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ABSTRACT 

Only system that can be modeled as one-dimensional continuous 

mechanical or electrical media, in particular continuum models of rods, which 

undergo uniaxial deformation due to longitudinal forces, will be considered in this 

dissertation. Systems that by their continuous nature are said to possess an 

infinite number of degrees of freedom. One-dimensional continuous dynamics 

models lead to partial differential equations (POE) of motion. Hamilton's principle 

was used to derive the equations of motion with the significant benefit of 

providing the natural boundary conditions. We define the terms in the 

approximate variational indicator and then use the calculus of variations to obtain 

the equations of motion as well as the natural boundary conditions. We also 

discover that the amplitude of vibration of the rod rises when the cross sectional 

area of the rod and the speed at which the wave propagate increases. 
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CHAPTER.ONE 

1.1 INTRODUCTION 

One dimensional continuous mechanical models lead to partial differential 

equations (PDE) of motion. In particular, partial differential equation is an 

equation involving one or more partial derivatives of an unknown function of two 

or more independent variables. 

Rod is thin, straight piece of metal. Rod is a structure, which undergo uniaxial 

deformation due to longitudinal forces. 

The basic requirements for formulating the equation of motion for mechanical 

system are:-

(i) Geometric requirements on the motions 

(ii) Dynamic requirements on the forces, and 

(iii) Constitutive requirements for all the system elements and fields. 

In formulating the equations of motion for a specific model, we begin by defining 

the geometric constraints on the system which is a requirement that restricts or 

imposes the system's spa·tial motion. 

Requirement 2 satisfies the Hamilton's principle. Hamilton's principle states that 

the variation of the kinetic energy and potential energy plus the variation of the 

work done by the nonconservative force considered during any time interval t to t 

must equal zero. This approach enables us to obtain all boundary condition with 

ease. 

Requirement 3 will be satisfied by introducing the constitutive information 

characterizing the system's elements and field. This Is accomplished In terms of 
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work like and energy like expressions, enunciated in accordance with the 

constitutive relations, which are rendered in terms of the geometrically admissible 

states. 

A continuous system-containing rod considered is of two-degree-of

freedom systems. An admissible variation of a generalized coordinate is a 

hypothetical contemporaneous change from one geometrically allowable state to 

a neighbouring geometrically allowable state. The number of independent 

admissible variations in a complete set of admissible variations is the number of 

degree of freedom. 

Generally rods are being excited by externally applied forces, the 

distributed longitudinal force and the prescribed force. Rod models are useful in 

analyzing longitudinal vibration and wave propagation in ship propulsion 

systems, such as those in ocean liners and aircraft carriers. 

1.2 AIMS AND OBJECTIVES 

The aim of this study is to carryout investigation on the longitudinal 

vibration of a rod, whiGh undergoes uniaxial deformation due to longitudinal 

forces. 

The objectives of this study include the following:-

(i) To derive the equation of motion and the boundary condition defining 

the longitudinal vibration of the rod, this is formulated using the 

variational indicator of the Hamiltonian principle. 
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(ii) 

(ii~ 

1.3 

To obtain the analytical solution to the derived partial differential 

equation for system models containing no generalized forces and 

system containing a longitudinal forces distribution. 

To provide graphical summaries of the system responses 

SCOPE AND LIMITATION 

The governing equation of motion was formulated using variational Indicator 

of the Hamiltonian principle. The analytical results for the initial boundary value 

problem for system containing a longitudinal force di.strlbutlon f(x,t) was obtained 

only when f(x,t) is separable in to spatial and temporal functions and the temporal 

function is harmonic. The boundary condition assumed Is the simple-supported 

ends condition. 

1.4 FEATURE OF THE DISSERTATION 

Chapter 1 gives general overview of the problem. In chapter 2 relevant 

scientific literatures are reviewed together with brief explanation on Hamiltonian 

principle as well as review of partial differential equations. Chapter 3 gives the 

analytical methods of solutions, where the governing equation of motion was 

derived using the variational indicator of the Hamiltonian principle. In chapter 4 

the problem statement was formulated and the initial-boundary value problem of 

the Rod was solved using the method of separation of variable. Chapter 5 gives 

the numerical simUlation as well as the discussion of simulated results with the 
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graphical representation of the results. Finally conclusion and recommendation 

for future study were also stated. 
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CHAPTER TWO 

2.1 LITERATURE REVIEW 

Continuous systems are systems that are generally referred to as system 

with infinite number of degree of freedom. One dimensional continuous dynamics 

models lead to partial differential equation (POE) of motion. Various researchers 

over the years have immensely contributed in the field of dynamic especially 

continuous systems containing rod . 

The works of the following researchers are relevant in this dissertation. 

Sergey B and Olga N. (2002) considered the features of longitudinal 

compression waves propagating in a finite-cross-section homogeneous elastic 

rod. They provided a new method for obtaining exact analytical solutions for 

vibrant elastic systems. They also proved that the velocity of accompanying 

transversal wave's propagation is equal to the velocity of longitudinal wave, 

while the velocity of accompanying longitudinal wave is equal to the velocity of 

transversal wave when equal velocities of the main longitudinal and transversal 

waves are involved. In addition, they proved that in case of equal coefficients of 

longitudinal and transversal stiffness, the direction of vibrations of an elastic 

lumped system will always coincide with the direction of the external force action. 

Wang and Varadan (2002) Presented the results of longitudinal wave 

propagation in piezoelectric coupled rod structures. They based their deduction 

of non-dispersive or dispersive characteristics of the structures on a classical rod 

model and the Mindlin-Herrmann rod model. Using classical model, they 

introduced correction factors for piezoelectric effects to provide re-medy for the 
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discontinuity of the normal stress at the interface of the host rod and the 

piezoelectric layer. The model they used is more accurate in predicting the 

dispersive characteristics of the structures. They obtained the results of the long

and short-wavelength limits as by-products. The results of phase velocity by the 

two models are agreeable at low wave number by adjusting the correction factor 

defined in the classical model. 

Fairhurst (1961) describe what happened when two rods impact. Across 

the plane of contact two conditions must be fulfilled during impact: (1) the contact 

forces in the standard penetration test (SPT) hammer and the rod must be equal; 

and (2) the absolute spatial velocities of the striking end of the hammer and the 

struck end of the rod must be equal at all times when the two surfaces are in 

contact. 

Kupka and Kupkova (2001). Presented some results of a theoretical 

investigation on the 'free flexural vibration of a slender prismatic rod containing 

the materials for which the elastic moduli in tension and compression may differ. 

For simplicity they considered rod that possessed a longitudinal plane of 

symmetry, and the initial condition adjustment and support are also symmetric 

with respect to this plane. The equation of motion they derived is nonlinear, no 

matter how low the amplitude of flexural vibration is. The nonlinearity is based on ' 

the fact that the flexural rigidity of the rod depends on the sign of a local 

curvature of the bent rod treated as an elastic line. They also investigated the 

particular solution that corresponds to the fundamental mode of flexural vibration. 

They observed that in the mode, the rod performs periodic, though not ' simple 
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harmonic, vibration. The frequency of this vibration is derived as a function of the 

material and geometric properties of the rod 

Lafortune (2003) worked on systems appearing in elastic rod theory. The 

dynamical equations of elastic rods widely in his research work are due to 

Kirchhoff. These equations are applicable to the case when local deformations 

relative to an undistorted configuration remain small, although rotations may be 

large. Almost all the analyses done on the Kirchhoff equations are shown to 

support time-dependent solutions. 

In a series of papers, Goriely et al (1997,1999,2001) obtained the 

amplitude equations describing the dynamics of a rod beyond its first writhing 

instability. 

Shim (2002) described an eigen value conforming model for a vibration 

rod. He named the · model as a spectral conforming discrete model, which 

estimates the n lowest eigen values of the continuous system with uniform 

accuracy. The essential ingredient he used in building up such a model is the 

inverse eigen value problem of reconstructing a chain of mass-spring system 

with prescribed spectral data. On his future research in this work, he extends the 

method to include tapered elements that can better capture the geometry of a 

non-uniform rod. Broadening the method over two and three-dimensional 

elements appears to be a challenging problem. 

Stoneley (1924) considered a more general problem of the . wave 

propagation at the separation surface of two solid media. He showed that in 

media there must propagate as waves similar to Rayleigh waves, and their 
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amplitudes must reach the maximum at the separation surface. He also studied 

the generalized type of love wave, which propagates along the interior stratum 

limited from both sides by the thick layers of material distinguishing by its elastic 

properties. 

Karavashkin and Karavashkina (2002) proved that in case of equal 

coefficients of longitudinal and transversal stiffness, the direction of vibrations of 

an elastic lumped system will always coincide with the direction of the external 

force action. Also longitudinal deformation will be accompanied by transversal 

deformation. And the transversal deformation will be accompanied by that 

longitudinal deformation. 

2.2 HAMILTON'S PRINCIPLE 

Newton's laws of motion are often considered to be fundamental 

postulates for describing the motion of particles in a gravitational field, at least 

from our daily viewpoint. In a more general picture this is not so. Not only are 

they just a result of the general theory of relativity, they can also be derived from 

a more general principle, namely Hamilton's principle. Newton's laws of motion 

are just examples of equations that can be deduced from Hamilton's principle. 

Hamilton's principle is an "integral principle", which means that it 

considers the entire motion of a system between time t1 and t2. What is meant by 

this needs to be specified somewhat. The instantaneous configuration of the 

system is described by the values of n generalized coordinates qp".,qn' and 
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corresponds to a particular point in a Cartesian hyperspace where the q-s form 

the n coordinate axes. This n-dimensional space is known as the configuration 

space. As the time evolves, the system point moves in this configuration space, 

tracing out a curve. This curve describes the path of motion of the system. The 

configuration space can be very different from the physical three-dimensional 

space, where only three coordinates are needed to describe a position at any 

give time. For example, a system that is being described both by the spatial 

coordinates and the velocities would have a six-dimensional configuration space 

at any given point in time. 

Hamilton's principle is a version of the integral principle which considers 

the motion of a mechanical system described by a scalar potential that may be a 

function of the coordinates, velocities and time. The integral, often also reffered 

to as the action, 

(2.1) 

Where V.I Is the variational Indicator, T and V being the Kinetic and 

Potential energy, respectively. EJ (j=1,2, ... ) is the generalized forces and g'j 

(j=1,2, ... ) being the generalized coordinates and the n associated admissible 

variations Mj. 
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If we adopted the convention that all admissible variations vanish at t1 = t 

and 

t= t2.ln this case, the last term in equation (2 .1) vanishes, which result in to 

V.l ~ ,[[8(T' -V)+ ~EJ8~j}' (2.2) 

Equation (2.2) is Hamilton's principle which, in words. we express as the 

variational indicator for mechanical systems. 

2.3 PARTIAL DIFFERENTIAL EQUATION 

Partial differential equations occur in various physical and engineering problems 

when the functions involved depend on two or more independent variables . 

An equation involving one or more partial derivatives of an unknown function of 

two or more independent variables is called a partial differential equation. The 

order of the highest derivative is called the order of the equation. We consider 

partial differential equation of orders one and two only since these are the ones 

which are mostly used in this dissertation. 

The most general second order linear partial differential equation in two 

independent variables is 

fl u flu fiu au au 
a - + b-- +c-+d-+e-+!u=g 

axz d'(ay ayZ Ox Oy 
2.3 

where a, b, c, d, e, f, and g, are functions of x and y. if g = 0, the equation 2.3 is 

said to be homogeneous. 

The general linear partial differential equation of order higher than one in two 

independent variables is 
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Because of the nature of the solution of equation 2.3 the equation is often 

classified into three categories, namely; 

Elliptic if b2 
- 4ac < 0 

Parabolic if b2 
- 4ac = 0 

Hyperbolic if b2 
- 4ac > 0 

Some important linear partial differential equations of the second order are 

flu + flu = 0 (two - dimensional Laplace's equation) 
(k2 8y2 

flu 
+ -2 = /(x,y) (two - dimensionalPoisson equation) 

8y 

au a2u 
= c2 _ (one - dimensional heat equation) 

at (k2 

02U 2 02U 
(one - dimensional wave equation) = c-ot2 (k2 

Where c is a constant, t is the time variable and (x, y) are Cartesian coordinates. 

A boundary - value problem involving a partial differential equation seeks all 

solutions of a partial differential equation which satisfy conditions called boundary 

conditions 

There are many methods by which boundary value problem involving linear 

partial differential equations can be solved. The following are among the most 

important 

I. General solution 

II. Separation of variables 

III. Laplace transform methods 
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IV. Complex variables methods 

The method of separation of variables Is assumed that a solution can be 

expressed as a product of unknown functions each of which depends on only 

one of the independent variables. The success of the method hinges on being 

able to write the resulting equation so that one side depends only on one variable 

while the other side depends on the remaining varjables so that each side must 

be a constant. By repetition of this, the unknown functions can then, be 

determined. Superposition of these solutions can then be used to find the actual 

solution 
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CHAPTER THREE 

3.1 INTRODUCTION 

The purpose of this chapter is to derive the equation of motion and the 

boundary conditions for the system containing a rod undergoing longitudinal 

motion. The derivation of the equation of motion for the system with the boundary 

condition is presented in section 3.2. This is followed by solving the governing 

equation of motion for system models containing no (nonconservative) 

generalized forces in section 3.3. Finally, the solution to the governing equation 

of motion for system containing a longitudinal forces distributed is illustrated in 

section 3.4. 

3.2 DERIVATION OF THE GOVERNING EQUATION OF MOTION 

Considering the system containing a rod undergoing longitudinal motion as 

sketched below. 

p = density 

A = cross-sectional area 

E = elasticity 

L = equilibrium length 

M1 = mass attached to the left-hand end of the rod (x=O) 

K = an elastic element having a spring constant 

M2 = mass attached to the right-hand end of the rod (x=l) 

c = dissipative element characterized by a linear dash pot constant. 
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---+ F(t) 

~(x, t) p,A, E, /(x, t) 

k 

1 

To -derive the equation of motion and th~ boundary condition for the system, we 

consider the Hamilton's principle for mechanical systems 

I, " . 

V.J = f[8(T* - V)+ LEj8~j ]dt . 
. fl j =1 

3.1 

Where 

r* = ~M [o~(O,i)]Z + J' ~ "'A[o~(X't)]Zdx+!M [a~(l,t)] 
2 1 at 2 J-C1 at 2 2 . ot 

. 0 . 

3.2 

is the kinetic coenergy function consists of contributions due to the masses M1 

and M2 and the mass 'PA (per unit length) of the rod . . 

3.3 

is the potential energy function consists of contributions due to the spring K and 

the strain energy of the elastic rod. 

If o~(l t) . 
LEi8~i = /(x,t)8~(x,t)+F(t)84(l,t)-c ' 8~(1,t) 
i - I ot 

3.4 
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is the no conservative force contributions. 

~ (x,t) which is the generalized coordinate for the rod is the longitudinal 

displacement of the section whose equilibrium position is x. Because of the 

selection of a continuous model, we observe that the generalized coordinate is 

not only a function of time but is also a function of space. Thus we resolve that 

~j : ~(x, t) and 

Note that throughout the calculation ~ behave mathematically as d. 

Substitution of equation 3.2 through 3.5 in to equation 3.1 gives 

- !K[c;(O,t)j - J !EA[O~(X,t)]2 dx }+ f(x,t)8~(x,t) 
2 02 (k 

~18HM,[o~;.t)J}+Ht ~p4[O~~.t)r d<}~ 

+ H~M,[O~~t)ndt+[ {~K[~(O.t)I' }dt 

We now evaluate equation 3.7 term by term with the notation that 
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3.8 

and 

3.9 

Applying equation 3.8. we have 

3.10 

Solving 3.10 by integration by parts yields 

3.11 

In accordance with Hamilton's principle that the variations vanish at t1 and t2. the 

first term on the right-hand side of equation 3.11 vanish. 
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Also J S{s! p4[a~(x,t)]2 dx}dt 
t( 0 2 at 

= J dx{f.l4 a~(x,t) 8~(x,t) [: J ~[p4 a~(X't)]8';(X,t)dt} 
o at t at at 

( , 

3.12 

3.13 

In accordance with Hamilton's principle that the variations vanish at t, and t2, the 

first term on the right-hand side of equation 3.13 vanishes. 

3.14 

Also by considering the evaluation of the first integral in 3.7 we observed that 

3.15 

More so 

J s{-~K[~(O,t)f}dt = J -!K.2[~(O, t)}5e(O,t)dt 
t( 2 tt 2 

t) 

= -J K,;(O, t)~(O, t)dt 3.16 
t, 

Also 
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J o{-J !EA[0~(X,t)J2 dx}dt = J dtJ - !EA.2[OQ(X, t)]O[O~(X't)]dx 
t, 0 2 &; Cj 0 2 &; Ox 

We now substiMe equations (3.12), (3.14), (3.13), (3.16) and (3.17) in equation 
(3.7) which gives 

3.18 

On rearranging we have, 

V I = tf1(fl {- pA[02~(X' t)]+ ~[EA O~(X,t)]+ !(x t)}o~(X t)dx 
• o · at 2 Ox Ox ' , . 

" . 
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{
-M [fi'~(/,t)]+ F(t) _ c o~(l, t) _ EA O~(/,t)}t5~(1 t) )dt 

2 ot2 Ot Ox ' 

Hamilton's principle requires that the variation indicator in equation (3.19) 

vanishes for arbitrary admissible variations of the generalized coordinates. Thus, 

the necessary conditions that equation (3.19) vanishes for arbitrary values 

of t5~(x,t) in (0, I) for arbitrary values of t5~(O,t) at x = 0, and for arbitrary values 

of t5~(/,t)at x = I is that each term in (3.19) vanishes independently. 

Thus; 

O<x<1 3.20 

Equation (3.20) is the governing partial differential equation for the longitudinal 

motion of the rod. More also; 

with initial conditions ~(x,O) and o~(x,O), 0 < x < I , which are the longitudinal ot 
displacement and longitudinal velocity throughout the rod at time t = o. 

and 
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(y2~ o~ o~ 
M 1 -

1 
+ c-+EA-= F(t) at at ax · x= l 3.22 

Equations (3.21) and (3.22) are called the natural boundary conditions, where 

f(x,t) and F(t) are the external forces. We shall seek solutions to the governing 

partial differential equations in equation (3.20). 

3.3 SOLUTION TO THE GOVERNING EQUATION OF MOTION FOR 
SYSTEM MODELS CONTAINING NO (NONCONSERVATIVE) GENERALIZED 
FORCES. (FREE MOTION) 

Considering the POE in equation (3.20), since the system contain no 

generalized forces, we seek the solution to the generic equation of motion (3.20) 

with f(x,t) = 0; namely 

=> 3.23 

where the parameters P1 = -A and P2 = EA are assumed to be constant 

throughout the extent of the one-dimensional continua. 

Equation (3.23) can be written as 

3.24 
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where 

We shall use the method of separation variable to solve equation (3.24). 

Let assume the solution to be 

~(x,t) = X(x)T(t) 3.25 

where X (x) a function of x only, T (t) is is a function of t only. 

Substitution of equation (3.25) in to equation (3.24) gives 

3.26 

Dividing both side of (3.26) by X(x)T(t), we have 

1 d 2T c
2 

d 2X 
--=-q---
T(t) dt 2 X(x) dx 2 3.27 

The left hand side and the right-hand side of equation (3.27) are functions of t 

and x only respectively. Hence, in order for equation (3.27) to hold for all values 

of t and for all values of x, 0 < x < I, both side of equation (3.27) must be equal to 

a constant say u. 

Therefore equation (3.27) becomes 

1 d 2T 
--=a 
T(t) dt 2 

3.28 

and 
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c1 d1X 
-q---=a 
X(X) dx1 

d1.X a 
---X(x)=O 
dx1. c1. 

q 

3.29 

Equation (3.28) and (3.29) gives two ordinary differential equation, which we now 

solve. 

Considering equation (3.28). the characteristic equation is given' as 

r1. = a => r = ±£ 3.30 

In which the general solution of (3.28) is given as 

T(t) = a'e"t + b'e"Jt 3.31 

Substituting (3.30) in (3.31) gives 

where a' and b' are two unknown coefficients. 

leta .= _m1. 

Then T(t) = a' e it + b' e- it 

Where isH 

Now by making the substitution of e±itlll = cos CtJt ± i sin CtJt , we have 

T(t) = a'cos aJt + a'isin 0Jt + b'cos 0Jt - b'isin lOt 

= (~'+b')cosaJt + (a'-b')isin mt 

= acos cd + bi sin cd 3.32 

The case when <X. In equation (3.28) Is zero, we have 
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which gives the general solution to be 

T(t) = a+ bt 3.33 

Note that a and b In equation (3.32) and a and b In equation (3.33) are not the 

same. 

The function T(t) is known as time function. 

Considering equation (3.29), the characteristic equation is given as 

2 a £l}2 
m =-=-- since a= - £l}2 

c2 c2 
q q 

. 01 . .. m=±-, 
cq 

which gives the general solution of (3.29) to be 

X(x) = ccos~x+ dsin ~x a;tO 
cq cq 

The case where a. is zero, we have 

X(x)=C+~ 01=0 

3.34 

3.35 

where c and d in equation (3.34) and c and d in equation (3.35) are unknown 

coefficients, which are not equal. 

The function X(x) Is known as Elgen functions. 

Substituting equation (3.32) and (3.33) in equation (3.25) and substituting 

equation (3.34) and (3.35) In equatton (3.25) give (3.38) and (3.37) respectively. 
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That is 

~(x, t) = (acos (i)t + bsin (i)t)(ccos ~x + dsin ~x), (i) :;t: 0 3.36 
cq cq 

and 

~(x,t) = (a+ bt)(c +~), 3.37 

The boundary condition will be discussed letter. 

3.4 SOLUTION TO THE GOVERNING EQUATION OF MOTION FOR 
SYSTEM CONTAINING A LONGITUDINAL FORCE DISTRIBUTION 
f(x,t) 

Here we consider only when f(x,t) is separable in to spatial and temporal 

functions and the temporal function is harmonic. 

Considering POE (3.20) 

Let assume the harmonic force distribution function to be 

I(x,t) = 10 sin Ot 

where 10 is the constant amplitude of the force, and 0 is excitation frequency. 

Therefore equation (3.20) can be written as 

3.38 

Since the excitation is harmonic, the forced response will also be harmonic and 

at the same frequency O. This is a property of linear systems. We assume the 

solution of equation (3.38) to be 

~(x,t) = X(x)sin Ot 3.39 
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where X(x) is the unknown spatial distribution of the generalized coordinate 

~(x,t). 

Substituting equation (3.39) in equation (3.38) gives 

p4 022 {X(x)sin Ot} = EA 022 {X (x) sin at}+ fa sin Ot 
at Ox 

which gives 

p4X(x) 0: sin Ot = EAsin Ot 0
1

2 
X(x) + fa sin at -ot (k 

(p40' Xix) + EA ~:)sin Ot = -I. sin Ot 3.40 

Since equation (3.40) holds for all time t. both side of (3.40) may be divided by 

sin Ot. 

yielding 

E 
where c: =-

P 

3.41 

To solve equation (3.41). we find the homogeneous solution and a particular 

solution. 

25 



The characteristic equation of (3.41) is 

. 0 2 0 
m 2 +-

Z 
=O~m=±-; 

Cq cq 

the homogeneous solution is given as 

3.42 

. where C1 and C2 are unknown coefficients. 

We now assume the particular integral to be 

3.43 

where C3 is another unknown coefficient. 

Substitute equation (3.43) in (3.41) we have 

x (x) = C =_ 10 
p 3 p401 3.44 

Summation of equations (3.42) and (3.44) gives the solution to equation. (3.41) as 

3.45 

Substitution of equation (3.45) in to equation (3.39) gives the solution to equation 
(3.38) as 

3.46 
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CHAPTER FOUR 

4.1 INTRODUCTION 

The purpose of this chapter is to find general solution to a particular Initial-

boundary problem. Firstly the boundary conditions for (longitudinal) vibration of 

rod for various end condition (simple boundary condition) Is presented In section 

4.2. This followed by stating the particular Initial-boundary-value problem In 

section 4.3. Finally, the general solution to the governing partial differential 

equations of motion (the dynamic response of the rod) subject to an Initial 

displacement and initial velocity is illustrated in section 4.4. 

4.2 SIMPLE BOUNDARY CONDITION 

There are four such cases: 

(1) Clamped at the both ends 

~(O,t) = ~(l,t):::; 0 for all time t that require X(O) = X(J) = 0 

(2) Clamped at left and free at right 

~(O,t) = O~(X't)1 = 0 for all time t that require X(O) = XI(J) = 0 
Ox xal . 

(3) Free at left and clamped at right 

O~(X, t) = ~(/, t) = 0 
Ox x..o 

for all time t that require Xl (0) = X (I) = 0 

(4) Free at both ends 

O~(X,t)1 = O~(X,t)1 = 0 for all time t that require Xl (0) = XI(J) = 0 
Ox x- o Ox x-I 
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4.3 PROBLEM STATEMENT 

Consider a uniform rod of density P. cross-sectional area A. modulus of 

elasticity E and equilibrium length I. The left hand end of the rod is clamped and 

the right-hand end is free. Find the dynamic response of the rod when it is 

subjected to an initial displacement ~(x,O) = Ao cos( ;) and zero initial velocity 

throughout its length. 

~(x,t) p,A,E 

x 
1 

4.4 SOLUTIONS 

Equation (3.36) gives the response of the rod. 

~(x,t) = (acos(i}t+bsinaJtXccos~x+ dsin~x) , aJ:t: 0 . cq = ~% 4.1 
. cq cq 

This can still be written as 

~(x,t) = X(x)T(t) 

where 

(j) d· (j) X(x)=ccos-x+ Sffi-X 
c

q 
cq 

is called the eigen function and 

T(t) = aCOS ax + b sin ax 
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is ((ailed the time response. 

Since the rod Is clamped-free, we have the condition 

X(O) = 0 

Which implies c = 0 

X(x) = dsin!!!..x 
cq 

andX'(1)= 0 

which implies 

d(j) (j) 
X'(x) = -cos-x 

cq cq 

d(j) (j) 
X'(/) = -cos-/ = 0, but 

cq cq 

n = 1,2,3, ... 

If we denote the frequency CD for each value n = 1,2,3, ... by CD" 

i.e. (j)" = (n- ~); cq 

The eigen function Xn(x) corresponding to the nth natural frequency OJn Is given 

by 

equation (4.1) becomes 
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Since an. bn and dn are constants. we can write the above equation as 

4.2 

In other to obtain the coefficients an and bn• we apply the initial conditions 

~(x,O) =Ao cos( ; ) 

and =0 for zero Initial velocity. 
a~(x,t) 

at t=O 

This gives 

4.3 

and 

4.4 

To evaluate an and bn• we multiply both side of equation (4.3) and (4.4) by the mth 

eigen function X m (x) = sin OJm X (where m is an arbitrary Integer) and Integrate 
cq 

the resulting expression with respect to x from 0 to 1 • which gives 

Applying the orthogonally condition, that 
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I { O,n~m 
JXn(x)X",(x)cb: = 
o 

c,n= m 

We have 

Starting with the left hand side, we have 

tsm'{(m- ~)'Hdr= H[1-COS{2(m- ~)7 x}]d< 

= ~[x- 2{m-
1
Yz}!f m{2{m-Yz}!fx} I 

For the right-hand side, we have 

Since sinC + sinD = 28in !(c + D)cos!(C - D) 
· 22 

For m= 1 

I' cos 1lX sin{{m - 1/~ x}cb: = ! I' sin 1f xdx = -~ cos 1f x( 
o 21 . 72 1 2 0 1 2n- · 1 
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1 
= 

For m = 2,3,4, ... 

J cos 11X sin{{m - X};X}dx =! J{Sin m1! x+ sin(m -l)n- X}dx 
o 21 1 20 1 1 

= _ ![_I-cos m1! x + 1 cos (m -l}r X]' 
2 m1! 1 (m-l}r J 0 

Ifm is odd 

= i{l,!,!,!, ... } 
1! 3 5 7 

1 1 
for k = 1, 2, 3, ... ---- . 

1! 2k-l 

Ifm is even 

J' 11X. {( 1/\If} . 1 { - 2 - 2 } 
o cos 21 8m m - 12ljX dx = - 21f - 2,3'5"" 

1 1 
---- . 
1! 2k - l 

For m = 1, 2, 3, ." 

J' 11X. {f 1/\1!} J 1 J 1 
COS-Sin \m- 12!rx dx=-.--+-.--

o 21 1 If 2k -1 If 2k-l 

32 



21 
= ,for k = 1,2,3, ... 

n(2k-l) 

Equation (4.5) becomes 

a i=A 2/ 
m 2 0 n(2k -1) 

for k = 1,2,3, .. . 

Multiplying mth eigen function X". (x) = sin aJm X by equation (4.4) and integrate 
c

q 

with respect to x from 0 to I ', we have 

aJ 
b _n =O:=>b =0 n n 

cq 

Substituting an and bn in to equation (4.2), we have 

'" 4A I . aJ 
~(x,t) = L: 0 cosaJntsm -" X 

n.l'atn(2k - I) cq 

where C = rI is the wave propagation speed. 
q Vp 
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CHAPTER FIVE 

5.1 NUMERICAL SIMULATION 

If the body characteristics appear or the same throughout the energy 

supply or disturbance at any point on/with the body will give the same effect (or 

disturbance) or waves. That is. the same displacement properties will be 

transmitted throughout the body with the first excited particle vibrating and 

transmitting (elastically) same energy to its immediate neighboring particle. 

The difference in the displacement form in figures (1,2,3,4,5) is due the fact that 

the disturbance (energy or force) applied was applied at different phase angle, 

which is as a result of time lag or lead for individual displacement generated at a 

particular spot of strike and transmitted at different frequencies. Similarly. if the 

phase difference is the same, for a homogenous median having the same 

wavelength. the same waveform of the same amplitude will be generated. For an 

elastic medium, same energy will be transmitted from the point of energy supply 

throughout the body except that its amplitude will decrease as a result of 

frequency changes only that the wave form will be maintained. 

In this analysis, we assume that cross sections of a rod remain plane and that 

the particles in every cross section move only in the axial direction of the rod. 

The longitudinal extensions and compressions during such vibration of the rod is 

accompanied by some lateral deformation. From fig. (1.2,3,4,5) the values of 

cross sectional area (Ao) was varied, at each case increase in the value of the 

cross sectional area (Ao) give rise to corresponding increase in the amplitude 

length. The system response to the wave propagation speed was also analyzed. 
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Three different values were used for the analysis. It is observed that the highest 

value of speed at which the disturbance propagates gives the highest amplitude 

length. The analysis was carried out with small step time. 

This periodic change of displacement is the propagation of the disturbance, due 

to the removal of the right-hand wall, along the rod and Its reflection at the ends 

of the rod. The duration L/Cq is the time required for a disturbance to travel the 

distance L, where Cq is the speed at which the disturbance propagates. 
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5.2 CONCLUSIONS 

Based on the above analysis and discussion the following conclusions are 

obtained:-

(i) The amplitude of the vibration of the rod rises when the cross sectional 

area of the rod increases. 

(ii) The amplitude of the response for the rod is higher when the speed at 

which the wave propagate increases. 

5.3 RECOMMENDATION 

The presentation in this dissertation was to obtain and solve the equation of motion for 

system containing a longitudinal force distribution f(x, t) only when [(x, t) is separable 

into spatial and temporal functions and the temporal functions is hrumonic with simply

suppolted ends condition. A more general problem could be solved with other forms of 

ends condition. 
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