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ABSTRACT 

Despite the wide application of PlD controller in process industries, there are still some 

limitations which militating against the use of PID controller especially when used alone. 

The nc.:c.:u arisc.:s to get equivalent cmltrol scheme which will be self-tuning and still perform 

better fUllction than PID controller. 

ANN control approach using references model to tailor system output to a desired responses 

was developed. The ANN controller using model reference was able to track set point change 

and reject the uncertainties resulting from external disturbances. 

The responses were somehow sluggish in the faces of external disturbances but give no 

oscillatory behaviors. For PID controller, the performance deteriorated for set point changes 

and under the influence of external disturbances. This reason for poor performance can be 

adduced because of high nonlinearity of the CSTR. 

The controller has been able to take care of nonlinearly aspect of the system. ANN 

control scheme has better trajectory tracking ability than PID since the [omler is based on 

nonlinearity of the model, while the latter based on paIiicular operating conditions. The 

control was able to adapt to system changes and operating condition change. There was no 

need for turning parameter in the control. The control was very adaptive and has self-turning 

capability for any change in operating conditions and system parameters. The proposed 

method is somehow sluggish because the optimal control action is iterative in order to 

converge to an acceptable accuracy. 

The result of the research work also show that the techniques in controlling the system offer a 

better control alternative to those formerly used and a host of other nonlinear control 

problems. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

Despite the advent of many complicated control theories and techniques more than 94% of 

control loop based on PID controllers are still being used in various industrial processes. The 

PID controller is one of the easiest ways of control in chemical system reactor because of its 

simplicity in structure, robustness in operation and easy comprehension in principle. 

Nevertheless, the PID algorithm may not be effective in highly nonlinear and time varying 

chemical process. Nonlinearities may be intrinsic to the physics or the chemistry of the 

process or may arise through the close coupling of a number of simpler processes. In either 

case, complicated differential equations of the system dynamics pose a challenging problem 

in the sense of mathematical tractability. To improve the control performance, several 

scheme of self- tuning PID controller were proposed in the past. Wittenmark proposed the 

control structure with the PID algorithm calculated vial pole placement design. The self­

tuning PI or PID algorithms were automatically derived from dynamic of the controlled 

processes. 

The controller structure was oriented to have a PID structure. The control parameters were 

obtained using a parameter estimated scheme. Many other forms of PID can be found in 

literature. However, the limitation of the above stated self-tuning adaptive control techniques 

is that the control model with linear model is operated in the linear region. If some changes in 

the process or environment occur, it must be manually checked whether the model is 

adequate to represent the real model or not since the control design should be based on a 

reliable model. 



Presently, neural networks constitute a very large research interest. They have required 

capability in solving complex mathematical probl ems since they have proven to approximate 

a continuous function accurately. Hence, it has been a subject of focus in the field of 

chemical process control and has been applied to system identification and controller design. 

All the above shows that the neural network can capture the characteristics of system patterns 

and performance approximation function for nonlinear system. 

Besides, the state of the art in the area of neural networks in control systems has become 

increasingly challenging. The need to meet demanding control requirements in increasingly 

complex dynamical control systems under significant uncertainties makes neural networks 

very attractive, because of their ability to learn, to approximate functions, to classify patterns 

and because of their potential for massively interconnection hardware implementation. 

Neural networks do appear to be able to implement many functions essential to control 

systems with higher degree of reliability. 

Also neural network technology has received much attention in the field of chemical 

process control, this is because of inherently non-linear nature of most of the processes and 

neural network have great capability in solving complex nonlinear mathematical problem 

(Jungllui and Titen-chu, 2004). 

Neural networks have shown great progress in identification of nonlinear system, 

which is due to increase in cheap computing power and certain powerful theoretical 

algorithms (Cybenko, 1989; Lippman, 1987; Rumelhart and Mecelland; 1986). 

Application of ANNs to non-linear process control have attracted a rapidly growing 

interest in the recent time (Willis et aI, 199, Hunt etal,1992 ) several approaches have been 

used to train ANN to model either the process behaviour or its inverse and subsequently used 

within conventional model based control schemes including model based predictive control, 

internal model control, adaptive control and feed forward control ( Hunt and Sbarbaro, 1992; 

Balto, Sutton and Anderson, 1983) 
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1.2 ArtifiCial Neural Networks (ANNs) 

An artificial neural network (ANN), also called a simulated neural network (SNN) or 

commonly just neural network (NN) is an interconnected group of artificial neurons that uses 

a mathematical or computational model for information processing based on a connectionist 

approach to computation. In most cases an ANN is a system that is capable of changes its 

structure based on external or internal information that flows through the network. 

A neural network operates as a parallel-distributed processor capable of acquiring 

knowledge from experimental data, and applying knowledge learned to unseen 

problems. I-lay kin outlines how neural networks mimic a very simplified version of 

the brain in two aspects; 

(i) Knowledge is acquired through a learning process i.e. the network can be trained. 

(ii) Interneuron connection strengths known as synaptic weights are used to store the 

knowledge. 

Neurons arc the processing elements of the network. The layout of the neurons in 

space and the interconnection between them determine the structure of the network. 

Common structures include layered feedforward, recurrent and radial bias networks. 

These can be modified to suit a particular application, or alternatively a completely 

new structure can be designed (Emuoyibofarhe, 2004). 

A learning algorithm describes how the interconnection weights are adjusted to achieve the 

desired behaviour of the network. The science of artificial neural networks is based on the 

neuron. In order to understand the structure of artificial networks, the basic elements of the 

neuron should be understood. Neurons are the fundamental elements in the central nervous 

system. 

3 
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cell body 

Figure 1.1 The components of a neuron. 

A neuron is made up of 3 main parts -dendrites, cell body and axon. The dendrites receive 

signals coming from the neighbouring neurons. The dendrites send their signals to the body 

of the cell. The cell body contains the nucleus of the neuron. If the sum of the received 

signals is greater than a threshold value, the neuron fires by sending an electrical pulse along 

the axon to the next neuron. The following model is based on the components of the 

biological neuron 

1.2.1 Motivation for an ANN approach to non-linear control 

The main appeal of Artificial Neural Networks (ANNs) in control systems 

Engineering is that they offer the potential of a generic approach to the modelling and 

control of linear and non-linear systems. The term "artificial neural network" originates 

from research which attempted to understand, and proposed simple models of, the operation 

of the human brain. Consequently, ANNs do possess characteristics which are common with 

the biological system. They consist of numerous simple processing elements (neurons) joined 

together by variable strength connections (synapses) to form a massively parallel and highly 

interconnected information processing system. This gives ANNs several characteristics 

which are appealing for the modelling and control of non-linear systems, such as the ability 

to:-
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i) Neural networks are composed of elements operating in parallel. Parallel processing 

allows increased speed of calculation compared to slower sequential processing. 

Inputs 
Output 

Figure.I.3: Diagram shows the parallelism of neural networks 

ii) Artificial neural networks (ANN) have memory 

The memory in neural networks corresponds to the weights in the neurons. Neural networks 

can be trained omine and then transferred into a process where adaptive learning takes place. 

iii) Learn by example 

Neural networks are trained using data records from the system under study, and hence they .. 

are parametric models. 

(iv) Degrades gracefully due to theil' p~'rallel nature 

A fault in an ANN could be caused by an erroneous weighted connection, either because of 

incorrect identification or because of an open or short circuit in a hardware implementation. 

The parallel structure of a neural network affords it a high degree of tolerance to faults. 

v) Attain relatively fast execution times 

Once a network has been trained, it can attain fast execution times. In software 

implementation, because the processing elements perform relatively simple functions, this 

leads to fast computation compared to other non-linear models (e.g. Volterra series model). 
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vi) Ability to solve new kinds of Problems 

Neural networks are effective at solving problems whose solution are difficult, and may not 

be possible to define, and since it has the ability to learn from experience (previous 

examples) when presented with a new but similar problem it can provide solution. 

vii) Robustness 

Neural networks tend to be more robust than their conventional counterparts because they 

have the ability to cope well with incomplete data. 

viii) Flexibility and Ease of Maintenance 

Neural based computers are very flexible in that they are able to adapt their behaviour to new 

and changing environments. On the other hand the serial conventional computing, are strictly 

algorithmic and require writing a new program for any modification. They are also easier to 

maintain to accommodate changes or modifications. 

The main disadvantage of ANN is that they operate as black boxes. The rules of operation in 

neural networks are completely unknown. It is not possible to convert the neural structure 

into known model structures such as ARMAX, etc. Another disadvantage is the amount of 

time taken to train networks. It can take considerable time to train an ANN for certain 

functions. 

1.3 Aims and Objectives 

The aims of this work include; 

(i) To apply altificial neural network for the design of a feedback controller for a 

continuous stirred tank reactor using model reference control 

(ii) To simulate and compare the performance of a PID controller with artificial 

neural network controller. 
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Objectives 

(i) To formulate a mathematical model for the non-linear CSTR in time domain. 

(ii) To develop an overall model for the nonlinear CSTR using simulink software. 

(iii) To incorporate the overall CSTR model with a PID controller. 

(iv) To incorporate the overall CSTR model with an artificial neural networks 

controller. 

7 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 Historical Background of Neural Networks Analysis 

In 1943, new-ophysiologist Warren McCulloch and mathematician Walter Pitts wrote a 

paper on how neurons might work. In order to describe how neurons in the brain might work, 

they modeled a simple neural network using electrical circuits. 

In 1949, Donald Hebb wrote The Organization of Behavior, a work which pointed out the fact 

that neural pathways are strengthened each time they are used, a concept fundamentally essential 

to the ways in which humans learn. If two nerves fire at the same time, he argued, the connection 

between them is enhanced. As computers became more advanced in the 1950's, it was finally 

possible to simulate a hypothetical new-al network. The first step towards this was made by 

Nathanial from the IBM research laboratories. Unfortunately for him, the first attempt to do so 

failed. 

In 1959, Bernard and Marcian of Stanford developed models called "ADALINE" and 

"MAD ALINE. " In a typical display of Stanford's love for acronyms, the names come from their 

use of Multiple ADAptive LINear Elements. ADALlNE was developed to recognize binary 

patterns so that if it was reading streaming bits from a phone line, it could predict the next bit. 

MADALINE was the first neural network applied to a real world problem, using an adaptive 

filter that eliminates echoes on phone lines. While the system is as ancient as air traffic control 

systems, li ke air traffic control systems, it is still in commercial use. 

In 1962, Widrow and Hoff developed a learning procedure that examines the value before the 
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'ghl adjusts it (i.e. 0 or 1) according to the rule: Weight Change = (Pre-Weight line value) * 

or / (Number oflnputs»). It is based on the idea that while one active perceptron may have a 

big error, one can adjust the weight values to distribute it across the network, or at least to 

adjacent perccptrons. Applying this rule still results in an error if the line before the weight is 0, 

although this will eventually correct itself. If the error is conserved so that all of it is distributed 

to all of the weights then the error is eliminated. 

Despite the later success of the neural network, traditional von Neumann architecture took 

over the computing scene, and neural research was left behind. Ironically, John von Neumann 

himself suggested the imitation of neural functions by using telegraph relays or vacuum tubes. In 

the same time period, a paper was written that suggested there could not be an extension from the 

single layered neural network to a multiple layered neural network. In addition, many people in 

the field were using a learning function that was fundamentally flawed because it was not 

differentiable across the entire line. As a result, research and funding went drastically down. 

This was coupled with the fact that the early successes of some neural networks led to an 

exaggeration of the potential of neural networks, capability especially considering the practical 

technology at the time. Promises went unfulfilled, and at times greater philosophical questions 

led to fear. Writers pondered the effect that the so-called "thinking machines" would have on 

humans, ideas which are still around today. The idea of a computer which programs itself is very 

appealing. If Microsoft's Windows 2000 could reprogram itself, it might be able to correct the 

programming enors. Such ideas were appealing but very difficult to implement. In addition, von 

Neumann architecture was gaining in popularity. There were a few advances in the field, but for 

the most part research was few and far between. In 1972, Kohonen and Anderson developed a 
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im ilar network independently of one another. They both used matrix mathematics to describe 

tbei r ideas but did not realize that what they were doing was creating an array of analog 

ADALINE ci rcuits. The neurons are supposed to activate a set of outputs instead of just one. 

The Erst multilayered network was developed in 1975, an unsupervised network. In 1982, 

intGrest in the field was renewed. John Hopfield of Caltech presented a paper to the National 

Academy of Sciences. His approach was to create more useful machines by using bidirectional 

li nes. Previously, the connection between neurons was only one way. 

http://www./ len. wikipedia.org/wiki/weighted-sum . 

Tl1at same year, Reilly and Cooper used a "Hybrid network" with multiple layers, each layer 

using a different problem-solving strategy. Also in 1982, there was a joint US-Japan conference 

Oll Cooperative/Competitive Neural Networks. Japan millounced a new Filth Generation effort 

on neural networks, and US papers expressed apprehension that the US could be left behind in 

the field. (Fifth generation computing involves artificial intelligence. First generation used 

s\vitches and wires, second generation used the transistor, third generation used solid-state 

technology like integrated circuits and higher level programming languages and the fourth 

generation is code generators.) As a result, there was more funding and thus more research in the 

field . 

In 1986, with multiple layered neural networks in the news, the problem was how to extend 

the Widrow-Hoff rule to multiple layers. Three independent groups of researchers, one of which 

included David Rumelhart, a former member of Stanford's psychology department, came up with 

similar ideas which are now called back propagation networks because it distributes pattern 

recognition errors tlu'oughout the network. Hybrid networks used just two layers, these back-
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pre pagation networks use many. The result is that back-propagation networks are "slow 

learners," needing possibly thousands of iterations to learn. 

Now, neural networks are used in several applications, some of which will describe later 

in thesis. The fUl1llamental idea behind the nature of neural networks is that if it works in nature, 

it must be able to work in computers. The future of neural networks, though, lies in the 

development of hardware. Much like the advanced chess-playing machines like Deep Blue, fast, 

efficient neural networks depend on hardware being specified for its eventual use. Research that 

concentrates on developing neural networks is relatively slow. Due to the limitations of 

processors, neural networks take weeks to learn. Some companies are trying to create what is 

called a "silicon compiler" to generate a specific type of integrated circuit that is optimized for 

the application of neural networks. Digital, analog, and optical chips are the different types of 

chips being developed. One might immediately discount analog signals as a thing of the past. 

However neurons in the brain actually work more like analog signals than digital signals. While 

digital signals have two distinct states (1 or 0, on or off), analog signals vary between minimum 

and maximum values. It may be awhile, though, before optical chips can be used in commercial 

applications. 

2.2 Neural analysis in control systems 

The ever-increasing technological demands of our modern society require innovative approaches 

to highly demanding control problems. Artificial neural networks with their massive parallelism 

and learning capabilities offer the promise of better solutions, at least to some problems. By now, 

the control community has heard of neural networks and wonders if these networks can be used 
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to provide better control solutions to old problems or perhaps solutions to control problems that 

have withstood our best efforts (Paul, 1996). 

Neural networks have the potential for very complicated behavior. They consist of many 

interconnected simple nonlinear systems, which are typically modeled by sigmoid functions. The 

massive interconnections of the rather simple neurons, which make up the human brain, provided 

the original motivation for the neural network models. The terms artificial neural networks and 

cOlmectionist models are typically used to distinguish them from the biological networks of 

neurons of living organisms. Interest in neural networks has made a comeback in this decade 

alter a period of relative inactivity following the shortcomings of early neural networks (the 

. si ngle-Iayer perceptron), which were publicized in the late 1960s. The renewed interest was due, 

ill part, to powerful new neural models, the multilayer perceptron and the feedback model of 

Hopfield, and to learning methods such as back propagation; but, it was also due to advances in 

hardware that have brought within reach the realization of neural networks with very large 

numbers of nodes. 

In a neural network, the simple nonlinear elements called nodes or neurons are interconnected, 

and the strengths of the interconnections are denoted by parameters called weights. These 

weights are adjusted, depending on the task at hand, to improve performance. They can be 

assigned new values in two ways: either determined via some prescribed off-line algorithm 

remaining fixed during operation or adjusted via a learning process. Learning is accomplished 

by, first, adjusting these weights step by step (typically to minimize some objective function) 

and, then, storing these best values as the actual strengths of the interconnections. The 

intercOlmections and their strength provide the memory, which is necessary in a learning process. 
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ability to learn is one of the main advantages that make the neural networks so attractive. 

also have the capability of performing massive parallel processing, which are in contrast to 

von Neumann machines the conventional digital computers in which the instructions are 

sequentially. Neural networks can also provide, in principle, significant fault tolerance, 

damage to a few links need not significantly impair the overall performance. The benefits 

most dramatic when a large number of nodes are used and are implemented in hardware. The 

ware i.mplementation of neural networks is cunently a very active research area; optic and 

ore conventional means of implementation of these large networks have been suggested. 

eural networks are characterized by their network topology that is, by the number of 

the node characteristics that are classified by the type of nonlinear elements 

and the kind of learning mles implemented . 

. 2.1 Control technology 

use of neural networks in control systems can be seen as a natural step in the evolution of 

methodology to meet new challenges. Looking back, the evolution in the control area has 

fueled by three major needs: the need to deal with increasingly complex systems, the need 

accomplish increasingly demanding design requirements, and the need to attain these 

uirements with less precise advanced knowledge of the plant and its environment that is, the 

control under increased uncertainty. Today, the need to control, in a better way, 

)1cl:ea~;;ml::!;iy complex dynamical systems under significant uncertainty has led to are-evaluation 

the conventional control methods, and it has made the need for new methods quite apparent. It 

also led to a more general concept of control, one that includes higher-level decision making, 

and learning, which are capabilities necessary when higher degrees of system 
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autonomy are desirable (Paul, 1996). In Vlew of thi s, it is not surpnsmg that the control 

community is seriously and actively searching for ideas to deal effectively with the increasingly 

challenging control problems of our modern society. Need is the mother of invention, and this 

has been true in control since the times of Ktesibios and his water clock with its feedback 

mechanism in the third century B.C. (Mayr, 1970), the earliest feedback device on record. So the 

lise of the neural networks in control is rather a natural step in its evolution. Neural networks 

appear to offer new promising directions toward better understanding and perhaps even solving 

some of our most difficult control problems. History, of course, has made clear that neural 

networks wi II be accepted and used if they solve problems that have been previously impossible 

or very difficult to solve (Lippmann, 1987). 

2.2.2 Application of neural analysis in control systems 

Neural networks have been applied very successfully in the identification and control of dynamic 

systems. The universal approximation capabilities of the multilayer perceptron make it a popular 

choice for modelling nonlinear systems and for implementing general-purpose nonlinear 

controllers. This chapter presents brief descriptions of Model Reference Control (MRC) 

architectures and it i~ used to simulate our system. 

There are typically two steps invol ved when using neural networks for control: 

a. System Identification 

b. Control Design 

In the system identification stage, a neural network model of the plant that we want to control is 

developed. In the control design stage, we use the neural network plant model to design (or train) 

the controller (MATLAB 7, Control System Toolbox, User's Guide). Depending on the 

architecture, a number of control design methodologies can be used. In this research work model 
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control (MRC) has been used. Here, the controller is a neural network that is trained to 

trol a plant so that it follows a reference model. The neural network plant model is used to 

. 'it in the controller training . 

.3 P.·occss control system 

Control systems are every where around us and within us. Many complex control systems are 

included among the functions of the human body. An elaborate control system centered in the 

hypothalamus of the brain maintains body temperature at 3SoC - 37°C, in spite of changes in 

physical activi ty and external ambience (Murril, 1996). 

A control system is therefore any group of components that maintains some desired result in a 

process. A process is any combination of materials and equipment that produces a desirable 

result tlu'ough changes in energy, physical properties or chemical properties (Bateson, 1993). 

Examples of processes are a food processing plant, a petroleum refinery, an electrical power 

plant, a textile making plant, a plastic making plant etc. Process control involves the control of 

variables in a manufacturing process. It involves combinations of any materials and equipment 

that modifies a product, making it more useful and more valuable (Emuoyibofarhe, 2004). The 

most common controlled variables in a process are temperature, pressure, flow rate, and level. 

Otber includes color, conductivity, PH, hardness, viscosity, density and composition. Many 

process control system are used to maintain constant processing conditions and, hence, are 

regulator systems. 

The process control usually incorporates a device or group of devices that automatically 

controls a mechanism, a source power or other variables. The system automatically compares the 

controlled output of a system to the controlling input. The difference between the output and 

input is called the error signal e, which regulates the output to a desired value. 
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Process control may be either open or closed loop, but closed loop systems are more common. 

The process of sending the error signal back for comparism with the input is called Feedback and 

the whole process of the input, output, error signal and feedback is called a closed loop. Process 

control systems are not limited to the field of chemical engineering but also electrical 

cngineering and mechanical engineering. This paper work focuses on chemical process control. 

Research on chemical process control came up about 1930 (Grebe et aI, 1933), discussed 

some difficult PH control problems and showed the advantage of using controllers with 

derivative action. Ivanoff, (1934), introduced the concept of potential deviation and potential 

correlation as an aid in quantitative evaluation of control system. The field has continued to 

attract researchers and many attractive research results continue to appear in publications 

(Emuoyibofarhe, 2004). 

2.4 Types of control 

Control system are classified in various ways 

I . Open and closed loops depending on whether or not feedback is used. 

11 . Regulator and servo up systems depending on whether the set point is constant or 

changing. 

III. Process control , Servo mechanism, Sequential control and Numerical control 

depending on the types of application. 

IV . Analog and Digital depending on the nature of output signal. 

2.4.1 Feed back control 

Essential to most automatic control mechanism is is an interdisciplinary branch of engineering 

and mathematics, which deals with the behavior of dynamical systems, which enables a designer 

to endow a machine, reactor or system with the capacity for automatic control. A feedback loop 
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is a mechanical , pneumatic, or electronic device that senses or measures a physical, quantity such 

as position, temperature, size or speed etc. compares it with a pre-established standard, and takes 

whatever pre programmed action that is necessary to maintain the measured quantity within the 

I imits of the acceptable level. In a feedback control loop, the controlled variable is compared to 

the set point, with difference, deviation or error e acted upon by the controller to move in such a 

way as to reduce the error. This action is specifically negative feedback, in that an increase in 

deviation moves so as to decrease the deviation (Mayr, 1970). (Positive feedback would cause 

the deviation to expand rather than diminish and therefore does not regulate).The action of the 

controller is selectable to allow use, form example, appropriate sign for gains. 

(b) Blod" diagl'ams 

Block diagram is a shorthand pictorial representation of the relationship between input and 

output of a system. This representation is commonly called the block diagram. Control systems 

are made up of various combinations of the following basic blocks. 

+ 
t point ---j~~1 

Error 

Controller 

FCE 

MV 

Measuring means 

DV 

Process 

Control variable 

Figure 2.1 Block Diagram of a Closed Loop Control System 

Where 

v Controller Output 

DV = Disturbance Variable 
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Cm Measured Value of Controlled variable. 

FCE Final control element 

MY Manipulated Variable 

Sct point (SP): the desired value of the controlled variable. 

Measured variable: the output of the measuring means / element. 

Error: the difference between the set point and the measured value of CV 

Controller Output: control action intended to drive the measured of CV toward the set point 

value. 

Manipulated Variable: the variable regulated by the FeE to achieve the desired value of the 

(,Y. 

Disturbance Variable: the process input variable that affect the controlled variable but are not 

controlled by the control system. 

Controlled variable: the process output variable which is to be controlled. 

Sensor: a device that measure the process variable 

Tnll1smittcr: transmitter is the interphase between the process and its control system. It 

incorporates a transducer that convelis the sensor signal (liquid flow rate, pressure difference etc) 

into an equivalent electrical or air control signal. 

(c) Types of feedback controllers 

(i) Proportional Control Mode: Proportional control produces a change in controller output 

proportional to the error signal. 

(ii) Integral Control Mode: The integral control mode changes the output of the controller by 

an amount propOliional to the integral of the error signal. 
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(iii) Derivative Control Mode: Derivative control changes the output of the controller 

proportional to the rate of change of the error signal. This change may be caused by the variation 

in the measured variable, the set-point or both 

(iv) 1>roportional-plus-Integral control: Proportional-plus-integral control is used on process 

wilh large load changes when the proportional mode alone is not capable of reducing the offset 

to an acceptable level. The integral mode provides a reset action which eliminates the 

proportional offset. 

(v) Proportional-plus-Dedvative Control: The derivative control mode is sometimes used 

wilh the proportional mode to reduce the tendency for oscillation and allow a higher proportional 

gain selting. The proportional mode provides a change in the controller output which is 

proportional to the rate of change of error signal. 

(vi) Proportional - integral - derivative control (PID): This is usually referred to as three­

mode controller. It is used on process with sudden, large load changes when one or two mode 

control is not capable of keeping the error within acceptabllimits. The derivative mode produces 

an anticipatory action which reduces the maximum error produced by sudden load changes (Paul 

W. Austin, 1996). 

The integral mode provides a reset action which eliminates the amount of offset error. The 

controller compares a measmed value from a process (typically an industrial process) with a 

reference setpoint value. The difference (or "error" signal) is then used to calculate a new value 

for a manipulatable input to the process that brings the process' measured value back to its 

desired setpoint. The three gain factor associated with the Proportional, integral and derivative 

actions at an accptable degree of error reduction simultaniously with accptable dynamic 

response. 
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(d) Manual tuning 

If the system must remain online, one tuning method is to first set the I and D values to zero. 

Increase the P until the output of the loop oscillates, and then the P should be left set to be 

approximately half of that value for a "quarter amplitude decay" type response. Then increase D 

until any offset is correct in sufficient time for the process. However, too much D will cause 

instability. Finally, increase I, if required, until the loop is acceptably quick to reach its reference 

after a load disturbance. However, too much I will cause excessive response and overshoot. A 

fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however, 

some systems cmIDot accept overshoot, in which case an "over-damped" closed-loop system is 

required, which will require a P setting significantly less than half that ofthe P setting causing 

oscillation. 

Table 2.1 Effect of Each Controller on System Output Signal 

Closed Loop Rise time Overshoot Settling time Steady State 
Rcs20nsc Error 
KI' Decrease Increase Small Change Decrease 

K, Increase Increase Increase Eliminate 

Kf) Small change Decrease Decrease Small change 

Sourse: Instrument Engineers' Handbook: Process Control by Liptak, Bela, 1995 

(e) Ziegler-Nichols method 

Another tuning method is formally known as the Ziegler- Nichols method, introduced by John G. 

Ziegler and Nathaniel B. Nichols. As in the method above, the I and D gains are first set to zero. 

The "P" gain is increased until it reaches the "critical gain" Kc at which the output of the loop 

starts to oscillate. Kc and the oscillation period Pc are used to set the gains as shown: 
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Zeigler-Nichols Method 
Control Type K, Kj Kd 
P 0.5 Kc - -

PI 0.45 Kc 1.2 Kp/ Pc -

PID 0.6 Kc 2 Kp/ Pc Kp PJ 8 

Soursc: Loop Tuning Fundamentals". Control Engineering by Van, Doren, Vance 1. 

(f) Response ill feedback control systems 

feed back control systems are used for various purposes and must meet certain performance 

requirements. These requirements not only affect such things as speed of response and accuracy, 

but also the manner in which the system responds in carrying out its control function. All 

systems contain certain errors. The problem is to keep them within allowable limits. 

Overshoot = A 

Decay ratio = BfA 

tr 

.-C Time (s) 

Figure 2.2 Characteristic of a Closed Loop Response to Step Change. 

(g) Step response analysis 

The following features are evaluating to know the performance of a closed -loop system 

i.) Rise time: the time taken the output to first reach 90% of its final value which is always 

required to be small 
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ii .) Setting time: the time after which the output remains within ± 5% of its final value. 

iii .) Overshoot: the peak value divided by the final value, which should be 20% or less 

iv.) Decay ratio: the ration of the second and first peaks, which should be 0.3 or less. 

v.) Steady-state Offset: the difference between the final value and the desired final value. 

The rise time and setting time are measures of the speed of the response, whereas the overshoot, 

decay ratio and steady state error are related to quality of a response. 

2.4.2 Feed forward control 

Most feedback systems act post facto (after the fact) that is the effect ofthe disturbance has been 

fclt by the process. Unlike the feedback systems, a feed forward system uses measurements of 

disturbance variables to position the manipulated variable in such a way as to minimize any 

resulting deviation. The disturbance variable could be either measured loads or the set point. The 

feed forward gain must be set precisely to offset the deviation of the controlled variables from the 

set point. 

Set-point 

'---_---..J~ Disturbance 

- S,",o" 1 

I 
Process I----+~ Controlled Output 

--~~~r-------~.,--____ ~ 
Manipulated -

Variable 

Fig. 2.3 Structure of feedforward control scheme (Fundamental of Process Control Theory, 

United State, 1997) 

Feed forward control is usually combined with feedback control to eliminate any offset resulting 

from inaccurate measurements and calculations and unmeasured load components. 
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+ Error signal Output 

Controller 

Feedback 

Reference Sensor 

Figure 2.4 Block diagram for feedback control (Chemical Engineering Handbook, Perry and 

Green, 1997) 

2.5 Elements of a control system 

a) Variables 

1n attempting a design a control system that will satisfy the control needs for a chemical process, 

one must be able to identify and classify the variables associated with the chemical process. 

The variables (flow rate, temperature, concentrations etc) associated with a chemical process are 

divided into two 

i) Input variables 

ii) Output variables. 

The input variables can be further classified into two categories 

i) Manipulated (or Adjustable) variables 

ii) Disturbances 

The output variables are also classified into two 

i) Measured output variables 

ii) Unmeasured output variables 
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b) Block Diagrams 

For control problems, it is helpful to use a block diagram to show the functional relationship 

between input and output (Paul , 1996). 

x ~IL ___ G_:-----+~ y 

+ 

x---..~e 

(a) y = Gx 

y = f(x, t) (b) e=x-y 

Figure 2.5 Block diagram component (a) Dynamic relationship (b) comparis0n of signals 

2.6 Chemical Reactors 

Chemical reactors are vessels that are designed for a chemical reaction is taking place. It is an 

apparatus for holding substances that are undergoing a chemical reaction. The design of a 

chemical reactor deals with multiple aspects of chemical engineering. Vessels may be tanks 

(usually enclosed to keep contaminant out of the reaction vessel) or tubular (a pipe). Both types 

can be used as continuous reactor or batch reactors http://www.//en.wikipedia.org/wiki/reactors. 

Chemical vessels must satisfy several requirements imposed by it designers and the general 

tec1mical , economical and social conditions in presence of ever - changing external influence 

(disturbances). Among such requirements are the following; 

i) Production specifications 

ii) Operational constraints 

iii) Safety 

iv) Environmental regulations 
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v) Economics 

The requirements listed above dictate the need for continuous monitoring of a chemical vessel 

and external intervention (control) to guarantee the satisfaction ofthe operational objectives. 

Types of Reactors 

The tlu'ee main basic models are: 

• Batch Reactor model (batch) 

• Continuous Stirred-Tank Reactor model (CSTR) 

• Plug Flow Reactor model (PFR). 

2.6.1 Batch reactor 

A batch reactor is used in chemical processes for small scale operation, for testing new processes 

that have not been fully developed, for the manufacture of expensive products and for processes 

that are difficult to convert to continuous operations.It is a reactor in which all the reactants are 

loaded at once, the reaction is allowed to proceed for a given time whereupon the mixture of 

unreacted material together with the products is withdrawn. Agitation serves to mix separate 

feeds initially and to enhance heat transfer. Batch reactors are popular in practice because of their 

fl exibility with respect to reaction time and to the kinds and quantities of reactions that they 

process. 

2.6.2 Continuous stirred-tank reactor (CSTR) 

The continuous stirred-tank reactor or CSTR is that in which one or more fluid reagents are 

introduced into a tank reactor equipped with an impeller while the reactor effluent is removed. 

The impeller stirs the reagents to ensure proper mixing. Simply dividing the volume of the tank 

by the average volumetric flow rate through the tank gives the residence time, or the average 

amount of time a discrete quantity of reagent spends inside the tank. 
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2.6.3 Plug flow reactor (PFR) 

A Plug flow reactor is a chemical reactor where the fluid passes through in a coherent manner, so 

that in the ideal case the residence time is the same for all fluid elements. 

It is the one in which one or more fluid reagents are pumped through a pipe or tube. The 

chemical reaction proceeds as the reagents travel through the PFR. In this type of reactor, the 

reaction rate is a gradient; at the inlet to the PFR the rate is very high, but as the concentrations 

of the reagents decrease and the concentration of the product(s) increases the reaction rate 

decreases. 

2.6.4 State variables and state equations for the chemical process 

1n order to characterize a processing system (tank, batch reactor, continuous stirred tank reactor, 

etc) and its behaviour, the following are needed: 

i) a set of functional dependent quantities whose values will describe the natural state of 

a given system. 

ii) a set of equations, in the variables above will describe how the natural state of the 

given system changes with time. 

r or most of the processing systems of interest to a chemical engineer there are only three such 

rundamental quantities: mass, energy, and momentum. Quite often, though, the fundamental 

dependent variables cannot be measured directly and conveniently. In such cases other variables, 

which can be measured conveniently, are selected and when grouped appropriately they 

determine the value of the fundamental variables. 

These characterized variables are called state variables and their values define the state of a 

processing system. The equations that relate the state variable (dependent variables) to the 
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various independent variables are derived from application of the conservation principles of the 

fundamental quantities and are called state equation. 

The principle of conservation of a quantity S states that 

(
AccumulatlimO! S) (flOWO! Sin) (flOWO! S 1 (AmountO! S 1 
withina system the sys tem outo! the sys tem) generatedwithinsystem) -'----------'- = - + -'-----------..:..-

time period time period time period time period 

(a~1O~ntO! S consumed] 
wlthma system 

timeperiod 

The quantity S can be any of the following fundamental quantities: 

Total mass 

Mass of individual component 

Total energy 

The balance equations for these quantities are given as 

Total mass balanc~ 

d(pV) 
d = LPiFj - LPjF j ... .. ........ ..................... 2.1 

t j: inlet j:outlet 

Mass balance on component A 

Where the variables in the above equations are: 

p = Density of the material in the system 

Pi Density of the material in the ilh inlet system 
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P j = Density of the material in the /h outlet system 

V = Total volume of the system 

P-I Volumetric flow rate of the ilh inlet system 

jf . 
) 

Volumetric now rate of the jlh output stream 

CA Molar concentration (moles/volume) of A in the system 

CAi M I . fA' I ·Ih o ar concentratIOn 0 111 t le 1 

CAj M I . fA' h ·Ih o ar concentratIOn 0 111 t e J output 

r Reaction rate per unit volume for component A in the system 

2.7 Artificial neural nets (ANNs) 

The fundamental processing element of a neural network is a neuron. This building block of 

human awareness encompasses a few general capabilities. Basically, a biological neuron receives 

inputs fr0111 other sources, combines them in some way, performs a generally nonlinear operation 

on the result, and then outputs the final result. Figure 2.6 shows the relationship of these four 

pa l ts. 
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traditional computing. This is achieved by simulating the four basic functions of natural neurons. 

Figure 2.6 shows a fundamental representation of an artificial neuron. 

In ShOli, an artificial neural network is a method of solving problems through artificial 

intelligence, by building a system of circuits to simulate the human brain, includes behaviour 

(i.e. learning, walking and making discoveries). Through technical computational models 

inspired by simulating the neural structure of intelligent organisms, ANN's can be taught to 

acquire knowledge through experience. http://www.answers.com/topic/artificialintelligence. 

Referring to natural brains and their cOlmections, ANN's are characterized by the meeting of a 

large amount of Artificial Neurons (AN), interlinked by a great number of connections 

(synapses) that process the information in a parallel way. The fact that the information is 

processed in a parallel way provides larger reliability and readiness because the information is 

shared only one time with all of the neurons of the following layer. Therefore, if there is a 

possible {law in a neuron in the net then it does not cause the whole process to lose all the 

information since the information is already present in other neurons. This makes it possible to 

make a total recovery, or at least a partial recovery. Just like the human brain, ANN's store 

knowledge through experience. Therefore the more the ANN used the more the ANN learns. 

Healthy ANN's divide into layers, where layer patterns represent the net. These layers extract the 

characteristics, and work as partial intermediaries that process the information in parts before 

exiting from the ANNs. As can be observed in figure 2.7, the treatment of information in RNN's 

happens in the following way: Each signal that arrives at the neuron multiplies the signal 

according to the number of synapses with signals (the value of the synapses is substituted during 

the process of training of the net). The resultant signals are added to obtain only one entrance 
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value in order to reach the threshold value. The information produces an exit and it is spread in 

the net. If this threshold is not reached the information is not considered relevant and is blocked. 

Xo 

Figure 2.7 Artificial Neural Nets 

2.7.1 The mathematical representation of a neuron 

A first-order mathematical model for a neuron could be that shown in figure 2.8. 

Weight/strength of the connection 

Threshold 

>2 Output 

Figure 2.8 Mathematical Representation of a neuron 
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In • .;oming connections are represented by input lines with an associated weight. The neuron itself 

only performs accumulation and tlu'esholding for incoming pulses from its inputs. 

When a pulse comes from a connection, it is first multiplied by a number called the weight of the 

connection which assigns a certain importance to the connection (identical to the largeness of a 

biological dendrite), and then accumulates the overall result, passing the value through a 

threshold which emits a pulse when a certain value is reached. The output of the threshold stage 

is in turning connected to the inputs of several other neurons, which forms a complete network. 

In practice, real input and output numbers are used to model the transactions between the 

di fferent neurons. Instead of a biological threshold function, we use a mathematical function 

such as the sigmoid function [11 (1 +e-X
)], arctangent, arcsine, etc. These functions should be 

sl1100th and continuous (i.e. you should not use a piecewise linear or step function) wit lower and 

upper limit. They shou ld also be differentiable. 

2.S. Learning 

Learning is the area of cognitive science that deals with the ability to segment the world into 

classes of equivalents. The mechanism by which intelligent system groups physically distinct 

objects into classes are among the most fundamental aspects of cognition. Without these 

mechanisms, every instant of each type of object, event or situation would appear new every 

time it is encountered. 

2.S.1 Human learning 

Learning is the neural process for which the experience modifies the behavior and is centrally 

regulated. Learning can be of an associative type or a non-associative type. In other words, it can 
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ha ve direct relationship with incentives (as in associative learning); or not, depending on the 

relationship between incentives and answers (such as acclimatizing and sensitivity in non­

associative learning). Conditioning is a reflex answer to an incentive that first produced little or 

110 answer, and then produces an answer after repeated association with the incentive. Where 

there is no relationship with other incentives then the brain learns by searching through its 

"database" for similarities among the incentives that are available until they find some reasons 

(acclimatization, sensitivity) or learn that there is no relationship with other incentives in the 

brain. Every time a signal is received, this stimulates learning of their properties and informs the 

"database" . 

2.8.2Artificial neural networks learning 

The process of learning in neural nets is accomplished when there are several significant 

modifications in the "synapses" of the "neurons". Those changes happen in agreement 

with the activation of the neuron. The process of learning can be categorised into two general 

paradigms: associative mapping and regularity detection. 

1. Associative mapping in which the network learns to produce a particular pattern on the set of 

input units whenever another particular pattern is applied on the set of input units. The 

associative mapping can generally be broken down into two mechanisms: 

2. Auto-association: an input pattern is associated with itself and the states of input and output 

units coincide. This is used to provide pattern completion, that is, to produce a pattern whenever 

a portion of it or a distorted pattern is presented. In the second case, the network actually stores 

pairs of patterns building an association between two sets of patterns. 

3. Hetero-association: is related to two recall mechanisms: 
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• Nearest-neighbour recall, where the output pattern produced corresponds to the input 

pattern stored, whic~ is closest to the pattern presented, and 

• Interpolative recall, where the output pattern is a similarity dependent interpolation of 

the patterns stored corresponding to the pattern presented. 

4. Regularity detection in which units learn to respond to particular properties of the input 

patterns. Whereas in associative mapping the network stores the relationships among patterns, in 

regularity detection the response of each unit has a particular 'meaning'. This type of learning 

mechanism is essential for feature discovery and knowledge representation. 

2.S.3 Types of learning 

Neural networks have 3 main modes of operation - supervised, reinforced and unsupervised 

learning (Hunt and Sbarbaro, 1992) 

(i) Supervised learning is that which incorporates an external teacher, so that each output unit is 

told what its desired response to input signals ought to be. Supervised learning compares the 

output from the nelli'al network with a set of targets; the error signal is used to update the weights 

in the neural network. The aim is to determine a set of weights which minimises the error. One 

well-known method, which is common · to many learning paradigms, is the least mean square 

(LMS) convergence. 

(ii) Reinforced learning is similar to supervised learning however there are no targets given, the 

algorithm is given a grade of the ANN performance. 

(iii) Unsupe.·vised learning uses no external teacher and is based upon only local information. It 

is also referred to as self-organisation, in the sense that it self-organises data presented to the 
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network and detects their emergent collective properties. Paradigms f unsupervised leaming are 

Hebbian learning and competitive learning. 

2.9 Transfer function 

The behav iour of an ANN (Artificial Neural Network) depends on both the weights and the 

input-output function (transfer function) that is specified for the units. This activation function 

typically falls into one of tluee categories: 

• linear (or ramp) 

• tlueshold 

• sigmoid 

For linear units, the output activity is proportional to the total weighted output. 

For threshold units, the output are set at one of two levels, depending on whether the total input 

is greater than or less than some tlueshold value. 

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid 

units bear a greater resemblance to real neurons than do linear or tmeshold units, but all tmee 

must be considered rough approximations (Pham, 1995) 

2.10 Learning algorithm using back propagation 

Clearly, the uses of an efficient algorithm that will perfectly modify the different connection 

weights to minimize the errors at the output is very important. This is called optimization. The 
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fal110us LMS algorithm was developed to solve similar problems, however the neural network is 

a more generic system and requires a more complex algoritlun to adjust the many network 

parameters. 

One algoritlun which has hugely contributed to neural network fame is the back-propagation 

algorithm. The principle advantages of back-propagation are simplicity and reasonable speed; 

although there are several modifications which can make it work faster (Daniel, 2003) 

The training algoritlun for a BPN consists of the following steps: 

2.10.1 Selection and preparation of training data 

The best training procedure is to compile a wide range of examples (for more complex problems, 

more examples are required) which exhibit all the different characteristics you are interested in. 

11. is important to select examples which do not have major dominant features which are of no 

interest to you, but are common to your input data anyway (Daniel, 2003) 

2.10.2 The back-propagation Algorithm - a mathematical approach 

Units are cOlmected to one another. COImections conespond to the edges of the underlying 

directed graph. There is a real number associated with each connection, which is called the 

weight of the connection. We denote by Wij the weight of the cOImection from unit ui to unit uj. 

It is then convenient to represent the pattern of connectivity in the network by a weight matrix W 

whose elements are the weights Wij . Two types of connection are usually distinguished: 

excitatory and inhibitory. A positive weight represents an excitatory connection whereas a 

36 



negative weight represents an inhibitory connection. The pattern of connectivity characterises the 

archi tecture of the network. 

Y'(I) 

Y2(1) 

Y3(1) 

Input to 
neuron I Uj 

W3 j 

Output from 
neuron i 

Synaptic 
junction 

Figure 2.9 Back propagation Neural Networks Representation 

Input to other 
neurons, Uj 

Wi4 

Wi5 

Wi6 r:::'\ 
I----'U 

A unit in the output layer determines its activity by following a two step procedure. 

a) First, it computes the total weighted input xj, using the formula: 

Xj = LyJ¥ij ................. .. .... .......... ........ ...... . 2.3 
I 

Where yi is the activity level of the jth unit in the previous layer and Wij is the weight of the 

COlmection between the ith and the jth unit. 

b) Next, the unit calculates the activity yj using some function of the total weighted input. 

Typically we use the sigmoid function: 

1 
Yj = \' ......................... .. ...... ... ............ 2.4 
. l+e-' J 
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Once the activities of all output units have been determined, the network computes the error E, 

which is defined by the expression: 

E =~ L)Y; -dy .... ...... .... ..... .. ... .. ....... ..... .2.5 
I 

wllere yj is the activity level of the jth unit in the top layer and dj is the desired output of the jth 

unit. 

The back -propagation algorithm consists of four steps: 

1. Compute how fast the error changes as the activity of an output unit is changed. This 

error derivative (EA) is the difference between the actual and the desired activity. 

oE 
EA

j 
= - = Y j - d j ................................. . .... 2.6 

oYj 

2. Compute how fast the error changes as the total input received by an output unit is changed. 

This quantity (EI) is the answer from step 1 multiplied by the rate at which the output of a unit 

changes as its total input is changed. 

oE oE dYj 
El j =-=-x-=EA j Y/I -Yj )·· ····· ······2.7 

ox oY dx .I j j 

3. Compute how fast the enor changes as a weight on the connection into an output unit is 

changed. This quantity (EW) is the answer from step 2 multiplied by the activity level of the unit 

from which the connection emanates. 
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4. Compute how fast the error changes as the activity of a unit in the previous layer is changed. 

This crucial step allows back propagation to be applied to multilayer networks. When the activity 

of a unit in the previous layer changes, it affects the activities of all the output units to which it is 

connected. So to compute the overall effect on the error, we add together all these separate 

effects on output units. But each effect is simple to calculate. It is the answer in step 2 multiplied 

by the weight on the connection to that output unit. 

, 8E 8E 8x 
EA.; = - .- = I - X _J = IEl j Wy ••••••••••• ••••••••• 2.9 

8y; J Ox j 8y; .I 

By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the previous 

layer. This procedure can be repeated to get the EAs for as many previous layers as desired. 

Once we know the EA of a unit, we cari use steps 2 and 3 to compute the EWs on its incoming 

connections. 

2.10.3 Modification of the neutron connection weights 

Back propagation algorithm can be best understood by considering a very simple alTangement 

sllOwn below. 

HI H2 o 

Input 2 
Output 2 

Input I 
Output I 

Figure 2. 10. Back propagation Net (2 .2.2) 
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Designating (11 h), (HI I-h) and (0 1 0 2), as the inputs, hidden layer outputs and output - layer 

outputs respectively the output of Hidden Node 1 and 2 are given by 

H, ~ Sg,,{ ~ I f1W: } ................................................................. 30 

I-h sgm(t IW;'2) ........... ... .............................. 31 
,=1 

1 
'Where sgm ( x ) = 1 + I -x ................................................................. 32 

The output - layer outputs are given by 

SITI/1 (~H W O ) .................... ....... .......... ........ ... .... 33 
b L...J m fIJI 

111 =1 

sgm (t Hili W::'2) ......................................... 34 
m=1 

= 

Putting equations (1) and (2) in (4) and (5) respectively gives 

~ sgm (~ I W" )W o 
............. ....... ...................... . 35 L..,; L...J I 1m 1111 

111=1 1=1 

~ sgm (~ II· W" ) WO 

.......................................... 36 L...J L...J 1111 1112 
111=1 1=1 

Now we can calculate the output given a particular set of input. This allows us to calculate the 

mean square error (MSE) between the actual output and the desired output for the given input in 

the above figure. This is simply the average of the squares of the difference between what we 

want. The precise mean square error function is of importance, we do not need to divide by the 

number of outputs, and minimization algorithm will still find the correct minimum. Thus, the 

error function can be written as 
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2 2 

E = I(DII - 011) ..... ......... ......... .. .................................................. 37 
11=1 

S u bsti tu ting (6) and (7) in (8) gi yes 

E = i(DII - sgm (isgm(i l; W;:II) W:IIIJJ2 ............................ 38 
11=1 111 =1 1=1 

Substituting DK is the desired DutPUt 

Since the fact that the derivative Df the sigma functiDn can be expressed in terms Df the functiDn 

itse lf. the gradient is calculated as 

dx dx (1 + I -X f = (1- sgm(x))sgm(x) ... 39 

aOIl 

awl! 
11111 

= a;::", (tW;"H.) = Hm··· ···H .............. 50 

2 

Note S O = I W:1I1 
k=1 

NDv\', the gradient Df the error fW1ctiDn can be calculated as 

aE a 2 2 

aw 0 = aw-" f.; (D" - 0 J 
mil mil 

( ) a ( 0) as O 
= - 2 D" - 0" as O sgm S aw:;", 

- 2 (D " - 0,,) (( I - sgm (S (/ )) sgm (S n)) H 111 •••••••••••••••••••••••••••• 51 

Where c5~ =-2 (D,, - OJ((I-Sgm(s o))sgm(s o)) 

The new values Df the netwDrk weights are calculated by multiplying the negative gradient with 

a step size parameter (called the learning rate) and adding the resultant vectDr tD the vector 

weights attached tD the current layer. 
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Huwever, if the error at the output layer will be affected by the weight at the middle layer a new 

gradient is derived, but the output weight are treated as constant rather than the hidden - layer. 

Thi s gives 

aw::" 
The middle weights are updated using the same procedure as for the output layer, and the output 

layer weights are updated as well. This is a complete training cycle for one piece of training data. 

It should be noted that the input layer is really only a buffer to hold the input vector. Therefore, it 

has no weights which need to be modified. For more than one hidden layer, the update procedure 

is quite sim ilar. 

2.1 1 Neural networI{ structures 

There are 3 main types of ANN structures -single layer feedforward networ1r , multi-layer 

1 'cell forward net work and recurrent networks. 

2.11 .1 Single layer feed forward network 

The most common type of single layer feed forward network is the perceptron. Other types of 

single layer networks are based 011 the perceptron model. The details of the perceptron are shown 

below (Figure 2.8). 

Jnputs to the perceptron are individually weighted and then summed. The perceptron computes 

the output as a fun ction F of the sum. The activation function, F is needed to introduce 

llonJinearities into the network. This makes multi -layer networks powerful in representing 

non linear fUllctions. 

42 



T 
-~ e 

Lorning ~~-----\. .... -

figure 2. 11: Diagram of the perceptron model 

The output from the perceptron is 

y [k] = f (1/ [k] * x [k ]) ................................................ 53 

The weights are dynamically updated using the back propagation algorithm. The difference 

between the target output and the actual output (error) is calculated. 

e[kJ ::: T[k]- y[k] ....... ... .. ... ......... ...... ....... ............... .. 54 

The errors are back propagated through the layers and the wei ght changes are made. The 

formula for adjusting the weights is 

w[k+1]=w[k]+II*e[k]*x[k] ............................. 55 

Once the "veights are adjusted, the feed-forward process is repeated. The weights are adapted 

until the error between the target and actual output is low. The approximation of the function 

improves as the error decreases. Each connection branch is described by a weight representing 

the strength of connection between two linked nodes. The so called leaming or training process 

is the procedure to adjust the weights. Single-layer feed forward networks are useful when the 

data to be trained is linearly separable. If the data we are trying to model is not linearly separable 

or the function has complex mappings, the simple perceptron will have trouble trying to model 

the function adequately (Tim, 2003). 
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Hidden layer 
Illpul layer 

@--'- P-I 
Figure 2. 12 Diagram of a multi-layered Perceptrons 

2.11.3 ReculTellt networks 

Output layer 

F r--+ 

The second type of multi-layer networks is recurrent (Figure 2.11). Recurrent networks have at 

least one feedback loop. This means an output of a layer feeds back to any preceding layer. This 

gives the network partial memory due to the fact that the hidden layer receives data at time t but 

also at lime t -1. This makes recurrent networks powerful in approximating functions depending 

on time. The Simulink model for the nonlinear continuous stirred tank reactor shows that there 

are many feedback loops. This means the next state of the model depends on previous states 

(Narendra and Parthasarathy, 1990). It is expected that t.o accurately model this type of dynamic 

!)),stem, a recurrent neural network with feedback loops will perform belter than a static 

feedCorward network. 
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Figur~ 2. 13 Diagram of a Recurrent Neural Network 

2.12 ANN control strategies 

These are a number of control strategies which are based on some type of process model. 

Most of these control designs use a forward and/or an inverse linear parametric model (Narendra 

,lIlU Parthasa rathy, 1990). 

These linear model control strategies are well established and often benefit from the ability to 

incorporate robustness more directly in the controller design. It has been proposed that many of 

these l1lodel based control strategies could employ neural network models and could, thus, 

benefit [i·om the nonlinear approximation properties of ANNs. The bellow reviews the main 

types of ANN based control structures. 

2.12.1 Supervised control: 

Supervised control involves il mechanism of providing the network with the desired output either 

by mallually "grading" the network's performance or by providing the desired outputs with the 

inputs. It is then possible to teach a neural network the correct actions by using an existing 
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controller or human feedback. This type of control is called supervised learning. Most traditional 

controllers (feedback linearisation, rule-based control) are based on an operating point. This 

means that the controller can operate correctly if the plant/process operates around a certain 

point. Thcsc controllers will fail if there is any sort of uncertainty or change in the unknown 

pl ant. The advantage of neuro-control is that if an uncertainty in the plant occurs the ANN is 

capable of adapting its parameters and maintains controlling the plant when other robust 

controllers would fail. In supervised control, a teacher provides correct actions for the neural 

network to learn as shown in Figure 2.14. In offline training the targets are provided by an 

existing controller, the neural network adjusts its weights until the output from the ANN is 

similar to the controller (I-:lagan and Demuth, 1996). 

}------1 Process 

~ Control 1 
,>-----_J--1 

e 

ANN 1 
~~-----~ ____ ~.-______ J---------~ 

Update weight 

Figure 2. 14 Supervised learning using an existing controller 

When the neuml network is trained, it is p laced in the feedback loop. Because the ANN is trained 

lIsing the existing controller targets, it should be able to control the process. 

47 



2.12.2 Adaptive neural control 

Adaptive neural control is an ANN which controls the process similar to the existing controller. 

The real advantage of neuro-control is the ability to be adaptive online. (Figure 2.13) An error 

signal (desired signal - real output signal) is calculated and used to adjust the weights online 

(Tim, 2003). 

U Process 

Error signal is 
used to adjust 
the weight 

Figure 2.1 5 Adaptive Neural Control 

y 

Desired 
Response 

1(' a large disturbance/uncertainty occurs in the process- the large error signal is fed back into the 

ANN and this adjusts the weights so that system remains stable. 

2.12.3 Inverse models 

Inverse process models playa central role in some model based control structures. The 

ANN models considered so far are called forward models since the direction of information flow 

through the model is from process input to process output. Conversely, the direction of 

information flow through an inverse process model is opposite to that of the process, and thus, an 

inverse model predict the manipulated variable. An inverse ANN model can be developed using 

a direct or indirect training structure. Conceptually the simplest approach is direct inverse 

learning which is shown in Figure 2.14 (Tim, 2003). The process manipulated variable is applied 

to the process and the process output is used, together with lagged process I/O values as the 
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ANN inputs. The ANN output is then compared with the process input to produce an error signal 

which is used to train the neural network. Intuitively, this approach will force the ANN to 

rcpresent the process inverse. This is a disadvantaged and Calmot be goal directed (Jordan and 

R1I1l1clharL 1991). 

u Process y 

+ 

u 

Inverse model 

rigure 2.1 6 Direct inverse modelling 

The root of the problem with direct inverse learning is that the training of the inverse model 

attempts to minimise the mal1ipulated variable error and this does not correspond to the control 

objective which is to minimise the process output error. 

2.12.4 Specialised inverse modelling 

The specialised inverse modelling method overcomes the above by using the process output error 

(Figure 2.15), to generate the error signal. This error signal is passed back through the forward 

model to give the manipulated variable error which is used to train the inverse model. For online 

learning, the forward model output error forces the inverse model into different regions of the 

process input space which correspond to the operating region spanned by the set-point, r. Hence 
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the specialised inverse modelling method is goal directed (Psaltis et ai, 1988). Using the forward 

model rather than the process to generate the error signal can be advantageous for a noisy 

process or when use of the real process is not viable, (Anderson, 1989 and Economou and 

Morari, 1986). 

11 J Process y 
r-~--!l~ _____________ ~~-------

]nverse model 

Figure 2.17 Specialised inverse modelling 

2.12.5 Direct inverse control 

Forward model 

y 

+ 

The simplest use in an inverse process model for control is to place it in front of the process so 

that the composite system results in the identity mapping from set point to process output (Figure 

2.1 6). This approach is called Direct Inverse Control and has been implemented mainly in 

robotic applications. However, the absence of feedback in the Direct Inverse Control structure 
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results in a lack of robustness for the practical case of an imperfect inverse model (I-hmt and 

Sbarbaro, 1992). 

r{1B u~EJ y~ 
InVerSe 
model 

Figure 2.18 Direct Inverse Controls 

2.U.6Intcrnalmodcl control 

Linear Internal Model Control (IMC) (Garcia and Morari, 1982) has been ~xtensively studied 

ancl many robustness and stability results have been proven. For open-loop stable systems some 

of these results can be extended to non-linear IMC (Sean, 1999) although perfect forward and 

inverse models are generally assumed. The use of neural networks in the IMC structure has been 

proposed by several workers [Bhatt and Mcavoy, 1992 lmd Hunt and Sbarbaro, 1992) and has 

been implemented for the control of simulated processes. 

Procesc.; 

ANN COIllroller 

Yp 

+ 

d 

• 1-)-' --I ......... , 

ANN Process Model 

Figure 2.19 The Internal Model Control Structure 
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Reference model 

Figure 2.20 The Model Reference Control Structure 

I----~® e" 
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The performance of model reference control is highly dependent on the choice of reference 

model. 

2.7.3 Model predictive control 

] t has been postulated that Linear Mudel Predictive Control (LMPC) is the most important 

control technology for the process industries since the PID controller (Vandoren, (1997). Figure 
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2. 19 shows a neural network MPC scheme which, in contrast to the other reviewed control 

strategies, does not incorporate an inverse process model. The non-linear optimiser in ANN-

MPC is used to select the manipulated variable that minimises a cost function, which is quadratic 

in the set-point/process output error. To do so, the non-linear optimiser uses the ANN process 

model to predict the possible future responses of the process to different possible future 

manipulated variable sequences and the cunent measured disturbances (Tim, 2003 and Garcia 

and Morari, 1982). By using the ANN model to predict multi-step ahead, the control scheme can 

anticipate the process trajectory and compensate for measured disturbances before their impact 

on the process output is detected. In common with IMC, the process/model mismatch, e', is used 

for feedback purposes and the filter adds robustness to the control system. 

I 

r + ~ nOll -linear 
~~ .. 

optulHser 

u 
~ Process 

ANN Process Model 

Figure 2.21 The Model Predictive Control Structure 

2.7.9 Unsupervised control 

c1 

y 

+ 

I 
e 

The previous neural control methods are all trained using a priori knowledge such as 

an explicit teacher providing correct actions. In unsupervised learning set-up, no existing 
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CHAPTER THREE 

3.0 RESEARCH METHODOLOGY 

3.1 Descri ption of the Process 

The reversible, exothermic reaction is suitable to test PID controller performance due to 

its non-linearity, incomplete conversion and lack of stability. A reversible, exothermic 

reaction shown below was carried out in a single perfectly mixed continuous stirred tank 

reactor; Figure 3.1 shows the inputs and output of a system. The continuous stirred tank 

reactor system is a non-linear process and to adequately model it, non-linear methods 

using neural networks analysis can be used. The mathematical model in this case is the 

black box, it describes the relationship between the input and output signals. The reaction 

is described by equation 3.1. it is a first order reversible reaction and has a heat of 

reaction ~H. The heat of reaction was removed by an incorporated cooling jacket 

surrounding the reactor. Cooling water is added to the jacket at the rate F and the inlet 

temperature Tein . 

~ A ~B . .... ... ... .... ............... 3.1 
K l. 

In- fl ow 

Te, Fe 

Outlet 
coolant 

Tein, Fein 

Inlet coolant 

Out-flow 

Figure 3.1 Continuous Stirred Tank Reactors with Cooling Jacket 
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The dynamic equations of the system were developed. The model was then simulated 

using Sil11ulink approach and a basic controller was used. 

The first things considered before the model can be developed 111 Simulink were the 

dynamic equations that describe the continuous stirred tank reactor. These equations were 

derived using the total continuity equation, that is, the material, components and energy 

balance equations. 

The basic assumptions considered for the easy derivation of our dynamic equations 

are given below: 

(i) Constant densities 

(ii) Constant flow rate 

(iii) Perfectly mixed jacket water 

(iv) Constant water volume in the jacket 

(v) The feed is free of product B 

(vi) Constant physical and thermo-chemical properties 

(vii) The mass of the metal wall is negligible, the thermal inertia need not be 

considered. 

3.2 Model Equations 

The equations that describing the system are: 

3.2.1 Reactor total continuity equation. 

[

Time rate of J 
ch~nge oj mass ~ ( 7nass 

flow) _ ( ~;SSflow }...... ................... 3.2 

inside the system 

That is, 
a{v,.1 ) 

at Fin P - F p ........................... 3.3 
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controllers can be imitated and the ANN doesn't have a target to compare to its output. The ANN 

must try different states and determine which state produces a good output. Learning from 

experience during periods of no performance feedback is difficult (Barto, Sutton et al aI, 1983). 

," { \ . ; I " , t .. ,.~ i '. . ~. ! \ '. 1 
;. I 

'I.' • 
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3.2.2 Reactor components continuity equations 

i) For Component A 

(
tim e rate of change of A) 

within the stytem 

moles of A Moles of A Ad' d/ 34 

[

Amountof ) 
= - ± Isppeare ... (int 0 the system J (OUit of the system J d 

generate 

Consider constant flow rate, F 

The effect of temperature on the reaction rate k is usually found to be exponential: 

k = ko exp( - :~ ) ....................................................... 3.8 

where ko is an Arrhenuis factor. 

- Ii , - E2 

KI = kloe 111' andK2 = k20e 111' ......................................................................... 3.9 

dC F 1i2 1:", 

. A - < (C' C) k -IITC 1 - IITC 3 0 • • -- - - AII1 - A + 20e B - "JOe A ............................................ •1 
dt V 

ii) For component B 

[

Amount of BJ time rate of Moles of B Moles of B 
= - ± generated / .. 3.11 

( change af B within the system J (int a the system) ( aut af the system J . 
dlsppeared 
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V~~IJ = Fi"C Bo - FC Il - K 2CJjV + K,CAV ................... ......... .... .... ..... .. . 3.12 

dC F 
__ B = - (CIM - C,, )+ K,C

A 
- K 2CW ••• • • •••••••••• • • •• • ••••.• ••• • •••• •••••••• •••••••• • 3.13 

dl V 

dC 13 = K , C A - K 2 C Ii - F C Ii ••..•. •••.......... .... ..•.. ..••••.. •. •••••• .•....... .••••• ...•.. .3 .14 
dt V 

- E 

K(T) = Koe llr 

3.2.3 Energy balance equation for the reactor 

(

rate at which J (Rate at which J Rate of energy Rate of Enery 
- + heat ;s added - heat is removed = 

[ int 0 the system) [out of the system) 
to the s)lstem by the coolant 

pCp F (7;" - T ) + t::.Hr V - Q = pVCp d'%t ....... . .......................... 3.17 

Dividing through by pVCp 

Rate of 

change of 

energy within 

the system 

dT F M-lr Q 
-=-(7;,, - T)+----...... ....... ... ........... .................... .. ............ ........... .3.18 
dl V pC" pVC" 

dT = F (7;" - T )+ aKp B - aK2C 8 - /3(T - Tjar ) ••••••• •••• • •••••••••• •••• ••••••••••••• •••••••• .3.20 
dt V 

t:.Hr UA 
Where a =--and/3=--

pCp pVCp 

Using Arrhenius equation 

dT F -H, -/:, 

- (T T) k nrC k nrC /3(T T ) --- i"- +a ,oe A- 20e B- - jar ••••••• ••••••••••••••••••• .3.21 
dt V 
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3.2.4 Energy balance equation for the cooling jacket 

[

TimerateofChangeJ ( ) [F10WOfheatJ [heatremovedJ Flow of heat 
of energy within = - alit of the - by the jacket .. 3.22 
, int 0 the jacket 

the jacket jacket water 

d;c = :: (Tc - Tjnr )+ (p~~pt (T - Tjar } .. ........ ............................................. .3.24 

The four differential equations that described the system are 

dC F -£2 -£, 

A - \, (c C) k RiC k nrc ( ) dt - V Aill - A + 20e 8 - JOe A ......... ... ........................ a 

d 
-£, -E2 

T _ F (T T) Ie MC Ie RiC {Jf'T T \ ( ) - - - ill - + a JOe A - 20e 8 - \ - jar } ................. c 
dt V 

~:c = : : (Tc - Tjar )+ (p~~p t (T - Tjar } ................. ............................ (d) 

At this stage, a set of nonlinear equations describing the continuous stirred tank reactor 

(CSTR) have been developed. The next stage is constructing a Simulink model of the 

CSTR system. (Simulink blocks Toolbox Library, MATLAB 7, and appendix B figure 1). 

Steps 

To begin modelling, start simlliink, open a new model, an empty simulink window opens 

and save the model as freshplant.mdl. (Appendix B, figure 1) 

I. In the Simulink Library Browser window, double-click simlliink, and then double-

click Sources. Click-and-drag any desired block; Constant, Product, Add, 
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Subtract, Divide, Uniform Random Number, Clock, Ramp, Random Number, 

Sine Wave, or Step to the simulink window. 

2. Double-click Commonly Used Blocks. Click-and-dragging any desired block; 

Gain, In, Out, Product, Scope, Integrator, Sum or Terminator to the simulink 

window. 

3. Double-click Sinks. Click-and-drag the next desired block; Display, Scope, To 

Workspace, XY Graph, Transfer Fcn, Derivative, Math Fcn, or Fcn to the 

Simulink window. 

4. Double-click Math Operations. Click and drag, the next required block; Add, 

Derivative, Terminator, Math Fcn or Fcn. 

5. Double-click control system. Click-and-drag Model Reference Control blocks and 

X (2Y) Graph. 

6. Connect the constant block (F) to the Gain block (FlY) and the output to a product 

block. At the same time the constant block (CAin) and integrator (CA) were 

connected to Add block. The output of It to the same product block. 

7. The function block (Fcn) together with a branch from CA line was linked to 

another product block. The output was then linked to Add block. Similarly, 

another function block together with a branch from CB line was linked to the same 

Add block. 

8. The outputs from Product I and Subtract blocks were linked to Add2 block. The 

output of this was linkeJ to an Integrator, which upon integration gives CA. The 

line is also link to X (2Y) Graph to study its output response or to a Display block 

where its exact value can be read. The link lines were produced by clicking and 

dragging from one block to the next. The simulink model module for the first 

dynamic equation was modelled, and is as shown below (Figure 3.2). In the same 
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way, the other dynamic equations were modeled and masked together as a reactor. 

These are shown in the appendix. After modeling, each block was double-clicked 

and dialog box opens, the required parameters were entered accordingly into the 

text box. Having created the Simulink model for the CSTR, the simulation of the 

model was run to see its response. 

h----~QJ 
CB 

CB Dynamis 

Tin 

OJ ~ Tein 

Ton Oull 

L--------------.lln2 

Tc Dynamics 

Figure 3.2: Simulink Model Connection Procedures for the Reactor 

TI---....., 

Having created the simulink model for the CSTR, I ran the simulation model to see its 

response. Similar procedure was adopted for designing the controllers. The diagram 

shown in the Appendix B is the non-linear CSTR Simulink model for the dynamic 
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equat ions describing the reversible reaction given above. The model was constructed 

using constants, integrators, sums, products, gains function blocks etc. The method 

though complicated is the Simulink representation of the non-linear state equation (Tim, 

2003). The model is large so it was encapsulated in subsystem blocks shown in Appendix 

B, Figure 1. 

The model was set up using a mask which makes it possible to change the value of any of 

the parameter used at will for different simulation. 

3.4 Case Study 

For the reaction described in figure 3.1 variables to be controlled are product 

concentration and temperature of the reacting mass. The nominal operating conditions 

and parameters for the above problem are shown in Table 3.1, and are used for the 

simulation of the model developed. 

Table 3.1: Nominal Operating Condition and Parameter Value for the Simulation of 
Reversible Exothermic Reaction in CSTR. 

Notation Description Value and units 

p,p,. Density of solution lkg/L 

V Reactor volume 100L 
Cp ,C pc Heat capacity of solution 4184J/kgK 

~Hr Heat of reaction -20920J/mol 
E, Activation energy(forward reaction) -41 840J/mol 
E2 Activation energy(backward reaction) -62760J/mol 
UA Heat transfer coefficient 418400J/min.K 
Fin Feed flow rate 1.6 Umin 
CAin Concentration of A in feed 1 mollL 
Cs Concentration of B in product 0.0 
Tin Feed temperature 427K 
Tein Coolant inlet temperature 300K 
k,o Reaction rate coefficient(forward) 5* 1 01\3L1min 
k20 Reaction rate coefficient(backward) 1 * 101\6L1min 
R Ideal gas constant 8.314J/mo1.K 

Sources: William L. Luyben, 1999, "Design and Control of Gas-Phase ReactorlRecycJe 
Processes with Reversible Exothermic Reactions" Revised edition-pg 1664. 

The next stage was the incorporation of PID controller into the CSTR to improve 

conversion and stabilize the system. The PID chosen for this work is given as; 
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U(t) = K"c(t) + KJ Je(t)dt + KD ;t e(t) 

Where U = output value r = desired value 

e = tracking error y = actual output 

The variable e(t) represents the tracking error, the difference between the desired value (r) 

and the actual output (y). This error signal will be used by PID controller. PID will take 

appropriate action according to the law and pass the signal (u) to the plant to adjust the 

appropriate manipulated variable. The simulink representation of the PID controller 

incorporated to the CSTR reactor shown in Figure 3.3. Other subsystems such as 

concentrations dynamic and temperatures dynamic are shown in appendix B Figures 4, 5, 

6, and 7. 

ln1 0ut1 t---~ ~~ 
X(2Y) 
Gmph 

Figure 3.3: Simulink Block Diagram for the CSTR Incorporated with PID Controller 

3.5 Application of Neural Analysis in Control Systems 

This chapter presents brief descriptions of model reference control (MRC) architectures, 

which are used to simulate our system. 

There are typically two steps involved when using neural networks for control: 

a. System Identification 

b. Control Design 

In the system identification stage, a neural network model of the plant that we want to 

control is developed. In the control design stage, we use the neural network plant model 
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to design (or train) the controller (MATLAB 7, Control System Toolbox, User's Guide). 

Depending on the architecture, a number of control design methodologies can be used. In 

this research work model reference control (MRC) has been used. Here, the controller is a 

neural network that is trained to control a plant so that it follows a reference model. The 

neural network plant model is used to assist in the controller training. 

3.6 Model Reference Control 

An illustration of model reference control is presented in Figure 3.3. In the figure the 

network has two inputs, one of the inputs is difference between plant output and model 

reference output and second input is difference between model output and reference 

signal. Both plant model and reference model are used to train the network. The resulting 

ANN model will serve as controller for the system. Figure 3.3 explains the model 

reference control system. ANN controller uses these to adjust its weights until the output 

of the plant looks similar to model reference output trajectory 

ANN controller will have two input, error signal trom reference model output, and plant 

output, the second error signal comes from difference between reference signal and plant 

output. The procedures involved in training the network are generation and validation of 

training data sets, pre-processing of data set and training and validation of network. To 

have good representation of the model, two data sets were generated from the system to 

train the network, one data set for validation and another one testing. Uniform random 

input signals, which span the upper and lower limit of operating range were used to excite 

the system. This was done to enable network learn the nonlinear nature of the system. 

Before incorporating the network into the control scheme the networks were trained 

omine using the Gauss-Newton based Levenberg Marquardt algorithm (Leveneberg 1944 

and Marquardt 1963). The essence is to let the network learn the functional nonlinearities 

to a certain degree of accuracy before implementing the controller, and thus can give 

faster online adaptation as needed. In this study, data sets for the training were obtained 

by carrying out simulation on the open loop of the system, which in turn were used to 

train the network. 
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Figure 3.4 Model Reference Control 

The network considered was multilayer perceptron with a single hidden layer. The 

activation function used in study is nonlinear sigmoid function in hidden layer and the 

linear function in the output layer. Neural network with large enough number of hidden 

neurons, which have continuous and differentiable transfer functions can approximate any 

continuous function over a closed interval (Cybenko, 1989) .The numbers of nodes are 

initially fixed at small numbers, the number was increased in order to have a proper 

trained network. Satisfactory networks models were obtained when the sum of squared 

errors of the validation data set was satisfactorily small. 

The first step in the design is plant identification. Here data for the identification were 

generated by simulating CSTR model. The data generated was used to train the ANN. 

The type of training is supervised learning described in section 2.8.3. The network has 20 

neurons in the hidden layers. The activation functions in the hidden layer are tan-sigmoid 

and the output layer in a linear function. 

3.5.2 Using the model reference control 

The model reference control, Figure 3.4 was created with the Neural Network Toolbox 

using model reference controller, uniform random input, and graph blocks to demonstrate 

the model reference control action. The objective of the simulation is to show the 

effective performance of neural network controller in the presence of step changes to a 

process reactor. 

Tables 3.2 and 3.3 show the parameters used for the model reference training windows 

and plant identification windows at optimal condition. 
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Table 3.2 Parameter for Model Reference Training Windows 

Size of hidden layers 20 
No. Delayed Reference inputs 2 
No. Delayed Controller Outputs I 
No. Delayed Plant Outputs 2 
Max. Reference. Value I 
Min. Reference. Value 0 
Controller Training Samples 8000 
Max. Interval Value 20 
Min. Interval Value 5 
Reactor with PID Cont roller Plantrefl(Given Name) 
Controller Training Epochs 5 
Segments 5 
Uniform Random Input Set 0-1 

Table 3.3 Parameter for Plant Identification Windows 

Size of hidden layers 15 
No. Delayed Plant inputs 2 
No. Delayed Plant Outputs 2 
Sampling interval (s) 0.2 
Max. Plant Input 25.05 
Min. Plant Input 2.36 

f--
Max. Plant Output 1.5 
Min. Plant Output 0 
Training Samples 10,000 
Max. Interval Value (s) 20 
Min. Interval Value (s) 5 
Plant Name Freshplant 
Training Epochs 300 
Training Function Trainlm 

3.4.3 Steps to run the simulink model. 

I. Start MA TLAB. 

2. Run the demo model by clicking on the file, then opening in the MA TLAB command 

windows. This creates the work file window. 

3. Double click on the saved model, named mrc I. This command opens the saved model, 

mrc I where further operations were carried out. (Appendix B, Figure 8). 

65 



4. Double-click the Model Reference Control block and gradually enter the required 

parameters as shown in the figure 3.3. 

5. Browse and fit in the CSTR model, and the training epochs are selected in this window 

just before generating data. (Figure 3.5). 

File Window 

Model Referenoe COlltrol 
NewlOrk Architec ture --------'--..., 

Size of Hidden Layer [-····20~ No, Delayed Reference Inputs '[-it T::l 
~1a~lrJlnl) Inl~"·;,J l',,,'l; L" :!-,~ .. 'J No, Delayed Cont-oller I '1" .~ .. ] 

(*)'Ilnll f<! '_.,.._,...,.,...-IV' 

IJ ' n."""; [.\l,} No, Delayed Plant Oulputs f 2 :;;:,1 
L ...... " .. ¥ •• '"¥.~~ ... "-&.A 

Training Data , 

MdXlmum Reference Vaiue L~J Controller Training Samples l" 'sooit"' j 
Minimum Reference Vallie [ .... ·0 ::J 

MdXlmum Interval Value (sec) Reference Model: 

Minimum Interval Value (sec) 

[ Generate Trdinlng Da~ 1 Import Data 

Training Parameters ______ --::;_-j 

Figure 3.5 Model Reference Control Data Input Windows 

6. Click Plant Identification, which opens the Plant Identification windows. You can then 

train the plant model. The neural network plant model must be developed before the 

controller is used. The controller is a neural network that is trained to control a plant so 

that it follows a reference model. The neural network plant model is used to assist in the 

controller training. The plant model neural network has one hidden layer, as shown 

below. The size of the layer, the sampling interval, the number of delayed inputs and 

delayed outputs, the maximum and minimum plant inputs and outputs, the maximum and 
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minimum interval values, the continuous stirred tank reactor model (named Fresh plant), 

the training epochs and the training function are all set for data generation and training. 

7. Select any of the training function to train the neural network plant model. Trainlm is 

Llst:d lar this training. (See Appendix, Figure 3.4 Plant Identification Windows) 

File WIndow Help 
"'-;;" 

. Plant Idenlifi?ation , 
.--'-- ___ --"_ N.tworkArchl .. c ..... --------, 

Size 01 Hidden lJayer L::_~_J No. Delayed Pt..,\lnpullt C~:::.1 

~~;·,nrj~nr'rO !n~ftv.,d ~(t_j~~~ .... ,. J No. Oe4ayed Pt¥lt ou~ .. t~ ... ~::, .. ~:~:J 
o Nonn;,!;"" Training 0",", 

'1'rc;rt1ingS;~ltl'jiM r -i7I\fu~J 
~~·'.ldrRtm. ~!'iI'll~pm~Lr'" :.~~~f.)t - J. 

~"'-'\''',:, 

Mif'~irJli:i!.fi· i)j~\n ' f, 'IX}l' [ .. :.~.3.'N:j 

M!~7jn,<.Htl lri~1'j.::M vt~ruCt.6~~ r~"-·::;t·l £..ullt"ih\~ r·!aqtMor,tl~('i : r·11\).V-!W 
l, .......... -, .. _, ... __ ~ 

Mitl:tll~~I.c I[J;':f't~~ V~;t~ f:Gf~?;J.~~~ ..... ~_ ... ,,,:~_1 ~ ..... ,:.~: .. ~=:_::~:,~~,~, .. ,:::_.:Y:~:~?~._~:.,:¥1 
Erase Imporled Data I · C Import Data J 1 .e""",tData ) 

,--_______ Training p.,,,,,,.ter. ____ -,-__ -, 

Tr""no EPochs r =:§'o':J Tr"ning Funcion [~~~-'"~:2J 
o Us. Current Welg... 0Us. v..idaion Data 

Train Network I '-l.-.-::Canc~e-:-I --. 

Figure 3.6 Plant Identification Windows 

8. Click on generate training data button. The program generates training data by 

applying a series of uniform random inputs to the simulink plant model. The potential 

training data is then displayed which is as shown in appendix B Figure 9. 

9. Select Accept Data, and then select Train Network from the Plant Identification 

windows. Plant model training begins. The training proceeds according to the selected 

training algorithm (trainlm in this case). The response of the resulting model is displayed, 

as shown in appendix B Figures 10. Training, validation and testing data windows are 

also displayed in appendix D Figures 3 and 4. The network can then be trained with the 

same data set by selecting Train Network again. The data set can be erased and a new one 
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12. Go back to the Model Reference Control windows, if the performance of the 

controller is not accurate, then you can select Train Controller again, which continues the 

controller training with the same data set. If you would like to use a new data set to 

continue training, select Generate Data or Import Data before you select Train Controller. 

It might also be necessary to retrain the plant model. If the plant model is not accurate, it 

can affect the controller training. For this demonstration, the controller should be accurate 

enough, and then select OK. 

13 . Return to the simulink model and start the simulation by selecting the start command 

from the simulation menu. As the simulation runs, the plant output and the reference 

signal are displayed as show in Figure3.5. 
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CHAPTER FOUR 

4.n Results and Discuss ion 

4.1 Results 

The silllulation results of the open loop Continuous Stirred Tank Reactor (CSTR), closed 

loop CSTR and Neura l Networks CSTR are presented in the following figures. 
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...... .. .. conc.CBJ .......... 

0.8 ..... X.80 .92 ... ..... .... .... --Conc.CA 
. Y: 0.8676 ---- -_.'::::\ 

CJ) 
o 
c 
o ::J 0.6 u-. 
..... '0 o . 
::JE 04 : 
'0"""" . 
o : 
~ . 
0.. i 

o --­
o 200 400 600 800 

Time(s) 

FiguJ'<.: 4. 1: Concentration prolile 1'01' Open Loop silllul at ion of CSTR for reversible 

reaction 
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Figure 4.2 : Temperature profi le for open loop simulat ion ofCSTR for reversible react ion 
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Table 4.1 Controller selling for PIO Controller and their Per lo rillance 

.. ~-.. -.•. -. 
PIO Kp Ki Kd Ri se Overshoot Sett ling Fina l 
Controller t i Ill e T ime Conc. 

Setting I 2.5 0.5 7 33.4 O.OR 135 1.00 

Setting 2 3. 15 0.47 8 30.2 0.41 130 1.00 
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Figure 4.3: Concentrati on pro file fo r C losed Loop simulation of CSTR for reversible 

reacti on 
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Figure 4.4: Temperature profile for Closed Loop simulati on of' CSTR for revers ible 

reaction 
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Figure 4.5: Neura l Network Plant Responses after Training. (Using Data C on Table 4.2) 
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Figure 4.6 : Validation Data Showing the Difference between Plant and Neural Network 

Outputs 

Table 4.2 Parameters for Training the Plant and Neural Network Controller 

Controller MRC Plant Training Pl ant Contro ll er MSE 
Traini ng Hidden Hidden Samples for Training Training 

Layers Layers Controll er/Plant Epochs Epochs/Segl11en ts 
Data A 10 8 3000/4000 300 5 of 5 1.89 Ie-03 

Data B 12 12 5000/7000 300 5 of 5 6. I 37e-05 

Data C 20 15 8000/ 10000 300 5 of 5 6.298e-06 

--------
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Figure 4.7(b): Training Res ponse Pro fil e /0 1' the NN Controll er Performance (Table 4.2, 

Data C) 
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4.2 Discussion of Results 

Figure 4. 1 shows the open loop concentrati on pro fil e the simulation of CSTR for 

reve rsible reaction. At the beginning, there is an increase in concentrati on of product B 

unti I a max imum conversion of 86.7% at 80.9 seconds, and the curve later bends down to 

the minimum . The concentration of reactant, A dec reases to 0.1 33 mo1/L at the same tim e. 

Thi s concentration of reactant, A started to ri se up after a little time. The reason for these 

responses is because the reacti on we have considered is reversible. Initially, the reaction 

exhi bits forward reaction and later reverses. 

Figure 4.2 shows the temperature profil e for the open loop simulati on for th e reactor 

systeill . The temperature ri ses as the reactor process reacti on tri ggers off. This testifies to 

th e instability of the CSTR system when no co nt ro lill ethou is employed. 

In ord er to bring the reaction In complete conversion and to prevent backward reacti on, 

th e now rate of reactant was used as manipulated va riable in the control des ign and with 

the illcorporati on of a PI D controller, we have been ab le to achi eve total conversion by 

suppress ing the reversib le reacti on. Thi s is shown in Figu re 4.3. The PID controller 

setting that gave the best peri"ormancl .s i"oun l Kc=3.1 5, Ki = 0.47 and Kd = 8. 

Thi s is shown in Table 4. 1. The response is fast and was able to bring the system output 

to a target va lue at 126 second s. The ri se til1l e and settling time are 26 seconds and 96.4 

seconds respecti ve ly. The response is not without an overshooting of 4 1.2% whieh is not 

only very hi gh but also not we lcome in PID contro l. The objective has been met as long 

as there is no di sturbance or set point change. 
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Figure 4.4 shows the teillperature pro fil e lo r th e C'STR incorporated with a PID 

cont roll er. Initi a ll y, t.here was an in ve rse response whi ch can be adduced to the heat 

ga ined from the surroundin g before reacti on occurs. The temperature ri ses immediately 

and returns to a steady state or 43 1.9 K at III i n illl UI1l peri od 0 l' 172 .7 seconds. 

Desp ite the fact that the des ire output has becn obtaincd by the used of PID controll er, the 

un we lcome hi gh overshoot and settling time ca ll ed for the used of intelligence control 

whi ch will eliminate these problems and oth ers th at may be encountered by PID 

controller in th e presence of di sturbance as we ll as set po int changes for non-linear 

system. 

Figure 4.5 is the perfo rmance curve during the network training fo r the continuous stirred 

tank reactor. At the beginning of th e training, th e perform ance profil e shows th at the 

training, va lidati on and testing errors were hi gh. A" the num ber of epochs increases the 

mean squared error (MSE) decreases. As the cu rves start to converge, very little learning 

is tak in g place. This shows th at the training, va lidation and testing errors decrease as the 

network learns and hence a ll , .·,i ica ti on of accuratc pa raill eters se lecti on, 

Figure 4.6 is the va lidnt ion da ta for NN model refe rence control. It shows the error 

differences between (he plan t output and the neural network output. It was used to 

ascertai n that the erro r diffe rellce bt the ' 

acceptable limit be fore th e user coul d proceed I ' 

: put and NN Ollt put is within an 

Ilerate da ta fo r the controller. The 

testing and va li da ti on data responses are shown in the appendi x 0 , r igures 3 and 4. 

Figure 4.7(a) is the perform ance curve fo r the training of the network controller for error 

minimizati on. At the start 01' the training, the e1T(1 1' between the network output and the 

CSTR mode l output is hi gh. As the number of training iterati on or epoch increases, the 

mean square error (MSE) decreases. The steepness o f' the curve shows th at training 

samples and the number of hidden neurons need to be increased until possib le accurate 
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fi tting is achieved. It is an indica ti on that furth er minillli za tion of error is possible. The 

convergence of the performance curve di splayed ill Figure 4.7(b) shows that little or no 

training was taking place and an indicati on thal the error minimizati on is within 

acceptable limit. 

Tab le 4.2 shows the performance results lor th e va ri ous data sets used during the 

controller tra ining. The results show that increasing the size of hidden layers and the 

training samples decreased the mean square error (MSE) between the model and the 

process outputs. 

Figure 4.8c shows that th e response of the resulting closed loop system after the whole 

training exercise was compl eted. The upper part (reference model input) is the random 

refe rence input that was used for the training. The lower part is the response of the 

reference model and the response of the closed loop plant. The plant response followed 

th e reference model. Thi s is an indication that the co rrect amount of training samples and 

size of hidden layers or neutrons we re used. 

Figure 4)~a shows that the data set for the plant idenli fi cation and model reference control 

resu lts in oscillatory behav iour, while the plant response does not follow the reference 

model perfectly in Figure 4.8b. The two responses were due to less number of hidden 

layers or neutrons as well as insuffi cient number of training samples . This is called under­

fi tti ng or under-parameti sa ti on. 

Figures 4.9 and 4.10 are the simulation response of the NN controller to step down 

changes of 5% and 10% in the feed concentrati on. The responses show that both the 

controller met the set target. The response revea ls that the NN controller was able to 

return the system output to the des ired concentrati on at a minimum ri se time of 10 and 

10.7 seconds fo r 5% and 10% respecti ve ly with no osc ill ati on and negli gibl e overshoot. 
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I n the case of PI D controll er, the ri se time, se ttl ing ti me and thc overshoot in both cases 

were increased. The increase in overshoot and settling time are not we lcome in contro l 

system because it renders riD controll er unsuitable for controlling many non-linear 

reversible CSTR reacti on. 

I:igures 4. 11 and 4. 12 show thc rcsponses for both AN N and PI[) cont ro ll er to a step up 

changes of 5% and 10% in the feed concentration. Whi Ie ANN controll er is able to return 

the system output to the des ired steady state in the presence of set-point change at a 

min imum peri od of 10.7 seconds with neither osc i lI ati on nor overshoot, the PID 

controller fail ed. This may be difficult to tackle in the case of PID controller because its 

pcrformance is only good in the operating reg ion and most espec iall y for linear system. 

Outside the region the cont ro ll er perform ance will deteri orate. The above shows that the 

ANN's are capable of identifying complex non linear systems both within and outside the 

operating reg ions. 

Figu re 4. 13 shows the closed loop response of the system in the presence of external 

di sturbance. The system was di sturbed by int roducing 10% change in reactant 

tcmperature. The ANN controll er was fast to arrest the di sturbancc but there is occurrence 

of overshoot. It counteracts di sturbance and return the system to ori ginal condition on 

time. The PID control gives serious oscill ati on and it did not settled th roughout the 

simul ati on period. 
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CHAPTER FIVE 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

From the results obtained in our simulation we can see that the ANN controller using 

model reference was able to track set point change and reject the uncertainties resulting from 

external disturbances. The responses were somehow sluggish in the faces of external 

disturbances but give no oscillatory behaviors. For PID controller, the performance 

deteriorated for set point changes and under the influence of external disturbances. This 

reason for poor performance can be adduced because of high nonlinearity of the CSTR. 

ANN control approach using references model to tailor system output to a desired 

responses was developed. The controller has been able to take care of nonlinearly aspect of 

the system. ANN control scheme has better trajectory tracking ability than PID since the 

former is based on nonlinearity of the model, while the latter based on particular operating 

conditions. The control was able to adapt to system changes and operating condition change. 

There was no need for turning parameter in the control. The control was very adaptive and 

has self-turning capability for any change in operating conditions and system parameters. 

During the online implementation, the networks ware continuously adapted online, the 

controller did not require an integral action to obtain zero offset in the system output. The 

proposed method is somehow sluggish because the optimal control action is iterative in order 

to converge to an acceptable accuracy. 

The result of the research work also show that the techniques in controlling the system offer a 

better control alternative to those formerly used. 
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5.2 Recommendations 

The neural network techniques offer promising approach to truly intelligent system, which 

can provide optimal solution to many non-linear control problems. When dealing with non­

linear system identification, we need to be sure that the system inputs and outputs cover the 

operating range for which the controller will be applied. For this application, we typically 

collect training data by applying random inputs which consist of a series of pulses of random 

amplitude and dmation. The dmation and amplitude must be chosen carefully to produce 

accurate identification. 

84 



REFERENCES 

1. Anderson C.W. , 1989, "Learning to control an inverted pendulum using neural 

networks", IEEE Controls Systems Magazine, Vol.9 pp 31-37. 

2. Antsaklis P. 1., K. M. Passino, an,d S. J. Wang, (1989), "Towards Intelligent 

Autonomous Control Systems: Architecture and Fundamental Issues", 1. Intell. 

Robotic Syst. , vol. 1, pp. 315-342. 

3. Astrom, K.J. and Wittenmark, B. (1989), "Adaptive Control", 2nd. Edition, 

Addison-Wesley. 

4. Astrom K.1. and Hagglund T. , 1995, "PID Controllers Theory, Design and 

Tuning",Instrument Society of America, New York. 

5. Barto, Sutton and Anderson, (1983), "Neuronlike Adaptive Elements That Can Solve 

Difficult Learning Control Problems", IEEE Tran on Systems, Man and Cybernetics, 

Vol. 13 , pp 834-846. 

6. B. Bavarian, Guest Editor of Special Section on Neural Networks for Systems and 

Control, IEEE Contr. Sysr. Mag. , vol. 8, no. 2, pp. 3-31 , Apr. 1988. 

7. Bhatt, N.V. and Mcavoy, T.J. (1992), "Determining Model Structure for Neural 

Models by Network Stripping", Computers Chem. Eng., Vol. 16, No.4, Pp. 271-281. 

8. Billings, S.A. , lamaluddin, H.B. And Chen, S. (1992), "Properties of Neural 

Networks with Applications to Modelling Non-Linear Dynamical Systems", 

Int. J.Control, Vol. 55, No.1 , pp. 193-224. 



9. Campa, Fravolini, Napolitano- "A library of Adaptive neural networks for control 

purposes." The Simulink library can be downloaded from the Mathworks file 

exchange website in the ANN section. 

http: //www.mathworks.com/matlabcentrallfileexchange/ 

10. Chen J. T. and Huang C., "Applying Neural Networks to Online Updated PID 

Controllers for Nonlinear Process Control, Journal of Process Control, Vol. 14, 

pp 211 - 230,2004 

11. Cybenko G., 1989, "Approximation by superposition of a Sigmoidal Function, 

Mathematics of Control, Signals and Systems", Vol 2, No.4, pp 303-314. 

12. Daniel Franklin, 2003, http://'rvww.ieee.uow.edu.au/~daniel/software/libneural/ 

BPN_tutoriaI/BPN_English 

J 3. Doherty, S.K., Gomm, J.B. and Williams, D., 1995, "Neural Network Identification 

and Predictive Control of an In-Line Ph Process", 4th I.Chem.E, Conf. on Advances 

in Process Control 4, New York, pp 57-64. 

14. Doherty, S.K., Gomm, lB. and Williams, D., 1997, "Experiment 

Design Considerations for Non-Linear Identification Using Neural Networks", 

Computers and Chemical Engineering; Vol. 21, No.3, Pp. 327-346. 

15 . Economou, G. and Morari, M. , 1986, "Internal Model Control -5. Extension to 

Nonlinear Systems", Ind. Eng. Chem. Process Des. Dev., Vol. 25, pp 403-411. 

16. Emuoyibofarhe O.J, 2004, "A Computation Method for the Solutions of Optimal 

Control Problems Using Neural Networks" 



27. Magnus Norgaard, Neural Network Design Toolkit, 

Http: //Www.lau.Dtll.Dld Research/ControllNnlib/Manual.Pdf 

28. Mcavoy, T.J., HSll E. and Lowenthal S. , 1972," Dynamics of PH in Controlled 

Stirred Tank Reactor, Ind. Eng. Chem: Process Des, Dev. Vol. 11, Pp. 68-70. 

29. Nahas, E.P., Henson, M.A. And Seborg, D.E., 1992," Nonlinear Internal Model 

Control Strategy for Neural Network Models", Computers Chem. Engng., 

Vol. 16, pp. 1039-1057. 

30. Narendra K.S. and Parthasarathy K., 1990, "[dentification and Control of Dynamical 

Systems Using Neural Networks", IEEE Trans. Neural Networks, Vol. 1, No. 1, pp 

4- 27. 

31. Nechyba and Xu, 1994, "Neural Network Approach to Control System Identification 

with Variable Activation Functions", Robotics Institute, 

Carnegie-Mellon University 

32. Mayr 0. , 1970, "The Origins of Feedback Control", Cambridge, MA: 

MIT Press. 

33. Paul W. Murrill, 1996, "Fundamental of Process Control Theory "United State of 

America, pp 50-60, pp 4-18. 

34. Pham, D.T. and Liu, X., 1995, "Neural Networks for Identification, Prediction and 

Control", Springer-Verlag. 



35. Psal~is, D, Sideris, A. And Yamamura~ A. (1988) "A Multilayered Neural Network 

Controller", IEEE Control Systems Magazine, Vol. 8, Pp. 17-21. 

36. Haykin S., 1999, Neural Networks - A Comprehensive Foundation, IEEE Press, 

Macmillan, New York. 

37. Saerens M., Soquet A., 1991, "Neural Controller based on back-propagation algorithm", 

IEEE Proceedings-F, Vol. 138, No.1, pp 55-62, 81. 

38. Sean Kevin Doherty, 1999, "Control of PH in Chemical Processes Using 

Artificial Neural Networks", Liverpool Jolm Moore's University, 

p 94, pp 140-158. 

39. Tim Callinan, 2003, "Artificial Neural Network Identification and Cqntrol of the 

Inverted Pendulum", pp 18-22, p58. 

40. Vandoren, V.J. , 1997," Multivariable Controllers Enter the Mainstream", Control 

Engineering, Vol. 44, No.4, Pp. 107-112. 

41. Widrow, B. and Smith,F., 1964, "Pattern-Recognising Control Systems," Computer 

and Information Sciences (COINS) Symp., Proc., Washington DC, Spartan, pp 288-

317, 

42. Xue.Z.Wang, 1999, "Data Mining and Knowledge Discovery for Process Monitoring 

and Control", Springer-Verlag, London Ltd, pp 85-99. 

43 . Zhang Y., Peng P.Y. And Jiang Z.P., 2000," Stable Neural Controller Design for 

Unknown Nonlinear Systems Using Backstepping", IEEE Trans., Neural Networks, 

Vol. 11 , No.6, pp 1347--1359. 

44. http://www.mathworks.com/matlabcentrallfileexchange/ 

45. http://www.matworks.com/acess/helpdesk/toolbox/nnet/controll.html 

46. http: //www.//en.wikipedia.org/wiki/weighted-sum 

d 



47. hltp://www.llen.wikipedia.org/wikii neural network 

48. www.llcse/stanford.edu/class/sophol11ore _ college/projects.oo.neural_networks 

49. http: //www.answers.comi topic/artificialintelligence 

50. http: //www.l/en.wikipedia.org/wikiireactors 

51 . http://en.wikipedia.org/wiki/PID_controller#Loop_tuning 



Each icon in the main Simulink window can be double clicked to bring up the corresponding 

block library. Blocks in each library can then be dragged into a model window to build a 

model . 

Source Blocks are used to generate signals. Double-click on the Sources icon in the main 

Simulink window to bring up the Sources window. 

Constant: The Constant Source Block simply generates a constant signal. The constant 

output value is displayed in the middle of the block, with a default value of 1. This can be 

change by double-clicking on the block in your model window to bring up the required box. 

Step: The Step Source Block generates a step function. The initial and final values can be 

specified, as well as the step time. 

Clock: The Clock Source Block generates a signal equal to the current time in the 

simulation. The clock's output reflects the times at which the other signals outputs occur. 

Digital Clock: The Digital Clock Source Block generates a strictly periodic time signal at a 

specified sampling interval. 

From Workspace: The From Workspace Source Block is identical to the From File Source 

Block except the values are taken from a variable (or expression) in the MATLAB Workspace. 

Random Number: The Random Number Source Block generates a sequence of random 

numbers generated with the specified random number seed. 

Sink Blocks are used to display or output signals. 

Scope: The Scope Sink Block was described earlier. It is used to $isplay a signal as a 

function of time. 

XY Graph: The XY Graph Sink Block plots one signal against another. It is useful for 

phasE-plane plots, etc. 



Display: The Display Sink Blobk is a digital readout of a signal at the current simul'tion 

time. 

To File: The To File Sink Block saves a signal to a .mat file in the same way 0 that the From 

File Source Block reads from a file. 

To Worl{Space: The To Worjspace Sink Block stnres a signal in a specified 

workspace'variable. Unlike the To File Sink Block, the tile is not qaved in the variable, and 

must be stored separately. 

Li,ear Blocks are eldments of lineAr continuous-time dynamic systems. This are shown hh 

the Simulink window below. 

Gain: This is a scalar or vector gain. The specified gain multiplies the input. The output is 

eitherDa scalar or vector signal following normal vector-scalar multiPlication rules. 

Sum: The Sum Block adds (or subtracts) two (or more) signals and outputs their sum (or 

difference). The two inputs 111USt either all be scalars, or all be vectors of the same dimension. 

The output is the same dimension as the inputs. 

Exanlple 

[; } 
Sum 

Integrator: The output of the Integrator is the integral of the input. An initial condition can 

be specified, as well as saturation limits. This block is very useful for modeling systeI?s. 

Transfer Function 

Numerator and denominator polynomials can be specified to create a stqndard SISO LTI 

system transfer function. 

Derivative: The output is equal to the derivative of the input. 



Dot Product: The output is equal to the dot product of two vector signals. 

Product: The output is equal to the product of the inputs. The number of inputs can be 

specified. 

Mux, DCll1ux 

The Mux (Multiplexer) block is used to combine two or more scalar signals into a single 

vector signal. Similarly, a Demux (Demultiplexer) block breaks a vector signal into scalar 

signal components. The number of vector components must be specified in each case. 
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