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                    ABSTRACT    

Epilepsy is a common type of disorder that causes recurrent seizures and affects 

approximately 70 million people worldwide. One of the common diagnostic tools is the 

Electroencephalogram (EEG). EEG is an extremely complex signal that holds information 

about the various activities of the human brain and neurologists inspect the EEG recordings 

of an epilepsy patient to identify and analyze epileptic seizures. However, most seizures 

occur unexpectedly, and finding ways to detect a possible seizure before it happens has 

been a challenging task for many researchers.  This is because the detection of epileptic 

seizures requires visual monitoring of a patient’s EEG recordings for hours or even days, 

thus making it a laborious and time-consuming process, and whose outcome may be 

affected by the experience of the neurologists. As each channel or electrode implanted in 

the brain provides different statistical measures. A critical issue in epilepsy classification 

is the selection of suitable statistical features. This necessitated the development of a 

metaheuristic-based effective and improved grasshopper optimization algorithm (IGOA) 

using elite opposition-based learning and exponential switching parameters between local 

and random walks for updating the value of the Grasshopper Optimization Algorithm for 

the optimizations of feature selection for epilepsy classification from disruptive EEG 

signals. The original Grasshopper Optimization Algorithm (GOA) was developed using 

linear switching parameters for updating the iteration value of the Grasshopper 

Optimization Algorithm, which lead to premature convergence in some complex 

optimization techniques and drawbacks in exploiting the search space. The IGOA was 

tested on 14 test functions (unimodal and multimodal benchmark functions) and used to 

optimize a feedforward artificial neural network for epilepsy classification. From the 

result, the IGOA outperformed the original GOA in terms of best optimal value, worst, 

mean and standard deviation and effectively balancing the exploitation and exploration 

search space. Grasshopper Optimization AlgorithmArtificial Neural Network (GOA-

ANN), Particle Swamp Optimization-Artificial Neural Network (PSO-ANN), Salp Swarm 

Optimization Algorithm-Artificial Neural Network (SSOAANN), Bat Algorithm-

Artificial Neural Network (BA-ANN) and Grey Wolf Optimization Algorithm-Artificial 

Neural Network (GWOA-ANN) were evaluated and compared with IGOA-ANN for their 

classification accuracies, the number of search agents and features extraction. Also, the 

result was compared with similar results in the literature. The results showed the 
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classification accuracies performance: IGOA-ANN (99.6%), GOA-ANN (99.40%), 

GWOA-ANN (98.40%), SSOA-ANN (98.40%), BAANN (98.80%) and PSO- 

ANN (99.0%) respectively. Based on the previous studies presented in the literature using 

the University of Bonn EEG dataset, the IGOA-ANN method produced better sensitivity 

(99.60%), precision (99.60%), and accuracy (99.60%). Considering these metrics and the 

fact that it requires minimum feature extraction, the IGOA-ANN optimized approach 

makes it an efficient method for epilepsy classification. The method will help neurologists 

with efficient and accurate epilepsy classification, thereby saving time.   
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    CHAPTER ONE   

1.0       INTRODUCTION   

1.1     Background to the Study   

Epilepsy, which ranks fourth behind Alzheimer's disease, migraines, and stroke, is the most 

common neurological disorder and the most deadly ailment. It affects millions of people 

worldwide and is brought on by a malfunction of the brain's Central Nervous System (CNS). 

Seizures, which are bursts of aberrant brain electrical activity, are its defining feature 

(Abbasi et al, 2019; Currey et al., 2021; Oliva & Rosa, 2019; Rasheed et al., 2020; Singh 

et al., 2019; Walter et al., 2020).   

   

Since most seizures occur unexpectedly, it is difficult to predict when someone could have 

one. Many researchers have struggled to come up with methods to predict a seizure before 

it occurs. Using the EEG data from an epilepsy patient, classification algorithms can be 

utilized to forecast whether or not someone will experience a seizure (Almustafa, 2020). 

Contrarily, classifying epileptic seizures requires hours or even days of visual observation 

of significant chunks of an individual patient's EEG records, making it a tedious and 

timeconsuming process. Furthermore, because manual scanning-based diagnoses can differ 

when carried out by several neurologists based on their observations and experiences, they 

may be inaccurate (Chakraborty & Mitra, 2021). The adoption of accurate seizure 

classification and forecasting algorithms can considerably lessen the problem of epilepsy, 

as reliable and simple seizure classification is the key to developing devices to treat epilepsy 

(Larmuseau, 2016).   

The creation of computer-aided diagnostic (CAD) processes is essential for handling big 

datasets, cutting down on the time needed to classify seizures, and giving doctors a second 

perspective on how to diagnose the condition (Chakraborty & Mitra, 2021). Metaheuristic 

algorithms are one such method for streamlining the categorization process. To select the 

best features for improved epilepsy classification from EEG signals, this research presents 

an improved Grasshopper Optimization Algorithm (IGOA) and artificial neural network for 

optimal feature selection for enhanced epilepsy classification from EEG signals.   

   

1.2     Statement of the Research Problem   

 Using an electrode or channel put in the brain, which provides unique statistical 

measurements, the EEG data is obtained. One of the trickiest parts of diagnosing and 

categorizing epilepsy is choosing the right statistical features. Undoubtedly, earlier scholars 

worked very hard to determine the optimum characteristics, and some researchers used a 
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variety of attributes. Amin et al., (2015); Logesparan et al., (2012), others applied a few 

features (Boonyakitanont et al., 2020; Esteller et al., 2001; Hadoush et al., 2019; Quintero-

Rincón et al., 2019) for detecting the seizure. By examining the statistical qualities of the 

features, it is crucial to recognize the various statistical viewpoints that might be taken on 

each brain signal. The main goal is to acquire only the crucial features by preventing a low-

dimensional dataset situation that would make the knowledge discovery process ineffective 

(Amin et al., 2015; Logesparan et al., 2015; Zhang et al., 2015). This is crucial for the 

classification process since, depending on the qualities and needs of the dataset, each 

classifier has advantages and disadvantages (Fernandez-Delgado, et al., 2014). To identify 

the capable classifier (one that excels at solving seizure detection and imparting information 

finding), several classifiers have been tried on EEG datasets, and their performance has 

been evaluated using both a "black-box" method and a "whitebox" approach (flaw in them 

is their inability to provide adequate explanations for the patterns and logic rules concealed 

within the models). The "non-black-box technique" is also being used increasingly and 

frequently (Birjandtalab et al., 2017; Donos et al., 2015).   

   

As the study for clinical epilepsy detection and classification continues, the number of 

parameters used to construct the classifier, independent of the kind of classifier, has a 

substantial impact on the classification performance. Therefore, the search for efficient 

biomarkers is crucial, particularly when EEG recordings are influenced by a multitude of 

physiological parameters, making it more difficult to differentiate between different brain 

states (Ong et al., 2018; Zainuddin et al., 2012). As a result, this research offers an Improved 

Grasshopper Optimization Algorithm (IGOA) for optimal feature selection from EEG 

signals using Artificial Neural Networks for epilepsy classification. It is predicted that using 

Grasshopper Algorithms for feature selection and an artificial neural network (using its 

data-driven approach) to classify epilepsy will be effective and efficient.    

   

1.3     Research Question   

In carrying out this research, some pertinent issues require answers. These includes:   

i. Can the first-order and second statistical features be extracted from the EEG signal 

for epilepsy classification?   

ii. Can the standard Grasshopper optimization Algorithm (GOA) be improved using 

elite opposition-based learning and exponential switching parameters between 

local and random walks for updating its value?   

iii. Can the improved Grasshopper Optimization Algorithm using elite 

oppositionbased learning and exponential switching parameters between local and 

random walks perform better than the standard Grasshopper Optimization 

Algorithm, Bat   
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Algorithm (BA), Particle Swarm Optimization (PSO), Grey Wolf Optimization 

Algorithm (GWOA) and Salp Swarm Optimization Algorithm (SSOA) using   

accuracy, sensitivity, specificity, precision, F1 score, recall as metrics? iv. Can a 

graphical user interface-based system for epilepsy classification based on objective two be 

developed using the University of Bonn Epilepsy dataset?   

v. Can a graphical user interface-based system develop using an Improved Grasshopper 

Optimization Algorithm and Artificial Neural Network (IGOA-ANN) for epilepsy 

classification problems perform better results or similar results when compared to 

existing research in the literature that uses the University of Bonn epilepsy dataset?   

   

1.4     Research Aim and Objectives   

The aim of this research is to develop an optimal feature selection scheme for epilepsy 

classification based on IGOA using elite opposition-based learning and exponential 

switching parameters between local and random walks for updating the value of the 

Grasshopper Optimization Algorithm using the Artificial Neural Network approach. To 

realize the aforementioned aim, the following objective will be explored:   

i. To acquire epilepsy dataset from the University of Bonn Epilepsy dataset and extract 

first and second-order statistical features for faster and more accurate epilepsy 

detection.   

ii. To develop an improved GOA using elite opposition-based learning and exponential 

switching parameters between local and random walks for updating its value.   

iii. To evaluate the performance of the IGOA on different benchmark test functions in 

comparison with the standard GOA, Bat Algorithm (BA), Particle Swarm 

Optimization (PSO), Grey Wolf Optimization Algorithm (GWOA), and Salp Swarm 

Optimization Algorithm (SSOA) using accuracy, sensitivity, specificity, precision, 

F1 score, recall as metrics.   

iv. To develop a graphical user interface-based system for epilepsy classification based 

on 2 and evaluate its performance using the University of Bonn Epilepsy dataset.   

v. To evaluate the performance of the developed GUI by benchmarking it against 

existing research in the literature that uses the University of Bonn epilepsy dataset.   

   

1.5 Research Justification   

The term "epileptic seizure" describes a group of conditions marked by recurrent cerebral 

cortex discharges that result in erroneous brain activity. Each year, 2.4 million new cases 
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are anticipated to be reported worldwide (Rahman & Karim, 2015). Medication-resistant 

epilepsy affects about 30–40% of the population and may require surgical surgery for either 

curative or palliative purposes. The thought of suffering uncontrollable seizures while going 

about their daily lives can be unsettling for many people. Recent years have seen a 

significant number of studies on methods for detecting and anticipating seizures. Patients 

with refractory epilepsy will benefit greatly from this, since it may allow them to take 

precautionary measures to avoid damage or attempt to take medicine to prevent seizures.   

Neurologists always use EEG records to investigate suspected seizure occurrences (Alam   

& Bhuiyan, 2013; Gadhoumi et al., 2015; Kumar et al., 2014; Omerhodzic et al., 2013; 

Rajeev & Pachori, 2015). Traditionally, an expert neurologist would perform this task by 

visually scanning EEG patterns, which is time-consuming and a potentially erroneous 

approach. The errors are especially noticeable in EEG signals that last for a long time 

(Rahman & Karim, 2015). To reduce the likelihood of these errors, an automated seizure 

prediction system can transform primarily qualitative diagnostic criteria into a more 

objective quantitative signal feature categorization task. The system's objective is not to 

take the role of the neurologist, but rather to relieve him of the laborious (and potentially 

error-prone) observation task and enhance the detection and classification procedures as a 

whole.   

   

1.6 Research Scope   

For feature selection, epilepsy detection, and classification, many methods and algorithms 

were applied. Currently, the epilepsy detection and prediction community are yet to produce 

a clinical outcome, and developing a device for clinical prediction is quite costly. As a 

result, the new optimization feature selection will be limited to testing utilizing ANN 

accuracy, sensitivity, specificity, precision, F1 score, and recall in the MATLAB 

environment. The method does not necessitate the development of an experimental system 

for clinical testing, rather it will use epilepsy data set from the university of Bonn.   

   

1.7 Thesis Organization   

Introduction, research problem, research questions, the general context of the research, 

research aim and objectives, research justification as well as the scope of the research are 

presented in the first chapter. The fundamentals of epilepsy and its types, EEG signals and 

their types, and current research on epilepsy detection and classification are covered in 

chapter two. The basic concepts of feature extraction and performance are also discussed.  

The approach used to achieve each of the research work's objectives are outlined in chapter 

three.  In chapter four, the obtained results, and discussion are provided. In chapter five, the 

whole research work's summary, conclusions, and suggestions are presented.   
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        CHAPTER TWO   

2.0 LITERATURE REVIEW   

2.1 Introduction   

Recent research efforts have focused on applying machine learning to provide improved 

clinical, reliable, and efficient epilepsy detection. This chapter provides an overview of 

various epilepsy classification methodologies, feature selection methods, optimization 

algorithms, and their various forms, as well as the benchmark function. The subjects of 

epilepsy, EEG monitoring, machine learning, and a review of relevant publications are 

discussed. In particular, the application of optimization algorithms for feature extraction 

and selection in recent years.    

   

2.2 Epilepsy Seizures     
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Epilepsy Seizures refer to a phenomenon that occurs when there are abnormal and excessive 

electrical discharges in the brain network, triggering transient or short-lived sudden attacks, 

spasms, or events characterized by clinical symptoms (Panayiotopoulos, 2010). A seizure 

can occur mildly in the form of a muscle jerk of infinitesimal magnitude, or in severe form 

as convulsions that are widespread and last a long time (Sharmila, 2018). The various types 

of seizures, based on symptoms, as shown in Figure 2.1, are partial and generalized seizures.   

i. Partial Seizures- This is the most common of all seizures. It affects one side of the 

brain when it occurs. As such, if the seizure affects the part of the brain responsible 

for speech, the affected person is unable to talk. It is of two types:   

a) Simple partial seizure: In the period of experiencing this type of seizure, the 

affected person is awake and aware (Sivasankari et al., 2010).    

b) Complex partial seizure: This type of partial seizure usually occurs in one of the 

two temporal lobes of the brain.   

There are, however, situations when partial seizures graduate into generalized seizures. A 

partial seizure of this nature is known as a partial seizure secondarily generalized.   

ii. Generalized Seizures- In this specific seizure type, the "early clinical alterations 

indicate beginning movement of both hemispheres." (Chang et al., 2017). It affects 

both sides of the brain. It is of many types which can be classified into two 

categories, which are; Generalized Convulsive Seizure and Generalized 

NonConvulsive Seizure.   

  

However, Fisher, (2017) states that “any seizure type classification will be operational  

(practical) and observational” and therefore, presented an expanded organization of the 

various types of seizures, which are; Onset types include Focal, Generalized, and Unknown.   
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a) Focal Onset Seizures.   

This is a type of seizure that starts on one side of the brain with a change in the level of 

consciousness of the affected person. It occurs in the form of automatisms or autohypnosis 

which may include actions like chewing movements, smacking of lips, and rubbing of 

hands.    

b) Generalized Onset Seizures.   

This is a type of seizure that is generalized from the start. It begins simultaneously in both 

hemispheres of the brain. The patient is usually unable to describe the seizure as they have 

no memory of it.    

c) Unknown Onset Seizures.   

This refers to the types of seizures which cannot be placed in any of the other categories 

due to inadequate information (Fisher, 2017). Figure 2.2 better shows these various types 

of classification.   

   
Figure 2.2: Seizure Types Classification   

   

2.3    Electroencephalography (EEG)   

Electroencephalography is a technique for determining the electrical potential of the brain 

(Kumar & Bhuvaneswari, 2012). To capture electrical activity, a device with electrodes is 

positioned on the scalp of the brain. The EEG produces a signal that is a high dimension, 

noisy, and redundant when it records electrical activity (Li et al., 2018). These waves, which 

range in amplitude and frequency and represent different activities like sleep, rest, waking, 
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diseases, and so forth, make up the signals. Specific EEG patterns, in general, represent a 

normality standard, while deviations from this standard represent abnormality (Hively & 

Protopopescu, 2003). The superposition of brain activities that are recorded as electrical 

potential fluctuations on the scalp is represented by the EEG signal. The EEG waves capture 

a wealth of information about how the brain functions. A significant number of electrical 

potentials from diverse sources, including brain cells, neurons, and artifacts, are 

superimposed in the EEG acquired from scalp electrodes (Nayak & Cholayya, 2006).  The 

electrooculogram (EOG) signal is activated by eye movements or blinks, making it the main 

and most prevalent artifact in EEG analysis (Sanei & Chambers, 2013).   

   

2.3.1 EEG signals   

The signal produced by the EEG falls under a class of some pre-defined frequency bands in 

the frequency spectrum. These includes; Alpha, Beta, Delta, and Theta. They are also 

known as EEG patterns (Snyder, 1990). Table 2.1 gives a summary of these EEG patterns 

(signal types) as well as the behavioral state associated with each of them, while an 

illustration of many forms of typical EEG rhythms is shown in Figure 2.3.   

Table 2.1: EEG Patterns and Behavioral States (Khosla et al., 2020; Snyder, 1990)   

  

S/N   EEG                

Pattern/Rhythm                

Frequency Range    

       (Hz)    

Corresponding Behavioral  

State    

      

1.    Delta    

   

0.1 – 3.5     

Hypnagogic, visual imagery,  
light sleep.    

   

2.    Theta    4 – 7.5     Vague dream states, deep,  
restful sleep.    

   

      

3.    Alpha    

   

8 - 13     
Low level of environment 
arousal, awake, non-focused, 
comfortable, drowsy, or 
nonvigilant (eyes closed).    

   

         

4.    Beta    

14 - 30     Dream/REM sleep, being 
awake and alert, paying close 
attention and solving problems, 
and being highly stimulated by 
the environment (eyes open).    

   

5.    Gamma    >30     Increased focus and attention.    
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Figure 2.3: Example of Different Types of Normal EEG Rhythm   

   

2.3.2 EEG signal analysis   

Because there is a lot of data obtained when an EEG measurement is taken, there is a need 

for the provision of schemes and tools that allow for automated feature extraction, analysis, 

and classification of the data contained in the EEG signals (Siuly et al., 2016). There have 

been several approaches proposed, which can be categorized into five groups: similarity 

measurements, neural networks, synchronization measures, statistical analysis, and 

correlation-based techniques (Sivasankari et al., 2010). The procedure for algorithm-based   

EEG signal analysis is depicted in Figure 2.4.   
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Figure 2.4: Overview of the process of algorithmic-based EEG signal analysis (Assi et 

al., 2017)   

   

2.4     Epilepsy Dataset   

There are several datasets of EEG signals available today to researchers. These datasets 

provide researchers with an opportunity to extract robust features and understand the 

general structure of epilepsy seizures (Hossain et al., 2019) so that they can come up with 

better models and systems for the prediction and detection of epilepsy using EEG signals.   

This section, therefore, reviews the various publicly available EEG datasets.   

   

2.4.1 University of bonn dataset   

This dataset has five subjects with a total of 100 items each and a sampling frequency of 

173.61 Hz. Each of the 100 sets contains 4096 samples from a single ASCII-coded EEG 

time series (Epileptologie Bonn / Forschung / AG Lehnertz / EEG Data Download). About   

40 minutes of EEG data was provided for each dataset. Ihle et al., (2012); Türk & Özerdem,   

(2019) adopted this dataset with a scalogram based Convolutional Neural Network (CNN) 

to allow for the detection of an epileptic seizure. Ahammad et al., (2014) adopted this 

dataset with wavelet-based features to allow for the detection of an epileptic seizure. Zhao 

et al., (2020) also, adopted this same dataset with a deep neural network with a 5-type layer 

to allow for robust detection of epileptic seizures.    
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2.4.2 Freiburg-EEG dataset   

This dataset was proposed in the year 2000 and was made available to researchers working 

on seizure prediction (Gadhoumi et al., 2016). It contained invasive long-term intracerebral 

EEG recordings obtained from 21 focal epilepsy patients (13 patients with 24 hours 

continuous and 8 patients with discontinuous) interictal recordings, containing a total of   

582 hours of EEG data. The recordings had a 256 Hz sampling rate (Ihle et al., 2012). Sharif 

& Jafari, (2017) adopted this dataset together with an SVM classifier and fuzzy rules 

distribution as predictive characteristics to allow for the prediction of epileptic seizures. 

Yang et al., (2018) used the same dataset and an SVM classifier to predict epileptic seizures 

using permutation entropy as a predictive factor.   

   

2.4.3 Bern-Barcelona-EEG dataset   

Consists of 83 hours of 512 Hz-sampled intracranial EEG recordings made from five 

epileptic patients (Shoeibi et al., 2020). This dataset was recorded using intracranial 

electrodes placed on five patients with focal epilepsy (Lu & Triesch, 2019). It is made up 

of different parts that different EEG signal analysis specialists have accepted. Lu & Triesch, 

(2019) adopted this dataset with a CNN that had residual connections, to allow for the 

classification of EEG signals.    

   

2.4.4 Flint-hills dataset   

EEG recordings at a sample rate of 239.74 Hz make up this dataset with a total of 1419 

hours of continuous intracranial recordings from 10 patients and 59 seizures (Ihle et al., 

2012; Assi et al., 2017).    

   

2.4.5 Kaggle dataset   

This dataset consists of Intracranial EEG recordings obtained from 5 dogs (having naturally 

occurring epilepsy) with a 400Hz sampling frequency and from two epileptic patients with 

a sampling rate of 5kHz (Zhang & Parhi, 2015). Larmuseau, (2016) adopted standard 

deviation techniques with a Recurrent Neural Network (RNN) as a classifier to allow for 

the prediction of epileptic seizures. Dadgar-Kiani et al., (2016) also adopted this dataset 

with Fast Fourier Transform (FFT) techniques and an SVM classifier to allow for the 

prediction of an epileptic seizure.    

   

2.4.6 Zenodo dataset   
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Contains Multi-channel EEG recordings obtained from 79 neonatal epileptic seizure 

patients, with an average record duration of 74 minutes and a sampling rate of 256Hz 

(Shoeibi et al., 2020; Stevenson, Tapani et al., 2019). Clinical data collation, conversion to 

EDF format, and the reading of the converted EDF into annotated montage are some of the 

processes that were carried out in obtaining the dataset (Stevenson et al., 2019).    

   

2.4.7 Hauz khas dataset   

Consists of scalp EEG recordings made at a sampling rate of 200Hz from 10 patients with 

epilepsy (Shoeibi et al., 2020).    

   

2.4.8 CHB-MIT dataset   

This dataset contains about 844 hours of EEG-ECG data that was obtained from 24 patients 

and synchronized , with a 256 Hz sampling rate (Shoeb & Guttag, 2010). Alotaiby et al.,   

(2015) adopted this dataset together with a CSP-based feature extraction technique, with a 

Linear Discriminant Analysis classification to allow for the ability to anticipate epileptic 

seizures. On the other hand, Usman & Hassan, (2018) adopted this dataset together with a 

Large Laplacian Spatial Filter, with a Naïve Bayes classifier to allow for prediction of 

epileptic seizure. Fergus et al., (2015) adopted it with a Root mean square and Bandpass 

filter techniques together with an SVM classifier to allow for the prediction of epileptic 

seizures. Usman & Hassan, (2018) also adopted the dataset with variance and skewness as 

predictive characteristics and an SVM classifier to achieve the prediction of epileptic 

seizures.   

   

2.4.9 Boston dataset   

Consists of 256 Hz-sampled scalp EEG recordings made over 940 hours from 23 pediatric 

epileptic patients. Researched with this dataset to allow for early detection of autism 

spectrum disorder (Assi et al., 2017; Bosl, Tager-Flusberg, & Nelson, 2018). Table 2.2 

gives a summary of some of the various available datasets, showing their sampling rate, the 

total length of the recordings, and the number of patients. The frequency with which each 

dataset has been used in various evaluated papers is shown in Figure 2.5.   
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               Table 2.2: Various Epileptic Seizure Datasets (Assi et al., 2017; Bosl et al., 2018)    
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S/N      Dataset   Recording   Total  

 Number   Sampling   Number  

Duration  of  Frequency  of  

(Hours)   Patients   (Hz)   Seizures  

                     

1. University of Surface and   39   5   173.61   -   

Bonn  EEG  minutes      

   

2. Freiburg  Intracranial   582   21   256   87   

EEG  EEG (iEEG)   

   

3. Bern                 

Barcelona  iEEG  83   5   512   3750  EEG   

                     

4. Flint-Hills   Continuous   1419  10   239.74   59   

Intracranial long-term   

ECoG   

                     

   2   5000  48   

5. Kaggle   iEEG  627            

   5 dogs  400   

   

   

6. Zenodo   Scalp EEG   74   79   256   460   

(sEEG)   minutes   Neonatal   

      

   

7. Hauz Khas  sEEG   -   10   200   -   

      

   

8. CHB-MIT   sEEG  844   24   256   163   

      

   

9. Boston   Scalp EEG   940   23   256   198   

Pediatric   

   

10. TUH  iEEG  -   10874  250   ~14777 Surface and  173.61   -  

iEEG   
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11. Bonn 39 min 10   
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2.5     Feature Selection Methods   

Features that are inappropriate, unnecessary, or extraneous are the focus of feature selection. 

It is a method for obtaining the most valuable features from datasets (Liu & Yu, 2005). The 

problem of feature selection in machine learning is one of the most crucial and challenging. 

The feature selection problem has many applications in a variety of industries. Among the 

challenges are those related to biomedicine, such as selecting the best gene from a candidate 

gene (Ahmed et al., 2013), text mining (Aghdam et al., 2009), picture analysis (Ghosh et 

al., 2013), and choosing the best visual contents (pixels, color), among others.   

   

The workings of the feature selection procedure are depicted in Figure 2.6. The original 

dataset, feature subset selection, feature selection algorithm, selection criterion, and 

validation are the five essential steps in the feature selection process that are depicted in the 

diagram. To choose the best subset of features, numerous feature selection techniques have 

been developed. The three categories of techniques include filter, wrapper, and embedding 

approaches, as shown in Figure 2.6 (Hoque et al., 2014). Filtering methods are unaffected 

by learning or classification algorithms. It is constantly concentrated on the general 

attributes of the data (Xu et al., 2010).   

   
Figure 2.6: The process through which features are chosen is operational (Agrawal et al.,   

2021)   

Wrapper approaches usually include the classifier's classification algorithm and interact with 

it. These algorithms require more processing power than filters, but they also produce more 

accurate results. Filters and wrapper methods are combined to generate embedded methods. 

The training procedure for embedded techniques includes feature selection and is carried out 

concurrently with the classifier. Additionally, because embedded methods operate by using 

a learning algorithm, they will be categorized as wrapper approaches (Tang et al., 2014).   

   

Wrapper approaches are slower than filter methods but offer better results. The modeling 

technique, which creates and assesses each subset, is used by wrapper approaches. To 

produce subsets, wrapper techniques employ a separate search methodology and sort the 
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three categories of exponential, sequential, and randomized search strategies (Jovi et al., 

2015). In the exponential technique, the number of features that are investigated grows 

exponentially with feature size. Even though this method yields trustworthy results, its high 

computing cost makes it impractical to use. Exhaustive search, branch, and bound approach 

are examples of exponential search strategies (Sun et al., 2004). Sequential algorithms 

logically add or remove attributes. Local optima are produced when a feature is added to or 

removed from a subset because it cannot be modified again. Sequential algorithms include 

things like best first, linear forward selection, floating forward or backward selection, and 

others. Randomness is used to move around the search space in randomized algorithms to 

prevent them from getting stuck in local optima. Randomized algorithms include population-

based methods like simulated annealing, random generation, and metaheuristic algorithms.  

Types of Feature Extraction Techniques are shown in Figure 2.7.   

   
Figure 2.7: Types of Feature Extraction Techniques (Agrawal et al., 2021)   

Because of their properties, metaheuristic algorithms attract a lot of attention from 

researchers. Different types of issues have been solved using a variety of algorithms. Even 

though metaheuristic algorithms have had a lot of success in tackling feature selection 

difficulties, there are some hurdles and issues with scalability and stability in feature 

selection. A dataset in real-world problems can have dozens or even millions of features. 

The suggested approach must be scalable to handle huge datasets in the feature selection 

challenge. A good scalable classifier that can handle enormous datasets is required in the 

method (Bolón-Canedo et al., 2018). So, when developing an algorithm to handle the feature 

selection problem, scalability is essential. When designing an algorithm to manage feature 

selection difficulties, stability is an important factor to take into account. A method is said 

to be stable for feature selection when it consistently identifies the same subset of features 

across various dataset samples. In most cases, the feature selection approach becomes 

unstable when attempting to get the best categorization. Instability occurs when features 

with a strong correlation are deleted to get the best classification accuracy. As a result, 

consistency is just as crucial as categorization accuracy. Khaire & Dhanalakshmi, (2019) 

describe a possible plan of action for the feature selection challenge's algorithm stabilization. 
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Despite the shortcomings of metaheuristic algorithms, improved versions of the algorithms 

have been developed and effectively applied to solve feature selection issues.   

   

2.6     Feature Extraction from EEG Signal   

Feature extraction is a process carried out on EEG signals to obtain specific information or 

attributes from the signal, in a way that makes it possible for the features to be easily 

interpreted (Azlan & Low, 2014).  The extraction of features from the various EEG datasets 

has been done using different techniques, with the majority of the techniques falling into 

one of four categories (Acharya et al., 2013), which are:   

i. Frequency domain methods.   

The various techniques under this approach use statistical and Fourier transform (FT) to 

examine in-depth, information and details that exist in the frequency domain (Acharya et 

al., 2013).   

ii. Time-domain methods.   

Component analysis and linear prediction are two essential methods for time-domain 

analysis. The component analysis is an unsupervised technique for linking a set of data to a 

set of features. Principal, linear, and independent component analysis is one of the 

component analysis techniques utilized in epilepsy diagnosis (Duda & Hart, 1973), whereas 

the linear prediction method focuses on forecasting the outcome of a linear system using the 

current input and the prior outputs (Acharya et al., 2013). iii. Time-Frequency domain 

methods.   

This group of methods for EEG signal analysis is made up of 2 categories; Wavelet 

Transform and Hilbert-Huang Transform. The Wavelet Transform is a multi-scale extension 

of the Fourier Transform that solves non-stationary signal problems (Kumar, Alam, & Siddiqi, 

2017). On the other hand, the Hilbert-Huang Transform allows for instantaneous frequency 

data to be obtained from a signal by the decomposition of the signal into Intrinsic mode 

functions (IMFs) (Acharya et al., 2013). iv. Nonlinear methods.   

The various methods listed beforehand cannot properly detect phase locking or nonlinear 

coupling that may exist among harmonics of the same spectrum (Acharya et al., 2009). To 

overcome this limitation, various nonlinear methods like Higher Order Spectra (HOS), 

Sample Entropy (SampEn), and Recurrence Quantification Analysis (RQA), have been 

developed (Acharya et al., 2013).    

   

2.7     Types of Features in EEG Signals    
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Since the quality of the features that are extracted from the EEG data will have a significant 

impact on the system's performance, feature extraction is given a lot of consideration 

throughout the creation of any EEG seizure detection and prediction system (Boubchir et 

al., 2017). Consequently, this section provides a summary of the many properties that can 

be drawn from EEG data. The different properties that can be retrieved from EEG data can 

be categorized into one of three groups, as suggested by (Boubchir et al., 2017);    a) EEG 

Time-domain features.   

The features that are taken out of the raw EEG data are contained in this category (EEG in 

the time domain). The various features under this category can be further divided into 3 

classes (Boubchir et al., 2017), which are:   

i. Time-domain features based on Statistical Moment: Features such as normalized 

moments, coefficient of EG signal variation, first moment, and second central EEG 

signal moment are the various features that fall under this class of time-domain 

features (Aarabi et al., 2006).   

ii. Time-domain features based on Amplitude: These features fall under the category of 

time-domain features and include the inter-quartile range, root mean square 

amplitude, and median absolute deviation (Aarabi et al., 2006; Löfhede et al., 2010).  

iii. Time-domain features based on Entropy: Shannon entropy belongs to this class 

of time-domain features (Greene et al., 2008).    

b) EEG Frequency-Domain Features.    

This category of features is obtained using Fourier transform from a frequency domain 

representation of an EEG signal. The features in this domain are based on spectral 

information contained in the EEG signal. The features in this category are of different classes 

which are (Boubchir et al., 2017):   

i. Frequency-domain features based on Power Spectrum: This category of frequencydomain 

properties includes the feature of maximum power in frequency bands   

(Aarabi et al., 2006).    

ii. Frequency-domain features based on Spectral information: Spectral flux, flatness, and centroid 

are the various frequency-domain features that fall under this category (Löfhede et al., 2010).    

iii. Frequency-domain features based on Entropy: Spectral entropy feature of the EEG signal belongs 

to this class of frequency-domain features (Greene et al., 2008).    

c) EEG Time-Frequency domain features.    

This category of features provides additional information due to their ability to take into 

account, dynamical changes in non-stationary signals. Discrete Wavelet Transform (DWT), 

is used in obtaining this category of features from an EEG signal (Hernández et al., 2018). 

The features that fall under this category can be placed in one of two classes which are:   
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i. Time-Frequency signal-related features: This class of features is extracted using the 

Quadratic Time-Frequency Domain formula.   

ii. Time-Frequency image related-features: This category refers to the features that c 
visually describe identified seizure activity patterns using image descriptors. Local 
Binary Patter descriptor and Haralick descriptor are some of the image descriptors that 
fall under this category (Boubchir et al., 2017).   

The feature extraction techniques and features employed on the EEG Dataset are summarized 

in Table 2.3. A summary of the numerous frequency-domain features is shown in Table 2.4, 

while time-domain features and several key equations are shown in Table 2.5.   

   

   

     Table 2.3: Summary of Feature Extraction Methods and Features used on EEG Dataset   

S/N    Feature Extraction Methods    Relevant Feature    

 
1   Time-Domain feature    Mean, Variance, Mode, Median, Skewness, 

Kurtosis, Max, Min, Zero Crossing, Line 
Length, Energy, Power, Shannon Entropy,   

Sample Entropy, Approximate, Entropy, 

Fuzzy Entropy, Hurst Exponent, Standard 

Deviation    

2   Frequency-Domain feature    Spectral Power, Spectral Entropy, Energy, 

Peak Frequency, Median Frequency    

3   Time-frequency Domain feature    Line Length, Min, Max, Shannon Entropy,  

Approximate Entropy, Standard Deviation,  

Energy, Median, Root Mean Square    

4   Discrete Wavelet Transform (DWT)    Bounded Variation, Coefficients, Energy,  

Entropy, Relative Bounded, Variation,  

Relative Power, Relative Scale Energy,   

Variance, Standard deviation    

5   Continuous Wavelet Transform (CWT)    Energy’s Standard Deviation, Energy, 

Coefficient Z-score, Entropy    

6   Fourier Transform (FT)    Median Frequency, Power, Peak Frequency,  

Spectral Entropy Power, Spectral Edge  Frequency, 

Total Spectral Power    

 
   

          Table 2.4: EEG Frequency-domain Features (Boubchir et al., 2017)    

S/N   
EEG Frequency-  Domain Features   F( f  )   
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   ( )  
   

1.     Feature-based on power spectrum:          

 Maximum power of the frequency bands.    

                                   
(f)                                                    (2.8)   

F =  
1  k=1  
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(f)                                              (2.9)   

 
                                F2 

= 
k 1    2.   

 Features based on spectral information:   

   Spectral Roll-off: Spectral concentration below threshold λ   

 

    F6(f)                                              (2.10)   

                              

  3.   Features based on entropy.   Spectral entropy.   

 
                              F7
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                     Table 2 .5:  EEG Time - domain Features (Boubchir  et al ., 2017)    

    S/N    EEG Time - Domain Features  ( 
F ( t )   ) 

    

               

.   1   entral moment of EEG Signal.    c i First moment and second   

    
Mean:                  F 1 ( t)  = N 1  n N 

= 1   Z n                                    (2.1)     
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Variance:           F2

(t) =                     (2.2)   

    ii. Normalized Moments: Third and Fourth central moments of 

EEG  signal.   

(t) − )3                        (2.3)   

   Skewness:          F3 

=
N  n=1  

Coefficient Of variation of EEG Signal:                

 (t)  

                              F5
(t) =

F
1 (

2 
t)                                              (2.4)   

2.    Features based on amplitude.   

   Median absolute deviation of EEG amplitude   

 − )                              (2.5)   (t) 1 

                            F6 =n 
=

 

   Root mean square amplitude.                   

                            F7
(t) 

=                                     

(2.6)  N  

   

3.   Features based on entropy. Shannon entropy   

    

   

2   = N  
1 

n 
N 

= 1 ( 
Z n 

) 2 

  

2   

F 

n 1   

nN = 1 Z n 2 
  

                           F 8 
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=− n 

N 
= 1 Z n log 2   ( 

Z n ) 
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2.8     Fundamental Concepts of Optimization   

This section covers the fundamentals of optimization. This includes many forms of 

optimization approaches, and optimization problems, including metaheuristic optimization 

algorithms that are biologically inspired.   

   

   

   

   

2.8.1 Optimization   

In nature, optimization is considered optimal searching, in which problem-dependent 

objectives (performance index) must be evaluated or attained, as well as restrictions, must 

be met (Siddique & Adeli, 2015). The following are the general ways of solving optimization 

problems (OP) (Antoniou and Lu, 2007): Analytical, Experimental, Graphical, and 

Numerical are the four types of analysis. Combinatorial optimization is the use of an 

objective function to find the minimal or highest value of a countable collection of 

alternative solutions (Zhang, Lu, & Gao, 2015). In most cases, there are multiple solutions 

to an optimization problem; yet, any optimization process aims to discover the optimum 

solution among all possible options (Rothlauf, 2011).   

   

2.8.2 Optimization problems   

Optimization problems are problems with several solutions, variables, restrictions, and a 

performance measure to determine whether a chosen solution is optimal (Antoniou and Lu, 

2007). Optimization problems have the following properties (Rothlauf, 2011): The 

availability of several decision-making choices; the existence of constraints on both equality 

and inequality, which limits the options for forming decisions; The presence of an evaluation 

function that may be used to assess the impact of each decision alternative. Each decision 

alternative has a different impact on the evaluation function. The nature of choice variables, 

types of constraints, number of objective functions, the character of equations, and physical 

structure of the problem are all used to classify optimization problems. Figure   

2.8 displays the categorization of optimization issues.     
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Figure 2.8: Classification of Optimization Problems (Lawler, 2001)   

Issues with no defined objective function are known as non-objective optimization 

problems. A difficulty that arises during a feasibility study is finding values for a particular 

variable that satisfy certain limitations (Lawler, 2001). Single-objective optimization issues 

are problems with a single objective function or performance evaluation criterion, whereas 

multi-objective optimization problems have many objective functions.   

   

Some or all of the variables in deterministic optimization problems are deterministic, 

whereas some or all of the variables in stochastic optimization issues are probabilistic. 

Continuous optimization issues have variables that correspond to any actual value, whereas 

discrete optimization problems have variables that belong to a collection of discrete values 

that are subsets of particular integers (Bertsekas, 1998). Combinatorial optimization 

problems are optimization issues where the objective is to accomplish the desired result by 

optimally allocating a finite or limited collection of resources to a discrete, bounded set of 

decision variables. Combinatorial frameworks, like those in (Antoniou & Lu, 2007), are 

subsets of discrete optimization whose variables assume some sets in the form of 

combinatorial structures. Arrangements, Assignments, Routes, Schedules, Sequences, and 

Combinations are all terms used to describe how things are put together.   

   

Because of the enormous number of variables and restrictions, as well as the non-linear 

nature of real-world optimization problems, they are unique and challenging to solve. 
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Furthermore, because of their multi-modal objective function nature, they are 

computationally expensive, necessitating the use of novel optimization approaches to solve 

them (Glover & Kochenberger, 2006; Sumathi & Kumar, 2018). Most disciplines, including 

Engineering, Mathematics, Physics, Chemistry, Biology, Economics, Social Sciences, 

Commerce, Politics, and Administration, have optimization difficulties (Antoniou & Lu, 

2007). Optimization challenges can be found in all sectors of engineering, including 

electrical, civil, mechanical, chemical, telecommunications, biomedical, and Mechatronics. 

Modeling; building and structure designs; system, device, and circuits design; design of 

equipment, instruments, and tools; function optimization and approximation; digital image 

processing; process, inventory, and quality control; forecasting and scheduling are some of 

the specific application areas of optimization techniques in Engineering (Antoniou & Lu, 

2007).   

   

   

           2.8.3   Classification of optimization techniques   

Depending on the outcome, optimization algorithms can be either deterministic or stochastic. 

Because they produce the same results for every iteration, traditional deterministic 

optimization approaches frequently fail to produce optimal and complete solutions. Integer 

programming, Non-Linear Programming (NLP), Gradient-Based (GB) and Gradient Free 

(GF) algorithms, convex programming, and Linear Programming (LP) are examples of 

algorithms (Siddique & Adeli, 2015). Because of the random character of their strategy, 

stochastic algorithms, which might be heuristic or metaheuristic, outperform deterministic 

solutions. They are capable of solving difficult issues and obtaining global solutions since 

they produce various answers for different iterations and examine several regions of the 

search space concurrently (Glover & Kochenberger, 2006). Because the possibility of 

discovering optimal solutions is not guaranteed, heuristic algorithms that seek optimal 

solutions by trial and error (for example, Scatter Search) tend to get stuck in local optimums. 

They focus more on exploitation and are problem-specific (Siddique & Adeli, 2015).   

   

In the past three decades, interest in meta-heuristic optimization has grown among 

academics and researchers, and numerous meta-heuristics have been frequently suggested 

for use in domains including engineering, computer science, health, economics, and others 

to solve challenging real-world problems. The two types of meta-heuristics are singlebased 

and population-based algorithms, as shown in Figure 2.9. The fundamental concept of 

single-based meta-heuristic algorithms sometimes referred to as trajectory algorithms, is the 

construction of a single solution at each run. The neighborhood method improves this 

responsiveness (Agrawal et al., 2021). Simulated Annealing (SA) is one of the most 

wellknown single-based meta-heuristics (Kirkpatrick et al., 1983).    
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In contrast to single-based meta-heuristic algorithms, population-based meta-heuristic 

algorithms provide a population of multiple solutions for each run. The four main 

subcategories of population-based meta-heuristics are evolutionary-based meta-heuristics, 

swarm intelligence-based meta-heuristics, event-based meta-heuristics, and physics-based 

meta-heuristics. Evolutionary algorithms are the first class of population-based algorithms 

(EA). They are driven by natural evolutionary occurrences and use three major operators: 

selection, recombination, and mutation.   

   

Swarm intelligence (SI) methods, which derive their knowledge from the group behavior of 

living organisms, are included in the second category. Birds, ants, bees, and other insects  are 

examples. The Artificial Bee Colony (ABC) Algorithm and Particle Swarm   

Optimization (PSO) are two of the most used algorithms in this area (Agrawal et al., 2021;   

Ma et al., 2017). A few examples of search algorithms include the Cuckoo Search Algorithm (CS),  

Krill Herd (KH), Fruit Fly Optimization (FFO), Grey Wolf Optimizer   

(GWO), Ant Lion Optimizer (ALO), Dragonfly Whale Optimization Algorithm (WOA), 

Salp Swarm Algorithm (SSA), and Crow Search Algorithm. In the third category, inspiration 

comes from human deeds rather than from natural occurrences. The Teaching   

Learning-Based Algorithm (TLBA), the Imperialist Competitive Algorithm (ICA), and the 

Harmony Search (HS) algorithm were all inspired by educational practices, societal 

imperialism, and musical principles, respectively. The final class of meta-heuristics is those 

based on physical principles (PA). For instance, the Gravitational Search Algorithm (GSA) 

models gravitational forces between masses whereas the Multi-Verse Optimizer (MVO) is 

based on notions of numerous universes (Abualigah et al., 2021; Hatta, et al., 2019;   

Meraihi et al., 2020; Mirjalili et al., 2014; Shehab et al., 2017; Wang et al., 2019; Zhang   

& Geem, 2019). Big-Bang Big-Crunch (BBBC), Henry Gas Solubility Optimization,   

Optics Inspired Optimization (OIO), Thermal Exchange Optimization (TEO), Water   

Evaporation Optimization (WEO), Vibrating Particles System Algorithm (VPSA), and Electromagnetic 

Field Optimization (EFO) (HGSO), Magnetic Chargeability Optimization   

(Abedinpourshotorban et al., 2016; Kashan, 2015; Kaveh & Dadras, 2017; Kaveh &   

Ghazaan, 2017).      
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Figure 2.9: Types of Meta-Heuristics (Agrawal et al., 2021)   

   

           2.8.4   Standard optimization benchmark functions   
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The effectiveness of optimization techniques is evaluated and assessed using test functions 

(Jamil & Yang, 2013). Because test functions are designed to imitate real-world problems 

that are growing more complicated, multi-modal, non-linear, and non-convex, they are used 

to test newly developed optimization methods (Ali et al., 2005).   

   

Fundamentally, benchmark test functions are optimization issues expressed as mathematical 

numerical functions. These functions are optimized using a set of best-fit parameter values 

that aid in achieving the best solution, where D denotes the issue dimensions. The optimum 

answer is concealed among a huge number of sub-optimal alternatives scattered throughout 

a problem landscape with a variety of hills and valleys. Any optimization technique, 

including metaheuristic algorithms, strives to discover the optimum answer as rapidly as 

possible (though this is not always guaranteed). The global searchability and local 

convergence ability of any metaheuristic are used to determine its efficiency. Better global 

searchability algorithms are difficult to trap in sub-optimal (local minima or maxima) 

locations. Simultaneously, metaheuristics with good convergence ability make it difficult to 

overlook any optimum solution within the neighborhoods.   

   

In the literature, various test functions have been employed while introducing new 

metaheuristic algorithms or proposing modified variants of current methods. Not only that, 

but different literature contains a diversity of dimensional situations. This means that there 

is no agreed-upon test-bed with standard configurations that new researchers can use to 

conduct tests to validate their suggested approaches. Indeed, it is argued that such diverse 

techniques reveal an algorithm's problem-solving capabilities on a certain set of challenges. 

However, the majority of benchmark test functions have a similar nature, such as numerical 

optimization problems or, to be more exact, unconstrained numerical problems. Researchers 

have also discovered that they have a set of functions that they frequently repeat throughout 

several experimental trials. This limited review scoured the literature for experiments on 

benchmark test functions to measure metaheuristic algorithm performance. The following is 

a summary of some of the work that shows how many test functions have been utilized with 

which configurations to get a sense of existing methodologies (Hussain et al., 2017).   

   

There have been several test benchmark test functions constructed, each with various 

modalities, separability, and linearity. The majority of test functions are categorized 

according to their modality, or the number of optimal solutions they contain. They fall into 

three categories: composite, multimodal, and unimodal (Mirjalili & Lewis, 2016).   

   

            2.8.5   Unimodal benchmark test functions   
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            For unimodal benchmark functions, there is only one global optimal solution. They are 

utilized to evaluate how well an algorithm can utilize data. (Mirjalili & Lewis, 2016) Some 

of the examples are shown in Table 2.6.   

   

   

   

         Table 2.6: Unimodal Benchmark Test Functions   

  Function    Dim Range    Shift Position    fmain   

   F1(X) = =n xi2     
i 1   

20 [-100,100]     [-30, -30, -30]     0     

   n  n   

F2(x)=   | xi | +   | xi |    

i=1  i=1   

20 [-10,10]    [-3, -3, -3]     0     

   n  i    2   

F3(x) =  
i=1 j=1   

20 [-100,100]     [-30, -30, -30]     0     

   F 4(x)= max{| xi |,1 i  n}     
20 [-100,100]     [-30, -30, -30]     0     

 ni−−1 1 100(xi +1−    5( ) 

xi2)2 + (xi  

−1) 2    

F x =     

20 [-30,30]    [-15, -15, -15]     0     

   n    2   

F6(x)=  
I =1   

20 [-100,100]     [-750, -750, -750]     0     

   n    4  random[0,1]    

F7(x) = ixi +   

i=1   

20 [-1.28,1.28]     [-0.25 -0. 25.., -0.25]     0     

   

           2.8.6   Multimodal benchmark test functions   

Due to the high number of local optima that multimodal test functions have and the fact that their 

optimal number increases exponentially with the number of variables, they are used to evaluate 

(  X j )      

x i  + 0.5  )      
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the exploration potential of algorithms (Mirjalili & Lewis, 2016). Some of them allow specified 

dimensions, while others accept any dimension. Table 2.7 presents some of these examples.   

   

   

   

   

   

   

 
   n  20 [-  [-2, -2, -2]   0   

 

                                                  

1 .9     Feature Classification   

This is a process that is concerned with assigning the vectors (containing the selected 

features) to their appropriate class, as to whether the vector is a seizure or a non-seizure 

(Boubchir et al., 2017).  Due to the development of various low-cost interfaces, there has 

been an evolution of EEG recordings with various channels and thus, the development of 

various channel selection algorithms. Figure 2.10 shows an overview of the general process 

of EEG signal classification, While the overview of feature classification based on the   
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number of EEG data channels is shown in Figure 2.11. these are the various to select from 

for epilepsy classification. Some of the classifiers adopted in this process of feature 

classification are: Support Vector Machines (SVM), Artificial Neural Networks, and 

Logistic Regression. The reason for their adoptions is due to their high accuracy value in the 

literature.   

   

2.9.1   Support vector machines (SVM)    

This margin classifier optimizes the distance between training points by using a separating 

hyper-plane. For such a decision boundary, two hyper-parameters must be defined: cost and 

cost factor. Cross-validation (Park et al.,  2011) or grid check (Moghim & Corne, 2014) can 

be used to determine which of these parameters to combine. It is well known that they 

perform better than other classifiers in terms of sensitivity and specificity (Boubchir et al.,  

2017).   

   

2.9.2   Artificial neural networks   

Artificial neural network are a group of connected units or nodes that mimic the neurons in 

a biological brain (Lai, 2021). Given enough neurons and layers, they are universal 

approximators that can estimate any continuous function. However, they are susceptible to 

overtraining and are prone to underperform in conditions where there are insufficient input 

features (Boubchir et al., 2017).   

   

   

   

   

2.9.3   Logistic regression   

This is a category of classifiers that are parameterized by weights and biases. To train them, 

there is a need to find adequate weights that have been optimized by minimizing a predefined 

loss function (Boubchir et al., 2017).   

   
Figure 2.10: General Process of EEG signal classification (Alotaiby et al., 2015)     
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           Figure 2.11: Feature Classification based on the number of channels in EEG Data   

(Rasheed et al., 2020)    

   

   

   

2.10    Epileptic Seizure Detection and Prediction   

Several strategies are used to anticipate and identify an epileptic seizure. Figure 2.12 provides a summary 

of the different methods.    

   
Figure 2.12: Approaches to Prediction and Detection of Epileptic Seizures (Khati &   
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Ingle, 2020)    

2.10.1 Epilepsy seizure detection   

The research on the identification of epileptic seizures using various machine learning and 

deep learning techniques is reviewed in this part. The procedure for identifying and 

categorizing epileptic seizures using EEG signals is shown in Figure 2.13.   

 al., 

2017)    

2.10.1.1 Epilepsy Detection using Machine Learning   

Researchers have created several techniques for machine learning-based epilepsy detection. This section 

carries out a brief review of some of these works.   

   

Lasefr, Ayyalasomayajula, & Elleithy, (2017) proposed a scheme for epilepsy detection 

through wavelet transforms and a supervised machine learning neural network, Support 

Vector Machine (SVM), allowing for accuracy as high as 96% using an SVM and 98% using 

ANN. Siddiqui, Islam, & Kabir, (2019) proposed the use of decision forest to reduce the 

time taken to carry out seizure detection while still ensuring a high value of accuracy in the 

detection. The scheme allowed for the identification of the part of the brain that was most 

affected by the seizure. Song & Liò, (2010) investigated the use of Sample Entropy   

(SampEn) for the detection of an epileptic seizure, using a back-propagation neural network (BPNN) and 

an extreme learning machine (ELM), allowing for fast detection of epilepsy seizure with a classification 
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accuracy of 95.67%. Donos et al., (2015) proposed a scheme for seizure detection using a random forest 

classifier, resulting in a low detection delay time of 1.75 seconds. Koolen et al., (2014) presented an 

approach for seizure detection using a ‘line length-based algorithm’, thus allowing for 84.27% accuracy 

in detection. Gill, Fatima, Akram, Khawaja, & Awan, (2015) proposed a system for seizure detection 

using spectral and temporal feature extraction, allowing for accuracy as high as 86.93%.  Shoeb & Guttag, 

(2010) presented an approach for the detection of an epileptic seizure by the adoption of machine learning 

for feature vector classification, resulting in a high detection rate of 96%.   Zhang et al., (2015) adopted 

a scheme for epilepsy detection using wavelet package decomposition with a Support Vector Machine 

(SVM), thereby resulting in great accuracy and performance with low training time. Guo, Rivero, 

Dorado, Rabunal, & Pazos, (2010) put forward a method for epilepsy detection by supporting a wavelet 

decomposition process with an ANN, thus providing a higher value of accuracy in the detection process. 

Ahmad, Khan, and Majeed, (2014) proposed an approach for epilepsy detection using an SVM, allowing 

for an average accuracy of 95.12%.  Sharma, Shah, & Achuth, (2019) proposed a method for epileptic 

seizure detection using an SVM for the classification of bi-orthogonal wavelet-filtered EEG signals, 

thereby yielding good classification accuracy. The performance of the system was however not validated 

using a large dataset.    

   

Lee & Kim, (2016) adopted SVM and ANN with the fuzzy-logic-based classification of   

EEG signals in the detection of epileptic seizures, achieving accuracy as high as 94.39%.   

It however failed to put in place modalities for no-precipitation echoes.  Chen, Wan, Xiang, 

& Bao, (2017) implemented a scheme for the detection of epileptic seizures through the 

decomposition of EEG signals into 7 wavelet families using Discrete Wavelet Transform 

and SVM, with the MIT and Bonn dataset. The work achieved accuracy as high as 90%.   

The approach was however highly time-consuming. Manzouri, Heller, Dümpelmann, 

Woias, and Schulze-Bonhage, (2018) put forward the use of a Random Forest Classifier for 

the extraction of features and classification of EEG signals in the process of detection of 

seizures using the European Epilepsy Dataset. It obtained a mean AUC score of 0.89. Fasil 

& Rajesh, (2019) proposed the classification of EEG signals for the detection of epileptic 

seizures using the exponential energy feature in the time domain on the BernBarcelona EEG 

and Ralph Andrzejak dataset. It achieved accuracy as high as 99.5%. It however did not put 

in place modalities for real-time applications and there was no testing done using more 

realistic datasets.   

   

The performance of the various systems relied and hinged on how well features were 

extracted from the EEG recordings by a person with domain knowledge in the majority of 

these publications on the use of machine learning for epilepsy identification. Table 2.8 gives 

a summary of various works on Machine learning methods for Epilepsy Detection.    
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            Table 2.8: Summary of ML Methods for Detection of Epileptic Seizures   

  
Author   Database    Detective   Accuracy  Sensitivity  Specificity  Comments  Characteristics   

(%)    (%)    (%)    

 
(Koolen   

et al.,  

2014)     

University  

Hospitals of  

Leuven    

Burst    84.27    84    85.70    The data set 

are few in 

numbers    

(Ahmad   

et al.,  

2014)     

CHB-MIT  

and PIMH    

Discrete  

Wavelet   

Transform    

95.12    91.7    95.7    The data set 

are few in 

numbers    

(Gill et 
al.,   

2015)     

CHB-MIT    Gaussian mixed 

models    

86.93    86.26    87.58    The data set 

are few in 

numbers    

(Donos  

et al.,  

2015)     

Freiburg    Seizure Onset       93.84       The data set 

are few in 

numbers 

and  

not available publicly    
(Guo et   Five set  Wavelet  99.60    

al.,   singlechannel Transform    

99.40    100    Good 

accuracy 

was 

achieved    
2010)     EEG  

segments.    

 

(Shoeb   CHB-MIT    

&   

Guttag,   

2010)     

Feature Vector  96   

Design    

92.3       The data 

set are few 

in numbers    

(Y.  Bonn    

Zhang et   

al.,   

2015)     

Wavelet  99.21    

Package   

Decomposition    

      Good  

accuracy, 

and 

publicly 

available    
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(Siddiqui  EcoG    

et al.,  2019)     

Decision Forest   100          Good 

accuracy 

with few 

data sets    

(Song &  The publicly  

Liò,   available,  

2010)     individually 

collected 

dataset    

Sample Entropy   95.67    97.26    98.77    The data 

set are few 

in numbers 

and not 

available 

publicly.    

 
   

   

   

2.10.1.2 Epilepsy detection using deep learning   

The research that has been done to enable the identification of epileptic seizures using deep learning 

is reviewed in this section.    

   

Hussein et al., (2018) proposed a scheme that adopted Deep neural networks to allow for 

direct learning from EEG recordings without the need for extraction of features by an 

individual with domain knowledge, thus resulting in inaccuracy as high as 97.75%, however, 

the testing of the proposed scheme was not carried out using many datasets.  Wei et al., 

2018) presented a method for automatically detecting epileptic seizures that processed the 

collected EEG signals using a 3D convolutional neural network, achieving a performance 

accuracy of 90% and specificity of 93.78%. Using a Long Short-Term Memory (LSTM) 

network. Hussein et al., (2018) proposed a method for the early   

identification of epileptic seizures, enabling a high level of detection in both favorable and unfavorable 

conditions. Using a pyramidal one-dimensional convolutional neural network (P-1D-CNN), Ullah et al., 

(2018) developed a system for epileptic seizure detection, achieving a detection accuracy of 99.1% with 

a small dataset. The system however could only detect the seizures after they had occurred, not before 

they occurred. Achilles et al.,   

(2018) proposed employing CNN and video-EEG devices to identify epileptic episodes. The 

Area Under Curve (AUC) was attained at 78.33%. Park et al., (2018) put forward an 

approach for the detection of epileptic seizures using a deep convolution network for 

analysis of multi-channel EEG signals with Spatiotemporal correlation using the 

SNUHHYU dataset. It achieved accuracy as high as 90.5%. It however did not put in place 

modalities for region location of epileptic seizure occurrence.    
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Liu & Woodson, (2019) presented a technique for the 90% accurate detection of epilepsy through the 

classification of EEG signals using a Convolution Neural Network (CNN).   

However, the system's testing was limited to a tiny set of data. Convolutional Neural   

Network (CNN)-based multi-class classification of EEG dataset was proposed by (Akut, 

2019), which strengthened the process of epileptic seizure detection. Aliyu et al., (2019) 

described how to classify an EEG signal using a recurrent neural network (RNN), which has 

a 99% accuracy rate for detecting epileptic seizures. However, a full comparison between 

the system and other deep learning models was not done. Türk & zerdem, (2019) suggested 

using a convolutional neural network to learn attributes from scalogram images derived from 

continuous wavelet transformation of EEG records, leading to a performance accuracy of 

93.60% in the identification of epileptic episodes.    

   

According to (Akut, 2019), epileptic seizures can be detected using sophisticated feature 

analysis of EEG signals using CNN with Discrete Wavelet Transform (WT). By doing away 

with feature extraction, it was able to attain an accuracy of 99.4%. Using the BernBarcelona 

dataset, it was suggested by (San-Segundo et al., 2019) to employ two convolutionallayered 

deep learning models for the extraction of features from EEG signals for the detection of 

epileptic seizures. The work achieved an accuracy of 98.9%. It however did not obtain 

statistically tangible results in the combination of various transforms. Ansari et al., (2019) 

adopted a Deep CNN combined with a random forest classifier, with handengineered 

features, from multi-channel EEG data. It achieved a seizure detection rate of   

77%. It however failed to carry out testing on a multi-rated dataset. Emami et al., (2019) put forward the 

adoption of CNN analysis of long-term EEG signals for image-based detection of seizures. It achieved a 

median seizure detection rate of 100%.  It however failed to put in place modalities for the evaluation of 

EEG signals in time series.  Sui et al., (2019) put forward the classification of EEG data in the detection 

of epileptic seizures by using CNN and Short-time Fourier transform (STFT) on spectrograms of iEEG 

signals in the time-frequency domain. It was able to classify objects with an accuracy of up to 91.8%. A 

Temporal graph convolutional network (TGCN) was suggested by (Covert et al., 2019) for the extraction 

of characteristics from EEG signals in the identification of epileptic seizures. Specificity and sensitivity 

were 97% and 99%, respectively, for the work. Convolutional Neural Network (CNN) with fast Fourier 

transform and wavelet packet decomposition was suggested by (Tian et al., 2019) for application in the 

epileptic seizure detection process. Up to 92.95% accuracy was attained.    

   

Uyttenhove et al., (2020) proposed the use of a convolutional neural network known as   

Tiny Visual Geometry Group (t-VGG) for epilepsy detection, resulting in a 95.52% Area 

Under the Precision-Recall (AUPR). The accuracy of the system however required some 
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improvements. Table 2.9 gives a summary of various works on Deep learning methods for 

Epilepsy Detection.   

   

   

   

            Table 2.9: Summary of Some DL methods in Detection of Epileptic seizure   

 
Author    Database    Detective  Acc    Sen   AUC   Spec    Comments    

Characteristics    

 
(Aliyu et 

al., 2019)     

Bonn    Discrete   

Wavelet   

Transform    

98    N/M   N/M   N/M    Good accuracy, 

and publicly 

available    

(Uyttenhove   

et al., 2020)     

TUEP    Various   

Epilepsy   

Markers    

N/M   N/M   93.02   N/M    The data set are 
few in numbers   

and not available 

publicly    

(J. Liu &   

Woodson,  

2019)     

Five set Various single  
Features   channel   

EEG   

segments.    

99.6   N/M   N/M   N/M    The data set are 
few in numbers   

and not available 

publicly    

(M. Sun,   

Wang, Min,   

Zang, &   

Wang,   

Dog EEG   Discrete Fourier  

Transform    

78.6   N/M   N/M   N/M    The data set are 
few in numbers   

and not available 

publicly    

2018)     

(Wei et al.,  First   Temporal and  90    88.90   N/M   93.78   The data set are  

2018) Affiliated  Spatial Features    few in numbers   

Hospital  and not available of   publicly    

Xinjiang  

EEG    

(Hussein et Bonn   Robust features   100   100   N/M   100   Good accuracy, al., 2018)     and 

publicly  
available    

(Akut,   Bonn    Discrete   99.4   98.5   N/M   99.45   Good accuracy,  

2019) Wavelet   and publicly Transform    available    

(Türk &   Five set  Short Time  99.36   99.00   98.50   99.46   The data set are  

Özerdem,   single   Fourier   few in numbers   

2019)     channel   Transform   and not available  

EEG   (STFT)    publicly   segments.    
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(Hussein et Freiburg   Raw data   97.75   N/M   N/M   N/M   The data set are al., 2019)     few in 

numbers   
and not available publicly    

                        

 
   

   

   

2.11  Epilepsy Seizure Prediction    

This section looks at some of the work that has been done to predict epileptic seizures using 

machine learning and deep learning techniques. Figure 2.14 shows the method of epilepsy 

prediction using EEG data and classification algorithms.   

  

   

Figure 2.14: Process of Epilepsy prediction using EEG data and classification algorithm (Rasheed 

et al., 2020)   

   

2.11.1   Epilepsy prediction using machine learning   

The research that has been done on machine learning-based methods for epileptic seizure prediction is 

reviewed in this section.    
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Park et al., (2011) developed a method for categorizing the spectral power aspects of the 

acquired EEG data using Support Vector Machines (SVM) to forecast epileptic seizures. 

The sensitivity of this method was 97.5%, and the overall percentage of incorrect predictions 

was 13%. A method for the prediction of epileptic seizures utilizing a Support Vector 

Machine for analysis of acquired EEG signals is presented (Rosas-Romero & Guevara, 

2020). Liu et al., (2018) proposed a system for the prediction of low-grade gliomas (LGG) 

epilepsy that used machine learning. The system achieved a validation cohort of 0.8152. 

Sujitha et al., (2010) put forth a model for the forecasting of epileptic seizures using Support 

Vector Machines and a Radial Basis Function (RBF), resulting in a 93.87% prediction 

accuracy. Usman et al., (2017) put forward a scheme for a reliable preprocessing and 

extraction of features from EEG data through the use of empirical mode decomposition 

(EMD), resulting in a high true positive rate of 92.23%.  Usman & Hassan, (2018) proposed 

an algorithm to allow for the prediction of an epileptic seizure by extraction of various 

univariate features from the EEG data, allowing for a true positive rate of 89.90% to be 

achieved. Yang et al., (2018) described a means for the prediction of epileptic seizures 

through permutation entropy and SVM for classification, thereby resulting in an average 

sensitivity of 94%.  Bandarabadi et al., (2015) proposed an algorithm for the prediction of 

epileptic seizures through continuous long-term evaluation of multichannel EEG data, 

thereby achieving a sensitivity of 75.8%.  Sharif & Jafari, (2017) defined an approach for 

the prediction of epileptic seizures through feature extraction from the Poincare plane 

samples, thereby allowing for an average sensitivity of 96.6%.  Direito et al., (2017) 

proposed the prediction of epileptic seizures through SVM classification of multi-channel 

high-dimensional feature sets, resulting in an overall sensitivity of 38.47%. Assi et al., 

(2018) proposed the feasibility of seizure detection using higher-order statistics processing 

of EEG data with ANN, and as a result, produced accuracy as high as 78.11%.  Kitano et 

al., (2018) put forward the use of a polling-based unsupervised learning algorithm with 

wavelet transform preprocessing to allow for the prediction of epileptic seizures, thereby 

resulting in sensitivity as high as 98%, with a 91% accuracy.   

Leszczyński, (2018) proposed a channel unification-based algorithm for seizure prediction 

using the EPILEPSIAE dataset with a denoising Autoencoder. It achieved a median AUC 

value as high as 0.552. Teijeiro, Shokrekhodaei, & Nazeran, (2019) put forward a framework 

for workstation setup for the prediction of seizures through for analysis of raw EEG dataset. 

Savadkoohi et al., (2020) investigated the use of time and frequency domain analysis for 

feature engineering of EEG signals with SVM and KNN learning algorithms for the 

prediction of seizures. The work achieved flexibility with a wide range of frequencies and 

sensitivity as high as 99%. Table 2.10 presents a summary of various works on Machine 

learning methods for Epilepsy Prediction.   

         Table 2.10:  Summary of ML Methods in the Prediction of Epileptic Seizures   

 

avail
able 

Author   Database    Predictive  

Characteristics    

Model   Pred   Sen    False   
Positive/  

hr    

Acc   Comments   
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publi
cly    

SOM   N/M   (Sharif Freiburg   Distribution of  SVM   

42  96.6   0.05- N/M   The data set  
 &  6 fuzzy rules   min   0.08   are few in  
Jafari, 2017)        numbers   

  
and  not  

available publicly  
few in numbers   

(Y. Yang et  

al., 2018)    

Freiburg   Permutation  SVM   

Entropy   

61.93 

min   

94   0.111   N/M   The  
  dat 
a set are 
few in 
numbers  
and  

 no

t  available 

publicly   

(Bandarabadi 

et al., 2015)    

Epilepsia   Amplitude   N/M   
Distribution   
Histogram   &  
Spectral Power   

   

8 sec   73.98  0.06   N/M   The  

  dat 

a set are 

few in 

numbers    

(Direito  
  et   
al., 2017)    

Epilepsiae   22   univariate SVM   N/M   38.5   0.2   N/M   The  

  dat 

a set are 

few in 

numbers   

features   

   
 

(Usman   et  CHB-MIT   Entropy   

al., 2017)     

SVM   23.48  92.23   

min    

N/M    N/M   The  data  
set are few 
in numbers  
and   not  

available 

publicly    

(Usman  &  CHB-MIT   Variance,  
Hassan,   Skewness    
2018)     

KNN   34  97.44    
Naïve  min   90.66    
Bayes   97.07    
SVM    

   

N/M    N/M   The  data  

set are few  

in numbers 

and  not 

available 

publicly    

(Kitano et  CHB-MIT   Zero-crossing  al., 2018)    
of  DWT   

coefficients    

   

98    N/M    N/M   The  data  

set are few 

in numbers 

and  not  
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(Assi et al.,   
2018)    

IEEE.org   Bi-spectral   
Entropy   

   

MLP   N/M   N/M   N/M   N/M   The  

  dat 

a set are 

few in 

numbers   

(Park et al.,   
2011)    

Freiburg   Spectral power    

   

SVM   N/M   97.5   0.20   N/M   The  

  dat 

a set are 

few in 

numbers   

(Rosas- 
Romero  
  &   
Guevara,   
2020)    

   

Notre-  
Dame  du   
Centre   

Functional 

nearinfrared 

spectroscopy   

SVM   N/M   N/M   N/M   N/M   The  

  dat 

a set are 

few in 

numbers   

Hospitalier  (fNIRS)   
   

(Sujitha  
  et   
al., 2010)    

Siemens   Entropy, Contrast, 

SVM  Magnetom  Correlation.  

Symphony     

N/M   N/M   N/M   93.87  The  

  dat 

a set are  

(Usman  CHB-MIT  Time  and   N/M   23.61 92.23  N/M   N/M   The data set   et  

 Frequency   min   are few in al., 2017)    Domain   numbers Features   and not   

available publicly   

  
              

            2.11.2   Epilepsy prediction using deep learning   

Khan et al., (2017) With a sensitivity of 87.8%, convolutional filters were used to study the 

prediction of epileptic seizures on EEG signals that had undergone the wavelet 

transformation procedure. Truong et al., (2017) adopted a convolutional neural network 

(CNN) with Short-Time Fourier Transform (STFT) to allow for the prediction of epileptic 

seizures from iEEG data, thereby allowing for sensitivity in detection as high as 81.4%. 

Hosseini et al., (2017) proposed a dimensionality-reduction technique with stack 

autoencoders for unsupervised feature extraction from the EEG dataset for the prediction of 

an epileptic seizure. It achieved accuracy, precision, and sensitivity of 94%, 95%, and  93% 

respectively.    

   

Sun et al., (2018) outlined an approach for the prediction of epileptic seizures, through the 

use of a two-layer convolutional neural network (CNN) for the conversion of time-domain 

EEG signals to a frequency domain, thereby allowing for a high level of performance in 

epileptic preictal state prediction. However, the system was unable to implement a 
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continuous variable that would have served as a signal of the likelihood of an oncoming 

seizure (Tsiouris et al 2018). Long Short-Term Memory (LSTM) networks and CNN were 

used in the method proposed by (Tsiouris et al., 2018), resulting in a false prediction rate of 

0.11 to 0.02 for epileptic seizures. Khan et al., (2018) investigated the adoption of 

convolutional filters with wavelet transformation of EEG signals for extraction of features 

in the prediction of epileptic seizures. It achieved a sensitivity of 87.8% (Truong et al., 2018) 

and adopted Short-Time Fourier Transform (STFT) with CNN for analysis and extraction 

of features from a 30s EEG signal window. It achieved sensitivity as high as   

81.4%. It however did not make provision for real-time analysis.    

   

Yuan et al., (2019) presented a process for the prediction of an epileptic seizure by using a   

Convolutional Neural Network (CNN) and a Common spatial pattern (CSP) for analysis obtained of EEG 

signals, thereby allowing for a high level of sensitivity of 92.2% and a false prediction rate of 0.12/h. 

Wei et al., (2019) proposed the use of a Long-Term   

Recurrent Neural Network (LRCN for spatiotemporal-based extraction of features from  

EEG data for the prediction of epileptic seizures. It achieved accuracy and sensitivity of 

93.40% and 91.88% respectively. It however did not provide modalities for the fusion of 

multimodal image information. Truong et al., (2019) adopted a Generative Adversarial 

Network (GAN) with Short-Fourier Transform to predict epileptic seizure from EEG data, 

thereby producing an operating characteristic curve (AUC) as high as 77.68%. A deep 

learning-based technique was put forward by (Daoud & Bayoumi, 2019), using 4 deep 

learning-based models to allow for the prediction of epileptic seizures, thereby producing 

an accuracy of 99.6%.  Hussein et al., (2019) developed a scheme for the prediction of 

epileptic seizures using CNN fed with image-like EEG data, thereby resulting in an average 

sensitivity as high as 87.85%.  Rosas-Romero & Guevara, (2020) proposed the use of 

Convolutional Neural Networks for the analysis and classification of functional nearinfrared 

spectroscopy (fNIRS) signals. Usman et al., (2020) put forward a method for the automated 

extraction of features from EEG signals using a Convolutional Neural Network, allowing 

for sensitivity as high as 92.7% and 90.8% specificity. Table 2.11 presents a summary of 

various works on Deep learning methods for Epilepsy Prediction.   

   

   

   

   

           Table 2.11: Summary of Review on Deep Learning for Prediction of Epileptic    
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Work    Database    Predictive  Model   Pred    Sen    False   Acc   Comments    

Characteristics    Positive/   
hr    

 

 

not available publicly    
(Hussein 

et al.,   
2019)     

Melbourne   
Seizure 

prediction   
competition 

dataset    

STFT    CNN    5   87.8   min    N/M    N/M   The data set 

are few in 

numbers    

(Tsiouris 
et al.,   
2018)     

CHB-MIT    Various Time  
and Frequency   

Features    

LSTM   15120  99.28    0.11-  
0.02    

N/M   The data set 

are few in 

numbers    

min     

(Truong et 
al.,   
2019)     

Freiburg    
CHB-MIT    

STFT    GAN    5  min    N/M    N/M    N/M   The data set 

are few in 

numbers    

(Daoud   
&   

Bayoumi,   
2019)     

CHB-MIT    Raw data    DCAE  1 hr    
+ Bi- LSTM    

99.72    0.004    N/M   The data set 

are few in 

numbers    

(M. Sun et 
al.,   
2018)     

Dog iEEG    Discrete   
Fourier   

Transform    

CNN   N/M   

RNN      

N/M    N/M    N/M   The data set 

are few in 

numbers    

(Rosas-  
Romero   

&   
Guevara,   

2020)     

NotreDame  
du   
Centre   

Hospitalie    

Functional 
near-infrared 
spectroscopy   

(fNIRS)    

CNN   N/M    N/M    N/M    N/M   The data set 

are few in 

numbers    

(Khan et  MSSM   

al., 2017)    CHB-MIT    

Wavelet 

Transform    

CNN    8  
min    

6  

min    

87.8    0.142    N/M   The data set 

are few in 

numbers and 

not available 

publicly    
(Truong Freiburg   et al.,  

CHB-MIT    
2017)     

STFT    CNN    5  

min    

81.4   

81.2    

0.06   

0.16    

N/M   The data set 

are few in 

numbers and  
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(Yuan   
Zhang et  

CHB-MIT    Wavelet Packet 

Decomposition    

CNN   N/M    92.2    N/M    N/M   The data set 

are few in 

numbers    al., 2019)     

(Usman  CHB-MIT   
et al.,   
2020)     

STFT    CNN       92.7    N/M    N/M   The data set 

are few in 

numbers    

 
   

   

   

2.12  Optimization Algorithms   

Various machine learning and neural networks are faced with the challenging problem of 

optimization. Optimization is the process that involves obtaining minimum or maximum 

function evaluation by finding a set of inputs to an objective function (Kochenderfer & 

Wheeler, 2019). In machine learning, optimization algorithms are adopted to reduce a 

function known as the loss function, while in neural networks, optimization is achieved 

through a process known as backpropagation (Kochenderfer & Wheeler, 2019). Several 

optimization algorithms exist, this section, therefore, reviews some of them.   

2.12.1   BAT algorithm (BA)   

The Bat algorithm (BA), a population-dependent stochastic search technique, has primarily 

been used to solve different kinds of optimization problems; however, one of the main 

problems that BA has encountered is that, when dealing with complex real-world problems, 

it is frequently caught in local optima (Bangyal, et al., 2018). It is a natural-inspired method 

that works well for both continuous and discrete optimization issues. It was created using 

natural processes, such as the echolocation of microbats, and is effective at resolving 

extremely challenging optimization issues (Bangyal et al., 2018; Fister et al., 2014). The 

pseudocode for the bat algorithm is displayed in Table 2.12.    

            Table 2.12: Pseudocode of BAT Algorithm (Yang, 2010)    

  
Objective function f(x), 𝑥 = (𝑥1,. . . , 𝑥𝑑)𝑇   
Initialize the bat population xi (i = 1, 2, ..., n) and vi   
Define pulse frequency fi at xi   
Initialize pulse rates ri and the loudness Ai while (t 
< Max number of iterations)   
Generate new solutions by adjusting frequency,  and 
updating velocities and locations/solutions          if 
(rand > ri)   
        Select a solution among the best solutions   
        Generate a local solution around the selected best solution         end if   
        Generate a new solution by flying randomly   
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if (rand < Ai & f(xi) < f(𝑥∗))          Accept the new solutions         Increase ri and 
reduce Ai   

        end if   

Rank the bats and find the current best 𝑥∗ end while   

Postprocess results and visualization   

  
   

2.12.2   Grasshopper optimization algorithm (GOA)   

The GOA is a swarm intelligence system that takes cues from the swarming and foraging 

habits of grasshoppers. Numerous optimization issues have been solved by the GOA algorithm in a 

variety of domains (Meraihi et al., 2021). A three-bar truss, a 52-bar truss, and a cantilever beam 

were all subjected to structural optimization to identify the optimal shape, and the GOA is a 

algorithm that was introduced in 2017 (Steczek et al., 2020). The pseudocode for the Grasshopper 

Optimization Algorithm is displayed in Table 2.13.              Table 2.13: Pseudo-codes for the GOA   

  
1:   Generate the initial population of Grasshoppers Pi (i =1, 2, ...,  

n) randomly   

2:   Initialize cmin, cmax and maximum number of iterations tmax   

3:   Evaluate the fitness f (Pi) of each grasshopper Pi   

4:   T = the best solution   

5:   while (t < tmax ) do   

6:          Update c1 and c2    

7:          for i = 1 to N (all N grasshoppers in the population) do   

8:    
        Normalize the distance between grasshoppers in the 

range [1,4]   

9:           Update the position of the current grasshopper   

10:          Bring the current grasshopper back if it goes outside the 

boundaries   

11:         end for   

12:         Update T if there is a better solution   

13:         t = t + 1   

14:  end while   

15:  Return the best solution T   

  
   

2.12.3   Grey wolf optimization algorithm (GWO)   

GWO is a meta-heuristic optimization technique that mimics the hierarchical essence of grey 

wolves by naming the strongest solution alpha, then beta, and finally delta in decreasing 
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order. In addition, the hunting strategy of detecting, encircling, and attacking is 

mathematically modeled to find the best-optimized response (Hatta et al., 2019). Table   

2.14 shows an overview of the GWO algorithm.   

           Table 2.14: Pseudocode of GWO Algorithm (Faris, Aljarah, Al-Betar, & Mirjalili,  2018)    

  
Initialize the grey wolf population Xi (i – 1,2, …, n)   

Initialize d, A, and C   

Generate the Randomly Positions of Search Agent   

Calculation of the fitness of each search agent   

Xα = the best search agent   

Xβ = the second-best search agent   

Xδ = the third-best search agent While 
(t<max number of iterations)     for 
each search agent   

        Update the position of the current search agent by     

    End for   

    Update d, A, and C   

    Calculation of the fitness of all search agents   

     Update Xα, Xβ and Xδ   

End while  Return 

Xα   

  
               

            2.12.4   Particle swarm optimization algorithm (PSO)   

The optimal solution to a problem based on an objective function is found using the swarm 

behavior of bird flocks in PSO, a heuristic optimization technique (Xu et al., 2018). One of 

the most crucial techniques in swarm intelligence is this one. The Particle Swarm 

Optimization Algorithm is a powerful tool for nonlinear, constrained, and unconstrained 

optimization problems. While solving multi-modal optimization problems, its rapid 

convergence causes it to frequently enter local optima, which can cause particle swarms to 

form too soon (Xu et al., 2018). The general PSO's pseudocode is displayed in Table 2.15.   

            Table 2.15: Pseudocode for PSO (El-Shorbagy & Hassanien, 2018)    

  

Step 1. Initialization   

(a) Set constants kmax, c1, c
1.   

                                                 

1 .12.5   Salp swarm algorithm (SSA)      



49   

   

x 

(b) Initialize randomly particles positions   e s in Rn for I = 1, …, p.   

(c) Initialize randomly particles velocities 0   for I =  

1, …, p.   

(d) Set k = 1   

   

Step 2. Optimization   

             (a)  Evaluate the function value f ik.  

.   

(c) If  

   

(d) If the stopping criterion is satisfied go to step 3   

(e) All velocities of the particle are updated     for i = 1, …, p by   

                         

(f) All positions of the particle are updated    for i = 1, …, p by   𝑘𝑖 +1  =   x𝑘𝑖 +  𝑣𝑘𝑖 +1  (g) k 

= k + 1   

(h) Go to step 2(a)   

   

Step 3. Termination   

   

carried out on the prediction and detection of an epileptic seizure, showing some of their performance  

evaluation.   

           Table 2.16: Pseudocode for SSA (Singh et al., 2020)    

  
Initialize population xi  i=1, 2, …, n 
for generation from 1 to max_iter do   

                                                 

It's a metaheuristic algorithm based on the swarming activity of Salp in oceans, which aims 

at developing a population-based optimizer (Faris et al., 2020). It is an algorithm that is 

suitable for obtaining fast-speed searching results in challenging problems (Singh et al., 

2020).   SSA is a stochastic algorithm that begins the optimization process by generating a 

collection of initial random solutions to begin the population and then improves these 

solutions over time in two phases: exploration (diversification) and exploitation 

(intensification) (Abusnaina et al., 2018). Table 2.16 shows the Pseudocode of the Salp 

swarm algorithm, while Table 2.17 gives a summary of the various works that have been   

  then  

    

  then  .     
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Calculate all salp in the crowd Represent the best 
salp as F   

Update the value of c1 by using    
   

 
            Table 2.17: Summary of Works on Prediction and Detection of Epileptic Seizure   
   Author/ Year   SVM   CHBMIT Sensitivity = 92.23%  Transform   

      

(Usman et al., 2017)    

(Usman & Hassan,  
2018)    

(Kitano et al., 2018)    

(Sharif & Jafari,   
2017)    
(Mursalin, Zhang,   
Chen, & Chawla,  
2017)    
(Polat & Ozerdem,   
2016)    

(Niknazar, Mousavi,   
Vahdat, & Sayyah,  
2013)    
(Zhou, Liu, Yuan, & Li, 

2013)    

kNN   

SOM   

SVM   

Random   
Forest (RF)  

kNN   

ECoG   

Bayesian  

Linear   

CHBMIT Sensitivity = 97.44%   

   

CHBMIT Sensitivity = 98%   

   

Freiburg  Sensitivity = 96.6%   

   

Bonn   Average Accuracy 

=   
98.45%   

   

Bonn   With Wavelet,   
Accuracy= 96%   

   
With Hilbert,   
Accuracy = 100%   

   

Bonn   Accuracy = 

98.67%   

   

Freiburg  False Detection Rate   
= 0.13/h,    

   
Sensitivity = 96.25%   

Comments   

The data set are few in 
numbers   

The data set are few 

in numbers     

The data set are  few 
in numbers The data 
set are  few in 
numbers Contains 
variety  of patient 
data, and are good.   
Contains variety of 
patient data,  and are 
good   

   

   
Contains variety of 
patient data,  and are 
good The data set are  
few in numbers   

   

   

Discriminant 
analysis   

(BLDA)   

for (all salp  x i )  do    
if  x i   is a leader then    

Update the position of the leader by using    else    

Update the position of the followers by using the mathematical equation      

Return F    
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(Tzallas, 
Tsipouras, ANN 
Bonn Accuracy 
= 100%    
& Fotiadis, 
2009)    

 
2.13   Performance Evaluation of Works Reviewed   

   

   

   

(Shoaib, Lee, Jha, &   SVM   
Verma, 2014)  (Desai,     

2017)   ANN   

(Daoud & Bayoumi,  Raw Data   
2019)    

(Y. Yang et al.,   SVM   
2018)    

(Tsiouris et al.,   
2018)    Time and   

Frequency   
Features   

(Guo et al., 2010)       

CHBMIT Sensitivity = 91-96%   
The data set are  few in 
numbers Contains  

Bonn   Accuracy = 96%   variety  of patient   
 data,   

CHBMIT Sensitivity = 99.72%  and are good    

   The data set are   
few in numbers    

Freiburg  Sensitivity = 94%  The data set are  few 
  

in 
numbers The data  

CHBMIT Sensitivity = 99.28%  set are  few in numbers   

Bonn   Accuracy = 97.77%   Contains variety  
of  

patient data.   

Method  Dataset Discrete   Performance  

Wavelet   
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There is a need to monitor and evaluate the performance of various systems and algorithms 

for the detection and prediction of epileptic seizures. This section, therefore, presents an 

overview of the metrics with which these systems are evaluated as well as a performance 

review of previous works that have been carried out.  Some of the metrics used in the 

evaluation of the various seizure prediction and detection systems are (Giannakakis et al., 

2014; Rasheed et al., 2020):    

i.  Accuracy   

The accuracy of a seizure detection system is calculated as shown in Equations 2.12 and 

2.13   

Accuracy =   

TotalNumberof Cases  

                      Accuracy = TP 
+TN    

                                                      

 

(2.13)    

TP+FP+FN+TN  

Where TP= true positive, TN= true negative, FP= false positive and FN = false negative.  ii. 
Precision   

The precision of a seizure detection system is calculated as shown in Equations 2.14 and 2.15.   

NumberCorrectlyDetectedSeizures  

                        Precision =                              (2.14) TotalNumberof seizure  

 

                                      Precision = 
TP

                                                                  (2.15)   

  

 

TP+FP  

iii. Sensitivity    

The sensitivity of a seizure detection system is calculated as shown in Equations 2.16 and 2.17.   

NumberCorrectlyDetectedSeizures  

              Sensitivity =             (2.16)   

  

 
TotalNumberof AlgorithmPositiveOutcome TP  

NumberCorrectlyDetectedSeizures    + CorrectlyNormanlState   
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                                Sensitivity =                                                             (2.17)   

  

 

TP+FN  

iv. Specificity      

The specificity of a seizure detection system is calculated as shown in Equations   

2.18 and 2.19.   

                                Specificity =  
Numberof 

 

 

CorrectlyStates  
           (2.18) TotalNumberof AlgorithmNegativeOutcome  

TN  

                                                    Specificity =                                                         (2.19)   

 

TN+FP  

   

2.14    Chapter Summary   

This chapter presents a review of epilepsy detection and prediction using various machine 

algorithms. Specifically, a machine learning algorithm was discussed. Feature selection and 

the use of EEG for monitoring were discussed. A review of some epilepsy detection methods 

was discussed. From the review, the prediction and detection of epileptic seizures are found 

to be a very important process that greatly affects the quality of life of patients with epileptic 

disorders. Various researchers have come forward to propose and develop schemes and 

systems that help improve the process of prediction and detection of epileptic seizures. As 

shown in the literature review, various Machine learning and Deep learning schemes have 

been adopted together with various EEG datasets to develop better and improved systems. 

Additionally, it is demonstrated that no single machine learning or deep learning method is 

much better than others because the effectiveness of the various schemes depends on the 

characteristics and structure of the EEG dataset that was used. Again, it was discovered that 

the framework for seizure detection and prediction has room for development. Since a 

variety of physiological factors can alter EEG recording and make it more difficult to discern 

between distinct brain states, the quest for efficient biomarkers is crucial. The Improved 

Grasshopper Optimization Algorithm and Artificial Neural Network technique for detection 

and classification were used in this study to provide the best feature selection sets for 

epilepsy detection. This improves the overall efficiency of epilepsy detection toward clinical 

application.   

CHAPTER THREE   

3.0 RESEARCH METHODOLOGY   
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3.1 Introduction   

The resources and research techniques are described in this section. This chapter also covers 

the research methodology, materials needed, techniques and approaches used, data set, data 

collection process, and metrics for evaluation using epilepsy classification and the   

IGOA-ANN approach.   

3.2 Research Design and Methods   

The steps of the methodology mapped to the set of objectives (as defined in section 1.4) are shown in 

Figure 3.1. For research objective one, the following step was taken:   

1. Acquire the Epilepsy Dataset   

The epilepsy dataset was acquired from the University of Bonn. The sample of the dataset is 

shown in Table 3.1.   

Table 3.1: Individual Datasets and the Number of EEG Segments used in each Detection 

Task   

Class    Settings    A    B    C    D    E    

1.    Subject    5 Healthy    5 Healthy    5 Epilepsy 

Patient    

5 Epilepsy 

Patient    

5 Epilepsy 

Patient    

2.    Number of 

Epoch    

100     
Segments    

100     
Segments    

100 Segments    100 Segments    100 Segments   

3.      Epoch  

Duration    

23.6s    23.6s     23.6s     23.6s     23.6s    

4.    Patient Eyes Open State   

Recording    

Eyes Close 

Recording    

Pre-seizure   
Recording from 

the   Healthy  

Region    

Pre-seizure   
Recording 

from Epileptic 

Area    

Recording   
During   
Seizure    

5.    Electrode     Surface   

Type      

Eyes Close 

Recording    

Pre-seizure   
Recording 

 from the 
Healthy   

Region    

Pre-seizure   
Recording 

from Epileptic 

Area    

Recording   
During   
Seizure    

6.    Electrode 10-20   

Placement System    

  10-20    

System    

Hippocampal  

Formation    

Epileptogenic  

Zone    

Epileptogenic  

Zone    
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2. Preprocessing the Dataset   

To effectively suit the networks, this entails assessing the gathered data. The data 

was altered and transposed to achieve this. Utilizing the data (load) in the network 

for effective subject classification is made simple by pre-processing. There are five 

sets of EEG data in this study, each comprising 100 single channels that last for 23.6 

seconds. There are 4,096 samples total from one EEG time series included in every 

channel. The time series' acquisition device's spectral bandwidth ranged from   

0.5 Hz to 85 Hz.   

With low-pass filter settings ranging from 0.5 to 40 Hz, the signals were recorded at 

a frequency of 173.61 Hz. Low pass filters block signals that travel above a cutoff 

frequency but let signals flow within a pass-band (also known as the pass-band) 

below the cutoff frequency (known as the stop-band). As a result, the filter alters the 

output values to facilitate the detection of trends and minimize signal loss while 

increasing the overall signal-to-noise ratio. Computation of the First-order and 

second-order statistical Feature extraction for epilepsy classification.   
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In the algorithm, discrete wavelet transforms are essential. Continuous wavelet 

transform decomposes the signal into scaled and shifting parameters. (𝑆,,𝑏(𝑡)) of a 

single function 𝑆(𝑡), called mother wavelet. If 𝑥(𝑡) is the signal, then its CWT is 

given as (Chen et al., 2017):   

                           Sab, (t)=                       (3.1) were,    

𝑎 = Scale parameter   

𝑏 = Translation parameter  

and𝑎 ≠0   

The discrete wavelet transform (DWT) was created by discretizing the parameters a 

and b. In its most typical setup, the DWT uses a dyadic sample with parameters a 

and b based on powers of two: 𝑎 = 2𝑗 and 𝑏 = 𝑘2𝑗 with . By substituting in 

equation 3.1, this is called dyadic wavelets (Chen et al., 2017):    

− j  

  

 

                                                     S j,k (t)=2 z S(2− j t −k)       (3.2)  of 

note, DWT could be written as (Chen et al., 2017):    

− j   

S − j t −k )dt S(t), 

S j,k (t)     (3.3) were, d j,k                    d j,k =  

=Wavelet coefficients, 𝑗 = Level, and 𝑘 = Location   

The automated detection of EEG data typically involves the two main goals of 

feature extraction and classification. Statistics features, fractal dimension features, 

entropy features, and time-frequency domain characteristics are four categories into 

which the returned features can be divided. The combination of temporal and 

− x ( t ) 
t      

t  − b  a   a   
  

− x ( 
t ) 

2   z  
( 
2 
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frequency data has been utilized in many research to automatically identify 

nonstationary EEG at the onset of epilepsy. The bulk of studies has used a supervised 

learning paradigm to automatically detect EEG using machine learning.  

Regardless of the classification, the input EEGs fall into, the EEGs used to train 

classifiers are labeled using prior data (Wang et al., 2019). To do the intended 

objective, feature extraction includes transforming input data into a set of features 

that extract information from the input data. Maximum, mean, variance, standard 

deviation, entropy, energy, RMS, kurtosis, and skewness are some of the qualities 

that were discovered in this work. The maximum value displays the rapidity with 

which patterns increase during seizure activity. The mean provides the absolute 

values of each channel signal. The variance of the signals demonstrates how data are 

spread out and close to the mean. A measure that deviates from the variance is the 

standard deviation. These alterations signify the change from a regular state to an 

epileptic one (Swami et al., 2016). A characteristic of an energy feature is 

nonlinearity. The brain is made up of linked neurons that cooperate to carry out 

specific tasks.   

Neurons require a lot of energy to function properly. The start of epileptic convulsions causes 

energy imbalances (Swami et al., 2016). Entropy, another nonlinear characteristic, is 

characterized as the degree of uncertainty or randomness in the signal. Entropy level 

abnormalities are also brought on by the beginning of epileptic convulsions. The 

mathematical expression of the maximum value is given as:   

                                         ax (x(n))                      (3.4) where M 

denotes the highest value. The mean value gives the absolute values for each channel 
signal. The mean is expressed mathematically as follows:                                

i= x(ti )                                           (3.5) the mean of the input signals 

is μ. The variance of the signals indicates how data are spread out  

                                                  

                                        )                   (3.7) where  is  

the standard deviation. Energy it is said that energy is the work capacity. The brain is 
made up of linked neurons that cooperate to carry out specific tasks. For them to 
perform their usual function, neurons need a lot of energy. Energy levels become 
unbalanced when epileptic convulsions begin. Nonlinearity is a property of energy.  

The following is the mathematical representation of energy:   

x  

1       

t  = 
1 

1   
  2     

n      i = 1 ( 
x ( 

i ) 
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and close to the mean. The following is the mathematical representation of variance: (Ajay 

& Lalit, 2015):     

2  

 

 i=1(x(i) − )                                         (3.6) where                      

variance is 𝜎𝑡. A signal's spread-out standard deviation from the variance It is a 
transition from the regular state to the epileptic state that takes place. The standard 
deviation is expressed mathematically as follows:                                                

n=1 x(n)                     (3.8)   

            𝐸𝑛  represents the energy.   

Entropy, a nonlinear characteristic, is the degree of uncertainty or unpredictability 

in the signal. Entropy level abnormalities are also brought on by the beginning of 

epileptic convulsions. Entropy is expressed mathematically as follows:   

                         E p x log p x x2                                     

(3.9) where E is the entropy, (𝑝(𝑥𝑛) is the probability for the input signal (𝑥𝑛), n 
represent each signal, and N represents the total number of records of the signal of the 
dataset. A statistic known as kurtosis is used to describe the distribution of observed data 
around the mean. It speaks of the height at which a dataset peaked.   

It can be calculated as follows mathematically:   

                                 kn =    x2 )                         
(3.10)   

Since data grow more symmetrical as their value approaches zero, skewness is 

defined as asymmetry from the normal distribution in a set of statistical data. 

However, data that is positively skewed, also known as right-sided skewed, has a 

positive value, whereas negatively skewed data, also known as left-sided skewed, 

has a negative value. By definition, regularly distributed data has minimal skewness.  

You can gauge skewness by using:   

1         2   

n  = 

  

1   N   4   

N  1   i = 1 ( 
N x ( 

n ) − 2 

N  i = 1 ( x ) 
    

1   
  

t  =   n    
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                                                              (3.11)   
In this work, a signal strength estimator for EEG frequency bands is called root mean square 

(RMS). It is defined as: It gives a measurement of the size of the   

variable quantity.                            

1   

                                   RMS 
= 

n    

RMS represent the time series signal can be determined as the square root of the 

mean of all the signal samples. Sample entropy can be used to calculate signal 

complexity, which is regarded as a crucial aspect (Fergus et al., 2015). The suggested 

model for extracting epilepsy features from EEG recordings is shown in Figure 3.2.   

   

   

   

1   N  x ( 
t t  ) t  

3   

t  =   N  i = 1 t    

  
  

  N = 1   2   

i = 1   x ( 
i )                             (3.13)     
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3.3   Methodology for the Improved Grasshopper Optimization Algorithm (IGOA) for 

Optimal Feature Selection   

According to Hassanien and Emary (2018), GOA is a meta-heuristic technique that may be 

utilized to address optimization problems and yields excellent results. The GOA behaves in 

a way that is similar to grasshopper swarms in nature. The mathematical model used to 

replicate the swarming behavior of grasshoppers is as follows, according to Saremi et al.   

(2017):   

                                                Xi =Si +Gi +Ai                                                (3.14)                   where 

𝑋𝑖 defines the position of the i-th grasshopper, 𝑆𝑖 is the social interaction, 𝐺𝑖 is the gravity force on 

the i-th grasshopper, and 𝐴𝑖 shows the wind advection. The S component is calculated as follows:   

                                 Si = N j=1j 1
S(dij )dˆ ij                                                  (3.15) where  

𝑑𝑖𝑗 is the distance between the i-th and the j-th grasshopper, calculated as dij =  

|Xj −Xi| , N is the number of grasshoppers, and  is a unit vector from the i-th 

grasshopper to the j-th grasshopper. The s function, which defines the social forces, is 

calculated as follows:   

−r  

                                                 S(r)=fe t −e−r                                               (3.16)                         
 
 

  

 

f denotes the attractiveness's intensity. This is how the G component is determined:   

                                                 Gi =−geˆg                                                         (3.17)   

where g is the gravitational constant and êg shows a unity vector towards the centre of the earth. The 

A component is calculated as follows:   

                                                 Ai =ueˆw                                                          

(3.18) where u is a constant drift and êw is a unit vector in the direction of the wind.   
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Substituting S, G, and A in Equation 3.14, this equation can be expanded as follows:   

 

) 

               Xi = Nj=1j 1S(Xj −Xi xjd
−

ij xi   −ge
ˆ

g +ue
ˆ

w             (3.19)   

Because the grasshoppers quickly enter their comfort zone and the swarm does not converge 

to a predetermined place, this mathematical model cannot be used to directly resolve 

optimization problems. The updated form of this equation shown below can help with 

optimization problems:   

 

Nj=1j 1C ubd 2−lbd S( Xdj −Xid ) x jd−ij x i 

Tˆd                       (3.20)   

where 𝑢𝑏𝑑 is the upper bound in the Dth dimension, 𝑙𝑏𝑑 is the lower bound in the Dth   

dimension,  is the value of the Dth dimension in the target (best   

solution found so far), and C is a decreasing coefficient to shrink the comfort zone, repulsion 

zone, and attraction zone. Note that S is almost similar to the S component in Equation 3.14. 

However, do not consider gravity (no G component) and assume that the wind direction (A 

component) is always towards a target 𝑇 𝑑. A grasshopper's next location is decided by its 

current location, the location of the target, and the locations of every other grasshopper, as 

shown by Equation 3.20.   

Keep in mind that the present grasshopper's position with other grasshoppers is taken into 

account in the first portion of this equation. The coefficient c reduces the comfort zone 

according to the number of iterations, as shown by the following formula:   

Cmax −C min  

d   C 

             X j    
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t  

                             C=Cmax −L                                                (3.21)  L  

 

where 𝐶max is the maximum value, 𝐶min is the minimum value, l indicates the current iteration, and L 

is the maximum number of iterations.    
A few drawbacks of GOA include its lack of a theoretical convergence feature, premature 

convergence in some sophisticated optimization approaches, and difficulties in fully 

utilizing the search space. To overcome this drawback, this research introduces elite 

opposition-based learning and exponentially switching parameters to balance between 

exploitation and exploration problems and the premature convergence as shown in 

Equations 3.22 and 3.23. the GOA is enhanced by hybridizing with the Elite Opposition Base   

Learning (EOBL) technique to improve the capability to explore the search domain as well as the 

approach to an optimum at a fast speed. The EOBL methodology is used after completing the 

exploration phase of the GOA.  Figure 3.3 presents the Flowchart of the IGOA. Elite opposition: 

For solution, Xi
t its elite opposition-based solution EXi exi

t
,1,exi

t
,2,....,exi

t
,D  is calculated 

(Mirjalili, 2015; Seyedali, 2015):     

                                        exi
t
, j =

k.(EAt
j +EBt

j )−xi
t
, j                                                 (3.22)                        

EAt
j = min(exm

t 
, j ),EBt

j = max(exm
t 

, j ),                                 (3.23)   

                        exi
t
, j = rand (EBt

j −EAt
j )+ EAt

j ,ifexi
t
, j  LBi || exi

t
, j UBi,                    (3.24)   

wherei =1,2,......,SN; j =1,2,....,D;M =1,2,...,EN; k = rand(0,1),   

EXmt  exmt ,1,exmt ,2,........,exmt ,D  ,m =1,2,......, EN.Andexit , j   

is an elite opposition-based solution of exi
t
, j ,EN a number of the selected elite solutions, 

usually set to be SN 0.1, as recommended in the literature (Chickermane & Gea, 1996). EBt
j   

and EAt
j are the j −th dimension maximum and minimum values of the selected elite 

solutions, respectively. The generalized coefficient k can be used to produce various elite 
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opposing individuals and then to build an opposite population that is appropriate for looking 

at the neighborhood space of the elite opposing persons, according to the elite 

oppositionbased learning theory. This smart technique improves the algorithm's ability to be 

exploited locally. The step for the improved GOA is:   

i. Generate the initial population of Grasshoppers Pi (i=1, 2, …, n) randomly  

ii. Initialize cmin, cmax and maximum number of iterations, tmax iii.  

  Evaluate the fitness f(Pi) of each grasshopper Pi iv.  T = the best solution   

v.   while (t < tmax) do vi.   Update c1 and c2 using equation 3.21  

exponentially vii.          for i = 1 to N (all N grasshoppers in the 
population) do    viii.  Normalize the distance between grasshoppers in the 
range [1,4]   ix.    Update the position of the current grasshopper using 
equation 3.20     

x. Applied EOBL to update the Pth element of the search agent    xi. End if     

xii. End for xiii. Bring the current grasshopper back if it goes outside the 

boundaries xiv. End for xv. Update T if there is a better solution xvi. t = t + 

1 xvii. End while xviii. Return the best solution T   

3.3.1 Improved GOA and standard GOA performance evaluation   

IGOA and GOA performance were benchmarked using the unimodal and multimodal 

benchmark test functions, respectively displayed in Tables 2.6 and 2.7 in chapter two. 

Because the algorithms only had one global optimal solution, unimodal functions were used 

to evaluate their usability. Multimodal test functions are used to evaluate the algorithm's 

exploration because they have a lot of local optima. The best, worst, mean values and 

standard deviation for each function were recorded across a total of 10 different runs, each 

with 200 iterations. The best values test if the algorithms were successful in finding the 

global optimum value while the consistency of the algorithms in getting the ideal fitness 

values was assessed using the mean value over ten runs.    
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            3.4      Methods for Epilepsy Feature Selection for Classification   

This section presents the research methodology for epilepsy feature selection using IGOA, 

GOA, PSO, SSOA GWO, and BA for classification for research objective three. The stepby-

step for each optimization algorithm is shown in tables 2.12, 2.13, 2.14, 2.15, 2.16 and   

2.17 respectively.   

            3.5      Methods for Epilepsy Classification using Artificial Neural Network   

The epilepsy-related variables that were obtained from EEG signals are fed into a 

machinelearning algorithm to train and test the efficacy of the suggested methodology. The 
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two parameters of machine learning methods for artificial neural networks are optimized 

using IGOA, GOA, PSO, GWO, SSOA, and BA. Relevant features are selected from the 

full feature set for categorization. In section 3.5.1, machine learning algorithms for artificial 

neural networks and their parameters are briefly described.   

   

            3.5.1    Artificial neural network (ANN)     

ANN is a pattern categorization tool that uses nonlinear data and is modeled after a biological 

neural network (Singh et al., 2021). It is one of the most commonly utilized classifiers for 

the classification of seizures in EEG signals and is made up of interconnected layers of 

neurons that are employed to carry out computation in pattern recognition (Kaur & Singh, 

2017; Singh et al., 2015). The layers are the input layer, hidden layer, and output layer. The 

weights assigned to each neuron in the layer below serve as links between the various 

neurons in each layer. The neurons' inputs are multiplied by weights to create their inputs, 

and a transfer function creates their outputs (Singh et al., 2019). In this study, a multilayer 

feedforward network is used. The number of classes in an output layer defines the size of 

the output layer, while the number of input characteristics determines the size of an input 

layer. Ten hidden neurons have been identified through experimentation. The Bayesian 

gradient function is used to train an ANN. The hyperbolic tangent sigmoid and the SoftMax 

functions serve as the transfer functions between an output layer and a hidden layer, 

respectively. Classification is one of the neural network applications and research fields with 

the most activity. The difficulties with posterior probability estimates, how conventional and 

neural classifiers relate to one another, the trade-off between learning and generalization in 

classification, the choice of feature variables, and the impact of misclassification costs. For 

classification, a multilayer feed-forward network is employed. The usefulness depends on 

assumptions and conditions, even though classical statistical categorization offers a wide 

range of approaches. Neural networks are used to address the aforementioned issue since 

they are universal functional approximators, self-adaptive approaches, and non-linear 

models. Figure 3.4 present the neural network architecture used for this research, Figure 3.4 

presents the flow process for selection and classification, and Figure 3.6 for the flowchart of 

the proposed feature classification-based GOA. Models for multi-layer feedforward neural 

networks were developed. A nine input features chosen by the various algorithms are used 

to train each model. The optimal number of features needed for a particular ANN model's 

training is determined by the EOBL-IGOA method. The following parameters were used in 

designing the ANN models:   

i.   Number of inputs (selected by EOBL-IGOA and other algorithms) ii.   Multilayer 
Feedforward Neural Network was chosen because of its generalization and faulttolerant 
ability.   

iii. The number of neurons was chosen based on the rule of thumbs which states that the 

number of hidden layer neurons is 2/3 of the size of the input layer.   
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iv. The training function: Bayesian gradient was chosen because of its faster and its 

ability to attain low MSE on time as compared to scaled conjugate gradient and other 

ANN training algorithms.   

v. Activation Function: hyperbolic tangent sigmoid at the output layer and SoftMax 

function at the hidden layer sizes. This is because the expected output of the 

classification is either 0 or 1.   

The steps for epilepsy classification using an Artificial Neural Network are:   

i.   Input the epilepsy dataset ii.  Denoise the dataset using low-pass filters iii.  
 Compute first order, second-order statistical features for each data iv.  

  Select the optimal features using IGOA, GOA, PSO, GWO, SSOA, and BA   

v. Store the optimal features as the knowledge base vi. Train the feedforward neural 

network with the stored extracted features and save the network vii. Test the feedforward 

network with the testing data (i.e., data that are unknown to the network) to classify the data.  

viii.  Repeat steps 1 to step 8 for all the input   

   
Figure 3.4: Neural Network Architecture   
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Figure 3.5: Flow Process for Selection and Classification     
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Figure 3.6:  Flowchart of the Proposed Feature Selection Scheme Based IGOA     

             3.6     Performance Evaluation Measurement   

Sets A, B, C, and D are considered the positive class in this study, while Sets E is considered 

the reverse. In this work, we employed five metrics—Accuracy (Acc), Sensitivity (Sens), 

Specificity (Spec), Precision (Prec), and F-Measure—to evaluate the classification 

performance for diverse test scenarios (F). In general, all of the performance   

measurements described above have an impact on the four key metrics of a positive/negative 

binary classification result: True Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). The terms False Positive and True Positive denote the detection of 

seizure activity that was not a seizure, whereas True Negative denotes the identification of 

seizure activity that was actually not a seizure (Hamad et al., 2018; Swami et al., 2016).   

i. True positive (TP): The proportion of EEG recordings that were determined to be ictal by 

both neurologists and artificial neural networks.   

ii. True negative (TN): The proportion of EEG recordings that neurologists and artificial 

neural networks have determined to be seizure-free.   

iii. False-positive (FP): The percentage of EEG recordings that the Artificial Neural   
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Network classified as ictal but that neurologist classified as not seizure activity. iv. 
False-negative (FN): The percentage of EEG recordings that the artificial neural network 

classified as seizure-free but that neurologist classified as a seizure. Table 3.2 present the 

summary of the classification outcome with summary, while table   

3.3 presents the formula for accuracy, sensitivity, specificity, precision, and F1 measure.   

               Table 3.2:  Summary of Classification Outcome with Summary   

Acronym  Detection Type    Real-World Scenario      

 
   

   

   

   

   

                     Table 3.3: Formula for Accuracy, Sensitivity, Specificity, Precision, and F1 measure   

  
   Class =1   Class = 1   Class = 0   

Class =0  True Positive (TP)   False positive (FP)    

 False negative (FN)  True Negative   

(TN)   

     
   TP +FN+TN+ FP  

   TP     

   Sensitivity = 100   

TP + FN  

TP     

   

TN   

   

                      FP   

   

   

   FN   

      

   

   

True Positive   

True Negative   

False Positive   

           False Negative   

  If someone has a seizure and it 
is appropriately identified  

as such by medical  

personnel.   

   
if a person is healthy and the 
classifier detects no seizures.   

   
when a seizure is detected in 
a normal person by the  

  classifier.  erroneous 

detection when the seizure 

sufferer is identified by the 

classifier as normal.   

        

    TP   TN   
Accuracy   100   +   

=         
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TN   

    Specificity  = TN  +   FP  100     

TP   

Precision  = 100     

    TP  +   FP   

    Precision  Sensitivity       

Fmeasure    = 2   100     

      
Precision   Sensitivity    

+   
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CHAPTER FOUR   

4.0         RESULTS AND DISCUSSION   

4.1   Overview   

The outcomes of the methodology carried out and discussed in chapter three to accomplish 

all the objectives of these research studies are reported in this chapter. The analysis of the 

results and how they answer the research questions are also presented.    

   

This section presents the results of utilizing various classifiers to categorize the dataset of 

epileptic seizures as well as some modified parameters for a particular classifier. Working 

with a big dataset that has a lot of properties, 178 in all, is one of the implementation 

obstacles. Feature reduction can be used for the close classification of epileptic seizure cases 

with some selected features, as shown in the feature extraction in section 3.4. A sample of 

the waveform is shown in Figures 4.1, 4.2, 4.3, 4.4, and 4.5 for each of the classes. The 

analysis will take a binary form for cases that experienced an epilepsy seizure and those that 

did not, with classes in Figures 4.2, 4.3, 4.4, and 4.5, respectively. It is important to note that 

only samples linked with Figure 4.1 had an epilepsy seizure. Each class of the waveform has 

a distinct pattern and some similarities, except for that of figure 4.1 with a clear pattern. This 

is due to the disruptive nature of epilepsy seizures in EEG signals. Figure 4.6 present the 

combination of the waveform for the various classes.     

   
                Figure 4.1: Waveform Recording for Epilepsy Seizure Activities   
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                  Figure 4.2:   Waveform Recording of Epilepsy EEG Patient from Tumour Region    

    
                   Figure 4.3:   Waveform Recording of Epilepsy Patient EEG from Healthy Region    
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                 Figure 4.4:   Waveform Recording of Healthy Patient EEG with Eyes Closed     

    
                 Figure 4.5:   Waveform Recording of Healthy Patien t EEG with Eyes Open    
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                      Figure 4.6: Combine Waveform for all the Recording   

   

4.2.     Results of Feature Selection and Extraction    

The outcomes of the attributes chosen for usage in this research are presented in this section. 

Nine (9) features were compared for the diagnosis of seizures in EEG signals for IGOA, 

GOA, PSO, SSA, BA, and GWO with their diverse search agent, population, and generation. 

Each extracted feature is evaluated using accuracy, precision, F1 score, recall, and AUC; the 

same evaluation is utilized for feature selection and classification for all algorithms. Figures 

4.7 through Figure 4.14 present the plot for each feature from the dataset, while Table 4.1 

displays a summary of the features that were chosen. These answer the research objective 

one.   

 

3 Variance   1 N  2  

t = (x(i) )   

n i=1  

  

 
  

            Table 4.1: Summary of the F eatures Selected    

  
  1   Maximum Value    

M x    = Max ( 
x ( n ) ) 

    

    

2     

    

Mean Value    

1   N  t  =   

x ( 
t t  ) 

      

N  i = 1   

S/N     Features     Equations     
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4 Standard Deviation  1   

n  i=1  

5 Energy   1 N  

  

 

En  x(n)2    

N n=1  
N  

      E =− p(xn)) 2  log2(p(xn)) 

6   Entropy   x2   
n=1  

1  N  4  7   Kurtosis  

      

  k= N i=1( (  

) x2)    

n      
2   

( 
x ( 

i ) )   
  

x n   
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               Figure 4.7:   Maximum Values Plot from the Dataset    

  

    

    
               Figure 4.8   :     Mean Values Plot from the Dataset     

    
            Figure 4.9   :       Variance Plot from the Dataset     
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          Figure 4.10: Standard Deviation Plot from the Dataset   

   

   
      Figure 4.11: Entropy Plot from the Dataset   

   

   
                 Figure 4.12: Kurtosis Plot from the Dataset   
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        Figure 4.13: Skewness Plot from the Dataset   

   

   
         Figure 4.14: RMS Plot from the Dataset   
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4.3       Performance Result for the improved Grasshopper Optimization Algorithm 

The experiments carried out and discussed in chapter three to meet this research study's 

objectives two and three are summarized in this section. The analysis of the results and how 

they answer the research questions are also presented. Using elite opposition-based learning 

and exponential switching parameters between local and random walks, the results for 

objectives two and three enhance the grasshopper optimization technique. Both unimodal 

and multimodal test function outcomes are included in the findings. The average fitness of 

grasshoppers and convergence curves are shown in Figures 4.15 and 4.16 to show how this 

behavior enhances grasshopper fitness. Each test function's curve demonstrates clear 

declining behavior. This shows that GOA improves the initial random population on the test 

functions and systematically improves the approximation accuracy with time.   

Figures 4.15 and figure 4.16 are the deliverable for research objective two.    
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                            Figure 4.15: Behaviour of IGOA on the Unimodal Benchmark Function   
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               Figure 4.16: Behaviour of IGOA on the Multimodal Benchmark Function   

   

   

4.3.1   IGOA and GOA performance on unimodal test functions   

The result in Table 4.2 shows the optimal fitness values, worst, mean, and standard deviation 

fitness values over 10 runs obtained using IGOA compared to results obtained using GOA 

for unimodal test functions (F1 to F7). From Table 4.2, it is observed that IGOA obtained 

the global optima for all unimodal test functions. This indicates that IGOA has high 

exploitation capability due to the introduction of elite opposition-based learning and 

exponential switching parameters between local and random walks. Similarly, the 

convergence curves in Figure 4.17, show that IGOA converges faster for all cases compared 

to the GOA algorithm. This is due to the introduction of elite opposition-based learning and 

exponential switching parameters between local and random walks. Table 4.2 and Figure 

4.17 are the deliverables for research objective three for the unimodal function.   
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              Table 4.2: Algorithm Performance on Unimodal Test Functions   

Function    Performance    IGOA    GOA    

F1    Best    8.01E-29     8.9364E-07     

   Worst    4.00E-15     1.4542E-04     

   Average    4.00E-15     -2.1607E-04     

   STD    0     4.0627E-04     

F2    Best    2.13E-14     0.00011426     

   Worst    4.26E-15     3.7353E-05     

   Average    4.26E-15     -7.4955E-06     

   STD    0     2.7585E-05     

F3    Best    1.27E-25     4.5428E-06     

   Worst    4.80E-14     0.001800     

   Average    4.80E-14     -4.7674E-05     

   STD    7.06E-30     0.001400     

F4    Best    5.68E-15     0.00037436     

   Worst    -5.68E-15     3.7436E-04     

   Average    -5.68E-15     -7.8352E-05     

   STD    0     3.2830E-04     

F5    Best    1.44E-27     0.612680     

   Worst    1     0.882400     

   Average    1     0.555300     

   STD    1.24E-16     0.304000     

F6    Best    4.03E-26     6.6087E-07     

   Worst    -0.5     -0.499700     

   Average    -0.5     -0.5000     

   STD    6.21E-17     4.0314E-04     

F7    Best    0.00014458     0.00120160     

   Worst    0.0469     -0.021900     

   Average    0.0469     -0.082600     

   STD    0     0.043900     

   

4.3.2    IGOA and GOA performance on multimodal test functions   

Table 4.3 presents the result obtained by IGOA compared to results obtained by GOA for 

multimodal test functions. From Table 4.3, IGOA was able to obtain the optimal value for 

all the multimodal test functions. The results are an indication that the developed IGOA 

possesses better exploration ability and avoids getting stuck in local optima. The fitness 

curves in Figure 4.18 confirms the accurate convergence nature of IGOA for all the 

multimodal function as compared with GOA. This is attributed to the robust exploration 

strategy of IGOA due to the introduction of elite opposition-based learning and exponential 
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switching parameters between local and random walks. Table 4.3 and Figure 4.18 are the 

deliverables for research objective three for the multimodal function.   

               Table 4.3: Algorithm Performance on Multimodal Test Functions   

  

Function    Performance    IGOA    GOA    

F8    Best    -2094.914     -1403.9075     

   Worst    420.9687     421.0100     

   Average    420.9687     222.4525     

   STD    0     274.0962     

F9    Best    0     6.964700     

   Worst    7.85E-10     0.99500     

   Average    7.85E-10     -0.59700     

   STD    0     1.134400     

F10    Best    7.99E-15     0.00034756     

   Worst    1.71E-15     1.7756E-04     

   Average    1.71E-15     6.29E-05     

   STD    2.20E-31     6.69E-05     

F11    Best    0     0.089061     

   Worst    7.24E-09     16.3022     

   Average    7.24E-09     6.2132     

   STD    0     6.164     

F12    Best    2.47E-26     7.44E-06     

   Worst    -1     -0.9893     

   Average    -1     -0.995700     

   STD    0     0.00500     

F13    Best    1.42E-26     0.0032146     

   Worst    1     1.0933     

   Average    1     1.0053     

   STD    0     0.0778     
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4.4     Result of Epilepsy Classification Using Improved Grasshopper Optimization Algorithm  
This section displays the findings from categorizing epilepsy using IGOA-ANN and various feature 

extraction ranges from 1, 3,5, 7, and 9 with their respective search agents.   
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4.4.1 Epilepsy classification using one feature, and 5, 10, 15, 20, 25, 30, and 35 Search agents 

respectively   

The effectiveness of a classifier can be assessed using several metrics, such as accuracy, precision, 

recall, F1 score, AUC, confusion matrices, and receiver operating characteristic   

(ROC) curves. The evaluation techniques for IGOA-ANN utilizing one feature and 5, 10, 

15, 20, 25, 30, and 35 search agents, respectively, are shown in Tables 4.4 and 4.5 in this 

subsection. For the search agents 5, 10, 15, 20, 25, 30, and 35, the classifier correctly 

predicted the true negative classes but wrongly predicted 2, 8, 5, 1, and 14 of the 

falsenegative classes. The  F1 score, recall, accuracy, precision, and AUC are shown in Table 

4.5. It demonstrates how the IGOA-ANN classifier's accuracy rises and falls as the number 

of search agents increases. The accuracy remains the same from 95.6% to 95.0% as search 

agent varies from 5 to 35, respectively except for 30 search agents where it decreases to 

94.4%. The best accuracy is achieved at 95.6%, with 85.76% precision, 99.60 sensitivity, 

and an F1 score of 92.16% and 95.20% AUC respectively.   

   

   

   

   

                 Table 4.4:  IGOA-ANN Metrics Using One Feature Extraction   

Number of  

Features    

Number of Population    TP    FP    TN    FN    Time    

[3]     5     398     20     80     2     52.250     

[3]     10     398     14     86     8     107.911     

[6]     15     395     19     81     5     198.124     

[3]     20     395     13     87     5     59.412     

[7]     25     399     24     76     1     273.683     

[1]     30     386     14     86     14     397.021     

[7]     35     396     15     85     4     55.747     

   

Table 4.5: IGOA-ANN Performance Evaluation Using One Feature Extraction   

 
Number of  Number of  Accuracy   Precision   Sensitivity    F1-Score   AUC    

Features    Population      
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[3]    5    95.6    0.8576    0.9960    0.9216    0.9520    

[3]    10    95.6    0.7788    0.9980    0.8749    0.9160    

[6]    15    95.2    0.7610    0.9920    0.8613    0.9020    

[3]    20    96.4    0.8645    0.9920    0.9239    0.9520    

[7]    25    95.0    0.8353    0.9980    0.9095    0.9440    

[1]    30    94.4    0.7522    0.9860    0.8534    0.8930    

[7]    35    96.2    0.8545    0.9880    0.9117    0.9420    

 
   

4.4.2   Epilepsy classification using three features, and 5, 10, 15, and    30 search agents 

respectively   

Presented in this subsection in Tables 4.6 and 4.7 are the evaluation methods for IGOAANN 

using three features and 5, 10, 15, 20, 25, 30, and 35 search agents respectively. For the 

search agents 5, 10, 15, 20, 25, 30, and 35, the classifier correctly predicted the true negative 

classes but mistakenly predicted 0, 0, 2, and 0 of the false-negative classes. Table 4.7 

presents the F1 score, recall, accuracy, precision, and AUC. It shows that the accuracy 

increases and decreases as the search agent increases for the IGOA-ANN classifier. The 

accuracy increases from 97.6% to 98.2% as search agents increase from 5 to 35, respectively. 

The best accuracy is achieved at 98.20%, with 96.68% precision, 98.20 sensitivity, F1 score 

of 97.43%, and 97.80% AUC respectively for 25 search agents for the IGOA algorithm.    

               Table 4.6: IGOA-ANN Metrics Using Three-Feature Extraction   

Number of  

Features    

Number of  

Population    

TP    FP    TN    FN    Time    

[9 1 6]    5     400     12     88     0     52.250     

[4 1 2]    10     400     15     85     0     107.911     

[9 7 3]    15     398     7     93     2     198.124     

[4 7 6]    20     400     6     94     0     78.903     

[8 7 1]    25     400     11     89     0     273.683     

[1 8 7]    30     400     12     88     0     397.021     

[9 7 6]    35     399     9     91     1     88.329     

   

    Table 4.7: IGOA-ANN Performance Evaluation Using Three-Feature Extraction   

Number of  Number of  Accuracy   Precision   Sensitivity   F1-Score   AUC    

Features    Population       

 
[9 1 6]    5    97.6    0.9684    0.9760    0.9722    0.9740    

[4 1 2]    10    97.0    0.8481    0.9840    0.9110    0.9400    

[9 7 3]    15    98.2    0.8756    0.9960    0.9319    0.9590    

[4 7 6]    20    98.8    0.9689    0.9880    0.9784    0.9830    
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[8 7 1]    25    97.8    0.9668    0.9820    0.9743    0.9780    

[1 8 7]    30    97.6    0.9684    0.9760    0.9722    0.9740    

[9 7 6]    35    98.0    0.8542    0.9980    0.9205    0.9520    

 
   

4.4.3 Epilepsy classification using five features, and 5, 10, 15, 20, 25, 30, and 35 search agents 

respectively   

The evaluation techniques for IGOA-ANN utilizing five characteristics and, 

correspondingly, 5, 10, 15, 20, 25, 30, and 35 search agents are shown in Tables 4.8 and 4.9. 

The classifier successfully predicted the true negative classes, but mistakenly anticipated the 

false-negative classes 0, 0, 1, and 0, as well as 0 false negatives for the search agents 5, 10, 

15, 20, 25, and 35, respectively. The  F1 score, recall, accuracy, precision, and AUC are 

shown in Table 4.9. It demonstrates that for the IGOA-ANN classifier, accuracy rises as the 

search agent does. As the number of search agents rises from 5 to 35, the accuracy increases 

from 98.2% to 99.7%. The best accuracy for the GOA algorithm is 99.6%, with 99.6% 

precision, 99.6% sensitivity, and 99.6% AUC for each of the 30 search agents. The 

performance of IGOA-ANN utilizing five features is therefore validated by the higher values 

of the ROC at 30 search agents.   

                        Table 4.8: IGOA-ANN Metrics Using Five-Feature Extraction   

Number of  

Features    

Number of Population    TP    FP    TN    FN    Time    

[6 1 3 9 7]    5     400     9     91     0     52.250     

[6 6 2 7 9]    10     400     11     89     0     107.911    

[6 4 5 3 7]    15     400     6     94     0     198.124    

[3 1 7 9 8]    20     400     17     83     0     90.833     

[9 7 6 2 1]    25     399     18     82     1     273.683    

[7 5 9 3 1]    30     400     4     96     0     397.021    

[8 5 9 1 2]    35     400     17     83     0     81.107     

   

     Table 4.9: GOA-ANN Performance Evaluation Using Five-Feature Extraction   

  
Number Number of Accuracy Precision Sensitivity F1-Score AUC of Population   

Features   

  
[6 1 3 9 7]  5   98.2   0.9763   0.9840   0.9801   0.9820   

[6 6 2 7 9]  10   97.8   0.9033   0.9820   0.9410   0.9590   

[6 4 5 3 7]  15   98.8   0.9822   0.9900   0.9861   0.9880   

[3 1 7 9 8]  20   96.6   0.9605   0.9680   0.9642   0.9660   

[9 7 6 2 1]  28   96.2   0.8606   0.9840   0.9182   0.9450   

[7 5 9 3 1]  30   99.6   0.9960   0.9960   0.9960   0.9960   
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[8 5 9 1 2]  35   96.6   0.9587   0.9700   0.9643   0.9670   

   

4.4.4 Epilepsy classification using seven features, and 5, 10, 15, 20, 25, 30, and 35 search 

agents respectively   

The techniques for evaluating IGOA-ANN utilizing seven characteristics and 5, 10, 15, 20, 

25, 30, and 35 search agents, respectively, are presented in Tables 4.10 and 4.11. For search 

agents 5, 10, 15, 20, 25, 30, and 35, the classifier accurately identified the true negative 

classes and correctly predicted 0,0,0,0 and 0 of the false-negative classes. The F1 score, 

recall, accuracy, precision, and AUC are shown in Table 4.11. It demonstrates that for the 

IGOA-ANN classifier, accuracy rises as the search agent does. As the number of search 

agents rises from 5 to 30, the accuracy increases from 97.2% to 99.4%. The best accuracy 

for the GOA algorithm is 99.4%, with 99.4% precision, 99.4% sensitivity, and 99.4% AUC 

for each of the 30 search agents. The performance of GOA-ANN using seven features is 

thus validated by the higher values of the ROC at 30 search agents.   

                Table 4.10: IGOA-ANN Metrics Using Seven Feature Extraction   

  
Number of   Number of   TP   FP   TN   FN   Time   

Features   Population   

  
[4 1 6 7 9 3 2]   5   400   14   86   0   52.250   

[9 3 1 6 5 7 8]   10   400   15   85   0   107.911   

[1 6 7 2 9 4 8]   15   400   11   89   0   198.124   

[8 2 1 4 3 9 6]   20   400   18   82   0   94.067   

[3 7 8 5 6 1 4]   25   400   22   78   0   273.683   

[4 7 8 3 6 1 5]   30   400   5   95   0   397.021   

[6 8 2 1 4 3 9]   35   400   13   87   0   112.729   

   

             Table 4.11: IGOA-ANN Performance Evaluation Using Seven Feature Extraction   

Number of Number of Accuracy Precision Sensitivity F1-Score AUC Features Population   

[4 1 6 7 9 3 2]  5  97.2  0.9076  0.9800  0.9424  0.9590   

[9 3 1 6 5 7 8]  10   97.0   0.9504   0.9800   0.9650   0.9720   

[1 6 7 2 9 4 8]  15   97.8   0.9743   0.9820   0.9781   0.9800   

[8 2 1 4 3 9 6]  20   96.4   0.9702   0.9741   0.9721   0.9730   

[3 7 8 5 6 1 4]  25   95.6   0.9456   0.9640   0.9547   0.9590   

[4 7 8 3 6 1 5]  30   99.4   0.9940   0.9940   0.9940   0.9940   

[6 8 2 1 4 3 9]  35   97.4   0.9702   0.9740   0.9721   0.9730   

   

   

4.4.5   Epilepsy classification using nine features, and 5, 10, 15, 20, 25, 30, and 35 search 

agents respectively   



91   

   

Tables 4.12 and 4.13 present the evaluation methods for IGOA-ANN using nine features 

and 5, 10, 15, 20, 25, 30, and 35 search agents respectively. The classifier accurately detected 

the genuine negative classes and forecasted 0, 0,0,0, and 0 of the false-negative classes 

correctly for 5, 10, 15, 20, 25, 30, and 35 search agents respectively. Table 4.13 shows the 

F1 score, recall, accuracy, precision, and AUC. It shows that the accuracy increases as the 

search agent increases for the IGOA-ANN classifier. The accuracy changes from 95.60% to 

96.0% as search agents increase from 5 to 35, respectively. The best accuracy is achieved at 

96.60%, with 94.00% precision, 98.00% sensitivity, and an F1 score of 95.96% and 96.90% 

AUC respectively for 10 search agents for the IGOA.    

Table 4.12 IGOA-ANN Metrics Using Nine Features and 5,10, 15, 25,20, 30,35 

Generation   

Number of  

Features    

Number of  

Population    

TP    FP    TN    FN    Time    

[1 6 3 8 2 9 4 7 5]    5     400     22     78     0     52.250     

[7 3 6 1 9 5 2 8 4]    10     400     17     83     0     107.911     

[6 5 2 9 8 1 3 7 4]    15     400     24     76     0     198.124     

[2 7 4 8 3 1 9 6 5]    20     400     23     77     0     93.406     

[1 6 4 8 9 7 5 2 3]    25     400     21     79     0     273.683     

[7 9 4 5 8 2 1 6 3]    30     400     20     80     0     397.021     

[3 2 1 9 5 6 8 4 7]    35     400     18     82     0     88.938     

   

Table 4.13 IGOA-ANN Performance Evaluation Using Nine Features and 5,10, 15,20, 25,  

30, 35 Generation   

Number of  

Features    

Number of 

Population    

Accuracy   Precision    

   
Sensitivity    F1-Score   AUC    

[1 6 3 8 2 9 4 7 5]    5     95.6     0.9421     0.9640     0.9529     0.9580     

[7 3 6 1 9 5 2 8 4]    10     96.6     0.9400     0.9800     0.9596     0.9690     

[6 5 2 9 8 1 3 7 4]    15     95.2     0.9279     0.9600     0.9437     0.9510     

[2 7 4 8 3 1 9 6 5]    20     95.4     0.9351     0.9640     0.9493     0.9560     

[1 6 4 8 9 7 5 2 3]    25     95.8     0.9434     0.9580     0.9506     0.9540     

[7 9 4 5 8 2 1 6 3]    30     96.0     0.9440     0.9660     0.9549     0.9600     

[3 2 1 9 5 6 8 4 7]    35     96.4     0.9528     0.9640     0.9584     0.9610     

Table 4.14 present the evaluation methods for IGOA-ANN using one, three, five, seven, and 

nine features respectively for 5, 10, 15, 20, 25, 30, and 35 search agents. The F1 score, recall, 

accuracy, precision, and AUC for various feature classes are also shown. It demonstrates 

that as the number of features rises from one to seven, accuracy increases, except for nine 

features with a decrease compared to the seven features of the IGOA-ANN classifier. The 

best accuracy is achieved at 99.60%, with 99.60% precision, 99.60% sensitivity, and an F1 

score of 99.60% and 99.60% AUC respectively for 30 search agents, and five feature 

extractions for the IGOA-ANN. It is observed from Figure 4.19 that the accuracy is near 

100%, indicating a strong performance of the IGOA-ANN classifier using five feature 
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extractions. In the real classes, the classifier performs well, and vice versa for five features 

when compared to other classes of the feature’s extraction.    

            Table 4.14: Summary of Epilepsy Detection Using IGOA with   Various Search Agents   

Evaluation  1 Feature 5  3  5 Features  7 Features  9  

Metrics    Search   Features  30 Search  30 Search  Features 
Agent   

 
15 Search  Agent    Agent    10  

  Agent      Search 

Agent    

Accuracy    0.956     0.982     0.9960     0.9940     0.9600     

Precision    0.8576     0.8756     0.9960     0.9940     0.9400     

Sensitivity    0.9960     0.9960     0.9960     0.9940     0.9800     

F1 Measure    0.9216     0.9319         0.9960     0.9940     0.9596     

AUC    0.9520     0.9590     0.9960     0.9940     0.9690     

 

   

Figure 4.19: IGOA Algorithm Performance Evaluation with Various Search Agents   

   

4.5 Epilepsy Classification Using Grasshopper Optimization Algorithm and Artificial Neural 

Network (GOA-ANN)   



93   

   

This section shows the outcomes of detecting and categorizing epilepsy using the 

Grasshopper optimization method and an artificial neural network, employing multiple 

feature extraction ranges from 1, 3,5, 7, and 9 with their respective search agents.   

4.5.1 Epilepsy classification using one feature, and 5, 10, 15, 20, 30, and 30 search agents 

respectively   

The effectiveness of a classifier can be assessed using several metrics, such as accuracy, precision, 

recall, F1 score, AUC, confusion matrices, and receiver operating characteristic (ROC) curves. The 

assessment techniques for GOA-ANN utilizing one feature and 5, 10, 15, 20, 25, 30, and 35 search 

agents, respectively, are shown in Tables 4.15 and 4.16 in this subsection. For search agents 5, 10, 

15, 20, 25, 30, and 35, the classifier correctly predicted the true negative classes but incorrectly 

anticipated 11, 11, 21, and 14 of the false-negative classes.  The  F1 score, recall, accuracy, precision, 

and AUC are shown in Table 4.16. It demonstrates how the GOA-ANN classifier's accuracy rises 

and falls as the number of search agents increases. As the search agent increases from 5 to 35, the 

accuracy decreases from 96.00% to 94.40%. With an F1 score of 93.86%, a precision of 98.80%, a 

sensitivity of 89.38, and an AUC of 96.00%, the best accuracy is attained. By contrasting the values 

of SEN and SPE at each practical cut-off point, a receiver operating characteristic (ROC), or plot of 

sensitivity against 1-specificity, is produced. The area under the ROC curve (AROC), which is used 

to assess the diagnostic accuracy of any test, serves to quantify the overall efficacy of a clinical test. 

The area under the ROC curve (AUC) for the GOA-ANN classifier in Figure 4.20 is close to 1, 

indicating that it works well. For the depiction of the acquired results for 5, 10, 15, 20, 25, 30, and 

35 search agents, respectively, the ROCs of various examples obtained using the GOA-ANN 

classifier are plotted as shown in Figures   

4.20 to 4.26. In the real classes, the classifier does well, and vice versa.   

                 Table 4.15: GOA-ANN Metrics Using One Feature Extraction   

  

No of 

Feature    

Number of   

GOA Search  

Agents    

TP    FP    TN    FN    Time (s)   

[3]     5     398     11     18     2     41.138     

[2]     10     399     11     11     1     34.627     

[1]     15     396     21     79     4     40.285     

[5]     20     393     16     84     7     68.780     

[4]     25     395     11     84     5     42.894     

[1]     30     386     14     86     14     40.013     

[3]     35     394     16     84     6     53.161     

   

                  Table 4.16: GOA-ANN Performance Evaluation Using One Feature Extraction   

No of Number of  Accuracy   Precision   Sensitivity   F1   AUC    
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Feature    GOA Search    

Agents    

     

[3]     5     0.9600     0.9880     0.8938     0.9386     0.9600    

[2]     10     0.8200     0.9340     0.5683     0.7061     0.6740    

[1]     15     0.9500     0.9940     0.8323     0.9060     0.9400    

[5]     20     0.9540     0.7714     1.000     0.8709     0.9130    

[4]     25     0.9580     0.9980     0.7936     0.8842     0.9240    

[1]     30     0.9440     0.9860     0.7539     0.8544     0.8940    

[3]     35     0.9560     0.8115     0.9980     0.8951     0.9330    

   

    
Figure 4.   20   :     ROC Plot for GOA 1 Feature 5    Search Agent       

    
Figure 4.   21   :     ROC Plot for GOA 1 Feature 10    Search Agent     
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Figure 4.   22   :     ROC Plot for GOA 1Feature 15    Search Agent     

    
Figure 4.   23   :     ROC Plot for GOA 1Feature 20    Search Agent     
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Figure 4.   24   :     ROC Plot for 1 Feature 25    Search Agent     

    
Figure 4.   2   5   :     ROC Plot for GOA  30    Search Agent     
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Figure 4.26: ROC Plot for GOA  35 Search Agent   

   

   

4.5.2 Epilepsy classification using three features, and 5, 10, 15, 20, 25, 30, and 35 search 

agents respectively   

This subsection presents the result of epilepsy detection using three feature selections for 

GOA-ANN classification with the various search agent of 5, 10, 15, 20, 25, 30, and 35 

respectively.   

Presented in this subsection in Tables 4.17 and 4.18 are the evaluation methods for GOAANN 

using three features and 5, 10, 15, 20, 25, 30, and 35 search agents respectively. For search 

agents 5, 10, 15, 20, 25, 30, and 35, the classifier correctly predicted the true negative classes 

but wrongly predicted 15, 12, 9, and 10 of the false-negative classes. The  F1 score, recall, 

accuracy, precision, and AUC are shown in Table 4.18. It demonstrates how the GOA-ANN 

classifier's accuracy rises and falls as the number of search agents increases. The accuracy 

increases from 97.00% to 98.00% as search agents increase from 5 to 35, respectively. The 

best accuracy is achieved at 98.20%, with 93.45% precision, 99.00 sensitivity, and an F1 

score of 96.04% and 97.40% AUC respectively for 15 search agents for the GOA algorithm. 

Figure 4.29 shows that the GOA-ANN classifier performs well because the area under the 

ROC curve (AUC) is close to 1. The representation of the acquired results for 5, 10, 15, 20, 

25, 30, and 35 search agents, respectively, is demonstrated using the ROCs of various 

examples produced using the GOA-ANN classifier in Figures   

4.27 to 4.33. In the real classes, the classifier does well, and vice versa.   
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             Table 4.17: GOA-ANN Metrics Using Three-Feature Extraction   

  
No of Feature   Number of GOA Search Agents   TP   FP TN FN   Time (s)   

[1 4 2]  5   400   15   85   0   61.358   

[1 4 8]  10   399   12   88   1   110.282   

[4 5 6]  15   400   9   91   0   94.795   

[7 1 9]  20   399   14   86   1   86.903   

[1 2 4]  25   399   13   87   1   110.900   

[1 3 4]  30   400   10   90   0   99.388   

[2 9 6]  35   400   9   91   0   79.922   

  
   

                Table 4.18: GOA-ANN Performance Evaluation Using Three-Feature Extraction  No 

of Number of  Accuracy   Precision   Sensitivity   F1   AUC    

Feature    GOA Search     

Agents    

     

[1 4 2]    5     97.0     0.8408     0.9900     0.9093     0.9410    

[1 4 8]    10     97.4     0.9288     0.9860     0.9566     0.9700    

[4 5 6]    15     98.2     0.9345     0.9900     0.9604     0.9740    

[7 1 9]    20     97.0     0.8893     0.9760     0.9306     0.9500    

[1 2 4]    25     97.2     0.9252     0.9820     0.9537     0.9660    

[1 3 4]    30     98.0     0.9418     0.9820     0.9615     0.9710    

[2 9 6]    35     98.2     0.9161     0.9860     0.9498     0.9660    
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Figure 4.   2   7   :     ROC Plot for GOA 3 Features 5    Search Agent     

    
Figure 4.2   8   :     ROC Plot for GOA 3 Features 10    Search Agent     
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Figure 4.29: ROC Plot for GOA 3 Features 15 Search Agent   

   

           
Figure 4.30: ROC Plot for GOA 3 Features 20 Search Agent   
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Figure 4.   3   1   :     ROC Plot for GOA 3 Features 25    Search Agent       

    
Figure 4.   3   2   :     ROC Plot for GOA 3 Features    30     Search Agent     
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Figure 4.33: ROC Plot for GOA 3 Features 35 Search Agent   

   

   

4.5.3 Epilepsy classification using five features, and 5, 10, 15, 20, 25, 30, and 35 search agents 

respectively   

This subsection presents the result of epilepsy detection using five feature selections for 

GOA-ANN classification with the various search agent of 5, 10, 15, 20, 25, 30, and 35 

respectively.   

Tables 4.19 and 4.20 are the evaluation methods for GOA-ANN using five features and 5, 

10, 15, 20, 25, 30, and 35 search agents respectively. The classifier properly predicted the 

true negative classes, mistakenly predicted 11, 7, 9, and 16 of the false-negative classes, 

and correctly predicted 0 false negatives for each of the following search agents: 5, 10, 15, 

20, 25, 30, and 35. Table 4.20 displays the F1 score, accuracy, precision, recall, and AUC. 

It demonstrates how the GOA-ANN classifier's accuracy rises and falls as the number of 

search agents increases. The accuracy changes from 97.80% to 96.80% as search agents 

increase from 5 to 35, respectively. The best accuracy is achieved at 98.60%, with 98.02% 

precision, 98.80% sensitivity, F1 score of 98.41%, and 98.60% AUC respectively for 25 

search agents for the GOA algorithm. It is observed from Figure 4.34 that the area under 

the ROC curve (AUC) is near 1, indicating a strong performance of the GOA-ANN 

classifier. The ROCs of various cases obtained using the GOA-ANN classifier are plotted 

as shown in figures 4.34 to 4.40 for the representation of the obtained results for 5, 10, 15,  

20, 25, 30, and 35 search agents respectively. In the real classes, the classifier performed  
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well, and vice versa. The higher values of the AROC at 15 search agents thus, validate the 

performance of GOA-ANN using five features.    

                   Table 4.19: GOA-ANN Metrics Using Five-Feature Extraction   

  

No of 

Feature    

Number of GOA 

Search Agents    

TP   FP   TN   FN    Time (s)    

[3 9 1 2 4]    5     400     11     89     0     69.789     

[9 1 2 3 4]    10     400     7     93     0     66.324     

[1 5 6 7 9]    15     400     9     91     0     68.740     

[5 9 4 6 3]    20     400     4     96     0     116.840     

[1 4 2 3 5]    25     400     7     93     0     65.688     

[1 4 5 8 9]    30     400     16     84     0     62.773     

[6 3 4 5 2]    35     400     22     78     0     114.905     

   

                  Table 4.20: GOA-ANN Performance Evaluation Using Five-Feature Extraction   

   No of  Number of   Accuracy   Precision   Sensitivity   F1   AUC   

Feature  GOA Search     

Agents   

     

   

   [3 9 1 2 4]   

[9 1 2 3 4]   

[1 5 6 7 9]   

[5 9 4 6 3]   

[1 4 2 3 5]   

[1 4 5 8 9]   

5   

10   

15   

20   

25   

30   

97.8   
98.6  98.2   

99.2   

98.6   

96.8   

0.9686   

0.9783  
0.9763   

0.9785   

0.9802   

0.9094   

0.9800   

0.9860  
0.9840   

0.9940   

0.9880   

0.9820   

0.9742  0.9770  

0.9821  0.9840 
0.9801  0.9820  

0.9862  0.9900  

0.9841  0.9860  

0.9443  0.9610  

  [6 3 4 5 2]  35  95.6  0.8516  0.9760  0.9096  0.9360  
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Figure 4.   3   4   :     ROC Plot for GOA 5 Features 5    Search Agent     

    
Figure 4.   3   5   :     ROC Plot for GOA 5 Features 10    Search Agent     
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Figure 4.36: ROC Plot for GOA 5 Features 15 Search Agent   

   

   

   
Figure 4.37: ROC Plot for GOA 5 Features 20 Search Agent   
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Figure 4.   3   8   :     ROC Plot for GOA 5 Features 25    Search Agent     

    
Figure 4.   39   :     ROC Plot for GOA 5 Features 30    Search Agent     
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Figure 4.40: ROC Plot for GOA 5 Features 35 Search Agent   

   

4.5.4 Epilepsy classification using seven features, and 5, 10, 15, 20, 25, 30, and 35 search agents 

respectively   

This subsection presents the result of epilepsy detection using seven feature selections for 

GOA-ANN classification with the various search agent of 5, 10, 15, 20, 25, 30, and 35 

respectively.   

The evaluation techniques for GOA-ANN are shown in Tables 4.21 and 4.22, respectively, 

utilizing seven characteristics and 5, 10, 15, 20, 25, 30, and 35 search agents. True negative 

classes were correctly predicted by the classifier, while false negative classes were 

incorrectly predicted 12, 14, 13, 10, and 10, and correctly predicted 0 false negatives for 

search agents 5, 10, 15, 20, 25, 30, and 35, respectively. The  F1 score, recall, accuracy, 

precision, and AUC are shown in Table 4.22. It demonstrates how the GOA-ANN   

classifier's accuracy rises and falls as the number of search agents increases. The accuracy increases 

from 97.60% to 99.40% as search agents increase from 5 to 35, respectively. The best accuracy is 

achieved at 99.40%, with 98.81% precision, 99.60% sensitivity, and an F1 score of 99.21% and  

99.40% AUC respectively for 30 search agents for the GOA algorithm. It is observed from Figure  

4.46 that the area under the ROC curve (AUC) is almost 1, indicating a strong performance of the 

GOA-ANN classifier. The ROCs of various cases obtained using the GOA-ANN classifier are shown 

in figures 4.41 to 4.47 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, and 35 

search agents respectively. In the real classes, the classifier does well, and vice versa. The higher 

values of the ROC at 30 search agents thus, validate the performance of GOA-ANN using seven 

features.   

            Table 4.21: GOA-ANN Metrics Using Seven Feature Extraction   
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No of Feature    Number of GOA  TP   FP   TN   FN   Time (s)    

   Search Agents    

 
[1 2 5 7 3 4 6]    5    400   12    88    0    61.950    

 [2 3 1 4 5 6 7]    10    400   14    86    0    70.337    

 [2 3 4 5 1 6 7]    15    400   13    84    0    81.759    

[5 3 7 4 2 6 8]    20    400   13    87    0    100.273    

[5 6 8 9 1 2 3]    25    400   10    90    0    84.665    

[1 6 7 2 3 4 5]    30    400   10    97    0    73.160    

[5 8 3 1 6 7 9]    35    400    4    96    0    89.316    

   

           Table 4.22: GOA-ANN Performance Evaluation Using Seven Feature Extraction   

No of Number of GOA Accuracy Precision Sensitivity F1 AUC Feature Search Agents   

[1 2 5 7 3 4 6]   5   97.6   0.9666   0.9780   0.9723 0.9750   

[2 3 1 4 5 6 7]  10  97.2  0.9573  0.9760  0.9666 0.9710  [2 3 4 5 1 6 7]  15  97.4  0.9592  

0.9750  0.9685 0.9730   

[5 3 7 4 2 6 8]   20   97.4   0.9666   0.9780   0.9723 0.9750  [5 6 

8 9 1 2 3]   25   98.0   0.9705   0.9820   0.9762 0.9762   

[1 6 7 2 3 4 5]   30   99.4   0.9881   0.9960   0.9921 0.9940   

[5 8 3 1 6 7 9]   35   99.2   0.9730   0.9960   0.9844 0.9900    
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Figure 4.   4   1   :     ROC Plot for GOA 7 Features 5    Search Agent     

    
Figure 4.   4   2   :     ROC Plot for GOA 7 Features 10    Search Agent     
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Figure 4.43: ROC Plot for GOA 7 Features 15 Search Agent   

   

   

   
Figure 4.44: ROC Plot for GOA 7 Features 20 Search Agent   
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Figure 4.45: ROC Plot for GOA 7 Features 25 Search Agent   

   
        Figure 4.46: ROC Plot for GOA 7 Features 30 Search Agent     
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Figure 4.47: ROC Plot for GOA 7 Features 35 Search Agent     

4.5.5 Epilepsy classification using nine features, and 5, 10, 15, 20, 25, 30 and 35 search agents 

respectively   

This subsection presents the result of epilepsy detection using nine feature selections for 

GOA-ANN classification with the various search agent of 5, 10, 15, 20, 25, 30 and 35 

respectively. The evaluation techniques for GOA-ANN are shown in Tables 4.23 and 4.24, 

respectively, utilizing nine characteristics and 5, 10, 15, 20, 25, 30 and 35 search agents. The 

classifier accurately identified the real negative classes, but it incorrectly predicted the fake 

negative classes 11, 9, 18, and 13. Additionally, it correctly predicted that there would be 0 

false negatives for search agents 5, 10, 15, 20, 25, and 35. The F1 score, recall, accuracy, 

precision, and AUC are displayed in Table 4.24. It demonstrates how the GOAANN 

classifier's accuracy rises and falls as the number of search agents increases. The accuracy 

changes from 97.80% to 97.40% as search agents increase from 5 to 35, respectively. The 

best accuracy is achieved at 98.40%, with 97.07% precision, 98.60% sensitivity, F1 score of 

97.83%, and 98.20% AUC respectively for 25 search agents for the GOA algorithm. It is 

observed from Figure 4.52 that the area under the ROC curve (AUC) is almost 1, indicating 

a strong performance of the GOA-ANN classifier. The ROCs of various cases obtained using 

the GOA-ANN classifier are shown in Figures 4.48 to 4.54 for the representation of the 

obtained results for 5, 10, 15, 20, 25, 30, and 35 search agents respectively. In the real 

classes, the classifier performs well, and vice versa. The higher values of the ROC at 25 

search agents thus, validate the performance of GOA-ANN using nine features.    

                       Table 4.23: GOA-ANN Metrics Using Nine-Feature Extraction   

   No of Feature   Number of GOA   TP   FP   TN FN   Time (s)   

Search Agents   
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[1 2 5 7 3 4 6 7 9]   

[1 3 6 7 8 9 2 4 5]   

[4 5 7 9 1 2 3 6 8]   

[9 3 8 2 5 1 7 4 6]   

[3 5 7 1 2 4 6 8 9]   

[1 2 6 7 3 4 5 8 9]   

[6 3 4 1 8 7 2 9 5]   

5   

10   

15   

20   

25   

30   

35   

400   

400   

400   

400   

400   

400   

400   

11 9  89   

18 91   

19 8  82   

13   81   

12   92   

87   

88   

0   

0   

0   

0   

0   

0   

0   

62.175   

76.515   

67.177   

108.167 
59.329   

81.233   

108.276  

                Table 4.24: GOA-ANN Performance Evaluation Using Nine-Feature Extraction   

  
No of Feature   Number of   Accuracy Precision Sensitivity   F1   AUC   

GOA Search   

Agents   

  
[1 2 5 7 3 4 6 7 9]   5   97.8   0.9542   0.9840   0.9781  0.9800  

[1 3 6 7 8 9 2 4 5]   10   98.2   0.9764   0.9880   0.9822  0.9850  

[4 5 7 9 1 2 3 6 8]   15   96.4   0.9362   0.9760   0.9557  0.9650  

[9 3 8 2 5 1 7 4 6]   20   96.2   0.9466   0.9760   0.9611  0.9680  

[3 5 7 1 2 4 6 8 9]   25   98.4   0.9707   0.9860   0.9783  0.9820  

[1 2 6 7 3 4 5 8 9]   30   97.4   0.9664   0.9740   0.9702  0.9720  

[6 3 4 1 8 7 2 9 5]   35   97.6   0.9666   0.9780   0.9723  0.9750  
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Figure 4.   4   8   :     ROC Plot for GOA 9 Features 5    Search Agent     

    
Figure 4.   49   :     ROC Plot for GOA 9 Features 10    Search Agent     
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Figure 4.   5   0   :     ROC Plot for GOA 9 Features 15    Search Agent     

    
Figure 4.   5   1   :     ROC Plot for GOA 9 Features 20    Search Agent     
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Figure 4.   5   2   :     ROC Plot for GOA 9 Features 25 SA     

    
Figure 4.   5   3   :     ROC Plot for GOA 9 Features 30    Search Agent     
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Figure 4.54: ROC Plot for GOA 9 Features 35 Search Agent   

   

The evaluation techniques for GOA-ANN utilizing one, three, five, seven, and nine 

characteristics for 5, 10, 15, 20, 25, and 35 search agents, respectively, are presented in Table 

4.25. For different feature classes, the F1 score, recall, accuracy, precision, and AUC are 

also displayed. It demonstrates that, except for nine features, which have a lower accuracy 

compared to seven features or the GOA-ANN classifier, the accuracy rises as the number of 

features grows from one to seven. With 98.81% precision, 99.60% sensitivity, an F1 score 

of 99.21% and 99.20% AUC for each of the 30 search agents, and seven feature extractions 

for the GOA-ANN algorithm, the greatest accuracy is attained at 99.40%. Figure 4.55 shows 

that the accuracy is almost 100%, demonstrating the GOA-ANN classifier's high 

performance when using seven feature extractions. When compared to other classes of the 

feature's extraction, The classifier performs effectively in the real classes and poorly in the 

false classes for seven features.   

 Table 4.25: Summary of Epilepsy Detection Using GOA-ANN with Various Search   Agents   

Evaluation 

Metrics    

1 Feature 5 
Search   

Agent    

3 Features  

15 Search  

Agent    

5 Features  

25 Search  

Agent    

7 Features   

30 Search   

Agent    

9 Features  

25 Search  

Agent    

Accuracy    0.9600     0.9820     0.9860     0.9940     0.9840     

Precision    0.9880     0.9345     0.9802     0.9881     0.9707     

Sensitivity    0.8938     0.9900     0.9880     0.9960     0.9860     

F1 Measure    0.9386     0.9604     0.9841     0.9921     0.9783     

AUC    0.9600     0.9740     0.9860     0.9940     0.9820     
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Figure 4.55: GOA-ANN Performance with Various Search Agents   

4.6   Epilepsy Classification Using Grey Wolf Optimization Algorithm   

In this section, epilepsy is detected and categorized using the Grey Wolf optimization 

technique and an artificial neural network. The various feature extraction ranges are 1, 3,5, 

7, and 9, and their corresponding search agents are 5, 10, 15, 20, 25, and 35, respectively.   

   

   

4.6.1. Epilepsy classification using one feature and 5, 10, 15, 20, 25, 30, and 35 search agents   

The results of detecting and classifying epilepsy using the Grey Wolf optimization algorithm 

and an artificial neural network are shown in this subsection for one feature extraction and 

5, 10, 15, 20, 25, 30, and 35 search agents, respectively. The evaluation techniques for Grey 

Wolf and ANN utilizing one feature and 5, 10, 15, 20, 25, 30, and 35 search agents, 

respectively, are presented in Tables 4.26 and 4.27. The classifier accurately predicted the 

true-negative classes for 14, 14, 14, and 14 whereas it wrongly predicted the false-negative 

classes for 14, 14, 14, and 14.   

   

The F1 score, recall, accuracy, precision, and AUC are all displayed in Table 4.27. It 

demonstrates how the GOA-ANN classifier's accuracy rises and falls as the number of 

search agents increases. As the search agent changes from 5 to 35, the accuracy stays the 
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same. With a 94.40% accuracy rate, 75.59% precision, 98.60 sensitivity, an F1 score of 

85.44%, and an AUC of 89.40%, respectively, it is the best accuracy available. The overall 

effectiveness of a clinical test is determined by the area under the ROC curve (AROC), 

which is used to evaluate the diagnostic accuracy of any test. As shown in Figure 4.61, the 

Grey Wolf-ANN classifier, which uses thirty search agents, performs well, with an area 

under the ROC curve (AUC) of approximately 1, suggesting good performance. The ROCs 

of various examples acquired using the Grey Wolf-ANN classifier are represented for 5, 10, 

15, 20, 25, 30, and 35 search agents, respectively, in Figures 4.56 to 4.62.   

   

   

                        Table 4.26: Grey-Wolf Metrics Using One Feature Extraction   

Feature 

Extraction    

Number of 

Search Agents    

TP    FP    TN    FN    Time (s)    

[1]     5     386     14     86     14     24.917     

[1]     10     386     14     86     14     44.426     

[1]     15     386     14     86     14     62.084     

[1]     20     386     14     86     14     116.090     

[1]     25     386     14     86     14     110.580     

[1]     30     386     14     86     14     120.286     

[1]     35     386     14     86     14     192.042     

   

               Table 4.27: Grey-Wolf Performance Evaluation using One Feature Extraction   

Feature 

Extraction    

Number of 

Search  

Agents    

Accuracy    
   

Precision    Sensitivity    F1    AUC    

[1]     5     94.4     0.7522     0.9860     0.8534     0.8930    

[1]     10     94.4     0.7522     0.9860     0.8534     0.8930    

[1]     15     94.4     0.7522     0.9860     0.8534     0.8930    

[1]     20     94.4     0.7522     0.9860     0.8534     0.8930    

[1]     25     94.4     0.7522     0.9860     0.8534     0.8930    

[1]     30     94.4     0.7539     0.9860     0.8544     0.8940    

[1]     35     94.4     0.7522     0.9860     0.8534     0.8930    
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Figure 4.56: ROC Plot for Grey Wolf 1 Features 5 Search Agent    
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Figure 4.   5   7   :     ROC Plot for Grey Wolf 1Feature 10    Search Agent     

    
Figure 4.   5   8   :     ROC Plot for Grey Wolf 1 Features 15    Search Agent     
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Figure 4.   59   :     ROC Plot for Grey Wolf 1 Features 20    Search Agent     

    
Figure 4.   6   0   :     ROC Plot for Grey Wolf 1 Features 25    Search Agent     
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Figure 4.61: ROC Plot for Grey Wolf 1 Features 30 Search Agent   

   

   
Figure 4.62: ROC Plot for Grey Wolf 1 Features 35 Search Agent   

   

   

4.6.2 Epilepsy classification using three features and 5, 10, 15, 20, 25, 30, and 35 search agents   

This subsection presents the result of epilepsy detection and classification using the Grey   

Wolf optimization algorithm with an artificial neural network for three feature extraction and 5, 10, 

15, 20, 25, 30, and 35 search agents respectively. Tables 4.28 and 4.29 present the evaluation metrics 

for Grey Wolf and ANN using three features and 5, 10, 15, 20, 25, 30, and 35 search agents 
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respectively. The classifier accurately identified the real negative classes, but mistakenly anticipated 

the 14, 14, 13, 11, and 16 false-negative classes, and 0 true-negative classes.   

   

Table 4.29 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy increases as the search agent increases, except for the 30-search agent. The best 

accuracy is achieved at 97.80%, with 84.97% precision, 98.60 sensitivity, F1 score of 

91.28%, and 94.20% AUC respectively. It is observed from Figure 4.67 that the area under 

the ROC curve (AUC) for 25 search agents perform better than the rest search agent, 

indicating a strong performance of the Grey Wolf-ANN classifier using twenty-five search 

agents. The ROCs of various cases obtained using the Grey Wolf-ANN classifier are shown 

in Figures 4.63 to 4.69 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 search agents respectively.   

               Table 4.28: Grey-Wolf Metrics Using Three-Feature Extraction   

  

Feature 

Extraction    

Number of 

Search Agents    

TP    FP    TN    FN    Time (s)    

[1 2 3]    5     400     14     86     0     45.806     

[1 2 3]    10     400     14     86     0     149.664     

[1 2 3]    15     400     13     87     0     174.822     

[1 2 3]    20     400     18     82     0     237.378     

[1 2 3]    25     400     11     89     0     269.345     

[1 2 3]    30     400     16     84     0     453.034     

[1 2 3]    35     400     13     87     0     368.939     

   

   

   

   

         Table 4.29: Grey-Wolf Performance Evaluation using Three Feature Extraction   

  
Feature   Number of   Accuracy   Precision   Sensitivity   F1-Score   AUC   

Extraction    Search              

Agents    

 
[1 2 3]    5    97.2    0.9336    0.9336    0.9581    0.9700   

[1 2 3]    10    97.2    0.9336    0.9336    0.9581    0.9700   

[1 2 3]    15    97.4    0.9520    0.9780    0.9648    0.9710   

[1 2 3]    20    96.4    0.9121    0.9920    0.9504    0.9690   

[1 2 3]    25    97.8    0.8497    0.9860    0.9128    0.9420   
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[1 2 3]    30    96.8    0.8392    0.9940    0.9101    0.9430   

 

[1  2 3]     35         97.4      0.9504   0.9800      0.9650      0.9720    

    

                  
Figure 4.63:   ROC Plot for Grey Wolf 3 Features 5 Search Agent    

    



126   

   

 

  
    

    
Figure 4.   6   4   :     Plot for Grey Wolf 3 Feature 10    Search Agent     

    
Figure 4.   6   5   :     ROC Plot for Grey Wolf 3 Features 15    Search Agent     
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Figure 4.66: ROC Plot for Grey Wolf 3 Features 20 Search Agent   

   

   
Figure 4.67: ROC Plot for Grey Wolf 3 Features 25 Search Agent   
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4.6.3 Epilepsy classification using five features and 5, 10, 15, 20, 25, 30, and 35 search agents  Tables 

4.30 and 4.31 present the evaluation metrics for Grey Wolf and ANN using five features and 5, 10, 15, 

  
    

    

    
Figure 4.   6   8   :     ROC Plot for Grey Wolf 3 Features 30    Search Agent     

    
Figure 4.   69   :     ROC Plot for Grey Wolf 3 Features 35    Search Agent     
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20, 25, 30, and 35 search agents respectively. The classifier accurately identified the real negative classes, 

but mistakenly anticipated the 12, 12, 15, 23, and 19 false-negative classes and 0 genuine negative classes.   

Table 4.31 presents the accuracy, precision, recall, F1 score, and AUC. It shows that the 

accuracy varies between 97.60% and 96.20% as the search agent increases. The best 

accuracy is achieved at 97.60%, with 96.86% precision, 98.00 sensitivity, and an F1 score 

of 97.42% and 97.70% AUC respectively. It is observed from Figure 4.71 that the area under 

the ROC curve (AUC) for 10 search agents perform better than the rest search agent, 

indicating a strong performance of the Grey Wolf-ANN classifier using ten search agents.   

The ROCs of various cases obtained using the Grey Wolf-ANN classifier are shown in 

Figures 4.70 to 4.76 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 search agents respectively.   

               Table 4.30: Grey-Wolf Metrics Using Five-Feature Extraction   

Feature 

Extraction    

Number of Search 

Agents    

TP    FP   TN   FN    Time (s)    

[1 2 3 4 5]    5     400     12     88     0     79.803     

[1 2 3 4 5]    10     400     12     88     0     78.006     

[1 2 3 4 5]    15     400     15     85     0     221.104     

[1 2 3 4 5]    20     400     10     90     0     300.374     

[1 2 3 4 5]    25     400     23     77     0     494.584     

[1 2 3 4 5]    30     400     19     81     0     509.171     

[1 2 3 4 5]    35     400     14     86     0     507.870     

   

   

   

   

           Table 4.31: Grey-Wolf Performance Evaluation using Five Feature Extraction   

  
Feature   Number of   Accuracy   Precision   Sensitivity   F1-Score   AUC   

Extraction   Search      

Agents   

  
[1 2 3 4 5]   5   97.6   0.9686   0.9800   0.9742   0.9770   

[1 2 3 4 5]   10   97.6   0.9686   0.9800   0.9742   0.9770   

[1 2 3 4 5]   15   97.0   0.9629   0.9780   0.9704   0.9740  

[1 2 3 4 5]   20   97.0   0.9073   0.9900   0.9469   0.9660  

[1 2 3 4 5]   25   95.4   0.9043   0.9660   0.9341   0.9480   

[1 2 3 4 5]   30   96.2   0.9495   0.9680   0.9387   0.9630   
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Figure 4.   7   2   :     ROC Plot for Grey Wolf 5 Features 15    Search Agent     

    
Figure 4.   7   3   :     ROC Plot for Grey Wolf 5 Features 20    Search Agent     
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Figure 4.   7   4   :     ROC Plot for Grey Wolf 5 Features 25    Search Agent     

    
Figure 4.   7   5   :     ROC Plot for Grey Wolf 5 Features 30    Search Agent     
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Figure 4.76: ROC Plot for Grey Wolf 5 Features 35 Search Agent   

   

4.6.4 Epilepsy classification using seven features and 5, 10, 15, 20, 25, 30, and 35 search agents   

Tables 4.32 and 4.33 present the evaluation metrics for Grey Wolf and ANN using seven 

features and 5, 10, 15, 20, 25, 30, and 35 search agents respectively. The classifier accurately 

identified the true negative classes, but mistakenly predicted the false-negative classes 8, 10, 

9, 11, and 17 and 0 false negatives, respectively.   

   

Table 4.33 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy changes from 98.40% to 96.6% as the search agent increases from 5 to 35 

respectively. The best accuracy is achieved at 98.40%, with 97.45% precision, 98.60 

sensitivity, and F1 score of 98.02% and 98.30% AUC respectively for the five-search agent. 

It is observed from Figure 4.77 that the area under the ROC curve (AUC) for 5 search agents 

perform better than the rest search agent, indicating a strong performance of the Grey 

WolfANN classifier using five search agents. The ROCs of various cases obtained using the 

Grey Wolf-ANN classifier are shown in figures 4.77 to 4.83 for the representation of the 

obtained results for 5, 10, 15, 20, 25, 30, and 35 search agents respectively   

               Table 4.32: Grey-Wolf Metrics Using Seven-Feature Extraction   

 
Feature  Number of  TP    FP    TN    FN    Time (s)    

Extraction    Search Agents    

 
[1 2 3 4 5 6 7]    5    400    8    92    0    104.322    

[1 2 3 4 5 6 7]    10    400    10    90    0    148.772    
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[1 2 3 4 5 6 7]    15    400    9    91    0    266.121    

[1 2 3 4 5 6 7]    20    400    8    92    0    323.882    

[1 2 3 4 5 6 7]    25    400    11    89    0    465.337    

[1 2 3 4 5 6 7]    30    400    17    83    0    577.265    

[1 2 3 4 5 6 7]    35    400    20    80    0    553.670    

 
   

             Table 4.33: Grey-Wolf Performance Evaluation using Seven Feature Extraction   

  
Feature   Number of   Accuracy   Precision   Sensitivity   F1-Score   AUC   

Extraction   Search      

Agents   

  
[1 2 3 4 5 6 7]   5   98.4   0.9745   0.9860   0.9802   0.9830   

[1 2 3 4 5 6 7]   10   98.0   0.9705   0.9820   0.9762   0.9790  

[1 2 3 4 5 6 7]   15   98.2   0.9783   0.9860   0.9821   0.9840  

[1 2 3 4 5 6 7]   20   98.4   0.9763   0.9860   0.9801   0.9820   

[1 2 3 4 5 6 7]   25   97.8   0.9666   0.9780   0.9723   0.9750  

[1 2 3 4 5 6 7]   30   96.6   0.9570   0.9720   0.9645   0.9680   

[1 2 3 4 5 6 7]   35   96.0   0.9528   0.9640   0.9584   0.9610   

   
Figure 4.77: ROC Plot for Grey Wolf 7 Features 5 Search Agent   
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Figure 4.   7   8   :     ROC Plot for Grey Wolf 7 Features 10    Search Agent     

    
Figure 4.   79   :     ROC Plot for Grey Wolf 7 Features 15    Search Agent     
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Figure 4.80: ROC Plot for Grey Wolf 7 Features 20 Search Agent   

   

   
Figure 4.81: ROC Plot for Grey Wolf 7 Features 25 Search Agent   
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          Figure 4.82: ROC Plot for Grey Wolf 7 Features 30 Search Agent   

   

   
Figure 4.83: ROC Plot for Grey Wolf 7 Features 35 Search Agent   

   

   

4.6.5 Epilepsy classification using nine features and 5, 10, 15, 20, 25, 30, and 35 search agents   

Tables 4.34 and 4.35 present the evaluation metrics for Grey Wolf and ANN using nine 

features and 5, 10, 15, 20, 25, 30, and 35 search agents respectively. The classifier accurately 

identified the real negative classes, but mistakenly anticipated the 8, 12, 16, 16, and 12 false-

negative classes, and 0 true-negative classes. Table 4.35 presents the F1 score, recall, 

accuracy, precision, and AUC. It shows that the accuracy varies between 98.40% and 

96.60% as the search agent increases. The best accuracy is achieved at 98.40%, with 96.89% 

precision, 98.80 sensitivity, and an F1 score of 97.84% and 98.30% AUC respectively. It is 
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observed from Figure 4.84 that the ROC curve for 5 search agents performs better than the 

rest search agent, indicating a strong performance of the Grey Wolf-ANN classifier using 

five search agents. The ROCs of various cases obtained using the Grey Wolf-ANN classifier 

are shown in Figures 4.84 to 4.90 for the representation of the obtained results for 5, 10, 15, 

20, 25, 30, and 35 search agents respectively.   

            Table 4.34: Grey-Wolf Metrics Using Nine-Feature Extraction   

Feature Number of Search TP FP TN FN Time (s) Extraction Agents   

[1 2 3 4 5 6 7 8 9]   5   400   8   92   0   

[1 2 3 4 5 6 7 8 9]   10   400   12   88   0   

[1 2 3 4 5 6 7 8 9]   15   400   16   84   0   156.995  

[1 2 3 4 5 6 7 8 9]   20   400   13   87   0   280.301  

[1 2 3 4 5 6 7 8 9]   25   400   16   84   0   217.940  

[1 2 3 4 5 6 7 8 9]   30   400   12   88   0   346.818  

[1 2 3 4 5 6 7 8 9]   35   400   9   91   0   467.473  

   

         Table 4.35: Grey-Wolf Performance Evaluation using Nine Feature Extraction   

  
Feature   Number of   Accuracy   Precision   Sensitivity   F1-   AUC   

Extraction   Search      Score   

Agents   

  
[1 2 3 4 5 6 7 8 9]   5   98.4   0.9689   0.9880   0.9784   0.9830   

[1 2 3 4 5 6 7 8 9]   10   97.6   0.9800   0.9724   0.9724   0.9760   

[1 2 3 4 5 6 7 8 9]   15   96.8   0.9469   0.9800   0.9631   0.9710   

[1 2 3 4 5 6 7 8 9]   20   97.4   0.9612   0.9800   0.9705   0.9750   

[1 2 3 4 5 6 7 8 9]   25   96.8   0.9482   0.9740   0.9609   0.9670   

[1 2 3 4 5 6 7 8 9]   30   96.6   0.9722   0.9760   0.9741   0.9750   

[1 2 3 4 5 6 7 8 9]   35   98.2   0.9763   0.9840   0.9801   0.9820   

74.954     

85.578     
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Figure 4.   8   4   :     ROC Plot for Grey Wolf 9 Features 5    Search Agent     

    
Figure 4.   8   5   :     ROC Plot for Grey Wolf 9 Features 10    Search Agent     
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Figure 4.86: ROC Plot for Grey Wolf 9 Features 15 Search Agent   

   

   
Figure 4.87: ROC Plot for Grey Wolf 9 Features 20 Search Agent   
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Figure 4.   8   8   :     ROC Plot for Grey Wolf 9 Features 25    Search Agent     

    
Figure 4.   89   :     ROC Plot for Grey Wolf 9 Features 30    Search Agent     
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Figure 4.90: ROC Plot for Grey Wolf 9 Features 35 Search Agent   

   

   

Table 4.36 present the evaluation methods for GWO-ANN using one, three, five, seven, and 

nine features respectively for 5, 10, 15, 20, 25, 30, and 35 search agents. The F1 score, recall, 

accuracy, precision, and AUC. for various feature classes are shown as well. It shows that 

the accuracy increases as the number of features increase from one to nine of the GWOANN 

classifiers. The best accuracy is achieved at 98.40%, with 97.45% precision, 98.60% 

sensitivity, and an F1 score of 98.02% and 98.30% AUC respectively for 30 search agents, 

and seven feature extractions for the GWO-ANN algorithm. It is observed from Figure 4.91 

that the accuracy is near 100%, indicating a strong performance of the GWOANN classifier 

using seven feature extractions. In the real classes, the classifier performs well, and vice 

versa for seven features when compared to other classes of the feature’s extraction.   

   

   

   

   

Table 4.36: Summary of Epilepsy Detection Using Grey Wolf with Various Search Agents  

Evaluation   1 Feature 30 3 Features 5 Features 7 Features 9 Features  

Metrics    Search   15 Search  25 Search  30 Search  25 Search  

   Agent    
Agent    Agent    Agent    Agent    

 
Accuracy   0.944   0.978   0.976   0.984   0.984   Precision   0.7539   0.8497   0.9686   0.9745   

0.9689    

Sensitivity    0.986    0.986    0.98    0.986    0.988    



143   

   

F1 Measure    0.8544    0.9128    0.9742    0.9802    0.9784    

AUC    0.894    0.942    0.977    0.983    0.983    

 
   

  

Evaluation Metrics  

   

Figure 4.91: Grey Wolf Performance with Various Search Agents   

   

4.7 Epilepsy Classification Using Salp Swarm Optimization Algorithm (SSOA)  This 

section highlights the results from the detection and classification of epilepsy using the 

SSOA-ANN method. The different feature extraction ranges used were 1, 3,5, 7, and   

9, with corresponding search agents of 5, 10, 15, 20, 25, and 35.   

             4.7.1.  Epilepsy classification using one feature and 5, 10, 15, 20, 25, 30, and 35 search   

agents   

Tables 4.37 and 4.38 are the evaluation methods for SSOA-ANN using one feature and 5, 

10, 15, 20, 25, 30, and 35 search agents respectively. In contrast, the classifier inaccurately 

predicted 53, 83, 16, 17, and 16 of the false-negative classes, as well as 11, 1, 5, and 6 

falsenegative classes for search agents 5, 10, 15, 20, 25, and 35, respectively.   
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Table 4.38 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 87.2% to 95.60% as the search agent increases from 5 to 35 for the 

SSOA-ANN classifier. The best accuracy is achieved at 95.80%, with 79.75% precision, 

99.80 sensitivity, and an F1 score of 88.65% and 92.60% AUC respectively. It is observed 

from Figure 4.94 that the ROC curve for 15 search agents performs better than 5, 10, 15, 20, 

25, 30, and 35 respectively, indicating a better performance of the SSOAANN classifier. 

The ROCs of various cases obtained using the SSOA-ANN classifier are plotted as shown 

in Figures 4.92 to 4.98 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 search agents respectively. The classifier seems to function well in the real classes 

and vice versa.   

             Table 4.37: Salp-Swarm Metrics Using One Feature Extraction   

  
Feature  Number of  TP   FP   TN    FN    Time (s)    

Extraction    Search Agents    

 
[8]    5    389   53    47    11    36.076    

[2]    10    399   17    83    1    65.596    

[4]    15    395   16    84    5    73.724    

[7]    20    399   24    76    1    63.573    

[6]    25    395   17    83    5    73.724    

[4]    30    394   16    84    6    73.881    

[8]    35    390   54    46    10    51.925    

 
   

   

            Table 4.38: Salp-Swarm Performance Evaluation Using One Feature Extraction   

  

Feature 

Extraction    

Number of 

Search Agents    

Accuracy    

   
Precision    Sensitivity    F1-Score    AUC    

[8]     5     87.2     0.6808     0.9560     0.7953     0.8240    

[2]     10     82.0     0.5694     0.9320     0.7069     0.6760    

[4]     15     95.8     0.7975     0.9980     0.8865     0.9260    

[7]     20     95.0     0.8353     0.9980     0.9095     0.9440    

[6]     25     95.6     0.7627     0.9920     0.8624     0.9030    

[4]     30     95.6     0.7975     0.9980     0.8865     0.9260    

[8]     35     87.2     0.6808     0.9580     0.7959     0.8250    
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Figure 4.92: ROC Plot for Salp Swarm 1 Features 5 Search Agent    
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Figure 4.   9   3   :     ROC Plot for Salp Swarm 1 Features 10    Search Agent     

    
Figure 4.   9   4   :     ROC Plot for Salp Swarm 1 Features 15    Search Agent     
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Figure 4.95: ROC Plot for Salp Swarm 1 Features 20 Search Agent   

   

   
              Figure 4.96: ROC Plot for Salp Swarm 1 Features 25 Search Agent   
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Figure 4.97: ROC Plot for Salp Swarm 1 Features 30 Search Agent   

   

   
Figure 4.98: ROC Plot for Salp Swarm 1 Features 35 Search Agent   
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4.7.2 Epilepsy detection and classification using three feature and 5, 10, 15, 20, 25, 30, and 

35 search agents   

Table 4.40 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 97.20% to 98.40% as the search agent increases from 5 to 35 for 

the SSOA-ANN classifier. The best accuracy is achieved at 98.40%, with 98.40% precision, 

98.40 sensitivity, and an F1 score of 98.40% and 98.40% AUC respectively. It is observed 

from Figure 4.104 that the ROC curve for 30 search agents performs better than 5, 10, 15, 

25, and 35 respectively, indicating a better performance of the SSOA-ANN classifier. The 

ROCs of various cases obtained using the SSOA-ANN classifier are shown in Figures 4.99 

to 4.105 for the representation of the obtained results for 5, 10, 15, 20, 25,  30, and 35 search 

agents respectively.    

                  Table 4.39: Salp-Swarm Metrics Using Three-Feature Extraction   

Feature 

Extraction    

Number of 

Search Agents    

TP    FP    TN    FN    Time (s)    

[5 3 2]    5     400     14     86     0     80.975     

[3 6 9]    10     399     10     90     1     172.672     

[1 7 8]    15     400     14     86     0     156.501     

[1 4 9]    20     400     13     87     0     80.683     

[9 7 0]    25     398     7     93     2     95.250     

[8 7 3]    30     400     8     92     0     103.604     

[3 7 6]    35     400     10     90     0     93.338     

   

                  Table 4.40: Salp-Swarm Performance Evaluation Using Three-Feature   

Extraction   

Feature 

Extraction    

Number of 

Search  

Agents    

Accuracy    

   
Precision    Sensitivity    F1-Score    AUC    

[5 3 2]    5     97.2     0.8234     0.9880     0.8982     0.9320    

[3 6 9]    10     97.8     0.9112     0.9840     0.9462     0.9630    

[1 7 8]    15     97.2     0.9026     0.9880     0.9434     0.9630    

[1 4 9]    20     97.4     0.9702     0.9740     0.9721     0.9730    

[9 7 0]    25     98.2     0.8601     0.9960     0.9231     0.9530    

[8 7 3]    30     98.4     0.9840     0.9840     0.9840     0.9840    

[3 7 6]    35     98.0     0.9361     0.9940     0.9642     0.9780    
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Figure 4.   99   :     ROC Plot for Salp Swarm 3 Features 5    Search Agent     

    
Figure 4.   100   :     ROC Plot for Salp Swarm 3 Features 10    Search Agent     
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Figure 4.101: ROC Plot for Salp Swarm 3 Features 15 Search Agent   

   

   
Figure 4.102: ROC Plot for Salp Swarm 3 Features 20 Search Agent   
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Figure 4.   10   3   :     ROC Plot for Salp Swarm 3 Features 25    Search Agent     

    
Figure 4.   1   0   4   :     ROC Plot for Salp Swarm 3 Features 30    Search Agent     
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Figure 4.105: ROC Plot for Salp Swarm 3 Features 35 Search Agent    

4.7.3 Epilepsy classification using five features and 5, 10, 15, 20, 25, 30, and 35 search agents   

Table 4.42 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 95.40% to 98.40% as the search agent increases from 5 to 35 for 

the SSOA-ANN classifier using three features. The best accuracy is achieved at 98.40%, 

with 97.83% precision, 98.60 sensitivity, F1 score of 98.21%, and 98.40% AUC 

respectively. It is observed from Figure 4.108 that the ROC curve for 15 search agents 

performs better than 5, 10, 25, 30, and 35 respectively, indicating a better performance of 

the SSOA-ANN classifier using three features. The ROCs of various cases obtained using 

the SSOA-ANN classifier are shown in Figures 4.106 to 4.112 for the representation of the 

obtained results for 5, 10, 15, 20, 25, 30, and 35 search agents respectively.   

   

                 Table 4.41: Salp-Swarm Metrics Using Five-Feature Extraction   

  

Feature 

Extraction    

Number of 

Search Agents    

TP    FP    TN    FN    Time (s)    

[4 1 5 6 7]    5     400     12     88     0     129.111     

[4 6 9 7 8]    10     400     11     89     0     101.543     

[8 9 1 5 6]    15     400     8     92     0     101.369     

[8 5 9 6 4]    20     400     16     84     0     106.846     

[8 5 7 3 9]    25     400     11     89     0     136.340     

[5 7 2 3 8]    30     400     23     77     0     128.828     
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[3 8 6 2 7]    35     400     7     93     0     103.053     

   

           Table 4.42: Salp-Swarm Performance Evaluation Using Five-Feature Extraction   

  
Feature  Number of  Accuracy  Precision  Sensitivity  F1-Score  AUC   

Extraction   Search   

Agents   

  
[4 1 5 6 7]   5   97.6   0.9033   0.9820   0.9410   0.9590   

[4 6 9 7 8]   10   97.8   0.9704   0.9780   0.9742   0.9760   

[8 9 1 5 6]   15   98.4   0.9783   0.9860   0.9821   0.9840   

[8 5 9 6 4]   20   97.6   0.9702   0.9780   0.9811   0.9850  

[8 5 7 3 9]   25   97.8   0.9723   0.9800   0.9762   0.9780   

[5 7 2 3 8]   30   95.4   0.8952   0.9660   0.9293   0.9450   

[3 8 6 2 7]   35   97.4   0.9784   0.9800   0.9848   0.9870   

   
Figure 4.106: ROC Plot for Salp Swarm 5 Features 5 Search Agent         
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Figure 4.   10   7   :     ROC Plot for Salp Swarm 5 Features 10    Search Agent     

    
Figure 4.   10   8   :     ROC Plot for Salp Swarm 5 Features 15    Search Agent     
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Figure 4.109: ROC Plot for Salp Swarm 5 Features 20 Search Agent   

   

   
Figure 4.110: ROC Plot for Salp Swarm 5 Features 25 Search Agent   
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4.7.4 Epilepsy classification using seven features and 5, 10, 15, 20, 25, 30, and 35 search agents   

Table 4.44 presents the F1 score, recall, accuracy, precision, and AUC. It is observed that the 

accuracy varies between 95.40% to 97.20% as the search agent increases from 5 to 35 for the 

SSOA-ANN classifier using seven features. The best accuracy is achieved at 97.20%, with 

95.70% precision, 97.20 sensitivity, F1 score of 96.45%, and 96.80% AUC respectively. Shows 

in Figure 4.114 that the ROC curve for 10 search agents perform better than 5, 15, 20, 25, 30, 

and 35 respectively, indicating a better performance of the SSOAANN classifier using seven 

  
    

    
Figure 4.1   1   1   :     ROC Plot for Salp Swarm 5 Features 30    Search Agent     

    
Figure 4.   1   1   2   :     ROC    Plot for Salp Swarm 5 Features 35    Search Agent     
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features. The ROCs of various cases obtained using the SSOAANN classifier are shown in 

Figures 4.113 to 4.119 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 search agents respectively.    

                     Table 4.43: Salp-Swarm Metrics Using Seven-Feature Extraction   

Feature 

Extraction    

Number of 

Search Agents    

TP    FP    TN    FN    Time (s)    

[5 3 4 7 1 6 2]    5     400     16     84     0     114.141     

[7 4 9 2 5 8 6]    10     400     14     86     0     138.144     

[8 5 7 4 2 3 6]    15     400     23     77     0     146.531     

[1 3 4 7 5 9 2]    20     400     8     92     0     113.173     

[8 2 1 5 9 7 6]    25     400     18     82     0     121.243     

[1 8 9 5 7 6 3]    30     400     16     84     0     104.419     

[7 4 8 9 3 1 6]    35     400     11     89     0     114.518     

   

                Table 4.44: Salp-Swarm Performance Evaluation Using Seven-Feature Extraction   

  
Feature   Number of   Accuracy   Precision   Sensitivity   F1-  AUC   

Extraction   Search      Score   

Agents   

  
[5 3 4 7 1 6 2]   5   96.8   0.9625   0.9700   0.9662   0.9680   

[7 4 9 2 5 8 6]   10   97.2   0.9570   0.9720   0.9645   0.9680   

[8 5 7 4 2 3 6]   15   95.4   0.9179   0.9600   0.9385   0.9480  

[1 3 4 7 5 9 2]   20   96.4   0.9563   0.9740   0.9601   0.9620  

[8 2 1 5 9 7 6]   25   96.4   0.9440   0.9660   0.9549   0.9100   

[1 8 9 5 7 6 3]   30   96.8   0.9447   0.9740   0.9591   0.9660  

[7 4 8 9 3 1 6]   35   96.8   0.9668   0.9720   0.9643   0.9680   
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Figure 4.   1   1   3   :     ROC Plot for Salp Swarm 7 Features 5    Search Agent     

    
Figure 4.   1   1   4   :     ROC Plot for Salp Swarm 7 Features 10    Search Agent     
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Figure 4.115: ROC Plot for Salp Swarm 7 Features 15 Search Agent   

   

   
Figure 4.116: ROC Plot for Salp Swarm 7 Features 20 SA   
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Figure 4.   11   7   :     ROC Plot for Salp Swarm 7 Features 25    Search Agent     

    
Figure 4.   11   8   :     ROC Plot for Salp Swarm 7 Features 30    Search Agent     
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Figure 4.119: ROC Plot for Salp Swarm 7 Features 35 Search Agent   

   

   

4.7.5 Epilepsy classification using nine feature and 5, 10, 15, 20, 25, 30, and 35 search agents   

Table 4.46 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 96.00% to 97.60% as the search agent increases from 5 to 35 for 

the SSOA-ANN classifier using nine features. The best accuracy is achieved at 97.60%, with 

96.84% precision, 97.60 sensitivity, and an F1 score of 97.22% and 97.40% AUC 

respectively. It is observed from Figure 4.122 that the ROC curve for 15 search agents 

performs better than 5, 10, 25, 30, and 35 respectively, indicating a better performance of 

the SSOA-ANN classifier using nine features. The ROCs of various cases obtained using 

the SSOA-ANN classifier are shown in Figures 4.120 to 4.126 for the representation of the 

obtained results for 5, 10, 15, 20, 25, 30, and 35 search agents respectively.    

   

                Table 4.45: Salp-Swarm Metrics Using Nine-Feature Extraction   

 
Feature Extraction    Number of  TP    FP    TN    FN    Time (s)    

Search Agents    

 
[4 8 6 2 1 3 9 5 7]    5    400    13    87    0    129.088    

[3 8 4 7 9 6 2 1 5]    10    400    13    87    0    85.841    

[4 8 3 1 6 7 9 5 2]    15    400    12    88    0    66.588    

[6 5 3 2 8 9 7 1 4]    20    400    19    81    0    111.800    

[5 3 7 4 1 2 6 9 8]    25    400    20    80    0    61.906    
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[5 6 2 4 7 1 3 8 9]    30    400    12    88    0    63.126    

[2 8 1 3 4 5 9 7 6]    35    400    15    85    0    108.987    

 
   

            Table 4.46: Salp-Swarm Performance Evaluation Using Nine-Feature Extraction   

Feature   Number of   Accuracy   Precision   Sensitivity   F1-  AUC   

Extraction   Search Agents      Score   

[4 8 6 2 1 3 9 5 7]   5   97.4   0.9629   0.9780   0.9704   0.9740   

[3 8 4 7 9 6 2 1 5]   10   97.4   0.9592   0.9780   0.9685   0.9730   

[4 8 3 1 6 7 9 5 2]   15   97.6   0.9684   0.9760   0.9722   0.9740   

[6 5 3 2 8 9 7 1 4]   20   96.2   0.9405   0.9660   0.9531   0.9590   

[5 3 7 4 1 2 6 9 8]   25   96.0   0.9239   0.9700   0.9464   0.9570   

[5 6 2 4 7 1 3 8 9]   30   97.6   0.9612   0.9800   0.9705   0.9750   

[2 8 1 3 4 5 9 7 6]   35   97.0   0.9607   0.9720   0.9663   0.9690   

   
Figure 4.120: ROC Plot for Salp Swarm 9 Features 5 Search Agent   
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Figure 4.   1   2   1   :     ROC Plot for Salp Swarm 9 Features 10    Search Agent     

    
Figure 4.   1   2   2   :     ROC Plot for Salp Swarm 9 Features 15    Search Agent     
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Figure 4.123: ROC Plot for Salp Swarm 9 Features 20 Search Agent   

   

   
Figure 4.124: ROC Plot for Salp Swarm 9 Features 25 Search Agent   
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Figure 4.125: ROC Plot for Salp Swarm 9 Features 30 Search Agent   

   

   
Figure 4.126: ROC Plot for Salp Swarm 9 Features 35 Search Agent   

   

   

Table 4.47 present the evaluation methods for SSOA-ANN using one, three, five, seven, and 

nine features respectively for 5, 10. 15, 25, and 30 search agents respectively. The F1 score, 

recall, accuracy, precision, and AUC for various feature classes are shown as well.   

It shows that the best accuracy is achieved by using three features and five features respectively. The best 

accuracy is achieved at 98.40%, with 98.40% precision, 98.40% sensitivity, and F1 score of  
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98.40% and 98.40% AUC respectively for 30 search agents, and three feature extractions for the SSOA-

ANN algorithm. It is observed from Figure 4.127 that the accuracy is near 100%, indicating a strong 

performance of the SSOA-ANN classifier using three feature extractions. The classifier performs well in 

the true classes and vice versa for three features when compared to other classes of the feature’s extraction.   

   Table 4.47: Summary of Epilepsy Detection Using Salp Swarm Algorithm with     Various 

Search Agents   

 
Evaluation  1 Feature 15  3 Features  5 Features  7 Features  9 Features  

Metrics    Search   30 Search  15 Search  10 Search  15 Search  

Agent    
Agent    Agent    Agent    Agent    

 
Accuracy    0.958    0.984    0.984    0.972    0.976    

Precision    0.7975    0.984    0.9783    0.957    0.9684    

Sensitivity    0.998    0.984    0.986    0.972    0.976    

F1 Measure    0.8865    0.984    0.9821    0.9645    0.9722    

 

           

Figure 4.127: Salp Swarm Algorithm Performance with Various Search Agents   

   

4.8   Epilepsy Classification Using Bat Optimization Algorithm   

The results of epilepsy detection and classification using the Bat optimization algorithm and 
an artificial neural network are shown in this section. The different feature extraction ranges 
from 1, 3,5, 7, and 9 with 5, 10, 15, 20, 25, 30, and 35 generations, respectively.   
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4.8.1.  Epilepsy classification using one population and 5, 10, 15, 20, 25, 30, and 35 generation   

The evaluation procedures for BA-ANN utilizing one feature and 5, 10, 15, 20, 25, 30, and 35 

search agents are shown in Tables 4.48 and 4.49, respectively. For 5, 10, 15, 20, 25, 30, and 

35 generations, the classifier positively identified the true negative classes, falsely predicted 

16, 16, 24, 17, and 16 of the false-negative classes, and correctly predicted 5, 6, 5, 1 and 7 

false-negative classes. The  F1 score, recall, accuracy, precision, and AUC are shown in Table 

4.49. It demonstrates that as the generation for the BA-ANN classifier rises from 5 to 35, the 

accuracy fluctuates between 95.6% and 98.80%. The greatest accuracy is attained at 98.80%, 

with precision and sensitivity of 76.10% and 99.20%, an F1 score of 86.13%, and an AUC of 

90.20%, respectively. Figure 4.130 shows that the Bat-ANN classifier performs better than the 

5, 10, 15, 20, 25, 30, and 35 generations, respectively, in terms of the ROC curve. Figures 

4.128 to 4.134 demonstrate the ROCs of several examples produced using the   

Bat-ANN classifier for the representation of the acquired findings for 5, 10, 15, 20, 25, and 35 generations, 

respectively. In the real classes, the classifier performs well, and vice versa.   

   

   

   

Table 4.48: Bat Algorithm Metrics Using One Population and 5, 10, 15, 20, 25, 30, and 35 

Generation   

Number of  

Populations    

Number of 

Generation    

TP    FP    TN    FN    Time (s)   

[4]     5     395     16     84     5     30.361     

[4]     10     394     16     84     6     52.941     

[6]     15     395     17     83     5     57.6685     

[1]     20     393     14     86     7     114.607     

[7]     25     399     24     76     1     91.777     

[5]     30     393     16     84     7     130.233     

[5]     35     400     19     81     0     240.699     

   

Table 4.49: Bat Algorithm Performance Evaluation Using One Population and 5, 10, 15, 20, 

25, 30, and 35 Generation   

Number of   Number of  Accuracy   Precision   Sensitivity    F1-  AUC    

Populations   Generation   Score    

[4]    5    95.8    0.7936    0.9980    0.8842   0.9240    

[4]    10    95.6    0.7975    0.9980    0.8865   0.9260    

[6]    15    98.8    0.7610    0.9920    0.8613   0.9020    

[1]    20    94.4    0.7522    0.9860    0.8534   0.8930    
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[7]   25   95.0   0.8353   0.9980   0.9095   0.944    

[5]   30   95.4   0.7714   1.0000   0.8769   0.9130    

 

[5]         35      95.4      0.7714      1.0000      0.8709      0.9130   

    
Figure 4.128:   ROC Plot for Bat Algorithm 1 Population 5 Generation    
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Figure 4.   1   29   :     ROC Plot for Bat Algorithm 1 Population 10     Generation     

    
Figure 4.   1   3   0   :     ROC Plot for Bat Algorithm 1 Population 15     Generation     
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Figure 4.131: ROC Plot for Bat Algorithm 1 Population 20 Generation   

   

   
Figure 4.132: ROC Plot for Bat Algorithm 1 Population 25 Generation   
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Figure 4.133: ROC Plot for Bat Algorithm 1 Population 30 Generation   

   

   
Figure 4.134: ROC Plot for Bat Algorithm 1 Population 35 Generation   
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4.8.2 Epilepsy classification using three populations and 5, 10, 15, 20, 25, 30, and 35 generation   

Table 4.51 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 95.80% to 98.20% as the generation increases from 5 to 35 for the 

BA-ANN classifier. The best accuracy is achieved at 98.20%, with 90.14% precision,   

99.00 sensitivity, F1 score of 94.26%, and 96.40% AUC respectively. It is observed from 

Figure 4.137 that the ROC curve for 15 generations performs better than 5, 10, 25, 30, and 

35 respectively, indicating a better performance of the BA-ANN classifier. The ROCs of 

various cases obtained using the BA-ANN classifier are plotted as shown in Figures 4.135 

to 4.141 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, and 35 

generations respectively. The classifier seems to function well in the real classes and vice 

versa.   

Table 4.50: Bat Algorithm Metrics Using Three Populations and 5, 10, 15, 20, 25, 

30, and 35 Generation   

Number of  

Populations    

Number of 

Generation    

TP    FP    TN    FN    Time    

[6 9 4]    5     399     9     91     1     41.194     

[4 9 5]    10     398     19     81     2     75.398     

[3 4 6]    15     399     8     92     1     101.805    

[6 1 3]    20     400     9     91     0     194.887    

[4 3 9]    25     399     9     91     1     169.602    

[6 4 7]    30     399     10     90     1     178.404    

[6 1 3]    35     400     4     96     0     354.307    

   

   

   

   

   

   

Table 4.51: Bat Algorithm Performance Evaluation Using Three Populations and 

5, 10, 15, 20, 25, 30, and 35 Generation   

  

Number of  Number of   Accuracy    Precision    Sensitivity    F1  AUC    

Populations   Generation      Score    

[6 9 4]    5    98.0    0.9743    0.9820    0.9781   0.9800   

[4 9 5]    10    95.8    0.8742    0.9780    0.9232   0.9460   

[3 4 6]    15    98.2    0.9014    0.9900    0.9436   0.9640   
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[6 1 3]   20   98.2   0.8464   0.9880   0.9117   0.9420   

[4 3 9]   25   98.0   0.9369   0.9840   0.9599   0.9710   

[6 4 7]   30   97.8   0.9161   0.9861   0.9498   0.9660   

 

[6  1 3]        35   99.2         0.9881      0.9920      0.9900      0.9910 

    
Figure 4.135:   ROC Plot for Bat Algorithm 3 Population 5 Generation    
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Figure 4.   13   6   :     ROC Plot for Bat Algorithm 3 Population 10     Generation     

    
Figure 4.1   3   7   :     ROC Plot for Bat Algorithm 3 Population 15     Generation     
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Figure 4.138: ROC Plot for Bat Algorithm 3 Population 20 Generation   

   

   

   
Figure 4.139: ROC Plot for Bat Algorithm 3 Population 25 Generation   
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Figure 4.140: ROC Plot for Bat Algorithm 3 Population 30 Generation   

   

   
Figure 4.141: ROC Plot for Bat Algorithm 3 Population 35 Generation   
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4.8.3 Epilepsy classification using five populations and 5, 10, 15, 20, 25, 30, and 35 generation  Table 

4.53 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the accuracy varies between 

95.40% to 98.40% as the generation increases from 5 to 35 for the BA-ANN classifier. The best accuracy 

is achieved at 98.40%, with 76.70% precision,   

98.60 sensitivity, F1 score of 74.64%, and 98.10% AUC respectively. It is observed from   

Figure 4.144 that the ROC curve for 15 generations performs better than 5, 10, 15, 20, 25,   

30, and 35 respectively, indicating a better performance of the Bat-ANN classifier. The   

ROCs of various cases obtained using the BA-ANN classifier are plotted as shown in   

Figures 4.142 to 4.148 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 generations respectively. It demonstrates that the classifier functions effectively in 

the real classes and vice versa.   

Table 4.52: Bat Algorithm Metrics Using Five Populations and 5, 10, 15, 20, 25, 30, and 35 

Generation   

Number of  

Populations    

Number of 

Generation    

TP    FP    TN    FN    Time (s)    

[4 2 1 9 6]    5     399     20     80     1     34.795     

[9 8 6 3 7]    10     400     20     80     0     83.062     

[8 5 1 3 9]    15     400     8     92     0     116.840     

[1 3 6 2 7]    20     400     17     83     0     251.232     

[8 6 1 5 2]    25     400     23     77     0     170.436     

[6 3 8 9 4]    30     400     10     90     0     251.997     

[3 7 6 2 8]    35     400     12     88     0     400.084     

   

   

   

   

   

   

   

   

Table 4.53: Bat Algorithm Performance Evaluation Using Five Populations and 5, 10, 15, 

20, 25, 30, and 35 Generation   

 
Number of  Number of  Accuracy   Precision   Sensitivity    F1-  AUC    

Populations   Generation   Score    

     

 



179   

   

[4 2 1 9 6]    5    95.8    0.8748    0.9820    0.9253   0.9490   

[9 8 6 3 7]    10    96.0    0.9492    0.9640    0.9566   0.9600   

[8 5 1 3 9]    15    98.4    0.9670    0.9860    0.9764   0.9810   

[1 3 6 2 7]   20   97.6   0.8938   0.9880   0.9386   0.9600   

[8 6 1 5 2]   25   95.4   0.9332   0.9620   0.9474   0.9540   

[6 3 8 9 4]   30   98.0   0.9670   0.9860   0.9764   0.9810   

 

[3  7 6 2 8]     35         96.6      0.9585   0.9660      0.9622      0.9640    

    

    
Figure 4.142:   ROC Plot for Bat Algorithm 5 Population 5 Generation    
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Figure 4.1   4   3   :     ROC Plot for Bat Algorithm 5 Population 10     Generation     

    
Figure 4.   14   4   :     ROC Plot for Bat Algorithm 5 Population 15G     
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Figure 4.145: ROC Plot for Bat Algorithm 5 Population 20 Generation   

   

   
Figure 4.146: ROC Plot for Bat Algorithm 5 Population 25 Generation   
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Figure 4.147: ROC Plot for Bat Algorithm 5 Population 30 Generation   

   

   
Figure 4.148: ROC Plot for Bat Algorithm 5 Population 35 Generation   

   

4.8.4 Epilepsy classification using seven population and 5, 10, 15, 20, 25, 30, and 35 generation   

Table 4.55 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the accuracy 

varies between 95.6% to 97.80% as the generation increases from 5 to 35 for the BA-ANN classifier. 

The best accuracy is achieved at 97.80%, with 77.05% precision, 98.20 sensitivity, and F1 score of 

97.62% and 97.90% AUC respectively. It is observed from Figure 4.154 that the ROC curve for 30 

generations performs better than 5, 10, 15,   
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25, and 35 respectively, indicating a better performance of the BA-ANN classifier. The 

ROCs of various cases obtained using the BA-ANN classifier are plotted as shown in figures 

4.149 to 4.155 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, and 35 

generations respectively. The classifier seems to function well in the real classes and vice 

versa.   

Table 4.54: Bat Algorithm Metrics Using Seven Population and 5, 10, 15, 20, 25, 30, 

and 35 Generation   

Number of  

Populations    

Number of 

Generation    

TP    FP    TN    FN    Time    

[2 5 4 3 7 6 8]    5     400     22     78     0     51.731     

[8 5 3 9 6 7 1]    10     400     22     78     0     77.790     

[8 4 6 2 7 1 9]    15     400     13     87     0     110.359    

[5 7 3 8 1 4 2]    20     400     9     91     0     307.944    

[4 2 1 6 8 9 3]    25     400     16     84     0     190.649    

[1 6 4 2 5 7 3]    30     400     11     89     0     266.320    

[5 1 2 7 3 4 9]    35     395     15     85     5     511.739    

   

Table 4.55: Bat Algorithm Performance Evaluation Using Seven Populations and 5, 

10, 15, 20, 25, 30, and 35 Generation   

  
Number of   Number of   Accuracy   Precision   Sensitivity   F1-  AUC   

Populations   Generation     Score   

  
[2 5 4 3 7 6 8] 5 95.6 0.8969 0.9780 0.9357 0.9540 [8 5 3 9 6 7 1] 10 95.6 0.9421 0.9640 0.9529  

0.9580   

[8 4 6 2 7 1 9]  15   97.4   0.9684   0.9760   0.9722 0.9740  [5 7 

3 8 1 4 2]  20   97.2   0.9578   0.9840   0.9707 0.9770   

[4 2 1 6 8 9 3]  25   96.8   0.9415   0.9780   0.9594 0.9680 [1 6 4 2 5 7 3]  

  30   97.8   0.9705   0.9820   0.9762 0.9790   

[5 1 2 7 3 4 9]  35   96.2   0.9609   0.9760   0.9684 0.9720   
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Figure 4.1   49   :     ROC Plot for Bat Algorithm 7 Population 5     Generation     

    
Figure 4.1   5   0   :     ROC Plot for Bat Algorithm 7 Population 10     Generation     



185   

   

   
Figure 4.151: ROC Plot for Bat Algorithm 7 Population 15 Generation   

   

   
Figure 4.152: ROC Plot for Bat Algorithm 7 Population 20 Generation   
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Figure 4.1   5   3   :     ROC Plot for Bat Algorithm 7 Population 25     Generation     

    
Figure 4.1   5   4   :     ROC Plot for Bat Algorithm 7 Population 30     Generation     
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Figure 4.155: ROC Plot for Bat Algorithm 7 Population 35 Generation   

   

   

4.8.5 Epilepsy classification using nine population and 5, 10, 15, 20, 25, 30, and 35 generation   

Table 4.57 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 95.20% to 98.00% as the generation increases from 5 to 35 for the 

BA-ANN classifier using nine features. The best accuracy is achieved at 98.00%, with 

97.43% precision, 98.20 sensitivity, and an F1 score of 97.81% and 98.00% AUC 

respectively. It is observed from Figure 4.156 that the ROC curve for 5 generations performs 

better than 10, 15, 25, 30, and 35 respectively, indicating a better performance of the BA-

ANN classifier. The ROCs of various cases obtained using the BA-ANN classifier are 

plotted as shown in Figures 4.156 to 4.162 for the representation of the obtained results for 

5, 10, 15, 20, 25, 30, and 35 generations respectively.    

   

Table 4.56: Bat Algorithm Metrics Using Nine Population and 5, 10, 15, 20, 25, 30, 

and 35 Generation   

 
Number of  Number of  TP    FP    TN    FN    Time    

Populations    Generation    

 
[3 8 9 7 6 1 2 4 5]    5    400    10    90    0    47.742    

[4 8 3 6 2 1 9 5 7]    10    400    17    83    0    77.244    

[9 6 8 4 3 7 1 5 2]    15    400    16    84    0    111.205    

[6 2 3 7 4 5 1 8 9]    20    400    17    83    0    267.117    

[8 5 4 1 7 6 9 3 2]    25    400    24    76    0    162.168    
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[8 2 4 9 6 7 1 5 3]    30    400    15    85    0    403.347    

[2 4 5 6 8 7 3 1 9]    35    400    8    92    0    465.755    

 
   

Table 4.57: Bat Algorithm Performance Evaluation Using Nine Populations and 5,   

10, 15, 20, 25, 30, and 35 Generation   

Number of   Number of   Accuracy   Precision   Sensitivity   F1-  AUC   

Populations  Generation     Score   

[3 8 9 7 6 1 2 4 5]   5   98.0   0.9743   0.9820   0.9781   0.9800   

[4 8 3 6 2 1 9 5 7]   10   96.6   0.9427   0.9720   0.9572   0.9640   

[9 6 8 4 3 7 1 5 2]   15   96.8   0.9551   0.9700   0.9625   0.9660   

[6 2 3 7 4 5 1 8 9]   20   96.6   0.9551   0.9700   0.9625   0.9660   

[8 5 4 1 7 6 9 3 2]   25   95.2   0.9340   0.9520   0.9429   0.9470   

[8 2 4 9 6 7 1 5 3]   30   97.0   0.9517   0.9740   0.9627   0.9680   

[2 4 5 6 8 7 3 1 9]   35   97.4   0.9701   0.9740   0.9721   0.9730   

   
Figure 4.156: ROC Plot for Bat Algorithm 9 Population 5 Generation   
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Figure 4.1   5   7   :     ROC Plot for Bat Algorithm 9 Population 10     Generation     

    
Figure 4.1   5   8   :     ROC Plot for Bat Algorithm 9 Population 15     Generation     
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Figure 4.159: ROC Plot for Bat Algorithm 9 Population 20 Generation   

   

   
Figure 4.160: ROC Plot for Bat Algorithm 9 Population 25 Generation   
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Figure 4.161: ROC Plot for Bat Algorithm 9 Population 30 Generation   

   

   
Figure 4.162: ROC Plot for Bat Algorithm 9 Population 35 Generation   

   

 Table 4.58 present the evaluation methods for BA-ANN using one, three, five, seven, and 

nine populations respectively for 5, 10, 15, 20, 25, 30, and 35 generations. The accuracy, 

precision, recall, F1 score, and AUC for various feature classes are shown as well. It shows 

that the best accuracy is achieved between using three populations and five-generation 

respectively. The best accuracy is achieved at 98.80%, with 76.10% precision, 99.20% 

sensitivity, and F1 score of 86.13% and 90.02% AUC respectively for 15 generations, and 

three populations for the BA-ANN algorithm. It is observed from Figure 4.163 that the 

accuracy is near 100%, indicating a strong performance of the BA-ANN classifier using one 

population. In the real classes, the classifier performs well, and vice versa for three features 

when compared to other classes of the feature’s extraction.   

Table 4.58: Summary of Epilepsy Detection Using Bat Algorithm with Various  Generation   
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Evaluation 1 Population 3 Population 5 Population 7 Population 9 Population   

Metrics   15   15   15   30   5   

Generation  Generation  Generation  Generation  Generation   

  
Accuracy   0.988   0.982   0.984   0.978   0.98   

Precision   0.761   0.9014   0.967   0.9705   0.9743 

Sensitivity   0.992   0.99   0.986   0.982   0.982  

F1   0.8613  0.9436   0.9764   0.9762   0.9781 

 

Figure 4.163: Bat Algorithm Performance with Various Generation   

   

4.9   Epilepsy Classification Using Particle Swarm Optimization (PSO)   

This section outlines the outcomes of the PSO algorithm's epilepsy detection and 

classification utilizing the artificial neural network and various features extracted from the 

populations of 1, 3,5, 7, and 9, and 5, 10, 15, 20, 25, 30, and 35, respectively.   

   

4.9.1. Epilepsy classification using one feature and 5, 10, 15, 20, 25, 30, and 35 population   
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Tables 4.59 and 4.60 are the evaluation methods for PSO-ANN using one feature and 5, 10. 

15, 25, 35, and 30 population respectively. The classifier predicted the true negative classes 

correctly and predicted 13,17,15, 89, and 24 of the false-positive classes incorrectly, and 5, 

5, 8, 1, and 1 false-negative incorrectly for 5, 10, 15, 20, 25, 30, and 35 populations 

respectively. Table 4.60 presents the F1 score, recall, accuracy, precision, and AUC. It shows 

that the accuracy varies between 95.0% to 96.40% as the population increases from 5 to 35 

for the PSO-ANN classifier. The best accuracy is achieved at 96.40%, with 86.45% 

precision, 99.20 sensitivity, F1 score of 92.39%, and 95.20% AUC respectively. It is 

observed from Figure 4.164 that the ROC curve for 5 populations performs better than 10,   

15, 25, 30, and 35 respectively, indicating a better performance of the PSO-ANN classifier. 

The ROCs of various cases obtained using the PSO-ANN classifier are plotted as shown in 

Figures 4.164 to 4.170 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 populations respectively.    

   

   

   

Table 4.59: PSO Algorithm Metrics Using One Feature and 5, 10, 15, 20, 25, 30, 

and 35 Generation   

Number of  

Features    

Number of  

Population    

TP    FP    TN    FN    Time (s)    

[3]     5     395     13     87     5     33.754     

[6]     10     395     17     83     5     60.639     

[7]     15     392     15     85     8     129.721     

[1]     20     386     14     86     14     186.581     

[2]     25     399     89     11     1     153.233     

[2]     30     399     24     76     1     174.68     

[2]     35     399     89     11     1     330.410     

   

 Table 4.60: PSO Algorithm Performance Evaluation Using One Feature and 5, 10, 15, 

20, 25, 30, and 35 Generation   

 
Number Number of Accuracy   Precision   Sensitivity   F1- AUC   of  Population  

 Score    

Features        

[3]     

5   96.4   0.8645   0.9920   0.9239   0.9520   [6]   10   95.6   0.7610   0.8920   

0.8613   0.9020    

[7]    15    95.4    0.7824    0.9980    0.8772    0.9180    

[1] 20   94.4   0.7539   0.9860   0.8544   0.8940    
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[2] 25   82.0   0.5570   0.9380   0.6989   0.6540    

[2]   30   95.0   0.8353   0.9095   0.8403   0.9440    

 

[2]         35      82.0      0.5570      0.9380      0.6989      0.6570   

    
Figure 4.164:   ROC Plot for PSO Algorithm 1 Feature 5 Generation    
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Figure 4.1   65   :     ROC Plot for PSO Algorithm 1 Feature 10     Generation     

    
Figure 4.1   66   :     ROC Plot for PSO Algorithm 1 Feature 15     Generation     
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Figure 4.167: ROC Plot for PSO Algorithm 1 Feature 20 Generation   

   

              

   
Figure 4.168: ROC Plot for PSO Algorithm 1 Feature 25 Generation   
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Figure 4.169: ROC Plot for PSO Algorithm 1 Feature 30 Generation   

   

   
Figure 4.170: ROC Plot for PSO Algorithm 1 Feature 35 Generation   

   

4.9.2 Epilepsy classification using three features and 5, 10, 15, 20, 25, 30, and 35 population   

Table 4.62 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 96.40% to 99.00% as the population increases from 5 to 35 for the 

PSO-ANN classifier. The best accuracy is achieved at 99.00%, with 91.70% precision,   

99.40 sensitivity, and an F1 score of 95.39% and 97.20% AUC respectively. It is observed from Figure 

4.175 that the ROC curve for 5 populations performs better than 10, 15, 25,   

30, and 35 respectively, indicating a better performance of the PSO-ANN classifier. The 

ROCs of various cases obtained using the PSO-ANN classifier are plotted as shown in 
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figures 4.171 to 4.177 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 populations respectively.    

Table 4.61: PSO Algorithm Metrics Using Three Features and 5, 10, 15, 20, 25, 30, 

and 35 Generation   

Number of  

Features    

Number of  

Population    

TP    FP    TN    FN    Time (s)    

[6 4 5]    5     399     4     96     1     48.002     

[9 6 5]    10     398     6     94     2     81.215     

[1 3 9]    15     399     11     89     1     131.477     

[8 2 5]    20     400     25     75     0     303.368     

[6 2 1]    25     399     10     90     1     215.311     

[7 6 9]    30     396     14     86     4     243.702     

[9 1 5]    35     397     17     83     3     512.624     

   

Table 4.62: PSO Algorithm Performance Evaluation Using Three Features and 5,10, 15, 

25, 30, 35 Generation   

Number of  

Features    

Number of  

Population    

Accuracy    
   

Precision   Sensitivity    F1-Score    AUC    

[6 4 5]    5     99.0     0.9170     0.9940     0.9539     0.9720    

[9 6 5]    10     98.4     0.8431     0.9960     0.9132     0.9460    

[1 3 9]    15     97.6     0.8836     0.9860     0.9320     0.9550    

[8 2 5]    20     95.0     0.8212     0.9880     0.8969     0.9310    

[6 2 1]    25     97.8     0.8766     0.9940     0.9316     0.9580    

[7 6 9]    30     96.4     0.8487     0.9940     0.9156     0.9470    

[9 1 5]    35     96.0     0.8504     0.9900     0.9149     0.9450    
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Figure 4.1   7   1   :     ROC Plot for PSO Algorithm 3 Feature 5     Generation     

    
Figure 4.1   7   2   :     ROC Plot for PSO Algorithm 3 Feature 10     Generation     
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Figure 4.173: ROC Plot for PSO Algorithm 3 Feature 15 Generation   

   

   

   
Figure 4.174: ROC Plot for PSO Algorithm 3 Feature 20 Generation   
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Figure 4.1   7   5   :     ROC Plot for PSO Algorithm 3 Feature 25     Generation     

    
Figure 4.1   7   6   :     ROC Plot for PSO Algorithm 3 Feature 30     Generation     
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Figure 4.177: ROC Plot for PSO Algorithm 3 Feature 35 Generation   

   

   

4.9.3 Epilepsy classification using five features and 5, 10, 15, 20, 25, 30, and 35 population   

Table 4.64 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 96.80% to 97.60% as the population increases from 5 to 35 for the 

PSO-ANN classifier. The best accuracy is achieved at 97.60%, with 84.63% precision,   

99.40 sensitivity, F1 score of 91.43%, and 94.60% AUC respectively. It is observed from 

Figure 4.178 that the ROC curve for the 30 population performs better than 5, 10, 15, 25, 

and 30 respectively, indicating a better performance of the PSO-ANN classifier. The ROCs 

of various cases obtained using the PSO-ANN classifier are plotted as shown in Figures 

4.178 to 4.184 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, and 35 

populations respectively.   

   

Table 4.63: PSO Algorithm Metrics Using Five Features and 5, 10, 15, 20, 25, 30 and 35 

Generation   

Number of  Number of   TP   FP   TN   FN   Time (s)   

Features   Population   

[4 9 5 2 6]  5   400   16   84   0   79.670   

[7 6 4 1 3]  10   400   14   86   0   202.598   

[6 5 2 1 3]  15   400   19   81   0   303.025   

[2 4 1 6 5]  20   399   14   86   1   312.509   

[5 6 4 7 2]  25   400   24   76   0   414.427   
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[8 5 6 4 2]  30   400   12   88   0   596.900   

[8 1 4 9 5]  35   400   8   92   0   579.920   

   

Table 4.64: PSO Algorithm Performance Evaluation Using Five Features and 5, 10, 15, 20, 

25, 30, and 35 Generation   

Number of  

Features    

Number of  

Population    

Accuracy    Precision    Sensitivity    F1  

Score    

AUC    

[4 9 5 2 6]    5     96.8     0.8625     0.9810     0.9175     0.9430    

[7 6 4 1 3]    10     97.2     0.9702     0.9740     0.9721     0.9730    

[6 5 2 1 3]    15     96.2     0.9476     0.9660     0.9567     0.9610    

[2 4 1 6 5]    20     97.0     0.8415     0.9940     0.9114     0.9440    

[5 6 4 7 2]    25     95.2     0.8830     0.9720     0.9253     0.9450    

[8 5 6 4 2]    30     97.6     0.8463     0.9940     0.9143     0.9460    

[8 1 4 9 5]    35     97.4     0.9599     0.9900     0.9747     0.9820    

   
Figure 4.178: ROC Plot for PSO Algorithm 5 Feature 5 Generation   
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Figure 4.1   7   9   :     ROC Plot for PSO Algorithm 5 Feature 10     Generation     

    
Figure 4.1   80   :     ROC Plot for PSO Algorithm 5 Feature 15     Generation     
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Figure 4.181: ROC Plot for PSO Algorithm 5 Feature 20 Generation   

   

   
Figure 4.182: ROC Plot for PSO Algorithm 5 Feature 25 Generation   
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Figure 4.183: ROC Plot for PSO Algorithm 5 Feature 30 Generation   

   

   
Figure 4.184: ROC Plot for PSO Algorithm 5 Feature 35 Generation   

   

     

4.9.4 Epilepsy classification using seven features and 5, 10, 15, 20, 25, 30, and 35 population   

Table 4.66 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 95.50% to 98.60% as the population increases from 5 to 35 for the 

PSO-ANN classifier. The best accuracy is achieved at 98.60%, with 97.94% precision,   

98.80 sensitivity, and an F1 score of 98.22% and 98.50% AUC respectively. It is observed from Figure 

4.185 that the ROC curve for the 5 population performs better than 5, 10, 15,   

20, 25, 30, and 35 respectively, indicating a better performance of the PSO-ANN classifier. 

The ROCs of various cases obtained using the PSO-ANN classifier are plotted as shown in 
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Figures 4.185 to 4.191 for the representation of the obtained results for 5, 10, 15, 20, 25, 30, 

and 35 populations respectively.    

Table 4.65: PSO Algorithm Metrics Using Seven Features and 5, 10, 15, 20, 25, 30, and 

35 Generation   

Number of  

Features    

Number of  

Population    

TP    FP    TN    FN    Time    

[7 3 6 9 4 1 8]    5     400     7     93     0     111.608     

[1 3 6 7 9 5 8]    10     400     9     91     0     209.056     

[3 9 6 7 5 2 1]    15     400     17     83     0     331.970     

[5 6 7 2 3 8 9]    20     400     16     84     0     332.491     

[7 6 8 3 4 2 5]    25     400     16     84     0     283.221     

[2 1 5 4 9 7 8]    30     400     22     78     0     340.361     

[6 9 7 2 5 3 4]    35     400     13     87     0     609.431     

   

Table 4.66 PSO Algorithm Performance Evaluation Using Seven Features and 5, 10, 15, 

20, 25, 30, and 35 Generation   

Number of   Number of   Accuracy   Precision   Sensitivity   F1-  AUC  

Features   Population      Score   

[7 3 6 9 4 1 8]  5   98.6   0.9794   0.9880   0.9822   0.9850   

[1 3 6 7 9 5 8]  10   98.2   0.9801   0.9840   0.9821   0.9830   

[3 9 6 7 5 2 1]  15   96.6   0.9531   0.9680   0.9605   0.9640   

[5 6 7 2 3 8 9]  20   98.8   0.9343   0.9740   0.9538   0.9630   

[7 6 8 3 4 2 5]  25   96.8   0.9362   0.9760   0.9557   0.9650   

[2 1 5 4 9 7 8]  30   95.5   0.9347   0.9600   0.9472   0.9530   

[6 9 7 2 5 3 4]   35   97.4  0.9556  0.9780  0.9667  0.9720   
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Figure 4.185: ROC Plot for PSO Algorithm7 Feature 5 Generation    

   
Figure 4.186: ROC Plot for PSO Algorithm 7 Feature 10 Generation   
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Figure 4.187: ROC Plot for PSO Algorithm 7 Feature 15 Generation   

   

   

   
Figure 4.188: ROC Plot for PSO Algorithm 7 Feature 20 Generation   
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Figure 4.1   8   9   :     ROC Plot for PSO Algorithm 7 Feature 25     Generation     

    
Figure 4.1   90   :     ROC Plot for PSO Algorithm 7 Feature 30     Generation     
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Figure 4.191: ROC Plot for PSO Algorithm 7 Feature 35 Generation   

   

   

4.9.5 Epilepsy classification using nine features and 5, 10, 15, 20, 25, 30, and 35 population   

Table 4.68 presents the F1 score, recall, accuracy, precision, and AUC. It shows that the 

accuracy varies between 96.60% to 98.60% as the population increases from 5 to 35 for the 

PSO-ANN classifier. The best accuracy is achieved at 98.60%, with 96.35% precision, 

99.00 sensitivity, and an F1 score of 97.66% and 98.30% AUC respectively. It is observed 

from Figure 4.193 that the ROC curve for the 10 population performs better than 5, 10, 15, 

20, 25, 30, and 35 respectively, indicating a better performance of the PSO-ANN classifier. 

The ROCs of various cases obtained using the PSO-ANN classifier are plotted as shown in 

Figures 4.192 to 4.198 for the representation of the obtained results for 5, 10, 15, 20, 25, 

30, and 35 populations respectively.    

   

   

Table 4.67: PSO Algorithm Metrics Using Nine Features and 5, 10, 15, 20, 25, 30, 

and 35 Generation   

 
Number of  Number of  TP    FP   TN   FN    Time    

Features    Population    

 
[1 9 4 6 8 2 7 3 5]    5    400    17    83    0    52.250    

[1 8 3 2 5 4 7 9 6]    10    400    7    93    0    107.911    

[6 3 2 9 5 7 1 4 8]    15    400    11    89    0    198.124    

[8 5 3 6 4 9 27 1]    20    400    15    85    0    331.961    
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[9 8 1 6 4 5 7 2 3]    25    400    14    86    0    273.683    

[4 7 2 1 5 8 3 6 9]    30    400    13    87    0    397.021    

[8 3 5 7 1 2 6 9 4]    35    400    10   90    0    550.932    

 
   

Table 4.68: PSO Algorithm Performance Evaluation Using Nine Features and 5, 10, 15, 20, 

25, 30, and 35 Generation   

Number of  Number of  Accuracy  Precision  Sensitivity  F1-Score AUC  Features  Population     

[1 9 4 6 8 2 7 3 5]   5   96.6   0.9291   0.9720   0.9501   0.9600   

[1 8 3 2 5 4 7 9 6]   10   98.6   0.9635   0.9900   0.9766   0.9830   

[6 3 2 9 5 7 1 4 8]   15   97.8   0.9687   0.9840   0.9763   0.9800   

[8 5 3 6 4 9 27 1]   20   97.0   0.9534   0.9720   0.9626   0.9670   

[9 8 1 6 4 5 7 2 3]   25   97.2   0.9537   0.9760   0.9647   0.9700   

[4 7 2 1 5 8 3 6 9]   30   97.4   0.9575   0.9800   0.9686   0.9740   

[8 3 5 7 1 2 6 9 4]   35   98.0   0.9599   0.9900   0.9747   0.9820   

   

   
Figure 4.192: ROC Plot for PSO Algorithm 9 Feature 5 Generation   
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Figure 4.1   9   3   :     ROC Plot for PSO Algorithm 9 Feature 10     Generation     

    
Figure 4.1   9   4   :     ROC Plot for PSO Algorithm 9 Feature 15     Generation     
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Figure 4.195: ROC Plot for PSO Algorithm 9 Feature 20 Generation   

   

   
Figure 4.196: ROC Plot for PSO Algorithm 9 Feature 25 Generation   
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Figure 4.197: ROC Plot for PSO Algorithm 9 Feature 30 Generation   

   

   
Figure 4.198: ROC Plot for PSO Algorithm 9 Feature 35 Generation  Table 4.69 present 
the evaluation methods for PSO-ANN using one, three, five, seven, and nine features 
respectively for 5, 10. 15, 25, 30, and 35 population respectively. The AUC, recall, 
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accuracy, F1 score, and precision for various feature classes are shown as well. It shows that 
the best accuracy is achieved by using three features and five populations respectively. The 
best accuracy is achieved at 99.00%, with 91.70% precision, 99.40% sensitivity, and an F1 
score of 95.39% and 97.20% AUC respectively for 3 features, and five populations for the 
PSO-ANN algorithm. It is observed from Figure 4.199 that the accuracy is near 100%, 
indicating a strong performance of the PSO-ANN classifier using five populations. In the 
real classes, the classifier performs well, and vice versa for three features when compared to 
other classes of the feature’s extraction.   

            Table 4.69: Summary of Epilepsy Detection Using PSO with Various Search Agents   

  
Evaluation  1 Feature 5  3 Features 5  5 Features 30  7 Features 5  9 Features 10  

Metrics    Population    Population    Population    Population    Population    

 
Accuracy    0.964    0.99    0.976    0.986    0.986    

Precision    0.8645    0.917    0.8463    0.9794    0.9635    

Sensitivity    0.992    0.994    0.994    0.988    0.99    

F1 Measure    0.9239    0.9539    0.9143    0.9822    0.9766    

 
   

Figure 4.199: PSO Algorithm Performance Evaluation with Various Generation   

4.10 Comparison of The Various Optimization Algorithm Results with IGOA   

The findings and comparisons of the various optimization algorithms employed with the 

ANN classifier are presented in this section. Following the extraction of useful features from 

the EEG signals, five approaches were used to divide the data into "epileptic" and "non-

epileptic" seizures, and performance parameters were developed to evaluate the model. The 

data were divided into two sets: training and testing, one for each classifier. The accuracy, 

sensitivity, specificity, F1 score, and AUC for each method were then calculated for the 

entire dataset. The findings of the performance measurement parameters for each method 
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are shown in Table 4.70 and Figure 4.200 as the deliverable for objective three. It can be 

shown that the best result was obtained with GOA-ANN with 99.40% total accuracy, 

showing that the model accurately predicted all classes. GWO's overall accuracy of 98.40% 

was commendable. Similar results were obtained by PSO with 99.0% accuracy, SSOA with 

98.49%, and BA with 98.80% accuracy. GWO and SSOA had the lowest overall accuracies, 

at 98.40% and 98.40%, respectively. The number of feature extraction and search agents in 

the GOA-ANN model that produced the best accuracy was seven and thirty, respectively.   

       Table 4.70: Summary of Epilepsy Detection Using the Various Optimization Algorithm   

  
Evaluation  IGOA     GOA -7    GWO- 9    SSOA -3    BA - 1    PSO -3    

Metrics    5 Features  Features 30   Features   Features   Population  Features 5   

30 Search Search  25 Search 30 Search 15   Population  Agent   Agent   Agent   

Agent   Generation    

 
Accuracy    0.9960    0.994    0.984    0.984    0.988    0.99    

Precision    0.9960    0.9881    0.9689    0.984    0.761    0.917    

Sensitivity    0.9960    0.996    0.988    0.984    0.992    0.994    

F1  0.9960    0.9921    0.9784    0.984    0.8613    0.9539    

Measure    

 

   

Figure 4.200: Performance Evaluation of the Various Algorithm Used   

AUC        0.9960   0.994      0.983      0.984      0.902      0.972      

  

Evaluation Metrics   
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4.11    Comparison of the Research with Similar Studies   

The accuracy levels of the five models were satisfactory, demonstrating that the proposed 

technique worked well with the EEG data. High overall accuracies of 99.60%, 99.40%, and 

99.00% were recorded by the IGOA-ANN, GOA-ANN, and PSO-ANN models, 

respectively. The literature review's prior studies and the IGOA-ANN classifier's 

performance-based evaluation gave the classifier high results. The IGOA-ANN model, 

which obtained the best accuracy among the five models and the IGOA, surpassed the others 

in the experiment, achieving an overall accuracy of 99.60%. The GWO and SSOA models, 

on the other hand, had the algorithms' lowest overall accuracies, with 98.40% and 98.40% 

for the GWO and SSOA, respectively. The University of Bonn Dataset was used in other 

investigations, and when comparing the results, it was found that the IGOA-ANN approach 

gave results with higher sensitivity, specificity, and accuracy (99.60% each). The suggested 

model (IGOA-ANN), as demonstrated in Table 4.71, greatly outperformed more recent 

experiments with less complexity.   

Figure 4.201 present the graphical user interface (GUI) for epilepsy classification. While 

Table 4.69 is the research objective five, Figure 4.198 is the deliverable for research 

objective four. Figure 4.201 make it easy for epilepsy classification for medical and 

nonmedical personnel with little or no knowledge of the algorithm which is the whole idea 

of the research.   

   
Figure 4.201: The System Graphical User Interface (GUI)   
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          Table 4.71: Comparison of this Research with Similar Research in Literature    

  

S/N   Author    Year    Classification  Features Used    Accuracy   

Method    (%)    

 

1. (Zhao et al.,   2020    1D Deep Neural  Automatic Feature   97.63    

2020) Network    Extraction    

   

2. (Glory et al.,   2020    Deep Neural   Nonlinear and  99.38    

2020) Network (DNN),  Entropy-based  

SVM, KNN    features    

3. 2020    DNN       98.12    

(Ruchi   Entropy, linear and   

Sharma, 2020)    statistical features      

4. (Ruchi Sharma  2020   DNN, KNN, MSVM   Entropy, linear and  99.07    

& Chopra)    statistical features    

5. (Mancha,   2021   Single Dimensional     92.0    

Reddy, & Ch,   Pyramidal Ensemble  Discriminative  

2021)    Convolutional   features    

Neural Network   

(1D-PECNN)    

   

6. (Shoeibi et al.,   
2021    

SVM, KNN, and  Linear and Nonlinear  73.3    

features    

2021)    CNN-AE       

7. (Rashed 2021    CNN    Frequency features    99.21    

AlMahfuz et    al., 2021)    

8. (Nkengfack,   2021    LS-SVM and RBF  Beta and Gamma   88.75    

Tchiotsop,   Kernel    Rhythms    

Atangana,      
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Louis-Door, &   

Wolf, 2021)    

9. (Chakraborty   2021    DT, KNN, SVM,   Spectral Features    98.7    

& Mitra, 2021)    and RF       

10. (Khati & Ingle,  2021    Naïve Bayes, LR    Mean, standard  99.0    

2020) deviation, and RMS  

features    

11   This Research   2021    IGOA-ANN       99.60    

Maximum value,   

Mean value, RMS   

Variance, Standard   

Deviation, Entropy, 

Energy, Kurtosis,  

and Skewness    

 
   

CHAPTER FIVE   

5.0                              CONCLUSION AND RECOMMENDATIONS   

5.1   Summary    

It might be difficult to anticipate when someone may experience a seizure. Since most 

seizures occur unexpectedly, numerous researchers have looked for techniques to foresee 

seizures in advance. One can use classification algorithms to determine whether or not a 

person will experience a seizure. According to the research, epilepsy classification has 

insufficient power and is not appropriate for handling huge datasets. The number of 

characteristics utilized to generate the classifier, independent of the kind of classifier, has a 

significant impact on the classification performance as the quest for clinical epilepsy 

classification and prediction continues. Therefore, the quest for reliable biomarkers is 

essential, especially because EEG recordings are affected by a variety of physiological 

conditions, making it more challenging to distinguish between various brain states. As a 

result, utilizing the IGOA-ANN, this study proposes a hybrid model for epilepsy 

classification based on EEG signals that are both efficient and accurate. Thus, using the 

IGOA for feature selection and ANN to identify epilepsy is effective and efficient. This 

method makes use of the ANN data-driven methodology and the IGOA.   

   

The influence of the search agent on the various attributes selected was investigated to select 

the search agent and feature extraction for the epilepsy classification approach. The search 

agent, as well as the best features, improve the accuracy. Other techniques such as standard 

GOA, PSO, SSOA, GWO, and BA were used to compare the results. The work was 
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compared to other studies in the literature using the University of Bonn Epilepsy dataset. 

The performance of the developed system was assessed using its, F1 score measure, 

precision, accuracy, recall, and AUC.   

   

5.2   Conclusion   

The findings of the research study, experiments, findings, and pertinent debates can be summarized into 

the following conclusions:   

When a set of ideal quicker features is chosen, epoch lengths are reduced, allowing for better 

epilepsy seizure classification. This aids in the identification of prominent traits and the 

elimination of those that may cause overfitting during the classification phase.   

   

The investigation of the best features selection and search agent that was adopted for 

epilepsy classification adopted for IGOA-ANN indicates that the system was developed 

using five features and thirty search agents perform better when compared to using one, 

three, five, seven and nine features, and five, ten, fifteen, and twenty-five search agents 

respectively.   

   

The results of the performance comparison with other optimization algorithms (GOA, 

SSOA, PSO, GWO, and BA) indicate that IGOA exceeds the other optimization algorithms 

for the majority of the performance metrics assessed in terms of accuracy, precision, AUC, 

F1 score measure, and recall. Furthermore, the accuracy test revealed that only IGOA 

obtained statistically significant findings with a 99.6 percent accuracy level. This means that 

the IGOA-ANN is the most effective in classifying epilepsy events into epilepsy and non-

epilepsy events.   

   

The experimental results of using IGOA-ANN to handle epilepsy classification problems 

show that IGOA-ANN is capable of solving all epileptic classification problems as the 

number of features, dimensions, and attributes grows. IGOA-ANN outperforms other 

studies with similar features and properties in the literature. As a result, IGOA-ANN is a 

good solution for a wide range of classification and optimization challenges, including 

traditional EEG and ECG detection and classification difficulties.   
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5.3   Recommendation   

At the end of this research work, it is recommended that:   

i. To increase the detection and classification of epilepsy seizures from EEG datasets, more 

feature extraction methods should be investigated. Additional univariate and bivariate 

features that incorporate spatial and temporal information from different brain regions 

could increase performance. Spectral entropy, mean phase coherence, and the Hjorth 

parameters, in particular, are potentially helpful properties that should be investigated.   

ii. The IGOA-ANN classifier be tested on more epilepsy datasets to further determine its 

full classification performances.   

iii. The IGOA-ANN classifier be tested on other engineering optimization problems.   iv. 
The IGO-ANN classifier be tested on more real-world classification optimization 

problems such as Alzheimer’s disease, migraine, stroke, and   

cardiovascular disease classification.    

   

5.4  Contribution to Knowledge   

Using data from Bonn University in Germany, this research employs the IGOA-ANN 

approaches to classify seizure occurrences from non-seizure events. The ANN's vast 

collection of functions aids in learning the distinguishing aspects of seizure and non-seizure 

occurrences. The following are some of the contributions of this study:   

i. An empirical comparative analysis of Optimization Algorithms to Feature Selection 

for Epilepsy Classification through a Systematic Literature Review (SLR) and 

performance comparison was carried out. ii. An improved Grasshopper Algorithm 

derived from elite opposition-based learning tested on unimodal and multimodal test 

functions was developed.   

iii. Implementation of an improved Grasshopper algorithm with exponential switching 

parameters between local and random walks for updating the value of the 

Grasshopper Optimization Algorithm was achieved.   

iv. The fourth contribution is the application of the Improved Grasshopper algorithm 

for the classification of epilepsy from Disruptive EEG Signals, with 99.60% 

accuracy, 99.60% sensitivity, 99.60%, precision, 99.60% AUC, and F1 measure of 

99.60% achieved.   

v. Development of a graphical user interface (GUI) for epilepsy classification.   
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APPENDIX A   

GREY WOLVES   

%___________________________________________________________________%   

%  Grey Wold Optimizer (GWO) source codes version 1.0               %   
%                                                                   %   

%  Developed in MATLAB R2011b(7.13)                                 %   

%                                                                   %   

%  Author and programmer: Seyedali Mirjalili                        %   

%                                                                   %   

%         e-Mail: ali.mirjalili@gmail.com                           %   
%                 seyedali.mirjalili@griffithuni.edu.au             %   

%                                                                   %   

%       Homepage: http://www.alimirjalili.com                       %   

%                                                                   %   

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %   

%               Grey Wolf Optimizer, Advances in Engineering        %   

%               Software , in press,                                %   
%               DOI: 10.1016/j.advengsoft.2013.12.007               %  %                                                                   
%  

%___________________________________________________________________%    % 
Grey Wolf Optimizer   
% function   

[  

Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter, 

lb,ub,dim,fobj) clc; clear; close all; data=LoadData();   

  nf=5;  fobj = @(u) 
FeatureSelectionCost(u,nf,data);  dim = 
data.nx;   
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Max_iter = 2; 
SearchAgents_no = 1; 
lb=0; ub=1;   
% lb=ones(dim,1)*lb;   

% ub=ones(dim,1)*ub;   

% If all the variables have equal lower bound you can just   

% define lb and ub as two single number numbers      
N=[1 dim];   % Size of Decision Variables Matrix   

% N=10;   

% initialize alpha, beta, and delta_pos   

Alpha_pos=zeros(1,dim);   

Alpha_score=inf; %change this to -inf for maximization problems      

Beta_pos=zeros(1,dim);   

Beta_score=inf; %change this to -inf for maximization problems      
Delta_pos=zeros(1,dim);   

Delta_score=inf; %change this to -inf for maximization problems %Initialize the 
positions of search agents   

Positions=initialization_Grey(SearchAgents_no,dim,ub,lb);      

Convergence_curve=zeros(1,Max_iter);   
   l=0;% Loop 
counter      

% Main loop while l<Max_iter     for 
i=1:size(Positions,1)     

           

       % Return back the search agents that go beyond the boundaries of the search 

space   

        Flag4ub=Positions(i,:)>ub;   

        Flag4lb=Positions(i,:)<lb;   

          

Positions(i,:)=( Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*F lag4lb;      

%         elite opposition learning         
for i=1:size(Positions,1)           k=rand();   

          for j=1:size(dim, 2)   

              Positions(i,:)=k.*(ub+lb)-Positions(i,j);           end         
end   

           

        % Calculate objective function for each search agent         
fitness=fobj(Positions(i,:));   

           

        % Update Alpha, Beta, and Delta         if 
fitness<Alpha_score    

            Alpha_score=fitness; % Update alpha             
Alpha_pos=Positions(i,:);         end                  if fitness>Alpha_score 
&& fitness<Beta_score               Beta_score=fitness; % Update beta             
Beta_pos=Positions(i,:);         end                   if fitness>Alpha_score 
&& fitness>Beta_score && fitness<Delta_score    

            Delta_score=fitness; % Update delta             
Delta_pos=Positions(i,:);         end     end                a=2-
l*((2)/Max_iter); % a decreases linearly fron 2  

to 0   
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    % Update the Position of search agents including omegas     for 
i=1:size(Positions,1)         for j=1:size(Positions,2)                                            
r1=rand(); % r1 is a random number in [0,1]              

r2=rand(); % r2 is a random number in [0,1]                 

            A1=2*a*r1-a; % Equation (3.3)
 

  

            C1=2*r2; % Equation (3.4)   

               

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1   
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

 
  

                                    r1=rand();             
r2=rand();   

               

            A2=2*a*r1-a; % Equation (3.3)
 

  

            C2=2*r2; % Equation (3.4)   

               

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2   

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
 

  
                         
r1=rand();             r2=rand();    

               

            A3=2*a*r1-a; % Equation (3.3)
 

  

            C3=2*r2; % Equation (3.4)   

               

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation   

(3.5)-part 3   
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

 
  

               

            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)   

                     
end     end     l=l+1;       

    Convergence_curve(l)=Alpha_score; end 
%% Results   figure;   

plot(Convergence_curve,'LineWidth',2);  
xlabel('Iteration'); ylabel('Best Cost');   

    

    

    

   

   

   

   

   

BAT   
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%%% clc; 
clear; close 
all;   

    

%% Problem Definition   

   data=LoadData();    
nf=5; %  

for j=1:nf   

    

CostFunction=@(u) FeatureSelectionCost(u,nf,data);% Cost Function   
     nVar=data.nx;       % Number of Decision 
Variables      

VarSize=[1 nVar];   % Size of Decision Variables Matrix      

VarMin=0;         % Lower Bound of Variables   

VarMax=1;         % Upper Bound of Variables   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

% BAT Default parameters n=2;      % Population size, 
typically 10 to 40   

N_gen=2;  % Number of generations   

A=0.5;      % Loudness  (constant or decreasing) r=0.5;      
% Pulse rate (constant or decreasing) % This frequency 
range determines the scalings   

% You should change these values if necessary   

Qmin=0;         % Frequency minimum   

Qmax=1;         % Frequency maximum   
% Iteration parameters   

N_iter=0;       % Total number of function evaluations  % 
Dimension of the search variables d=nVar;            

% Number of dimensions   

% Lower limit/bounds/ a vector  Lb=-2*ones(1,d);
 

  

% Upper limit/bounds/ a vector   
Ub=2*ones(1,d);   

% Initializing arrays Q=zeros(n,1);    
% Frequency v=zeros(n,d);   % 

Velocities % Initialize the 

population/solutions for i=1:n,    
Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);    
Fitness(i)= CostFunction(Sol(i,:)); end   

% Find the initial best solution  

[fmin,I]=min(Fitness); best=Sol(I,:);   

    

% Start the iterations -- Bat Algorithm  % for t=1:N_gen,  % Loop over 
all bats/solutions         for i=1:n,            Q(i)=Qmin+(Qmin-
Qmax)*rand;           v(i,:)=v(i,:)+(Sol(i,:)best)*Q(i);   

          S(i,:)=Sol(i,:)+v(i,:);   

          % Apply simple bounds/limits   

          Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub);   

          % Pulse rate           if 
rand>r   

          % The factor 0.001 limits the step sizes of random walks   
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              S(i,:)=best+0.001*randn(1,d);           end   

    

     % Evaluate new solutions   

           Fnew=CostFunction(S(i,:));   

     % Update if the solution improves, or not too loud            
if (Fnew<=Fitness(i)) & (rand<A) ,                  
Sol(i,:)=S(i,:);                  

Fitness(i)=Fnew;            end   

    

          % Update the current best solution           if 
Fnew<=fmin,                 best=(S(i,:));                 
fmin=Fnew;           end         end   

        N_iter=N_iter+n; end 
% end   

% Output/display   

disp(['Iterations: ',num2str(t)]); disp(['Best Cost=',num2str(best(t)),' 
Optimization   

Threshold=',num2str(fmin)]);   

    

% Application of simple limits/bounds   

%% Results   figure; 
plot(best,'LineWidth',2); 
xlabel('Iteration'); ylabel('Best 
Cost');   

    

    

    

    

   

   

     

   

GRASSHOPPER_IGOA   

clc; clear;  

close all; data=LoadData();   

  nf=5;  fobj = @(u) 
FeatureSelectionCost(u,nf,data);   
dim = data.nx;   
Max_iter = 2; 
SearchAgents_no = 2; 
lb=0; ub=1;   
% lb=ones(dim,1)*lb;   

% ub=ones(dim,1)*ub;   

% If all the variables have equal lower bound you can just   
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% define lb and ub as two single number numbers      

N=[1 dim];   % Size of Decision Variables Matrix   

% N=10; disp('GOA is now estimating the global optimum for your problem....')   

  flag=0; if  
size(ub,1)==1     ub=ones(dim,1)*ub;     
lb=ones(dim,1)*lb; end     

if (rem(dim,2)~=0) % this algorithm should be run with a even number of  

variables. This line is to handle odd number of variables     dim = 
dim+1;     ub = [ub; 100];     lb = [lb; -100];     flag=1; end

 
     

%Initialize the population of grasshoppers   

GrassHopperPositions=initialization(N,dim,ub,lb);   

% GrassHopperFitness = zeros(1,N);   
GrassHopperFitness = zeros(N); % 

fitness_history=zeros(N,Max_iter); 
fitness_history=zeros(1,Max_iter); % 

position_history=zeros(N,Max_iter,dim); 
position_history=zeros(1,dim); 
Convergence_curve=zeros(1,Max_iter);  
Trajectories=zeros(1,Max_iter);    
cMax=1;  
cMin=0.00004;   

%Calculate the fitness of initial grasshoppers   
   for i=1:size(GrassHopperPositions,1)      

if flag == 1   

        GrassHopperFitness(1,i)=fobj(GrassHopperPositions(i,1:end-1));     else
 

  

        GrassHopperFitness(1,i)=fobj(GrassHopperPositions(i,:));     end   

    fitness_history(i,1)=GrassHopperFitness(1,i);      

position_history(i,1,:)=GrassHopperPositions(i,1,:);     
Trajectories(:,1)=GrassHopperPositions(1); end      

[sorted_fitness,sorted_indexes]=sort(GrassHopperFitness);    % 
Find the best grasshopper (target) in the first population  for 
newindex=1:N   

      

Sorted_grasshopper(newindex,:)=GrassHopperPositions(sorted_indexes(newi ndex),:); 
end   

    

TargetPosition=Sorted_grasshopper(1,:);   

TargetFitness=sorted_fitness(1);   

    
% Main loop   

l=2; % Start from the second iteration since the first iteration was dedicated 

to calculating the fitness of antlions while l<Max_iter+1   
         c=cMax-l*((cMax-cMin)/Max_iter); % Eq. (2.8) in the  

paper   
          for i=1:size(GrassHopperPositions,1)         
temp= GrassHopperPositions';         for k=1:2:dim             
S_i=zeros(2,1);             for j=1:N                 if 
i~=j   
                    Dist=distance(temp(k:k+1), temp(k:k+1)); %   

Calculate the distance between two grasshoppers   
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                                          r_ij_vec=(temp(k:k+1,j)-
temp(k:k+1,i))/(Dist+eps);   

% xj-xi/dij in Eq. (2.7)                     xj_xi=2+rem(Dist,2); % |xjd 
- xid| in Eq. (2.7) 

 
  

                                          
s_ij=((ub(k:k+1) -   

lb(k:k+1))*c/2)*S_func(xj_xi).*r_ij_vec; % The first part inside the  
big bracket in Eq. (2.7)                     S_i=S_i+s_ij;                 end             
end   

            S_i_total(k:k+1, :) = S_i;   

                     end   

           

        X_new = c * S_i_total'+ (TargetPosition); % Eq. (2.7) in the paper      
 

         
GrassHopperPositions_temp(i,:)=X_new';      end   

    % GrassHopperPositions     GrassHopperPositions=GrassHopperPositions_temp;           
for  

i=1:size(GrassHopperPositions,1)   

        % Relocate grasshoppers that go outside the search space           
Tp=GrassHopperPositions(i,:)>ub';Tm=GrassHopperPositions(i,:)<lb';Grass  

HopperPositions(i,:)=(GrassHopperPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb '.*Tm;            
        % Calculating the objective values for all grasshoppers         if 
flag == 1   

            GrassHopperFitness(1,i)=fobj(GrassHopperPositions(i,1:end-  

1));         else   

            GrassHopperFitness(1,i)=fobj(GrassHopperPositions(i,:));         end         
fitness_history(i,l)=GrassHopperFitness(1,i);         
position_history(i,l,:)=GrassHopperPositions(i,1,:);                   
Trajectories(:,l)=GrassHopperPositions(1);   

           

        % Update the target         if  

GrassHopperFitness(1,i)<TargetFitness              
TargetPosition=GrassHopperPositions(i,:);             
TargetFitness=GrassHopperFitness(1,i);         end     end            

    Convergence_curve(l)=TargetFitness;   

    disp(['In iteration #', num2str(l), ' , target''s objective = ',  

num2str(TargetFitness)])   
         l = l 

+ 1; end      if 
(flag==1)   
    TargetPosition = TargetPosition(1:dim-1); end 
%% Results   figure;   

plot(Convergence_curve,'LineWidth',2);  

xlabel('Iteration'); ylabel('Best Cost');   
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SALP_SWARM  

%______________________________________________________________________ ___________   

%  Salp Swarm Algorithm (SSA) source codes version 1.0   

%   

%  Developed in MATLAB R2016a   

%   

%  Author and programmer: Seyedali Mirjalili %   
%         e-Mail: ali.mirjalili@gmail.com   

%                 seyedali.mirjalili@griffithuni.edu.au  %   

%       Homepage: http://www.alimirjalili.com   

% %   Main paper:   

%   S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris,  S.M. 
Mirjalili,   

%   Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems   

%   Advances in Engineering Software   

%   DOI: http://dx.doi.org/10.1016/j.advengsoft.2017.07.002   

%______________________________________________________________________  

______________   

   % 
function   

[FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,f obj) 
clc; clear; close all; data=LoadData();   

  nf=1;  fobj = @(u) 
FeatureSelectionCost(u,nf,data);   

dim = data.nx;   
Max_iter = 2; 
SearchAgents_no = 5; 
lb=0; ub=2;   
% lb=ones(dim,1)*lb;   

% ub=ones(dim,1)*ub;   

% If all the variables have equal lower bound you can just   

% define lb and ub as two single number numbers      
N=[1 dim];   % Size of Decision Variables Matrix   

% N=10; if size(ub,1)==1     
ub=ones(dim,1)*ub;     
lb=ones(dim,1)*lb; end   

    

Convergence_curve = zeros(1,Max_iter);      

%Initialize the positions of salps   

SalpPositions=initialization_sap(N,dim,ub,lb); FoodPosition=zeros(1,dim);  
FoodFitness=inf;   

    

%     for i=1:size(SalpPositions,1)   

%           k=rand();   

%           for j=1:size(dim, 2) %               ub=min(ub);   
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%               lb=min(lb);   

%               SalpPositions(i,:)=k.*(ub+lb)-SalpPositions(i,j);   

%           end   

%         end   
%calculate the fitness of initial salps   

   for 
i=1:size(SalpPositions,1)   

    SalpFitness(1,i)=fobj(SalpPositions(i,:)); end      

[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);   
   for 
newindex=1:N   

    Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:); end      

FoodPosition=Sorted_salps(1,:);   

FoodFitness=sorted_salps_fitness(1);   

% w_max = 1.5;   
% w_min = 0.4;   

% a = 0.02;   

% b = 25;#   

    

    
%Main loop   

l=2; % start from the second iteration since the first iteration was  
dedicated to calculating the fitness of salps while l<Max_iter+1   

%      w = w_max-(w_max - w_min)*l/Max_iter;
 

 %           
p = rand/(1 + exp(a*l-b));   

             c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the  

paper   
         for  

i=1:size(SalpPositions,1)   

           

        SalpPositions= SalpPositions';                   
if i<=N/2              

for j=1:1:dim                 c2=rand();                 c3=rand();                  
%%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%               if c3<0.5                        

SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)lb(j))*c2+lb(j));                  
else   

                    SalpPositions(j,i)=FoodPosition(j)c1*((ub(j)lb(j))*c2+lb(j));                 
end   
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             
end                

        elseif i>dim/2 && i<dim+1              

point1=SalpPositions(:,i-1);             point2=SalpPositions(:,i);   

               

            SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper         
end            

                  SalpPositions= 
SalpPositions';     end        
         for  
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i=1:size(SalpPositions,1)                   
Tp=SalpPositions(i,:)>ub';   

        Tm=SalpPositions(i,:)<lb';   

          

SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;   

        %    elite opposition learning   

%         for i=1:size(SalpPositions,1)   

%           k=rand();   

%           for j=1:size(dim, 2)   
%               SalpPositions(i,:)=k.*(ub+lb)-SalpPositions(i,j); %           end   

%         end   

           

        SalpFitness(1,i)=fobj(SalpPositions(i,:));                   
if  

SalpFitness(1,i)<FoodFitness             FoodPosition=SalpPositions(i,:);   

            FoodFitness=SalpFitness(1,i);   

                     
end     end         

    Convergence_curve(l)=FoodFitness;     l 
= l + 1; end %% Results   figure;   

plot(Convergence_curve,'LineWidth',2);  
xlabel('Iteration'); ylabel('Best 
Cost');      

   

PSO   

%  %    
clc; clear; 
close all;   

    

%% Problem Definition   

   
data=LoadData();    
nf=5;  % for 
j=1:nf   

    

CostFunction=@(u) FeatureSelectionCost(u,nf,data);        % Cost  
Function    nVar=data.nx;       % Number of Decision Variables      

VarSize=[1 nVar];   % Size of Decision Variables Matrix     
VarMin=0;         % Lower Bound of Variables VarMax=1;          

% Upper Bound of Variables   

    

    

%% PSO Parameters   

    

MaxIt=2;      % Maximum Number of Iterations   

   nPop=2;        % Population Size (Swarm 
Size)      
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% w=1;            % Inertia Weight   

% wdamp=0.99;     % Inertia Weight Damping Ratio   

% c1=2;           % Personal Learning Coefficient   

% c2=2;           % Global Learning Coefficient      
% Constriction Coefficients phi1=2.05; phi2=2.05; 
phi=phi1+phi2;  chi=2/(phi-2+sqrt(phi^2-4*phi)); 
w=chi;          % Inertia Weight wdamp=1;        % 
Inertia  
Weight Damping Ratio c1=chi*phi1;    % Personal  

Learning Coefficient c2=chi*phi2;    % Global  

Learning Coefficient   

    

% Velocity Limits   

VelMax=0.1*(VarMax-VarMin);   

VelMin=-VelMax;   

    

%% Initialization   

   empty_particle.Position=[];  

empty_particle.Cost=[]; empty_particle.Out=[]; 
empty_particle.Velocity=[]; 
empty_particle.Best.Position=[]; 
empty_particle.Best.Cost=[]; empty_particle.Best.Out=[];   

   
particle=repmat(empty_particle,nPop,1);      

BestSol.Cost=inf;    
for i=1:nPop   

       

    % Initialize Position   

    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);        
    % Initialize Velocity     particle(i).Velocity=zeros(VarSize);   

       

    % Evaluation     [particle(i).Cost,  

particle(i).Out]=CostFunction(particle(i).Position);        

    % Update Personal Best     particle(i).Best.Position=particle(i).Position;     
particle(i).Best.Cost=particle(i).Cost;     
particle(i).Best.Out=particle(i).Out;   

       

    % Update Global Best      if 
particle(i).Best.Cost<BestSol.Cost   

           

        BestSol=particle(i).Best;   
             end   

     end      

BestCost=zeros(MaxIt,1);   

    

    
%% PSO Main Loop   
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   for it=1:MaxIt           

for i=1:nPop   

           

        % Update Velocity         particle(i).Velocity = w*particle(i).Velocity 
...              

+ c1*rand(VarSize).*(particle(i).Best.Positionparticle(i).P 

osition) ...   
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);         %  

Apply Velocity Limits         particle(i).Velocity = 
max(particle(i).Velocity,VelMin);         particle(i).Velocity =  

min(particle(i).Velocity,VelMax);            

        % Update Position          particle(i).Position = 
particle(i).Position + particle(i).Velocity;   

           

        % Velocity Mirror Effect   

        IsOutside=(particle(i).Position<VarMin | 

particle(i).Position>VarMax);         
particle(i).Velocity(IsOutside)=particle(i).Velocity(IsOutside) 

;   

           

        % Apply Position Limits         particle(i).Position = 
max(particle(i).Position,VarMin);         particle(i).Position = 
min(particle(i).Position,VarMax);   

           

        % Evaluation   

        [particle(i).Cost, particle(i).Out] =   

CostFunction(particle(i).Position);   

           

        % Update Personal Best          if 
particle(i).Cost<particle(i).Best.Cost              
particle(i).Best.Position=particle(i).Position;              
particle(i).Best.Cost=particle(i).Cost;             
particle(i).Best.Out=particle(i).Out;   

               

            % Update Global Best              if 
particle(i).Best.Cost<BestSol.Cost   

                   

                BestSol=particle(i).Best;             
end                end                       end   

         end        

    BestCost(it)=BestSol.Cost;   

          disp(['Iteration ' num2str(it) ': Best Cost = ' 
num2str(BestCost(it))]);   

         w=w*wdamp;   

       
% end   
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%% Results   

   figure;  

plot(BestCost,'LineWidth',2); 
xlabel('Iteration'); ylabel('Best Cost');   
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