PREDICTION MODELS FOR THE PERCENTAGE
EXTRACT OF OXALIC ACID FROM TIIK BARK
OF KUCALYPTUS CAMALDULENSIS

BY

»
Isah Abubakar Garba
M.ENG/SEET/99/2000/415

A PROJECT SUBMITTED TO THE DEPARTMENT OF CHEMICAL
ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA,
IN PARTIAL FULFILLMENT FOR THE AWARD OF MASTERS DEGREE
(M.ENG) IN CHEMICAL ENGINEERING

JULY, 2001




DECLARATION

1, ISAH ABUBAKAR GARBA (M.LENG/SEET/99/2000/415) declare that this
thesis titled Prediction model for the percentage extract of oxalic acid from the bark
of eucalyptus camaldulensis, presented [or award of Masters of Engineering in the
Department of Chemical Engineering has not been presented for any other degree

elsewhere.

|1 2001

Signature Date

i




CERTIFICATION

This is to certify that this project work was supervised and approved by the
following persons on behalf of Chemical Engineering Department .Federal University

of Technology Minna.

.!f‘.‘.".’l.ﬁélﬁ“" '

Date

(Project Supervisor)

(Head of department) - -

Dwﬂffs@ﬂ»ﬁ/n 9[é]o)

Lxternal Examiner Date

i




DEDICATION

In the name of ALLAH the most gracious the most merciful. May the peace
and blessings of ALLAH be on His noble Prophet MUHAMMAD (S.A.W.), the

Opener and the Seal.
This work is dedicated to our beloved Prophet MUHAMMAD (S.A.W.), His

KHALIFA, SHEIKH TIJJANI (RA.) and Their KHALIFA, SHEIKH IBRAHIM

INYAAS (R.A.).

v




ACKNOWLEDGEMENT

All praises be to ALLAH the LORD of the universe for His care, guidance
and protection.

I owe my Project Supervisor DR. K.R. ONIFADE, a profound gratitude for his
relentless effort and guidance in making this work a success. May ALLAH grant him
all his needs in abundance. To all other stalf of Chemical Engineering Department, |

am grateful.

“1will like to use this opportunity to thank my Father, ALHAJI MUHAMMAD
SHABA (Garkuwan Kataeregi) and Brother ALHAJI SULEIMAN A.SHUAIBU for
giving me moral and financial sup.port throughout my academic career. The
contribution of my SHEIKHS, SHEIKH MUHAMMAD NAZIFI ALKARMAWI,
SHEIKH MUHAMMAD ISAH and SHEIKH ISAH ALIYU whose prayers is the
PASSWORD to my success is acknowledged.

The contribution of my Spiritual Director, SHEIKH ABDULKADIR NAUZO
who moulds my life in ZAATI by ZAATI is most acknowledged.

My acknowledgement will not be complete if I forget to express my gratitude
to MALLAM AUDU ISAH a great statician in Federal University of Technology,
Minna, from whom I got most of my reference materials. Likewise MALLAM
SALIHU SAIDU of geography department on whose system I had the first assess to
SPSS. All Brothers in FAILAH, the rest members of my family, friends and

colleagues are not left out.




ABSTRACT

The main aim of this research work was to use 2* factorial analysis to predict
the p.ercentage extract of oxalic acid obtained from the bark of eucalyptus
camaldplensis as a function of three operating parameters. Three 2° models were used
and only two satisfy the G-test. The obtained equations are:

First Model:
Version 1:y =2.022 - 0.434x; - 0.411x3 - 0.423x3 — 0.342x1x; + 0.338xx3
Version: 2: y = 2.022 + 0.434x; + 0.411x; + 0.423x3 — 0.342x1x2 + 0.338xx3
Where x;= mass, x,= size and x3= time.

Second Model: ’

y=1.327 + 0.260x; - 0.438x3 - 0.314x;x,

Where x;= concentration, x,= time and x3= size.
It was found out that for the first model mass, time and size are inversely proportional
to the percentage extract. Nevertheless, for the second model, concentration is
directly proportional to the percentage extract while time and size are inversely
proportional to the percentage extract oxalic acid obtained.

: _The two models that satisfy the G-test were adequate but the first model was
more accurate than the se;:ond. During the course of the work, a computer program
that can implement the model and prediction calculation was developed. The
program can then be used to get a model and predict the percentage extract for three
operating Qariables, which falls within the range of the data used for the 2* designs.
The program is an interactive Pascal program that can be used for 2% 2° and 2*

factorial analyses.
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CHAPTER ONE

1.0 INTRODUCTION

The production: of useful raw materials from the parts of trees like the bark,
stem, twig, culm, leaves etc. is as old as humanity-itself. Even the ancient man
extracted raw materials like herbal-medicine and fibres from parts of trees. Nowadays
most of the raw materials for manufacturing drugs are extracted from parts of trees.
With recent developments more raw materials are found to be present in the bark and
other parts of trees.

Eucalyptus is a large genus of trees and shrub native of Australia, New
Zealand, Tasmania and Malaysia (Anonymous, 1994). There are 650 — 700 species of
eucalyptus, of which eucalyptus camaldulensis. is among. Eucalyptus camaldulensis
was introduced to Nigeria in 1916 and since then it has been cultivated in large
number in Nigeria especially in savannah region of the country. Areas of Nigeria
where eucalyptus is cultivated include the Jos Plateau, Kaduna, Kano and Niger State.

Oxalic acid is a colourless, crystalline, toxic organic compound belonging to
the family of carboxylic acids. Oxalic acid is widely used as acid rinse in laundries,
where it is effective in removing rust and ink stains because it converts most of
insoluble ion compound into soluble complex ion. For the same reason, it is the chiel
constituent of many commercial preparations used for removing scales from
automobile radiators. Oxalic acid was first prepared synthetically by a Swedish
chemist, Carl Wilhelm Scheel, in 1776. It was manufactured by heating sodium
formate in the presence of an alkali catalyst or by oxidizing carbohydrates with nitric

acid (Anonymous.i 982).




However, oxalic acid has wide range of industrial application, but most of the
oxalic acid used in Nigeria are imported. As a result, over the years, research is on (o
produce oxalic acid locally. Investigation on eucalyptus camaldulensis revealed that
the bark contains calcium oxalate (Shafii,1998). Becausé of the presence of calcium

oxalate in the bark of eucalyptus camaldulensis, oxalic acid is produced by reacting

the grinded bark with sulphuric acid as summarized by the equation below:
CaC,0, + H,50, - (CO,H), + CaSO,
Aller reaction [or a chosen time, oxalic acid is obtained by concentrating the resulting

filtrate.

A lot of work has been done by final year students of this department on the

production of oxalic acid from the bark of eucalyptus camaldulensis. Each student

varied factors such as particle size, temperature, reaction time, acid concentration,
volume of acid and mass of sample. It is the combination of these factors that I will
use 1o analyze the available results.

The analysis is focused on using statistical investigation to analyze and predict
the percentage extract of oxalic acid. There are several experiments, which require
statistical investigation. These are characterized by the nature of treatments under
investigation and also the nature of comparison required among them so as to meet
the objective of the experiment. There are three main types of experiment: (i) varietal
trials, (i1) factorial experiment, and (iii) bio-assays.

In the course of this work, lactorial experimental analysis will be used to
analyze and predict the percentage extract with 3 factors at 2 levels i.e 2* factorial.
Factorial experiment involves simultaneously more than one factor each at two or
more levels. If the number of levels of each factor in an experiment is the same, the
experiment is called symmetrical factorial; otherwise, it is called asymmetrical

factorial or sometimes mixed factorial. These experiments provide an opportunity to




study not only the individual effects of each factor but also their interactions. When
the experiments are conducted factor by factor, changing the levels of one factor at a
time and keeping the other factors at constant levels, the effect of interaction cannot
be investigated. In many biological and clinical trials, factors are likely to have
interactions. Therefore, factorial types of experiments are more informative in such
investigations. They have the further advantage of economizing on experimental
resources. When experiments are conducted factor by factor, much more resources are
required for the same precision than when they are tried in factorial design (Das and
Giri, 1979). |

A 2% Full Factorial experiment entails the choice of factors and their levels

(high and low). The response variabile is also clearly defined for any experimental

data. After necessary statistical test, a model equation that describes the process
results. The model equation can also be used to predict percentage extract for the
variables within the range of the chosen levels.

Finally, a computer program will be developed which codes the steps of
getting the model equation used to predict the percentage extract. And the results will

be simulated by the program for comparison with the experimental results.

1.1 AIMS AND OBJECTIVES
1. To use 2’ full factorial design equation in predicting the percentage extract of

oxalic acid from the bark of eucalyptus camaldulensis.

2. To see the effect(s) of chosen factors (operating variables), on the percentage
extract.

3. To produce a computer program that can be used for complementing 2°
factorial design analysis.

4. Fo compare the ré$ult for hand calculation with that of the program.
5. Fosee how chidite of level of factors affects the model equation.




CHAPTER TWO
2.0 LITERATURE REVIEW
2.1  EUCALYPTUS AND ITS SPECIES.

The word ‘Eucalyptus’ is of Greek origin meaning “well covered” (Keay,
1989). Eucalyptus is a large genus of trees and shrub, native of Australia, Tasmania,
New Zealand and Ma]a);sia and near by island (Anonymous, 1982). The height of
eucalyptus tree varies from one specie to the other. The smallest may be less than 6.5
feet (2 meters) tall, while the tallest may be about 330 feet (100 meters) tall
(Anonymous, 1994).

The leaves of eucalyptus are hard oblique or vertical, with leaves of many
species containing aromatic oil called eucalyptus oil. The margins are smooth, but the
edges of few species are wavy or slightly toothed. The fruit of eucalyptus are capsules
surrounded by a wood, cap shaded receptacle and contains numerous minute seeds.
The capsule is topped by a disc that breaks up into two to seven distinct valves
depending on the specie. Some seeds are prominently winged while others are smooth

or sculptured (Anonymous, 1994).

2.1.1 EUCALYPTUS SPECIES
There are 650- 700 species as well as subspecies of eucalyptus. Some species
of eucalyptus are given below starting with the raw material of this work ie.
eucalyptus camaldulensis.
1 Eucalyptus cameldulensis: This specie is widely cultivated in plantation and
from self sowed seed: variable and hybridizing with other species. The leaves

are narrowly lanceolate up to 25cm long and 1.5cm broad while the bark is

smooth, ash coloured and peeling.
4




Eucalyptus cloeziana: This is another specie with brown stingy bark. The
leaves are lanceolate and up to 12c¢m long and 3cm broad.

Eucalyptus citriodora, This is widely grown in towns for decoration with
smooth and polished bark. The leaves are lanceolate and are 16¢cm long and
2cm broad, they are also strongly lemon- scented.

Eucalyptus deglupta: Most of this species are large with smooth reddish bark.
The leaves are ovate-lanceolate, they are up to 14cm long and 7cm broad.
Eucalyptus torelliana: They are usually planted in the towns [or shade. The
bark is scaly and persistent below, smooth and peeling above (Keay, 1989).

These are just few out of the many species of eucalyptus trees.

2.1.2 ECONOMIC IMPORTANCE OF EUCALYPTUS

Eucalyptus Tree is of great economic importance because of the valuable

products obtained from it. Some of the uses to which eucalyptus can be put in to are

given below.

L

Tannin: This is usually contained as soluble materials in the bark of
eucalyptus species. As the name implies tannins are used for tanning skin of
animals to remove the hair and improve their quality. The tanning process
converts raw hides to leather (Irwin, 1981). Tannins can be exploited for
commercial purposes, sold to various tannaries and leather factories which at
present depend on imported mineral tannins.

Alkanoids: They are obtained on commercial scale from the leaves and bark
of eucalyptus as drug rutin. Alkanoids are also chemically basic compounds

with an important physiological activity as analgesics in medicine.




Charcoal: This yet another raw material that could be derived from the bark
ol eucalyptus. Apart [rom the use in the production of bread by the supply ol
heat in most African countries, most eucalyptus trees carbonize easily

providing good commercial charcoal. The charcoal from eucalyptus tree

yields substantial amount of energy of about 7. 900 calories per kilogram
against 4700 calories per kilogram from wood (Hill, 1979).

Essential oil: The essential oils found in eucalyptus species are extracted from
the leaves of eucal&plus citriodora, eucalyptus robusta, eucalyptus smitti and
eucalyptus globulus (Anonymous, 1982). The oil finds a wide application in

our day-to-day life. Among the used of the oil is that it could be used to

manufacture performs and soaps. The te'rpene and ketone derivatives in the oil
are used as stain removers and also used in veterinary medicine while the
piperitone is used in manufacture of synthetic thymol and menthol.

Fuel wood: Eucalyptus trees are also used as fuel wood. The wood of most
eucalyptus species burns well when air-dried and leave little ash. Eucalyptus
plantation and other forest resources can supply a substantial part of the
household fuel needed. One of the most important advantage of using
gucalyptus as a fuel is that it does not smoke (Hill, i979).

Timber: Eucalyptus trees are also grown to serve as timber, which vary in
properties and uses. Because of the height of the tree, it can also be used as
electric and telephone poles. The trees are also used in making canoes. The
important timber species are eucalyptus maculata and eucalyptus citriodora
(Anonymous, 1994).

Pulp and paper: Many paper industries use the bark of eucalyptus species as
raw material for the production of paper. The world production of pulp from

eucalyptus is over one million tonnes annually.

6




8. Ornamentals: As ornamentals, eucalyptus are grown for their attractive
form and foliage, colourful flowers, or decorative bark. The scarlet-llowering
gums (E. ficifolia and E. calophylla) are two widely planted trees with brightly
coloured flowers. Eucalyptus citriodora is grown for its red flowers and

attractive form. Species with decorative bark include the red iron bark (E.

sideroxylon), which has black, furrowed bark; the spotted gum (E. maculata),
which has smooth, mottled bark in shades of gray, tan, and reddish brown: and
smooth white bark that trails in long ribbons from the branches (Anonymous,
1994).

Other uses .

- Local medicines

- Production of local ink

- Wind breaks elc.

22  OXALIC ACID

Oxalic acid otherwise known as ethanedioic acid is an important individual
diacids. It exists usually as a crystal hydrate, HOOC-COOH.2H,0, whose melting
point is. 101°C and anhydrous acids which melts at 189.5°c. Oxalic acids are found
naturally as oxalates in free state. Calcium oxalate is contained in all plants, while
potassium acid salt, KOOC-COOH in dock, oxalis. Oxalates of alkaline metals
dissolve in H,0, while calcium oxalates practically does not dissolve in cold H,O.
When metabolism is upset in human organism, calcium oxalates accumulates, causing '
the formation of stones in the liver, kidneys and urinary tracts.

The low solubility of calcium oxalate is used in analytical chemistry for

quantitatively and qualitatively determination of calcium.

7




2.2.1 USES AND IMPORTANCE
Oxalic acid is used industrially for dyeing textiles and removing rust stains
and ink blots from them, because it converts most insoluble ionic compounds into

soluble complex ion. And for the same reason, it is the chiel constituent of many

commercial preparation used for removing scales from radiators of automobile
(Anonymous, 1982).
Being a product of oxidation of many organic substances, oxalic acid itself is

readily oxidized. For example, it is oxidized by potassium permanganate thus:

HOOC-COOH—-[—Q]?)—— 3 200, ¥ D i se i
n0, .

This property is used in Analytical chemistry for preparing standard solutions
of potassium permanganate.

Oxalic acids is used for the manufacture of ink and for bleaching straw. It is
also used in Leather industries in manufacture of dyes and in the preparation of

related compounds such as glyoxalic acid and glycolic acid. (Anonymous, 1994).

2.2.2 PHYSICAL AND CHEMICAL PROPERTIES
Physicai properties: |

It is a colourless crystalline solid, which sublimes at 160°C and is fairly
soluble in water. It can also be obtained as crystalline dihydrate, (COOH),.2H,0
(Arene and Kitwood, 1979). Oxalic acids are also soluble in ethanol but insoluble in
CHCls.

Oxalic acid is very poisonous; it melts at 101.5°C when hydrated, while when

anhydrous, the melting point is 189.5°C (Anonymous, 1982).




Chemical properties:

In most chemical reactions, oxalic acids shows the typical properties of
carboxylic groups (Arene and Kitwood, 1979). This will be illustrated by some of the
chemical process below:

1. Esterification: Anhydrous oxalic acid refluxed with excess methanol or
ethanol yields esters without need of stronger acid as catalyst:
(COzH); + 2C,HsOH — (CO,CyHs), + 2H0 ... ... ... ... 2.2
ii. Amide formation: Ammonium oxalate yields some oxamide on heating
(CO;NHy); = (CONHp), + 2H0........2.3
iil. Acid chloride formation: Oxalyl chloride (b.p.64°C) is obtained by the action
of Phosphorus pentachloride and similar reagents on oxalic acid.
(COzH); + 2PCls — (COCI); + 2POCl; + 2HCI ...........2.4
v. Alkali metal oxalates heated with Soda lime yield hydrogen and carbonate.
Formally at any rate, this reaction is analogous with the decarboxylation of

other carboxylic acid by this method. (Dazaley, 1979).

0, .
f 2 1 goH Meat 2C0CO¥" +H,..............2.5
co,”’ dry

The above reactions are more or less typical carboxylic acid behaviour.

Oxalic acid does not form an anhydrous.
v, On heating with concentrated H,804 ,oxalic acid and oxalates are dehydrated
to an equimolar mixture of carbon monoxide and dioxide;

Con.H ,50,
heat

(COzH), >CO+CO+H,0.....................2.6

This behaviour is the familiar elementary test oxalic acid (Dazeley, 1979).




2.2.3 METHOD OF PRODUCTION
The usual laboratory method for preparing oxalic acid is by oxidizing sucrose

with concentrated nitric acid in the presence of vanadium pentoxide. (Anonymous,

1994)

HNO,

C12H201, >6(COH), + 5SHO..................2.7

23

In this work the data is generated [rom the production of Oxalic acid from the
bark of eucalyptus camaldulensis. This is possible because of the presence of calcium
oxalate in the bark of the eucalyptus tree. Sulphuric acid is added to the grinded bark
so that the calcium oxalate in the bark, reacts \yith the sulphuric acid to give oxalic
acid and calcium sulphate as a by-product, thus: .

CaC,0, + HSO4 — (COyH), + CaSOy ............2.8

Calcim. - Sulphiug Oxalic Calcium

oxalate acid acid sulphate

The experimental procedure of the process is given below:

Experimental procedure
The bark of eucalyptus camaldulensis was soaked in water to extract the
Tannin and other water-soluble contents and then dried. The bark was crushed in a
mortar and screened into samples of different size ranges.
" A known sample weight of each size range was put in a conical flask and a
chosen volume of a known concentration of dilute HSO4 acid solution was added to

it. The mixture was agitated for a specified time at a specified temperature (TEMP 1)

on a hot plate equipped with a magnetic stirrer.

10




The hot solution was filtered into a beaker. The filterate (FILT 1) obtained
was weighed and then allowed to cool for an hour at room temperature. The thick
precipitate of calcium sulphate formed after cooling was filtered off and weighed.
This was called PREPT 1. The ﬁlterage obtained which constituted the second
filterate (FILT 2) was also weighed. The second filterate was concentrated to about
one-third of its original volume at a specified temperature (TEMP 2) in a moisture
extraction oven, till the colour of the filtrate turns wine red. This filtrate was referred
to as ‘concentrated filtrate’ (FILT 3).

The concentrated filtrate was allowed to cool at room temperature for another
one hour, during which another precipitate (PREPT 2) of Ca504 was formed. This
precipitate was filtered off to obtain the final filtrate (FILT 4). The final filterate was
weighed and kept in a refrigerator overnight to allow the oxalic acid contained in it to
crystallize.

The supernatant liquid was decanted from the oxalic acid crystal which were
carefully rinsed with very cold water (temperature below 4°C) to remove traces of
HzSO4 adhering to the crystals. The low temperature was necessary to prevent
dissolution of the oxalic acid. The percentage purity of the oxalic acid obtained was
detemﬁned by volumetric analysis. The whole procedure with its set of operating

variable constituted a run. The results were tabulated accordingly in Chapter four.

2.3 BASIC PRINCIPLE OF EXPERIMENTAL DESIGN

Il an experiment is to be performed most efficiently, then a scientific approach

to planning the experiment must be considered. By statistical design of experiments,
we refer to the process of planning the experiment so that appropriate data will be

collected, which may be analyzed by statistical methods resulting in valid objective

11




conclusions. The statistical approach to experimental design is necessary if we wish to
draw meaninglul conclusions from the data. When the problem involves data that are
subjected to experimental errors, statistical methodology 1s the only objective
approach to analysis. Thus, there are two aspects (o any experimental problem, the
design of the experiment and the statistical analysis of the data. These two subjects
are closely related, since the method of analysis depends directly on the design
employed.

The two basic principles of experimental design are replication and
randomization. By replication, we mean a repetition of the basic experiment. If a
treatment is allotted to ‘r’ experimental units in an experiment, it is said to be
replicated r times. Il in a design each of the treatments is replicated r times, the design
is said to have r replications. Replication is necessary to increase the accuracy of
estimates of the treatment effects. It also provides an estimate of the error variance
which is a function of the difference among observations from experimental units
under identical treatments. Although the more the number of replications, the better it
is, so far as precision of estimates is concerned, it cannot be increased indefinitely as
it increases cost of experimentation.

Randomization is the cornerstone underlying the use of statistical methods in
experimental design. By randomization we mean both the allocation of the
experimental material and the order in which the individual runs or trials of the
experiment are 1o be performed are randomly determined. Statistical methods require
that the observations (or errors) are independently distributed random variables.
Randomization usually makes this assumption valid. By properly randomizing the
experiment, we will also assist in ‘averaging out’ the effects of extraneous factors that

may be present.




In order to use the statistical approach to designing and analyzing an
experiment, it is necessary that everyone involved in the experiment has a clear idea
in advance of exactly what is to be studied, how the data is to be collected, and at least
a qualitative understanding of how this data is to be analyzed. An outline of the

recommended procedure is as follows:

1. Recognition and statement of the problem: This may seem to be a rather
obvious point, but in practice it is often not simple to realize that a problem requiring
experimentation exists, and to develop a clear and generally acqepted statement of this
problem. It is necessary to develop all ideas about the objectives of the experiment.
A clear statement of the problem ofien contributes substantially to a better

understanding of the phenomena and the final solution of the problem.

2. Choice of factors and levels: The experimenter must select the independent
variables or factors to be investigated in the experiment. The factors in an experiment
may either be quantitative or qualitative. If they are quantitative, thought should be
given as to how these factors are to be controlled at the desired values and measured.
We must also select the values or levels of the factors to be used in the experiment.
These levels may be chosen specifically, or selected at random from the set of all

possible factors levels.

3. Selection of response variable: In choosing a response or independent
variable, the experimenter must be certain that the response to be measured really
provides information about the problem under study. Thought must also be given to

how the response will be measured, and the probable accuracy of the measurements.
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4, Choice of experimental design: This step is of primary importance in the
experimental process. The experimenter must delermine the dilference in true
response he wishes to detect and the magnitude of the risk he is willing to tolerate so
that an appropriate sample size (number of replicates) may be chosen. He must also
determine the order in which the data will be collected and the method of
randomization to be employed. It is also necessary to maintain balance between
statistical accuracy and cost. Most recommended experimental designs are both
statistically efficient and economical, so that the experimenter’s efforts to obtain
statistical accuracy usually result in economic efficiency. A mathematical model for
the experiment must also be proposed, so that statistical analslsis of the data may be

performed.

.} Performing the experiment: This is the actual data collection process. The
experimenter should carefully monitor the process of the experiment to ensure that it
is proceeding according to the plan. Particular attention should be paid to
randomization, measurement accuracy, and maintaining as uniform an experimental

environment as possible.

6. Data analysis: Statistical methods should be employed in analyzing the data
from the experiment. Numerical accuracy is an important concern here, although
present day computers have largely relieved the experimenter from this problem, and
simultaneously reduced the computational burden. Graphical methods are also

frequently useful in the analysis process.
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7. Conclusions and recommendations: Once the data have been analyzed, the
experimenter may draw conclusions or inferences aboul his results. The statistical
inferences must be physically interpreted, and the practical significance of 1hbse
finding evaluated. Then recommendations concerning these finding must be made.
These recommendations may include a further round of experiments, as
experimentation is usually an iterative process, with one experiment answering some

question and simultaneously posing others (Montgomery, 1976).

2.3.1 FACTORIAL EXPERIMENT
In factorial experiments, combination of two or more levels of more than one
factor are the treatments. For example with two factors, we can have (i) nitrogen

fertilizer at two levels, denoted by n;, and n; and (i1) irrigation at two levels, I, and I,
in an agricultural experifnent. We can form the following four combinations taking
one le;/el from each factor, Iyn,, Iyny, In; and Ixn,. Such combinations form treatments
in factorial experiments. The comparison required in this type of experiments are not

the pair comparison as in varietal trials but a special type of comparison called main

effects and interactions (Das and Giri, 1979).

2.3.2 2*FULL FACTORIAL EXPERIMENT

There are several special cases of general factorial deigns that are important
because they are widely used in research work and also because they form the basis of
other designs of considerable practical values. The first of these special cases is that
of two factors, each at only two levels. These levels may be quantitative or
qualitative, such as two values of temperatures, pressure, or time; or they may be
qualitative such as two machines, two operators, the “high” and “low” levels of

factors, or perhaps the presence and absence of a factor. Such design requires: 2 x 2 x
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2. v 5 x2 = 2¥ observations and is called a 2" factorial design. The special second case
is that of k factors, cach at three levels, which is called a 3* factorial design
(Montgomery. 1976).

A 2" factorial design requires us to choose just two levels for each factor and
then calls for simulation runs at each of the 2* possible combinations of factor levels.
Usually we use a minus sign with one level of a factor and a plus sign with the other
level. Which sign is associated with which level is quite arbitrary, although for
quantitative factors it is less confusing if we associate the minus sign with lower
numerical value. No general prescription can be given for how one should specify the

levels (Averill and Kelton, 1996).

233 A2 DESIGN
The first design in the 2" series is one with only two factors say A and B, each
run at two levels. This design is the simplest case of 2* series and is called a 2’

factorial design. The levels of the factor may be arbitrarily called “low™ and “high™.

The treatment combination and response of this design is displayed below:

Table 2.1: Treatment combination and responses for 2* design.

Treatment ‘Response
Combination R.

Alow, B low R,

A high, B low R,

A low, B high R

A high, B high. Ry

The treatment combinations in this design are shown graphically in Figure 2.1.
By convention we denote the effect of a factor by a capital Latin letter. Thus “A”
refers to the effect of factor A. “B” refers to the effect of factor B and “AB” refers (o
the AB interaction. In the 2” design the low and high levels of A and B are denoted by

0 and 1, respectively on the A and B axes.
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The coordinates of the vertices of the square also represent the four treatment
combinations as follows: 00 represent both factors at low level, 10 represents A at the
high level and B at the low level, 01 represents A at the low level and B at the high

level, and 11 represents both factors at the high level. These treatment combinations

are usually represented by lower case letters, as shown in Figure 2.1. We can see [rom
the figure that the corresponding lower case letter denotes the high level of any factor
in the treatment combination, and the low level of a factor in the treatment is denoted

by the absence of the corresponding letter. Thus, “a” represents the treatment

combination of A at the high level and B at the low level, “b™ represents A at low
level, and B at high level, and “ab™ represents both factors at high level. By

convention, “1" is used to denote both factors at the low level.

The average elfect of a factor is the change in the response produced by a

change in the level of the factor, averaged over the levels of the other factors.

b= R3 ab= R4
High |
r
3
[
Low
(l) = Rl a= R2
E |
0 Factor A 1
Low High

Fig. 2.1: Treatment combination in a 2’ design

The lower case letters “17, “a”, “b™ and “ab™ now represent the total of all the
responses of all treatment combination, as illustrated in Fig 2.1. Now the simple
effects of A at the low level of B is

la-(1) | = Ro-Ry MEREL - F.
and the simple effect of A at the high level of B is

[ab-b] = R4-R3 : POV | |
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Averaging these two quantities yields

A= %{ [ab-b[+[a-(1)] } =%{[R4-R31+1R2-R,n

= %[ab+a-b-(1)l = %lRﬁRz-Rs-Rl] SN L, |

The average B eflfect is found from the simple effect B at low level of A

ie.  [b-(1)]=[Re-Ry] S e
and at high level of A
e lab-a]=[Rs-Ry| i v e S
so that

B= 2 ([ ab-al{b-(D] = - {I ReRal+{Re-Ri]}

= -‘2-|ab+b-a-(|)] =%|R4+R3-R2-R1] S 1Y

The average efTect [or the interaction AB is the difference between the effects

of A at the low level of B and the effect of A at low level of B. Thus:

AB= 2 {[abbHa-(D] } = 3 ([ReRa-Re-Rul}

= —;-[ab+(1)-a-b] = %[R4+R1-R2-R3] s s ke s s s s s 1 B

From Equation 2.11 contrast for estimating A is given by
Contrast A= abta-b-—(1)
= R4-Ry-R3-R; RO X : ;-
All other contrasts are calculated in a similar manner Kempthorne (1952) and

Anderson and McLean (1974) call this contrast the total effect of A.
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2.3.4 SIMPLE AND AVERAGE EFFECTS

To illustrate the simple effect of a [actorial experiment, let us consider an
experiment on sugar beet with 2 [actors. These were without nitrogen (n,) versus 3
cwt. sulphate of ammonia per acre, with nitrogen (n;) and depth of winter (shallow
ploughing (7in) versus deep ploughing (11in) took place in late January, the nitrogen
was applied in the late April, and the seed was sown early in May. Since both [actors
occur at 2 levels of variations, the experiment is described as 2x2 [actorial
experiment. The 4 treatment combinations are shown below:

Table 2.4:  Treatment combination and yield of sugar (cwt. per acre).

Combination Yield (R)
(1) n,, 7in 40.9 R;
a n;, 7in 47.8 R,
b n,, 11lin 42.4 R3
ab ny, Ilin | 50.2. R4

The results might be summarized as follows. Considering the simple effect of
nitrogen, {rom Equations 2.9 and 2.10, we might report that the application of
nitrogen increased the yields by

| R2-R1=49.8 —40.9 = 6.9 cwt
with shallow ploughing and by

R4 -R3=150.2-42.4=7.8 cwt
with deep ploughing. These figures are called the simple effects of nitrogen. They
represent the type of information that could be wanted for instance in giving advice to
a farmer who always used shallow ploughing but was doubtful whether to apply
nitrogen. For the simple effect of depth of ploughing from Equation 2.12 and 2.13 we

might report that 11 in ploughing was superior to 7in by
20




R3-R;=42.4-409=1.5cwt
in the absence of nitrogen and by

R4 —R;=50.2 -47 .8 =2.4 cwl
when nitrogen was applied.

This is another way of looking at the results. It sometimes happens that the
ellects of the factors are independent. By this we mean that the response (o nitrogen is
the same whether ploughing is shallow or deep, and that the difference between the
ellects of deep and shallow ploughing is the same whether nitrogen is present or not.

In this event, the two simple eflfects of nitrogen, 6.9 cwt and 7.8 cwt are
estimates of the same quantity and differ only by experimental errors. On this
supposition, we would naturally average the two figures in order to estimate the
response 1o nitrogen. The average, 7.4 cwt, is called the average effect of nitrogen. It

can be derived alternatively from Equation 2.11 thus:

YV2(Ry+ Ry - R3 - Ry) =Y2(50.2+47.8 -42.4 - 40.9) =7.4 cwL.

Similarly, the average effect of depth of ploughing (11 in minus 7 in) is the
average of 1.5 cwt and 2.4 cwi, or 1.9 cwt. Note that the average effect, is an average
of the simple effects.

Consequently, if we are sure that the factors operate independently, the
summary that was given above in terms of the simple effects may be replaced by
another that is both more concise and more accurate. This might read as follows. “The
application of nitrogen increased the yield of sugar by 7.4 cwt, while 11 in. ploughing
increased the yield by 1.9 cwt as compared with 7in ploughing.™ It is worth repeating
that when the factors are independent the figure 7.4 cwi is the best estimate not only
of the average response to nitrogen, but also of the response on plots ploughed to 7in
and of that on plots ploughed to 11in. In other words, the whole of the information in

the experiment is contained in the average effects.
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It is important to consider when the factors are independent. This is
determined by knowledge of the processes by which the factors produce their elfects.
In the present example an agronomist might reason ihal deep ploughing should enable
the plant to develop a more vigorous root system. With this the plant should be able to
utilize more elfectively any added nutrients such as nitrogen. Thus he might predict
the response to nitrogen would be greater with deep than with shallow ploughing,
though he would not expect it to be much greater. In short, he would predict that two

factors would not be quite independent in their effects (Cochran and Cox, 1957).

In addition to the information that may be available from such reasoning, a
factional experiment itsell provides a-est of the assumption of independence. If the
depth of ploughing does .affect the response to nitrogen, the difference between 7.8
cwt. (the response to the nitrogen with deep ploughing) and 6.9 cwt. (the response
with shallow ploughing) is an estimate of this effect. The difference, 0.9 cwt., can be

tested in the usual way by a T-test. If the test proves significant, the assumption of

independence is rejected by the data. The difference (sometimes divided by a
numerical factor) is called the interaction between nitrogen and depth of ploughing.
T-test is a special case of F-test (Linton,1965).

.Interchanging the roles of the two factors, allows us to consider whether the
superiority of deep over shallow ploughing is affected by the presence of nitrogen. To
measure the interaction in this case, we subtract 1.5 cwt. (superiority of deep
ploughing' when no nitrogen is added) from 2.4 cwt. (superiority when nitrogen is
added). The difference is again 0.9 cwt. It is easy to see that this equality always holds

with a 2x2 experiment (Cochran and Cox, 1957).
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Example 2.1

To illustrate the average effect of a 2” factorial experiment, we use an
inventory model with two experimental factors, A and B. The “low” and “high”
values chosen for A and B are given in the “coding chart” in Table 2.5. The design

matrix and corresponding response variables are given in Table 2.6. (The sign for A x

B interaction are also included).

Table 2.5: Coding for A and B in the inventory model.

Factors - +
A 20 60
B 70 120

Table 2.6:  Design matrix and empirical results in a 2* factorial design on A

and B for the ihventory model.

Factor
combination
A B AxB Response
i - - + 118.280
2 + - - 141.060
3 - + - 136.807
4 + + o+ 152.789

From Equation 2.11, the average effects are:
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A=1\2(R4+R;-R3 - Ry) rearranging gives

A= 1\2(-R; +R2 —R3+Ry)

= 1\2(-118.280 + 141.060 — 136.807 + 152.789)

19.381

and

B = Y2(-118.280-141.060+136.807+152.789)

= 15.128

and for A x B interaction,

AB =1\2( 118.280 - 141.060 — 136.807 + 152.789)
=+3.399

Thus, the average effect of raising A from 20 to 60 was to raise the monthly
cost by 19.381, and raising B from 70 to 120 increase the monthly cost by an average
of 15.128. Therefore it appears that the smaller values of A and B would be
preferable, since lower monthly costs are desired. Since the A x B interaction eﬁ‘ect
is negative there is indication that lower cost are observed by setting both A and B at
either their — or + levels rather than one at the — level and one at the + level. The
magnitude (absolute value) of the average interaction effect is much smaller than the

magnitudes of the average main effects, which ofien happens in factorial experiments.

Calculation of average main effects and interaction of a 2* factorial
experiments is actually equivalent to estimating the parameters in a particular

statistical regression model of how the response depends on the factors (Averill and
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Kelton,1996). For the model above this regression model is:

R(A, B) = m+ BXA+ @XB+(pXAXB+ = RN PN &
Where R(A, B) = response as a function of A and B.

In order to transform A and B to coded factors we use,

(A - 40)
= . 2.18
a 20 )
(B-95)
= 219
Xb 25

and € is random variable with mean zero. Given this regression model, we could
estimate 1, B, @ and ¢ by ordinary least-squqre regression aﬁd use the fitted model to
forecast the value of E[R(A, B)] at combinations of A and B where no simulation has
been done. Moreover the average main effect A is twice f, the least-square estimator

of B. Similarly, B=20, 02220
1 4
AB=2¢...221 and ==Y R .. ..222

Therefore the regression coefficient could be calculated directly from:

1 4
fl=-2-,72(R,).............‘........2.23
. i=1
1 4
ﬂ=2—,2(X,,Ri)......................2.24
i=1
l 4
b==r ) (XRi) ..o 2.25
2 i=l
1 4
¢’=FZ(XAX,,RI').................2.26
i=]
where k=2
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2.3.5 ADVANTAGE OF FACTORIAL EXPERIMENT WHEN FACTORS

ARE INDEPENDENT

The advantages of flactorial experimentation naturally depend on the purpose
of the experiment. We suppose for the present that the purpose is to investigate the
effects of each factor over some pre-assigned range that is covered by the levels of
that factor, which are used in the experiment. In other words the object is to obtain a
broad picture of the eflects of the factors rather than to [ind, say the combination of
the levels of the factors that give maximum response. One procedure is (o conduct
separate experiment each of which deals only with a single factor. Another is o
include all factors simultaneously by means of a factorial experitﬁenl.

If all factors are independent in their elfects, the factorial approach will result

in a considerable saving of time and maternal devoted to the experiments. The saving
results from two facts. First, as we have seen, when factors are independent, all simple
effects of a factor are equal to average effect, so that average effects are the only
quantities needed to describe fully the consequences of variations in the factor.
Secondly, in a factorial experiment, each average eflect is estimated with the same
precision as if the whole experiment had been devoted to that factor alone. Thus, in
the precéding example, half the plot receives nitrogen and half do not. Consequently,
the average effect of nitrogen is estimated just as precisely as it would be in a simple
experiment of the same size devoted to nitrogen alone. The some result holds for the
eﬂ:ect of depth of ploughing. The two single-factor experiments would require twice
the total number of plots in order to equal the precision obtained by the factorial
experiment. If there are n factors, all at two levels and independent, the single-factor
approach would necessitate n times as much experimental material as a factorial

arrangement of equal precision.
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2.3.6 FACTORIAL EXPERIMENTATION WHEN FACTORS ARE

DEPENDENT

We assume that the purpose is still to investigate each factor over the range
represented by its levels. When factors are not independent the simple effects of a
factor vary according to the particular combination of the other factors with which
these are produced. In this case, the single-factor approach is likely to provide only a
number of disconnected pieces of information that cannot easily be put together. In
order to conduct an experiment on a single factor A, some decision must be made
about the levels of other factors B,G3D say, that are not usefi in the experiment (e.g,
whether all plots should be ploughed 7in, 9in, or 11in deep in an experiment on
nitrogen). The experiment reveals the elfects of A for this particular combination of
B,C. and D, but no information is provided for predicting the effects of A, with any
other combination of B, C, and D. With a factional approach on the other hand, the
effects of A are examined for every combination of B, C, and D, that is included in
the experiment. Thus a great deal of information is accumulated both about the effect
of the factor and about their interrelationships.

; “In this connection, Fisher (1966) has pointed out that it is sometime advisable
to introduce into an lexperimenl an extra factor that is not itself of interest, in order
that the experiment may form the basis for sounder recommendations about the other

tfaclors. In agricultural experimentation in Britain, farmyard manure has served as a

subsidiary factor of this kind (Cochran and Cox, 1957).

27




2.3.7 A2’ DESIGN

I three factors A, B, and C cach at two levels, are under study, the design s
called a 2* factorial, and eight treatment combinations can now be displayed
graphically as a cube, as shown in Figure 2.2. The treatment combination in standard

order are (1), a, b, ab, ¢, ac, bc and abc (Montgomery,1976).

High, ~_
Q
o
g
I
1, High
Low, oL Factor B

} | O. Low

Low  Factor A High

Figure 2.2:  Treatment combination in 2* design.

If the factors A, B, and C are changed to 1, 2, and 3 the form of the experiment

can be represented in tabular form, as exemplified in Table 2.7.

28




Table 2.7:  Design matrix table for a 2° factorial design

.

Factor Xo X1 X2 Xa XiXo» XgXa  Xoxz o xixox3 - Resp. (R))
comb.

=) + - - - + ¥ + - R,

2=a + + = o . + + R,

3=bc + - + - - + - + Ry

4=ab + + + - + - - - R4

S=g + - - % & - - + Rs

6=ac + + - += + - - Rg

7=ac + - + + = - + - Ry
8§=abc + + + + + <+ + G5 Rg

The variables R; for i = 1, 2........8 are the values of the response when

running the simulation with ith combination of factor levels. For example, Rg is the
response resulting from running the simulation with factor 1 at its + level, factor 2 at
its — level, and factor 3 at its + level. We shall see later that writing down this array of
+ and - signs, called the design matrix, facilitates calculation of the factors effects and
interactions.

The average main effect of factor j is the average change in the response due
1o moving factor j from its — level to its + level while holding all other factors fixed.

For the 2° factorial the average main effect of design of factor 1 is thus:

e (R,-R)Y+(R, = R)+ (R~ R)+ (R~ R))

] 4 2T

Noie that in combinations 1 and 2, factors 2 and 3 remain fixed, as they do in

combinations 3 and 4, 5 and 6, and 7 and 8. The average main effect of factors 2 is

e, = (R-R)+ (R, - R)+ (R, - R) + (B - Ry)

1 7 ...2.28
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and that of factor 3 isS

do (= R)+(Rs= R+ (R, - R)+ (R - R,)
s = 2

A R oo BTD

Examination of Table 2.7 and the above expression for average main effects ej’s lead
to an alternative way of delining average main effects, as well as a simpler way of
computing them. That is, ej is the difference between the average response when
factor j is at its + level and the average response when factor j is at its — level. Thus,
to compute ej we simply apply the signs in “factor j” column to the corresponding

R;’s, add them up and divide by 2!, For example, in the 2* factorial design of Table

99

_-R-R+R+R-R-R+R+R,
= i

¢, ...2.30

which is equivalent to earlier equation 2.28.

The average main effects measures the average change in the response due to
a change in an individual factor. However, it could be, that the effect of factor j;
depends on the level of some other factor, j, in which case factors j; and j; are said to
interact. We measure the degree of this interaction by the two factor interaction
ellect, eji J2, between factors j; and jo. It is defined to be half the difference between
the average effect of factor j;, when factor j; is at its + level (all factors other than j;
and j; are held constant) and average effect ol j; when j; is at its — level. (ejyjz is also

called j; x j, interaction.) For example in the design of Table 2.7 we have:

e,2=% (R“'R’);(R*'R’)-(Rz'-R’);(R‘"&) 231
— o : _ _ _ -‘
R e
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C1[Ry=R)+ (Ry=R)  (Ry- R)+ (R~ Ry)
€5=73 2 2

PO .«

As with main effects, there is a much simpler way to compute average interaction
effects, based on examination of the design matrix. If we rearrange the above

expression for e;3, for example, so that the R;’s appear in increasing

order of the i’s, we get:

CR-R+R-R-R+R-R+R
- 4

e 2.34

Now i we create column, labeled x; x x3, of 8 signs by “multiplying™ the ith sign in
the “lactor 17 column by the ith sign in “factor 3" column, the product of like signs is

e

a “+7, and the product of opposite signs is a “-“ . we get a column of signs which
gives us precisely the signs of the R;’s used to obtain e;3. As with main effects, the

divisor is 2*'. The computation of e;, and ey3 are thus given below:

r R-R~-R+R+R-R-R+R,
]2_ 4 -u-.--.---

L %

and

R AR -R - R - Ri- R+ Ry + Ry
€y = 4

s D0

" Finally, we note that two factors interaction effects are completely symmetric;

that is, e12 = €21, €23, = €32 elc.
Although their interaction become more difficult, we can define (and
compute) three and higher factor interaction effects, all the way up to k-factor
‘interaction. For example, in the 2* factorial design of Table 2.6, the three-factor
interaction between factor 1, 2 and 3 is half the different between the average two
factor interaction effect between factor 1 and 2 when factor 3 is at it’s + level and the
average two-factor interaction effect between factors 1 and 2 when factor 3 is at its

- level. That is,
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B s _1_|:(Rx = I )= (R - Rs) _ LRy~ Rs)‘ (Rz . Rl)]
- 18 2 2

~ Kb+~ B+ R~ K~ R+ B,

canhs Dl

The second expression for ej»; is pbtained by multiplying the signs from
columns for factor 1,2, and 3 in Table 2.6 and applying them to Ri. The denominator
is once again 2°"' . Three factors and higher interaction effects are also symmetric, for
example, e;23 = ej32 = ez ele (Averill and Kelton,1996).

If the regression coefficients are named b,, by, by, etc using Equation 2.23-

2.26 the regression coefficient for 2° factorial are:

R AR+ R+ R+ R+ Ry+"Ry + Ry

b, - ...2.38
b,=_R'+R2_R3+R“8_R5+R6_R7+Rs 539
and
B4 RIB—~ R4 R~H~B 4
By = LR L “8R5 = 2.40
Or generally,
b -—]—2} Ri 2.41
0 2* '=1 D I NI .
] &
bj=2—,,;(SiRi) S A

Where b, = the coefficient of variables x;,xz, X;; elc,

Si = the sign along the column of the variable in question from the design

matrix table and Ri = the response corresponding to Si .
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2.3.8 A GENERAL 2* DESIGN

Before any 2* factorial could be analyzed G-test is used to check if the output
factors have the maximum accuracy of the replication. It ascertains the possibility of

carrying out regression analysis. The condition of homogeneity is:

G [a.(r =1).N]> Geal s vemann v s ona son ans 1o B3
2
Here G-cal = S’f,, e D A A wais s ot e e Y

ZSu2

The value of Su” max andz:Su2 are gotten from table of response and their replicate.
The method of analysis that we have presented thus far may be generalized to
the case of a 2" factorial design. If the coded factors are X1, X2, Xj2 etc. The regression

coefficient for response vi, may be calculated using the general formula

ol Ry
bo--i—x-z;yx TR et i S e D
ZK
bj=EIK—Z(Siyi) O X1
=1

The significance of cocflicient of the regression model could be tested using
the individual F- test. We use F-tesf by rejecting the null hypothesis,

Ho: bj=0 i Sk s w5 345w AT
when Fcal > Fla, dfg, N(r=1)] ...................... 2.48

a coefficient is significant.

S8,
MS - ‘
Fy=—2=— 249
MSE N(r-1)

The sum of squares for any contrast can be computed from Equation 2.16, thus:
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(r.contrast)’

S8, = 8§y, = T e A0

The total sum of squares is found in the usual way by,

s renied §

and
SS, =SS, - Y, SS, 252

The table below present analysis of variance for a general 2 design

(Montgomery, 1976).
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Table 2.8: General analysis of variance

Source Sum ofl'squares  Degree Mean squarc F-cal

of variation (SS) of freedom (df) (MS) (MS/MSg)

k main effects

A SSa 1 SSA/1 SSA/MSg
B SSgp 1 SSp/1 SSp/MSk
K SSk | SSi/1 SSKMSg

Two-lactor interactions

AB SSan 1 SSan/l SSAs/MSg
AC SSac o SSac/l SSAc/MSg
Jk SSik 1 SSi/1 SSjk/MSg;

Three-factor interactions

ABC SSanc 1 SSapc/1 SSapc/MSE
ABD SSarp 1 SSanp/1 SSAr/MSk:
Tjk SSijk 1 SSijk/1 SSijk/MSg
k-factor interactions :

ABC... k SSagc.. k 1 SSanc...k/1 SSagc...k/MSE
Error SSk 2K(kr-1) SSE/2%(r-1)

Total SSt .2 —1
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Alternatively it could also be tested using the T-test because, T-test is a

special form of F-test (Box et al,1978). A coeflicient is significant il and only if

T-cal > T [oc, N (-1)] AL SO . -
"

T-cal = 1] il .. 2.54
Shj

Also

Sut

Sbj= )N v sounenns su s oneversne Tu 8

239 A2'DESIGN

Using the coded variables (factors) x;, X2,- xx and the average response of a

design. The design matrix Table for a 2* full factorial design is given below in

Table 2.9.
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Table 2.9:  Design matrix table for a 2* experiment

Factorials effects

Factor  Xp X; X X3 Xg X2 X3 X3 Xy Xy Xoa Xas Xaza Xpago Xom Xpuo Y

Comb.

1 + =« = = = + + + = + + 4+ - - - + Y,
2 + + - - - - - + + -+ + + o+ - - Y2
3 T S T + - +  + = + - Yi i
4 g e B n e A e - - - - + - + o = Y4
5 + - - + - 4+ - - 4+ + + - - + 4+ - Y5
6 ¥ % = F 2n F oa s -+ -+ - + o+ Yo
7 + - 4+ 4+ - - -+ - ‘. + - -+ o+ - + Y
8 + + 4+ + - 4+ + + 4+ - - - - - - - Ys
9 + e e -+ o+ o+ o+ - - - -+ o+ o+ - Yo
10 + 4+ - - + - - + + + - - = - + o+ Yo
11 + - 4+ - 4. + - 4+ -+ -+ + - + Y1
12 + + + - + + - - - + + - - - - - Yi2
13 s = ® & & + - # - = + + - - + Yis
14 + + - + + - + - - + - + - + - - Y
15 + - + + + - - + - -+ o+ - - + - Yis
16 + + + + + + + + 4+ + + + + + o+ o+ Yi6

2.3.10:2° FRACTIONAL FACTORIAL DESIGN

For a model with k factors, the designs of the previous section require at least
one simulation run of the 2* possible combinations of factors .t is not at all difficult
to imaged a simulation model with as many as k= 11 factors, for which a full 2"
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factorial design would require at least 2048 simulation run. If we wanted to estimate
the variances of the effects of this 2'" model with says n = 5 replications, at each
design point, we will need 10,240 total replications. If a single replication of the
model took say 1 minute of C P U time (which is modest amount of time for many
complex real-world simulations), we would need over a [ull week of round-the-clock
computing to complete the experiment.

Fractional factorial designs provide a way to get estimates of {for example) the
main elfects or low-order interaction of interest at a fraction of the experimental effort
required by a full 2* factorial design. These kinds of design are especially useful as a
first step in experimentation when many factors are present and we want to screen out
those factors which appea;r to be relatively unimportant without having to perform an
excessive amount of simulation. This will save a bulk of the computing budget for a
more intensive study of the important factors.

Basically, a 2%P fractional factorial design, is constructed by choosing a
certain subset (of size 2*?) of the 2" possible factor combinations and then running the
simulation only for these chosen combinations. Thus only 1\2” of the 2* factor
combinations are actually run. The important question of which 2P combination to
choosé is a whole subject into itself, discussed at length in most books on
experimental design (Box et al, 1978). This choice should obviously be made

carefully and might depend on which main effects and interactions are of great

interest.

38




2.3.11 VARIETAL TRIAL EXPERIMENT
In varietal trials, treatments like (a) dilferent varieties of crop, (b) several
feeds for animals,(c) different doses of drugs, etc are under investigation. In fact,

different level of only one factor usually form the treatment in varietal trials. The

main purpose of such experiment is (o compare the treatment in all possible pairs.

2.3.12 BIO-ASSAY EXPERIMENT

The third type of experiment is the bio-assay. In one category of these
experiments usually two preparations ol drugs are taken, each at several doses. These
doses form the treatments. The main <omparison required fo'r the assays are (i) a
comparison giving the difference between the two preparations, (ii) a comparison

representing the slope of the effects of the doses of each preparation on the doses.

24  FACTORS AFFECTING RATE OF CHEMICAL REACTION

The production of oxalic acid from the bark of eucalyptus camaldulensis,
having a chemical reaction could be influenced by some (;f the factors that affect the
rate of chemical reaction.
On the basis of elementary collision theory, the rate of a reaction would depend on the
frequency of effective collisions between reactant particles. (Lambert and
Holderness, 1980). Some of the important factors, which influence the rate of

chemical reaction, include:

1. Nature of reactants

2. Concentration of reactant.

3. Surface area of reactants

4. Temperature of reaction mixture
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Effect of the nature of reactants

When a piece of iron is place in dilute hydrochloric acid, there is a slow
evolution of hydrogen gas, with a piece of zinc, hydrogen is evolved rapidly, and with
a piece of gold, there is no evidence of reaction. Thus the rate of a chemical reaction

is determined by the chemical nature of the reactant as different substances have

different energy contents.

Effect of concentration of reactants.

Reactant particles will collide more often if they are crowded in a small space,

i.e. frequency of collision is depending upon concentration. An increase (or decrease)
in the concentration of the reactants will results in corresponding increase (or

decrease) in effective collisions of the reactant hence in the reaction rate (Osei, 1990).

Effect of surface area of contact (Particle size)

This is a very important factor especially when one of the reactants is a solid,
because only the particles on the surface of the solid are in contact and hence able to
react With the other reacting particles. To bring about greater contact between the
reacting particles, the exp(;sed surface area of the solid reactants must be increased by
subdividing or breaking the solid into smaller pieces. The greater the surface area of

the reactant, the higher the rate of reaction.
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Effect of temperature

When temperature of a reaction is increased, heat is supplied to the particles
involved, in the reaction, thereby increasing the kinetic energy of the particles. If the
particles travel at a greater speed when the temperature is increased then they will
collide with one another at more frequent intervals and we could expect the reaction

to proceed at a faster rate (Osei, 1990).

With respect to the above explanation, an increase in temperature within a

definite limit will increase the rate of chemical reaction.

2.5 APPLICATION OF COMPUTER IN FACTORIAL DESIGN
One way common use of computer involves the development of models that
simulate real-world systems. These models are coded in computer language, which

take into account many, but presumably not all of the features of the real system. If
the most important features of the real systems can be identified and built into the
model without making it too complex and unwieldy, useful information about the real
system may be obtained by working with the model. Being simpler, a model is usually
more convenient to work with. Experiments can be run for various initial conditions,
or values of key parameters, often much more conveniently than if the real systems
were uséd .In fact, experiments are ofien run that would be impossible to do with the
real system, because of hazardous conditions or for other equal good reasons. From
such experiments it is hoped that a better understanding of certain aspects of the real
system may be achieved. Often enough, the results obtained from a preliminary model
suggest direction for improvement of the model, to explore previously unrecognized
aspects of the real system. Because they represent efforts to identify the essential
features of a real system, models have sometimes been described as “abstractions™ of

reality (Francis, 1983).
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In computer-aided design, computers are used to perform certain functions in
design, production, and manufacturing. This technology has moved into the direction
ol greater integration of design and manufacturing, two activities which have
traditionally been treated as a distinct and separate functions in a production firm
(Oguntoyimbo, 1993). On a more generai note, computer aided design is utility that
enables speedy processing of design procedures (Onifade, 2000).

In spite of their impressive capabilities, computers still have to be told exactly what to
do, in a step-by-step fashion. The process of satisfactorily achieving the required level
of detail is called problem analysis and it is the user’s responsibility. This can be

divided into several more or less distinct parts (Francis, 1983)."

ks The problem must be thoroughly understood: Surely if the user does not
understand his or her own problem, there is little hope that the computer will
understand it better. A careful examination of the inputs provided or the
questions asked or type of output expected, perhaps even manual processing of
simplified cases, may be useful in figuring out just what has to be done. This
sometimes exposes fuzzy spots, which need clearing up.

2. A solution method is chosen, or developed: When the problem does appear
to be in good focus, a solution method has to be found, a path leading from
what has been given to what is required. Often a path will be obvious. There
may even be several likely prospects. When paths are abundant, the choice

between them is made using such criteria as computer time needed or

vulnerability to error. For other types of problems, no satisfactory solution
method may be known, and the luxury of choice gives way to the necessity of
invention or concession. That is either a method is developed, or the problem
has to be simplified to the point where a solution becomes feasible.
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The solution process is described step by step: When a solution

method has been selected, it must be reduced to the level of detail that
computers understand. This is usually done in stages, beginning with a relative
crude listing of the various parts of the process, and gradually adding more
and more detail until the result has the step-by-step character of a program.
When this point is reached, the transition to a program is almost painless. A
description of the solution method involving some respectable level of detail is
called solution algorithm. Although of ancient origin, the word “algorithm™

has found its first extensive use in computer science.

The algorithm is programmed, and the' program tested: Algorithms can be
written in ordinary language, or using formal procedures that lie somewhere
between ordinary and programming languages. If this has been done with
sufficient detail, it will be relatively easy to convert the algorithm into a
program. If details have been postponed, they will have to be supplied in the
programming step. It is also true that some programming languages are more
accommodating than others, taking care of certain details that other languages
lgave to the programmer. Once written, a program must be tested, or verified.
Even computer scientist soon learns how embarrassingly easy it is to make
mistakes. Typing and key punching errors are common place but are usually
found quickly with the machine’s help. Diagnostic output is provided for this
purpose. Other programming errors may be harder to pinpoint, but detection
procedures do exist. Assuring a program’s correctness is called program

verification, and the popular term for error removal is debugging.
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The algorithm is validated: Even when a program correctly implements the
steps of an algorithm, there is the question of whether the algorithm itsell
correctly solves the problem. To answer this, the user can run the program

under a broad variety of conditions (lest cases), and evaluate the output as best

as he or she can (Francis, 1983).
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CHAPTER THREE

3.0 DEVELOPMENT OF THE MODEL

The 2* full factorial design was used to develop the source code. The

flowchart for the source code is shown in Fig 3.1. The hand calculation is on
Appendix A, while the program list is on Appendix B.
The design code consists of four files, extract.dat, extract.out, extract.pas and
extract.exe. The file extract.pas is the Pascal source code. This is the actual code that
causes the actions produced by the program when executed. It is a menu-oriented and
user-friendly program that is easy to use with instruction and information appearing at
each stage of execution of the program. The syntax of the content of this file follows
the Pascal language requirements. This file is compiled into executable form so that
the program can be run independent of the Pascal compiler.

Extract.exe is the executable file, generated from extract.pas which can be
easily executed by calling the file i.e. C:\> extract .J. Extract.dat is the default data
file where the input data is stored, however provision is made in the program for using
other data filenames. While extract.out is the file where the output generated by the

program is stored. This file can be copied to a diskette or even printed after

execution. Provision is also made in the program for using other output filenames.

\

3.1 MODELS TO PREDICT PERCENTAGE EXTRACT
In the course of this work, three 2* full fractional experiments with different

factors were used. The comprehensive analysis of the results is given in chapter four.

The three model equations used have the following general form:

y=n+ Bx; +oxp+ yx3 + 0x1xp + px X3 + OxoX3 + PXXoX3 3.1
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Fig. 3.1: Flow diagram for source code and running the Program
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Fig 3.2: Flow diagram for sub-routine Enter
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Load

Open data file for input

Read data from file

GO

Fig. 33: Flow diagram for subroutine Load.
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FIG. 3.4: Flow diagram for sub-routine Compute.
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CHAPTER FOUR

40 SIMULATION OUTPUT

The prediction models are based on experimental results generated from the
final year projects of Muhammad Adamu, Shafi’i Salihu and Bissallah Awwal on the
production of oxalic acid from the bark ol eucalyptus camaldulensis. The

experimental procedure is given in Section 2.2.3 with Equation 2.8 summarising the

reaction as follows:

CaC,04 + HySO4 — (COzH), + CaSO4

Calcium  Sulphuric Oxalic Calcium
oxalate acid ac;id 'sulphale
N.B.
Average size Size range
0.3750mm = 0.2500 - 0.5000mm
0.9250mm = 0.8500 - 1.0000mm
1.2000mm = 1.0000 - 1.4000mm

4.1 RESULTS FOR MODEL 1a

Constant (fixed) level parameters

Volume of H,SO4 = 250 mls

Concentration of H;S0, = 4%

Reaction temperature = 70°C
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Table 4.1:  Natural factors and their coded levels

Level of factors Code  Mass Size Time
High +1 50.0000 1.2000 6.0000 0.0000
Low -1 25.0000 0.9250 3.0000 0.0000

Table 4.2:  Experimental results

Factor Natural variables Y;

combination w; (mass) w;(size) wi(lime) (% extracl)

N=2° (2 (mm) (hrs.)
1 25 0.9250 3 3.2360
2 50 0.9250 3 2.4400
3 25 1.2000 3 3.1980
4 50 1.2000 3 0.9040
5 25 0.9250 6 1.8140
6 50 0.9250 6 2.2390
7 25 1.2000 6 1.5760
8. 50 1.2000 6 0.7660
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Table 4.3: Experimental results with replicates

Nt 2. 1.3 4% {3 |6 L %] % ]

Yrl | 3.3600| 2.5480| 3.1920| 1.5260| 1.7120| 2.6140 | 1.5640| 0.6640 |
Yr2| 3.1120| 2.3320] 3.2040| 0.2820| 1.9160| 1.8640 | 1.5880| 0.8680 |
Y % | 3.2360 | 2.4400 | 3.1980| 0.9040 | 1.8140] 2.2390 | 1.5760| 0.7660 |
Yri-Y| 0.1240]0.1080 | -0.0060 | 0.6220 | -0.1020 | 0.3750 | -0.0120 | -0.1020 |
Y12-Y]-0.1240 | -0.1080 | 0.0060 | -0.6220 | 0.1020 | -0.3750 | 0.0120 | 0.1020 |
Sqrl | 0.0154] 0.0117] 0.0000 | 0.3869 | 0.0104 | 0.1406] 0.0001] 0.0104 |
Sqr2| 0.0154 0.0117|-0.0000| 0.3869 | 0.0104] 0.1406| 0.0001| 0.0104 |

Su”2 | 0.0308] 0.0233] 0.0001| 0.7738] 0.0208| 0.2813| 0.0003 | 0.0208 |

The Sum of the dispersion = 1.1511

The maximum Su”2 0.7738
G-Calculated = 0.6722
G-Statistical Table [a,(r-1),N] = 0.6800
G-TEST:

It is possible to carry out regression

analysis, since G-stat > G-cal
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Table 4.4:  Design matrix Table for a 2 3 full factorial design with the

interactions

X0 X1 X2 X3 XI*X2 XI1*X3 X2*X3 X1*X2%X3 Y

D (R B T, % G N A A SRR RN [ Y
3 G B B % I R SO 0 i D TR B S ¥
1) -1 | 1 )=l | =1 | 1 | -1 | 1 | 31980 ;
SRR T S T ™ 5 (K (0 W (N I S (T Gy S 77
Ll a1 < a | <1 | 1 | Lsi40
TR T s [ A S B I D TR SR N N B .
B et et Fasg st 1 ] <0 | L5760
14 5o Bt 101 [ 1 1 09660

The mean square error = 0.14388

The experimental error 0.37932

T-TEST:

T-Statistical Table [o,N(r-1)] : 1.8600

The constant and the variable for the following
are insignificant since T-cal < T-table

b23 bl123

The fitted model then becomes:

Y= 2022 -0.434x1 -0.411x2 -0.423x3 -0.342x1x2 + 0.338x1x3
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Table 4.5:  Table of calculated T-values

Regression Estimated  Conlidence T
coefTicient effect interval valueé
b0 2.022 0.176 21.31837
bl -0.434 0.176 4.58056
b2 0411 0.176 4.33011
b3 -0.423 0.176 445929 '
bl2 -(.342 0.176 3.60249
b13 0.338 0.176 3.56558
b23 0.017 0.176 0.18059
b123 0.033 0176 0.34667
F-TEST :

F-Statistical Table |o,dFr,N(r-1)] : 5.3200
The constant and the variable for the following
are insignificant since F-cal < F-table

b23 bl23

Table 4.6:  Complete analysis of variance

Source of Sum of Degree of Mearn F-cal

variation sguares (SS) freedom(df) sguare
bl 3.019 =B 3.019 20 .98149
b2 2.698 -8 2.698 18 .74984
b3 ) 2.861 -8 2.861 19 .88524
b1 L.867 8 1.867 12.9779S5
b = o S | 1 .829 a 1.829 12 .71339
b23 O0.00s5 = O.00sS 0O.03261
D123 O . 017 b O . 017 0.12018

Error (SSE) = 1.15107
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Total (SST) = 13.44752
N(r-1) = 8
Nr-1 = [§
SSE/(N(r-1) = 0.14388

Table 4.7:  Experimental and calculated percentage extract

N b 4 Ycal eu=Y-Ycal eu"2=(Y-Ycal)"2 .
1 3:236 3.286 -0.050000 0.002500
2 2.440 2.424 0.015750 0.000248
3 3.198 3.148 0.050000 0.002500
o 0.904 0.920 =~ -0.015750 0.000248
5 1.814 1.764 0.050000 0.002500
6 2.239 2.285 -0.015750 0.000248
7 1.576 1.626 -0.050000 0.002500
8 0.766 0.750 0.015750 0.000248

F-TEST (Fisher):

F-Calculated = 0.0254655

F-Statistical Table = 3.5800000

The ﬁuéd model is adequate

Since F-cal < F-table

il

Value of wl, x1 40.0000 0.2000

1.2000 1.0000

Value of w2,x2
Value of w3,x3 = 4.0000 -0.3333

Y = 2.022 -0.434x1 -0.411x2 -0.423x3 -0.342x1x2
+ 0.338x1x3

Final value of Y = 1.5742
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Value of wl,xl = 50.0000

Value of w2,x2 = 0.9250

Value of w3,x3

1.0000

-1.0000

3. OOOQ =1.0000

1= 2.022 ~0.434%1 -0.411x2 -0.423x3 -0.342x1x2

+ 0.338x1x3

Final value of Y. s 2.4242

Value of wil,x1 = 25.0000 ~-1.

Value of w2,x2 = 0.9250 -1.

Value of w3,x3 = 6.0000 1
Y = 2:022 =0.434x1 -0.411x2
+ 0.338x1x3

Final value of Y =  1.7640

42  RESULTS FOR MODEL 1b
Constant (fixed) level parameters
Volume of H,$0, = 250 mls
Concentration of H,SO, = 4%

Reaction temperature = 70°C
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Table 4.8: Natural factors and their coded levels

Level of factors Code Mass Size Time
High ) 25.0000 0.9250 3.0000 0.0000
Low !} 50.0000 1.2000 6.0000 0.0000
Table 4.9:  Experimental results
Factor Natural variables Y
combination wi (mass) w (size) w3 (time) (% extract)
N=2° (2 (mm) (hrs.)
| 50 1.2000 . 6 0.7660
2 25 1.2000 6 1.5760
3 50 0.9250 6 2.2390
-4 25 0.9250 6 1.8140
5 50 1.2000 3 0.9040
6 25 ‘ 1.2000 3 3.1980
7 50 0.9250 3 2.4400
8 25 0.9250 3 3.2360
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Table 4.10:  Experimental results with repiicates

Nl 2 [ 3 | 4 |5 | 6 | 71 8 |

Yri| 0.6640 | 1.5640 | 2.6140 | 1.7120| 1.5260 | 3.1920| 2.5480| 3.3600 |
Y12 0.8680 | 1.5880 | 1.8640| 1.9160 | 0.2820 | 3.2040| 2.3320| 3.1120 |
Y %/ 0.7660 | 1.5760 | 2.2390 | 1.8140 0.9040 | 3.1980 | 2.4400 | 3.2360 |
Yr1-Y[-0.1020 [ -0.0120 | 0.3750 [ -0.1020 | 0.6220 | -0.0060 | 0.1080 | 0.1240 |
Yr2-Y| 0.1020 | 0.0120]-0.3750 | 0.1020 | -0.6220 [0.0060 | -0.1080 |-0.1240 |
Sqrl | 0.0104| 0.0001 | 0.1406 | 0.0104 | 0.3869 | 0.0000] 0.0117 | 0.0154 |
Sqr2| 0.0104 | 0.0001 | 0.1406 | 0.0104 | 0.3869]0.0000| 0.0117] 0.0154 |

Su”2 | 0.0208 | 0.0003 | 0.2813 | 0.0208 | 0.7738[0.0001 | 0.0233| 0.0308 |

The Sum of the dispersion = 1.1511
The maximum Su”2 = (.7738
G-Calculated = 0.6722

G-Statistical Table [a,(r-1),N] = 0.6800
G-TEST:
It is possible to carry out régression

analysis, since G-stat > G-cal
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Table 4.11:  Design matrix Table for a 2” 3 full factorial design with the

interactions

X0 X1 X2 X3 XI*X2 XI1*X3 X2*X3 XI1*X2*X3 Y

1| -1 | -1 | -1 | 1 | 1 | 1 | -1 1] 07760
Ll | =1 | -1 | =1 | -1 | 1 | 1 | 15760
Ll =1 | L |- | -1 | 1 | -1 | 1 | 2239
1] 1 |1 ]« | 1] =1 | < | -1 | 1.1840
1y -1 -7 v | 1] -1 | -l | 1 | 0.9040
Ly -t 01 -1 | -1 |- | 3.1980
1]-1 | 1 | 1 | -1 |- | .1 | -1.] 24400
11 [ 1 111 |1 |1 |1 | 3230
The mean square error = 0.14388

The experimental error = 0.37932

T-TEST:

T-Statistical Table [a,N(r-1)] : 1.8600

The constant and the variable for the following
are insignificant since T-cal < T-table

b23 b123

The fitted model then becomes:

Y= 2.022 + 0.434x1 + 0.411x2 + 0.423x3 -0.342x1x2 + 0.338x1x3
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Table 4.12:  Table of calculated T-values

Regression Estimated Conlidence T
coefTicient effect interval values
b0 2.022 0.176 21,3183
bl 0.434 0.176 4.58056
b2 0.411 0.176 4.33011
b3 0.423 0. 176 4.45929
bl2 -0.342 0.176 3.60249
bl3 0.338 0.176 3.56558
b23 -0.017 0.176 , 0.1805§
b123 -0.033 0.176 10.34667
F-TEST :

F-Statistical Table [o,dFr,N(r-1)] : 5.3200
The constant and the variable for the following
are insignificant since F-cal < F-table

b23 b123
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Table 4.13: Complete analysis of variance
Source of sum or Degree or Mean Focal
variation sgquares (S8S) freedom(df) sguare
bl 3.019 3.019 20.98149
b2 2.698 2.698 18.74984
b3 2.861 2.861 19.88524
bl2 1.867 1.867 12.971795
bl3 1.829 1.829 1271339
b23 0.005 0.005 0.03261
bl23 0.017 0.017 0.12018
Error (SSE) = 1.15107 '
Total (SST) = 13.44752
N(r-1) = 8
Nr-1 = 15
SSE/(N(r-1) = 0.14388
Table 4.14:  Experimental and calculated percentage extract
n . Yaal eu=Y-Ycal eu"2=(¥Y-¥Ycal) "2
k-3 0.766 0.750 0.015750 0.000248
2 1.576 1.626 -0.050000 0.002500
3 2,239 2.255 -0.015750 0.000248
1.814 1.764 0.050000 0.002500
5 0.904 0.920 -0.015750 0.000248
6 3.198 3.148 0.050000 0.002500
7 2.440 2.424 0.015750 0.000248
8 3.236 3.286 -0.050000 0.002500
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F-TEST (Fisher):

F-Calculated

0.0254655

F-Statistical Table = 3.5800000

The fitted model is adequate

Since F-cal < F-table

Value of wl,x1 40.0000 -=0.2000

Value of w2,x2 1.2000 -=1.0000

Value of w3,x3 = 4.0000 0.3333

Y= 2.022 + 0.434x1 + 0.411x2 + 0.423x3 -0.342x1x2

+ 0.338x1x3

1.5742

Final value of Y

Value of wl,x1 50.0000 -1.0000

Value of w2,x2 ©0.9250 1.0000

Value of w3,x3

3.0000 1.0000
Y = 2,022 + 0.434x1 + 0.411x2 + 0.423x3 -0.342x1x2

+ 0.338x1x3

Final' value of Y 2.4242

Value of wl,x1 25.0000 1.0000

Value of w2,x2

Y

Value of w3,x3 = 6.0000 =-1.0000

0.9250 1.0000

Y = 2.022 + 0.434x1 + 0.411x2 + 0.423x3 =0.342x1x2

+. 0.338x1x%3

Final value of Y = 1.7640
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43 RESULTS FOR MODEL 2
Constant (fixed) level parameters
Particle size = 0.375mm
Mass of bark = 50g

Reaction temperature = 70°C

Table 4.15:  Natural factors and their coded levels

Level of factors Code Conc. Time Vol.
High +1 4.0000 6.0000 750.0000 0.0000
Low =1 2.0000 3.0000 250.0000 0.0000
Table 4.16: Experimental results
~ Factor Natural ~ variables Y;
combination w; (conc.) w; (time) w3 (vol.) (% extract)
N=2° (%) (hrs.) (mls)
1 2 3 250 2.950
2 | 4 3 250 4.240
3 2 6 250 2.492
4 4 6 25 3.850
5 2 3 750 5.478
6 4 3 750 7.305
7 2 6 750 5.048
8 4 6 750 5.638
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Table 4.17:  Experimental results with replicates

N oL 2 |3 | 4 | s | 61 1 | 8 |

Yrl  [3.0820 | 3.9220 | 1.9120 |4.1700 |5.2480 |7.2020 | 5.1260 | 7.1820 |
Yr2 | 2.8200 | 4.1700 | 3.0700 | 3.5200| 5.7060 | 7.4080 | 4.9700 | 4.0940 |
Y % | 2.9510 | 4.0460 | 2.4910 | 3.8450| 5.4770 | 7.3050 | 5.0480| 5.6380 |
Yrl- Y| 0.1310 [-0.1240 | -0.5790 | 0.3250 |-0.2290 | -0.1030 | 0.0780 | 1.5440 |
Y12-Y[-0.1310 | 0.1240 | 0.5790|-0.3250 | 0.2290 | 0.1030|-0.0780 | -1.5440 |
Sqrl | 0.0172 | 0.0154 | 0.3352 | 0.1056 | 0.0524 | 0.0106| 0.0061 | 2.3839|
Sqr2 | 0.0172 | 0.0154 | 0.3352 | 0.1056 | 0.0524 | 0.0106| 0.0061 | 2.3839 |

Sur2 | 0.0343 | 0.0308] 0.6705 | 0.2112 | 0.1049 | 0.0212] 0.0122| 4.7679 |

The Sum of the dispersion = 5.8529
The maximum Su”2 = 4.7679
G-Calculated = 0.8146

G-Statistical Table [o,(r-1),N] = 0.6800
G-TEST:

It is not possible to carry out regression analysis, since G-stat < G-cal

44  RESULTS FOR MODEL 3

Constant (fixed) level parameters
Volume of H2S04 = 250 mls
Mass of bark = 50g

Reaction temperature = 70°C
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Table 4.18:  Natural factors and their coded levels

Level ol lactors Code Conc. Time Size
High +1 4.0000 6.0000 1.2000 0.0000
Low -1 2.0000 3.0000 0.9250 0.0000

Table 4.19: Experimental results

Factor Natural variable Y,
combination  wj (conc.)  w; (time) w3 (size) (% extract)
N=2° (%) (hrs.) (mm)
1 2 3 - 0.9250 1.1800
2 4 3 0.9250 2.4400
3 2 6 0.9250 1.1970
4 4 6 0.9250 2.2460
5 2 3 1.2000 1.0930
6 4 3 1.2000 0.9000
7 2 6 1.2000 0.7930
8 4 6 1.2000 0.7700
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Table 4.20: Experimental results with replicates

Ny 1-1 -2 1 3 1 4 | 5] 6 17 | 8 |

Yrl | 11160 | 2.5480| 1.2280 | 2.6140| 0.9820| 1.5280| 1.1860 | 0.6640 |

Yr2 | 1.2540 | 2.3320| 1.1660 | 1.8640] 1.2020| 0.2820 | 0.4000| 0.8680 |
Y % | 1.1850 | 2.4400| 1.1970| 2.2390 | 1.0920 | 0.9050| 0.7930| 0.7660 |
Yr1-Y[-0.0690 | 0.1080 | 0.0310|0.37501-o.1106| 0.6230| 0.3930]-0.1020 |
Y12-Y| 0.0690 |-0.1080 [-0.0310 -0.3750 | 0.1100 | -0.6230 | -0.3930 | 0.1020|
Sqrl | 0.0048 | 0.0117] 0.0010]0.1406| 0.0121| 0.3881 | 0.1544 | 0,0104 |

Sqr2 | 0.0048 | 0.0117 | 0.0010|0.1406 | 0.0121 | 0.3881 | 0.1544 | 0.0104 |
§ :

Su”2 | 0.0095 |§0.02331 0.0019] 02813 0.0242| 0.7763 | 0.3089| 0.0208 |

The Sum of the dispersion = 1.4462
The maximum Su”2 = 0.7763
G-Calculated = 0.5368

G-Statistical Table o, (r-1),N] = 0.6800
G-TEST:
It is possible to carry out regression

analysis, since G-stat > G-cal
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Table 4.21:  Design matrix Table for a 2" 3 full factorial design with the

interactions

X0 X1 X2 X3 XI*X2 XI1*X3 X2*X3 XI1*X2*X3 Y

1 4 ) -8 =] F 11 1] < ). Lisso
1] 1 ] <0 [ =4 1 1 [« J v | 1 | 24400
11 <1 1] 1744 | <41 1§ =2 [ 1 } 11970
L] L |1 |-l | 1 | =1 | -1 | -1 | 2239
Iy -t -1 1 | b | -1t ] -l | 1 | 1.0920
Ll L] =1 |t | =1 | 1 | =1 | -1 | 09050
Pl-1 |1 | =1 |- ] -l 0.7930
| N I O T | | 1 | 1 | 0.7660
The mean square error = 0.18077

The experimental error = 042517

T-TEST:

T-Statistical Table [a,N(r-1)] : 1.8600

The constant and the variable for the following

are insignificant since T-cal < T-table

b2 bl2 b23 bl23

The fitted model then becomes:

Y= 1327 + 0.260x] -0.438x3 -0.314x1x3
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Table 4.22: Table of calculated T-values
Regression Estimated Confidence i
coefficient effect interval values
Lo 1.327 o.198 12.4a8547
b1 0.z260 o.198 2.aaose
b2 ~0.o078 o.198 0.73734
b3 ~0.a3s 0.198 4a.12184a
b - 1 - -0.007 0.:198 0. 06233 ’
»13 -0.314 o.198 2.95291
b23 -0.032 o0.198 o0.29282
blL23 0.047 0.198 0.43864
F-TEST :
F-Statistical Table [o,dFr,N(r-1)] : 53200
The constant and the variable for the following
are insignificant since F-cal < F-table
b2 bl2 b23 bl123
Table 4.23:  Complete analysis of variance
Source of Sum of Degree of Mean F-cal
variation squares(SS)  freedom(df) square
b1 1.08s 1 1.08s 6.00046
b2 o.o9s 1 o.o9s o.sa368
53 3.071 1 3.071 16.08955
g 1z 0.001 a o.o00a o.co0ase
p13 1.576 2 1.876 8.71965
b23 o0.016 1 o0.o016 0.08574
—PR123 0.035 i 0.035 0.19242
Error (SSE) = 1.44619
Total (S§ST) = 7.32771
N(r-1) = B
Nr-1 = 15
SSE/(N(r-1) = 0.18077
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Table 4.24:  Experimental and calculated percentage extract

~n E. Yeal eu=Y-Ycal eu"2Z2=(Y-Ycal) -2
- A .1L85 2 A9 -—0.006000 0.000036
=2 2.440 2.340 0. 312008500 0.010100
& b A W~ B 4 = g I - i 18 0.006000 0.000036
<1 2.239 2.340 -0.1200500 0« O LOLOO i
5 1L.092 0.943 0.149500 0.022350
(= 0.908 0.835 0.069500 0 .004830
7 o.793 0.9a3 ~0.149500 . o.0z223s50
8 O .7T66 o.835 ° -0,-069500 0.004830
F-TEST (Fisher):
F-Calculated = 0.2064285
F-Statistical Table = 3.5800000

The fitted model is adequate
Since F-cal < F-table

Value of wl,x1 4.0000 1.0000

I

Value of w2,x2

3.0000 -1.0000

Value of w3,x3 0.9250 =1.0000

Y = 1.327 + 0.260x1 -0.438x3 -0.314x1x3

Final value of Y 2.3395

Value of wl,x1 3.0000 0.0000

Value of w2,x2 3.0000 -1.0000

1.2000 1.0000

1l

Value of w3,x3

Y = 1.327 + 0.260x1 -0.438x3 -0.314x1x3

Final value of ¥ = 0.8890
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Value of wl,x1 2.0000 =-1.0000

4.0000 =-0.3333

Value of w2,x2

Value of w3,x3 0.9250 =-1.0000

Y = 1.327 + 0.260x1 -0.438x3 -0.314x1x3

Final value of Y = 1.1910
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CHAPTER FIVE

5.0 DISCUSSION OF RESULTS

The prediction model is developed based on the hand calculation of 2* full

factorial experiment of Appendix A. But the program was also written to carry out
the analysis and prediction for 2%, 2* and 2* full factorial experiments. However, since
this work is based on the results for a 2 full factorial, the results presented are for 2°
experiments.

Looking through the results for model 1b as presented in Tables 4.8 — 4.14 and

comparing it with the results for the hand calculation of Appendix A, the model for

both case is:

y=2.022 +0.434x; + 0.411x + 0.423x3 — 0.342x;x3 + 0.338xx3
The value for other parameters e.g. G-cal, F-cal, e.t.c. are the same in both the manual
and the program output are the same, except for small errors resulting from round offs
(approximation).

Averill and Kelton (1996), reported that there is no general prescription for the
choice of level. Model 1 was therefore analyzed using two versions. One version
differs from the other in the choice of level of the factors. This is done sc that we can
investigate the effect of choice of levels. In Table 4.1 which is for the levels of model
la, the high numerical value is taken for high level while the low numerical value is
considered as low level. On the other hand, Table 4.8 shows the choice of level for
model 1b where low numerical value is chosen as high level and high numerical value
as low level. From Table 4.2, the average percenlage extract for the eight
combination of model 1a are: 3.2360, 2.4400, 3.1980, 0.9040, 1.8140, 2.2390, 1.5760
and 0.7660. And in Table 4.9, due to change in choice of level, the percentage extract
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for model 1b are arranged in a reverse order thus: 0.7660, 1.5760, 2.2390, 1.8140,
0.9040, 3.1980, 2.440 and 3.2360. This is so because all the books on experimental
design especially Montgomery (1976), said that the responses must be arranged in
accordance with the design matrix table (standard order).
After the necessary test and calculations, the model equation for model 1a is:
y=2.022-0.434x, - 0.411x2-0.423x3— 0.342x;x2 + 0.338x1x3 ... ...... 5.1

It can be noticed that the variables x»x3, x1X2x3 and their coefficients did not appear in
the model equation because they failed the T-test and F-test. The effect of raising a
natural variable from its low level to high level is given by me coeflicient of the
variable (Averill and Kelton, 1996). * Negative (-) sign implies a decrease while
positive (+) sign implies an increase. In the model for yield of sugar in Section 2.3.4,
Cox and Cochran (1957) concluded thus: “the application of nitrogen increased the
yield of sugar by 7.4cwt, while 11in ploughing in;:reased the yield by 1.9cwt as
compared with 7in ploughing”. From Equation 5.1, raising the mass of eucalyptus
camaldulensis from 25g to 50g decreases the percentage extract by 0.4340. Raising
the average size from 0.9250 to 1.2000mm decreases the percentage extract by
0.4110, while raising the time from 3 hours to 6 hours decrease the percentage extract
by 0.4230. In the inventory model of Example 2.1, Averill and Kelton (1996) also
concluded that the smaller value of A and B would be preferable, since lower monthly
costs are desired. The same reasoning is applicable here, since the higher values of

‘percentage extract is desired, it appears that smaller values of the mass, size and time

are preferable.
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The Equation resulting from model 1b is given below:

y =2.022 + 0.434x;+ 0.411xz2+ 0.423x3~ 0.342x;x2+ 0.338x1X3 ......... 5.2
Here raising the mass from 50 (low level) to 25 (high level) increase the percentage
extract by 0.4340 while raising the size and time from their low level to high level
increases the percentage extract by 0.4110 and 0.4230 respectively. Again since
higher of the percentage extract are desired and an increase is obtained by moving in
the direction of the low numerical values, the lower mass, size and time are desired.

Muhammed (1998), Bisallah (1998), and Shalfii (1998) concluded from their
calculation of average percentage extract that the percentage extract of oxalic acid
decreases with increase in size and time. Though their basis for this conclusion is not
sound, tﬁe conclusion was correct. If agrees with our ﬁndihg base on factorial
experimeﬁt analysis which is a well-established method of analysis. They could not
make any deduction for the mass because an individual was given a fraction of
factorial experiment to handle in that regard. But with factorial analysis we concluded
that the percentage extract decreases with increase in mass over the range of level
used.

To justify our finding, we refer to our knowledge of chemistry and extraction.
For the size, we know that the smaller the particle size, the greater the surface area of
reactant and the higher the rate of reaction (Osei, 2000). The higher the rate of
reaction, the more the product formed after a given time. As far as time is concerned,
we know that any reaction has the optimum time for it to come to completion. Any
~ moment after that time, there may be side reaction, which might results in decrease in
the desired product. From the experimental procedure, we learnt that there is always

unreacted H2804 in the mixture. When all the CaC,04 are converted to (CO,H); afier

a given time, if the reaction is not stopped, since there is continuous heating the
excess H,SO, dehydrates some of the oxalic acid formed to equimolar mixture of
carbon monoxide and dioxide (Dazeley, 1979). This is summarized by Equation 2.6

thus:
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conc.H,S0,

weal

(COzH), > CO g+ COp + HO ()

This implies that smaller time between 3 and Ghours is most suitable for this
reaction. For the mass, since we are using a fixed volume (250mls) of H,SO4 for both
50g and 25g, the decrease recorded shows that smaller mass between 25g and 50g is
required for the volume of acid used. That is to say only small amount of CaC,0y4 in
the bulk of the bark is required to react with 250mls of H,SO4, leaving the remaining
oxalate unreacted. This is why a decrease is recorded in the percentage extract of
oxalic acid obtained with increase in mass form 25g to 50g.

Although there is differences in signs of coefficient of x;, x> and x3 in model
la and model 1b, it can be seen from the above discussion that they represent the
same thing. In addition when the same values c;f variables are used in both models to
predict percentage extract, the results were obtained. For instance, when mass of 40g,
1.2000mm average size and time of 4 hours was used to predict the percentage extract
in both models, the predicted percentage extract is 1.5742.

The results for model 2 are given in Table 4.15 - 4.17 of Section 4.3. The
G-calculated is 0.8146 while the G-Table is 0.6800. Since G-table < G-cal it is not
possible to carryout regression analysis based on 5% level of significance (< = 0.05).
Therefore the prediction model cannot be fitted.

Table 4.18 to 4.24 of Section 4.4 presents the results for model 3. The fitted
model equation is:

y =1.327 + 0.260x; - 0.438x3 - 0.314x)X3 ...............5.3

Raising the concentration from 2 10 4% increases the percentage extract by

0.2600, and raising the average size from 0.9250 to 1.2000mm decreases the
percentage extract by 0.4380. Here it will be noticed that the coded variable x; for

time does not appear in the model equation. This is because the T-calculated for x5,
0.7373 is less than 1.8600 which is the T-table. Since the T-cal < T-table, b, and x;

are statistically insignificant. The variable also failed the F-test, all based on 5% level

74




of significance. This does not mean that time is useless in the experiment, because in
Table 4.22 the estimated effect of time is 0.0780. Showing that raising the time from

3 to 6 hours decrease the percentage extract by 0.0780. Therefore, the higher value of
concentration is desired for high percentage extract while the lower values of time and
particle size are desired.

From our knowledge of factors aflecting rate of chemical reaction, we know
that the higher the concentration of reactant, the faster the rate of reaction (Lambert
and Holderness, 1980). This implies that there would be more product and percentage
extract for a specified reaction time. Since our percentage extract increases with
increase in concentration, it agrees with this theory. As for the time ands size, the
explanation is the same with that of model 1. _

According to Averill and Kélton (1996), given this regression model:

RA,B)= n+PBxa+t I Xg+ @XAXB oo vvvvvveeveevvvvin v enn.....5.4 We could
estimate 1, B, @ and ¢ by ordinarily square regression and use the fitted model to
forecast (predict) the value of R(A,B) at combinations of A and B where no

simulation has been done. The same way in the last page of Section 4.4 where

concentration of 4%, time of 3hours and average size of 0.9250mm were used to
predict the percentage extract of oxalic acid, the final value of percentage extract
gotten is 2.3400. The coded variables x;, x, and X3 calculated are 1, -1 and -1
respectively. These correspond to the number 2-factor combination of Table 4.21.
The calculated percentage extract for this factor combination in Table 4.24 is 2.3400,
which is the same as the predicted percentage extract. This is one way of showing the
level of accuracy of the pr;zdiction models. Another way is to look at the difference
between the experimental percentage extract and the calculated percentage extract. In
Table 4.7 and 4.14 for models 1a and b the highest difference is + 0.0500. The
difference is given in Table 4.24 for model 3 as + 0.1495. For both models the
difference is small as compared with their confidence limit of + 0.1760 for model 1
and + 0.1980 for model 3. Finally the experimental error for model 1 is 0.3793 while
for model 3 itis 0.4251. Showing that model 1 is more accurate than model 3.
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Generally, factorial experiment provide opportunity to study not only the
individual effect of cach factor (variable), but also their interaction (Das and Giri,
1979). Because when experiments are conducted lactor by factor changing the level
of one factor at a time and keeping other factors at constant level, the effect of

interaction cannot be investigated.
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CHAPTER SIX
6.0  CONCLUSION AND RECOMMENDATION
6.1  CONCLUSION

For model 1, the discussion shows that the choice of level of variables does

not affect the model. Therefore, one can decide to choose the level any how, but it is
advisable to choose high numerical value as high level and low for low to avoid
confusion.

From the discussion above, we can see that for model la and 1b the smaller
values of the mass, size and time gives higher the percentage extract. Therefore, the
optimum percentage extract is gotten in the region of the smaller mass, size and time.
However optimization technique will b:e needed to get the exact optimum values. In
model 3, the higher the concentration, the higher the percentage extract of Oxalic

acid. While the lower the time and size, the higher the percentage extract of Oxalic

Acid obtained. It can also be concluded [rom the calculated experimental error (hat

model 1 (0.3793) is more accurate than model 3 (0.4251).

6.2 RECOMMENDATION

The supervisor is the planner of experiments and it is because he planned and
supervised the 2* full factorial experiment from the scratch that we are able to use it
for further analysis. I suggest that he plans experiments for higher factorials,
especially 2* and the fractional experiments i.e. 2*7.

I also recommend that further work be done on these results to see how
possible it will be to use it for optimization. There is no problem about these because
from Section 2.3.1 of the literature review we learnt that experimentation is usually an

iterative process. With one experiment answering some questions and simultaneously

posing others.
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APPENDIX A

HAND CALCULATION )
The required model equation fore predicting the yield is given as

y=Dbo + bixi + baxz + baxa + bz Xix2 + bisxixa+baaxoxs + biaaxixgxa

Table 1: Natural factors and their coded levels

Levels of

factors code Wi W w3 '
High +1 25 0.925 3

Low -1 50 1.200 6

Table 2: Experimental results _

A 7 o L e
St — TR rrm——— e ——
2 25 1.200 6 1.576

3 50 0.925 6 2.239

4 25 10.925 6 1.814

5 50 1.200 3 0.904

6 25 1.200 3 3.198

7 ‘ 50 0.925 3 . 2.440

8 25 0.925 3 3.236
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Table 3: Design i 2 i
gn matrix table for a 2° full factorial with the interaction of coded

factors.

N Xo X 1 Xz X3 X 1X2 X 1X3 X2X3 X 1X2X3 Y

e e

- 0.766
R R A - + o+ 1.576
e R - " 2.239 )
T R R R RN - . 1.814
O SR S - -+ 0.904
e e A ST + - - 3.198
s ¥ SR S R 2.440
B oth o ATE e L e Sk + + + 3.236

Table 4: Experimental results with their replicates.

Replicates (r)

N Yq Yo Yi Ya-Yi Yo Yi (Ya-Y) (Ye-Y)®  Sp’
1T 0.664 0.868 0.766 -0.102 0.102  0.0104  0.0104  0.0208
1.564 1588 1.576 -0.012 0.012  0.0001  0.0001  0.0002
2614 1864 2239 0375 -0375 0.1406  0.1406  0.2812
1712 1916 1814 -0.102  0.102  0.0104  0.0104  0.0208
1526 0282 0904  0.622  -0.622 03869 03869  0.7738

3.192  3.204 3.198 -0.006  0.006 0.0000 0.0000  0.0000
2.548 2332 2440 0.108 -0.108  0.0117 0.0117  0.0234

3360 3.112 3236 0.124  -0.124  0.0154 0.0154  0.0308

X T N e WN
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il.

1il.

iv.

Mean Y = lZyr 2
p

The dispersion of replicated observations is given by

1 .

r —
The sum of the dispersion ) Su® =1.1511

Su’. max = 0.7738

V. The homogeity of the dispersion was determined using Cochran criterion of
Calculated G-value
. Su® max s ;
i.e. G-cal = ZSuz s T wraoss e 1N
0.7738
G-cal = ——=0.6722
1.1511
Vi. G-Test was used to check if the output factors .of the replication have
maximum

accuracy of replication.

G-Test.

The condition of homogeneity is:

Gla, (r<1),N] > G-cal .............5
from statistical table
G(0.05, 1,8) = 0.0680

Since 0.680 > 0.6722

It is possible to carry out regression analysis.
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Analysis:

L The mean square error was determined by Su” = -II—V_ZSu2 S UPIPRI <1
2 1
Su = —(1.1511)
8
= 0.14389
2. The experimental error was given as:
Su= v Su® =40.14389 = 0.37933
3. The regression coeflicients are given by :
by =3 (30) »
PN 31 SUOUPPR. X,
g
f=— ) (SiVi)oioiininnn.n. .8
] N_%: y
Therefore,

bo = %(0.766 +1.576 +2.239 + 1.814 + 0.904 + 3.198 + 2.440 + 3.236)

_ 16173

8

=2.022

by = %(-0.766 +1.576 -2.239 + 1.814 - 0.904 + 3.198 - 2.440 + 3.236)

=0.434

by = %(—0.766 -1.576 + 2.239 + 1.814 - 0.904 - 3.198 + 2.440 + 3.236)
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3.285

P ——

8

=0411

by = 81(-0. 766 - 1.576 - 2.239 - 1.814 + 0.904 + 3.198 + 2.440 + 3.236)

=0.423

biz = %(0.766 - 1.576-2.239+ 1.814 + 0.904 - 3.198 - 2.440 + 3.236)
_-2733
8

=-0.342

bz = %(0.766 -1.576 +2.239 - 1.814 - 0.904 + 3.198 - 2.440 + 3.236)

=0.338
by = %(0.766 +1.576 -2.239-1.814-0.904 - 3,198 + 2.440 + 3.236)

~0.137
8

=0,017

biy = -;—(-0.766 +1.576 +2.239- 1.814+ 0.904 - 3.198 - 2.440 + 3.236)

—-0.263
8
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=-0.033
Testing significance of the regression coefficients.
T-test.
A coelTicient is considered significant if and only if
T-cal >T[a, N(-1)] ....................9
T-table = Tlo, N(r-1)].................... 10 -

from statistical table

T(0.05,8) = 1.860
re. T-table = 1.860
Su )
She SUSTUUNTRTT § |
JNr
- 037933 0.37933
Jie 4
- 0.09483
)
Tj = l—1—112
sb
Ty = bo _ 2022 =21.322
Sh 0.09483
T, = b _ 0434 =4.577
Sh 0.09483
b, 0411
T = e T =433
, sh 000483 - +334
: b 0.423
Ty, = 2o = 4,461
Sh0.09483
Tz = 5, _ 0349 =3.606
Sh 0.09483
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Ty = b'—3= s =3.564
Sh - 0.09483

0.017

Ty - = ~0.179
0.09483
0.033
Ty = LI
. 0.09483

bo, by, by, ba, by2, and by are significant since T-cal > T-table. Bul bz and bz are not
significant since T-cal < T-table.
The filted model become:
y = 2022+ 0.434x; +0.411x; + 0.423x3 — 0.342x;x2 + 0.338xx3 13

Confidence intervals for the regression coeflicients with confidence, a are of
the general terms, -
bj £ T [a, N(r-1)]Sb..........cc.......... 14

Confidence interval Ab; = T-table x Sb...... ... 15

Il

1.860 x 0.0948
= 0.176
Table 5: - The estimated effects, confidence interval and calculated T-values.

Regression estimated confidence T-values

Regression  Estimated.  Confidence T-values

Coe[ﬁpients Effect interval.

bo 2.022 0.176 21322
by 0.434 0.176 4.577
b, 0.411 0.176 4.334
bs 0423 0.176 4.461
i)lz 0.342 0.176 3.606
b1z 0338 0.176 3.564
bas 0.017 0.176 0.179
bis 0.033 0.176 0348
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y=2.022 + 0.434x; + 0.411x; + 0.423x3 — 0.342x;x; + 0.338xx3

viii.  The adequacy of the model was evaluated by the null hypothesis,
Ho: bj=0 oo 16

on the individual regression coefficients. The analysis of variance is very useful in
confirming the significance of the coefficients. In the 2* factorial design with r
replicates, the regression sum of squares for any effect is:

: (r.contrast)’

S8

R ¥ & L7
and has the degree of [reedom (dfx = ).

2

, . (X2 :
S8, = Z‘(_v,,.) -TIS ;
The error sum of squares was given by
88g = 885 = 0, 88 cevveeerennrvvesrrserrns e snes19
855 = 887 = 2 (88,) o ee o020

Testing the significance of each coeflicient was carried out by F-test

_MS, &
le_ = &?E .0..-.--..-.21
MS, o5

The calculated F-values were compared with the appropriate critical table value. The
null hypothesis is rejected using

Fcal > Fla, dfg, N(r-1)......... i 5

contrast =Z (xjyi) SN .

éalculations:

S8}, = —2-:;5[2(- 0.766+ 1576~ 2.239+ 1814 - 0.904 + 3198 - 2.440+ 3236)]" = (6‘19;)2 = 30189
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1 , (657)°
S8, = ﬁ[z(-ove()— 1576+ 2239 + 1814 - 0904 - 3198 + 2.440 + 3236)] = = e 2.6978

. (6.766)°

1
S8, = n[z(-(m(, - 1576~ 2239 - 1814 + 0904 + 3198 + 2.440 + 3236)] = 28612
X

- 1 ,  (-5466)°
88y = =—[2(0.766- 1576~ 2.239 + 1814 + 0.904 - 3.198 - 2440+ 3236)]" = ———= 18673
b12 2x8 16

(5.41)° .

88,5 = —L[2(0.766— 1576+ 2.239 - 1.814 - 0904 + 3.198 - 2.440 + 3.236)]2 = = 18293
137 2x8 16

(0.286)°

1
58,5 = m[z(o.%s +1576- 2239 - 1814 - 0904 - 3198 + 2.440+ 3236)]" = = 0.00511

| . . 0526)°
88,12 = =—[2(-0.766 + 1576 + 2.239 - 1814 + 0904 - 3198 - 2.440+ 3.236)]2 = josas) = 00173
03" 2x8 16

z 5SS, =3.0189+2.6978 + 28612+ 1.8673+ 18293+ 0.00511+ 0.0173 = 12.2969

IX. Sum of square error,
88y = 8, - ), S8

but,

2
v 2 (z yri)
S8y = Z(yri) " N
Y (1) = 0.664%+0.862%+1,564%+1.588%+2,614%+1,8647+1,712%+1.916*+1.5267
+0.282%+3.192%+3.3204%+2.548%+2.332%+3.360%+3.112?
=78.8288 :
(Z y,)’ = (0.664+0.862+1.564+1.588+2.614+1.864+1,712+1,916+1.526+0.282

+3.192+3.3204+2.548+2.332+3.360+3.112)?
=1046.1343
1046.1343

8(2)

Therefore S, = 13.4458- 122969 = 1.1485

Hence S5, = 788288~ = 78.8288- 65.3834 = 13.4454
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y SSp.
LM,

o MSF ) N::iﬂ
SS, 11485
But df =1 and oy = == 01435
Forb,, I, 30189—21037(
ke 01435 "
Forb,, I, 26978 =188
P2 Taat = 91435
Forb,, F Lol =199387
O e = 01235
For b 18673 = 13.0125
orbis Fou = Giazs = 1 )
Forb,,, I - 12.7038
ot by Bys—r o=
13> el T 01435
Forb,,, I ot = 0.0356
O P2 Fea = 01435~
Forby, Foy = a02 _ 01206
Or bus: Fou = 01235
Table 6: Complete analysis of variance
Source of Sum of Degree of Mean square F-cal
variation squares (SS)  freedom (df) (MS)
B, 3.0189 1 3.0189 21.0376
B, 2.6978 1 2.6978 18.8000
B3 2.8612 1 2.8612 19.9387
Bi2 1.8612 1 1.8612 13.0125
Bis 1.8293 1 1.8293 12.7038
By 0.00511 1 0.0051 0.0356
Bias 0.0173 1 0.0173 0.1206
Error 1.1485 N(r-1)=8 SSE/N(r-1)
Total 13.4454 Nr-1
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F-Test

FFor any cocllicient il
F-cal > F|(a, dfr, N(r-1)]

We reject the null hypothesis, Hy: bj = 0 hence that coefficient is significant.

From statistical table ,

F (0.05,1,8)=5.32

Therefore by, by, bz, by2 and bys are significant since their F-cal > F-table. The fitted
model is still,

y=2,022 + 0.432x;+ 0.411x2+0.423x3 + 0.342x;x3 + 0.338x1Xa

From Table 2,

Y, =2.022+0.434(-1) + 0.411(-1) + 0.423(-1) — 0.342(+1) + 0.338(+1) = 0.750
Y2 =2.022 + 0.434(+1) + 0.411(-1) + 0.423(-1) — 0.342(-1) + 0.338(-1) = 1.626
Y3 =2.022 + 0.434(-1) + 0.411(+1) + 0.423(-1) — 0.342(-1) + 0.338(+1) = 2.255
Ya=2,022+0,434(+1) + 0.411(+1) + 0.423(-1) - 0.342(+1) + 0.338(-1) = 1.764
Ys=2.022 + 0.434(-1) + 0.411(-1) + 0.423(+1) — 0.342(+1) + 0.338(-1) = 0.920
Y6=2.022+0.434(+1) + 0.411(-1) + 0.423(+1) — 0.342(-1) + 0.338(+1) =3.148
Y7=2.022+0.434(-1) + 0.411(+1) + 0.423(+1) — 0.342(-1) + 0.338(-1) = 2.424

Ys=2.022 + 0.434(+1) + 0.411(+1) + 0.423(+1) — 0.342(+1) + 0.338(+1) = 3.286
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Table 7: Table of experimental and calculated percentage extract.

N Y ycal e=yycal e =(y-ycal)’

1 0766 0.750 0.016 0.000256
2 1576 1.626  -0.050 0.002500
3 2239 2255 -0.0l6 0.000256
4 1814 1764 0.050 0.002500

5 0904 0924 -0.020 0.000400
6 3198 3148 0.050 0.002500
7 2440 2424 0.0l6 0.000256

8 3.236 3.286 -0.050 0.002500

The dispersion of adequacy for the replicate experiment is

N
S2d =——r—/{Z(y—ycal)2 24
A = Insignificant coeflicient
A=2
Sod = %(0.000256 +0.002500 + 0.000256 + 0.002500 + 0.000400 +
0.002500 + 0.000256 + 0.002500)
= ng.Ol 168
6

=0.003723
F-test
Applying Fisher’s criterion

F-table = Fla, N — r, N(r-1)]
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The fitted model is adequate if and only if Fla, N —r, N(r-1)] > f-cal.................25

Sa*d

F-cal R ——
Su

... 26

0.003723
0.14389

= 0.02587
Fla, 8 — 2, 8(2 —1)] = F-table
F10.05, 6, 8] = 3.58
Since F-table > F-cal, the fitted model is adequate.
ie.y =2022 + 0.434x; + 0.411xy + 0.423x3 — 0.342x;x2 + 0.338x;x3 is
adequate. -

To transfer natural variables to their coded levels to be use in calculations.

_ (2w, —w,high—w,low)

X .
o (w,high —w,low)
_ (2w, —w, high—w,low) 28
e (w,high—w,low)
= Wy “WHIGRZWIOW) 29

- (w;high —w,low)
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APPENDIX B

PROGRAM LIST
Program Percentage Extract(Input,Output,Filedat,Fileout);
{$M 8192,0,0} { Leave memory for child process }

Uses crt,dos;

Const
xes4 : array[0..15] of string[8] =
('x1''%2''x3"'x4"'x1x2'",'x1x3",'x 1 x4','x2x3",'x2x4",
'x3x4''x1x2x3" 'x 1x2x4",'x 1 x3x4",'x2x3x4",'x 1 x2x3x4");
xes : array|0..7] of string[6] =
¢ Lx1x2' %3 % 1x2 'x1x3', %2x3", x1x2x3");
xes2 : array|0..3] of string[6] =
(| ','X 1 ','XZ','X 1 xzv);
bes4 : array[0..15] of string[5] =
('b0",'b1",'b2",'b3",'b4",'b12",'b13".'b14%'b23",'b24'",'b34',
'b123','b124','b134','b234','b1234"),
bes : array|0..7] of string[4] =
('b0','b1','b2",'b3".'b12",'b13".'b23",'b123");
bes2 : array|0..3] of string[4]| =
('b0",'b1",'62",'b12");

Var
n0,nl,n2,n,r,i,j.klam:Integer;
flag,choice:Integer;
x:array[1..16,0..15] of integer;
b,t,xnew,Fcal,SSr:array[0..15] of real,
btest:array[0..15] of boolean;
newy,yid,su,su2,diff:array[1..16] of real;
eu,eu2:array|[1..16] of real;
yidr, yid_r, yid_2r: array[1..3,1..16] of real;
wlhigh,w1low,wOhigh,wOlow,w2high,w2low,w3high,w3low:real,
coninv,tvalue,gvalue,gcal, sumsu,maxsu,eerror,merror,sb:real;
fvaluel,fvalue2,fcall fcal2,sumeu,sad,x1,x2,x3,x4,finy:real;
wlvalue,w2value,w3value,w4value,w4low,w4high:real;
wlname,w2name,w3name,w4name:String|[6];
SSmean,Sumry2,Sumry,SumSSr,SSt,SSe:real,;

~equa : string;
ans:char;
Filedat,Fileout:Text,
Filenam : String|12];

function Int2Str(L : Real) : string;
var

S : string|6];
begin

94




Str(L:6:3, S);
Int2Str .= S;
end;

Function power2(valu:real).real;
Begin

power2 = valu * valu;
end;

function FileExists(FileNa}rle: string) : Boolean;
var

f: text;
begin

{$1-}

Assign(f, FileName);

Reset([):

Close([);

{$I+}

FileExists ;= (I0Result = 0) and

(FileName <> "), >
end; { FileExists }

Procedure Clears;

Begin
Clrscr;

gotoxy(15,1);Writeln('

=2
gotoxy(15,2);Writeln('"Prediction Models for the % Extract of Oxalic acid');
gotoxy(15,3);Writeln(" from the bark of Eucalyptus Camaldulensis');

gotoxy(15,4);Writeln('
.___.._.l).

Writeln; Writeln;
End;

Procedure Initialize;
Begin
fori:=1to8do
begin
x[1,0] :=1;
ifi mod 2 =0 then
x[i,1] =1
else
x[i,1] =-1;
ifiin[1,2,5,6] then
x[i,2] :==-1
else
x[i,2] =1,
if 1 <=4 then
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x[1,3] =-1
else
x[1,3] = 1.
x|, 4] = x|, 1] * x][1,2];
x[1,5] = x[i, 1] * x]i,3];
x|1,6] = x]1,2] * x[1,3];
x[1,7] = x[1,1] * x[1,2] * x[i,3].
end; ’
fori:=0107 do
btest[i] := TRUE;
end:

Procedure Initial4;
Begin
fori:==11t016do
begin
x[1,0] = 1;
if imod 2 =0 then
x[i,1] =
else .
X[i,1] :=-1;
ifiin[1,2,5,6,9,10,13,14] then
x[1,2] =-1
else
x[i,2] = 1;
x[1,3] = 1;
x[1,4] =1,
if i <=4 then x[i,3] = -1,
if (i>=9) and (i <= 12) then x[1,3] =-1;
ifi <=8 then x[i,4] :=-1;
x[1,5] = x[i,1] * x[i,2];
x[1,6] = x[i,1] * x[1,3]:
X[1L.7] = x[i,1] * x[1,4];
x[1,8] = x[1,2] * x[1,3];
X[1,9] = x[1,2] * x]i.4];
x[1,10] = x[1,3] * x[1,4]:
x|, 1] :=x[1,1] * x[1,2] * x[1,3];
x[1,12] = x[1,1] * x[1,2] * x[1,4]:
x[i,13] = x[i,1] * x[i,3] * x[i,4];
x[i,14] := x[i,2] * x[i,3] * x[1,4]:
x[i,15] = x[i,1] * x[1,2] * x[i,3] * x[i,4];
_end;
fori:=01o0 15 do
btest|i] := TRUE;
end,;

Procedure Initial2;
Begin
fori:=1108do
begin

96




x[1,0] = 1.
if1mod 2 = 0 then
x[i,1] =1
else
x[i,1] =-1;
ifiin[1,2] then
x[1,2] = -1
else
x|i,2] =1,
x[i,3] = x[i,1] * x]i,2];
end;
fori:=01to07do
btest[i] := TRUE;
end:

Procedure EnterData;
Begin
flag = 1.
Clears; -
repeat
Write('Enter Number of Factors (2,3 or 4) ');ReadIn(nl);
until (n1 >=2) and (nl <= 4);
n0 :=nl;
ifnl =2 then
n:=4;
ifnl =3 then
n.=3§;
ifnl =4 then
n:=16;
w3high = 0;
w3low = 0;
wdhigh = 0;
wdlow := 0,
Write('Enter Name of W1 (Max 6 Chars) : ');Readln(W1name);
Write('Enter High Value for W1 : ');Readln(W1high);
Write('Enter Low Value for W1 : '):Readln(W 1low);
Write('Enter Name of W2 (Max 6 Chars) : ');Readln(W2name);
Write('Enter High Value for W2 :');Readln(W2high);
Write('Enter Low Value for W2 : ');Readln(W2low);
if n >= 8 then
begin '
Write('Enter Name of W3 (Max 6 Chars) : ');Readln(W3name);
Write('Enter High Value for W3 : ');Readln(W3high);
Write('"Enter Low Value for W3 : ');Readln(W3low);

end;

ifn=16 then
begin




Write('Enter Name of W4 (Max 6 Chars) : ');:Readln(W4name):
Write('Enter High Value for W4 : ');Readln(W4high);
Write('"Enter Low Value for W4 : ').Readln(W4low);

end:

WOhigh = 1.
Wolow = -1;
repeat

Write('Enter Number of Replicates (2,3 or 4) ');ReadIn(r);
until (r >= 2) or (r <= 4);

Clears;
fori:=1tondo
begin
yid[i] = 0;
forj:=1tordo
Begin

Write('Enter % Extract ',1:2," for replicate ',j:2." ');readIn(yidr][},1]);
yid[i] := yid[i] + yidr[j,i];
end;
vid[i] = yid[1] / r;
end:
Clears:
Write('High Value for W1 : ');Writeln(W lhigh:7:4),
Write('Low Value for W1 :");Writeln(W llow:7:4);
Write('High Value for W2 : ');Writeln(W2high:7:4);
Write('Low Value for W2 :'):Writeln(W2low:7:4);
ifn>= 8 then
begin
Write('High Value for W3 :');Writeln(W3high:7:4);
Write('Low Value for W3 :"):Writeln(W3low:7:4);
end;
ifn =16 then
begin .
Write('High Value for W4 : '), Writeln(W4high:7:4);
Write('Low Value for W4 :');Writeln(W4low:7:4);
end;
Write('Number of Replicates : ');Writeln(r);
Writeln;
forj==1tordo
Begin
Write(" Yr'j:1,' 4
end;,
- Writeln;
fori:=1tondo
begin
forj:=1tordo
Begin
Write(yidr[j,i]:10:4," ).
end:
Writeln;
end;
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Repeat
Write('Do you wish to write data to file (Y/N) ');readln(ans);
until (Upcase(ans) ='Y") or (Upcase(ans) ='N');
il upcase(ans) ="Y" then
begin
Writeln('Enter Data File name (Max 12 chars - AAAAAAAA.AAA) ),
ReadIn(Filenam);
Assign(Filedat,Filenam);
Rewrite(Filedat);
Writeln(Filedat, WOhigh);
Writeln(Filedat, W Thigh):
Writeln(Filedat, W2high);
Writeln(Filedat, W3high);
Writeln(Filedat, W4high);
Writeln(Filedat, WOlow);
Writeln(Filedat, W 1low);,
Writeln(Filedat,W2low);
Writeln(Filedat, W3low);
Writeln(Filedat, W4low); *
Writeln(Filedat, W Iname);
Writeln(Filedat, W2name);
Writeln(Filedat, W3name);
Writeln(Filedat, W4name);
Writeln(Filedat,r);
Writeln(Filedat,n);
fori:=1tondo
begin
forj:=1tordo
Writeln(Filedat,yidr[},i]);
Writeln(Filedat,yid]i]);
end;
close(Filedat);
end;
End; -

Procedure LoadData;

Begin

clears:

Writeln('Enter Data File name (Max 12 chars - AAAAAAAA.AAA) : "),
ReadIn(Filenam),

if not FileExists(Filenam) then

begin
clears;
WriteLn('File not found');
Writeln('Press Enter Key to Continue...");
Readln;

end

else
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begin
assign(Filedat,Filenam);
flag .= 2;
Reset(Filedat);
while not eof(Filedat) do
begin
ReadIn(Filedat, WOhigh);
ReadIn(Filedat,W L high);
ReadIn(Filedat, W2high):
ReadIn(Filedat, W3high):
ReadIn(Filedat, W4high);
ReadIn(Filedat, WOlow);
ReadIn(Filedat, W 1low);
ReadIn(Filedat, W2low);
ReadIn(Filedat,W3low);
ReadIn(Filedat, W4low):
ReadIn(Filedat,W I name);
ReadIn(Filedat, W2name);
ReadIn(Filedat, W3name);
ReadIn(Filedat, W4name); .
ReadIn(Filedat.r);
ReadIn(Filedat,n);
fori:=1tondo
begin
forj:=1tordo
ReadIn(Filedat,yidr][j,i]);
ReadIn(Filedat,yid]i]);
end,
end;
close(Filedat);
Clears:
Write('High Value for W1 : ');Writeln(W lhigh:7:4);
Write('Low Value for W1 :');Writeln(W 1low:7:4);
Write('High Value for W2 : ');Writeln(W2high:7:4);
Write('Low Value for W2' : '), Writeln(W2low:7:4);
Write('High Value for W3 : ");Writeln(W3high:7:4),
Write('Low Value for W3 :');Writeln(W3low:7:4);
Write('High Value for W4 : ');Writeln(W4high:7:4);
Write('Low Value for W4 :');Writeln(W4low:7:4);
Write('Number of Replicates : '); Writeln(r);
Writeln;
forj:=1tordo
Begin
Write("  Yr'j:1, o
end;
Writeln;
fori:=1tondo
begin
forj:=1tordo
Begin
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Write(yidr|j,1]:10:4," '):
end:
Writeln:
end:
Writeln;
Writeln('Data has been Loaded into memory !');
Writeln;
Write('Press Enter to Continue '):readln;
end;
End;

Procedure Compute;
Begin
ifn=4thenn0 =2;
ifn=8 then nO :=3:
ifn =16 then n0 :=4;
if n0 = 4 then
initial4,
ifn0 =3 then
initialize:
ifn0 =2 then
initial2;
if flag = 0 then
Begin
Clears;
gotoxy(20,10); Write('Empty Data !, Select options 1 or 2 before 3'),
Delay(3500);
end
else
Begin
n2:=n-1;
Clears;
Writeln('Enter Output File name (Max 12 chars - AAAAAAAA.AAA) '),
ReadIn(Filenam);
assign(Fileout,Filenam);
Rewrite(Fileout);
Write('Enter G-Value Tabulated - G[a,(r-1),N] : ');Readln(gvalue);
sumsu = 0; :
fori:=1tondo
begin
su2fi] :=0;
forj:=1tordo
begin
diff]i] := yidrlj,1]-yid|1];
su2[i] := su2[i] + sqr(diff]i])
end;
su2(i] = su2li] / (r-1);
sumsu ;= sumsu + su2[i|:
end;
maxsu = su2[1];
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fori:=1tondo
if su2[i] > maxsu then maxsu := su2][i];
geal := maxsu / sumsu;

Writeln(Fileoul,'

=)
Writeln(Fileout,'Prediction Models for the % Extract of Oxalic acid');
Writeln(Fileout,' from the bark of Eucalyptus Camaldulensis');
Writeln(Fileout,'
sl

Writeln(Fileout);
Writeln(Fileout,'Natural Factors and their Coded levels');
fori:=1 to 70 do Write(Fileout,'=");Writeln(Fileout); -
if n=16 then
Writeln(Fileout,'Level of Factors Code ',wlname:6,' ',w2name:6,'
'w3name:6," ',wdname:6);

if n =8 then
Writeln(Fileout,'Level of Factors Code '.wlname:6,' '.w2name:6,'
',w3name:0); 7
ifn =4 then -

Writeln(Fileout,'Level of Factors Code '.wlname:6,' ',w2name:6),
fori:= 1 to 70 do Write(Fileout,'="); Writeln(Fileout);

Writeln(Fileout,'High',' :15,'+1 ',wlhigh:9:4,

w2high:9:4,w3high:10:4,w4high:10:4);

Writeln(Fileout,'Low ',' ':15."-1 ',wllow:9:4,

w2low:9:4,w3low:10:4,w4low:10:4);

Writeln(Fileout); Writeln(Fileout);
Writeln(Fileout,'Experimental Results with Replicates');
fori: =1 ton*10+6 do Write(Fileout,'="); Writeln(Fileout);
Write(Fileout,) N [');
fori:=1ton do

Write(Fileout,' "i:3," |);

Writeln(Fileout);
fori:=1to n*10+6 do Write(Fileout,'='); Writeln(Fileout);

~forj:=1tordo

begin

Write(Fileout,' Yr',j:1,'|);

fori:=11on do
Write(Fileout,' ',yidrl[j,i]:7:4,' |');
Writeln(Fileout);

end;

Write(Fileout,' Y % |');

fori:=11ton do
Write(Fileout,' 'yid[i]:7:4,"|");
Writeln(Fileout);

forj:=1tordo

begin

Write(Fileout,'Yr',j:1,'-Y|");

fori:==11on do
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Write(Fileout,' yidr|j,i]-yid[i]:7:4," ['):
Writeln(Fileout);
end:
forj: ltordo
begin )
Write(Fileout,'Sqr',j:1,' |'):
fori:=11on do
Write(Fileout,' ' sqr(yidr[},i]-yid|i]):7:4."' ['):
Writeln(Fileout);
end;
Write(Fileout,'Su”2 |').
fori:=11ton do
Write(Fileout,' ',su2|i]:7:4." |');

Writeln(Fileout);

Writeln(Fileout);
Writeln(Fileout,' The Sum of the dispersion ~ ="',sumsu:7:4);
Writeln(Fileout,'The maximum Su”2 =" maxsu:7:4),
Writeln(Fileout,'G-Calculated =" gcal:7.4),
Writeln(Fileout,'G-Statistical Table [a,(r-l) N] =".gvalue:7:4);
Writeln(Fileout);

Writeln(Fileout,'G-TEST:");

if gvalue < gcal then

begin
Clears;
Writeln(Fileout,'It is not possible to carry out regression');
Writeln(Fileout,'analysis, since G-stat < G-cal');
Writeln('It is not possible to carry out regression');
Writeln('analysis, since G-stat < G-cal'); Writeln;
Writeln('Press AnyKey to Continue');
Readln;

end

else

begin
- Writeln(Fileout,'It is posmble to carry out regression');
Writeln(Fileout,'analysis, since G-stat > G-cal');
Writeln(Fileout);

Clears;
Write('Enter T-Value Tabulated - T[a,N(r-1)] : '); Readln(tvalue)
fori:=1to 78 do Write(Fileout,'-"); Writeln(Fileout),
Writeln(Fileout);
merror := sumsu / n;
eerror ;= sqri(merror);
Write(Fileout,'Design Matrix Table for a 2',n0:2,' full factorial’);
Writeln(Fileout,'Design with the interactions'),
fori:=1 ton*10 do Write(Fileout,'="); Writeln(Fileout);
ifn =16 then
begin
Write(Fileout,' XO X1 X2 . X3 X4 X1*X2');
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Write(Fileout,! X1*X3 XI1*X4 X2*X3 X2*X4 X3*X4 XI1X2X3'),
Writeln(Fileout," X1X2X4 X1X3X4 X2X3X4 X1X2X3X4 Y").

end;
ifn=28 then
begin
Write(Fileout,! X0 X1 X2 X3 XI*X2'):
Writeln(Fileout,! X1*X3 X2*X3 X1*X2*X3 Y');
end;
if n =4 then
begin
Writeln(Fileout,! X0 X1 X2 XI*X2 Y"),
end; :
fori:=1to n*10 do Write(Fileout,'=");Writeln(Fileout);
fori:=1ton do
begin
forj:=0ton2do
Write(Fileout," "x[i,j]:3." [):
Write(Fileout,' "yid[i]:7:4):
Writeln(Fileout);
end;
Writeln(Fileout); Writeln(Fileout);

-

Writeln(Fileout,'The mean square error = '.merror:9:5);
Writeln(Fileout,'The experimental error = ',eerror:9:5);
Writeln(Fileout),
fori:=01on2do
begin
bli] = 0;
forj:=0 ton2 do
bli] := b[i] + (x[j+1.i]*yid[j+1]);
bli] :==bli] / n;
end;
sb := eerror / sqri(n*r);
fori:=0ton2do
begin
t[i] := abs(b[i]) / sb;
if t[i] < tvalue then btest[i] .= FALSE;
end;
equa:='Y =",
lam :=0;
fori:=0ton2do
if btest[i] then
begin
if (1 <> 0) and (b[i] > 0) then equa := equa + '+';
if n =16 then
equa = equa + (' *Int2str(b[1])+xesd[i]+'");
ifn= 8 then
equa = equa + (' “+Int2str(b[i])+xes[i]+"");
ifn=4 then
equa = equa + (' “FInt2str(b[i])+xes2[i]+' ');
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end
else
lam = lam + 1
Writeln(Fileout,' T-TEST:'"),
Writeln(Fileout,'"T-Statistical Table [a,N(r-1)] .tvalue:7:4).
Writeln(Fileout,'The constant and the variable for the following');
Writeln(Fileout,'are insignificant since T-cal < T-table');
fori:=01ton2do
if not btest|i] then
begin
ifn=16 then
Write(Fileout.besd[i],' '):
ifn =8 then
Write(Fileout,bes|i],' );
if n= 4 then
Write(Fileout,bes2][i]," '):
end;
Writeln(Fileout);
coninv = tvalue * sb;
Writeln(Fileout); - .
Writeln(Fileout,'The fitted model then becomes:');
Writeln(Fileout,equa);
Writeln(Fileout); Writeln(Fileout);
writeln(fileout,'Table of Calculated T-values');
Writeln(Fileout,'Regression Estimated Confidence t');
Writeln(Fileout,'Coefficient Effect Interval Values'),
fori:=1 to 45 do Write(Fileout,'=");Writeln(Fileout);
fori:=0ton2 do
begin
ifn=16 then
Writeln(Fileout,bes4[i]:6,' 'b[i]:7:3,) Y,
coninv:7:3," 't[i]:9:5);
ifn =8 then
Writeln(Fileout,bes|i]:6,’ Lbli]:7:3," ',
coninv:7:3," "[i]:9:5);
if n =4 then
Writeln(Fileout,bes2[i]:6,'  'b[i]:7:3," ',
coninv:7:3," '{[i]:9:5);
end; _
fori:=1to 45 do Write(Fileout,'=");Writeln(Fileout);
fori:=1tondo

begin
newyli] .= 0;
forj:=0ton2do
il btest[j] then
newyli] = newy[i] + (b[jI*x[iiD;
end;
Clears;

Write('Enter F-Value Tabulated - F[a,dFr,N(r-1)] : ");
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ReadIn(fvaluel);
fori:=1to 78 do Write(Fileout,'-'); Writeln(Fileout),
Writeln(Fileout);
Writeln(Fileout);
Sumry2 = 0;
Sumry = 0;
SumSSr = 0;
fori:=1tondo
fork:=1tordo
begin
Sumry2 = sumry2 + power2(yidr[K,i]);
Sumry := Sumry + (yidr[k,i]);
end;

fori:=11on2do
begin
SSrli] := power2((b[i] * r * n))/(r*n);
SumSSr := SumSSr + SSrli].
end;
SSt ;= Sumry2 - (power2(Sumry)/(r*n));
SSe =SSt - SumSSr;
SSmean := SSe / (n*(r-1));
fori:=1ton2do
begin
Fcal|i] ;= SSr]i]/ SSmean;
btest|i] ;= TRUE;
if Fcal[i] < fvaluel then btest[i] := FALSE;
end;

Writeln(Fileout,'F-TEST :');

Writeln(Fileout,'F-Statistical Table [a,dFr,N(r-1)] :".fvaluel:7:4);
Writeln(Fileout,'The constant and the variable for the following');
Writeln(Fileout,'are insignificant since F-cal < F-table');
fori:=1ton2do

if not btest[i] then
begin
if n= 16 then
Write(Fileout,bes4][i],' ');
ifn= 8 then
Write(Fileout,bes|i],' ');
ifn =4 then
Write(Fileout,bes2[i],' ");
end;

Writeln(Fileout); Writeln(Fileout);

writeln(Fileout,'Complete Analysis of Variance'):

Writeln(Fileout,'Source of Sumof  Degree of Mean  F-cal'),

Writeln(Fileout,'Variation Squares(SS) Freedom(df) Square %

fori:=1to 55 do Write(Fileout,'="); Writeln(Fileout);

fori:=1ton2 do

begin

if n =16 then
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Writeln(Fileout,bes4]i]:6.' '.SSr[1]:7:3. 1133
' 'S8S8rli]:7:3,' 'Fcalli]:9:5),
if n = 8 then '
Writeln(Fileout,bes|i]:6.' '.SSr1}:7:3. 1",
' '.88ri]:7:3, 'Fcalli]:9:5);
ifn =4 then
Writeln(Fileout,bes2[i]:6,' ',SSr[i]:7:3,' s,
' '.8Sr]i]:7:3,' 'Fcal[1]:9:5);
end;
fori:=1 1055 do Write(Fileout,'=");Writeln(Fileout);
Writeln(Fileout,'Error (SSE) ="'.S8Se:9:5);
Writeln(Fileout,'Total (SST) =',SSt:9:5);
Writeln(Fileout,'N(r-1) ="n:5),
Writeln(Fileout,'Nr-1 ="'n*r- 1:5);
Writeln(Fileout,'SSE/(N(r-1)  ="',SSmean:9:5);
Writeln(Fileout);

Clears;
Write('"Enter F-Value Tabulated - F[a,N-r,N(r-1)] : ');ReadIn(fvalue2);
Writeln(Fileout); ) .
writeln(Fileout,'Experimental and Calculated',
' percentage extract');
Writeln(Fileout,' N Y  Ycal eu=Y-Ycal,
' eu™2=(Y-Ycal)*2');
fori:=1 to 55 do Write(Fileout,'=");Writeln(Fileout);

sumeu := 0;
fori:=1ton do
begin

euli] := yid|i] - newy]|i];
eu2|i] := sqr(euli]);
Writeln(Fileout,i:4,' 'yid[i]:7:3," ",;newy]i]:7:3,
" euli]:10:6, 'eu2li]:10:6);
sumeu ;= sumeu + eu2|il;
end;
- sad = r/(n-lam)*sumeu;
fcal2 = sad / merror;
Writeln(Fileout);
fori:=1 to 55 do Write(Fileout,'="); Writeln(Fileout);
Writeln(Fileout);
Writeln(Fileout,'F-TEST (Fisher):');
Writeln(Fileout,'F-Calculated ="fcal2:11:7),
Writeln(Fileout,'F-Statistical Table = ',fvalue2:11:7);
Writeln(Fileout);
if fcal2 > fvalue2 then
begin
Writeln(Fileout, The fitted model is inadequate');
Writeln(Fileout,'Since F-cal > F-table (Fisher) ');
Writeln(Fileout);
end
else
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begin
Writeln(Fileout,' The fitted model is adequate');
Writeln(Fileout.'Since F-cal < F-table');
Writeln(Fileout):
fori:=1 to 78 do Write(Fileout,'-"); Writeln(Fileout);
end;
Repeat
Clears;
Repeat
Write('Do you wish to continue by entering values for Computation (Y/N) '):
readIn(ans);
until (Upcase(ans) = 'Y") or (Upcase(ans) ='N'); .
if upcase(ans) ="Y" then
begin
repeat
Write('Enter Value of W1 (must be between wlhigh & wllow): ");
Readln(w1value);
until (wlvalue >= wlhigh) and (wlvalue <= wllow)
or (wlvalue <= wlhigh) and (wlvalue >= wllow);
repeat : '
Write('Enter Value of W2 (must be between w2high & w2low): ');
ReadIn(w2value):
until (w2value >= w2high) and (w2value <= w2low)
or (w2value <= w2high) and (w2value >= w2low);
x1 = ((2*wlvalue)-wllow-wlhigh)/(wlhigh-wllow);
x2 = ((2*w2value)-w2low-w2high)/(w2high-w2low);
if n >= 8 then
begin
repeat
Write('Enter Value of W3 (must be between w3high & w3low): '),
ReadIn(w3value);
until (w3value >= w3high) and (w3value <= w3low)
or (w3value <= w3high) and (w3value >= w3low);
x3 := ((2*w3value)-w3low-w3high)/(w3high-w3low);
‘xnew|0] :=1;
xnew[ 1] :=x1;
xnew|[2] = x2;
xnew[3] :=x3;
xnew|4] = x1%x2;
xnew|[5] = x1*x3;
xnew[6] = x2*x3;
xnew[7] .= x1*x2*x3,;
end;
ifn =16 then
begin
repeat
Write('Enter Value of W4 (must be between w4high & wdlow): ');
Readln(w4value); '
until (w4value >= w4high) and (w4value <= wdlow)
or (wévalue <= w4high) and (w4value >= wdlow);
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x4 = ((2*w4dvalue)-wdlow-w4high)/(w4high-w4low);
xnew|0] = 1;

xnew[1] :=xl;

xnew|2| = x2;

xnew|3| = x3;

xnew|[4| = x1*x2;

xnew|[5| = x1*x3;

xnew|[6] = x2*x3;

xnew[7] = x1*x2*x3;

end;
ifn =4 then
begin
xnew|[0] = 1.
xnewl| I :=xl;

xnew|2| :=x2;
xnew|3] = x1*x2;

end:
finy :=0;
forj:=01ton2do
if btest|j] then -
finy = finy + (b[j]*xnewlj]):
Writeln(Fileout);

fori:=1to 75 do Write(Fileout,'*");Writeln(Fileout);
Writeln(Fileout,'Value of wl,x1 ="'wlvalue:9:4,x1:9:4),
Writeln(Fileout,'Value of w2,x2 ="'w2value:9:4,x2:9:4);
if n >= 8 then
Writeln(Fileout,'Value of w3,x3 =" ,w3value:9:4,x3:9:4);
ifn=16 then
Writeln(Fileout,'Value of w4,x4 ="' w4dvalue:9:4,x4:9:4);
Writeln(Fileout);
Writeln(Fileout,equa);
Writeln(Fileout);
Writeln(Fileout,'Final value of Y =" finy:9:4);
Writeln(Fileout);
end;
until (Upcase(ans) = 'N');
fori:=1to 75 do Write(Fileout,"*');Writeln(Fileout);
close(Fileout);
Clears;
SwapVeclors;
Exec(GetEnv('COMSPEC"), '/C ' + 'edit '+Filenam);
SwapVectors;
~end;
End;
end;

.

Begin

flag := 0,
assign(Filedat,'extract.dat');
assign(Fileout,'extract.out');

109




repeat
repeat
Clears;
gotoxy(25,7);Writeln(M AIN M E N U'):
gotoxy(ZS,S);Writeht('***"‘*"‘***********‘);
gotoxy(23,10) ;Writeln('1. Enter Fresh Data');
gotoxy(23,12);Writeln('2. Load Data from File'):
gotoxy(23,14);Writeln('3. Computation ');
gotoxy(23,16),Writeln('4. Quit Program %
gotoxy(25,19);Write('Enter Choice (1 -4) ").readln(choice);
until (choice > 0) and (choice <= 4);
Case Choice of
1:EnterData;
2:LoadData;
3:Compulte;
end;
until choice = 4;
end.
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