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ABSTRACT

Despite the wide application of PID controller in process industries, there are still some
limitations which militating against the use of PID controller especially when used alone.
The need arises Lo get equivalent control scheme which will be self-tuning and still perform
better function than PID controller.

ANN control approach using references model to tailor system output to a desired responses
was developed. The ANN controller using model reference was able to track set point change
and reject the uncertainties resulting from external disturbances.

The responses were somehow sluggish in the faces of external disturbances but give no
oscillatory behaviors. For PID controller, the performance deteriorated for set point changes
and under the influence of external disturbances. This reason for poor performance can be
adduced because of high nonlinearity of the CSTR.

The controller has been able to take care of nonlinearly aspect of the system. ANN
control scheme has better trajectory tracking ability than PID since the former is based on
nonlinearity of the model, while the latter based on particular operating conditions. The
control was able to adapt to system changes and operating condition change. There was no
need for turning parameter in the control. The control was very adaptive and has self-turning
capability for any change in operating conditions and system parameters. The proposed
method is somehow sluggish because the optimal control action is iterative in order to
converge to an acceptable accuracy.

The result of the research work also show that the techniques in controlling the system offer a
better control alternative to those formerly used and a host of other nonlinear control
problems.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background

Despite the advent of many complicated control theories and techniques more than 94% of
control loop based on PID controllers are still being used in various industrial processes. The
PID controller is one of the easiest ways of control in chemical system reactor because of its
simplicity in structure, robustness in operation and easy comprehension in principle.
Nevertheless, the PID algorithm may not be effective in highly nonlinear and time varying
chemical process. Nonlinearities may be intrinsic to the physics or the chemistry of the
process or may arise through the close coupling of a number of simpler processes. In either
case, complicated differential equations of the system dynamics pose a challenging problem
in the sense of mathematical tractability. To improve the control performance, several
scheme of self- tuning PID controller were proposed in the past. Wittenmark proposed the
control structure with the PID algorithm calculated vial pole placement design. The self-
tuning Pl or PID algorithms were automatically derived from dynamic of the controlled
processes.

The controller structure was oriented to have a PID structure. The control parameters were
obtained using a parameter estimated scheme. Many other forms of PID can be found in
literature. However, the limitation of the above stated self-tuning adaptive control techniques
is that the control model with linear model is operated in the linear region. If some changes in
the process or environmeﬁt occur, it must be manually checked whether the model is

adequate to represent the real model or not since the control design should be based on a

reliable model.




Presently, neural networks constitute a very large research interest. They have required
capability in solving complex mathematical problems since they have proven to approximate
a continuous function accurately. Hence, it has been a subject of focus in the field of
chemical process control and has been applied to system identification and controller design.
All the above shows that the neural network can capture the characteristics of system patterns

and performance approximation function for nonlinear system.

Besides, the state of the art in the area of neural networks in control systems has become
increasingly challenging. The need to meet demanding control requirements in increasingly
complex dynamical control systems under significant uncertainties makes neural networks
very attractive, because of their ability to learn, to approximate functions, to classify patterns
and because of their potential for massively interconnection hardware implementation.
Neural networks do appear to be able to implement many functions essential to control

systems with higher degree of reliability.

Also neural network technology has received much attention in the field of chemical
process control, this is because of inherently non-linear nature of most of the processes and
neural network have great capability in solving complex nonlinear mathematical problem
(Junghui and Titen-chu, 2004).

Neural networks have shown great progress in identification of nonlinear system,
which is due to increase in cheap computing power and certain powerful theoretical
algorithms (Cybenko, 1989; Lippman, 1987; Rumelhart and Mecelland; 1986).

Application of ANNs to non-linear process control have attracted a rapidly growing
interest in the recent time (Willis et al, 199, Hunt etal,1992 ) several approaches have been
used to train ANN to model either the process behaviour or its inverse and subsequently used
within conventional model based control schemes including model based predictive control,
internal model control, adaptive control and feed forward control ( Hunt and Sbarbaro,1992;
Barto, Sutton and Anderson, 1983)




1.2 Artificial Neural Networks (ANNs)

An artificial neural network (ANN), also called a simulated neural network (SNN) or
commonly just neural network (NN) is an interconnected group of artificial neurons that uses
a mathematical or computational model for information processing based on a connectionist
approach to computation. In most cases an ANN is a system that is capable of changes its

structure based on external or internal information that flows through the network.

A neural network operates as a parallel-distributed processor capable of acquiring
knowledge from experimentai data, and applying knowledge learned to unseen
problems. Haykin outlines how neural networks mimic a very simplified version of

the brain in two aspects;

(1) Knowledge is acquired through a learning process i.e. the network can be trained.
(i) Interneuron connection strengths known as synaptic weights are used to store the
knowledge.

Neurons are the processing elements of the network. The layout of the neurons in

space and the interconnection between them determine the structure of the network.
Common structures include layered feedforward, recurrent and radial bias networks.
These can be modified to suit a particular application, or alternatively a completely

new structure can be designed (Emuoyibofarhe, 2004).

A learning algorithm describes how the interconnection weights are adjusted to achieve the

desired behaviour of the network. The science of artificial neural networks is based on the
neuron. In order to understand the structure of artificial networks, the basic elements of the
neuron should be understood. Neurons are the fundamental elements in the central nervous

system.




Figure 1.1 The components of a neuron.
A neuron is made up of 3 main parts -dendrites, cell body and axon. The dendrites receive
signals coming from the neighbouring neurons. The dendrites send their signals to the body
of the cell. The cell body contains the nucleus of the neuron. If the sum of the received
signals is greater than a threshold value, the neuron fires by sending an electrical pulse along
the axon to the next neuron. The following model is based on the components of the
biological neuron
1.2.1 Motivation for an ANN approach to non-linear control
The main appeal of Artificial Neural Networks (ANNs) in control systems
Engineering is that they offer the potential of a generic approach to the modelling and
control of linear and non-linear systems. The term "artificial neural network" originates
from research which attempted to understand, and proposed simple models of, the operation
of the human brain. Consequently, ANNs do possess characteristics which are common with
the biological system. They consist of numerous simple processing elements (neurons) joined
together by variable strength connections (synapses) to form a massively parallel and highly
interconnected information processing system. This gives ANNs several characteristics

which are appealing for the modelling and control of non-linear systems, such as the ability

to:-




i) Neural networks are composed of elements operating in parallel. Parallel processing

allows increased speed of calculation compared to slower sequential processing.

Inputs
Output

Figure.1.3: Diagram shows the parallelism of neural networks

ii) Artificial neural networks (ANN) have memory

The memory in neural networks corresponds to the weights in the neurons. Neural networks
can be trained offline and then transferred into a process where adaptive learning takes place.
iii) Learn by example
Neural networks are trained using data records from the system under study, and hence they
are parametric models.

(iv) Degrades gracefully due to their parallel nature

A fault in an ANN could be caused by an erroneous weighted connection, either because of
incorrect identification or because of an open or short circuit in a hardware implementation.
The parallel structure of a neural network affords it a high degree of tolerance to faults.
v) Attain relatively fast execution times
Once a network has been trained, it can attain fast execution times. In software
implementation, because the processing elements perform relatively simple functions, this

leads to fast computation compared to other non-linear models (e.g. Volterra series model).




vi) Ability to solve new kinds of Problems
Neural networks are effective at solving problems whose solution are difficult, and may not
be .possible to define, and since it has the ability to learn from experience (previous
examples) when presented with a new but similar problem it can provide solution.
vii) Robustness
Neural networks tend to be more robust than their conventional counterparts because they
have the ability to cope well with incomplete data.
viii) Flexibility and Ease of Maintenance
Neural based computers are very flexible in that they are able to adapt their behaviour to new
and changing environments. On the other hand the serial conventional computing, are strictly
algorithmic and require writing a new program for any modification. They are also easier to
maintain to accommodate changes or modifications.
The main disadvantage of ANN is that they operate as black boxes. The rules of operation in
neural networks are completely unknown. It is not possible to convert the neural structure
into known model structures such as ARMAX, etc. Another disadvantage is the amount of
time taken to train networks. It can take considerable time to train an ANN for certain
functions.
1.3 Aims and Objectives
The aims of this work include;

(1) To apply artificial neural network for the design of a feedback controller for a

continuous stirred tank reactor using model reference control

(i)  To simulate and compare the performance of a PID controller with artificial

neural network controller.




Objectives

(i)

(i)
(i)
(iv)

To formulate a mathematical model for the non-linear CSTR in time domain.

To develop an overall model for the nonlinear CSTR using simulink software.

To incorporate the overall CSTR model with a PID controller.

To incorporate the overall CSTR model with an artificial neural networks

controller.




CHAPTER TWO

LITERATURE REVIEW

2.1 Historical Background of Neural Networks Analysis
In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote a
paper on how neurons might work. In order to describe how neurons in the brain might work,

they modeled a simple neural network using electrical circuits.

In 1949, Donald Hebb wrote The Organization of Behavior, a work which pointed out the fact
that neural pathways are strengthened each time they are used, a concept fundamentally essential
to the ways in which humans learn. If two nerves fire at the same time, he argued, the connection
between them is enhanced. As computers became more advanced in the 1950's, it was finally
possible to simulate a hypothetical neural network. The first step towards this was made by
Nath;cmial from the IBM research laboratories. Unfortunately for him, the first attempt to do so

failed.

In 1959, Bernard and Marcian of Stanford developed models called "ADALINE" and
"MADALINE." In a typical display of Stanford's love for acronyms, the names come from their
use of Multiple ADAptive LINear Elements. ADALINE was developed to recognize binary
patterns so that if it was reading streaming bits from a phone line, it could predict the next bit.
MADALINE was the first neural network applied to a real world problem, using an adaptive
filter that eliminates echoes on phone lines. While thel system is as ancient as air traffic control

systems, like air traffic control systems, it is still in commercial use.

In 1962, Widrow and Hoff developed a learning procedure that examines the value before the




eight adjusts it (i.e. 0 or 1) according to the rule: Weight Change = (Pre-Weight line value) *

(Error / (Number of Inputs)). It is based on the idea that while one active perceptron may have a
big 'elrror, one can adjust the weight values to distribute it across the network, or at least to
adjacent perceptrons. Applying this rule still results in an error if the line before the weight is 0,
although this will eventually correct itself. If the error is conserved so that all of it is distributed

to all of the weights then the error is eliminated.

Despite the later success of the neural network, traditional von Neumann architecture took
over the computing scene, and neural research was left behind. Ironically, John von Neumann
himself suggested the imitation of neural functions by using telegraph relays or vacuum tubes. In
the sarhe time period, a paper was written that suggested there could not be an extension from the
single layered neural network to a multiple layered neural network. In addition, many people in
the field were using a learning function that was fundamentally flawed because it was not

differentiable across the entire line. As a result, research and funding went drastically down.

This was coupled with the fact that the early successes of some neural networks led to an
cxaggeration of the potential of neural networks, capability especially considering the practical
technology at the time. Promises went unfulfilled, and at times greater philosophical questions
led to fear. Writers pondered the effect that the so-called "thinking machines" would have on
Thumans, ideas which are still around today. The idea of a computer which programs itself is very
appealing. If Microsoft's Windows 2000 could reprogram itself, it might be able to correct the
programming errors. Such ideas were appealing but very difficult to implement. In addition, von
Neumann architecture was gaining in popularity. There were a few advances in the field, but for

the most part research was few and far between. In 1972, Kohonen and Anderson developed a




similar network independently of one another. They both used matrix mathematics to describe
their ideas but did not realize that what they were doing was creating an array of analog

ADALINE circuits. The neurons are supposed to activate a set of outputs instead of just one.

The first multilayered network was developed in 1975, an unsupervised network. In 1982,
interest in the field was renewed. John Hopfield of Caltech presented a paper to the National
Academy of Sciences. His approach was to create more useful machines by using bidirectional
lines. Previously, the connection between neurons was only one way.

http://www.//en.wikipedia.org/wiki/weighted-sum .

That same year, Reilly and Cooper used a "Hybrid network" with multiple layers, each layer
using a different problem-solving strategy. Also in 1982, there was a joint US-Japan conference
on Cooperative/Competitive Neural Networks. Japan announced a new Fiith Generation effort
on neural networks, and US papers expressed apprehension that the US could be left behind in
the field. (Fifth generation computing involves artificial intelligence. First generation used
switches and wires, second generation used the transistor, third generation used solid-state
technology like integrated circuits and higher level programming languages and the fourth

generation is code generators.) As a result, there was more funding and thus more research in the

field.

In 1986, with multiple layered neural networks in the news, the problem was how to extend
the Widrow-Hoff rule to multiple layers. Three independent groups of researchers, one of which
included David Rumelhart, a former member of Stanford's psychology department, came up with
similar ideas which are now called back propagation networks because it distributes pattern

recognition errors throughout the network. Hybrid networks used just two layers, these back-

10




propagation networks use many. The result is that back-propagation networks are "slow

learners," needing possibly thousands of iterations to learn.

Now, neural networks are used in several applications, some of which will describe later
in thesis. The fundamental idea behind the nature of neural networks is that if it works in nature,
it must be able to work in computers. The future of neural networks, though, lies in the
development of hardware. Much like the advanced chess-playing machines like Deep Blue, fast,
efficient neural networks depend on hardware being specified for its eventual use. Research that
concentrates on developing neural networks is relatively slow. Due to the limitations of
processors, neural networks take weeks to learn. Some companies are trying to create what is
called a "silicon compiler" to generate a specific type of integrated circuit that is optimized for
the application of neural networks. Digital, analog, and optical chips are the different types of
chips being developed. One might immediately discount analog signals as a thing of the past.
However neurons in the brain actually work more like analog signals than digital signals. While
digital signals have two distinct states (1 or 0, on or off), analog signals vary between minimum
and maximum values. It may be awhile, though, before optical chips can be used in commercial

applications.
2.2 Neural analysis in control systems

The ever-increasing technological demands of our modern society require innovative approaches
to highly demanding control problems. Artificial neural networks with their massive parallelism
and learning capabilities offer the promise of better solutions, at least to some problems. By now,

the control community has heard of neural networks and wonders if these networks can be used

11




to provide better control solutions to old problems or perhaps solutions to control problems that

have withstood our best efforts (Paul, 1996).

Neural networks have the potential for very complicated behavior. They consist of many
interconnected simple nonlinear systems, which are typically modeled by sigmoid functions. The
massive interconnections of the rather simple neurons, which make up the human brain, provided
‘the original motivation for the neural network models. The terms artificial neural networks and
- connectionist models are typically used to distinguish them from the biological networks of
“neurons of living organisms. Interest in neural networks has made a comeback in this decade
alter a period of relative inactivity following the shortcomings of early neural networks (the
~ single-layer perceptron), which were publicized in the late 1960s. The renewed interest was due,
lin part, fo powerful new neural models, the multilayer perceptron and the feedback model of
Hopfield, and to learning methods such as back propagation; but, it was also due to advances in
hardware that have brought within reach the realization of neural networks with very large

numbers of nodes.

In a neural network, the simple nonlinear elements called nodes or neurons are interconnected,
and the strengths of the interconnections are denoted by parameters called weights. These
weights are adjusted, depending on the task at hand, to improve performance. They can be
assigned new values in two ways: either determined via some prescribed off-line algorithm
remaining fixed during operation or adjusted via a learning process. Learning is accomplished
by, first, adjusting these weights step by step (typically to minimize some objective function)
and, then, storing these best values as the actual strengths of the interconnections. The

interconnections and their strength provide the memory, which is necessary in a learning process.

12




e ability to learn is one of the main advantages that make the neural networks so attractive.
ey also have the capability of performing massive parallel processing, which are in contrast to
e von Neumann machines the conventional digital computers in which the instructions are
ecuted sequentially. Neural networks can also provide, in principle, significant fault tolerance,
ce damage to a few links need not significantly impair the overall performance. The benefits
e most dramatic when a large number of nodes are used and are implemented in hardware. The
dware implementation of neural networks is currently a very active research area; optic and

ore conventional means of implementation of these large networks have been suggested.

eural networks are characterized by their network topology that is, by the number of
terconnections, the node characteristics that are classified by the type of nonlinear elements

sed, and the kind of learning rules implemented.
.2.1 Control technology

e use of neural networks in control systems can be seen as a natural step in the evolution of
ontrol methodology to meet new challenges. Looking back, the evolution in the control area has
een fueled by three major needs: the need to deal with increasingly complex systems, the need
accomplish increasingly demanding design requirements, and the need to attain these
quirements with less precise advanced knowledge of the plant and its environment that is, the
eed to control under increased uncertainty. Today, the need to control, in a better way,
creasingly complex dynamical systems under significant uncertainty has led to a re-evaluation
f the conventional control methods, and it has made the need for new methods quite apparent. It
as also led to a more general concept of control, one that includes higher-level decision making,

lanning, and learning, which are capabilities necessary when higher degrees of system

13




autonomy are desirable (Paul, 1996). In view of this, it is not surprising that the control
community is seriously and actively searching for ideas to deal effectively with the increasingly
challenging control problems of our modern society. Need is the mother of invention, and this
has been true in control since the times of Ktesibios and his water clock with its feedback
mechanism in the third century B.C. (Mayr, 1970), the earliest feedback device on record. So the
use of the neural networks in control is rather a natural step in its evolution. Neural networks
appear to offer new promising directions toward better understanding and perhaps even solving
some of our most difficult control problems. History, of course, has made clear that neural
networks will be accepted and used if they solve problems that have been previously impossible

or very difficult to solve (Lippmann, 1987).

2.2.2 Application of neural analysis in control systems
Neural networks have been applied very successfully in the identification and control of dynamic
systems. The universal approximation capabilities of the multilayer perceptron make it a popular
choice for modelling nonlinear systems and for implementing general-purpose nonlinear
controllers. This chapter presents brief descriptions of Model Reference Control (MRC)
architectures and it is used to simulate our system.
There are typically two steps involved when using neural networks for control:

a. System Identification

b. Control Design
In the system identification stage, a neural network model of the plant that we want to control is
developed. In the control design stage, we use the neural network plant model to design (or train)
the controller (MATLAB 7, Control System Toolbox, User’s Guide). Depending on the

architecture, a number of control design methodologies can be used. In this research work model
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eference control (MRC) has been used. Here, the controller is a neural network that is trained to
ontrol a plant so that it follows a reference model. The neural network plant model is used to

ssist in the controller training.
2.3 Process control system

Control systems are every where around us and within us. Many complex control systems are
included among the functions of the human body. An elaborate control system centered in the
hypothalamus of the brain maintains body temperature at 35°C — 37°C, in spite of changes in
physical activity and external ambience (Murril, 1996).

A control system is therefore any group of components that maintains some desired result in a
process. A process is any combination of materials and equipment that produces a desirable
result through changes in energy, physical properties or chemical properties (Bateson, 1993).
Examples of processes are a food processing plant, a petroleum refinery, an electrical power
plant, a textile making plant, a plastic making plant etc. Process control involves the control of
variables in a manufacturing process. It involves combinations of any materials and equipment
that modifies a product, making it more useful and more valuable (Emuoyibofarhe, 2004). The
most common controlled variables in a process are temperature, pressure, flow rate, and level.
Other includes color, conductivity, PH, hardness, viscosity, density and composition. Many
process control system are used to maintain constant processing conditions and, hence, are
regulator systems.

The process control usually incorporates a device or group of devices that automatically
controls a mechanism, a source power or other variables. The system automatically compares the
controlled output of a system to the controlling input. The difference between the output and
input is called the error signal e, which regulates the output to a desired value.
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Process control may be either open or closed loop, but closed loop systems are more common.
The process of sending the error signal back for comparism with the input is called Feedback and
the whole process of the input, output, error signal and feedback is called a .closed loop. Process
control systems are not limited to the field of chemical engineering but also electrical
_engineering and mechanical engineering. This paper work focuses on chemical process control.

Research on chemical process control came up about 1930 (Grebe et al, 1933), discussed
some difficult PH control problems and showed the advantage of using controllers with
derivative action. Ivanoff, (1934), introduced the concept of potential deviation and potential
correlation as an aid in quantitative evaluation of control system. The field has continued to
attract researchers and many attractive research results continue to appear in publications
(Emuoyibofarhe, 2004).

2.4 Types of control

Control system are classified in various ways

1. Open and closed loops depending on whether or not feedback is used.

ii. Regulator and servo up systems depending on whéther the set point is constant or
changing.

iii. Process control, Servo mechanism, Sequential control and Numerigal control

depending on the types of application.
iv. Analog and Digital depending on the nature of output signal.

2.4.1 Feed back control

Iissential to most automatic control mechanism is is an interdisciplinary branch of engineering
and mathematics, which deals with the behavior of dynamical systems, which enables a designer

to endow a machine, reactor or system with the capacity for automatic control. A feedback loop
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is 1 mechanical, pneumatic, or electronic device that senses or measures a physical, quantity such
as position, temperature, size or speed etc. compares it with a pre-established standard, and takes
whatever pre programmed action that is necessary to maintain the measured quantity within the
limits of the acceptable level. In a feedback control loop, the controlled variable is compared to
the set point, with difference, deviation or error e acted upon by the controller to move in such a
way as to reduce the error. This action is specifically negative feedback, in that an increase in
deviation moves so as to decrease the deviation (Mayr, 1970). (Positive feedback would cause
the deviation to expand rather than diminish and therefore does not regulate).The action of the

controller is selectable to allow use, form example, appropriate sign for gains.
(b) Block diagrams
Block diagram is a shorthand pictorial representation of the relationship between input and

output of a system. This representation is commonly called the block diagram. Control systems

are made up of various combinations of the following basic blocks.

DV
% Error
t point———» —»| Controller
B \%
FCE Process R
Cm

MV

Measuring means

Control variable

Figure 2.1 Block Diagram of a Closed Loop Control System

Where
\Y = Controller Output
DV = Disturbance Variable
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Cm = Measured Value of Controlled variable.
FCE = Final control element
MV = Manipulated Variable

Set point (SP): the desired value of the controlled variable.

Measured variable: the output of the measuring means / element.

Error: the difference between the set point and the measured value of CV

Controller Output: control action intended to drive the measured of CV toward the set point
value.

Manipulated Variable: the variable regulated by the FCE to achieve the desired value of the
LY,

Disturbance Variable: the process input variable that affect the controlled variable but are not
controlled by the control system.

Controlled variable: the process output variable which is to be controlled.

Sensor: a device that measure the process variable

Transmitter: transmitter is the interphase between the process and its control system. It
incorporates a transducer that converts the sensor signal (liquid flow rate, pressure difference etc)
into an equivalent electrical or air control signal.

(¢) Types of feedback controllers

(i) Proportional Control Mode: Proportional control produces a change in controller output
proportional to the error signal.

(ii) Integral Control Mode: The integral control mode changes the output of the controller by

an amount proportional to the integral of the error signal.



(iii) Derivative Control Mode: Derivative control changes the output of the controller
proportional to the rate of change of the error signal. This change may be caused by the variation
in the measured variable, the set-point or both

(iv) Proportional-plus-Integral control: Proportional-plus-integral control is used on process
with large load changes when the proportional mode alone is not capable of reducing the offset
to an acceptable level. The integral mode provides a reset action which eliminates the
proportional offset.

(v) Proportional-plus-Derivative Control: The derivative control mode is sometimes used
with the proportional mode to reduce the tendency for oscillation and allow a higher proportional
gain setting. The proportional mode provides a change in the controller output which is
proportional to the rate of change of error signal.

(vi) Proportional — integral — derivative control (PID): This is usually referred to as three-
mode controller. It is used on process with sudden, large load changes when one or two mode
control is not capable of keeping the error within acceptabl limits. The derivative mode produces
an anticipatory action which reduces the maximum error produced by sudden load changes (Paul
W. Austin, 1996).

The integral mode provides a reset action which eliminates the amount of offset error. The
controller compares a measured value from a process (typically an industrial process) with a
reference setpoint value. The difference (or "error" signal) is then used to calculate a new value
for a manipulatable input to the process that brings the process' measured value back to its
desired setpoint. The three gain factor associated with the Proportional, integral and derivative

actions at an accptable degree of error reduction simultaniously with accptable dynamic

response.
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(d) Manual tuning

If the system must remain online, one tuning method is to first set the / and D values to zero.

Increase the P until the output of the loop oscillates, and then the P should be left set to be

approximately half of that value for a "quarter amplitude decay" type response. Then increase D

until any offset is correct in sufficient time for the process. However, too much D will cause

instability. Finally, increase 7, if required, until the loop is acceptably quick to reach its reference

after a load disturbance. However, too much 7 will cause excessive response and overshoot. A

fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however,

some systems cannot accept overshoot, in which case an "over-damped" closed-loop system is

required, which will require a P setting significantly less than half that of the P setting causing

oscillation.

Table 2.1 Effect of Each Controller on System Output Signal

Closed  Loop | Rise time Overshoot Settling time Steady  State
Response Error

Kp Decrease Increase Small Change | Decrease

K, Increase Increase Increase Eliminate

Kp Small change Decrease Decrease Small change

Sourse: Instrument Engineers' Handbook: Process Control by Liptak, Bela, 1995

(e) Ziegler-Nichols method

Another tuning method is formally known as the Ziegler—Nichols method, introduced by John G.
Ziegler and Nathaniel B. Nichols. As in the method above, the 7 and D gains are first set to zero.
The "P" gain is increased until it reaches the "critical gain" K, at which the output of the loop

starts to oscillate. K. and the oscillation period P, are used to set the gains as shown:
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Zeigler-Nichols Method
Control Type K, Ki Ky
P 0.5 K. - -
Pl 0.45 K. 1.2 K, P, -
PID 0.6 K. 2K, P, K, P./8

Sourse: Loop Tuning Fundamentals". Control Engineering by Van, Doren, Vance J.
(f) Response in feedback control systems

I'eedback control systems are used for various purposes and must meet certain performance
requirements. These requirements not only affect such things as speed of response and accuracy,
but also the manner in which the system responds in carrying out its control function. All
systems contain certain errors. The problem is to keep them within allowable limits.

Overshoot = A

Decay ratio = B/A

/IN
%

tr

4_( Time (s)

A\ 4

Figure 2.2 Characteristic of a Closed Loop Response to Step Change.
(g) Step response analysis
The following features are evaluating to know the performance of a closed — loop system

i) Rise time: the time taken the output to first reach 90% of its final value which is always

required to be small
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ii.)  Setting time: the time after which the output remains within % 5% of its final value.

iii.)  Overshoot: the peak value divided by the final value, which should be 20% or less

iv.)  Decay ratio: the ration of the second and first peaks, which should be 0.3 or less.

v.) Steady-state Offset: the difference between the final value and the desired final value.
The rise time and setting time are measures of the speed of the response, whereas the overshoot,
decay ratio and steady state error are related to quality of a response.

2.4.2 Feed forward control

Most feedback systems act post facto (after the fact) that is the effect of the disturbance has been
felt by the process. Unlike the feedback systems, a feedforward system uses measurements of
disturbance variables to position the manipulated variable in such a way as to minimize any
resulting deviation. The disturbance variable could be either measured loads or the set point. The
feedforward gain must be set precisely to offset the deviation of the controlled variables from the
set point.

Set-point

|

Controller

Disturbance

Sensor

A

Process ———— Controlled Output

—pX
Manipulated
Variable

Fig. 2.3 Structure of feedforward control scheme (Fundamental of Process Control Theory,
United State, 1597)
Feed forward control is usually combined with feedback control to eliminate any offset resulting

from inaccurate measurements and calculations and unmeasured load components.
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+ Error signal Output

—>® Controller
K

Feedback

b

v

Reference Sensor

A

Figure 2.4 Block diagram for feedback control (Chemical Engineering Handbook, Perry and
Green, 1997)

2.5 Elements of a control system

a) Variables

In attempting a design a control system that will satisfy the control needs for a chemical process,
onc must be able to identify and classify the variables associated with the chemical process.

The variables (flow rate, temperature, concentrations etc) associated with a chemical process are
divided into two

1) Input variables

ii) Output variables.

The input variables can be further classified into two categories

i) Manipulated (or Adjustable) variables

i) Disturbances

The output variables are also classified into two

i) Measured output variables

ii) Unmeasured output variables
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b) Block Diagrams
For control problems, it is helpful to use a block diagram to show the functional relationship

between input and output (Paul, 1996).

+
- > G e’ X | e
y
(@ y =Gx
y =fx,1) (b) e=x-y

Figure 2.5 Block diagram component (a) Dynamic relationship (b) comparisen of signals
2.6 Chemical Reactors

Chemical reactors are vessels that are designed for a chemical reaction is taking place. It is an
apparatus for holding substances that are undergoing a chemical reaction. The design of a
chemical reactor deals with multiple aspects of chemical engineering.Vessels may be tanks
(usually enclosed to keep contaminant out of the reaction vessel) or tubular (a pipe). Both types
can be used as continuous reactor or batch reactors http://www.//en.wikipedia.org/wiki/reactors.
Chemical vessels must satisfy several requirements imposed by it designers and the general
technical, economical and social conditions in presence of ever — changing external influence

(disturbances). Among such requirements are the following;

1) Production specifications
ii) Operational constraints
iii)  Safety

iv)  Environmental regulations
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V) Economics
The requirements listed above dictate the need for continuous monitoring of a chemical vessel
and external intervention (control) to guarantee the satisfaction of the operational objectives.
Types of Reactors

The three main basic models are:
» Batch Reactor model (batch)

» Continuous Stirred-Tank Reactor model (CSTR)
» Plug Flow Reactor model (PFR).

2.6.1 Batch reactor
A batch reactor is used in chemical processes for small scale operation, for testing new processes
that have not been fully developed, for the manufacture of expensive products and for processes
that are difficult to convert to continuous operations.It is a reactor in which all the reactants are
loaded at once, the reaction is allowed to proceed for a given time whereupon the mixture of
unreacted material together with the products is withdrawn. Agitation serves to mix separate
feeds initially and to enhance heat transfer. Batch reactors are popular in practice because of their

flexibility with respect to reaction time and to the kinds and quantities of reactions that they

process.

2.6.2 Continuous stirred-tank reactor (CSTR)

The continuous stirred-tank reactor or CSTR is that in which one or more fluid reagents are
introduced into a tank reactor equipped with an impeller while the reactor effluent is removed.
The impeller stirs the reagents to ensure proper mixing. Simply dividing the volume of the tank
by the average volumetric flow rate through the tank gives the residence time, or the average

amount of time a discrete quantity of reagent spends inside the tank.
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2.6.3 Plug flow reactor (PFR)

A Plug flow reactor is a chemical reactor where the fluid passes through in a coherent manner, so
that in the ideal case the residence time is the same for all fluid elements.
It is the one in which one or more fluid reagents are pumped through a pipe or tube. The
chemical reaction proceeds as the reagents travel through the PFR. In this type of reactor, the
reaction rate is a gradient; at the inlet to the. PFR the rate is very high, but as the concentrations
of the reagents decrease and the concentration of the product(s) increases the reaction rate

decreases.

2.0.4 State variables and state equations for the chemical process

In order to characterize a processing system (tank, batch reactor, continuous stirred tank reactor,
etc) and its behaviour, the following are needed:
1) a set of functional dependent quantities whose values will describe the natural state of
a given system.
i) a set of equations, in the variables above will describe how the natural state of the
given system changes with time.
For most of the processing systems of interest to a chemical engineer there are only three such
fundamental quantities: mass, energy, and momentum. Quite often, though, the fundamental
dependent variables cannot be measured directly and conveniently. In such cases other variables,
which can be measured conveniently, are selected and when grouped appropriately they
determine the value of the fundamental variables.
These characterized variables are called state variables and their values define the state of a

processing system. The equations that relate the state variable (dependent variables) to the
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various independent variables are derived from application of the conservation principles of the
fundamental quantities and are called state equation.

The principle of conservation of a quantity S states that

Accumulatonof S flowof Sin\ [ flowof S Amountof S
[withina system J 3 (thesystem ) (outof thesystem] (generated withinsystem)
time period  time period - time period time period
amountof S consumed
(withina system )
time period

The quantity S can be any of the following fundamental quantities:
Total mass

Mass of individual component

Total energy

The balance equations for these quantities are given as

Total mass balance

d(pV
%z T PiFi= T PiF] oo coumsis susssies an 2.1
! izinlet Jroutlet

Mass balance on component A

a(”A) » a(CA V) _
dt dt

D CiFi= D CyF Vs 22

iinlet J.outlet
Where the variables in the above equations are:

p = Density of the material in the system
= Density of the material in the i inlet system
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pj = Density of the material in the ™ outlet system

\Y% = Total volume of the system

F; = Volumetric flow rate of the i" inlet system

Fj = Volumetric flow rate of the j" output stream

Cy = Molar concentration (moles/volume) of A in the system

Cyuyi = Molar concentration of A in the i"

Cy j = Molar concentration of A in the j"™ output

r = Reaction rate per unit volume for component A in the system

2.7 Artificial neural nets (ANNSs)

The fundamental processing element of a neural network is a neuron. This building block of
human awarencss encompasses a few general capabilities. Basically, a biological neuron receives
inputs from other sources, combines them in some way, performs a generally nonlinear operation
on the result, and then outputs the final result. Figure 2.6 shows the relationship of these four

parts.
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traditional computing. This is achieved by simulating the four basic functions of natural neurons.

Figure 2.6 shows a fundamental representation of an artificial neuron.

In short, an artificial neural network is a method of solving problems through artificial

intelligence, by building a system of circuits to simulate the human brain, includes behaviour
(i.e. learning, walking and making discoveries). Through technical computational models
inspired by simulating the neural structure of intelligent organisms, ANN’s can be taught to
acquire knowledge through experience. http://www.answers.com/topic/artificialintelligence.
Referring to natural brains and their connections, ANN's are characterized by the meeting of a
large amount of Artificial Neurons (AN), interlinked by a great number of connections
(synapses) that process the information in a parallel way. The fact that 'ghe information is
processed in a parallel way provides larger reliability and readiness because the information is
shared only one time with all of the neurons of the following layer. Therefore, if there is a
possible flaw in a neuron in the net then it does not cause the whole process to lose all the
information since the information is already present in other neurons. This makes it possible to
make a total recovery, or at least a partial recovery. Just like the human brain, ANN's store
knowledge through experience. Therefore the more the ANN used the more the ANN learns.

Healthy ANN's divide into layers, where layer patterns represent the net. These layers extract the
characteristics, and work as partial intermediaries that process the information in parts before
exiting from the ANNs. As can be observed in figure 2.7, the treatment of information in RNN's
happens in the following way: Each signal that arrives at the neuron multiplies the signal
according to the number of synapses with signals (the value of the synapses is substituted during

the process of training of the net). The resultant signals are added to obtain only one entrance
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value in order to reach the threshold value. The information produces an exit and it is spread in

the net. If this threshold is not reached the information is not considered relevant and is blocked.
Xo 0
D1
% ()

Figure 2.7 Artificial Neural Nets

2.7.1 The mathematical representation of a neuron

A first-order mathematical model for a neuron could be that shown in figure 2.8.

Weight/strength of the connection

Threshold

> Output

v

Figure 2.8 Mathematical Representation of a neuron
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Incoming connections are represented by input lines with an associated weight. The neuron itself

only performs accumulation and thresholding for incoming pulses from its inputs.

When a pulse comes from a connection, it is first multiplied by a number called the weight of the
connection which assigns a certain importance to the connection (identical to the largeness of a
biological dendrite), and then accumulates the overall result, passing the value through a
threshold which emits a pulse when a certain value is reached. The output of the threshold stage

is in turning connected to the inputs of several other neurons, which forms a complete network.

In practice, real input and output numbers are used to model the transactions between the
different neurons. Instead of a biological threshold function, we use a mathematical function
such as the sigmoid function [1/ (1+e™)], arctangent, arcsine, etc. These functions should be
smooth and continuous (i.e. you should not use a piecewise linear or step function) wit lower and

upper limit. They should also be differentiable.
2.8. Learning

Learning is the area of cognitive science that deals with the ability to segment the world into
classes of equivalents. The mechanism by which intelligent system groups physically distinct
objects into classes are among the most fundamental aspects of cognition. Without these
mechanisms, every instant of each type of object, event or situation would appear new every

time it is encountered.

2.8.1 Human learning
Learning is the neural process for which the experience modifies the behavior and is centrally

regulated. Learning can be of an associative type or a non-associative type. In other words, it can
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have direct relationship with incentives (as in associative learning); or not, depending on the
relationship between incentives and answers (such as acclimatizing and sensitivity in non-
associative learning). Conditioning is a reflex answer to an incentive that first produced little or
no answer, and then produces an answer after repeated association with the incentive. Where
there is no relationship with other incentives then the brain learns by searching through its
“database” for similarities among the incentives that are available until they find some reasons
(acclimatization, sensitivity) dr learn that there is no relationship with other incentives in the
brain. Every time a signal is received, this stimulates learning of their properties and informs the
“database”.

2.8.2Artificial neural networks learning

The process of learning in neural nets is accomplished when there are several significant
modifications in the “synapses” of the “neurons”. Those changes happen in agreement

with the activation of the neuron. The process of learning can be categorised into two general

paradigms: associative mapping and regularity detection.

1. Associative mapping in which the network learns to produce a particular pattern on the set of
input units whenever another particular pattern is applied on the set of input units. The

associative mapping can generally be broken down into two mechanisms:

2. Auto-association: an input pattern is associated with itself and the states of input and output
units coincide. This is used to provide pattern completion, that is, to produce a pattern whenever
a portion of it or a distorted pattern is presented. In the second case, the network actually stores

pairs of patterns building an association between two sets of patterns.

3. Hetero-association: is related to two recall mechanisms:
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o Nearest-neighbour recall, where the output pattern produced corresponds to the input

pattern stored, which is closest to the pattern presented, and

o Interpolative recall, where the output pattern is a similarity dependent interpolation of

the patterns stored corresponding to the pattern presented.

4. Regularity detection in which units learn to respond to particular properties of the input
patterns. Whereas in associative mapping the network stores the relationships among patterns, in
regularity detection the response of each unit has a particular 'meaning'. This type of learning

mechanism is essential for feature discovery and knowledge representation.

2.8.3 Types of learning

Neural networks have 3 main modes of operation — supervised, reinforced and unsupervised
learning (Hunt and Sbarbaro, 1992)

(i) Supervised learning is that which incorporates an external teacher, so that each output unit is
told what its desired response to input signals ought to be. Supervised learning compares the
output from the neural network with a set of targets; the error signal is used to update the weights
in the neural network. The aim is to determine a set of weights which minimises the error. One
well-known method, which is common to many learning paradigms, is the least mean square
(LMS) convergence.

(ii) Reinforced learning is similar to supervised learning however there are no targets given, the
algorithm is given a grade of the ANN performance.

(iii) Unsupervised learning uses no external teacher and is based upon only local information. It

is also referred to as self-organisation, in the sense that it self-organises data presented to the
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network and detects their emergent collective properties. Paradigms f unsupervised learning are

Hebbian learning and competitive learning.

2.9 Transfer function

The behaviour of an ANN (Artificial Neural Network) depends on both the weights and the
input-output function (transfer function) that is specified for the units. This activation function

typically falls into one of three categories:
e linear (or ramp)
e threshold
e sigmoid
For linear units, the output activity is proportional to the total weighted output.

For threshold units, the output are set at one of two levels, depending on whether the total input

is greater than or less than some threshold value.

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid
units bear a greater resemblance to real neurons than do linear or threshold units, but all three

must be considered rough approximations (Pham, 1995)

2.10 Learning algorithm using back propagation

Clearly, the uses of an efficient algorithm that will perfectly modify the different connection

weights to minimize the errors at the output is very important. This is called optimization. The
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famous LMS algorithm was developed to solve similar problems, however the neural network is
a more generic system and requires a more complex algorithm to adjust the many network

parameters.

One algorithm which has hugely contributed to neural network fame is the back-propagation
algorithm. The principle advantages of back-propagation are simplicity and reasonable speed;

although there are several modifications which can make it work faster (Daniel, 2003)

The training algorithm for a BPN consists of the following steps:

2.10.1 Selection and preparation of training data

The best training procedure is to compile a wide range of examples (for more complex problems,
more examples are required) which exhibit all the different characteristics you are interested in.
It is important to select examples which do not have major dominant features which are of no

interest to you, but are common to your input data anyway (Daniel, 2003)

2.10.2 The back-propagation Algorithm - a mathematical approach

Units are connected to one another. Connections correspond to the edges of the underlying
directed graph. There is a real number associated with each connection, which is called the
weight of the connection. We denote by Wij the weight of the connection from unit ui to unit uj.
It is then convenient to represent the pattern of connectivity in the network by a weight matrix W
whose elements are the weights Wij. Two types of connection are usually distinguished:

cxcitatory and inhibitory. A positive weight represents an excitatory connection whereas a
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negative weight represents an inhibitory connection. The pattern of connectivity characterises the

architecture of the network.

Input to Input to other
neuron I u; Output from neurons, u;
neuron i
Wid
Yiw ‘
Wi
W T wis
i i
2i LQ\ \ ] Xs(,)
Y2 >
Synaptic Wi6 X
W3, junction p{ 0
Y3

Figure 2.9 Back propagation Neural Networks Representation

A unit in the output layer determines its activity by following a two step procedure.

a) First, it computes the total weighted input xj, using the formula:

L 15 L R————— 23

Where yi is the activity level of the jth unit in the previous layer and Wij is the weight of the

connection between the ith and the jth unit.

b) Next, the unit calculates the activity yj using some function of the total weighted input.

Typically we use the sigmoid function:

37




Once the activities of all output units have been determined, the network computes the error E,

which is defined by the expression:

E=_;.Z(y,-d,)2 ....................................... 25

where yj is the activity level of the jth unit in the top layer and dj is the desired output of the jth

unit.
The back-propagation algorithm consists of four steps:

1. Compute how fast the error changes as the activity of an output unit is changed. This
error derivative (EA) is the difference between the actual and the desired activity.

o _
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2. Compute how fast the error changes as the total input received by an output unit is changed.

This quantity (El) is the answer from step 1 multiplied by the rate at which the output of a unit

changes as its total input is changed.
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3. Compute how fast the error changes as a weight on the connection into an output unit is
changed. This quantity (EW) is the answer from step 2 multiplied by the activity level of the unit

from which the connection emanates.
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4. Compute how fast the error changes as the activity of a unit in the previous layer is changed.
This crucial step allows back propagation to be applied to multilayer networks. When the activity
of a unit in the previous layer changes, it affects the activities of all the output units to which it is
connected. So to compute the overall effect on the error, we add together all these separate
effects on output units. But each effect is simple to calculate. It is the answer in step 2 multiplied

by the weight on the connection to that output unit.
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By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the previous
layer. This procedure can be repeated to get the EAs for as many previous layers as desired.

Once we know the EA of a unit, we can use steps 2 and 3 to compute the EWs on its incoming

connections.

2.10.3 Modification of the neutron connection weights

Back propagation algorithm can be best understood by considering a very simple arrangement

shown below.

I H1 H2 O
/_H A A N W
" why, N woy, )

Input 2 ;f-\ > Gl
Output 1

v

Input 1 " N,

Figure 2.10. Back propagation Net (2.2.2)
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Designating (1; 1), (H; Hy) and (O 0,), as the inputs, hidden layer outputs and output — layer

outputs respectively the output of Hidden Node 1 and 2 are given by

2
H, =sgm[ > IlWh] ................................................................... 30
o

Whete SEM(X) = — isrmmmmmssomissssassssseamsrsssssasssssssssssismsssnsssss 32

The output — layer outputs are given by

2
O = sgm [Z a, WZ,.) .................................................... 33

m=1
2 0
And O, = sgm (Z H, sz) ......................................... 34
Putting equations (1) and (2) in (4) and (5) respectively gives

\
0 = isgm (i[,. 4R /R 35

m=1 I=1

2 2
0 = ngm(Zl,W::” ;R —— 36
I=1

m=1
Now we can calculate the output given a particular set of input. This allows us to calculate the
mean square error (MSE) between the actual output and the desired output for the given input in
the above figure. This is simply the average of the squares of the difference between what we
want. The precise mean square error function is of importance, we do not need to divide by the
number of outputs, and minimization algorithm will still find the correct minixﬁum. Thus, the

error function can be written as
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2
RN 15 T ) (T ——————————— 37

n=l

Substituting (6) and (7) in (8) gives

E = i( D, - sgm (isgm( ", me] W:,"JT ............................ 38

n=l| m=1 i=]

Substituting Dy is the desired output
Since the fact that the derivative of the sigma function can be expressed in terms of the function

itself. the gradient is calculated as

d(sgm) B d(%-{-lﬂ) _ 1 B (l_sgm.(x))sgm(x)...39

dx dx (1+17 )2
L= Y 7 JREER————————— 50
T A LD B

2
Note §° = ;W:m

Now, the gradient of the error function can be calculated as

2

E 3 3 B
aI/V :m : aIV :m; (D" O")

0 s 68
05" " (s )6W -t

= —Z(D"—On)((l—sgm(S"))sgm(S"))Hm ............................ 51
Where 5: =—2(D"-O”)((l—sgm(so))sgm(So))

= -2(D,-0.)

The new values of the network weights are calculated by multiplying the negative gradient with
a step size parameter (called the learning rate) and adding the resultant vector to the vector

weights attached to the current layer.
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However, if the error at the output layer will be affected by the weight at the middle layer a new
gradient is derived, but the output weight are treated as constant rather than the hidden — layer.

This gives

_G%I/—h— = ((l - sgm(Sh))sgm(S"))éé’"W:m[i ......................... 52

The middle weights are updated using the same procedure as for the output layer, and the output

layer weights are updated as well. This is a complete training cycle for one piece of training data.

It should be noted that the input layer is really only a buffer to hold the input vector. Therefore, it
has no weights which need to be modified. For more than one hidden layer, the update procedure

is quite similar.

2.11 Neural network structures

There are 3 main types of ANN structures -single layer feedforward networ", multi-layer

I'eed forward network and recurrent networks.

2.11.1 Single layer feed forward network

The most common type of single layer feed forward network is the perceptron. Other types of
single layer networks are based on the perceptron model. The details of the perceptron are shown
below (Figure 2.8).

Inputs to the perceptron are individually weighted and then summed. The perceptron computes
the output as a function F of the sum. The activatio.n function, F is needed to introduce

nonlinearities into the network. This makes multi-layer networks powerful in representing

nonlinear {unctions.
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Figure 2.11: Diagram of the perceptron model

The output from the perceptron is

U] = SO0 TRT* XD c 53

The weights are dynamically updated using the back propagation algorithm. The difference

between the target output and the actual output (error) is calculated.

elk]=T[k]= plk] e, 54

The errors are back propagated through the layers and the weight changes are made. The

formula for adjusting the weights is

w[k +l]=w[k]+,u*e[k]*x[k] ............................. 55

Once the weights are adjusted, the feed-forward process is repeated. The weights are adapted
until the error between the target and actual output is low. The approximation of the function
improves as the error decreases. lach connection branch is described by a weight representing
the strength of connection between two linked nodes. The so called learning or training process
is the procedure to adjust the weights. Single-layer feedforward networks are useful when the
data to be trained is lincarly separable. If the data we are trying to model is not linearly separable
or the function has complex mappings, the simple perceptron will have trouble trying to model

the function adequately (Tim, 2003).
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Figure 2.12 Diagram of a multi-layered Perceptrons

2.11.3 Recurrent networks

The second type of multi-layer networks is recurrent (Figure 2.11). Recurrent networks have at
lcast one feedback loop. This means an output of a layer feeds back to any preceding layer. This
gives the network partial memory due to the fact that the hidden layer receives data at time t but
also at time t-1. This makes recurrent networks powerful in approximating functions depending
on time. The Simulink model for the nonlinear continuous stirred tank reactor shows that there
are many feedback leops. This means the next state of the model depends on previous states
(Narendra and Parthasarathy, 1990). It is expected that to accurately model this type of dynamic
system, a recurrent neural network with feedback loops will perform better than a é.tatic

feedlorward network.
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Iigure 2.13 Diagram of a Recurrent Neural Network

2.12 ANN control strategies

These are a number of control strategies which are based on some type of process model.

Most of these control designs use a forward and/or an inverse linear parametric model (Narendra
and Parthasarathy, 1990).

These linear model control strategies are well established and often benefit from the ability to
incorporate robustness more directly in the controller design. It has been proposed that many of
these model based control strategies could employ neural network models and could, thus,
benefit from the nonlinear approximation properties of ANNs. The bellow reviews the main
types of ANN based control structures.

2.12.1 Supervised control:

Supervised control involves a mechanism of providing the network with the desired output either
by manually “grading” the network’s performance or by providing the desired outputs with the

inputs. It is then possible to teach a neural network the correct actions by using an existing
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controller or human feedback. This type of control is called supervised learning. Most traditional
controllers (feedback linearisation, rule-based control) are based on an operating point. This
means that the controller can operate correctly if the plant/process operates around a certain
point. These controllers will fail if there is any sort of uncertainty or change in the unknown

plant. The advantage of neuro-control is that if an uncertainty in the plant occurs the ANN is

capable of adapting its parameters and maintains controlling the plant when other robust
controllers would fail. In supervised control, a teacher provides correct actions for the neural
network to learn as shown in Figure 2.14. In offline training the targets are provided by an
existing controller, the neural network adjusts its weights until the output from the ANN is

similar to the controller (Hagan and Demuth, 1996).

o . Process >
] Control »

<><______ ANN

Update weight

Figure 2.14 Supervised learning using an existing controller
When the neural network is trained, it is placed in the feedback loop. Because the ANN is trained

using the existing controller targets, it should be able to control the process.
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2.12.2 Adaptive neural control
Adaptive neural control is an ANN which controls the process similar to the existing controller.
The real advantage of neuro-control is the ability to be adaptive online. (Figure 2.13) An error

signal (desired signal — real output signal) is calculated and used to adjust the weights online

(Tim, 2003).
u Process » Y
Error signal is )
used to adjust Desired
the weight /:\ Response
L b

Figure 2.15 Adaptive Neural Control

I a large disturbance/uncertainty occurs in the process- the large error signal is fed back into the
ANN and this adjusts the weights so that system remains stable.

2.12.3 Inverse models

Inverse process models play a central role in some model based control structures. The

ANN models considered so far are called forward models since the direction of information flow
through the model is from process input to process output. Conversely, the direction of
information flow through an inverse process model is opposite to that of the process, and thus, an
inverse model predict the manipulated variable. An inverse ANN model can be developed using
a direct or indirect training structure. Conceptually the simplest approach is direct inverse
learning which is shown in Figure 2.14 (Tim, 2003). The process manipulated variable is applied

to the process and the process output is used, together with lagged process 1/O values as the
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ANN inputs. The ANN output is then compared with the process input to produce an error signal
which is used to train the neural network. Intuitively, this approach will force the ANN to
represent the process inverse. This is a disadvantaged and cannot be goal directed (Jordan and

Rumelhart, 1991).

u Process y

A

Inverse model

Figure 2.16 Direct inverse modelling

The root of the problem with direct inverse learning is that the training of the inverse model
attempts to minimise the manipulated variable error and this does not correspond to the control
objective which is to minimise the process output error.

2.12.4 Specialised inverse modelling

The specialised inverse modelling method overcomes the above by using the process output error
(Figure 2.15), to generate the error signal. This error signal is passed back through the forward
model to give the manipulated variable error which is used to train the inverse model. For online
learning, the forward model output error forces the inverse model into different regions of the

process input space which correspond to the operating region spanned by the set-point, r. Hence
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the specialised inverse modelling method is goal directed (Psaltis et al, 1988). Using the forward
model rather than the process to generate the error signal can be advantageous for a noisy

process or when use of the real process is not viable, (Anderson, 1989 and Economou and

Morari, 1986).

Process

A 4

v

Inverse model

v

Forward model v

Y

)

Figure 2.17 Specialised inverse modelling
2.12.5 Direct inverse control
The simplest use in an inverse process model for control is to place it in front of the process so
that the composite system results in the identity mapping from set point to process output (Figure
2.16). This approach is called Direct Inverse Control and has been implemented mainly in

robotic applications. However, the absence of feedback in the Direct Inverse Control structure
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results in a lack of robustness for the practical case of an imperfect inverse model (Hunt and

Sbarbaro, 1992).

Process |[——

mnverse
model

Figure 2.18 Direct Inverse Controls

2.12.6 Internal model control

Linear Internal Model Control (IMC) (Garcia and Morari, 1982) has been extensively studied
and many robustness and stability results have been proven. For open-loop stable systems some
of these results can be extended to non-linear IMC (Sean, 1999) although perfect forward and
inverse models are generally assumed. The use of neural networks in the IMC structure has been
proposed by several workers [Bhatt and Mcavoy, 1992 and Hunt and Sbarbaro, 1992) and has

been implemented for the control of simulated processes.

d
r o+ § u Y, ol y
—>®-~>— Filter »| Process A >
A _ +
ANN Controller
o +
L R
P
-7
ANN Process Model

Figure 2.19 The Internal Model Control Structure
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Figure 2.20 The Model Reference Control Structure

The performance of model reference control is highly dependent on the choice of reference
model.

2.7.8 Model predictive control

It has been postulated that Linear Model Predictive Control (LMPC) is the most important

control technology for the process industries since the PID controller (Vandoren, (1997). Figure
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2.19 shows a neural network MPC scheme which, in contrast to the other reviewed control
strategies, does not incorporate an inverse process model. The non-linear optimiser in ANN-
MPC is used to select the manipulated variable that minimises a cost function, which is quadratic
in the set-point/process output error. To do so, the non-linear optimiser uses the ANN process
model to predict the possible future responses of the process to different possible future
manipulated variable sequences and the current measured disturbances (Tim, 2003 and Garcia
and Morari, 1982). By using the ANN model to predict multi-step ahead, the control scheme can
| anticipate the process trajectory and compensate for measured disturbances before their impact
on the process output is detected. In common with IMC, the process/model mismatch, e’, is used

for feedback purposes and the filter adds robustness to the control system.

. v .
£ 4 Y| non-linear U ‘
—->-®—> o ———»| Process
optuniser
A
Filter

ANN Process Model

Iigure 2.21 The Model Predictive Control Structure

2.7.9 Unsupervised control

The previous neural control methods are all trained using a priori knowledge such as

an explicit teacher providing correct actions. In unsupervised learning set-up, no existing
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CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1 Description of the Process

The reversible, exothermic reaction is suitable to test PID controller performance due to
its non-linearity, incomplete conversion and lack of stability. A reversible, exothermic
reaction shown below was carried out in a single perfectly mixed continuous stirred tank
reactor; Figure 3.1 shows the inputs and output of a system. The continuous stirred tank
reactor system is a non-linear process and to adequately model it, non-linear methods
using neural networks analysis can be used. The mathematical model in this case is the
black box, it describes the relationship between the input and output signals. The reaction
is described by equation 3.1. It is a first order reversible reaction and has a heat of
reaction AH. The heat of reaction was removed by an incorpbrated cooling jacket

surrounding the reactor. Cooling water is added to the jacket at the rate F and the inlet

temperature Tcj, .

K
R = P RR—————— 3.1
2
F in, CAin, Tin
In-flow ——
s Tcin, Fein
Te, Fe N
Inlet coolant
Outlet N
coolant N
=<
F, CB; Tjar
Out-flow

Figure 3.1 Continuous Stirred Tank Reactors with Cooling Jacket
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The dynamic equations of the system were developed. The model was then simulated
using Simulink approach and a basic controller was used.
The first things considered before the model can be developed in Simulink were the
dynamic equations that describe the continuous stirred tank reactor. These equations were
derived using the total continuity equation, that is, the material, components and energy
balance equations.

The basic assumptions considered for the easy derivation of our dynamic equations
are given below:

() Constant densities

(i)  Constant flow rate

(iii)  Perfectly mixed jacket water

(iv)  Constant water volume in the jacket

(v)  The feed is free of product B

(vi)  Constant physical and thermo-chemical properties

(vii)  The mass of the metal wall is negligible, the thermal inertia need not be
considered.

3.2 Model Equations

The equations that describing the system are:

3.2.1 Reactor total continuity equation.

Time rate of v M
changeof mass | = ( . s ﬂow) - ( assﬂow] ................................. 3.2
L in out
inside the system
That is, 9%1—) = Fa 2 = F P umerasensvisos s 33
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controllers can be imitated and the ANN doesn’t have a target to compare to its output. The ANN
must try different states and determine which state produces a good output. Learning from

experience during periods of no performance feedback is difficult (Barto, Sutton et al al, 1983).
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3.2.2 Reactor components continuity equations

i) For Component A

‘ , ) 1 p o p Amount of
(tzm; rat; of change of ] _ [m;) esh of ) _ ( O'tej’otjl; ) ] + | Adisppeared/ |..3.4
§aitcs !
witninthe stytem Intothe system ouitof the system generated

Sl L R TN Y - 35
dc, F,
e = A AT N oM ¢ — 3.6

Consider constant flow rate, F

ac, F
= (Can=C) iy Oy = G 3.7

The effect of temperature on the reaction rate k is usually found to be exponential:

k =k, exp(—%) ....................................................... 3.8

where ko is an Arrhenuis factor.

—E -,
Ky 2k 8™ @idK; = Bl B oo s s s s s 3.9
dc, F,. . . y -
e —V-(c,,m—c,,)+ K€ FTCp —Kige T C fumrrinmmrisnesssnssssesssnessssnessaens 3.10
ii) For component B
Amount of B
timerateof Molesof B Molesof B /
o =) - *| generated/ |.3.11
change of B withinthe system intothe system out of the system

disppeared
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V‘;f OIS GIY X & N 61 N 3.12
dgt” _—g(c,,n I B = Bl v cssisiumesmem s 3.13
dC F

dtB =K Cy = K Cy =57 Ot 3.14

-k
K(T)=Ke®
~F, -
dgt" =§(c,,0 —Cp )+ Ky ™ Cy = Kyl T C pvorrmmmemeeresmmmmssesssssasssssnsaes 3.15

3.2.3 Energy balance equation for the reactor

. . Rateof
rate at which Rate at which

Rate of energy Rate of Enery ) . change of

. - +| heat is added | —| heat is removed | = N %

intothe system out of the system energy within

tothe system bythe coolant
the system

pCpF (T, =T)+ AHrV - Q = pVdeT/ .................................. 3.17
Dividing through by pVCp

dl F AHr 0
—=—(T, ~T)+ e v tesaesaesa SRS RSSO Ao aRRES OSSR RS S FRASS 3.18

dt vV pC, prc,
Where 7, =-K,C, +K,C, and Q=UA(T-T,,)

ar _r AHr UA
==\I, -T)- -K.C,-K,C VI [ | TP 3.19
dt V( in ) wp ( 1™~4 2 B{chp ( Jar ):|

dl F

== 0 S R o/ o . | N N OO 3.20

Where o = L andf} = va

’ Ay

Using Arrhenius equation

dT F

—= {5, T ke ¥ c ke c S/ 5 ) SO, 321
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3.2.4 Energy balance equation for the cooling jacket

Time rate of change Flowof heat heat removed
) Flowof heat .
of energy within el . —| out of the —| bythe jacket |..3.22
: intothe jacket )
the jacket Jjacket water
ver e cp rp (. -1, )+ UA(T -T . 3.23
p.VCP, P P F LN, =Ty )+ /79 R — :
LY R T SR 3.24
da v, ‘;—)VC 5 ;c

The four differential equations that described the system are

dc, F =5 <

Shak ¥ (o s BN ST o L o SO (a)
dt 4
dc, F ) s
- -V-(c,io M E ] RS L N— (b)
I _F e o
=T, = T)+ake ™ C,y ~kye ™ C, - (A A W (c)
dr, F.. UA (.
- (7, Tja,)+m(r /7 SN (d)

At this stage, a set of nonlinear equations describing the continuous stirred tank reactor
(CSTR) have been developed. The next stage is constructing a Simulink model of the

CSTR system. (Simulink blocks Toolbox Library, MATLAB 7, and appendix B figure 1).

Steps
To begin modelling, start simulink, open a new model, an empty simulink window opens
and save the model as freshplant.mdl. (Appendix B, figure 1)

1. In the Simulink Library Browser window, double-click simulink, and then double-

click Sources. Click-and-drag any desired block; Constant, Product, Add,
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Subtract, Divide, Uniform Random Number, Clock, Ramp, Random Number,
Sine Wave, or Step to the simulink window.

. Double-click Commonly Used Blocks. Click-and-dragging any desired block;
Gain, In, Out, Product, Scope, Integrator, Sum or Terminator to the simulink
window.

. Double-click Sinks. Click-and-drag the next desired block; Display, Scope, To
Workspace, XY Graph, Transfer Fcn, Derivative, Math Fcn, or Fen to the
Simulink window.

. Double-click Math Operations. Click and drag, the next required block; Add,
Derivative, Terminator, Math Fcn or Fen.

. Double-click control system. Click-and-drag Model Reference Control blocks and
X (2Y) Graph.

. Connect the constant block (F) to the Gain block (F/V) and the output to a product
block. At the same time the constant block (Cain) and integrator (Ca) were
connected to Add block. The output of it to the same product block.

The function block (Fen) together with a branch from C, line was linked to
another product block. The output was then linked to Add block. Similarly,
another function block together with a branch from Cp line was linked to the same
Add block.

. The outputs from Productl and Subtract blocks were linked to Add2 block. The
output of this was linked to an Integrator, which upon integration gives Ca. The
line is also link to X (2Y) Graph to study its output response or to a Display block
where its exact value can be read. The link lines were produced by clicking and
dragging from one block to the next. The simulink model module for the first

dynamic equation was modelled, and is as shown below (Figure 3.2). In the same
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way, the other dynamic equations were modeled and masked together as a reactor.

These are shown in the appendix. After modeling, each block was double-clicked

and dialog box opens, the required parameters were entered accordingly into the

text box. Having created the Simulink

model was run to see its response.

model for the CSTR, the simulation of the

L""'OunJ
P ) -l I_an

k2 s @)
CB Dynamis o e

Ind
In§
Int T
Ti —>(1)
I 1ltao T
:Tm Tin Dynamics

Tcin Outt t+—

P|in2

Tc Dynamics

Figure 3.2: Simulink Model Connection Procedures for the Reactor

Having created the simulink model for the CSTR, I ran the simulation model to see its

response. Similar procedure was adopted for designing the controllers. The diagram

shown in the Appendix B is the non-linear CSTR Simulink model for the dynamic
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equations describing the reversible reaction given above. The model was constructed
using constants, integrators, sums, products, gains function blocks etc. The method
though complicated is the Simulink representation of the non-linear state equation (Tim,
2003). The model is large so it was encapsulated in subsystem blocks shown in Appendix
B, Figure 1.

The model was set up using a mask which makes it possible to change the value of any of
the parameter used at will for different simulation.

3.4 Case Study

For the reaction described in figure 3.1 variables to be controlled are product
concentration and temperature of the reacting mass. The nominal operating conditions
and parameters for the above problem are shown in Table 3.1, and are used for the
simulation of the model developed.

Table 3.1: Nominal Operating Condition and Parameter Value for the Simulation of
Reversible Exothermic Reaction in CSTR.

Notation Description Value and units
P, P. Density of solution 1kg/L

\Y Reactor volume 100L

e Heat capacity of solution 4184J/kgK
AHr Heat of reaction -20920J/mol

E Activation energy(forward reaction) -41840J/mol

E, Activation energy(backward reaction) -62760J/mol
UA Heat transfer coefficient 418400J/min.K
Fin Feed flow rate 1.6 L/min

Cain Concentration of A in feed 1 mol/L.

Cs Concentration of B in product 0.0

Tin Feed temperature 427K

Tein Coolant inlet temperature 300K

Kio Reaction rate coefficient(forward) 5*%10"3L/min
Koo Reaction rate coefficient(backward) 1*1076L/min

R Ideal gas constant 8.314)/mol.K

Sources: William L. Luyben, 1999, “Design and Control of Gas-Phase Reactor/Recycle
Processes with Reversible Exothermic Reactions” Revised edition-pg 1664.

The next stage was the incorporation of PID controller into the CSTR to improve
conversion and stabilize the system. The PID chosen for this work is given as;
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d
Ut =K, e()+K, je(t)dt+ Ky —re(®)

Where U = output value r = desired value
e = tracking error y = actual output

The variable e(t) represents the tracking error, the difference between the desired value (r)
and the actual output (y). This error signal will be used by PID controller. PID will take
appropriate action according to the law and pass the signal (u) to the plant to adjust the
appropriate manipulated variable. The simulink representation of the PID controller
incorporated to the CSTR reactdr shown in Figure 3.3. Other subsystems such as
concentrations dynamic and temperatures dynamic are shown in appendix B Figures 4, 5,

06, and 7.

X(2Y)
Graph

Ij!
Ly Tin Clockt O]
427 - T
" X@Y)
Tin

In10ut1 ®J—>
Clock
UA/ROWCP F "

PID Controller

3
o4

CAin

R 4

Figure 3.3: Simulink Block Diagram for the CSTR Incorporated with PID Controller
3.5 Application of Neural Analysis in Control Systems
This chapter presents brief descriptions of model reference control (MRC) architectures,
which are used to simulate our system.
There are typically two steps involved when using neural networks for control:
a. System Identification
b. Control Design
In the system identification stage, a neural network model of the plant that we want to
control is developed. In the control design stage, we use the neural network plant model
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to design (or train) the controller (MATLAB 7, Control System Toolbox, User’s Guide).
Depending on the architecture, a number of control design methodologies can be used. In
this research work model reference control (MRC) has been used. Here, the controller is a
neural network that is trained to control a plant so that it follows a reference model. The
neural network plant model is used to assist in the controller training.

3.6 Model Reference Control

An illustration of model reference control is presented in Figure 3.3. In the figure the
network has two inputs, one of the inputs is difference between plant output and model
reference output and second input is difference between model output and reference
signal. Both plant model and reference model are used to train the network. The resulting
ANN model will serve as controller for the system. Figure 3.3 explains the model
reference control system. ANN controller uses these to adjust its weights until the output
of the plant looks similar to model reference output trajectory

ANN controller will have two input, error signal from reference model output, and plant
output, the second error signal comes from difference between reference signal and plant
output. The procedures involved in training the network are generation and validation of
training data sets, pre-processing of data set and training and validation of network. To
have good representation of the model, two data sets were generated from the system to
train the network, one data set for validation and another one testing. Uniform random
input signals, which span the upper and lower limit of operating range were used to excite
the system. This was done to enable network learn the nonlinear nature of the system.
Before incorporating the network into the control scheme the networks were trained
offline using the Gauss-Newton based Levenberg Marquardt algorithm (Leveneberg 1944
and Marquardt 1963). The essence is to let the network learn the functional nonlinearities
to a certain degree of accuracy before implementing the controller, and thus can give
faster online adaptation as needed. In this study, data sets for the training were obtained
by carrying out simulation on the open loop of the system, which in turn were used to

train the network.
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Figure 3.4 Model Reference Control

The network considered was multilayer perceptron with a single hidden layer. The
activation function used in study is nonlinear sigmoid function in hidden layer and the
linear function in the output layer. Neural network with large enough number of hidden
neurons, which have continuous and differentiable transfer functions can approximate any
continuous function over a closed interval (Cybenko, 1989) .The numbers of nodes are
initially fixed at small numbers, the number was increased in order to have a proper
trained network. Satisfactory networks models were obtained when the sum of squared
errors of the validation data set was satisfactorily small.

The first step in the design is plant identification. Here data for the identification were
generated by simulating CSTR model. The data generated was used to train the ANN.
The type of training is supervised learning described in section 2.8.3. The network has 20
neurons in the hidden layers. The activation functions in the hidden layer are tan-sigmoid

and the output layer in a linear function.

3.5.2 Using the model reference control

The model reference control, Figure 3.4 was created with the Neural Network Toolbox
using model reference controller, uniform random input, and graph blocks to demonstrate
the model reference control action. The objective of the simulation is to show the

effective performance of neural network controller in the presence of step changes to a

process reactor.

Tables 3.2 and 3.3 show the parameters used for the model reference training windows

and plant identification windows at optimal condition.
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Table 3.2 Parameter for Model Reference Training Windows

Size of hidden layers 20
No. Delayed Reference inputs 2
No. Delayed Controller Outputs |
No. Delayed Plant Outputs 2
Max. Reference. Value 1
Min. Reference. Value 0
Controller Training Samples 8000
Max. Interval Value 20
Min. Interval Value 5
Reactor with PID Cont roller Plantrefl(Given Name)
Controller Training Epochs 5
Segments 5
Uniform Random Input Set 0-1

Table 3.3 Parameter for Plant Identification Windows

Size of hidden layers 15

No. Delayed Plant inputs 2

No. Delayed Plant Outputs &
Sampling interval (s) 0.2
Max. Plant Input 25.05
Min. Plant Input 2.36
Max. Plant Output 1.5
Min. Plant Output 0
Training Samples 10,000
Max. Interval Value (s) 20

Min. Interval Value (s) 5

Plant Name Freshplant
Training Epochs 300
Training Function Trainlm

3.4.3 Steps to run the simulink model.

1. Start MATLAB.

2. Run the demo model by clicking on the file, then opening in the MATLAB command

windows. This creates the work file window.

3. Double click on the saved model, named mrc1. This command opens the saved model,

mrcl where further operations were carried out. (Appendix B, Figure 8).
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4. Double-click the Model Reference Control block and gradually enter the required

parameters as shown in the figure 3.3.

5. Browse and fit in the CSTR model, and the training epochs are selected in this window

just before generating data. (Figure 3.5).

> Model Refersnes Cantrol

Figure 3.5 Model Reference Control Data Input Windows

0. Click Plant Identification, which opens the Plant Identification windows. You can then

train the plant model. The neural network plant model must be developed before the

controller is used. The controller is a neural network that is trained to control a plant so

that it follows a reference model. The neural network plant model is used to assist in the
~controller training. The plant model neural network has one hidden layer, as shown

below. The size of the layer, the sampling interval, the number of delayed inputs and

delayed outputs, the maximum and minimum plant inputs and outputs, the maximum and
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minimum interval values, the continuous stirred tank reactor model (named Fresh plant),

the training epochs and the training function are all set for data generation and training.

7. Select any of the training function to train the neural network plant model. Trainlm is

used for this training. (See Appendix, Figure 3.4 Plant Identification Windows)

<} Pldnt Identification

File Window Help

Figure 3.6 Plant Identification Windows
8. Click on generate training data button. The program generates training data by
applying a series of uniform random inputs to the simulink plant model. The potential

training data is then displayed which is as shown in appendix B Figure 9.

9. Select Accept Data, and then select Train Network from the Plant Identification
windows. Plant model training begins. The training proceeds according to the selected
training algorithm (trainlm in this case). The response of the resulting model is displayed,
as shown in appendix B Figures 10. Training, validation and testing data windows are
also displayed in appendix D Figures 3 and 4. The network can then be trained with the

same data set by selecting Train Network again. The data set can be erased and a new one
67




Reference Model Input

T

Al

ik
i
time (s)
Reference Model Output (blue), Neural Network Output (green)
0.8 : . ;

0.8
0.6 |-

04

0.2

0

r Sf TN ‘f~'~‘"‘Lr“"‘v‘..,»-"“A\,./"" R W N N Wi R T Ty
% 0.6/ 8
>~ 0.4 —
§ oz |
0 S L L 1
(6} 500 1000 1500
time (s)

Figure 3.5 Plant Responses for NN Model Reference Control
12. Go back to the Model Reference Control windows, if the performance of the
controller is not accurate, then you can select Train Controller again, which continues the
controller training with the same data set. If you would like to use a new data set to
continue training, select Generate Data or Import Data before you select Train Controller.
It might also be necessary to retrain the plant model. If the plant model is not accurate, it
can affect the controller training. For this demonstration, the controller should be accurate

enough, and then select OK.

13. Return to the simulink model and start the simulation by selecting the start command
from the simulation menu. As the simulation runs, the plant output and the reference

signal are displayed as show in Figure3.5.
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CHAPTER FOUR

4.0 Results and Discussion

4.1 Results

The simulation results of the open loop Continuous Stirred Tank Reactor (CSTR), closed

loop CSTR and Neural Networks CSTR are presented in the following figures.
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Figure 4.1: Concentration profile for Open Loop simulation of CSTR for reversible

reaction
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Figure 4.2: Temperature profile for open loop simulation of CSTR for reversible reaction
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Table 4.1 Controller setting for PID Controller and their Performance

PID K, Ki Kqg Rise Overshoot  Settling  Final
Controller time Time Conc.
Setting | 2.5 0.5 7 33.4 0.08 135 1.00
Setting2 ~ 3.15 0.47 8 30.2 0.41 130 1.00
2 =5 SESS EEESSEESS 1
Setting 1
.......... setting 2
1.5} 1

Conc.(mol/L)

0.5

0 100 200 300 400 500
Time(s)

Figure 4.3: Concentration profile for Closed Loop simulation of CSTR for reversible

reaction
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Table 4.2 Parameters for Training the Plant and Neural Network Controller

Controller MRC  Plant  ‘Training Plant Controller MSE
Training  Hidden Hidden Samples for Training Training
Layers Layers Controller/Plant Epochs  Epochs/Segments

Data A 10 8 300074000 300 50f5 1.891e-03
Data B 12 12 5000/7000 300 S5of5 6.137¢-05
Data C 20 15 8000/10000 300 50f5 6.298¢-06
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Performance is 0.00189112, Goal is 0
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up Input of 5%.
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4.2 Discussion of Results

Figure 4.1 shows the open loop concentration profile the simulation of CSTR for
reversible reaction. At the beginning, there is an increase in concentration of product B
until a maximum conversion of 86.7% at 80.9 seconds, and the curve later bends down to
the minimum. The concentration of reactant, A decreases to 0.133mol/L at the same time.
This concentration of reactant, A started to rise up after a little time. The reason for these
responses is because the reaction we have considered is reversible. Initially, the reaction
exhibits forward reaction and later reverses.

Figure 4.2 shows the temperature profile for the open loop simulation for the reactor
system. The temperature rises as the reactor process reaction triggers off. This testifies to
the instability of the CSTR system when no control method is employed.

In order to bring the reaction to complete conversion and to prevent backward reaction,
the flow rate of reactant was used as manipulated variable in the control design and with
the incorporation of a PID controller, we have been able to achieve total conversion by
suppressing the reversible reaction. This is shown in Figure 4.3. The PID controller
setting that gave the best performance 5 foun Ke=3.15, Ki = 0.47 and Kd = 8.
This is shown in Table 4.1. The response is fast and was able to bring the system output
to a target value at 126 seconds. The rise time and settling time are 26 seconds and 96.4
seconds respectively. The response is not without an overshooting of 41.2% which is not
only very high but also not welcome in PID control. The objective has been met as long

as there is no disturbance or set point change.
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Figure 4.4 shows the temperature profile for the CSTR incorporated with a PID
controller. Initially, there was an inverse response which can be adduced to the heat
gained from the surrounding before reaction occurs. The temperature rises immediately
and returns to a steady state of 431.9 K at minimum period of 172.7 seconds.

Despite the fact that the desire output has been obtained by the used of PID controller, the
unwelcome high overshoot and settling time called for the used of intelligence control
which will eliminate these problems and others that may be encountered by PID
controller in the presence of disturbance as well as set point changes for non-linear
system.

Figure 4.5 is the performance curve during the network training for the continuous stirred
tank reactor. At the beginning of the training, the performance profile shows that the
training, validation and testing errors were high. As the number of epochs increases the
mean squared error (MSE) decreases. As the curves start to converge, very little learning
is taking place. This shows that the training, validation and testing errors decrease as the
network learns and hence ari . Jication of accurate parameters selection.

Figure 4.6 is the validation data for NN model reference control. It shows the error
differences between the plant output and the neural network output. It was used to
ascertain that the error difference b the ‘put and NN oufput is within an
acceptable limit before the user could proceed t nerate data for the controller. The
testing and validation data responses are shown in the appendix D, Figures 3 and 4.
Figure 4.7(a) is the performance curve for the training of the network controller for error
minimization. At the start of the training, the error between the network output and the
CSTR model output is high. As the number of training iteration or epoch increases, the
mean square error (MSE) decreases. The steepness of the curve shows that training

samples and the number of hidden neurons need to be increased until possible accurate
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fitting is achieved. It is an indication that further minimization of error is possible. The
convergence of the performance curve displayed in Figure 4.7(b) shows that little or no
training was taking place and an indication that the error minimization is within
acceptable limit.

Table 4.2 shows the performance results for the various data sets used during the
controller training. The results show that increasing the size of hidden layers and the
training samples decreased the mean square error (MSE) between the model and the
process outputs.

Figure 4.8¢c shows that the response of the resulting closed loop system after the whole
training exercise was completed. The upper part (reference model input) is the random
reference input that was used for the training. The lower part is the response of the
reference model and the response of the closed loop plant. The plant response followed
the reference model. This is an indication that the correct amount of training samples and
size of hidden layers or neutrons were used.

Figure 4.8a shows that the data set for the plant identification and model reference control
results in oscillatory behaviour, while the plant response does not follow the reference
model perfectly in Figure 4.8b. The two responses were due to less number of hidden
layers or neutrons as well as insufficient number of training samples. This is called under-
fitting or under-parametisation.

Figures 4.9 and 4.10 are the simulation response of the NN controller to step down
changes of 5% and 10% in the feed concentration. The responses show that both the
controller met the set target. The response reveals that the NN controller was able to
return the system output to the desired concentration at a minimum rise time of 10 and

10.7 seconds for 5% and 10% respectively with no oscillation and negligible overshoot.
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In the case of PID controller, th.e rise time, settling time and the overshoot in both cases
were increased. The increase in overshoot and settling time are not welcome in control
system because it renders PID controller unsuitable for controlling many non-linear
reversible CSTR reaction.

Figures 4.11 and 4.12 show the responses for both ANN and PID controller to a step up
changes of 5% and 10% in the feed concentration. While ANN controller is able to return
the system output to the desired steady state in the presence of set-point change at a
minimum period of 10.7 seconds with neither oscillation nor overshoot, the PID
controller failed. This may be difficult to tackle in the case of PID controller because its
performance is only good in the operating region and most especially for linear system.
Outside the region the controller performance will deteriorate. The above shows that the
ANN’s are capable of identifying complex non linear systems both within and outside the
operating regions.

Figure 4.13 shows the closed loop response of the system in the presence of external
disturbance. The system was disturbed by introducing 10% change in reactant
temperature. The ANN controller was fast to arrest the disturbance but there is occurrence
of overshoot. It counteracts disturbance and return the system to original condition on
time. The PID control gives serious oscillation and it did not settled throughout the

simulation period.
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CHAPTER FIVE
5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

From the results obtained in our simulation we can see that the ANN controller using
model reference was able to track set point change and reject the uncertainties resulting from
external disturbances. The responses were somehow sluggish in the faces of external
disturbances but give no oscillatory behaviors. For PID controller, the performance
deteriorated for set point changes and under the influence of external disturbances. This
reason for poor performance can be adduced because of high nonlinearity of the CSTR.

ANN control approach using references model to tailor system output to a desired
responses was developed. The controller has been able to take care of nonlinearly aspect of
the system. ANN control scheme has better trajectory tracking ability than PID since the
former is based on nonlinearity of the model, while the latter based on particular operating
conditions. The control was able to adapt to system changes and operating condition change.
There was no need for turning parameter in the control. The control was very adaptive and
has self-turning capability for any change in operating conditions and system parameters.
During the online implementation, the networks ware continuously adapted online, the
controller did not require an integral action to obtain zero offset in the system output. The
proposed method is somehow sluggish because the optimal control action is iterative in order
to converge to an acceptable accuracy.

The result of the research work also show that the techniques in controlling the system offer a

better control alternative to those formerly used.
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5.2 Recommendations

The neural network techniques offer promising approach to truly intelligent system, which
can provide optimal solution to many non-linear control problems. When dealing with non-
linear system identification, we need to be sure that the system inputs and outputs cover the
operating range for which the controller will be applied. For this application, we typically
collect training data by applying random inputs which consist of a series of pulses of random

amplitude and duration. The duration and amplitude must be chosen carefully to produce

accurate identification.
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Each icon in the main Simulink window can be double clicked to bring up the corresponding
block library. Blocks in each library can then be dragged into a model window to build a
model.

Source Blocks are used to generate si‘gnals. Double-click on the Sources icon in the main
Simulink window to bring up the Sources window.

Constant: The Constant Source Block simply generates a constant signal. The constant
output value is displayed in the middle of the block, with a default value of 1. This can be
change by double-clicking on the block in your model window to bring up the required box.
Step: The Step Source Block generates a step function. The initial and final values can be
specified, as well as the step time.

Clock: The Clock Source Block generates a signal equal to the current time in the
simulation. The clock's output reflects the times at which the other signals outputs occur.
Digital Clock: The Digital Clock Source Block generates a strictly periodic time signal at a
specified sampling interval.

From Workspace: The From Workspace Source Block is identical to the From File Source
Block except the values are taken from a variable (or expression) in the MATLAB Workspace.
Random Number: The Random Number Source Block generates a sequence of random
numbers generated with the specified random number seed.

Sink Blocks are used to display or output signals.

Scope: The Scope Sink Block was described earlier. It is used to $isplay a signal as a
function of time.

XY Graph: The XY Graph Sink Block plots one signal against another. It is useful for

phasE-plane plots, etc.



Display: The Display Sink Blobk is a digital readout of a signal at the current simul"tion
time.

To File: The To File Sink Block saves a signal to a .mat file in the same waythat the From
File Source Block reads from a file.

To Workspace: The To Worjspace Sink Block stnres a signal in a specified

workspace variable. Unlike the To File Sink Block, the tile is not qaved in the variable, and
must be stored separately.

Li,ear Blocks are eldments of lineAr continuous-time dynamic systems. This are shown hn
the Simulink window below.

Gain: This is a scalar or vector gain. The specified gain multiplies the input. The output is
either(Ja scalar or vector signal following normal vector-scalar multiPlication rules.

Sum: The Sum Block adds (or subtracts) two (or more) signals and outputs their sum (or
difference). The two inputs must either all be scalars, or all be vectors of the same dimension.
The output is the same dimension as the inputs.

Example

{+
+ >

Sum

Integrator: The output of the Integrator is the integral of the input. An initial condition can
be specified, as well as saturation limits. This block is very useful for modeling systems.
Transfer Function

Numerator and denominator polynomials can be specified to create a standard SISO LTI
system transfer function.

Derivative: The output is equal to the derivative of the input.



Dot Product: The output is equal to the dot product of two vector signals.

Product: The output is equal to the product of the inputs. The number of inputs can be
specified.

Mux, Demux

The Mux (Multiplexer) block is used to combine two or more scalar signals into a single
vector signal. Similarly, a Demux (Demultiplexer) block breaks a vector signal i;lto scalar

signal components. The number of vector components must be specified in each case.
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Figure 3: Simulink Subsystem Block Diagram for the CSTR
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Figure 4: Simulink Block Diagram for the CSTR Incorporated with PID Controller.
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Figure 7: Simulink Block Diagram for Temperature Dynamics, Tj,
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Figure 8: Simulink Block Diagram for Cooling Jacket Temperature Dynamics, T,



s

Figure 9: Plant Input-Output Data
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Figure 3.10 Plant input output data for NN Model Reference Control

Figure 10: Plant input output data for NN Model Reference Control
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Figure 12: Neural Network Plant Responses after Training (Data B)
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Figure 13: Testing data for NN Model Reference Control
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Figure 14: Validation data for NN Model Reference Control




