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ABSTRACT

In this rescarch work, Numerical Investigation of Flow Past a Sphere we
consider the flow of fluid past a sphere at low Reynolds number. Assuming the
flow is steady and asymmetrical within the vicinity of the sphere. We neglect the
Inertia terms and assume the absences of extraneous forces.

The method of regular perturbation analysis is being used in linearizing the
governing equation; the resulting equation was solved analytically. The graphs of
the variation of the flow pattern were plotted for specific values of the ratio of the

distance from the sphere to the radius of the sphere.
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CHAPTER ONE
1.0 INTRODUCTION
In this rescarch work we coﬁsidcr the flow of an inviscid fluid past a sphere at low
eynolds number. We will assume that flow is steady and axis symmetrical and flow is in
he vicinity of the sphere is not valid at large distances from the sphere.

nder this assumption the equation is given by

Viu-Vp=RWw.V)y Vv=0........ 1.1

Where v is the pressure, R = ”% is the Reynolds number. p is the density and v is

¢ kinematic viscosity.

his problem was first solved by Stokes (1851) and Kaplun (1957) using a method of

atched asymptotic expansion.

n this research work we neglect inertia terius and assume the absence of extraneous
orees so that we have the problem in the form

ap
Vige e 2o 12
uV-u 5

hich is solvable using the method of regular perturbation analysis.

e now proceed to solve the order ¢° problem using the method of separation of variable

1




which results into a Legendre polynomial which we solved using method of series

solution.

1.1 Definition of Terms

(1) Fluid: A fluid is a substance which deforms or yields continuously when shear stress
is applied to it, no matter how small it is.

(ii) Incompressible fluid: A fluid is said to be incompressible if the density is in

variant with time and space.

d,
7’?: Vp =0 Where p is density

N.B Density (p) is the mass per unit volume.
(iii) Compressible fluid: A fluid is compressible if the density depends continuously on
the time and space.variable.
(iv)  Specific volume is the volume per unit weight
(v)  Viscosity: Viscosity is the property of a fluid by which it offers resistance to shear
acting on it. According to Newton’s law of Viscosity, the shear IF acting between
two layers of fluid is proportional to differences in their velocities and inversely

proportional to the distance between them.
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F Au
I oot ichi :
P i Which is the shear stress

Where p is the constant of proportionality

d -
il rate of angular deformation

dy

Fluid ure classified according to the relation between shear stress I and rate of angular

deformation.

(a) Newtonian fluids: are fluid which obeys Newton’s law of Viscosity

. u
Le.I'=n E e.g. water and kerosene etc

(b) Non — Newtonian fluids: They do not obey Newton’s law of Viscosity

(du)"
dy

ie. I's'

e.g. blood, mud flow, suspensions and polymer solutions.

) Ideal fluids: These are fluids that have no Viscosity, Surface tension and are

incompressible  ie. = I'=o




(d) Idea Plastics or Bingham Plastics: These are fluids where

du
I' = constant + p—

dy

(¢) Thyxotropic fluids: are fluid where

(du)"
dy

I’ = constant + .

Fluid Mechanics: Fluids mechanics is the branch of engineering science which deals with

the behavior of fluids under the conditions of rest and motion.

1.2. Kinematics of fluid flow

Kinematics of fluid flows deals with fluid motion in terms of displacements, velocities,
acceleration, rotation of fluid without regard to the force or energy responsible for the
motion.

If Fis a flow or fluid property such as velocity, pressure, mass, density or temperature the

ollowing types of flow can be defined:

1 Steady flow: % = 0 at a point or section

2. Unsteady flow: % # 0 at a point or section




af

0"S t=t,

3. Uniform flow: 0

af
£ #0

l=fo

- 4. Non-Uniform flow:

5. One dimensional flow  f=f(x,t) or f(s,t)
6. Two dimensional flow: f=f(xy,t)

7. Three dimensional flow: f=f(x,y,z,t)
1.2.2  Streamlines Pathline and streaklines

An imaginary line in the flow field such that at every point along it the velocity vector is

tangential to it is known as a streamline.

Equation of streamline is

path line is the path followed by a fluid particle during its travel.




A steam line in the path followed by all the fluid particles passing through a given point
space. A strcam tube consist of a group of streamlines.

- 1.2.3 Continuity Equation

The application of the principle conservation of mass to an elementary volume
gives continuity equation in any co-ordinate system.

For compressible ﬂﬁids,

dp dp, dp, dp,
P W, P, P _

i R VR i

" in vector form, -(;—f +V(pv)=10

r incompressible (homogenous or non homogenous fluids)

.4 Acceleration
celeration is the rate of change of velocity with time and it is a vector quantity. Convective

eleration is due to non — uniformity of flow where as local acceleration due to under

diness of flow. Tangential acceleration.

v

S

a =

s vS ﬁs




tis alohg the streamline and it is due to change in magnitude of velocity. Local tangential

acccleration is given by

Total tangential acceleration

dv, v, v

) s

2 o e gy

Convective normal acceleration due to change in direction of flow along a streamline is

equal to

vis
R

Where R is the radius of curvature of streamline.

n

i ov
Local normal acceleration = ——

ot

Where v, normal co'mponent of velocity generate due to change in direction.

o"vn_a"v"_'_vzs
at o R




1.2.5 Rotation and circulation
Rotation abou-t any and is defined as the average of angular velocities of two
clements
The rotation velocity is given by
W=0ito,j+ok

\

= EVXV

Circulaion I' around a close curve C is defined as the line integral of v.ds

alone the curve C, taken positive in anticlockwise direction.
P jv.ds

= I(udx + vdy + wdz)

c

the quantity 2w is known as Vorticity, which is also a vector quantity. If at every
point in the flow w, = w, = , is equal to zero, flow is called irrotational

otherwise it is rotational flow.

.6 Velocity Potential and Stream Function.




Velocity Potential Function ¢ is a scalar function of any of x,y,z and t such that it
negative derivative with respect to any of X,y,z gives the velocity component in that
direction.

Thus:

—

O =g x,y,z,t) and

for incompressible fluid , ¢ satisfies the Laplace equation

'y 3¢ 3¢
PR A

0

for 2- dimensional rotation or irrotational flow of incompressible fluids, a scalar function

P (x,y,t) can be defined such that




!

W

%y y

for irrotational flow  satisfies

Ity vy b
R
ie. Vi =20,

1.2.7 Laminar Flow
For Newtonian fluids, flow can be classified as laminar or turbulent,

depending on Reynolds number R = oV

U

Where 1 is the characteristic length, p is the density of the fluid, v is the velocity of the
flow and p is the viscosity.
The characteristics of laminas flow are

1. No slip at the boundary that is because viscosity velocity of fluid aty=0
If boundary is stationary or if equal to the velocity of the boundary if it is in
|

motion.

2. Because of viscosity there is shear between fluid layer which is given by

d .
F=a 22 for flow in the u — direction
dy




3. Flow is rotational

4. There is continuous dissipation of energy due to uncoil shear and energy hurt be
supplied emotionally to maintain the flow

5. There is no mixing between different fluid layer except by molecular motion which
is very small

6. Flow remains laminar as low as Reynolds number is less than the critical value.

7. Energy loss is proportional to first power of velocity and first power of viscosity.
laminar flower occurs in capillary tubes blood veins, in the case of flow géf?iny

bodies is lubrication bearings, under ground flow etc. characteristics 1, 3, 4 are true

for turbulent flow.

2.8 Turbulent flows

As mentioned in laminar flow, when the Reynoids number exceed the critical

value turbulent flow develops . Turbulent flows occur more often than in nature and

in engineering applications than laminar flow. The characteristics of turbulent flow can

be summarized as follows:-

1. No slip condition is satisfied at the boundary

2.Turbulent is generated due to instability of flow in region of high shear i.e. near the
boundary or at the interface of two moving layers. The former is called wall
turbulence while the latér is called free turbulence

3. Local velocity component, pressure ,force or any other quality associated with flow

11




éuch as local concentration, of abetment show random ﬂuqtuation.

4. Vigorousness of turbulent at any given point is measured by turbulence intensity

5. Turbulent flow is characterize by the presence of circulation fluid mass known as
cddies.

6. Presence of eddies is the flow maker it capable of efficient transport momentum,
mass or energy across the flow.

7. Presence of turbulence fluctuations in velocities causes additional normal and

tangential Stresses at any point.

1.2.9. Transition from laminar to turbulence Flow

Laminar flow takes place only at small values of Reynolds number. For pipe
flow Reynolds number must be less than 2100; for open channel flow, Reynolds
number must be less than 500. The Reynolds number at which flow cease to be

laminar is known as critical Reynolds number.




CHAPTER TWO
MATHEMATICAL REVIEW

20 . INTRODUCTION

In this chapter, we shall proceed to give a mathematical review of vectors,
Divergence of a Vector and the curl of a Vector. We shall also give the
Divergence and curl of a Vector in spherical coordinates.

A Vector is a quantity which posses both magnitude and direction and is
normally denoted by bold lower case letters or a line segment such as @ or

A 72 Where A = Qi + Qi JHGE cviiiionsivcivinpitin: SR 2:1:0

2.1 GRADIENT, DIVERGENCE AND CURL

Consider the Vector operator V (del) defined by

1z J J
VRSBt fr—+ &= vonresinpsriviy 2.1
lﬁx P +

dy Oz
Then if ®(x,y,z) and A(x,y,z) have continuous partial derivatives in a region,

we can define the following

2.1.0 Gradient: The Gradient of @ is defined by_

0




An interesting interpretation is that if O (x,y,z)=c¢

is the equation of a surface, then V@ is a normal to the surface.

2.1.1 DIVERGENCE The divergence of A is defined by

J J J
d. = 5 T e =, Je x. 2. 3
ivVA=V.4 (lﬁx+Jé‘y+ka”z)(Al+AJ+Ak)
_o”A.+o"Az+o"Aa 213
= a3 ﬂy e :

2.1.2 CURL  The curl of A is defined by

CulA=VxA

J 2 7
= | — i o I. 2. Jk
(lﬁx+Jﬁy+o"z)X(Al+AJ+A )

=

PN
N N

1
L
ox
A




0 9| |2 4 |2 2
=ilox  &|-jlox ozt klox oy
A A S 4 4

04 dA: 0A4s A

=('a7-';)'-(—a;-';;)“(

04: @}k
ox oy

............... 2.14
2.1.3  Examples: If & = x*yz® and 4= xzi- y*j+ 2x’yk
find the following;:

(a) Vo

(b) V.A

(c) VxA




Solutions:

LA AN
(a) V¢=[xax+10},+k&)¢

..'-@._._ 'ﬂ.‘_k.&;
xT Yy A

l l l
= i-a;(xzyz’)+ j;(xzyz’)+ k;(x’yz’)
= 2xp2’i+ 272+ 3 yk

a a
(b) V.A:(—Hi '+—k)(xzi—y2j+2x2yk)

&
J a V4
= Z(xz)+ 5(—y2)+ E(szy)

=z-2y.




e
x
Xz —yz

|2 radeld s
=i@l ﬁz-j& &'{-k
_yz 2x2 x'y 2.).'2

_Joedy_aep) Toedy den] [oer) a(xz)]
1T z || & & & &
= 2x%i- (x-4xy)j

(d)  V.(0A)=V[x*y2 (xzi- )+ 26 k)]
= V.(xJ yzi- x*y’2’j + 2x* yzz3k)
= 3x%yzt - 3x?y2 4 6xtyi2?




() Vx(¢A) = Vx(*yz'i- x*y2* j+ 2x*y’2°k)

i J k
Sl @ 9
& oy oz
% y3 R y3 e W y2 )
J a i 7
=il & Z |\-Jj| & 24
® xzyszs 2x4y2 3 x3yz4 2x4yzz3
Lo Tl
+k| ox oy
x3yz4 —x2y3z3

= (4x4 yz2* + 3x%y°2 )i+ (4x3 yz® - 8x°y’z ) j - (—2xy3z3 ~ x5t
+(—- 2xy°z° - x3z4')k

- 2.2 ORTHOGONAL CURVILINEAR COORDINATES
The transformation equation

x= f(u,u,u),

PR L ). b sosrvnmsansnssenines 223

z = h(u,uy,u;)
establish a one-to-one correspondence between points 4,2, , 1,
in X,y,z and
rectangular coordinate system.




In vector notation, the transformation (2.2.1) can be written as

r=xi+y+zk
= f(uyua, )i+ g, tz,us) j + h(u, uz, )k ... 222

A point P in space can then be defined not only by rectangular coordinates
(x,y,z) but by the coordinates (u,u,u,) as well. We call (u,u,u,) the
curvilinear coordinates of the point.

From (2.2.2)

o Y 2 or
ar = 7 du + 7 du: + adu: ....... 223

ar:- :
The vector i 1s tangent to the u, coordinate curve at P. If ¢, is a unit vector
1

. - . - . a
at p in this direction, we can write 4 = ‘jl

or

U

where A =

Similarly we can write

O
%z‘ = Jhe. and _ﬁ_z:; = hses




or

where h: = 25

dh: = lﬁ'— respectivel
and /2; = a"u; pect Y.
Therefore (2.2.3) becomes

dr = hidwe + h:du: + hsuses................. 224
where /1., /1. h, are scale factors.

1f e ex.es are mutually perpendicular at P, then the curvilinear coordinates

are called orthogonal.

Therelore the element of length ds is given by

ds* = dr.dr
= hlzduxz + hzzduzz + hszdusz

and corresponds to the square of the length of the diagonal in a
parallelopiped.

Also the volume of the parallelopiped is given by

dv= |(h.du-eu).(hzduzez).(hsduse:)l

NI il ... o esiv e cnnponssidbonssanen 226
o or _ or|

. pa]

- (x,,2)

2 a(ul‘uz'uj) TIDBES. .. toiinasinns sissmibines 227




d(x,y,2) | :
————1s the Jacobian of the transformation.
O, 12, 114)

where
2.2.1 GRADIENT, DIVERGENCE, CURL AND LAPLACIAN IN
ORTHOGONAL CURVILINEAR COQRDINATES
If @ is a scalar function and 4 = diei+ A.e:+ Ase: a vector function of

orthogonal curvilinear coordinates u:.us,u: we have the following results

, 1 0b 1 0D 1 oD
(l) V(D " hl a"u. el+hz 5Uzez+h3 ﬁusel

TR v J J
’ e el ) Y g PR () L 3h1 2 T hxth:
B 2 hlhzh,{au.(h“)*auz(h B )}

hie hae: hses
1 J 0 J

(lu) o hh:hs Oy Ou: Ous
hA h.A: hiAs
z VZC'D ¢ 1 J  h:h; 00 5 2  hsh 6O i 2  hih: 60 )}
(lV) 2 hhhs | Own ™ he ou Ju: ha ﬁuz Ous hs Ous

These reduce to the usual expressions in rectangular coordinates if we

21




replace (w.uus)by (%, y, z) in which case ei.es.esare replaced by i, j and

kand h|= hz= h3= 1
222  SPHERICAL COORDINATES

Given the spherical coordinates (r,0,¢) the transformation equation is given

by

x = rSinfCos¢

y = rSindSing

z= rCos0

where r2 0, 0< <7, 054 <27
Scale factor h=1l" h=r, h=rSinb

Element of arc length ds”is given by
ds® = dr® + r*d0* + r*Sin*0dy*

J(x,y,2)

= r2Sind
e

Jacobian

element of volume dr = r>Sinfdrdfdy




Laplacian:

1.8 o 1L .9 U ki £U
ViU = 5oy Sl

sind 50 "0 590 Tisiig G

% ar

2.3 LEGENDRE FUNCTION
2.3.1 LEGENDRE DIFFERENTIAL EQUATION

The Legendre’s functions arises as solutions of the differential equations

(1= ) =2yl fn+ 1)y = Ouueiiieiierniess 231

which is called the Legendre differential equation.

T‘hc general solution of (2.3.1) in the case when n=0, 1, 2, 3, ..... is given by;
y= ¢ B, (x)+ c,0,(x)

where P, (x) are polynomials called Legendre polynomials and O, (x) are

called Legendre functions of the second kind which are unbounded at

x=1%1

2.3.2 LEGENDRE POLYNOMIALS

The Legendre polynomials are defined by

e @2n-D@2n-3)......1 {x" _n(n- Dx"?  n(n-Dn-2)Hn-3)x"" b

n! 20-1)  24.2n- D@n-3).......

........ } ENRPER .\




where P, is a polynomial of degree n

The Legendre polynomial can also be expressed as

n

1 d
PR R € N | o . :
> (x) ol x“-1) 233
2.3.3 ASSOCIATED LEGENDRE FUNCTIONS

The differential equation

2

m
(l—xz)y”—2xy’+{n(n+l)— 1_xz}y=0 ............... 234

Is called Legendre’s associated differential equation. If m=o, this reduce to
Legendre’s equation. Solution to (2.3.4) are called associated Legendre’s functions.
2.4 Problem Formulation
In this section we shall proceed to given a brigf formulation of the problem of the
flow of fluid past a sphere.

Let a be the radius of the sphere and U be the speed of the uniform streaming
motion at in infinity assumed to be parallel to the positive x-axis of a system of
coordinates based on the center of the sphere. The velocity field UV and the space
coordinates can be non-dimensionalized with the aid of U and a respectively and the

equations of the motion will then be

24



VU - Vp= RV, VV =0....241

Where pvUp/ais the pressure, R = Ua/v  is the Reynolds number, p is
the density and v is the kinematic viscosity.

Neglecting the inertia terms in the absence of extraneous forces, the

equation is in the form

!

UV = @z . AT 242
ox




CHAPTER THREE
SOLUTION OF PROBLEM
3.0 METHOD OF SOLUTION

Considering the equation (2.4.2)

ViU = %P .......................... ..301
Which can be rewritten as
uV2U = %’%"‘ ............. 302
Taking ¢ = % , we have
i L 303
ox

Where ¢ is the perturbation parameter.

- we shall now proceed to expand U in terms of ¢ , we have
U=¢eUy+&'U + U, + &°Ujy+... 3.0.4

Putting (3.0.4) into (3.0.3) we have




" uV U+ ' uV U, + e*uV 32U, + ...

ou du du,
& 1 0 2 1 3 . .0.5
£ o + & o +¢ o + 3

Rearranging (3.0.5) in terms of order ¢, we have

e%uviUu,=0
ou,

e uVit = _o"x_o—
oU

e*uV2U, = EI—

and so on for higher order of ¢
31. SOLUTION OF ORDER ¢’ EQUATION
We shall proceed to solve the order ¢° equation given by

yvzuo &0 = V2Uo Y 3.1.0

Writing this order ¢° equation in spherical coordinates, we have;

l_g"_(rza”Uo) 1 a( au)+ O &

foagpeh - 0
2\ o )T Psing 50\°" 29 ) * Psin’ a7

............................ IRt LYY ORI 1 & |




Our method of procedﬁré will be as follows,

We try a solution of the form
U(r,0,8) = ROOO)D(P)-ccrrrrrrrrrrrre 312
Substituting this into (3.1.1) and dividing through by U = R& ® and multiplying by
2, we have
L, : |
2 OR 1 0 ,, ,0, . 1 5@

LE Sy —- 92 313
Rar( PR ®Sm00”9( m0 20 sine o

The first term depends only on r and the second (3.1.1) and third term (taken

together) only on # and ¢ (3.1.3) can be written as

and




1 d@ 1

d*®
—(Sz ) + = =
OSind do dg- ©Sin“0 d¢
from (3.1.4) |
2
1y, R, 2d'R]_,
Rl dr dr
Therefore, = S
»
2rdR+r2d f=/1R
dr ., dr
-y d*R dR
= g

(3.1.6) can be reduced by sﬁbétitutidn
r=expiir=e')
and writing  R(r)= S(t) o L

2
IS dS_ 4o,
dt dt

This has the solution

S(t)= Ar™ + Br*

Therefore the solution to the radial equation is

R(r) = Ar“ +! Bf"

29

T 315

.......................... 316




{

Where 4, + 4, = -1, and 4,4, = - 1 and we can take A, and A, as given

by / and — (1'+ 1)
A then has the form l(l o 1)

Hence we have the separated variable solution, which will have the form

U(r,0,4)=(Ar' + Brr™M@@)D(f)...cccueuenn....... 3.1.7

Where © and ® must satisfy (3.1.'5) with 4 = l(l + 1)

Multiplying (3.1.5) through by Sin6 and substituting for A, "
It takes a separated form.

7 2
Ll i(smad—@) F 10+ )Sint0 [+ 4L oo 318
o ao\""" dg ® dy

Taking the separation constant as m?, the equation in the azimuthal angle ¢

has the same solution as cylindrical polars.

1d°0 {
d*®
a7 =-m'®

®(4) = CCosmg + DSinm¢
For m=0, we have ®(¢)=C

Having settled tlie form of ®(¢), we are left only with the equation satisfied
by ©(F), which is

30



Sint d
® dJdb

|
[Sme%]ﬂ(ln)smw m'.......319

A change of independent variable from 0 to z = Cos0, will reduce this to a

form, from which solutions are known.

' . dz d d
Putting z = — == e S }4__
utting z = Cos@, a0 SmH 10 (1-z2%)

The equation for M(z) = © (¢) reads;
{

Al adM) [, - m o
dz[(l-z)dz]+[l(1+l)-l_22}M-O ............. 3110

This equation is the associated Legendre equation.

From (3.1.10),

d*M _ dM
= (1- %) :—-+[/(1+1)—1'_"2

d=* dz l
For m= 0, we have i

M dM
_ 2 _ JIATYM = O 3111
(=)= 25+ 0+ D :

(3.1.11) is the Legendre’s equation which we shall proceed to solve using

series solution method
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method.

Assuming a solution of the form

M(z)= i az
0

n=

then
dM C n-1
e i Y
" 2
M
= ) .n(n-1az"?
de ; (

Substituting into (3.1.11), we have

Z [n(n— Da,z"? - n(n- )a,z" - 2na, 2" + (1 + l)a,,Z"] =0

n=0

which on collecting terms gives

i [(n+ 2)(n+Da,,, - [n(n +1)-1(l+ 1)]a” ]Z" =0




The recurrence relation is therefore

2 [n(n+ 1)-0(/+ 1)]an
it = T lar D d)

For n=0,1,2,3...
When n =0, we have

~I(+1)
a, = 5

a,

When n=1, we have

4 [2- 1+ D]

2(3)

dy

Choosing a,=1and @, = 0, we have

[([+1) £ (=-2)I(l+ DI+ 3) 4

M (()=1- T T 3112
choosing a, = 0 and a, = 1, we have

[-D)([+2 [-3)([-D({U+2)+4
‘Mz(z)=‘z-(——2£-——)z3+( e X )g_s .............. 3.1.13

3! 5!




Since (3.1.12) contains only even powers of z and (3.1.13) contains only
odd powers, these two solutions cannot be proportional to one another and
are therefore linearly independent.
Hence |
M(2)= EM,(2) + FM,(z)
is the general solution to (3.1.10).
But for general M, M Y (z) and M, (z) are the associated Legendre

function, which can be written as P," (:) and Q)" (Z) :

Therefore, M"(z)= EP"(z)+ FO}" (2)

Now that the solution of each of the three ordinary differential equation

R,0 and ® have been obtained, we may assemble a complete separated
|

variable solution in spherical polars. Itis

U(r,0,4) = (AI.'I + BrmY )(CCosm¢ - DSinm¢)[E1’,”’(C0s6)+ FQ,’"(C()S&)].

........................ (3.1.14)
Since the flow 1s symmetric about the sphere, we have m = 0, therefore

(3.1.14) becomes

Since (J, denotes an infinite series, which can exist mathematically

but is invariably unreasonable on phyéical ground, because the solution 1s

expected to be finite, it cannot contain Q,
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Therefore 3.1.15 becomes

U(r,0)= Y, [ 4r' + Br*[B(CosO)]}.......... 3116
1=0 )

(3.1.10) is the general form of the solution.

Using the boundary condition at = o, U =0
4=0
We have s
= Ur@= 38" | BACos)]niiviniint 3117
1=0

Using the boundary condition r=a, U= U, we have

U8y 0Bt Y BCat)f i B 3118
1=0
U(a,0) = U,

We shall now obtain the value of B,. Using the mutual orthogonality of

Legendre Polynomials
We have

Ba - 2’2" .o jp(z)dz T
Therefore

B gt 2 21; Lo, IP(z)dz from 3.1.17




= the solution required will become
o

U@0)=Y o2, jp(z)dzr"“’[P(ccsa)]

=0

A U,a a Ta
0\ = <2 bl W3 ) b
u(r,0) - [H * P,(Co.sﬁ) = PJ(Cos€)+...J .......... (3.119)




CHAPTER FOUR
NUMERICAL RESULTS

Considering the solution of the order ¢° equation then

U(r,0) = i g0 22 1U j P(z)dz.r (’“)[P(Cosé’)]
. =0

3
U(r.0) = 2% 1422 p.(Cost) - %_P,(Cosb)+.... 401
ar 2r L 8r . .

We proceed to analyse the above solution using MATHCAD. The
tables and graphs in the subsequent pages shows the different values of

U(r,8)against @ for % = y taken as a constant.
The equation 4.0.1 is written in MATHCAD as follows:

b:=0 c¢:=10 d:=360

b:=b.deg c:=c.deg D:=d.deg

Uy=01 #;:=01011.02 #:=b,c.d B:=0,10..360

3 3 1 7
1+ =, — —.,u,.(Sm(—.H))2 o
Y 2 2 8
Ul(o’#l)’_—'ﬂ' 210
84" (Sin O - 20 (Sin(- )"




Table 4.1

0=

deg

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

Flow distribution for values of a/r =0.1 to 0.14
U1i6,0.1! = U1(8,0.11) = U1i8,0.12} =U1(8,0.13} = U1i,0.14} =
5.746-10-3 6.401-10-3 7.071f-10-3 7.75510-3 8.45310-3
5.74310-3 6.399-10-3 7.069-10-3 7.75410-3 8.45410-3
5736103 6.39210-3 7.06410-3 7.75310-3 8.45710-3
5723103 6.381-10-3 7.056-10-3 7.749-10-3 8.461-10-3
5.70510-3 6.364-10-3 7.04310-3 7.74210-3 8.463-10-3
5.682110-3 6.343-10-3 7.02510-3 7731103 8.46310-3
5.65510-3 6.316-10-3 7.00210-3 7.71510-3 8.458-10-3
5623103 6.28410-3 6.97310-3 7.692110-3 8.446-10-3
5587103 6.247-10-3 6.938-10-3 7.66310-3 8.426-10-3
5.548-10-3 6.207-10-3 6.898-10-3 7.62710-3 8.399-10-3
550710-3 6163103 | 6.855-10-3 7.586-10-3 8.364-10-3
5.46510-3 6.11810-3 6.808-10-3 7541103 8.32210-3
5424103 6.074-10-3 6.761-10-3 7.49310-3 8.277110-3
5.386-10-3 6.031-10-3 6.716-10-3 7.446-10-3 8.23110-3
5352103 5.993-10-3 6.67410-3 7.40310-3 8.18710-3
5.32310-3 5.961-10-3 6.639-10-3 7.36510-3 8.14810-3
5.30210-3 5.937-10-3 6.612:10-3 7.33710-8 8.11810-3
5.28910-3 5.92110-3 6.59510-3 7.31810-3 8.099-10-3
5284103 5916103 6.59-10-3 7.312:10-3 8.09210-3
5.289-10-3 5.92110-3 6.59510-3 7.31810-3 8.099-10-3
5.302:10-3 5.937-10-3 6.61210-3 7.33710-3 8.11810-3
5.32310-3 5.961-10-3 6.639:10-3 7.36510-3 8.14810-3
5352103 5993103 6.67410-3 7.40310-3 8.18710-3
5.386-10-3 6.03110-3 6.716-10-3 7.44610-3 8.23110-3
5424103 | 6.07410-3 | 6.761-10-3 7.49310-3 8.27710-3
5.46510-3 6.11810-3 6.808-10-3 7541103 8.32210-3
5507103 6.163-10-3 6.85510-3 7.586-10-3 8.364-10-3
5548103 6.207-10-3 6.898-10-3 7627103 8.399-10-3
5587103 6.24710-3 6.938-10-3 7.66310-3 8.426-10-3
5623103 6.284-10-3 6.97310-3 7.69210-3 8.446-10-3
5.65510-3 6.316-10-3 7.00210-3 7.71510-3 8.458-10-3
56821103 6.34310-3 7.02510-3 7731103 8.463-10-3
5705103 6.364-10-3 7.04310-3 7742103 8.463:10-3
5723103 6.381-10-3 7.056-10-3 7.74910-3 8.461-10-3
5736103 6.392-10-3 7.06410-3 7.75310-3 8.457-10-3
5743103 6.399-10-3 7.069-10-3 7.75410-3 8.454-10-3
5.746-10-3 6.401-10-3 7.07110-3 7.75510-3 8.453-10-3
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Table 4.2

Flow distribution for values of a/r =0.15 to 0.2

U1(6,0.15) =U1{6,0.16) = U1(6,0.17} =U1¢6,0.18] U1i6,0.15U1(6,0.2}

0=
deg[9.16510-3 9.891-10-3 [0.011]

10 9.169-10 3 9.89810-3 0.011

20 8178103 [9.31610-3 0.011

30 9192103 9.94310-3 0.011

40 9208103 9977103 0.011

50 8223103 0.01 0.011

60 8.234103 0.01 0.011

70 9.23810-3 0.01 0.011

80 9233103 0.01 0.011

30 8.219-10-3 0.01 0.011

100 9194103 0.01 0.011
110 8.161-10-3 0.01 0.011
120 8121103 0.01 0.011
130 8.077-10-3 9.995:10 -3 0.011
140 8.03510-3 9.95610-3 0.011
150 8.996-10 3 9.91910-3 0.011
160 8.966-10-3 9.89-10 3 0.011
170 8.94610-3 9.87-10 3 0.011
180 89410-3| [9.86410-2 0.011
190 8.94610-3 9.87-103 0.011
200 8.96610-3 9.8910-3 0.011
210 8.996-10 3 9.919-10 3 0.011
220 9.03510-3 9.956-10-3 0.011
230 8.07710-3 9.995-10 3 0.011
240 9121103 0.01 0.011
250 9161103 0.01 0.011
260 9194103 0.01 0.011
270 9219103 0.01 0.011
280 9233103 0.01 0.011
290 9.23810-3 0.01 0.011
300 9.234-10-3 0.01 0.011
310 9.22310-3 0.01 0.011
320 9208103 9.97710-3 0.011
330 9192103| [9.94310-3 0.011
340 8178103 9.91610-3 0.011
350 9.16910-3 9.89810-3 0.011
360 9165102 | [9.891-103 0.011
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0.011 0.012 0.013
0.011 0.012 0.013
0.011 0.012 0.013
0.012 0.012 0.013
0.012 0.012 0.013
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 0.015
0.012 0.013 | 0.015
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.013 0.014
0.012 0.012 0.013
0.012 0.012 10.013
0.011 0.012 0.013
0.011 0.012 0.013
0.011 0.012 0.013




Table 4.3 Flow distribution for values of a/r =0.3 to 1.0

B = U1i6,0.3) = U1i6,05! = U1(6,08) = U1ig,1i = U1i6,0.15U1i6,0.2]
0| deglo0.021 0.041 0.07 0.081 0.012 0.013
10 0.022 0.043 0.083 0.113 0.012 0.013
20 0.022 0.048 012 0.204 0.012 0.013
30 0.023 0.057 0.18 0.352 0.012 0.013
40 0.024 0.068 0.258 0.546 0.012 0.013
50 0.026 0.082 ~ [o0:352 0.776 0013| [o014
60 0.028 0.097 0.455 1.03 0.013 0.014
70 0.029 0.112 0.562 1.296 0.013 0.014
80 0.031 0.128 0.669 1.562 0.013 0.014
90 0.032 0.142 0.772 1.816 0.013 0.014

100 0.034 0.156 0.866 | 2.05 0.013 0.014

110 0.035 0.168 095 2.258 0013| . [0.014

120 0.036 0.178 1.022 2.437 0.013 0.015

130 0.037 0.186 1.081 2.584 0.013 0.015

140 0.037 0.192 1.128 2.7 0.013 0.015

150 0038| ' [o197 1.162 2.787 0.013 l0.015

160 0.038 0.2 1.186 2.847 0.013 0.015

170 0.038 0.202 12 2.882 0.013 0.015

180 0.038 0.203 1.205 2.894 0.013 0.015

190 0.038 0.202 1.2 2.882 0.013 0.015

200 0.038 0.2 1.186 2.847 0.013 0.015

210 0.038 0.197 - [1.162 2.787 0013 [0.015

220 0.037 0.192 1.128 2.7 0.013 0.015

230 0.037 0.186 1.081 2.584 0.013 0.015

240 0.036 0.178 1.022 2.437 0.013 0.015

250 0.035 0.168 0.95 2.258 0.013 0.014

260 0.034 0.156 0.866 | | 2.05 0.013 0.014

270 0.032 0.142 0.772 1.816 0.013|- [0014

280 0.031 0.128 0.669 1.562 0.013 0.014

290 0.029 0.112 0.562 1.296 0.013 0.014

300 0028| . [o.097 0.455 1.03 0.013 0.014

310 0.026 0.082 0.352 0.776 0.013 0.014

320 0.024 0.068 0.258 0.546 0.012 0.013

330 0.023 0.057 018 0.352 0.012 0.013

340 0.022 0.048 012 0.204 0.012 0.013

350 0.022 0.043 0.083 0.113 0.012 0.013

360 0.021 0.041 | 007 0.081 0.012| [0.013
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0.0058
0.0057

0.0056
U1(0,0.1)0.0055

0.0054

100053

| | | 1 J

0.0052

0.0065
0.0064
0.0063

u1(0,0.11)0.0062

————

0.0061
0.006

0.0059

50

100

150 200 250 300 350 400
0

deg

Graph 1: The flow pattern (mhu = 0.1)

50

100

150 200 250 300 350 400
0

deg

Graph 2: The flow pattern (mhu=0.11)
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Graph 3: The flow pattern (mhu = 0.12)
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Graph 4: The flow patlern (mhu=0.13)
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Graph 5: The flow pattern (mhu = 0.14)
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Graph 6: The flow pattern (mhu = 0.15)
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0.01005 =
0.01 4
ui(0,0.16)
0.00995 =
0.0099 -
' | | 1 | | | 1
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0'00.9 80 o 100 150 200 250 300 350 400
. 58
Y deg .
Graph 7: The flow pattern (mhu = 0.106)
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0.0109 -
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0.0108 vy
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it 1 | ! ] | ! I
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Graph 8: The flow pattern (mhu = 0.17)
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Graph 9: The flow pattern (mhu = 0.18)
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Graph 10: The flow pattern (mhu = 0.19)
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0.014 3
u1(0,0.2)
0.0135 ¢
0.013 J
L i 1 | | ] |
2T 50 100 150 200 250 300 350 400
L
deg
Graph 11: The flow pattern (mhu =0.2)
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Graph 12: The flow pattern (mhu = 0.21)
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~Graph 13: The flow pattern (mhu = 0.22)
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Graph 14: The flow pattern (mhu = 0.23)
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Graph 15: The flow pattern (mhu = 0.24)
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Graph 16: The flow paltcm_(mhu =(.25)
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Graph 17: The flow pattern (mhu = 0.3)
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Graph 18: The flow pattern (mhu = 0.5)

49




u1(0,0.8)

“)

o

!
0.5
0

T T T T T T T
| ] | | I o ]
0 50 100 150 200 250 300 - 350 400
S
deg
Graph 19: The flow pattern (mhu = 0.8)
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Graph 20: The flow pattern (mhu = 1)
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CHAPTER FIVE

5.1.0 Discussion and Summary

The flow past a sphere has been solved to the order &° equation and
graphs of the flow were plotted for various values of % ;
From the graphs, the flow pattern is discovered to be gaussian which is
symmetrical about 180°

The flow also increases steadily to a peak and then decreases, which shows

that the flow is Lamina.

5.2.0 Conclusion and Recommendation

In this research, we have succeeded in analysing the flow past a sphere using
the Legendre Polynomial functions for the order ¢° pertubation parameter and

graphs were plotted showing the flow pattern.

Interested researcher may solve this problem for higher orders.
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