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ABSTRACT 

The main aim of this research work was to use i t factorial analysis to predict 

the percentage extract of oxalic acid obtained from the bark of eucalyptus 

camaldulensis as a [unction of three operating parameters. Three 23 models were used 

and only two satisfy the G-test. The obtained equations are: 

First Model: 

Vel'sion l : y = 2.022 - 0.434xl - 0.411 X2 - 0.423x3 - 0.342xlx2 + 0.338x,x3 

Vel'sion: 2: y = 2.022 + 0.434xl + 0.4llx2 + 0.423x3 - 0.342xJX2 + 0.338xJX3 

Where Xl= mass, X2= size and X3= time. 

Second Model: 

y = l.327 + 0.260Xl - 0.438x3 - O.314xlx2 

Where x,= concentration, X2= time and X3= size. 

It was found out that for the first model mass, time and size are inversely proportional 

to the percentage extract. Nevertheless, for the second model, concentration is 

directly proportional to the percentage extract while time and size are inversely 

proportional to the percentage extract oxalic acid obtained . 

. The two models that satisfy the G-test were adequate but the first model was 

more accurate than the second. During the course of the work, a computer program 

that can implement the model and prediction calculation was developed. The 

progr~m can then be used to get a model and predict the percentage extract [or three 

operating variables, which faUs within the range of the data used for the 2k designs. 

The program is an interactive Pascal program that can be used for 22, 23 and 24 

factorial analyses. 
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CHAI>TER ONE 

1.0 INTI~ODlJCTION 

The production ', of useful raw materials from the parts of trees like the bark, 

stem twig, culm, leaves etc. is as old as humanily ~itself. Even the ancient man 

extracted raw materials like herbal-medicine and fibres from parts of trees. Nowadays 

most of the raw materials for manufacturing drugs are extracted from parts of trees. 

With recent developments more raw materials are found to be present in the bark and 

other parts of trees. 

Eucalyptus is a large genus of trees and shrub native of Australia, New 

Zealand, Tasmania and Malaysia (Anonymous, 1994). There are 650 -700 species of 

I 

eucalyptus, of which eucalyptus camaldulensis is among. Eucalyptus camaldulensis 

was introduced to Nigeria in 1916 and since then it has been cultivated in large 

number in Nigeria especially in savannah region of the country. Areas of Nigeria 

where eucalyptus is cultivated include the Jos Plateau, Kaduna, Kano and Niger State. 

Oxalic acid is a colourless, crystalline, toxi.c organic compound belonging to 

the family of carboxylic acids. Oxalic acid is widely used as acid rinse in laundries, 

where it is effective in removing rust and ink stains because it converts most o[ 

insoluble ion compound into soluble complex ion. For the same reason, it is the chief 

constituent of many commercial preparations used [or removing scales from 

automobile radiators. Oxalic acid was first prepared synthetically by a Swedish 

chemist, Carl Wilhelm Scheel, in 1776. It was manufactured by heating sodium 

formate in the presence of an alkali catalyst or by oxidizing carbohydrates with nitric 

acid (Anonymo-us,~ 982). 



However, oxalic acid has wide range of industrial application, but most of the 

oxalic acid used in Nigeria are imported. As a result, over the years, research is on 10 

produce oxalic acid locally. Investigation on eucalyptus camaldulensis revealed that 

the bark contains calcium oxalate (Shafii ,1998). Because of the presence of calcium 

oxalate in the bark of eucalyptus camaldulensis, oxalic acid is produced by reacting 

the grinded bark with sulphuric acid as summarized by the equation below: 

Arter reaction for a chosen time, oxalic acid is obtained by concentrating the resulting 

filtrate. 

A lot of work has been done by final year students of this department on the 

production of oxalic acid from the bark of eucalyptus camaldulensis. Each student 

varied factors such as particle size, temperature, reaction time, acid concentration, 

volume of acid and mass of sample. It is the combination of these factors that I will 

use to analyze the available results. 

The analysis is focused on using statistical investigation to analyze and predict 

the percentage extract of oxalic acid . There are several experiments which require 

statistical investigation. These are characterized by the nature of treatments under 

investi,gation and also the nature of comparison required among them so as to meet 

the objective of the experiment. There are three main types of experiment: (i) varietal 

trials, (ii) factorial experi~nent, and (iii) bio-assays. 

In the course of this work, factorial experimental analysis will be used to 

,analyze and predict the percentage extract with 3 factors at 2 levels i.e 23 factorial. 

Factorial experiment involves simultaneously more than one factor each at two or 

more levels. [f the number of levels of each factor in an experiment is the same, the 

experiment is called symmetrical factorial ; otherwise, it is called asymmetrical 

factorial or sometimes mixed factorial. These experiments provide an opportunity to 

2 



study not only the individual effects of each factor but also their interactions. When 

the experiments are conducted factor by factor, changing the levels of one factor at a 

time and keeping the other factors at constant levels, the effect of interaction cannot 

be investigated. In many biological and clinical trials, factors are likely to have 

interactions. Therefore, factorial types of experiments are more informative in such 

investigations. They have the further advantage of economizing on experimental 

resources. When experiments are conducted factor by factor, much more resources are 

required for the same precision than when they are tried in factorial design (Das and 

Giri, 1979). 

A 2k Full Factorial experiment entails the choice of factors and their levels 

(high and low). The response variable is also clearly defined for any experimental 

data. After necessary statistical test, a model equation that describes the process 

results. The model equation can also be used to predict percentage extract for the 

variables within the range of the chosen levels. 

Finally, a computer program will be developed which codes the steps of 

getting the model equation used to predict the percentage extract. And the results will 

be simulated by the program for comparison with the experimental results. 

1.1 AIMS AND OBJECTIVES 

l. To use 23 full factorial design equation in predicting the percentage extract of 

oxalic acid from the bark of eucalyptus camaldulensis. 

2. To see the effect(s) of chosen factors (operating variables), on the percentage 

-extract. 

3. To produce a comp.uter program that can be used for complementing 23 

f.aclOrial design ~is. 

4. J:o CQrnpare the r~ult for hand calculation with that of the program. 

S-. . 'Eo -see how choice of level of factors affects the model equation. 

3 



CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 EUCALYPTUS AND ITS S()EClES. 

The word 'Eucalyptus ' is of Greek origin meaning "well covered" (Keay, 

19H9). Eucalyptus is a large genus of trees and shrub, native of Australia, Tasmania, 

New Zealand and Malaysia and near by island (Anonymous, 1982). The height of 

eucalyptus tree varies from one specie to the other. The smallest may be less than 6.5 

feet (2 meters) tall, while the tallest may be about 330 feet (100 meters) tall" 

(Anonymous, 1994). 

The leaves of eucalyptus are hard oblique or vertical, with leaves of many 

species containing aromatic oil called eucalyptus oi\. The margins are smooth, but the 

edges 0 [few species are wavy or slightly toothed. The fruit of eucalyptus are capsules 

surrowlded by a wood, cap shaded receptacle and contains numerous minute seeds. 

The capsule is topped by a disc that breaks up into two to seven distinct valves 

depending on the specie. Some seeds are prominently winged while others are smooth 

or sculptured (Anonymous, 1994). 

2.1 .1 EUCAL VPTUS SPECIES 

There are 650- 700 species as well as subspecies of eucalyptus. Some species 

of eucaJyptus are given below starting with the raw material of this work i.e. 

eucalyptus camaldulensis. 

1. Eucalyptus cameldulensis: This specie is widely cultivated in plantation and 

from self sowed seed; variabJe and hybridizing with other species. The leaves 

are narrowly lanceolate up to 25cm long and 1.5cm broad while the bark is 

smooth, ash coloured and peeling. 
4 



2. Eucalyptus cloeziana: This is another specie with bro\vn stingy bark. The 

leaves are lanceolate and up to 12cm long and 3cm broad. 

3. Eucalyptus citriodora. This is widely grown in towns for decoration with 

smooth and polished bark. The leaves are lanceolate and are 16cm long and 

2cm broad, they are also strongly lemon- scented. 

4. Eucalyptus deglupta: Most of this species are large with smooth reddish bark. 

The leaves are ovate-Ianceolate, they are up to 14cm long and 7cm broad. 

5. Eucalyptus torelliana: They are usually planted in the towns for shade. The 

bark is scaly and persistent below smooth and peeling above (Keay 1 89). 

These are just few out of the many spe<;:ies of eucalyptus trees. 

2.1.2 ECONOMIC IMPORTANCE OF EUCALYPTUS 

Eucalyptus Tree is of great economic impol1ance because of the valuable 

products obtained from it. Some of the uses to which eucalyptus can be put in to are 

given below. 

1. Tannin: This is usually contained as soluble materials in the bark of 

eucalyptus species. As the name implies tannins are used for tanning skin of 

animals to remove the hair and improve their quality. The tanning process 

converts raw hides to leather (Irwin, 1981). Tannins can be exploited for 

commercial purposes, sold to various tannaries and leather factories which at 

present depend on imported mineral tannins. 

2 Alkanoids: They are obtained on commercial scale from the leaves and bark 

of eucalyptus as drug rutin. Alkanoids are also chemically basic compounds 

with an important physiological activity as analgesics in medicine. , 
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3. Charcoal: This yet another raw material that could be derived from the bark 

of eucalyptus. Apart /i'OIll the use in the proouclion or brcad by the supply of 

heat in most African countries, most eucalyptus trees carbonize easily 

providing good commercial charcoal. The charcoal from eucalyptus tree 

yields substantial amount of energy of about 7, 900 calories per kilogram 

against 4700 calories per kilogram from wood (Hill, ] 979). 

4. Essential oil: The essential oils found in eucalyptus species are extracted from 

the leaves of eucalyptus citriodora, eucalyptus robusta, eucalyptus smitti and 

eucalyptus globulus (Anonymous, ] 91:12). The oil finds a wide application in 

our day-to-day life. Among the used of the oil is that it could be used to 
, 

manufacture performs and soaps. The terpene and ketone derivatives in the oil 

are used as stain removers and also used in veterinary medicine while the 

pi peritone is used in manufacture of synthetic thymol and menthol. 

5. Fuel wood : Eucalyptus trees are also used as fuel wood. The wood of most 

eucalyptus species burns well when air-dried and leave little ash. Eucalyptus 

plantation and other forest resources can supply a substantial part of the 

household fuel needed. One of the most important advantage of using 

eucalyptus as a fuel is that it does not smoke (Hill, 1979). 

6. Timber: Eucalyptus trees are also grown to serve as timber, which vary in 

properties and uses. Because of the height of the tree, it can also be used as 

electric and telephone poles. The trees are also used in making canoes. The 

important timber species are eucalyptus maculata and eucalyptus citriodora 

(Anonymous, 1994). 

7. Pulp and paper: Many paper industries use the bark of eucalyptus species as 

raw material for the production of paper. The world production of pulp from 

eucalyptus is over one million tonnes annually. 
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8. Omamentals: As ornamentals, eucalyptus are grown for their attractive 

form and foliage, colourful !lowers, or decorative bark. The scarlet-flowering 

gums (E. ficifolia and E. calophylla) are two widely planted trees with brightly 

coloured flowers . Eucalyptus citriodora is grown for its red flowers and 

attractive form. Species with decorative bark include the red iron bark (E, 

sideroxylon), which has black, furrowed bark; the spotted gum (E. maculata), 

which has smooth, mottled bark in shades of gray, tan, and reddish brown; and 

smooth white bark ,that trails in long ribbons from the branches (Anonymous, 

1994). 

Othel' uses 

Local medicines 

Production of local ink 

Wind breaks etc. 

2.2 OXALIC ACID 

Oxalic acid otherwise known as ethanedioic acid is an important individual 

diacids. It exists usually as a crystal hydrate, HOOC-COOH.2H20, whose melting 

point is 101°C and anhydrous acids which melts at 189.5°c. Oxalic acids are found 

naturally as oxalates in free state. Calcium oxalate is contained in all plants, while 

potassium acid salt, KOOC-COOH in dock, oxalis. Oxalates of alkaline metals 

dissolve in H20, while calcium oxalates practically does not dissolve in cold I-hO. 

When metabolism is upset in human organism, calcium oxalates accumulates, causing 

the formation of stones in the liver, kidneys and urinary tracts. 

The low solubility of calcium oxalate is used in analytical chemistry for 

quantitatively and qualitatively determination of calcium. 
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2.2.1 USES AND,IMPORTANCE 

Oxalic acid is used industrially for dyeing textiles and removing rust stains 

and ink blots from them, because it converts most insoluble ionic compounds into 

soluble complex ion. And for the same reason, it is the chief constituent of many 

commercial preparation used [or removing scales [rom radiators of automobile 

(Anonymous, 1982), 

Being a product o[ oxidation of many organic substances, oxalic acid itself is 

readily oxidized. For example, it is oxidized by potassium permanganate thus: 

[0] 
HOOC-COOH > 2C02 + H ,O ............. 2.1 

KMn0
4 

• • 

This property is used in Analytical chemistry for preparing standard solutions 

of potassium permanganale. 

Oxalic acids is used for the manufacture of ink and for bleaching straw. It is 

also used in Leather industries in manufacture of dyes and in the preparation of 

related compounds such as glyoxalic acid and glycolic acid . (Anonymous, 1994). 

2.2.2 PHYSICAL AND CHEMICAL PROI>ERTLES 

PhysicaIIH·operties: ' 

It is a colourless crystalline solid, which sublimes at 160°C and is fairly 

soluble in water. It can also be obtained as clystalline dihydrate, (COOH)2.21-hO 

(~rene and Kitwood, 1979). Oxalic acids are also soluble in ethanol but insoluble in 

CHCh. 

Oxalic acid is very poisonous; it melts at 1 Ol.SoC when hydrated, while when 

anhydrous, the melting point is 189.5°C (Anonymous, 1982). 

8 



Chemical pl'opel'ties: 

In most chemical reactiolls, oxalic acids shows Ihe typical properties or 

carboxylic groups (Arene and Kitwood, 1979). This will be illustrated by some of the 

chemical process below: 

1. Esterification: Anhydrous oxalic acid reOuxed with excess methanol or 

ethanol yields esters without need of stronger acid as catalyst: 

11. Amide formation : Ammonium oxalate yields some oxamide on heating 

Ill. Acid chlol'ide fOl'lnation : Oxalyl chloride (b .p.M °C) is obtained by the action 

of Phosphorus pentachloride and similar reagents on oxalic acid. 

(C02Hh + 2PCls ~ (COClh + 2POCh + 2HCl .. . ..... . .. 2.4 

IV. Alkali metal oxalates heated with Soda lime yield hydrogen and carbonate. 

Formally at any rate this reaction is analogous with the decarboxylation of 

other carboxylic acid by this method. (Dazaley, 1979). 

fO H 
2 + 20H(-) heal > 

CO H dry 
2 

2( - 1 
2COC03 +H: .. ... . ........ . .. 2.5 

The above reactions are more or less typical carboxylic acid behaviour. 

Oxalic acid does not form an anhydrous. 

Vo On heating with concentrated H2S04 ,oxalic acid and oxalutes are dehydrated 

to an equimolar mixture of carbon monoxide and dioxide; 

) 
Con.H 2S04 

(C02H 2 > CO + CO2 + H20 ...... ... ..... ...... . 2.6 
heat 

This behaviour is the familiar elementary test oxalic acid (Dazeley, 1979). 
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2.2.3 METHOD OF PRODUCTION 

The usual laboraLolY method l'oJ' prepuring oxalic acid is by oxidizing sucrose 

with concentrated nitric acid in the presence o[ vanadium pentoxide. (Anonymous, 

] 994) 

In this work the data is generated [rom the production of Oxalic acid [rom the 

bark o[ eucalyptus camaldulensis. This is possible because o[ the presence of calcium 

oxalate in the bark o[ the eucalyptus tree. Sulphuric acid is added to the grinded bark 

so that the calcium oxalate in the bark. reacts with the sulphuric acid to give oxalic 

acid and calcium sulphate as a by-product, thus: 

Calcium Sulphuric Oxalic Calcium 

oxalate acid acid sulphate 

The experimental procedure o[the process is given below: 

Expel'imentaJ pl'ocedUl'e 

The bark of eucalyptus camaldulensis was soaked in water to extract the 

Tannin and other water-soluble contents and then dried . The bark was crushed in a 

mortur and screened into samples of different size ranges. 

A known sample weight of each size range was put in a conical flask and a 

chosen volume of a known concentration of dilute H2S04 acid solution was added to 

it. The mixture was abritated [or a specified time at a specified temperature (TEMP 1) 

on a hot plate equipped with a magnetic stirrer. 

10 



The hot solution was filLered into a beaker. The filterate (FIL T ]) obtained 

was weighed and then allowed to cool ror an hour at room temperature. The thick 

precipitate of calcium s\Jlphate formed after cooling was filLered ofT and weighed. 

This was called PREPT 1. The filLerate obtained which constituted the second 

IiIterate (FIL T 2) was also weighed . The second /lIterate was concentrated to about 

one-third of its original volume at a specified temperature (TEMP 2) in a moisture 

extraction oven, till the colour of the filtrate turns wine red. This filtrate was referred 

to as ' concentrated filLrate ' (FILT 3). 

The concentrated filtrate was allowed to cool at room temperature for another 

one hour, during which another preci'pitate (~REPT 2) of CaS04 was formed . This 

precipitate was filtered olI to obtain the final filtrate (FILT 4). The final filterate was 

weighed and kept in a refrigerator overnight to allow the oxalic acid contained in it to 

crystallize. 

The supernatant Jiquid was decanted from the oxalic acid crystal which were 

carefully rinsed with very cold water (temperature below 4°C) to remove traces of 

H2S04 adhering to the crystals. The low temperature was necessary to prevent 

dissolution of the oxalic acid. The percentage purity of the oxalic acid obtained was 

determined by volumetric analysis. The whole procedure with its set of operating 

variable constituted a run. The results were tabulated accordingly in Chapter four. 

.2.3 BASIC PRINCIPLE OF EXPERIMENTAL DESIGN 

If an experiment is to be performed most efficiently, then a scientific approach 

to planning the experiment must be considered. By statistical design of experiments, 

we refer to the process of planning the experiment so that appropriate data will be 

collected, which may be analyzed by statistical methods resulting in valid objective 
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conclusions. The statistical approach to experimental design is necessary if we wish to 

draw meaningful conclusions from the data. When the problem involves data lhat are 

subjected to experimental errors, statistical methodology is the only objective 

approach to analysis. Thus, there are two aspects to any experimental problem, the 

design of the experiment and the statistical analysis of the data. These two subjects 

are closely related, since the method of mlalys is depends directly on the design 

employed. 

The two basic principles of experimental design are replication and 

randomization. By replication, we mean a repetition of the basic experiment. If a 

treatment is allotted to ' r ' experimental units in an experiment, it is said to be 

replicated r times. If in a design each of the treiltments is replicated r times, the design 

is said to have r replications. Replication is necessary to increase the accuracy of 

estimates of the treatment eITects. It also provides an estimate of the error variance 

which is a function of the difference among observations from experimental units 

under identical treatments. Although the more the number of replications, the better it 

is, so far as precision of estimates is concerned, it cannot be increased indefinitely as 

it increases cost of experimentation. 

Randomization is the cornerstone underlying the use of statistical methods in 

experimental design. By randomization we mean both the allocation of the 

experimental material and the order in which the individual runs or trials of the 

experiment are to be performed are randomly determined. Statistical methods require 

that the observations (or errors) are independently distributed rmldom variables. 

Randomization usually makes this assumption valid. By properly randomizing the 

experiment, we will also assist in ' averaging out' the effects of extraneous factors that 

may be present. 
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In order to use the statistical approach to designing and analyzing an 

experiment, it is necessary that everyone involved in the experiment has a clear idea 

in advance o[ exactly what is to be studied, how the data is to be collected, and at least 

a qualitative understanding of how this data is to be analyzed. An outline of the 

recommended procedure is as follows : 

I . Ilccognition and statcmcnt of the p.·oblcm: This may seem to be a rather 

obvious point, but in practice it is often not simple to realize that a problem requiring 

experimentation exists, and to develop a clear and generally accepted statement ofthis 

problem. It is necessary to develop an ideas about the objectives of the experiment. 

A clear statement of the problem often contributes substantially to a better 

understanding of the phenomena and the final solution of the problem. 

2. Choice of facto.·s and levels: The experimenter must select the independent 

variables or factors to be investigated in the experiment. The factors in an experiment 

may either be quantitative or qualitative. If they are quantitative, thought should be 

given as to how these factors are to be controlled at the desired values and measured. 

We must also select the values or levels of the factors to be used in the experiment. 

These levels may be chosen specifically, or selected at random [rom the set o[ all 

possible factors levels. 

3. Selection of .·esponse va.-iable: In choosing a response or independent 

variable, the experimenter must be certain that the response to be measured really 

provides information about the problem under study. Thought must also be given to 

how the response will be measured, and the probable accuracy of the measurements. 
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4. Choice of expel'imental design: ll1is step is of primary importance in the 

experimental process. The experimenter must determine the difference in true 

response he wishes to detect and the magnitude of the risk he is willing to tolerate so 

that an appropriate sample size (number o[ replicates) may be chosen. He must also 

determine the order in which the data will be collected and the method of 

randomization to be employed. It is also necessary to maintain balance between 

statistical accuracy and ·cost. Most recommended experimental designs are both 

statistically efficient and economical, so that the experimenter' s eITolis to obtain 

statistical accmacy usually result in economic efficiency. A mathematical model for 

the experiment must also be proposed, so tha,t statistical analysis o[ the data may be 

performed. 

5. PCl'fomling the expel'iment: This is the actual data collection process. The 

experimenter should carefully monitor the process of the experiment to ensme that it 

is proceeding according to the plan. Particular attention should be paid to 

randomization, measurement accuracy, and maintaining as uniform an experimental 

environment as possible. 

6. Data analysis: Statistical methods should be employed in analyzing the data 

from the experiment. Numerical accuracy is an important concern here, although 

present day computers have largely relieved the experimenter [rom this problem, and 

simultaneously reduced the computational burden. Graphical methods are also 

frequently useful in the analysis process. 
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7. Conclusions and recommendations: Once the data have been analyzed, the 

experimenter Illay draw conclusions or inferences about hi s results. The statis ti ca l 

inferences must be physically interpreted, and the practical significance of those 

finding evaluated. Then recommendations concerning these finding must be made. 

These recommendations may include a further round of experiments, as 

experimentation is usually an iterative process, with one experiment answering some 

question and simultaneously posing others (Montgomery, 1976). 

2.3.1 FACTORlAL EXPERIMENT 

rn factorial experiments, coml1ination of two or more levels of more than one 

[actor are the treatments. For example with two [actors, we can have (i) nitrogen 

fertilizer at two levels, denoted by n" and n2 and (ii) irrigation at two levels, I, and b 

in an agricultural experiment. We can form the following [our combinations taking 

one level [rom each factor, lIn \, Iln2, hnl and hn2. Such combinations form treatments 

in factorial experiments. The comparison required in this type of experiments are not 

the pair comparison as in varietal trials but a special ty pe of comparison called main 

effects and interactions (Das and Giri , 1979). 

2.3.2 2k FULL FACTORIAL EXPERIMENT 

There are several special cases of general factorial deigns that are important 

because they are widely used in research work and also because they form the basis of 

other designs of considerable practical values. The first of these special cases is that 

of two [actors, each at only two levels. These levels may be quantitative or 

qualitative, such as two values of temperatures, pressure, or time; or they may be 

qualitative such as two machines, two operators, the "high" and "low" levels of 

factors, or perhaps the presence and absence of a factor. Such design requires: 2 x 2 x 
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2 ...... x2 = 2k observations and is called a 2k factorial design. The special second case 

is that of k factors, each at three level s, which is cnlleu a 3k fac torial ucsig ll 

(Montgomery, 1970). 

A 2k factorial design requires us to choose just two levels [or each factor and 

then calls for -simulati.on runs at each of the 2k possible combinations of factor levels. 

Usually we use a minus sign with one level oLa factor and a .plus sign with the other 

level. Which sign is associated with which level is quite arbitrary, although for 

quantitative factors it is less .confusing if we associate the minus .sign with lower 

numerical value. No general prescription can be given for how one should specify the 

levels (Averill and Kelton, 1996). 

2.3.3 A 22 DESIGN 

The first design in the 2k series is one with only two factors say A and B, each 

run at two levels. This design is the simplest case of 2k series and is called a 22 

factorial design. The levels of the factor may be arbitrarily called " \ow" and "high". 

The treat.ment combination and response of this design is displayed below: 

Table 2.1: Treatment combination and responses for 22 design. 

Treatment . Response 

Combination R. , 

A low, Blow Rl 

A high, Blow R2 

A low, B high R3 

A high, B high. ~. 

The treatment combinations in this design are shown graphically in Figure 2.1. 

By convention we denote the effect of a factor by a capital Latin letter. Thus "A" 

refers to the ·effect of factor A. "B" refers to tHe effect of factor Band "AB" refers to 

the AB interaction. In the 22 .design the low and high levels of A and B are denoted by 

o and 1, respectively on the A and B axes. 
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The coordinates of the vertices of the square also represent the four treatment 

combinations as follows : 00 represent both factors at low level, 10 represents A at the 

high level and B at the low level , 0 I represents A at the low level and B at the high 

level, and 11 represents both factors at the high level. These treatment combinations 

are usually represented by lower case letters, as shown in Figure 2, J, We can see from 

the figure that the corresponding lower case letter denotes the high level of any factor 

in the treatment combination, and the low level of a factor in the treatment is denoted 

by the absence of the corresponding letter. Thus, "a" represents the treatment 

combination of A at the high level and B at the low level, "b" represents A at low 

level, and B at high level, and "ab" represents both factors at high level. By 

convention "1" is used to qenote both factors at' the low level. 

The average effect of a factor is the change in the response produced by a 

change in the level of the factor, averaged over the levels of the other factors . 

High 

en 

~ 
"" ~ 

Low 

b = R3 

(1) = RI 

o 
Low 

Factor A 

ab = l~ 

High 

Fig. 2.1: T."eatment combination in a 22 design 

The lower case letters "1 " , "a", "b" and "ab" now represent the total of all the 

re~ponses of all treatment combination, as illustrated in Fig 2.l . Now the simple 

eITects of A at the low level ofB is 

... .. ... .... .. ... 2.9 

and the simple effect of A at the high level ofB is 

[ab-b] = ~-R3 .. . .. ... . .. . .. . .. 2.10 
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Averaging these two quantities yields 

.. .. ... ..... .. , .. 2.11 

The average B effect is found from the simple effec t B at low level of A 

I. e. .................. . 2.12 

and at high level of A 

I.e [a b - aJ = l~ -R2J ..................... 2. 13 

so that 

........ . ............ 2.14 

The average effect for the interaction AB is the diiTerence between the eiTects 

of A at the low level ofB and the eiTect of A at low level ofB. Thus: 

AB = ~ { fab-b]-[a-(1)]} = ~ {[~-R3]-[R2-Rd} 
2 2 

1 = - [ab+(l)-a-b] = 
2 

........ . .............. 2.15 

From Equation 2.11 contrast for estimating A is given by 

Contrast A = a b+ a - b - (I) 

.. . ................... 2. 16 

All other contrasts are calculated in a similar manner Kempthorne (1952) and 

Anderson and McLean (1974) call this contrast the total elTect of A. 
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2.3.4 SIMPLE AND AVERAGE EFFECTS 

To illustrate the simple e[fect of a factorial experiment, let us consider an 

experiment on sugar beet with 2 factors. These ""'ere without nitrogen (no) versus 3 

cwt. sulphate of ammonia per acre, with nitrogen (n]) and depth of winter (shallow 

ploughing (7in) versus deep ploughing (1 J in) took place in late January, the nitrogen 

was applied in the late April, and the seed was sown early in May. Since both [actors 

occur at 2 levels of variations, the experiment is described as 2x2 factorial 

experiment. The 4 treatment combinations are shown below: 

Table 2.4: Treatment combination and yield o[ sugar (cwt. per acre). 

Combination Yield (R) 

(I) no, 7in 40.9 R] 

a n] , 7in 47.8 R2 

b no, llin 42.4 R3 

ab n) , llin 50.2. R4 

The results might be summarized as follows . Considering the simple effect of 

nitrogen, from Equations 2.9 and 2.10, we might report that the application of 

nitrogen increased the yields by 

R2-R}= 49.8 -40.9 = 6.9 cwt 

with shallow ploughing and by 

~ -R3 = 50.2 - 42.4 = 7.8 cwt 

.with deep ploughing. These figures are called the simple effects of nitrogen. They 

represent the type of information that could be wanted for instance in giving advice to 

a farmer who always used shallow ploughing but was doubtful whether to apply 

nitTogen. For the simple effect of depth of ploughing from Equation 2.12 and 2.13 we 

might report that 11 in ploughing was superior to 7in by 
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R3 -RJ = 42.4- 40.9 = 1. 5 cwt 

in the abscnce of nitrogcn and by 

R-t - R2 = 50.2 - 47 .8 =2.4 cwt 

when nitrogen was applied. 

This is another way of looking at the results. It sometimes happens that the 

efTects of the factors are independent. By this we mean that the response to nitrogen is 

the same whether ploughing is shallow or deep, and that the difference between the 

efTects of deep and shallow ploughing is the same whether nitrogen is present or not. 

In this event, the two simple effects of nitrogen, 6.9 cwt and 7.8 cwt are 

estimates of the same quantity and differ only by experimental errors. On this 
, 

supposition, we would naturally average the two figures in order to estimate the 

response to nitrogen. The average, 7.4cwt, is called the average effect of nitrogen. It 

can be derived alternatively [rom Equation 2. I] thus : 

Y2(1'ti + R2 - R3 - R2) = Y2(50.2+ 47.8 - 42.4 - 40.9) = 7.4 cwt. 

Similarly, the average effect of depth of ploughing (1 J in minus 7 in) is the 

average of 1.5 cwt and 2.4' cwt, or 1.9 cwt. Note that the average e1Tect IS an average 

o[the simple effects. 

Consequently, j[ we are sure that the [actors operate independently, the 

summary that was given above in terms of the simple eITects may be replaced by 

another that is both more concise and more accurate. This mjght read as follows . ' 'The 

application of nitrogen increased the yield of sugar by 7.4 cwt, while 1 J in. ploughing 

increased the yield by 1. 9 cwt as compared with 7 in ploughing." It is worth repeating 

that when the factors are independent the figure 7.4 cw1 is the best estimate not only 

of the average response to nitrogen, but also of the response on plots ploughed to 7in 

and ofthat on plots ploughed to 11 in. In other words, the whole of the information in 

the experiment is contained in the average effects. 
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It is important to consider when the factors are independent. This is 

determined by knowledge or the processes by which the 1~lctors produce their c/rects. 

In the present example an agronomist might reason that deep ploughing should enable 

the plant to develop a more vigorous root system. With this the plant should be able to 

utili/.e more e lTectively any added nutrients such as nitrogen. Thus he might predict 

the response to nitrogen would be greater ,,,,ith deep than with shallow ploughing, 

though he would not expect it to be much greater. In short, he would predict that two 

factors would not be quite independent in their efTects (Cochran and Cox, 1957). 

In addition to the information that may be available from such reasoning, a 

factional experiment itself provides a -test of t~e assumption of independence. If the 

depth of ploughing does aITect the response to nitrogen, the difference between 7.8 

cwt. (the response to the nitrogen with deep ploughing) and 6.9 cwt. (the response 

with shallow ploughing) is an estimate of this e1Iect. The difference, 0.9 cwt. , can be 

tested in the usual way by a T-test. If the test proves significant, the assumption of 

independence is rejected by the data. The difTerence (sometimes divided by a 

numerical factor) is called the interaction between nitrogen and depth of ploughing. 

T-test is a special case of F-test (Linton,1965). 

Interchanging the roles of the two factors , allows us to consider whether the 

superiority of deep over shallow ploughing is aITected by the presence of nitrogen. To 

measure the interaction in this case, we subtract 1.5 cwt. (superiority of deep 

ploughing when no nitrogen is added) [Tom 2.4 cwt. (superiority when nitrogen is 

added). The difference is again 0.9 CM. It is easy to see that this equality always holds 

with a 2x2 experiment (Cochran and Cox, 1957). 
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Example 2.1 

To illustrate the average effect of a 22 factorial experiment, we use an 

illventolY model with two experimental factors, A and B. The "low" and "high" 

values chosen for A and B are given in the "coding chart" in Table 2.5. The design 

matrix and corresponding response variables are given in Table 2.6. (The sign for A x 

B interaction are also included). 

Table 2.5: Coding for A and B in the inventol1' model. 

Factors + 

A 20 60 

B 70 120 

Table 2.6: Design matrix !and empil"ical results in a 22 factolial design on A 

and B for the inventory model. 

Factor 

combination 
A B AxB Response 

1 + 118.280 

2 -I- 141 .060 

3 + 136.807 

4 + + + 152.789 

From Equation 2.11, the average effects are: 
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rearrangmg gl ves 

1\2( -1 J 8.280 + 141.060 - 136.807 + 152.789) 

19.381 

and 

B = J!2(-118 .280-141.060+ 136.807+ 152. 789) 

= 15.128 

and [or A x B interaction, 

AB = 1\2( 118.280 - 141.060 - 136.807 + 152.789) 

= -3.399 

Thus, the average effect of raising A from 20 to 60 was to raise the monthly 

cost by 19.381 , and raising B from 70 to 120 increase the monthly cost by an average 

of 15.128. Therefore it appears that the smaller values of A and B would be 

preferable, since lower monthly costs are desired. Since the A x B interaction effect 

is negative there is indication that lower cost are observed by setting both A and B at 

either their - or + levels rather than one at the - level and one at the + level. The 

magnitude (absolute value) of the average interaction effect is much smaller than the 

magnitudes of the average main effects, which often happens in factorial experiments. 

Calculation of average mam effects and interaction of a 2k factorial 

experiments is actually equivalent to estimating the parameters in a particular 

statistical regression model of how the response depends on the factors (Averill and 
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Kellon, 1996). For the model above this regression model is: 

R(A, B) = 11 + P XA + 0 XB + <p Xi\.XB + E ... .... .. .. .. .... 2.17 

Where R(A, B) = response as a [unction o[ A and B. 

In order to transform A and B to coded factors we use, 

Xu = 

(A - 40) 

20 

(B - 95) 

25 

...... ... ..... .. .. . 2.18 

.... .... ......... 2.19 

and E is random variable with mean zero. Given this regression model, we could 

estimate 11 , p, 0 and <p by ordinary least-squ~re regression and use the fitted model to 

forecast the value of ElR(A, B)] at combinations of A and B where no simulation has 

been done. Moreover the average main effect A is twice p, the least-square estimator 

of p. Similarly, B=2 0, . ... .. .. .. .. ... . .. 2.20 

AB = 2<p ...... 2.21 and 
1 4 

'I = - I R; .... .. ... 2.22 
4 ;= 1 

Therefore the regression coefficient could be calculated directly from: 

I 4 

'7 = 2! L (l~) ... .......... .. ...... . 2.23 
;=1 

1 4 

fJ = ¥ L (XARi) .... . .. ..... ... .. .. ... 2.24 
;=1 

t 4 

¢ = 2k L (Xn Ri) ... ...... ... ......... 2.25 
I I 

I 4 

rp = 2! I (XAXBRi) ................. 2.26 
1: 1 

where k = 2 
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2.3.5 ADVANTAGE OF FACTORIAL EXPERIMENT WHEN FACTORS 

ARE INI)EI'ENI>ENT 

The advantages of factorial experimentation naturally depend on the purpose 

of the experiment. We suppose for the present that the purpose is to investigate the 

effects of each factor over some pre-assigned range that is covered by the levels of 

that factor, which are used in the experiment. In other words the object is to obtain a 

broad picture of the efTects of the factors rather than to find, say the combination of 

the levels of the factors that give maximum response. One procedure is to conduct 

separate experiment each of which deals only with a single factor. Another is to 

include all factors simultaneously by means of a,factorial experiment. 

If all factors are independent in their eITects, tbe factorial .apl)roach will result 

in a considerable saving of time and maternal devoted to the experiments. The saving 

results from two facts . First, as we have seen, when [actors are independent, all simple 

effects of a factor are equal to average effect, so that average effects are the only 

quantities needed to describe fully the consequences of variations in the factor. 

Secondly, in a factorial experiment, each average eITect is estimated with the same 

precision as if the whole experiment had been devoted to that factor alone. Thus, in 

the preceding example, half the plot receives nitrogen and half do not. Consequently, 

the avera..ge effect of nitrogen is estimated just as precisely as it would be in a simple 

experiment of the same size devoted to nitrogen alone. The some result holds for the 

err:ect of depth of ploughing. The two single-factor experiments would require twice 

the total number of plots in order to equal the precision obtained by the factorial 

experiment. If there are n factors, all at two levels and independent, the single-factor 

approach would necessitate n times as much experimental material as a factorial 

arrangement of .equal precision. 
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2.3.6 FACTOIUAL EXPERIMENTATION WI-lEN FACTORS ARE 

DEPENDENT 

We assume that the purpose is still to investigate each factor over the range 

represented by its levels. When factors are not independent the simple effects of a 

factor valY according to the particular combination or the other factors with which 

these are produced . In this case, the single-factor approach is likely to provide only a 

number of disconnected pieces of information that cannot easily be put tqgether. In 

order to conduct an experiment on a single factor A, some decision must be made 

about the levels of other factors B,C.,D say, ~hat are not used in the experiment (e.g, 

whether all plots should be ploughed 7in, 9in, or II in deep in an experiment on 

nitrogen). The experiment reveals the effects or A for this pal1icular combination of 

B,C, and D, but no information is provided for predicting the effects of A, with any 

other combination of B C and D. With.a factional approach on the other hand, the 

eITects of A are examined for every combination of B, C, a11d D, that is included in 

the experiment. Thus a great deal of information is accumulated both about the effect 

of the factor and about their interrelationships. 

In this connection, Fisher (1966) has pointed out that it is sometime advisable 

to introduce into an experiment an extra factor that is not itself of interest, in order 

that the experiment may form the basis for sounder recommendations about the other 

factors. In agricultural experimentation in Britain, farmyard manure has served as a 

subsidiary factor of this kind (Cochran and Cox, 1957). 
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2.3.7 A 23 DESIGN 

II' three factors A, n, and C each at two levels. are under study. the desigfl is 

called a 2~ factorial , and eight treatment combinations can now be displayed 

graphically as a cube, as shown in Figure 2.2. The treatment combination in standard 

order are (1), a, b, ab, c, ac, be and abc (Montgomery, 1 976). 

High, -

Low, 0 

Figure 2.2: 

be 

ctJ----+-----o 

(1) 

/",/ 

o 

I 
I 

:b 
,;----------

a 

Low Fac\or A High 

abc 

oh /l . l1igh 

/"FaC\OrB 

0, Low 

T.'eatment combination in 23 design. 

lIthe factors A, B, and C are changed to 1, 2, and 3 the form of the experiment 

can be represented in tabular form, as exemplified in Table 2.7. 
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Table 2.7: Design matrix table fOl" a 23 factol"ial design 

Factor Xo x, :'1: 7. X, x ,X7. X IX, )\ 7.)\, X , X7,:'I: , Resp, (R j) 

comb. 

1 = (1) + + + + RJ 

2= a + + + + R2 

3 = bc + + + + RJ 

4 = ab + + + + ~ 

5 = c + + + + Rs 

6 = ac + + + + ~ 

7 ::; nc + + + + R7 

8 = abc + + + + + -t- + + Rs 

The variables Ri for i = 1, 2 .. .... .. 8 are (he values of the response when 

running the simulation with ith combination of factor .levels. For example, ~ is the 

response resulting from running the simulation with factor 1 at its + level, fac tor 2 at 

its - level, and factor 3 at its + level. We shall see later that writing down this array of 

+ and - signs, called the design matrix, facilitates calculation of the factors eITects and 

interactions. 

The average main effect of factor j is the average change in the response due 

to moving factor j from its - level to its + level while holding all other factors fixed . 

For the 23 factorial the average main efTect of design of factor 1 is thus : 

Note that in combinations J and 2, factors 2 and 3 remain fixed, as they do m 

combinations 3 and 4, 5 and 6, and 7 and 8. The average main effect of factors 2 is 

(R) - R\)+ (R4 - Rz)+ (R, - Rs)+ (I?g - R6 ) 
e2 = 4 .. . ..... . ....... 2.28 
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and that of factor 3 isS 

Examination of Table 2.7 and the above expression for average main effects ej's lead 

to an alternative way of defining average main effects, as well as a simpler way o[ 

computing them. That is, ej is the difference between the average response when 

factor j is at its + level and the average response when [actor j is at its - level. TIlUS, 

to compute ej we simply apply the signs in " factor j" column to the corresponding 

Rj 's, add them up and di vide by 2k-l. For example, in the 23 factorial design of Table 

2.7, 

- R[ - IS + ~ + R4 - Rs - R(, + ~ + J~ 
e2 = 4 ............ .. ..... 2.30 

which is equivalent to earlier equation 2.28. 

The average main effects measures the average change in the response due to 

a change in an individual factor. However, it could be, that the effect of factor j] 

depends on the level of some other factor, j2, in which case factors j 1 and j2 are said to 

interact. We measure the degree of this interaction by the two factor interaction 

effect, ej I h between factors j 1 and h it is defined to be half the difference between 

the average eITect of factor jI, when factor j2 is at its + level (all factors other than j 1 

and j2 are held constant) and average effect o[ j I when j2 is at its - level. (ej 02 is also 

called jl Xj2 interaction.) For example in the design of Table 2.7 we have: 
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As with main effects, there is a much simpler way to compute average interaction 

effects, based on examination of the design matrix. If we rearrange the above 

expression for en, [or example, so that the Rj ' s appear in increasing 

order of the i' s, we get: 

· ..... .. 2.34 

Now if we create column, labeled Xl x X3, o[ 8 signs by "mulLiplying" the ith sign in 

the " factor] " column by the ith sign ill "[actor 3" column, the product oflike signs is 

a "+", and the product of opposite signs is a "-". we get a column of signs which 

gives us precisely the signs of the Ri' S used to obtain e l3. As with main elTects, the 

divisor is 2k
-
l
. The computation of el2 and e23 are thus given below: 

and 

Finally, we note that two factors interaction effects are completely symmetric; 

that is, el2 = e21 , e23, = e32 etc. 

Although their interaction become more difficult, we can define (and 

compute) three and higher factor interaction effects, all the way up to k-factor 

. interaction. For example, in the 23 factorial design of Table 2.6, the three-factor 

interaction between fact<?r 1, 2 and 3 is half the different between the average two 

factor interaction effect between factor 1 and 2 when factor 3 is at it's + level and the 

average two-factor interaction effect between factors 1 and 2 when factor 3 is at its 

- level. That is, 
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e . = ~[(R~ - R7 ) - (R6 - l~) Y?4 - R3)- (R2 - RI )] 

In 2 2 2 

- RJ + I?:. + R) - R4 + Rs - R(, - R7 + ,~ 
= 4 .. ......... . .... ..... ........ 2.37 

The second expression for e l23 is obtained by multiplying the signs [rom 

columns [or factor 1,2, and 3 in Table 2.6 and applying them to Ri . The denominator 

is once again 2k
-
1 

. Three factors and higher interaction efTects are also symmetric, for 

example, el23 = e132 = em etc (Averill and Kelton, 1996). 

If the regression coefficients are named bo, b2, b12, etc using Equation 2.23-

2.26 the regression coefficient for 23 factorial are : 

and 

Or generally, 

') 2' 

b - - " Ri 0- 2k L. 
;=1 

Where bj = the coefficient of variables X),X2, XI2 etc, 

..... .. . .. .. .. ...... 2.3 8 

..... . ... ......... 2.39 

.......... . .. . ... 2.40 

.. . ............... 2.41 

.. ... ... . .. ........ 2.42 

Si = the sign along the column of the variable in question from the design 

matrix table and Ri = the response corresponding to Si . 
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2.3.8 A GENERAL 2k DESIGN 

Before any 2k factorial could be analyzed G-test is used to check if the output 

factors have the maximum accuracy of the replication . rt ascertains the possibility of 

carrying out regression analysis. The condition of homogeneity is: 

C [a ,(r - l), N] > Cea' ...... 00.00.00. 00. 00' 00 ... 2.43 

Here G-cal = ................... .... ... 2.44 

,< 

The value ofSu2 max and !Su2 are gotten from table of response and their replicate. 

The method of analysis that we have presented thus far may be generalized to 

the case of a 2k factorial design . If the coded factors are Xl, X2, Xl2 etc. The regression 

coefficient for response yi, may be calculated using the general formula 

.............. . ... 00' ... 2.45 

2" 

bj = -+ L (Siyi) 
2 1=1 

... .... ................. 2.46 

The significance of cocDicient of the regression model could be tested using 

the individual F- test. We use F-test by rejecting the null hypothesis, 

Ho: bj = () ....................... 2.47 

when Feal > Fla., dfi{, N(r-l)1 ...... 00 ...... . ....... 2.4~ 

a coefficient is significant. 

MS ~SR 
F::al = MS R = ~: .................... ... ....... 2.49 

E N(r- I ) 

The sum of squares for any contrast can be computed from Equation 2.16, thus : 
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{r. contrast )2 
SSn = SS'1>i = N . ,.. ...... ............. 2.5 0 

The total sum of squares is found in the usual way by, 

(

'" ) 2 ,. LY,. 
S'{' '"' ( )2 --.:..'".:...-1 _ 
11' 1' = L.J )',./ -

1=1 r.N 
..... , .. . ..... , .... .. .. , ... 2.5 1 

and 

......................... 2.52 

The table below present analysis of variance for a general 2k design 

(Montgomery, 1976). 
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Table 2.8: General analysis of variance 

.- .--.. -.-.. -----.----~ 

Source SUIll orsquares Oegrce Mean square F-cal 

of variation (SS) of freedom (dl) (MS) 

k main effects 

A 

B SSB/1 

K 

Two-factor interactions 

AB 

AC 

Jk 

Three-factor interactions 

ABC 1 

ABD 

·Ijk SSijk 1 SSijkll SSijklMSE 
k·factor interactions 
ABC ... . k SSABC .. .. k 1 SSABC .... k/l SSABc .... k/MSE 
Error SSE 2K(r-l) K SSd2 (r-l) 
Total SST r.2k - 1 
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Altematively it could also be tested using the T-test because, T -test is a 

special rorm or F-lest ([lox cl ai , I ,)7X). A cocrricicnt is significant ir and only if 

Also 

T-cal > T loc, N (r-I).1 

T -cal = tJ' Ibjl 
Sbj 

Su 
Sbj = )N.r 

2.3.9 A 24 DESIGN 

.. . ...... ... .. . .. ....... .. 2.53 

................. . ..... . .. . 2.54 

.. .. .... .. . .. . ........ .... ... 2.55 

Using the coded variables (factors) Xl , X2,- Xk and the average response o[ a 

design. The design matrix Table [or a 24 full factorial design is given belo",'! in 

Table 2.9. 
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Table 2.9: Design matl"ix table fOI" a 24 expel"iment 

Factorials effects 

Factor Xo XI X2 X3 X4 Xl2 X13 X23 XU3 Xl 4 X24 X34 X l 24 X J34 X234 AJ 23ll 

Comb. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

-I- + -I- + + + + + 

+ + + + + + -I- + 

+ -I- + + + + + + 

+ + + + + + -I- -I- + 

+ + + + + + + 

+ + -I- + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + + + + + + + + + 

2.3.10: 2k
-
p FRACTIONAL FACTORIAL DESIGN 

For a model with k factors, the designs o[the previous section require at least 

one simulation run of the 2k possible combinations of factors .It is not at all difficult 

to imaged a simulation model with as many as k= 11 factors, [or which a full 2k 
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factorial design would require at least 2048 simulation run. If we wanted to estimate 

the variances of the effects of this 211 model with says n = 5 replications. at each 

design point, we will need 10,240 total replications. If a single replication of the 

model look say 1 minute of CPU lime (which is modest amount of lime for man 

complex real-world simulations), we would need over a full week of round-the-clock 

computing to complete the experiment. 

Fractional factorial designs provide a way to get estimates of (for example) the 

main effects or low-order interaction of interest at a fraction of the experimental errort 

required by a full 2k factorial design. These kinds of design are especially useful as a 

first step in experimentation when many factor~ are present and we want to screen out 

those factors which appear to be relatively unimportant without having to perform an 

excessive amount of simulation. This will save a bulk of the computing budget for a 

more intensive study of the important factors. 

Basically, a 2k
-
p fractional factorial design, is constructed by choosing a 

certain subset (of size 2k
-
p
) of the 2k possible factor combinations and then running the 

simulation only for these chosen combinations. Thus only 1 \2P of the 2k factor 

combinations are actually run. The important question of which 2k
-
p combination to 

choose is a whole subject into itself, discussed at length in most books on 

experimental design (Box et ai, 1978). This choice should obviously be made 

carefully and might depend on which main effects and interactions are of great 

~nterest. 
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2.3.11 VARIETAL TRIAL EXPERIMENT 

In varietal trials, treatments like (a) diLTerent varieties of crop, (b) several 

feeds for animals,(c) difTerent doses of drugs, etc are under investigation . In fact, 

different level of only one factor usually form the treatment in varietal trials. The 

moin purpose or such experimenl is to compare tho treatmont in nil possiblo pairs. 

2.3.12 BIO-ASSA Y EXPERIMENT 

The third type of experiment is the bio-assay. In one category of these 

experiments usually tw preparations of drugs nre taken, ench at several do os. These 

doses form the treatments. The main -compari,son required for the assays are (i) a 

comparison giving the diITerence between the two preparations, (ii) a comparison 

representing the slope of the eITects of the doses of each preparation on the doses. 

2.4 FACTORS AFFECTING RATE OF CHEMICAL REACTION 

The production of oxalic acid from the bark of eucalyptus camaldulensis, 

having a chemical reaction could be influenced by some of the factors that ~ect the 

rate of chemical reaction . 

On the basis of elementary collision theory, the rate of a reaction would depend on the 

frequency of effective collisions between reactant particles. (Lambert and 

Holderness, 1980). Some of the important factors, which influence the rate of 

chemical reaction, include: 

1. Nature of reactants 

2. Concentration of reactant. 

3. Surface area of reactants 

4. Temperature of reaction mixture 
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EtTect of the natUl'e of reactants 

When a piece of iron is place in dilute hydrochloric acid, there is a slow 

evolution of hydrogen gas, with a piece of zinc hydrogen is evolved rapidly and with 

a piece of gold, there is no evidence of reaction. Thus the rate of a chemical reaction 

is determined by the chemical nature of (he reactant as different substances have 

different energy contents. 

Effect of concentration of reactants. 

Reactant particles wi II collide more 0 nen if they are crowded in a small space, 

i.e. frequency of collision is depending upon concentration. An increase (or decrease) 

in the concentration of the reactants will results in corresponding increase (or 

decrease) in effective collisions of the reactant hence in the reaction rate (Osei, 1990). 

Effect of sUI"face a."ea of contact (Particle size) 

This is a very important factor especially when one of the reactants is a solid, 

because only the particles on the surface of the solid are in contact and hence able to 

react with the other reacting particles. To bring about greater contact between the 

reacting particles, the exposed surface area of the solid reactants must be increased by 

subdividing or breaking the solid into smaller pieces. The greater the surface area of 

t~e reactant, the higher the rate of reaction. 
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Effect of tempe.oatm'e 

When temperature or a rCi.l~li()n is increasud, hunt is suppli ed to the pnrticlcs 

involved, in the reaction, thereby increasing the kinetic energy of the particles. If the 

particles travel at a greater speed when the temperature is increased then they will 

collide with one another at more frequent intervals and we could expect the reaction 

to proceed at a faster rate (Osei, 1990). 

With respect to the above explanation, an increase in temperature within a 

definite limit will increase the rate of chemical reaction. 

2.5 APPLICATION OF COMPUTER IN FACTORIAL DESIGN 

One way common use of computer involves the development of models that 

simulate real-world systems. These models are coded in computer language, which 

take into account many, but presumably not all of the features of the real system. If 

the most important features of the real systems can be identified and built into the 

model without making it too complex and unwieldy, useful information about the real 

system may be obtained by worlcing with the model. Being simpler, a model is usually 

more convenient to work with. Experiments can be run for various initial conditions, 

or values of key parameters, often much more conveniently than if the real systems 

were used .In fact, experiments are often run that would be impossible to do with the 

real system, because of hazardous conditions or for other equal good reasons. From 

such experiments it is hoped that a better understanding of certain aspects of the real 

system may be achieved. Often enough, the results obtained from a preliminary model 

suggest direction for improvement of the model, to explore previously unrecognized 

aspects of the real system. Because they represent eITorts to identify the essential 

features of a real system, models have sometimes been described as "abstractions" of 

reality (Francis, 1983). 
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In computer-aided design, computers are used to perform certain functions in 

design, production, alld lIlc.lI1l1f~lCturillg . This technology has moved into the direction 

of greater integration of design and manufacturing, two activities which have 

traditionally been treated as a distinct and separate [unctions in a production firm 

(Oguntoyimbo, 1993). On a more general note, computer aided design is utility that 

enables speedy processing of design procedures (Onifade, 2000). 

In spite of their impressive capabilities, computers still have to be told exactly what to 

do, in a step-by-step fashion . The process of satisfactorily achieving the required level , 

of detail is called problem analysis and it is the user' s responsibility. This can be 

divided into several more or less distinct parts (Francis, 1.983). ' 

I. The p."oblem must be tho."oughly unde."stood: Surely if the user does not 

understand his or her own problem, there is little hope that the computer will 

wlderstand it better. A careful examination of the inputs provided or the 

questions asked or type of output expected, perhaps even manual processing of 

simplified cases, may be useful in figuring out just what has to be done. This 

sometimes exposes fuzzy spots, which need clearing up. 

2. A solution method is chosen, or developed: When the problem does appear 

to be in good focus, a solution method has to be found, a path leading from 

what has been given to what is required. Often a path will be obvious. There 

may even be several likely prospects. When paths are abundant, the choice 

between them is made using such criteria as computer time needed or 

vulnerability to error. For other types of problems, no satisfactory solution 

method may be known, and the luxury of choice gives way to the necessity of 

invention or concession. That is either a method is developed, or the problem 

has to be simplified to the point where a solution becomes feasible. 
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3. The solution process is descl"ibed step by step: When a solution 

method has been selected, it must be reduced to the level or detail that 

computers understand. This is usually done in stages, beginning with a relative 

crude listing of the various parts or the procoss, nod gradually adding more 

and more detail until the result has the step-by-step character or a program. 

When this point is reached the transi tion to n program is almost painloss. A 

description of the solution method involving some respectable level of detail is 

called solution algorithm. Although of ancient origin, the word "algorithm" 

has found its first extensive use in computer science. 

4. The algo"ithm is p"ogrammed, and the p."og .. am tested: Algorithms can be 

written in ordinary language, or using formal procedures that lie somewhere 

between ordinary a.nd programming languages. If this has been done with 

sufficient detail , it will be relatively easy to convert the algorithm into a 

program. If details have been postponed, they will have to be supplied in the 

programming step. It is also true that some programming languages are more 

accommodating than others, taking care of certain details that other languages 

leave to the programmer. Once written, a program must be tested, or verified. 

Even computer scientist soon learns how embarrassingly easy it is to make 

mistakes. Typing and key punching errors are common place but are usually 

found quickly with the machine ' s help . Diagnostic output is provided [or this 

purpose. Other programming errors may be harder to pinpoint, but detection 

procedures do exist. Assuring a program' s correctness is called program 

verification, and the popular term for error removal is debugging. 
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5. The algorithm is validated: Evon when a program correctly implements the 

steps of an algorithm, there is the question of whether the algorithm itself 

correclly solves the problem. To answer this, the user can run the program 

under a broad variety of conditions (test cases), and evaluate the output as best 

as he or she can (Francis 19H3). 
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CHAPTER THREE 

3.0 DEVELOPMENT OF THE MODEL 

The 2k full factorial design was used to develop the source code. The 

flowchart for the source code is shown in Fig 3. 1. The hand calculation IS on 

Appendix A, while the program list is on Appendix B. 

The design code consists of four files , extracLdat, extracLout, extracLpas and 

extract.exe. The file extracLpas is the Pascal source code. This is the actual code that 

causes the actions produced by the program when executed. It is a menu-oriented and 

user-friendly program that is easy to use 'with instruction and information appearing at 

each stage of execution of the program. The syntax of the content of this file follows 

the Pascal language requirements. This file is compiled into executable form so that 

lho program can be run independent or the Pascal compiler. 

Extract.exe is the executable file, generated from extract.pas which can be 

easily executed by calling the file i.e. C:\> extract.J. Extract.dat is the default data 

file where the input data is stored , however provision is made in the program for using 

other data .filenames. While extract-out is the me where the output generuted by the 

program is stored. This file can be copied to a diskette or even printed after 

execution. Provision is also made in the program for using other output filenames. 

3.1 MODELS TO PREDICT PERCENTAGE EXTRACT 

In the course of this work, three 23 full fractional experiments ,,\~th different 

factors were used. The comprehensive analysis of the results is given in chapter four. 

The three model equations used have the following general form: 

y = Tl + PXt + 0 X2 + yX3 + 9XIX2 + ~XIX3 + OX2X3 + <PXIX2X3 ........ 3.1 
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Fig. 3.1: 

Start 

Disp\uy 
menu 

Stop 

Enter 

Load 

Computo 

Flow diag.·am for source code and mnning the Program 
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Fig 3.2: 

Enter 

Input 
WI. high, Wi> W2 

W2, high, W2, low 
W3, hig.h, W310W 

W4, high, \V4 low 

Inpul % Extract [or 
I-N r times 

Calculate average 
% Extract 

Return 

Yes 

Flow diagram rOl' sub-I'outine Enter 
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L<X:1U 

~ . 
Open data file [or input 

~ 

Read data from file 

" 
Return 

Fig. 3.3: Flow diagl'am fOl' Subl'outille Load. 
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No 

COlllplite 

Calcu late design 
matrix tablc 

Coleulllto 8u', stun or 
di spersion, 8u2

, G-cul. 

~<_cal /ls~ca~ Yes 
r-----------------r . >---------~--------, 

/ 

Print statistical analysi s 7 
cannot bo curried out. 

'---1-------' 

~ 
Write output i.e. 
Natural variable 
r tables 
LSU2 

Su2max 
G-cal, 
G-tesl. 
to file . 

... 

G-tab ' 

Write; output i.e: 
Natural variable 
r tables 
~SU2 

Su2max 
G-cal, G-test. 
Design matrix table 
The mean square error 
experimental error 
T-cal, T-test 
Fitted model 
F -cal, F -test 
Final value ofy 

to file 

/ Pdot outpU! / 

Stop 

FlG. 3.4: Flow diagram for sub-I'outine Compute. 
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CHAPTER FOUR 

4.0 SIMULATION OUTPUT 

The prediction models are based on experimental results generated from the 

final year projects of Muhammad Adamu, Shafi ' i Salihu and BissaJIah Awwal on the 

production of oxalic acid from the bark of eucalyptus camaJduJensis. The 

experimental procedure is given in Section 2.2.3 with Equation 2.8 summarising the 

reaclion as follows : 

Calcium Sulphuric 

oxalate acid 

N.B. 

Oxalic 

acid 

Size range 

Calcium 

sulphate 

A verage size 

0.3750mm 0.2500 - 0.5000mm 

0.9250mm 

1.2000mm 

0.8500 - I.OOOOmm 

l. 0000 - 1.4000mm 

4 . 1 RESULTS FOR MODEL la 

Constant (fixed) level parameters 

Volume of H2S04 = 250 mls 

Concentration of H2S04 = 4(Yo 

Reaction temperature = 70°C 
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Table 4.1: Natul'3l factors and theil' coded levels 

Level of factors 

High 

Low 

Code Mass Size Time 

+ 1 50.0000 1.2000 6.0000 0.0000 

-1 25 .0000 0.9250 3.0000 0.0000 

Table 4.2: EXIJel'imentall'csults 

Factor Natural variables Yj 

combination WI (mass) W 2 (size) W3 (time) (% extract) 

N=23 (g) (mm) (hrs.) 

25 0.9250 3' 3.2360 

2 50 0.9250 3 2.4400 

3 25 J .2000 3 3. ] 980 

4 50 1.2000 3 0.9040 

5 25 0.9250 6 1.8140 

6 50 0.9250 6 2.2390 

7 25 1.2000 6 1.5760 

8 50 1.2000 6 0.7660 
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Table 4.3: Expel"imelltal results with .oeplicates 

NI 2 3 4 5 6 7 g 

Yrl I 3.3600 I 2.5480 I 3.1920 I 1.5260 I 1.71201 2.6140 I 1.5640 I 0.6640 I 

Yr21 3.1120 I 2.3320 I 3.2040 I 0.2820 I 1.9160 I 1.8640 I 1.5880 I 0.8680 I 

y % 1 3.236012.44001 3.19801 0.90401 1.81401 2,23901 1.57601 0.76601 

Yrl-YI 0.1240 I 0.1080 1-0.0060 1 0.6220 1-0.1020 10.37501-0.01201-0.1020 I 

Yr2-YI-0.1240 1-0.1080 I 0.00601-0.6220 I 0.1020 1-0.3750 I 0.0120 I 0.1020 I 

Sqrl I 0.01541 0.01171 0.0000 I O.3R69I 0.01041 0.1406 I 0.00011 0.01041 

Sqr21 0.01541 0.01171 0.0000 I 0.38691 0.01041 0.14061 0.0001 1 0,01041 

Su" 21 0.0308 I 0.0233 I 0.0001 I 0.173g I 0.,02081 O.2H 131 0.0003 I 0.02081 

The Sum of the dispersion = 1.1511 

The maximum Su" 2 

G-Calculated 

= 0.7738 

= 0.6722 

G-Statistical Table [a.,(r-l),N] = 0.6800 

G-TEST: 

it is possible to carl)' out regression 

analysis, since G-stat > G-cal 
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Table 4.4: Design mah'ix Table rOI· a 2" 3 full factol"ial design with the 

intel'Clttions 

XO Xl X2 X3 XI*X2 Xl*X3 X2*X3 

-1 -I -1 

-1 -1 -1 -I 

-1 -1 -.I 

1 -1 -1 

-1 -1 1 -I 

-1 -I 

-1 I -] -J 

1 

The mean squaro error = 0.14388 

The experimental error 0.37932 

T-TEST: 

T-Statistical Table [a.,N(r.:l)] : 1.8600 

The constant and the variable for the following 

are insignificant since T-cal < T-table 

b23 bl23 

The filled model then becomes: 

-1 

-1 

-1 

-I 

Xl*X2*X3 Y 

-I 3.2360 

2.4400 

3.1980 

-I 0.9040 

1.8140 

-I 2.2390 

-1 1.5760 

0.7660 

Y = 2.022 -0.434xl -0.411x2 -0.423x3 -O.342xlx2 + O.338xlx3 
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Table 4.5: Table of calculated T-values 

Regression Estimated Confidence T 

coefficient effect interval values 

bO 2.022 0.176 21.31837 

bl -0.434 0.176 4.58056 

b2 -O.4t I 0.176 4.33011 

b3 -0.423 0.176 4.45929 

bl2 -0.342 0.176 3.60249 

bi3 0.338 0.176 3.56558 

b23 -0.017 0. 176 O. L8059 

b123 0.033 0.176 0.34667 

F-TEST: 

F-Statistical Table [u,dFr,N(r-l)J : 5.3200 

The constant and the variable for the following 

are insignificant since F-cal < F-tabie 

b23 b123 

Table 4.6 : Complete analysis of val"iance 

So'U.:rce ot: Sl..1Yn ot: Degree ot: 

"a.:ria..tio:r1 squa.res(SS) 1: reedoTn ( df ) 

1:>~ 3.0~9 ~ 

1:>2 2.698 ~ 

1:>3 2_861 1 

1:>12 :1.. _ 867 1 

1:>13 1.829 1 

1:>23 0.005 :1.. 

1:>123 0.017 :1.. 

Error (SSE) 1.15107 

54 

Mea.n F-ca.l 

squa.re 

3.0~9 20.98~49 

2_698 ~8_74984 

2.861 19.88524 

1.867 :1..2.97795 

~_829 12_71339 

0.005 0.0326:1.. 

0.017 0.12018 



Total (SST) = 13.44752 

N(r-I) g 

Nr-l = L5 

SSE/(N(r-l) = 0.14388 

Table 4.7: EXI)e.-imental and calculated percentage ext.-act 

N Y Ycal eu=Y-Ycal e u "2=(Y-Ycal ) "2 

1 3.236 3.286 -0.050000 0.002500 

2 2 .440 2 .4 24 0.015750 0.000248 

3 3.198 3 .14 8 0.050000 0.00 250 0 

4 0.904 0.920 . -0.015750 0.000248 

5 1. 814 1. 764 0.050000 0.002500 

6 2.239 2 . 255 -0.015750 0.000248 

7 1. 576 1. 626 -0.050000 0.00 25 00 

8 0 . 766 0 .7 50 0.015750 0.000248 

F-TEST (Fisher): 

F-Calculated = 0.0254655 

F-Statistical Table = 3.5800000 

The fitted model is adequate 

Since F-cal < F -table 

Value of wl,x1 40 . 0000 0.2000 

Value of w2,x2 1. 2000 1.0000 

Value of w3,x3 4 .0 000 -0.3333 

Y = 2 . 022 -0.434x1 -0.411x2 -0 . 423x3 -0 . 342xlx2 

+ 0.338x1x3 

Final value of Y 1.5742 
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Value of wl , x l 

Value of w2 , x2 

Value of w3 , x3 

= 

50 . 0000 1 . 0000 

0 . 925 0 -l.0000 

3 . 0000 -1.0000 

y = 2 . 02 2 - 0.434xl -0.4l1x2 -0 . 423x3 -0 . 342xlx2 

+ 0 . 338xlx3 

Final value of Y = 2 . 4242 

Value of wl , xl = 25 . 0000 -1 . 0000 

Value of w2 , x2 0 . 9~50 -;1 . 0000 

Value of w3 , x3 6 . 0000 1 . 0000 

y = 2 .022 -0 . 434xl -0 . 4l1x2 -0 . 423x3 

+ 0 . 338xlx3 

Final value of Y 1 .7 640 

4.2 RESULTS FOR MODEL Ib 

Constant (fixed) level parameters 

Volume of H2S04 = 250 mls 

Concentration of H2S04 = 4% 

Reaction temperature = 70°C 
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Table 4.8: Natuml factors and their coded levels 

Level of factors 

High 

Low 

Code 

+1 

-1 

Mass 

25 . 0000 

5 0. 0 000 

Table 4.9: Experimental results 

Factor Natural variables 

combination WI (mass) W2 (size) 

N=23 (g) (mm) 

50 1.2000 

2 25 1.2000 

3 50 0.9250 

4 25 0.9250 

5 50 1.2000 

6 25 1.2000 

7 50 0.9250 

8 25 0.9250 
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Size 

0 . 9250 

1.2 0 00 

Time 

3 . 0000 

6 . 0000 

Vi 

0 . 0000 

0 . 0000 

W3 (time) «<Yo exh'act) 

(hrs.) 

6 0.7660 

6 1.5760 

6 2.23 90 

6 1.8140 

3 0.9040 

3 3.1980 

3 2.4400 

3 3.2360 



Table 4.10: Experimental results with re,llicates 

NI 2 3 4 5 () 7 ~ 

Yrll 0.664011.564012.614011.712011.526013 .192012.548013.3600 

Yr21 0.8680 I ] .5880 I 1.8640 I ] .9160 I 0.2820 I 3.2040 I 2.3320 I 3.1120 I 

Y % I 0.7660 I 1.5760 I 2.2390 I 1.8140 I 0.9040 I 3.1980 I 2.4400 I 3.2360 I 

YrJ-YI-0. 1020 1-0.0120 I 0.3750 1-0. 1020 I 0.6220 1-0.0060 I 0.10801 0.1240 I 

Yr2-YI 0.1020 I 0.01201-0.3750 I 0.10201-0.6220 10.0060 1-0.10801-0.1240 I 

Sqrl I 0.01041 0.000] I 0. 14061 0.01041 0.386910.0000 I 0.0] 171 0.0154 

Sqr21 0.01041 0.0001 I 0.14061 0.01041 0.386910.0000 I 0.0117 I 0.0154 

SuA 21 0.0208 I 0.0003 I 0.28 13 I 0.0'2081 0.7738 10.0001 I 0.0233 I 0.0308 

The Sum of the dispersion = 1.1511 

The maximum SuA 2 = 0.7738 

G-Ca1culated = 0.6722 

G-Statistical Table la,(r-1),N] = 0.6800 

G-TEST: 

It is possible to carry out regression 

analysis, since G-stat > G-caJ 

58 



Table 4.11: Design matl'ix Table fOl' n 2/\ 3 full fnctol'ial design with the 

intel"actions 

XO Xl X2 X3 XI*X2 XI*X3 X2*X3 Xl*X2*X3 Y 

1 -1 -1 -1 1 

-I -I -I -I 

-1 -I -I 

I 1 -I L I - L 

1 -I -1 -\ 

-1 1 -1 

-1 1 -1 -f 

1 

The mean square error 0.14388 

The experimental error = 0.37932 

T-TEST: 

T-Stalistical Table la,N(r-1)J : l.gGOO 

I 

The constant and the variable for the [ollowing 

are insignificant since T-c~\ < T-table 

b23 bI23 

The £iued model then becomes: 

-1 

-1 

-\ 

-I 

1 

-1 0.7760 

1.5760 

2.2390 

I -I 1.1 ~40 

-\ 0.9040 

-1 3.1980 

-\ 2.4400 

3.2360 

Y = 2.022 + 0.434x1 + 0.411x2 + 0.423x3 -O.342x1x2 + O.338xlx3 
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Table 4.12: Table of calculated T-values 

Regression Estimated Conlidence 

coefficient effect interval 

bO 2 .0 22 0.176 

b1 0 . 434 0 . 176 

b 2 0 . 411 0.176 

b3 0 . 423 0 . 176 

b12 -0. 342 0 . 176 

b13 0 . 338 0 .17 6 

b23 -0.017 8.176 , 

b1 23 - 0 .0 33 0.176 

F-TEST : 

F-Statistical Table [a.,dFr,N(r-l)] : 5.3200 

The constant and the variable for the following 

are insignificant since F-cal < F-table 

b23 bl23 
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T 

values 

21 . 31837 

4 . 58 056 

4 . 33011 

4 . 45929 

3 . 60249 

3 . 56558 

0.18059 

0 . 34667 



Table 4.13: Complete analysis of variance 

DUTH or. J.Jog:reo o:C M on)."'). .£.f' - ca.:L 

"Variatior:l squ ares (SS) freedo=(df) squ are 

b1 3 . 019 1 3 . 019 20 . 98149 

b 2 2 . 698 1 2 . 698 18 . 74984 

b3 2 . 861 1 2.861 19 . 88524 

b12 1. 867 1 1. 867 12 . 97795 

b13 1. 829 1 1. 829 12 . 71339 

b23 0 . 005 1 0 . 005 0 . 03261 

b123 0.017 1 0.017 0.1 2018 

Error (SSE) = 1.15107 

Total (SST) 13.44752 

N(r-l) = 8 

Nr-l 15 

SSE/(N(r-l) 0. 14388 

Table 4.14: Expel"imental and calculated percentage exb·act 

N Y Ycal 91-1 """, Y-Ycal eu-2=(Y - YcaJ..)-2 

1 0.766 0 . 750 0.015750 0.000 24 8 

2 1. 576 1 . 62 6 -0 . 050000 0.002500 

3 2 . 239 2 . 255 -0.01575 0 0.000248 

4 1. 814 1.764 0 .050000 0.00 2500 

5 0.904 0 . 920 -0.015750 0 . 000248 

6 3 .1 98 3.148 0.050000 0 . 002500 

7 2 .440 2 . 424 0.015750 0.000 248 

8 3.236 3.286 -0.050000 0.00 2500 
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F-TEST (Fisher): 

F-Calculated = 0.0254655 

F-Statistical Table = 3.5800000 

The Jitted model is adeq uate 

Since F-cal < F-lable 

Value of wl , xl 40 . 0000 -0 . 2000 

Value of w2 , x2 1 . 2000 -1.0000 

Value of w3,x3 4.0000 0.3333 

Y 2 . 022 + 0 . 434xl + 0 . 411x2 + 0.423x3 -0 . 342xlx2 

+ O. 338xlx3 

Final value of Y 

Value of wl , xl 

Value of w2 , x2 

Value of w3, x3 

1.5742 

50 . 0000 -1 . 0000 

0 . 9250 1.0000 

3 . 0000 1.0000 

Y = 2 .0 22 + 0.434xl + O.411x2 + 0 . 423x3 -0.342xlx2 

+ 0 . 338xlx3 

Final value of Y = 

Value of wl, xl 

Value of w2 , x2 

Value of w3, x3 

2 . 4242 

25 . 0000 1.0000 

0 . 9250 1.0000 

6 .0 000 -1.0000 

Y 2 . 022 + O.434xl + 0 . 411x2 + 0 . 423x3 -0.34 2xlx2 

+ 0.338xlx3 

Final value of Y 1. 7640 
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4.3 RESULTS ."OR MODEL 2 

Constant (fixed) level parameters 

Particle size = 0.375mm 

Mass of bark = 50g 

Reaction temperature = 70°C 

Table 4.15: Natural fa dOl's ~'nd their coded levels 

Level o[ [actors Code 

High +1 

Low - 1 

Conc. 

4 . 000 0 

2 . 00{)0 

Time Vol. 

6 . 0000 7 50 . 0000 

~ . OO O O 250 . 0000 

Table 4.16: Experimental.·esults 

Factor Natural val'iables 

combination WI (cone.) W2 (time) W3 (vol.) 

N=23 ('Yo) (h."s.) (mls) 

1 2 3 250 

2 4 3 250 

3 2 6 250 

4 4 6 25 

5 2 3 750 

6 4 3 750 

7 2 6 750 

8 4 6 750 
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0 . 0000 

0 . 0000 

Vi 

(% exh'act) 

2.950 

4.240 

2.492 

3.850 

5.478 

7.305 

5.048 

5.638 



Table 4.17: Expel'imental results with replicates 

N 2 3 4 5 (, I 7 

Yrl 13.0820 I 3.9220 11.9120 14.1700 15.2480 17.2020 I 5.126017.1820 I 

Yr2 I 2.8200 I 4. 1700 I 3.0700 I 3.5200 I 5.7060 I 7.4080 I 4.9700 I 4.0940 I 

Y % I 2.9510 I 4.0460 I 2.49 J 0 I 3.8450 I 5.4770 I 7.3050 I 5.0480 I 5.6380 I 

Yrl-YI 0.1310 1-0.12401-0.5790 I 0.3250 1-0.22901-0. 103010.07801 L.54401 

Yr2-YI-0. J3JO I 0.1240 I 0.57901-0.3250 I 0.2290 IO.J0301-0.07801-1.54401 

Sqrl 10.0172 1 0.0154 1 0.3352 1 0.1056 1 0.0524 1 0.010610.006112.38391 

Sqr2 10.0172 I 0.0154 I 0.3352 I 0.1056 I 0.0524 I 0.010610.006112.38391 

Su"2 I 0.0343 10.030810.6705 I f> .2 112 I' 0.1049 I 0.02121 0.0 1221 4.7(i791 

The Sum of the dispersion = 5.8529 

The maximum Su" 2 = 4.7679 

G-Calculated = 0.8146 

G-Statistical Table [o.,(r-l),N] = 0.6800 

G-TEST: 

11 is not possible to carry out regression analysis, since G-stat < G-caJ 

4.4 RESULTS FOR MODEL 3 

Constant (fixed) level parameters 

Volume of H2S04 :;: 250 mls 

Mass of bark = 50g 

Reaction temperature = 70°C 
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Table 4.18: Natural factors and their coded levels 

Level of factors 

High 

Low 

Codc 

+1 

- 1 

Cone. 

4 . 0000 

2 . 0000 

Table 4.19: EXIJel"imentall'esuits 

Factol' NatUl'al variable 

combination WI (cone.) W2 (time) 

N=23 (%) (hI's.) 

1 2 3 

2 4 3 

3 2 6 

4 4 6 

5 2 3 

6 4 3 

7 2 6 

8 4 6 
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Timc 

6 . 0000 

3 . 0000 

W3 (size) 

(mm) 

0.9250 

0.9250 

0.9250 

0.9250 

1.2000 

1.2000 

1.2000 

1.2000 

1. 2000 

0 . 9250 

Vi 

(% extI'act) 

1.1800 

2.4400 

1.1970 

2. 2460 

1.0930 

0.9000 

0.7930 

0.7700 

0 . 0000 

0 . 0000 



Table 4020: Expc.oimental.oesults with .oeplicates 

N 2 3 4 510 7 8 

Yrl I 1.1160 I 2.S4!W I 1.2280 I 2.6140 I 0.9820 I I.S280 I 1.1860 I 0.6640 I 

Yr2 1 1.2540 1 2.33201 1.1(i()O 1 1.86401 J.2020 1 0.28201 ().40001 O.8GHO 1 

Y % I 1.18S0 I 2.4400 I 1.1970 I 2.2390 I 1.0920 I 0.90S0 I 0.7930 I 0.7660 I 

Yrl-YI-0.0690 I 0.10801 0.031010.37501-0.11001 0.62301 0.39301-0. 10201 

Yr2-YI 0.0690 1-0.1080 1-0.0310 -0.3750 I 0.11001-0.6230 1-0.3930 I 0.10201 

Sqrl I 0.0048 I 0.01171 0.0010 I 0.1400 I 0.0121 I 0.3 881 I 0. 154 I 0.01041 

Sqr2 I 0.0048 I 0.01171 0.0010 I 0.1406 I 0.0121 I 0.3881 I 0.15441 0.01041 

Su"2 1 0.0095 1!, O.02331 0.00191 0.28131 0.02421 0.77631 0.30891 0.02081 

The S urn of the dispersion = 1.4462 

The maximum Su"2 = 0.7763 

G-Calculated = 0.5368 

G-Statistical Table la. (r-l),N] = 0.6800 

G-TEST: 

It is possible to carry out regression 

analysis, since G-stat > G-cal 
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Table 4.21: Design matrix Table for a 2" 3 full factolial design with the 

interact ions 

XO Xl X2 X3 XJ*X2 Xl *X3 X2*X3 Xl *X2*X3 Y 

-1 -1 -1 

-1 -I -I 

-1 1 I - I -\ 

-1 

-I -1 

-1 -1 

-I I -I 

-I 

-I 

-I -1 

-1 -] 

-1 

-I" , I 

-1 

-1 

-1 

-I 

1.1850 

2.4400 

1.1970 

2.2390 

1.0920 

0.9050 

0.7930 

I. 0.7660 

The mean square error = 0.18077 

The experimental error = 0.42517 

T-TEST: 

T-Statistical Table [a,N(r-1)] : 1.8600 

The constant and the variable for the following 

are insignificant since T-cal < T-table 

b2 b12 b23 b123 

The filled model lhen becomes: 

Y = 1.327 + 0.260x] -0.438x3 -0.314x]x3 
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Table 4.22: Table of calculated TMvalues 

Regression Estimated Confidence 

coefficient e.fTect interval 

00 1_327 0_19B 

01 0_260 0_19B 

02 - 0_07B 0_19B 

03 - 0_4 3B 0_19B 

012 -0_ 007 0_19B 

013 -0_314 0_19B 

023 -0_031 0_19B 

0123 0_047 0.:1.99 

F-TEST : 

F-Statistical Table [a,dFr,N(r-l)] : 5.3200 

The constant and the variable for the following 

are insignificant since F-cal < F-table 

b2 bl2 b23 bI23 

Table 4.23: Complete analysis of variance 

Source of Sum of Degree of 

variation squares(SS) freedom( dO 

01 1_0B5 1 

02 0_098 1 

03 3_071 1 

012 0.001 :1.. 

0:L3 :L_576 1 

023 0_016 1 

0123 0.035 :1. 

Error (SSE) 1.44619 

Total (SST) 7.32771 

N(r-l) 8 

Nr-l 15 

SSE/(N(r-l ) = 0.18077 
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T 

values 

12_4B547 

2 _449 58 

0_73734 

4_121B4 

0_06233 

2 _95291 

0_292B2 

0.43964 

Mean 

square 

1_0B5 

0_09B 

3_071 

0.00:1. 

:L_576 

0_016 

0,035 

F-cal 

6_00046 

0_5436B 

16_98955 

0.00 38 9 

8_7:1..965 

0.08574 

0.:1.924:1. 



Table 4.24: EXI)Cl'imcntal nnd cnlculutcd percentage cxtmct 

N Y Ycal el..l. == Y - Yc:a.l eu.-2 ~ (Y - Yc:a.l) 

1 1_185 1_191 - 0_006000 

2 2_440 2_340 0_100500 

3 1_197 1_191 0_006000 

4 2_239 2_340 -0_1 00 500 

5 1_092 0 _943 0_149 500 

6 0_905 0 _835 0_069 500 

7 0 _793 0_943 -0_149500 

8 0_766 0_835 -0,_ 069500 

F-TEST (Fisher) : 

F-CaJcuJated = 0,2064285 

F-Statistical Table = 3.5800000 

The fitted model is adequate 

Since F-cal < F-table 

Value of w1, x 1 

Value of w2 , x2 

Value of w3,x3 ... 

4 . 0000 1.0000 

3 . 0000 -1.0000 

0.9250 -1. 0000 

Y = 1 . 32 7 + 0 . 26 0x1 -0.438x3 -0.314 x1x3 

Final value of Y = 

Value of wl, xl 

Value of w2, x2 

Value of w3 , x3 

2 . 3395 

3 . 0000 0 . 0000 

3 . 0000 - 1.0000 

1. 20 00 1. 0000 

Y = 1 .327 + 0 . 260x1 -0.438x3 -O . 314xlx3 

Final value of Y 0 . 8890 
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0_000036 

0_010100 

0_000036 

0_010100 

0_022350 

0_004830 

0_022350 

0 _ 004830 

-2 



Value of wl , xl 

Value of w2 , x2 

Value of w3 , x3 = 

2 .0000 -1.0000 

4 . 0000 -0. 3333 

0.9250 -1.0000 

y = 1 . 327 + 0 . 260x1 -0.438x3 -0 . 314xlx3 

Final value of Y 1.1910 
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CHAPTER FIVE 

5.0 DISCUSSION OF RESULTS 

The prediction model is developed based on the hand calculation of 23 full 

factorial experiment of Appendix A. But the program was also written to carry out 

the analysis and prediction for 22, 2:< and 24 [ull factorial experiments. However, since 

this work is based on the results for a 23 full factorial, the results presented are [or 23 

experiments. 

Looking through the results [or model lb as presented in Tables 4.8 - 4. 14 and 

comparing it with the results [or the hand calculation of Appendix A, the model for 

both case is: 

y = 2.022 + 0.434xl + 0.411x2 + 0.423x3 - 0.342xlX2 + 0.338xJX3 

The value for other parameters e.g. G-cal, F-cal, e.1.c. are the same in both the manual 

and the program output are the same, except for small errors resulting from round orrs 

(approximation). 

A verill and Kelton (1996), reported that there is no general prescription for the 

choice of level. Model I was therefore analyzed using two versions. One version 

differs from the other in the choice of level of the factors. This is done so that we can 

investigate the effect of choice of levels. In Table 4 .1 which is for the levels of model 

I a, the high numerical value is taken for high level while the low numerical value is 

considered as low level. On the other hand, Table 4.8 shows the choice of level for 

model 1 b where low numerical value is chosen as high level and high numerical value 

as low level. From Table 4.2, the average percentage extract [or the eight 

combination of model 1 a are: 3.2360, 2.4400,3 .1980, 0.9040, 1.8140,2.2390,1.5760 

and 0.7660. And in Table 4.9, due to change in choice oflevel, the percentage extract 
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[or model 1 b are arranged in a reverse order thus : 0.7660, 1.5760, 2.2390, 1.8140, 

0.9040, 3.1980,2.440 and 3.2360. This is so because all the books on ex.perimental 

design especially Montgomery (J 976), said that the responses must be arranged in 

accordance with the design matrix table (standard order). 

After the necessary test and calculations, the model equation [or model 1 a is: 

y =2.022 - 0.434xl - 0.411x2 - 0.423x3 - 0.342xJX2 + 0.338xJX3 .. . ... ... 5. 1 

It can be noticed that the variables X2X3, XJX2X3 and their coefficients did not appear in 

the model equation because they failed the T-test and F-test. The eITect of raising a . 

natural variable from its low level to high level is given by the coefficient or the 

variable (Averill and Kelton, 1996) . • Negative (-) sign implies a decrease while 

positive (+) sign implies an increase. In the model for yield of sugar in Section 2.3.4, 

Cox and Cochran (1957) concluded thus : " the application of nitrogen increased the 

yield of sugar by 7.4cwt, while II in ploughing increased the yield by 1.9cwt as 

compared with 7in ploughing". From Equation 5.1 , raising the mass o[ eucalyptus 

carnaldulensis from 25g to 50g decreases the percentage extract by 0.4340. Raising 

the average size from 0.9250 to 1.2000mm decreases the percentage extract by 

0.4110, while raising the time fTom 3 hours to 6 hours decrease the percentage extTact 

by 0.4230. In the inventory model of Example 2.1, Averill and Kelton (1996) also 

concluded that the smaller value of A and B would be preferable, since lower monthly 

costs are desired. The same reasoning is applicable here, since the higher values of 

. percentage extract is desired, it appears that smaller values of the mass, size and time 

are preferable. 
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ll1e Equation resulting [rom model 1 b is given below: 

y ... 2.022 • .,. 0.434"1 "" 0.411 X2 0.423"3 - O.342"IX2 "" O.33HxJX3 .. . .... .. 5.2 

Here raising the mass from 50 (low level) to 25 (high level) increase the percentage 

extract by 0.4340 while raising the si~e and time from their low level to high level 

increases the percentage extract by 0.4110 and 0.4230 respectively. Again since 

higher o[ the percentage extract are desired and an increase is obtained by moving in 

the direction of the low numerical values, the lower mass, size and time are desired . 

Muhammed (1998), Bisallah (1998), and Sha[li (1998) concluded from their 

calculation of average percentage extract that the percentage extract r oxalic acid 

decreases with increase in size and time. Though their basis for this conclusion is not 
\ 

sound, t~e conclusion was correct. 11 agrees with our finding base on factorial 

experiment analysis which is a well-established method of analysis. They could not 

make any deduction [or the mass because an individual was given a fraction o[ 

factorial experiment to handle in that regard. But with factorial analysis we concluded 

that the percentage extTact decreases with increase in mass over the range of level 

used. 

To justify our finding, we refer to our knowledge of chemistry and extraction. 

For the size, we know that the smaller the particle size, the greater the surface area of 

reactant and the higher the rate of reaction (Osei, 2000). The higher the rate of 

reaction, the more the product formed after a given time. As far as time is concerned, 

we know that any reaction. has the optimum time for it to come to completion. Any 

moment after that time, there may be side reaction, which might results in decrease in 

the desired product. From the experimental procedure, we learnt that there is always 

unreacted H2S04 in the mixture. When 0.11 the CaC204 are converted to (COzHh after 

a given time, if the reaction is not stopped, since there is continuous heating the 

excess H2S04 dehydrates some of the oxalic acid formed to equimolar mixture of 

carbon monoxide and dioxide (Dazeley, 1979). This is summarized by Equation 2.6 

thus: 
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eone.H 2S04 (C02H)2 > CO (g ) + C02 (g) + H20 (g) 
heal 

This implies that smaller lime between 3 and 6hours is most suitable for this 

reaction. For the mass, since we are using a fixed volume (250mls) of H2S04 [or both 

50g and 25g, the decrease recorded shows that smaller mass between 25g and 50g is 

required for the volume of acid used. That is to say only small amount of CaC20 4 in 

the bulk of the bark is required to react with 250mls of H2S04, leaving the remaining 

oxalate unreacted. This is why a decrease is recorded in the percentage extract of 

oxalic acid obtained with increase in mass form 25g to 50g. 

Although there is differences in signs of coefficient of Xl, X2 and X3 in model 

Ia and model 1 b, it can be seen [r0lT! the above discussion that they represent the 

same thing. In addition when the same values of variables are used in both models to 

predict percentage extract, the results were obtained. For instance, when mass of 40g, 

1.2000mm average size and time of 4 hours was used to predict the percentage extract 

in both models, the predicted percentage extract is 1.5742. 

The results for model 2 are given in Table 4.15 - 4.17 of Section 4.3. The 

G-calculated is 0.8146 while the G-Table is 0.6800. Since G-table < G-cal it is not 

possible to carryout regression analysis based on 5% level of significance (oc. = 0.05). 

Therefore the prediction model cannot be fitted . 

Table 4.18 to 4.24 of Section 4.4 presents the results for model 3. The fitted 

model equation is : 

y = 1.327 + 0.260x·1 - 0.438x3 - 0.314xJx3 ............... 5.3 

Raising the concentration from 2 to 4% increases the percentage extract by 

0.2600, and raising the average si ze from 0.9250 to 1.2000mm decreases the 

percentage extract by 0.4380. Here it will be noticed that the coded variable X2 [or 

time does not appear in the model equation. This is because the T -calculated for X2, 

0.7373 is less than 1.8600 which is the T-table. Since the T-cal < T-table, b2 and X2 

are statistically insignificant. The variable also failed the F-test, all based on 5% level 
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o[ significance. This does not mean that time is useless in the experiment, because in 

Table 4.22 the estimated errect or time is O.07XO. Showing that raising the time from 

3 to G hours decrease the percentage extract by 0.0780. Therefore, the higher value or 

concentration is desired [or high percentage extract while the lower values o[time and 

particle size are desired. 

From our knowledge of factors aITecting rate of chemical reaction, we know 

that the higher the concentration of reactant, the faster the rate o[ reaction (Lambert 

and Holderness, I nO). This implies that there would be more product and percentage 

extract [or a specified reaction time. Since our percentage extract increases with . 

increase in concentration, it agrees with this theory. As [or the time ands size, the 

explanation is the same with that of model 1. 

According to Averill and Kelton (1096), gIven this regression model: 

R(A, B) = 11 + PXA + 0 XB + <p XAXn ... . .. .. ... . . .. . . ...... ... ...... 5.4 We could 

estimate 11, p, 0 and <p by ordinarily square regression and use the fitted model to 

forecast (predict) the value of R(A,B) at combinations of A and B where no 

simulation has been done. The same way in the last page of Section 4.4 where 

concentration of 4%, time of 3hours and average size of 0.9250mm were used to 

predict the percentage extract of oxalic acid, the final value of percentage extract 

gotten is 2.3400. The coded variables x\, X2 and X3 calculated are 1, ·1 and - 1 

respectively. These correspond to the number 2-factor combination of Table 4.21. 

The calculated percentage extract [or this factor combination in Table 4.24 is 2.3400, 

which is the same as the predicted percentage extract. This is one way o[ showing the 

level of accuracy of the prediction models. Another way is to look at the dilTerence 

between the experimental percentnge extract and the calculated percentage extrnct. In 

T~ble 4.7 and 4.14 for models la and b the highest diITerence is ± 0.0500. The 

difference is given in Table 4.24 for model 3 as ± 0.1495. For both models the 

difference is small as compared with their confidence limit of ± 0.1760 [or model 1 

and ± 0.1980 for model 3. Finally the experimental error for model 1 is 0.3793 while 

[or model 3 it is 0.4251. Showing that model 1 is more accurate than model 3 . 
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Generally, factorial experiment provide opportunity to study not only the 

individual effect of each factor (variable), but also their illteraction (Das and Giri , 

1979). Because when experiments are conducted factor by factor changing the level 

of one factor at a time and keeping other factors at constant level , the effect of 

interaction cannot be investigated. 
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CHAPTER SIX 

6. 0 CONCLUSION AND RECOMMENDATION 

6.1 CONCLUSION 

For modell , the discussion shows that the choice of level of variables does 

not affect the model. Therefore, one can decide to choose the level any how, but it is 

advisable to choose high numerical value as high level and low for low to avoid 

confusion. 

From the discussion abo ve, we can see that for model I a and I b the smaller . 

values of the mass, size and time gives higher the percentage extract. Therefore, the 

optimum percentage extract is gotten in the region of the smaller mass, size and time. 

However optimization technique will be needed to get the exact optimum values. In 

model 3, the higher the concentration, the higher the percentage extract of Oxalic 

acid. While the lower the time and size, the higher the percentage extract of Oxalic 

Acid obtained. It can also be concluded [rom the calculated experimental error that 

model 1 (0 .3793) is more accurate than model 3 (0.4251). 

6.2 RECOMMENDATION 

The supervisor is the planner of experiments and it is because he planned and 

supervi~ed the 23 full factorial experiment from the scratch that we are able to use it 

for further analysis. I suggest that he plans experiments for higher factorials , 

especially 24 and the fractional experiments i.e. 2k-p. 

1 also recommend that further work be done on these results to see how 

possible it will be to use it for optimization. There is no problem about these because 

from Section 2.3.1 ofthe literature review we learnt that experimentation is usually an 

iterative process. With one experiment answering some questions and simultaneously 

posing others. 
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API>ENDIX A 

HAND CALCULATION 
The required model equation [ore predicting the yield is given as 

y= b o + bixi + b 2X2 + b 3X3 + b12 XIX2 + b\3XIX3+b 23X2X3 + b123XIX2X3 

Table 1: NatUl'al factOl's and theil' coded levels 

Levels of 

factors code WI W2 W3 

High +1 25 0.925 3 

Low -1 50 1.200 6 

Table 2: Expel"imental results 

N WI (Mass) W2 (Size) W3 (Time) Y (% Extract) 

1 50 1.200 6 0.766 

2 25 1.200 6 1.576 

3 50 0.925 6 2.239 

4 25 0.925 6 1.814 

5 50 1.200 3 0.904 

6 25 l.200 3 3.198 

7 50 0.925 3 2.440 

8 25 0.925 3 3.236 

8L 
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Table 3: Design matrix table (01' a 23 fuJI factorial with tl 't ' 
1e 111 eraction of coded 

factol's. 

N Xo X, X2 X3 X,X2 X/X3 X2X3 X,X2XJ Y ... 
J + + + + 0.766 

2 + + + + ] .576 

" + + .) + + 2.239 

4 + + + + l.S14 

5 + + + + 0.904 

6 + + + + 3.198 

7 + + + 1- 2.440 

8 + + + + + + + + 3.236 

Table 4: Experimental results with their replicates. 

Replicates (I') 

• (Yrl - Yi)'" SI1~ N Yrl Yr2 Yi Yr!- Yi Yr2- Yi (Yrr Yi 

0.664 0.868 0.766 -0 .102 0.102 0.0104 0.0104 0.0208 

2 1.564 1.588 1.576 -0 .012 0.012 0.0001 0.0001 0.0002 

3 2.614 1.864 2.239 0.375 -0.375 0.1406 0.1406 0.2812 

4 1.712 1.916 1.814 -0 .102 0.102 0.0104 0.0104 0.0208 

5 1.526 0.282 0.904 0.622 -0 .622 0.3869 0.3869 0.7738 

6 3.192 3 .204 3.198 -0.006 0.006 0.0000 0.0000 0.0000 

7 2.548 2.332 2.440 0.108 -0 .108 0.0117 0.0 117 0.0234 

8 3.360 3.112 3.236 0.124 -0.124 0.0154 0.0154 0.0308 
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I. 

II. 

Ill. 

IV . 

V. 

1 
Mean Y = - Lyr ............ 2 

r 

The dispersion of replicated observations is given by 

Su 2 = -] -1 :L (Yr - Yi)2 ...... ... ..... 3 
r-

The sum o[the dispersiol~ ISu 2 = 1.1511 

Su2
• max = 0.7738 

The homogeity of .the dispersion w.as determined using Cochran .criterion of 

Calculated G-value 

I.e. 
Su. 2 max , 

G-eal = l:Su 2 ...•• .. ... . . , .. . , . . . .. .4 

G-cal == 0.7738 = 0,6722 
1.1511 

VI. G-Test was .used loche.c.k if the output Iactorso[ the replication ha.ve 

maximum 

acc u racy 0 f ..re.pli.c.a1ion. 

G-Test. 

The condition of homogeneity is: 

G lo., (r-I), NJ > G-cul .. , .,. , ....... 5 

[rom statistical table 

G(0.05, 1, 8) = 0.0680 

Since 0.680 > 0.6722 

It is possible Lo carry out regression analysis. 
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Analysis: 

I. The mean square error was determined by Su2 
= J.- LSu 2 

.. ... . ..• . . ....... 6 
N 

Su2 ~(l . 1511) 
8 

0.14389 

2. The experimental error was given as : 

Su = ~SU 2 = ,J0.14389 = 0.37933 

3. The regression coefficients are given by : 

bo =~ L(yi) ... ....... .. ... .. ~ .. 7 
N ;=1 

b · 1 ~( .. ) 8 '1 = - "-' Slyl . ...... .... .... . 
N ;=1 

Therefore, 

bo = ~ (0.766 + 1.57G + 2.239 + 1.814 + 0.904 + 3.198 + 2.440 + 3.236) 
8 

16.173 
=--

8 

= 2.022 

b] = ~ (-0.766 + 1.576 - 2.239 + 1.814 - 0.904 + 3.198 - 2.440 + 3.236) 
8 

3.475 

8 

= 0.434 

1 
b2 = - (-0.766 - 1.576 + 2.239 + 1.814 - 0.904 - 3.198 + 2.440 + 3.236) 

8 
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3.2l}S 

8 

= 0.411 

b3 = ~ (-0. 766 - 1.576 - 2.239 - 1.814 + 0.904 + 3.198 + 2.440 + 3.236) 8 

3.3R3 ---
8 

= 0.423 

b12 = 1.. (0. 766 - 1.576 - 2.239 + 1.814 + 0.904 - 3.198 _ 2.440 + 3.236) 8 

-2.733 

8 

= -0.342 

b13= ~(0.766-1.576+;. 239-1.814-0 . 904+3 . 198 -2.440+3.236) 

2.705 ---
8 

= 0.338 

1-
b23 = - (0.766 + 1.576 - 2.239 - 1.814 - 0.904 - 3.198 + 2.440 + 3.236) 8 

- 0.137 
=--

8 

= -0.017 

1 
bl23 = -(-0.766 + 1.576 + 2.239 - 1.814 + 0.904 - 3.198 - 2.440 + 3.236) 8 

- 0.263 
=--

8 
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=-0.033 

Testing significance of the regression coenicienLs. 

T-test. 

A coe/TIcient is considered significant if and only if 

T-cal > T la., N (r-I)I ....... ..... ... ... ... 9 

T-table = Tla., N(f-l}I ..... . ..... . ......... 10 

from statistical table 

Tj 

To 

T(0.05, 8) = 1.860 

i.e. T-table 1.860 

Sb = .J ~~r ............. .. ...... . j j 

= 

= 

= 

0.37933 0.37933 
= .Jl6 4 

0.09483 

/bj/ 
- ... ......... .... .. .... 12 
sb 

bo = 2.022 = 21.322 
Sb 0.09483 

!l = 0.434 = 4.577 
Sb 0.09483 

~ = 0.411 = 4.334 
~\'b 0.09483 

!2 = 0.423 = 4.461 
Sb 0.09483 

T12 = !2 = 0.349 = 3.606 
Sb 0.09483 
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TI3 ~ = 0.339 = 3.564 
5ih 0.094R3 

0.0 17 = 0. 179 
0.09483 

0.033 = 0.348 
0.09483 

bo, bl . b.2, b3. bl2, and bl3 .are .significant since T-cal > T -table. But b23 and b I2J are not 

significant since T-caJ < T -table. 

The rLI1ed model become: 

y 2.022 + 0.434xJ + OAllx2 + OA23x3 - 0 .342x1Xl + 0.338x\X3 ....... D 

Confidence intervals for the regression coefficients with confidence, el are or 

the general terms, 

bj ± T [el, N(r-1)]Sb .. ... ........ ..... .... 14 

Confidence interval ~bj = T-table x Sb .. ....... 15 

1.-860 x 0. 0948 

0.176 

TableS The estimated effects, confidence intel-val and calculated :C-values. 

Regression estimated confidence T-v..alues 

Regression Estimated· Confidence T-values 

Coefficients EITect interval. 

bo 2 .022 0.176 21.322 

b l 0.434 0.176 4.577 

b2 0.411 0.176 4.334 

b3 OA23 0.176 4.461 

b l2 0.342 0.176 3.606 

b13 0338 0.176 3.564 

b23 0.017 0.176 0.179 

b123 0.033 0.176 0.348 
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VIII. The adequacy of the model was evaluated by the null hypotbesis, 
1-10 : bj = 0 ... ....... .. ... . .. ................... ] G 

on the individual regression coefficients. The analysis of variance is very useful in 
confirming the significance of the coemcients. In the 2k factorial design with r 
replicates, the regression sum of squares for any effect is : 

(r.contrast)2 
SS -----R- r.N .................. .. .. . ..... .. 17 

and has the degree of freedom (dfR = I). 

8S1. = "{V)2 _ (1: Y,iY .............. : ..... 18 
1... _ n r .N 

The error sum of squares was given by 

SST.:" = SSr- I SSR ... ... ... ...... .... .. ... ....... 19 

SSE = SST - L (SSbj ) ... .. . ... ........... . ... .. .. 20 

Testing the significance of each coeflicient was carried out by F-lesl 

SSR 
MSR elf.. 

~al = -- = ---ss- .. ....... .. . 21 
MSn NC ,:n 

The calculated F-values were compared with the appropriate critical table value. The 
nuIl hypothesis is rejected using 

Fcal> F[a, dfR, N(r-I) ........ . 22 

contrast = L (Xjyi) ... ... ... .. 23 

Calculations: 

1 2 (6.95) 2 
SSbl = - 8[2(- 0.766+ 1.576 - 2.239+ 1.814- 0.904+ 3.198 - 2.440+ 3.236)] = = 3.0189 

2x 16 
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1 [ ]2 (6.57) 2 
8Sb2 = - 2(- 0.766 - 1.576+ 2.239+ 1.814 - 0.904 - 3.198+ 2.440+ 3.236) = - -= 2.W78 

2x8 16 

I 2 ((,.7(,(,)2 
,'):')'/3 = - [2( - 0.7(,(, - 1.57(, - 2.239 - 1.814 + 0.904+ 3.198 + 2.440 + 3.236)] = = 2.8612 

} 2x8 16 

I 2 ( - 5.4()()) 2 

'~:~'b I 2 = - [2(0.76() - 1.576 - 2.239+ 1.814+ 0.904 - 3.198 - 2.440+ 3.236)] = = i.8673 
2x8 16 

1 2 (5.41)2 
SSbl3 = - [ 2( 0.766 - 1.576 + 2.239 - 1.814 - 0.904 + 3.198 - 2.440 + 3.236)] = - ' -6 - = 1.8293 

2x8 

1 [ ( ]2 (0.286)2 
SSb23 = 2x8 2 0.766 + 1.576 - 2.239 - L8l4 - 0.904 - 3.198 + 2.440 + 3.236) = 1 G = 0.0051l 

I • . 2 (0.526r 
SSbl23 = -[2(-0.766+ 1.576+ 2.239 - 1.814+ 0.904 - 3.198 - 2.440+ 3.236)] = = 0.0173 

2x8 16 

Iss R = 3.0189 + 2.6978 + 2.8612 + 1.8673 + 1.8293 + 0.00511 + 0.0173 = 12.2969 

IX . Sum of square error, 

but, 

SS = L ( .)2 _ (2: Yr; r 
T Y,., N r. 

L (YrJ = 0.6642+0.8622+ 1.5642+] .5882+2.6142+1.8642+ 1. 7122+1.9162+ 1.5262 

+0.2822+3 .1922+3.32042+2.5482+2.3322+3.3602+3 .1122 
= 78.8288 

(L: YrY = (0.664+0.862+ 1.564+ 1.588+2.614+ 1.864+ I. 712+ 1.9] G+ 1.526+0.282 

+3 .192+3.3204+2.548+2.332+3.360+3.112i 
= 1046.1343 

1046.'343 
Hence S"')1" = 78.8288 - 8(2) = 78.8288 - 65.3834 = 13.4454 

Therefore SSE = 13.4458- 12.2969 = 1.1485 
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SSE 1.1485 
But dfR = 1 and ( ) = --= 0.1435 

N r - 1 8 

3.0189 
For bJ , JI~al = 0.1 435 = 21.0376 

2.h978 
For b2 , II~al = 0.1435 = 18.8 

2.86129 
For b3 , F~al = = 19.9387 

0.1435 

1.8673 
For bJ2 , l~.al = 0.1435 = 13.0125 

1.8293 
For bJ3 , ~JI = 0.1435 = 12.7038 

0.00511 
For b23 , l~al = 0.1435 = 0.0356 

0.0173 
For b123 , ~al = 0.1435 = 0.1206 

Table 6: Complete. analysis of vadance 

Soul"Ce of Sum'of Degree of Mean square F-cal 
variation sguares (SS} freedom {dO (MS} 

B1 3.0189 1 3.0189 21.0376 
B2 2.6978 2.6978 18.8000 
B3 2.8612 2.8612 19.9387 

BI 2 1.8612 1.8612 13 .0125 
BI3 1.8293 1 1.8293 12.7038 
B23 0.00511 1 0.0051 0.0356 

Bl23 0.0173 0.0173 0.1206 

Error 1.1485 N(r-I) = 8 SSE/N(r-l) 

Total 13.4454 Nr-1 
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J~-Test 

For allY COl:nicicnl if' 
F-cal > Fr(u, MR, N(r-I)I 

We reject the null hypothesis, Ho: bj = 0 hence that coefficient is significant. 

From statistical table , 

F (0.05, J ,g) = 5 .32 

There[ore bl , b2, b3, bJ2 and b l3 are significant since their F-cal > F-table. The lilted 

model is still , 

y = 2.022 + 0.432xl + 0.4 11 X2 +0.423x3 + O.342x 1X2 + O.338x1X3 

From Table 2, 

Y I = 2.022 + 0.434(-1) + 0.411(-1) + 0.423(-1) - 0.342(+1) + 0.338(+1) = 0.750 

Y2 = 2.022 + 0.434(+ I) + 0.411(-1) + 0.423(-1) - 0.342(-1) + 0.338(-1) = 1.626 

Y3 = 2.022 + 0.434(-1) + 0.411(+1) + 0.423(-1) - 0.342(-1) + 0.338(+1) = 2.255 

Y4 == 2.022 + 0.434(+1) + 0.411(+ 1) + 0.423(-1) - 0.342(+1) + 0.338(-]) .... 1.764 

Y5 = 2.022 + 0.434(-1) + 0.411(-1) + 0.423(+1) - 0.342(+ 1) + 0.338(-1) = 0.920 

Y6 = 2.022 + 0.434(+ 1) + 0.411 (-1) + 0.423(+ 1) - 0.342(-1) + 0.338(+]) = 3.148 

Y7 = 2.022 + 0.434(-1) + 0.411(+1) + 0.423(+ 1) - 0.342(-1) + 0.338(-1) = 2.424 

Yg = 2.022 + 0.434(+ 1) + 0.411(+ 1) + 0.423(+ 1) - 0.342(+ 1) + 0.338(+ 1) = 3.286 
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Table 7: Table of c.xperimenta.l and calculated Ile.·centage extl·act. 

N y ycal e = y-ycal e2 = (y _ ycal)l 

0.766 0.750 0.016 0.000256 

2 1. 576 1.626 -0.050 0.002500 

3 2.239 2.255 -0.016 0.000256 

4 1.814 1.764 0.050 0.002500 

5 0.904 0.924 -0.020 0.000400 

6 3.198 3.148 0.050 0.002500 

7 2.440 2.424 0.016 0.000256 

8 3.236 3.286 -0.050 0.002500 ' 

The dispersion of adequacy [or the replicate experiment is 

F-test 

r N 
S;d =--I(y- ycal) 2 

... .. ... . ... ......... 24 
N-A 

')... = Insignificant coefficient 

')...=2 

.S;d =_2_ (0.000256 + 0.002500 + 0.000256 + 0.002500 + 0.000400 + 
8-2 

0,002500 + 0,000256 + 0.002500) 

2 = -xO.0 1168 
6 

= 0.003723 

Applying Fisher's criterion 

F-table = Fl.u, N - r, N(r-l)] 
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The fitted model is adequate ifand only if Fla, N - r, N(r-l)J > [-cal ...... .. ......... 25 

F-cal = 
S(I \ / 
--2 .. .. .. .. . ............ .. . 26 
Su 

= 
O.()03723 

O.143H9 

O.02Sg7 

Flu, 8 - 2, 8(2 - 1)1 = F-table 

FIO.OS, G, 8J = 3.S8 

Since F-table > F-cal, the fitted model is adequate. 

i .e. y = 2.022 + 0.434xl + 0.411 X2 + 0.423x3 - O.342x1X2 + O.338x1X3 is 

adequate. 

To transfer natural variables to their coded levels to be use in calculations. 
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PROGRAM LI T 

Program Percentage _ Extract(Input, Output,Filedat,Fileout); 

{$M 8192,O,O} { Leave memory for child process} 

Uses crt,dos; 
Const 

xes4 : array[O .. lS] of string[8] = 
(' ','x \','x2','x3','x4','x \ x2','x 1 x3 ','x 1 x4','x2x3 ','x2x4', 
'x3x4','xl x2x3','x 1 x2x4','x 1 x3x4','x2x3x4','xl x2x3x4'): 
xes : arraylO .. 71 ofstring[G] = 
(' ','xl','x2','x3','xlx2','xlx3','x2x3','xlx2x3'); 
xes2 : array[O .. 3] of stringl6] = 
(' ','xl','x2','xlx2'); 
bes4 : array[O .. lS] ofstring[S] = 
('bO','b 1 ','b2','b3','b4','b 12','b 13',' b 14'~ 'b23','b~4' ,' b34' , 
'b 123','b 124','b134','b234','b 1234'); 
bes : arrayrO .. 71 ofstring[41 = 
('bO','b l','b2','b3','b J 2','b 13 ','b23','b 123'); 
bes2 : arrayIO .. 31 ofstring[4] = 
('bO' 'b I' 'b2' 'b 12')' , " , 

Var 
nO,nl,n2,n,r,i,j ,k,lam:lnteger; 
l1ag,choice:Integer; 
x: arrayll..lG,O .. lSJ of integer; 
b,t,xnew,Fcal,SSr:array[O .. 15] of real ; 
btestarray[0 .. 15] of boolean; 
newy,yid,su,su2,diff:array[1 .. 16] of real; 
eu,eu2:array[1..16] of real; 
yidr, yid_r, yid_2r: array[1..3,1..16] of real; 
wI high, w llow, wOhigh, wOlow, w2high, w2low, w3high, w31ow:real; 
coninv,tvalue,gvalue,gcal,sumsu,maxsu,eerror,merror,sb:real; 
fvaluel ,fvalue2,fcall,fca12 ,sumeu,sad,x l ,x2,x3 ,x4,finy:real; 
wI value,w2value,w3value,w4value,w4Iow,w4high:real ; 
wI name, w2name, w3name, w4name:String[6]; 
SSmean,Sumry2,Sumry,SumSSr,SSt,SSe:real ; 
equa : string; 
ans:char; 
Filedat,FileoutText; 
Filenam : Stringl12] ; 

function Int2Str(L : Real) : string; 
var 
S : string[6]; 

begin 
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Str(L:G:3, S); 
Int2Str := S; 

end; 

function power2(vulu:real):l'eal; 
Begin 

power2 := vatu * valu; 
end; 

[unction FileExists(FileName: string) : Boolean; 
var 

f: text; 
begin 

{$I- } 
Assign(r, FileName); 
Reset(f) ; 
Close(f); 
{$I+ } 
FileExists := (LOResuIt = 0) and 
(FileName <> "); 

end; {FileExists} 

Procedure Clears; 
Begin 

Clrscr; 

gotoxy(15 l)"Wn" teln('-------------------------------------------------------------------, , 
---')" ----- , 

gotoxy(15,2);Writeln('Prediction Models for the % Extract of Oxalic acid'); 
gotoxy(15,3);Writeln(' from the bark of Eucalyptus Camaldulensis'); 

goto~'V(15 4)"Writeln('============================ OJ " 

----------')" 
Writeln; Writeln; 

End; 

Procedure Initialize; 
Begin 

for i := 1 to 8 do 
begin 

x[i,O] := 1; 
iri mod 2 = 0 then 

x[i, 1 J := ] 
else 

x[ i, 1] : = -I ; 
ifi in [1 ,2,5,6] then 

x[i,2] := -1 
else 

x[i 2] "= I " , " , 
if i <= 4 then 
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xli,31 := -1 
else 

xri,JI ;= I ; 
x l i,4 1 := xl i, II * xl i,2 1; 
x[i,5] := x[i , 1J * xri,31; 
xP,G I := x[i,2J * xli,3\; 
xri,7] := x[i, 1] * x[i,2] * x[i,3]; 

end; . 
for i := 0 to 7 do 

btestri-I := TRUE; 
end; 

Procedure Initial4 ; 
Begin 

for i := 1 to 16 do 
begin 

x[i ,O] := 1; 
ifi mod 2 = 0 then 

x[i,l] := 1 
else 

x[i,l] := -1; 
ifi in [1,2,5 ,6,9, 10,13,14] then 

x[i,2] := -1 
else 

x[i,2] := 1; 
x[i,3] := 1; 
x[i,41 ;= 1; 
if i <= 4 then x[i,3] ;= -1 ; 
if(i >= 9) and (i <= 12) then x[i,3] := -1 ; 
if i <= 8 then x[i,4] := -1 ; 
x[i,5.1 := xp, 1] * xl\2j" 
xli,6] := xli,i] * xli,3]; 
x[i,7] := x[i,J] * x[i,4]; 
x[i,8] := x[i ,2] * xli,3]; 
x[i,9J := x[i,2] * xli,4J; 
x[i,lO] :=x[i,3] *x[i,4]; 
x[i,ll] := x[i,l] * x[i,2] * x[i,3]; 
x[i,12] := x[i,l] * x[i,2] * x[i,4]; 
x[i,13] ;= x[i,1] * x[i,3] * x[i,4]; 
x[i,14] ;= x[i,2] * x[i,3] * x[i,4]; 
x[i,15J := x[i, 1] * x[i,2] * x[i,3 J * x[i,4]; 

end-, ' 
fori:=OtolSdo 

btest[i I := TRUE; 
end; 

Procedure Initial2; 
Begin 

for i := 1 to 8 do 
begin 
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x[i ,O] := 1; 
if i mod 2 = 0 then 

xfi , l] := "! 
else 

x[i, l] := -l ; 
if i in r 1,2] then 

xli ,2 1 := - 1 
else 

xli,2 1:= I ; 
xli ,3.! := xli , ll * xli ,2 1; 

end: 
for i := 0 to 7 do 

btest[il := TRUE; 
end ~ 

Procedure EnterData; 
Begin 

Oag:= 1; 
Clears; 
repeat 

· ; 

Write('Enter Number of Factors (2 ,3 or 4) ');Readln(nl) ; 
until (n1 >= 2) and (n1 <= 4); 
nO := n1 ; 
ifnI = 2 then 

n := 4; 
ifnI = 3 then 

n := 8; 
ifnI = 4 then 

n := 16; 
w3 high := 0; 
w310w:= 0; 
w4high := 0; 
w41ow := 0 ; 
Write('Enter Name ofW1 (Max 6 Chars) : ');Readln(Wlname); 
Write('Enter High Value for WI : ');Readln(Wlhigh); 
Write('Enter Low Value for WI : ');Readln(Wllow); 
Write(,Enter Name ofW2 (Max 6 Chars) : ');Readln(W2name); 
Write('Enter High Value for W2 : ');Readln(W2high); 
Write(,Enter Low Value for W2 : ');Readln(W2Iow); 

ifn >= 8 then 
begin 
Write(,Enter Name ofW3 (Max 6 Chars) : ');Readln(W3name); 
Write(,Enter High Value for W3 : ');Readln(W3high); 
Write('Enter Low Value for W3 : ');Readln(W3Iow); 

end; 

if n = 16 then 
begin 
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Write(,Enter Name 0[W4 (Max 6 Chars) : ');Readln(W4name): 
WriteCEnter High Value for W4 : ');Readln(W4high); 
Wrile(,Enter Low Value for W4 : ') ~ Readln(W410w) : 

end; 
WOhigh := 1: 
WOlow := -I : 
repeat 

Write(,Enter Number of Replicates (2,3 or 4) ');Readln(r) ; 
until (r >= 2) or (r <= 4); 
Clears; 
for i := 1 to n do 
begin 

yidlil := 0; 
[or j := 1 to r do 

Begin 
Write('Enter % Extract ',1:2,' [or replicate ',j:2,': .');readln(yidr[j ,i]); 
yid[i] := yid[i] + yidr[j ,i] ; 

end; 
yidlil := yidli] / r; 

end: 

Clears: 
Write('High Value [or WI : ') ;Writeln(Wlhigh:7:4); 
Write('LowValue for WI : ');Writeln(WIlow:7:4); 
Write(,High Value for W2 : ');Writeln(W2high :7:4); 
WriteCLow Value ror W2 : ');Wrileln(W210w:7:4): 

ifn >= g then 
begin 

Write('High Value for W3 : ');Writeln(W3high:7:4); 
Write(,Low Value for W3 : ');Writeln(W31ow:7:4); 

end; 
ifn = 16 then 
begin . 
Write(High Value for W4 : ');Writeln(W4high:7:4); 
WriteCLow Value for W4 : ');Writeln(W410w:7:4) ; 

end; 
Write('Number of Replicates : ');Writeln(r); 
Writeln; 

[or j := 1 to r do 
Begin 

WriteC Yr',j:l,' '); 
end · 
Writeln; 

for i := 1 to n do 
begin 

for j := 1 to r do 
Begin 

Write(yidrfj , i] :lO:4,' '); 
end; 
Writeln; 

end; 



Repeat 
Write('Do you wish to write data to file (YIN) ') ;readln(ans); 

until (Upcase(ans) = 'Y') or (Upcase(ans) = 'N'); 
ifupcase(ans) = 'Y' then 

begin 

Writeln('Enter Data Fi,le name (Max 12 chars · AAAAAAAA.AAA) : '); 
Readln(Filenam); 

Assign(Filedat,Filenam); 
Rewri te(F i ledat); 
Writeln(Filedat,WOhigh); 
Writeln(Filedat,Wl high) ; 
Wri teLn(Filedat, W2high); 
Writeln(Filedat,W3high); 
Writeln(Filedat. W 4high); 
Wri teln(Filedat, WOlow); 
Writeln(Filedat,W llow); 
Writeln(Filedat,W210w); 
Writeln(Filedat, W31ow); 
Writeln(Filedat,W 410w); 
Writeln(Filedat,W J name); 
Writeln(Filedat,W2name) ; 
Writeln(Filedat,W3name); 
Writeln(Filedat,W4name) ; 
Writeln(Filedat,r) ; 
Writeln(Filedat,n); 
for i := 1 to n do 
begin 
for j := 1 to r do 

WriteLn(Filedat,yidrlj ,i]); 
Writeln(Filedat,yid[iJ); 

end; 
c1ose(Filedat); 

end; 
End; . 

Procedure LoadData; 
Begin 
clears; 
Writeln(,Enter Data File name (Max 12 chars - AAAAAAAAAAA) : '); 
ReadLn(Filenam); 

if not FileExists(Filenam) then 
begin 

clears; 
WriteLn('File not found') ; 
Writeln('Press Enter Key to Continue .. . '); 
Readln; 

end 
else 
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begin 
assign(Fiiedal,Fiienam); 
nag:= 2; 
Rescl(Filedal) ; 
while not eo[(Filedat) do 

begin 
Reaclln(Fi leclat, WOhigh); 
Readln(Filedat,Wlhigh) ; 
Readln(Filedat,W2high); 
Readln(Filedat, W3high) ; 
Readln(Filedat, W 4high); 
Reaclln(Fi leclat, WOJow); 
Readln(Fileclat,W II0w); 
Readln(Filedal, W2Iow); 
ReadJn(FiJedat, W3Iow); 
Readln(Filedut,W4Iow); 
Readln(Fileclat,W 1 name); 
Readln(F i I eclat, W2name) ; 
Readln(Filedat,W3name); 
Readln(Filedat,W4name) ; 
Readln(Filedat,r) ; 
Readln( Filedat,n); 
for i := 1 to n do 
begin 
for j := 1 to r do 

Readln(Filedat,yidrfj ,i]); 

ReadJn(Filedat,yidli]); 
end; 

end; 
close(Filedat); 

Clears; 
Write('High Value for WI : ');Writeln(Wlhigh:7:4); 
Write(,Low Value for WI : ');Writeln(W 110w:7:4); 
Write(,High Value for W2 : ');Writeln(W2high:7:4); 
Write('Low Value for W2' : ');Writeln(W210w:7:4); 
Write('High Value for W3 : ');Writeln(W3high:7:4); 
WriteCLow Value for W3 : ');Writeln(W310w:7:4); 
Write('High Value for W4 : ');Writein(W4high:7:4); 
Write(,Low Value for W4 : ');Writeln(W4Iow:7:4); 
Write('Nurnber of Replicates : ');Writein(r); 
Write In; 
. for j := 1 to r do 

Begin 
Write(, Yr' ,j :l ,' '); 

end; 
Writein; 

for i := 1 to n do 
begin 

for j := 1 to r do 
Begin 
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Write(yidrLi ,i]: 1 0:4,' '): 
end : 
Writeln ; 

end: 
Writeln; 
Writeln('Data has been Loaded into memo!), I'); 
Writeln; 
WriteCPress Enter to Continue ');readln; 

end; 
End; 

Procedure Compute; 
Begin 
ifn = 4 then nO := 2; 
ifn = 8 then nO := 3: 
ifn == 16 then nO := 4; 
ifnO = 4 then 

initial4; 
ifnO = 3 then 

initialize ; 
ifnO = 2 then 

initial2; 
if flag = 0 then 

Begin 
Clears; 
gotoxy(20,10);Write(,Empty Data !, Select options 1 or 2 before 3'); 
Oelay(3500); 

end 
else 

Begin 
n2 := n - 1; 
Clears; 
Writeln(,Enter Output File name (Max 12 chars - AAAAAAAA.AAA) : '); 
Readln(Filenam); 
assign(Fileout,Filenam); 
Rewrite(Fileout); 
Write('Enter G-Value Tabulated - G[a,(r-l) ,N] : ');Readln(gvalue); 
sumsu := 0; 

for i : • .:: I to n do 
begin 
su2[i] := 0; 
for.i := 1 to r do 

begin 
diff[iJ := yidr[j ,il-yid[i]; 
su2[iJ :== su2[i] + sqr(diff[i]) 

end; 
su2[i] := su2[i] / (r-1); 
sumsu := sumsu + su2[i]; 

end; 
maxsu := su2[I] ; 
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for i := 1 to n do 
i[ su2ri] > maxsu then maxsu := su2[i]; 

gcal := ma.xsu / sumsu; 

Wri Iclll(l;i ICOllI, '================;================================= 
--,). , 

Writeln(Fileout,'Prediction Models for the % Extract of Oxalic acid') ; 
Writeln(Fileout,' from the bark of Eucalyptus Camaldulensis'); 

Wrl' teln(F,'leout ,------"---------------------------------------------------- ---------------------------------------, 
--,). , 

Writeln(Fileout); 
WriteLn(Fileout,'Natural Factors and their Coded levels'); 
for i := 1 to 70 do Write(Fileout,'=');Writeln(Fileout); 
ifn = 16 then 

Writeln(Fileout,'LevelofFactors Code ',w1name:6,' ',w2name:6,' 
',w3name:6,' ',w4name:6); 

ifn = 8 then 
Writeln(Fileout,'LevelofFactors Code ',wlname:6,' ',w2name:6,' 

',w3name:6); 
ifn = 4 Ihen 

Writeln(Fileout,'Level of Factors Code ',wlname:6,' ',w2name:6); 
for i := 1 to 70 do Write(Fileout,'=');Writeln(Fileout); 
Writeln(Fileout,'High',' ':15,'+ 1 ',wlhigh:9:4, 
w2high:9:4,w3high: 1 0:4,w4high:l 0:4); 
Writeln(Fileout,'Low ',' ':15,'-1 ',w11ow:9:4, 
w210w:9:4,w310w: 1 0:4,w410w: 10:4); 
Writeln(Fileout); Writeln(Fileout); 

Writeln(Fileout,'Experimentai Results with Replicates'); 
[or i := 1 to n* 1 0+6 do Write(Fileout,'=');Writeln(Fileout); 
Write(Fileout,' N I'); 
for i :-= 1 to n do 
Write(Fileoul,' ',i:3,' I') ; 
Writeln(Fileout); 

for i := 1 to n* 10+6 do Write(Fileout,'=');Writeln(Fileout); 
for.i := J to r do 
begin 
Write(Fileout,' Y r',j : 1,' I') ; 
[or i := 1 to n do 

Write(Fileout,' ',yidr[j ,i]:7:4,' I'); 
Writeln(Fileout); 

end; 
Write(Fileout,' Y % I') ; 
for i := 1 to n do 

Write(Fileout,' ',yid[i]:7 :4,' 1'); 
Writeln(Fileout); 

for j := 1 to r do 
begin 
Write(Fileout 'Yr'J" l'-YI') ' , ,., , 
for i := 1 to n do 

102 



Write(Fileout,' ',yidrlj ,iJ-yidliJ :7A,' I') : 
Writeln(Fileout) ; 

end : 
lur.i : I [0 r do 
begin 
Write(Fileout,'Sqr',j: 1,' I')" 
for i := I to n do 

Write(Fileout,' ',sqr(yidrrj ,i]-yidli]) :7A,' I'); 
Writeln(Fileout); 

end; 
Write(Fileout,'Su A 2 I'); 
[or i := 1 to n do 

Write(Fileout,' ',su2[i]:7 A,' I'); 
Writeln(Fileout); 
Writeln(Fileout); 

Writeln(Fileout,'The Sum of the dispersion = ' ,sumsu:7A); 

Writeln(Fileout,'The maximum SuA 2 = ',maxsu:7A); 
Writeln(Fileout 'G-Calculated = ',gcaI:7:4); 
Writeln(Fileout,'G-Statistical Table [il,(r-l ),N] = ',gvalue:7A): 
Writeln(Fileout); 
Writeln(Fileout,'G-TEST'); 
if gvalue < gcal then 
begin 

Clears; 
Writeln(Fileout,' ll is not possible [0 carry out regression'); 
Writein(Fiieout,'analysis. since G-stat < G-ca!'); 
WritelnCIt is not possible to carry out regression') ; 
Writeln('analysis, since G-stat < G-cal'); Writeln; 
Writeln(,Press AnyKey to Continue'); 
Readln; 

end 
else 
begin 
Writeln(Fileout,'It is possible to carry out regression'); 
Writeln(Fileout,'analysis, since G-stat > G-cal') ; 
Writeln(Fileout); 

Clears; 
Write('Enter T-Value Tabulated - T[a,N(r-l)] : ');Readln(tvalue); 
for i := 1 to 78 do Write(Fileout,'-');Writeln(Fileout); 
Writeln(Fileout); 
merror := sumsu / n; 
eerror := sqrt(merror); 

Write(Fileout,'Design Matrix Table for a 2N,nO:2,' full factorial') ; 
Writeln(Fileout,'Design with the interactions'); 
for i := 1 to n*lO do Write(Fileout,'=');Writeln(Fileout); 
ifn = 16 then 
begin 
Write(Fileout,' XO Xl X2 X3 X4 Xl *X2'); 
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Write(Fileout,' Xl *X3 X I *X4 X2*X3 X2*X4 X3 *X4 X I X2X3 '); 
Writeln(Fileoul,' XIX2X4 XIX3X4 X2X3X4 XIX2X3X4 y'); 

end; 
ifn = Slilen 
begin 

Write(Fileout,' XO Xl X2 X3 Xl *X2'); 
Writeln(Fileout,' Xl *X3 X2*X3 Xl *X2*X3 Y'); 

end; 
ifn = 41hen 
begin 

Writeln(Fileoul,' XO Xl X2 Xl "'X2 Y'); 
end; 
for i := 1 to n*10 do Write(Fileout,'=');Writeln(Fileout); 
for j := 1 to n do 
begin 
[or j := 0 to n2 do 
Write(Fileout,' I,x fi ,jl :3,' I') ; 
Wrile(Fileout,' ',yid fi]:7:4); 
Writeln(Fileout); 

end; 
Writeln(Fileout); Writeln(Fileout); 

Writeln(Fileoul,'The mean square error 
Writeln(Fileout,'The experimental error 
Writeln(Fileout); 

for i := 0 to n2 do 
begin 

b[i] := 0; 
for j := 0 to n2 do 

b[i] := b[iOI + (x[j+l ,i]*yidlj+l]); 
bli] := blij / n; 

end; 
sb := eerror / sqrt(n*r); 
[or i := 0 to n2 do 
begin 

t[i] := abs(b[i]) / sb; 

= ',merror:9:5); 
= ',eerror:9:5); 

ift[i] < tvaJue then btest[i] := FALSE; 
end; 

equa := 'Y = '; 
lam := 0; 
for i := 0 to n2 do 
if btest[i] then 
begin 
if (i <> 0) and (b[i] > 0) then equa := equa + '+'; 
ifn = 16 then 

equa := equa + (' '+Int2str(b[i])+xes4[i]+' '); 
ifn = 8 then 

equa := equa + (' '+Int2str(b[i])+xes[i]+' '); 
ifn = 4 then 
equa := equa + (' '+Int2str(b[i])+xes2[i]+' '); 
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end 
else 

lam:= lam + I : 
Writeln(rileoul,'T-TEST:') ; 
Writeln(Fileout,'T-Statistical Table la,N(r-l)J :',tvalue:7:4): 

Writeln(Fileout,'The constant and the variable for the following'); 
Writeln(Fileout,'are insignificant since T-cal < T-table'); 
for i := 0 to n2 do 
if not btestl i J then 
begin 
lfn = 16 then 

Write(Fileout,bes4 lil ,' ') ; 
ifll = 8 then 

Write(Fileout,besli],' '); 
ifn = 4 then 

Write(Fileout,bes2 Iil ,' ') ; 
end; 

Writeln(FiJeout); 
coninv := tvalue * sb; 
Writeln(Fileout); . 
Writeln(Fileout,'The fitted model then becomes:'); 
Writeln(Fileout,equa); 
Writeln(Fileout); Writeln(Fileout); 
writeln(fileout,'Table of Calculated T -values'); 
Writeln(Fileout,'Regression Estimated Confidence t'); 
Writeln(Fileout,'Coefficient Effect Interval Values'); 
for i := 1 to 45 do Write(Fileout,'=');Writeln(Fileout); 
for i := 0 to n2 do 
begin 
ifn = 16 then 

Writeln(Fileout,bes4[i] :6,' ',b[i] :7:3," 
coninv:7 :3,' ',t[i]:9 :5); 

ifn = 8 then 
Writeln(Fileout,bes[i) :6,' ',b[i]:7 :3," 

. coninv:7:3,' ',t[i]:9:5); 
ifn = 4 then 
Writeln(Fileout,bes2[i]:6,' ',b[i]:7:3," 
coninv:7:3,' ',t[i] :9:5); 

end; 
for i := 1 to 45 do Write(Fileout,'=');Writeln(Fileout); 
for i := 1 to n do 
begin 
newy[i] := 0; 
for j := 0 to n2 do 
if btestUJ then 

newy[i] ;= newy[i] + (b[j]"'x[ij]); 
end; 

Clears; 
Write('Enter F-Value Tabulated - F[a,dFr,N(r-l)J : '); 
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Readln([valuel ); 
for i := 1 to 78 do Write(Fileout,'-')'Writeln(Fileout); 

Writeln(FileouO; 
Wrildn(Fileoul) ; 
Sumry2:= 0; 
SumIY := 0; 
SumSSr := 0; 

[or i := 1 to 11 do 
for k := 1 to r do 
begin 

Suntl'y2 :- suml'y2 + power2(yidr[k,iJ); 
Sumry := Sumry + (yidr[k,i]); 

end; 

for i := 1 to n2 do 
begin 

SSrliJ := power2« b[iJ * r * n)/(r*n); 
SumSSr := SumSSr + SSrliJ; 

end; 
SSt := Sumry2 - (power2(Sumry)/(r*n» ; 
SSe := SSt - SumSSr; 
SSmean := SSe 1 (n*(r-l » ; 
for i := 1 to n2 do 
begin 

Fcallil := SSr[ill SSmean; 
btes1[i] := TRUE; 
if Fcal[i] < fvalue 1 then btest[i] := FALSE; 

end; 
Writeln(Fileout,'F-TEST :'); 
Writeln(Fileout,'F-Statistical Table [a,dFr,N(r-l)] :',fvalue1:7 :4); 

Writeln(Fileout,'The constant and the variable for the following') ; 
Write1n(Fileout,'are insignificant since F-cal < F-table'); 
[or i := I to n2 do 
ifnot btest[i] then 
begin 
ifn = IG then 

Write(Fileout,bes4[i],' '); 
ifn = 8 then 

Write(Fileout,beslil,' ') ; 
ifn = 4 then 

Write(Fileout,bes2[i],' '); 
end; 

Writeln(Fileout); Writeln(Fileout); 
writeln(Fileout,'Complete Analysis of Variance'): 
Write1n(Fileout,'Source of Sum of Degree of Mean F-cal'); 
Writeln(Fileout,'Variation Squares(SS) Freedom(df) Square '); 
for i := 1 to 55 do Writo(Fileout,'=');Writein(Fileout); 
for i := 1 to n2 do 
begin 
ifn = 16 then 
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Writeln(Fileoul,bes4l il :6,' ',SSr[i]:7 :3,' 
',SSr[iJ:7 :3,' ',Fcallij :9:5); 

ifn = 8 then 
Wrileln(Fileoul,bcsl i I :6,' ',SSrl i J:7 :3,' 

',SSrli]:7 :3,' ',Fcalli] :9:5); 
ifn = 4 then 

Writeln(Fileout,bes2[i) :6,' ',SSr[i]:7:3,' 
, ',SSr[i]:7 :3,' ',Fcal[i) :9:5); 

end; 

I' , 

[' , 

I' , 

[or i := 1 to 55 do Write(Fileout,'= ');Writeln(Fileout); 
Writeln(Fileout,'Error (SSE) = ',SSe:9:5); 
Writeln(Fileoul,'Total (SST) = ',SSt:9:5); 
Writeln(Fileout,'N(r-l) = ',n:5); 
Writeln(Fileout,'Nr-l = ',n*r - 1 :5); 
Wrilcln(Filcoul,'SSE/(N(r-l) = ',SSmean:9:5); 
Writeln(Fileout); 

Clears; 
Wrile(,Enler F-Value Tabulaled - F[a,N-r,N(r-l)] : ');Readln(fvalue2); 

Writeln(Fileoui); • 

writeln(Fileout 'Experimental and Calculated', 
, percentage extract'); 
Writeln(Fileout,' N 
, eu"2=(Y -Y cal)" 2'); 

Y Ycal eu=Y-Ycal', 

for i := 1 to 55 do Wrile(Fileout,'=');Writeln(Fileout); 
sumeu := 0; 
for i := 1 to n do 
begin 

eu[i) := yid[i) - newy[i) ; 
eu2ri] := sqr(eu[i]); 
Wrileln(Fileoul,i:4,' ',yid[il:7 :3,' ',newy[i] :7:3, 
, ',euli]:10 :6,' ',eu2[i):l0:6); 
sumeu := sumeu + eu2liJ; 

end ; 
. sad := r/(n-Iam)*sumeu; 

[cal2 := sad / merror; 
Writeln(Fileou t); 
for i := I to 55 do Write(Fileout,'=');Wrileln(Fileout); 
Writeln(Fileout); 
Writeln(Fileoul,'F-TEST (Fisher) :'); 
Writeln(Fileout,'F-Calculated 
Writeln(Fileoul,'F-Statistical Table 
Writeln(Fileout); 
if fcal2 > fvalue2 then 
begin 

= ',fcal2: 11 :7); 
- ',fvalue2:11 :7); 

Writeln(Fileout,'The fitted model is inadequate'); 
Writeln(Fileout,'Since F-cal > F -table (Fisher) '); 
Writeln(Fileout); 

end 
else 
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begin 
Writeln(Fileout,The fitted model is adequate'); 
Write\n(Fi\eout,'Since F-ca\ < F-tabJe') ; 
WrilcJn(Filcoul): 
for i := 1 to 78 do Write(Fileout,'-'); Writeln(Fileout); 

end; 
Repeat 
Clears; 
Repeat 

Write('Do you wish to continue by entering values for Computation (yIN) '): 
readln(ans); 

until (Upcase(ans) = 'Y') or (Upcase(ans) = 'N'); 
ifupcase(ans) = 'Y' then 

begin 
repeat 
Write(,Enter Value ofWl (must be between wlhigh & wllow): '); 
Readln(wl value); 
until (wI value >= wI high) and (wI value <= wi low) 

or (wI value <= w lhigh) and (w 1 value >= w ] low); 
repeat 
Write(,Enter Value ofW2 (must be between w2high & w210w): '); 
Readln(w2value); 
until (w2value >= w2high) and (w2value <= w210w) 
or (w2value <= w2high) and (w2value >= w210w); 
x l := «2 *wl value )-wllow-w I high)/(wlhigh-w 110w); 
x2 := «2*w2value)-w210w-w2high)/(w2high-w210w); 

ifn >= 8 then 
begin 

repeat 
Wri~e('Enter Value ofW3 (must be between w3high & w3Iow): '); 
Readln(w3value); 
until (w3value >= w3high) and (w3value <= w310w) 

or (w3value <= w3high) and (w3value >= w310w); 
x3 := «2*w3value)-w310w-w3high)/(w3high-w310w); 

. xnew[O] := 1; 
xnew[ I] := xl ; 
xnew[2] := x2; 
xnew[3] := x3 ; 
xJ1ewr4J :- xl *x2; 
xnew[51 := x I *x3 ; 
xnew[6] := x2*x3 ; 
xnew[7] := xl *x2*x3; 

end; 
ifn = 16 then 
begin 

repeat 
Write('Enter Value ofW4 (must be between w4high & w410w): '); 
Readln(w4value); 
until (w4value >= w4high) and (w4value <= w410w) 

or (w4value <= w4high) and (w4value >= w410w); 
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x4 := « 2*w4value)-w410w-w4high)/(w4high-w410w); 
xnewl OI := 1; 
xnewf 11 := x I ; 
xIlcwl 21 := x2: 
xnewl3 J := x3; 
xnewl.4J := x l *x2; 
xnewl.5 1 := x l *x3; 
xnew[G] := x2*x3 ; 
xnew[71 := x l *;..:2*;..:3; 

end; 
i[n = 4 then 
begin 

xnewrOI := L 
xnewll I := x I ; 
xncwl21 := x2; 
xnewl31 := x I *x2; 

end : 
finy := 0; 
[or j := 0 to 112 do 
if bleslUllhen 

finy := finy + (bUJ *xnewljJ); 
Writeln(Fileoul); 

for i := I to 75 do Write(Fileoul,'*');Writeln(Fileout) ­
Writeln(Fileoul,'Value ofw1 ,xl = ',wI value:9:4,x 1 :9:4); 
Writeln(Fileout,'Value ofw2,x2 = ',w2value:9 :4,x2 :9:4); 

ifn >= 8 then 
Writeln(Fileout,'Value ofw3 ,x3 = ',w3value:9:4,x3 :9:4); 

ifn = 16 then 
Writeln(Fileout,'Value ofw4,x4 = ',w4vaiue:9:4,x4:9:4); 
Writeln(Fileout); 
Writeln(Fileou l,eq ua); 
Writeln(Fileout); 
Writeln(Fileout,'Final value ofY = ',finy:9:4); 
Writeln(Fileout); 

end; 
until (Upcase(ans) = 'N'); 

for i := 1 to 75 do Write(Fileoul,'* ');Writeln(Fileoul); 
c\ose(Fi1eout); 
Clears; 

SwapVectors; 
Exec(GetEnv(,COMSPEC'), 'IC ' + 'edit '+Filenam); 
SwapVectors; 

end; 
End; 
end; 

Begin 
flag := 0; 
assign(Filedat, 'extract. dat') ; 
assign(Fileout, 'extract. out'); 
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repeat 
repeat 
Clears; 
gQtoxy(25,7);Wrileln(,M A IN MEN U'); 
gotoxy(25,8); Writeln(,* ** ** * * ** ** ** ** * *'); 
gotoxy(23,lO) ;Writeln(,1. Enter Fresh Data '); 
gotoxy(23, 12);Writeln(,2. Load Data [rom File'); 
gotoxy(23,1 4);Writell1(,3 . Computation '); 
gotoxy(23, 16);WriLcIl1('4. Quit Program '); 
gotoxy(25, 19);Wrile(,Enter Choice (1-4) ');readln(choice); 
until (choice > 0) and (choice <= 4); 
Case Choice of 

I :EnterDala; 
2:LoadDala; 
3:Compule; 

end; 
until choice = 4; 
end. 
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