and 1/2h and compare answets at

the mesh-points corresponding to the larger step sizes.

However, changing the step size is not without its difficulties. Lambert(1991) staed that
predictor-corrector methods possess many advantages, hotably the facility for monitoting
the local truncation error cheaply and efficiently. However, there is a balancing
disadvantage, shared by all multistep methods, the difficulties encountered in

implementing a change in step size.

Besides the difficulties involved in changing the step size. We need to kiiow when to
change the step size. Chapra and Canale (1998) out lined two criteria that are typically
used to decide whether a change in step size is warranted. First, if the local truncation
error estimated (see eqn (1.2)) is greater than some specified criterion, the step size is
decreased. Second, the step size is chosen so that convcrgcﬁce criterion of the corrector is
satisfied in two iterations. This criterion is intended to account for the trade-off between

the tate of convergence and the total number of steps in the calculation. For smaller
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values of h, convergence will be more rapid but more steps are required. For larger A,

convergence is slower but few steps result.

We illustrate this by solving the differential equations

() vy =x+y;  »0)=1
(i) ' = 4% 5 5(0)=1

at different step sizes .

The differential equations are solved for the following step sizes: 0.025, 0.05 and 0.1.
The results obtained are as follows:
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Table 5.1

PROBLEM: F=X+Y; Y(0)=1; h=0.025
EXACT SOLUTION: Y(X)=2"EXP(X}-X-1

X Y{X)
a=3/4, b=-113 a=7/8, b=-7/8 a=112, b=1/2
EXACT Y(X) t ERROR Y(X) ERROR Y(X) ERROR
0.000 | 1.0000000000 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.0000000000E+00
0.025| 1.0256302410 | 1.0256302409 | 1.6344103848E-10 | 1.0256302400 | 1.6344103848E-10 | 1.0256302409 | 1.5344103848E-10
0.050 | 1.0525421928 | 1.0525421924 | 3.3515723530E-10 | 1.0525421924 | 3.3515723530E-10 | 1.0525421924 | 3.3515723530E-10
0.075| 1.0807683018 | 1.0807683013 | 5.1546211743E-10 | 1.0807683013 | 5.1546211743E-10 | 1.0807883013 | 5.1546211743E-10
0.100 | 1.1103418362 | 1.1103418354 | 7.0468186841E-10 | 1.1103418354 | 7.0468186841E-10 | 1.1103418354 | 7.0468186841E-10
0.125| 1.1412969061 | 1.1412969052 | 9.0315110945E-10 | 1.1412969052 | 9.0315110945E-10 | 1.1412969052 | 9.0315110945E-10
0.150 | 1.1736684855 | 1.1736684847 | 7.0727868007E-10 | 1.1736684846 | 8.4134588185E-10 | 1.1736684853 | 1.3301093560E-10
0.175 | 1.2074924332 | 1.2074924324 | 8.0280049275E-10 | 1.2074924319 | 1.3404957144E-09 | 1.2074924326 | 5.0152571812E-10 |
0.200 | 1.2428055163 | 1.2428055156 | 7.4779227255E-10 | 1.2428055154 | 3.8858076452E-10 | 1.2428055155 | 8.0948356127E-10 |
0.225 | 12796454324 | 12796454314 | 9.9448893565E-10 | 1.2796454308 | 1.6036167S49E-09 | 1.2796454310 | 1.3939003285E-09 |
0.250 | 1.3180508334 | 1.3180508323  1.0840872627E-09 | 1.3180508325 | 3.6085516493E-10 | 1.3180508318 | 1.6214580789E-09 |
0275 | 13580613497 | 1.3580613480 | 1.7443848748E-09 | 1.3580613479 | 1.8313204286E-09 | 1.3580613476 | 2.1823367558E-00 |
0.300 | 1.3997176152 | 1.3997176131 | 2.0937105383E-09 | 1.3997176140 | 1.1907346220E-09 | 1.3997176137 | 1.4802723500E-09 |
0325 | 1.4430612920 | 1.4430812894 = 2 5764828049E-09 | 1.4430812897 | 2.2941610833E-09 | 1.4430812899 | 2.0546602197E-00 |
0.350 | 1.4881350972 | 1.4881350945 2.7247257783E-09 | 1.4881350952 | 2.0081936114E-09 | 1.4881350949 | 2.2958019930E-09 |
0.375 | 1.5349828292 | 1.5349828261 3.0922526761E-09 | 1.5349828261 | 3.0908810444E-09 | 1.5349828262 | 2.9913076460E-09 |
0.400 | 1.5836493953 | 1.5836493924 = 2.9105067245E-09 | 1.5836493523 | 3.0296334330E-09 | 1.5836493920 | 3.2484624322E-08 |
0.425 | 1.6341808393 | 1.6341808361 | 3.2041238551E-09 | 1.6341808353 | 4.0510317323E-09 | 1.6341808354 | 3.9258201134E-00 |
0.450 | 1.6866243710 | 1.8866243676 3.4072462629E-09 | 1.6866243671 | 3.8324965423E-09 | 1.6866243677 | 3.2737779154E-09 |
0.475| 1.7410283950 | 1.7410283910 | 3.9970164956E-09 | 1.7410283901 | 4.8974888589E-09 | 1.7410283910 | 3.9548710973E-09
0.500 | 1.7974425414 | 1.7974425371 | 4.3418475482E-09 | 1.7974425371 | 4.2533885303E-09 | 1.7974425372 | 4.2407823919E-09
0.525 | 1.8550176968 | 1.8559176915 | 5.2119892846E-09 | 1.8559176912 | 5.5134881265E-09 | 1.8559176917 | 5.0689934472E-09
0.550 | 1.9165060357 | 1.9165080302 | 5.5264810506E-09 | 1.9165080312 | 4.5380879214E-09 | 1.9185060304 | 5.3643831599E-09
0.575 | 1.9792610538 | 1.9792610478 | 5.9796116947E-09 | 1.9792610478 | 6.0840519273E-09 | 1.9792610476 | 6.1849814159E-09
0.600 | 20442376008 | 2.0442375947 | 6.0848579508E-09 | 2.0442375957 | 5.1093445030E-09 | 2.0442375952 | 5.5866129500E-09
0.625 | 21114919149 | 21114819083 | 5.5475447286E-09 | 2.1114919080 | 6.8483516635E-09 | 2.1114919085 | 6.4087339879E-09
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0.650 2.1810816580 | 2.1810816515 | 6.5717373765E-09 | 2.1810816519 | 6.1755551783E-09 | 2.1810816513 | 6.7539187576E-09
0.875 2.25306598519 | 2.2530859447 | 7.2741750401E-09 | 2.2530659439 | 8.0199571428E-09 | 2.2530659442 | 7.74068663301E-09
0.700 2.3275054148 | 2.3275054071 | 7.8188149288E-089 | 2.3275054074 | 7.5454757997E-09 | 2.3275054068 | 8.0920763423E-09
0.725 2.4044621999 | 2.4044621912 | 8.71838778S5E-09 | 2.404462190S | 5.4417611507E-09 | 2.4044621908 | S.0811247411E-09
0.750 2.4840000332 | 2.4840000240 | 9.2106202665E-09 | 2.4840000244 | 8.8172193990E-09 | 2.4840000247 | 8.5534326288E-09 |
0.775 2.5661842544 | 2.5661842442 | 1.0147866103E-08 | 2.5661842435 | 1.0817498897E-08 | 2.5661842448 | 9.5456194060E-09 |
0.800 2.6510818570 | 2.6510818466 | 1.0395917016E-08 | 2.6510818472 | 9.7591952297€-09 | 2.6510818470 | 9.9681605192E-08 |
0.825 2.7387615307 | 2.7387615197 | 1.0839306794E-08 | 2.7387615187 | 1.1978946279E-08 | 2.7387615195 | 1.1144269951E-08 |
0.850 2.8292937039 | 2.8292936926 | 1.1216884310E-08 | 2.8292936933 | 1.0526848282E-08 | 2.83292936923 | 1.1571305247E-08 |
0.875 2.9227505879 | 2.9227505759 | 1.2033085195E-08 | 2.9227505749 | 1.3055946546E-08 | 2.9227505752 | 1.2761312007E-08 |
0.800 3.0192062223 | 3.0192062099 = 1.2457582521E-08 | 3.0192062108 | 1.1517409246E-08 | 3.0192062100 | 1.2325368726E-08
0.925 3.1187365207 | 3.1187365071 | 1.2640498064E-08 | 3.1187365064 | 1.4364123224E-08 | 3.1187365072 | 1.3522273079E-08 !
0.850 | 3.2214193186 | 3.2214193042 ' 1.4459711650E-08 | 3.2214193056 | 1.3003420118E-08 ' 3.2214153046 ' 1.4044601038E-08
0.975 | 3.3273344220 | 3.3273344064 = 1.5560150057E-08 | 3.3273344059 | 1.6113308021E-08 3.3273344065 = 1.5446845580E-08
1.000 |  3.4365636569 | 3.4365636408 | 1.6114338752E-08 | 3.4365636420 | 1.4888128952E-08 & 3.4365636409 1.5973748102E-08
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Table 5.2

PROBLEM: F=X+Y ; Y(0)=1 ; h=0.05
EXACT SOLUTION: Y(X)=2"EXP(X}-X-1

X Y(X)
a=3/4, b=-173 a=7/8, b=-7/8 a=112, b=-112
EXACT Y(X) l ERROR Y(X) ERROR Y(X) ERROR
0.000 | 1.0000000000 | 1.0000000000 | 0.0000000000E+00 | 1.0000000000 | 0.000000000CE+00 | 1.0000000000 | 0.0000000000E+00
0.050 | 1.0525421928 | 1.0525421875 | 5.2520483518E-09 | 1.0525421875 | 5.2520483518E-09 | 1.0525421875 | 5.2520483518E-09 |
0.100 | 1.1103418362 | 1.1103418251 | 1.1042652792E-08 | 1.1103418251 | 1.1042652792E-08 | 1.1103418251 | 1.10426852792E-08 |
0.150 | 1.1736684855 | 1.1736684680 | 1.7413232412E-08 | 1.1736684680 | 1.7413232412E-08 | 1.1736684680 | 1.7413232412E-08 |
0.200 | 1.2428055163 | 1.2428054919 | 2.4408037147E-08 | 1.2428054919 | 2.4408037147E-08 | 1.2428054919 | 2.4408037147E-08
0.250 | 1.3180508334 | 1.3180508013 | 3.2074329859E-08 | 1.3180508013 | 3.2074329859£-08 | 1.3180508013 | 3.2074329859E-08
| 0.300 | 1.3997176152 | 1.3997175864 | 2.3768430971E-08 | 1.3997175819 | 3.3214656359E-08 | 1.3997176059 | 9.2968024390E-09 |
0.350 | 1.4881350972 | 1.4881350537 | 4.3462413890E-08 | 1.4881350348 | 5.2373089138E-08 | 1.4881350609 | 3.6328872577E-08 |
0.400 | 1.5836493953 | 1.5836493492 | 4 6089604577E-08 | 1.5836493456 | 4.0657913559E-08 | 1.5836493494 | 4.5835412577E-08
| 0.450 | 1.6866243710 | 1.6866243021 | 5.8930033681E-08 | 1.6866242752 | 9.5778061260E-08 | 16866242882 | 3.2740877261E-08 |
| 0500 | 1.7974425414 | 1.7974424632 | 7.8151945138E-08 | 1.7974424760 | 6.5411750239E-08 | 1.7974424467 | 9.4701267273E-08
0550 1.9165060357 | 1.9165059188 | 1.1696528812E-07 | 1.9165059030 | 1.3276968325E-07 | 1.9165059030 | 1.3268584009E-07 |
| 0.600 | 2.0442376008 | 2.0442374622 | 1.3856508430E-07 | 2.0442375024 | 9.8418945882E-08 | 2.0442374820 | 1.1875140782E-07 |
| 0.850 | 2.1810816580 | 2.1810814814 | 1.7664024377E-07 | 2.1810814766 | 1.8144730074E-07 | 2.1810814980 | 1.6007333992E-07 |
10700 | 2.3275054149 | 2.3275052212 | 1.9374384719E-07 2.3275052593 | 1.5564801092E-07 | 2.3275052385 | 1.7639426364E-07 |
| 0.750 | 2.4840000332 | 2.4839998014 | 2.3179548325E-07 | 2.4839997856 | 2.4764942053E-07 | 2.4839988031 | 2.3010148897E-07
| 0.800| 26510818570 | 2.6510816142 | 2.4279325972E-07 | 2.6510816288 | 2.2818528977E-07 | 2.6510816073 | 2.4965090217E-07
| 0.850 | 2.8292937039 | 2.8292934215 | 2.8232080629E-07 | 2.8292933739 | 3.2996250354E-07 | 2.8292933971 | 3.0672107387E-07
1 0.900 | 3.0192062223 | 3.0192059141 | 3.0816896945E-07 | 3.0192059210 | 3.0132977358E-07 | 3.0192059200 | 3.0233813630E-07 |
0950 | 3.2214193186 | 3.2214189543 | 3.6437282702E-07 | 3.2214188966 | 4.2202707728E-07 | 3.2214189539 | 3.6475590681E-07
1.000 | 3.4365636569 | 3.4365632566 | 4.0028160386E-07 | 3.4365632873 | 3.6961057681E-07 | 3.4365832645 | 3.9239484639E-07
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Table 5.3
PROBLEM: F=X+Y; Y(0)=1 ; h=0.1
EXACT SOLUTION: Y{X)=2"EXP{X)-X-1

X

Y(X)

a=3/4, b=-113

a=7/8, b=-7/8

a=1/2, b=-1/2

EXACT

Yo |

ERROR

Y(X)

ERRCR

Y(X)

ERROR

0.000

1.0000000000

1.0000000000 | 0.0000C00000E+00

1.0000000000

0.0000000000E+00

1.0000000000

0.000000000CE+00

0.100

1.1103418362

1.11034166867 |

1.6948462873E-07

1.1103416667

1.6848462878E-07

1.1103416687

1.6948462878E-07

0.200

1.2428055163

1.2428051417 |

3.7481885075E-07

1.2428051417

3.746188807SE-07

1.2428051417 | 3.7461895075E-07

0.300

1.38971768152

1.3997168841 |

6.2102683121E-07

1.36971699841

6.2102693121E-07 |

1.3897169841 |

6.2102893121E-07

0.400

1.5836483953

1.5836484802 |

S.1512116851E-07 |

1.5836484802

9.1512116951E-07 |

1.5836484802 |

9.1512116951E-07 |

0.500

1.7974426414

1.7974412772 |

1.2642065803E-06 |

1.7974412772

1.2842065803E-06 |

1.7974412772 |

1.2642065803E-06

0.600

20442376008 | 2.0442361876 |

1.4132161703E-06 |

2.0442380367

1.5640399451E-06 |

2.0442368893 |

7.1145714031E-07 !

0.700

2.3275054148 | 2.3275025204 |

2.8945628872E-C6 |

23275017844 | 3.6305474218E-06 |

2.3275027970 |

2.6179097690E-06

0.800

2.6510818570 | 2.6510783588 !

3.4980860688E-06 |

2.6510783329 |

3.5240506189E-06

2.6510785490 |

3.3079643345E-06

0.800

3.0192062223 | 3.0192004614

5.7608878645E-06 |

3.0191980040 |

7.2183356430E-06 |

3.0191998381

5.2842580402E-C6 |

1.000

3.4385636569 | 3.4365566462

7.0107547572E-06 |

3.4365575986 |

6.0583367980E-06

3.4365562683

7.3885805181E-06
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Tabie 5.4
PROBLEM: F=4XY'?; Y(0)*1 ; h=0.025
EXACT SOLUTION: Y(Xp=(1+X*f

X

Y(X)

a=344, b=-1/3

a=7/8, b=-718

a=1/2, b=-1/2

EXACT

YX) |

ERROR Y(X)

ERRCR

Y(X)

ERROR i

0.000

1.0000000000 | 1.0000000000 | 0.00000000C0E+00

1.00G00000C0

0.00C0000000E+Q0

1.0000000000

0.00C0000CC0E+00

0.025

1.0012503906

1.0012503906 | 2.0351498264E-11

1.0012503906

2.0351488264E-11

1.0012503908

2.0351488264E-11

0.050

1.0050082500

1.0050062499 |

8.14059830S8E-11 | 1.0050062489

8.1405693053E-11

1.00500624599

8.1405993058E-11 |

0.075

1.0112816408

1.0112816404 |

1.8317392048E-10

1.0112816404 | 1.8317392048E-10

1.0112818404

1.8317392048E-10 |

0.100

1.0201000000 |

1.0200985897 |

3.2568802331E-10

1.0200999997 |

3.2589902331E-10

1.0200899997 | 3.2569902331E-10 |

0.125

1.0314941406 |

1.0314941401 |

5.0910187177E-10

1.0314941401 |

5.0910187177E-10

1.0314941401 | 5.0910187177E-10 |

0.150

1.0455062500 |

1.0455062496 |

4.1185915121E-10 |

1.0455062495 |

5.0838444565E-10

1.0455062500 |

7.65254526841E-12 |

0.175

1.0621878906 |

1.0621878903

3.0035240961E-10 |

1.0621878899 |

8.967373344SE-10

1.0621878806 |

3.0355051805E-11 |

0.200

1.0816000000 |

1.0815898988 |

1.8467648632E-10 |

1.0815999985 |

4.6287262911E-10

1.0815999998 |

8.9772411727E-11 |

0.225

1.1038128906 !

1.1038128906 |

7 1298300597E-11 |

1.1038128900 |

5.7808624554E-10

1.1038128904 |

1.89458634704E-10 |

0.250

1.1289062500 |

1.1288062500 |

3.3200775462E-11 |

1.1289062488 |

2.3782487091E-10

1.1288062487 |

3.3400215826E-10 |

0.275 |

1.1569691406 |

1.1569691408S |

1.4399126336E-10 |

1.1569681404 |

2.7307534012E-10

1.1569691401 |

5.2152804217E-10 |

0.300 |

1.1881000000 |

1.1880998897

2.8629054682E-10 |

1.1881000000 |

4.638756045SE-11 |

1.1881000000 |

1.9996448941E-11 |

i 0.328

1.2224068408 |

1.2224066402

3.9329806079E-10 |

1.2224068405 |

7.6712858288E-11

1.2224068406

4 7714499019E-11

| 0.350

1.2600062500 |

1.2600082485 |

4.6034820400E-10 |

1.2600062488 | 7.0558003884E-11

1.26000682488

1.0211409486E-10 |

| 0.375

1.30102539086 |

1.3010253801

4.9368109600E-10 |

1.3010253904 | 1.8320833739E-10

1.3010253904

2.1536283867E-10 |

0.400

1.3456000000 |

1.3458869997 |

2.6848344970E-10 |

1.3455999997 | 2.9356828080E-10

1.3455998997

3.4692228869E-10 |

0.425

1.3938753808

1.3938753905 |

1.4168418093SE-10 |

1.3938753901 | 5.0455617462E-10

1.3938753901

5.4387561121E-10 |

0.450

1.4460062500 |

1.4460062499 |

8.6533002985E-11 | 1.4480062485

5.1620197006E-10

1.4480062500

3.9384043583E-11 |

0.475

1.50215684086 |

1.502156640S |

9.53543910S0E-11 | 1.5021566399

7.53838873941E-10

| 1.5021566406

7.4282580087E-11 |

0.500

1.5625000000

1.5624999999 |

1.3888637796E-10 | 1.5624999995

5.4103344027E-10

1.5624999989

1.2135048522E-10

0.525

1.6272181406

1.6272191402 |

4.0003356183E-10 | 1.6272191399

7.1493921894E-10

1.6272191404

2.4873441068E-10

0.550

1.86865062500

1.6965062495 |

4.9682546965E-10 | 1.6985062496 |

3.5438008084E-10

1.6965062496

3.6656611080E-10

0.575

1.7705628908

1.7705628901 |

5.0105875S00SE-10 | 1.7705628902

4.4523473797E-10

1.7705628900

5.76848064100E-10

0.600

1.8486000000

1.8495899996 |

4.3895220792E-10 | 1.8495999999

1.38504318912E-10

1.8495899699

6.5727867593E-11

0.625

1.9338378906

1.9338378903 |

3.6491254463E-10 | 1.9338378904

2.2090063112E-10

1.9338378905

1.1013190360E-10
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0.650

2.0235062500

2.0235062499 |

1.2600631649E-10

2.02350624989

1.0314726850E-10

2.0235062499

1.4754686362E-10

0.675

2.1188441406

2.1188441405 |

1.1092583510E-10

2.1188441403

2.7660584834E-10

2.1188441403

2.8845859035E-10

0.700

2.2201000000

2.2200999998 |

1.8834489524E-10

2.2200998997

2.9177638083E-10

2.2200999996

3.6314995703E-10

0.725

2.3275316406

2.3275316403 |

3.1444491455E-10

2.3275316400

5.8494453725E-10

2.3275316400

6.1923088879E-10

0.750

2.4414062500

2.4414062498 |

4.1466385881E-10

2.4414062485

5.4127857751E-10

2.4414062499 |

9.8004804355E-11

0.775

2.5620003906

2.5620003900 |

5.2894534025E-10

2.5620003897

8.8318286018E-10

2.5620003905 |

1.5535484010E-10

0.800

2.6896000000

2.6895998984

5.7819526944E-10

2.6895999994

8.3251182070E-10

2.6895999998 |

1.8078916142E-10 |

0.825

2.8245003908

2.8245003802 |

4.6143088348E-10

2.8245003897

9.2154639475E-10

2.8245003903 |

3.4027491935E-10 |

0.850

2.9670062500

2.9670062497 '

3.3175773240E-10

2.9670062495 |

4.9299053728E-10

2.9670062496 |

4.2686654211E-10 |

0.875

3.1174316406 | 3.1174316404

2.7299185135€-10 |

3.1174316389 |

6.9852079676€E-10 |

3.1174316400 !

6.7194871889E-10 |

0.800

3.2761000000

3.27609988888 '

1.4078205268E-10 |

3.2760999997 |

2.64325006833E-10 |

3.2760999899 |

1.2930279152E-10 |

0.925

3.4433441406

3.4433441403

2.9252422706E-10 |

3.4433441402 |

4.6148018740E-10 |

3.4433441404

2.1002266593E-10 |

0.850

3.6195062500 | 3.6195062495

4.6155701483E-10 !

3.6195062498 |

1.7144019537E-10

3.6195062498 |

2.2117463416E-10 |

0.975

3.8048378906 | 3.8049378300

5.003890717SE-10 |

3.8049378902 |

4.7277781690E-10 |

3.8048378902 |

4.0194381157E-10

1.000

4.0000000000 | 3.89889999394

5.2954885749E-10 !

3.9999999997 |

3.1400571032E-10 |

3.99899399385

4.67879957C0E-10 |




Table 5.5
PROBLEM: F=4XY'?; Y(0}*1 ; h=0.05
EXACT SOLUTION: Y(X)=(1+X°}

X

Y(X)

a=3M4, b=-1/3

a=7/8, b=-7/8 [

a=1/2, b=-112

EXACT

Y{X)

ERROR

Y{X)

ERROR }

Y{(X)

ERROR

0.000

1.0000000000

1.0000000000 | 0.000C0C0000E+00

1.0000000000

0.0000000000E+00 |

1.0000000000

0.00000000C0E+Q0

0.050

1.0050062500

1.0050062487 |

1.3037011470E-08

1.0050062487

1.3037011470E-09

1.0050082487

1.3037011470E-09

0.100

1.0201000000

1.0200999948 |

5.2153868051E-08

1.0200999948

5.2153668051E-09

1.0200989948

5.2153668051E-09 |

0.150

1.0455062500

1.0455082383 |

1.1744571083E-08

1.0455062383

1.1744571093E-08 |

1.0455062383

1.1744571093E-08 |

0.200

1.0816000000

1.0815999791 |

2.0932845457E-08 |

1.0815999791

2.0932845457E-08 |

1.0815899791

2.0932845457E-08 |

0.280

1.1288062500

1.1289062171 |

3.2886015910E-08

1.1288062171

3.288601591CE08 |

1.1289062171 |

3.288601591CE-08 |

0.300

1.1881000000

1.1880999726

2.7388315172E-08

1.1880959665

3.3531799337E-08 |

1.1880999981 |

1.8995824913E-09 |

0.350

1.2600062500

1.2600062290

2.0981690607E-08 |

1.2600062041

4.593766985CE-08 |

1.2600062462 |

3.7961904731E-08 |

0.400

1.3458000000

1.3455999857

1.4307481422E-08 |

1.3455999677

3.2346600509E-08 |

1.3455989927 |

7.3400165945E-09 |

0.450

1.4480062500

1.4480062423

7.6804342886E-08 |

1.4460062094

4.0591534578E-08 |

1.4460062353 |

1.4729287567E-C8 |

|

| 0.500

1.5625000000

1.5624996985

1.4723042785E-08 |

1.5624889800

1.9974369G36E-08

1.5624999769 |

2.3108848168E-08 |

0.580

1.6965062500

1.6965062372

1.2838119900E-08 |

1.6965062259 | 2.4078415262E-08 |

1.6965062138 |

3.6202221887E-08

|
{

i

0.600

1.8496000000

1.8485999780 |

2.2035101298E-08 |

1.8495999913 | 8.7307061580E-09 |

1.8485999850 |

4.9689079518E-08 |

—

0.650

2.0235062500

2.0235062204

2.9585494055E08 |

2.0235062356 | 1.4415782790E-08 |

2.0235062418 |

3.1638242833E-09

0.700

2.2201000000

2.2200999655 |

3.4454226139E-08 |

2.2200999900

1.0031971254E08 |

22200999894 |

1.0601280298E-08 |

1 0.750

2.4414062500

2.4414062121

3.7923221896E-08 |

2.4414062264

2.3643248248E-08 |

2.4414062298 |

2.0174736992E-08 |

|
|
|
|

0.800

2.6896000000

2.6895999751

2.4851178004E-08 |

2.6885999759

2.4123242959€E-08 |

2.6895989734 |

2.6642562823E-08 |

| 0.850

2.9670062500

2.9670062317 |

1.8281956393E-08 |

2.9670062034

4.6556068778E-08 !

2.9670062078 |

4.2215482221E-08 |

| 0.900

3.2761000000

3.2760998847

1.5270871234E-08 |

3.2760899602

3.9776271610E-08 |

3.2760999903 |

9.7339403204E-08 |

0.850

3.6195062500

3.6185082328 |

1.7174432987E-08 |

3.6195061843

6.5707651320E-08 |

3.6195062351 |

1.4947320270E-08 |

|

| 1.000

4.0000000000

3.9988999799 |

2.0117174149E-08 |

3.9988999556

4.4362432838E08 |

3.9999999843 |

1.5671610232E-08 |
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Table 5.6
PROBLEM: F=4XY'2; Y{0)=1 ; h=0.1
EXACT SOLUTION: Y(X)={1+X)*

X

Y(X)

T

l

a=344, b=-113

a=7/8, b=-7/8

a=1/2, b=1/2

EXACT

Y(X) [

ERROR

Y{X)

ERROR i

Y(X) |

ERROR

0.000

1.0000000000

1.0000000000 |

0.0000000C00E+00

1.00000000C0

0.0000000C00E+00 | 1.0000000000 | 0.0000000000E+00

0.100

1.0201000000

1.0200889163

8.3740235413E-08

1.0200989163

8.3740235413E-08

1.0200999163 |

8.3740235413E-08

0.200

1.0816000000

1.0815996645

3.3550084458E-07

| 1.0815996645 |

3.3550094458E-07

1.0815996645 |

3.3550094458E-07

0.300 | 1.1881000000

1.1880992364 |

7.6362208823E-07

| 1.1880992364 |

7.6362208823E-07 !

1.1880992364 |

7.6362208823E-07

0.400 | 1.3456000000

| 1.3455986013 |

1.3986813359E-06

| 1.3455986013 |

1.39868133S9E-06 |

1.3455986013 |

1.3986813359E-06 |

0.500

1.5625000000

1.5624876978 |

2.3024470428E-06

| 1.5624976976 |

2.3024470428E-086 |

1.5624976976 |

2.3024470428E-06 |

0.600

1.8486000000

1.8495978929 |

2.1071298080E-C6

| 1.3495975424 |

2.4576180864E-06

1.8485895447 |

4.5533008630E-07 |

0.700

2.22010000C0

2.22009815186 |

1.8483568627E-06 |

22200964953 |

3.5048751483E-06 |

2.2200993118 |

6.8822348020E-07 |

0.800

2.6886000000

| 2.6895984215 |

1.5784759917E-06 |

2.6895972208 |

2.7791734922E-06 |

2.6895991148 |

3.8509088902E-07 |

0.900 | 3.2761000000 | 3.2760986987

1.3012728237E-06

| 3.2760963052 |

3.684790967CE-CS |

3.276098423S |

1.5761347201E-06 |

1.000 | 4.0000000000 | 3.9999990162

5.8383706826E-07

| 3.9999975811 |

2.4189371315E-06

3.9899975618 |

2.0081629217E-06 |




For the differential equation y' = x+y; (0)=1, using schemel (a=%,b=—-1) as
an example, the error for & = 0.1 at x = 1 (Table 5.3) is 7.0107547572*+10°%. This etror is
reduced to 4.0028160386*10”7 when 4 = 0.05 (Table 5.2); and this is fitrther reduced to
1.6114338752+10°* when / =0. 025 (Table 5.1).

The same trend is noticed for the other two schemes as well as in the solution for

y =4g%, y0)=1.

We show the errors at various step lengths.in the following tables. They help to confirm

the observation earlier on made on the rate of convergence as h decreases.
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Table 5.7
PROBLEM: F=X+Y ; Y(0)=1
SCHEME 1 a=3/4, b=-1/3

ERROR
X h=0.4 h=0.08 h=0.025
0.05 5.2520483518E-00 | 3.3515723530E-10
0.10 | 1.6948462878E-07 | 1.1042852792E-08 | 7.0468186841E-10
0.15 1.7413232412E-08 | 7.0727888007E-10
0.20 | 3.7461895075E-07 2.4408037147E-08 | 7.4779227255E-10
0.25 3.2074329859E-08 & 1.0840872627E-09
0.30 | 6.2102693121E-07 2.8768430971E-08 | 2.0937105383E-09
0.35 4.3462413800E-08 | 2.7247257783E-09
0.40 | 9.1512116951E-07 4.6089604577E-08 | 2.9105087245E-09
0.45 6.8930033681E-08 | 3.4072462628E-00
0.50 | 1.2642065803E-06 7.8151945138E-08 | 4.3418475482E-09
Table 5.8
PROBLEM: F=X+Y ; Y(0)=1
SCHEME 2 a=7/8, b=-7/8

_ERROR

X h=0.1 h=0.08 h=0.025
0.05 5.2520483518E-09 | 3.3515723530E-10
0.10 | 1.6948462878E-07 1.1042652792E-08 | 7.0468186841E-10
0.15 1.7413232412E-08 _8.41345881 85E-10
0.20 | 3.7461895075E-07 2.4408037147E-08 | 8.8858076452E-10
0.25 3.2074329859E-08 | 8.8085516493E-10
0.30 | 6.2102693121E-07 3.3214858359E-08 | 1.1907346220E-09
0.35 6.2373089138E-08 | 2.0081936114E-09
0.40 | 9.1512116951E-07 4.9657913559E-08 | 3.0296334330E-09
0.45 9.5778061260E-08 | 3.8324965423E-09
0.50 | 1.2642065803E-06 6.5411750239E-08 | 4.2533885303E-09
Table 5.9
PROBLEM: F=X+Y; Y(0)=1
SCHEME 3 a=1/2, b=-1/2

ERROR
X h=0.1 h=0.05 h=0.025
0.05 5.252048351 BE-09 | 3.351 5723530E-10
0.10 | 1.6048462878E-07 | 1.1042652792E-08 | 7.0468186841E-10
015 1.7413232412E-08 | 1.3301093560E-10
0.20 | 3.7461895075E-07 2.4408037147E-08 | 8.0848359127E-10
0.25 3.2074329859E-08 | 1.6214580789E-09
0.30 | 6.2102693121E-07 9.2968024390E-09 | 1.4902723500E-09
0.35 3.8328872577E-08 | 2.2958019930E-09
0.40 | 9.1512116951E-07 4.5835412577E-08 | 3.2464624322E-09
0.45 8.2740877261E-08 | 3.2737779154E-09
0.50 | 1.2642065803E-06 9.4701267273E-08 | 4.2407823919E-09
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Table 5.10
PROBLEM: F=4xY'?; Y(0)=1
SCHEME 1 a=3/4, b=-1/3

ERROR
X h=0.1 h=0.05 ) h=0.025
0.05 1.3037011470E-09 | 8.1405993058E-11
0.10 | 8.3740235413E-08 | 5.2153688051E-00 | 3.2569902331E-10
0.15 1.1744571093E-08 | 4.1165915121E-10
0.20 | 3.3550004458E-07 | 2.0932845457E-08 | 1.8467649632E-10
0.25 3.2886015910E-08 | 3.3200775462E-11
0.30 | 7.6362208823E-07 | 2.7398315172E-08 | 2.8620054682E-10
0.35 2.0981690607E-08 | 4.6034820400E-10
0.40 | 1.3986813350E-06 | 1.4307481422E-08 | 2.6849344970E-10
0.45 7.6804342886E-00 | 8.6533002085E-11
0.50 | 2.3024470428E-06 | 1.4723042785E-09 | 1.3898637796E-10
Table 5.11

PROBLEM: F=4XY'?; Y(0)=1

SCHEME 2 a=7/8, b=-7/8

A Lk T T T

| X h=0.1 : h=0.08 h=0.025

0.05 1.3037011470E-09 | 8.1405993058E-11
010 | 8.3740235413E-08 | 5.2153668051E-09 | 3.2569902331E-10
0.15 1.1744571093E-08 | 5.0838444565E-10
0.20 |  3.3550094458E-07 | 2.0932845457E-08 | 4.6287262811E-10
0.25 3.2886015910E-08 | 2.3782487091E-10
0.30 |  7.6362208823E-07 | 3.3531799337E-08 | 4.6387560450E-11
0.35 4.5937669890E-08 | 7.0558003884E-11
0.40 | 1.3986813359E-06 | 3.2346600509E-08 | 2.9356828080E-10
0.45 4.0591534578E-08 | 5.1620197006E-10
0.50 | 2.3024470428E-06 | 1.9974369936E-08 | 5.4103344027E-10
Table 512

PROBLEM: F=4XY'?; Y(0)=1
SCHEME 3 a=1/2, b=-1/2

ERROR

X h=0.1 h=0.05 h=0.025

0.05 | 1.3037011470E-09 | 8.1405093058E-11
010 | 8.3740235413E-08 | 5.2153668051E-00 | 3.2569902331E-10
015 1.1744571093E-08 | 7.8525452641E-12
0.20 | 3.3550094458E-07 | 2.0932845457E-08 | 8.9772411727E-11
0.25 3.2886015910E-08 | 3.3400215926E-10
0.30 | 7.6362208823E-07 | 1.8995824913E-00 | 1.9996448941E-11
0.35 3.7961904731E-09 | 1.0211409496E-10
0.40 | 1.3086813359E-06 | 7.3400165945E-09 | 3.4692226869E-10
0.45 1.4729287567E-08 | 3.9304043583E-11
0.50 | 2.3024470428E-06 | 2.3108848168E-08 | 1.2135048522E-10
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52 RECOMMENDATIONS

The main business of numerical analysis is to provide us with computational methods for
the study and solution of mathematical problems. However, most numerical methods give
answers that are only approximations to the desired true solution. Consequently , a
numerical result is seldom free of error. It is recommended that further work be done in

producing schemes with higher accuracies.

Furthermore, suitable free parameters can be chosen so as to reduce the functional

evaluation at each step of computation.

5.3 SUMMARY
In this work we have been able to drive a 6-step implicit linear multistep method of order
eight. And by assigning suitable values for the free parameters we obtain the following

three schemes:

Schemel(a=%, b=-%):

_s s _ vy = 3o M1 _un M8 £ U 91 3401 ]
yn+6 /6yn+5+/6yn+l }n _h[nuo n¢6+3|5 n+s 1260 nu+2935 n+3 1260 n+2+315 n+l+lluofn

Scheme 2(a=7%, b=-%):

4 12341
yme“’%aynu + ’%6}""7 —.yn ™4 h[:z‘n; n+é t ;F%fnoﬁ ) %2% ned ”17%,7' neld _%213 ne2 *'z‘%%fnu + souofn]

Scheme3(a= ¥, b= —}{):

2 162 21 8 21 162 AL
yn+6 =¥Yi= h[i%lo'f;us % TEEfmS + 14ofn+4 +§§ n+l + 140 J n42 + 105 fnn + 14ofn]
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We have also solved various differential equations using the three schemes. To assist us
in solving differential equations, a computer implementation program using Microsoft

Excel software package was used.

54 CONCLUSION

Since we have used the methods to solve various differential equations we conclude that
our 6-step implicit linear multistep methods are accurate as they produce tesults which
are comparable with those produced by other similar methods.
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