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ABSTRACT 

The study aimed at assessing the effects of urbanization on Land Surface Temperature (LST) in 
four selected cities in Sudan Savanna and Rainforest Ecological Zones of Nigeria. The cities are 
Ibadan and Owerri in the Rainforest zone, and Kano and Birnin Kebbi in the Sudan Savanna zone, 

Kano, Owerri and Birnin Kebbi. The study utilized Landsat TM, ETM+ OLI data from the 

United States Geological Service from the global visualization repository for the years 

1990 to 2019, and ERA-Interim (European Reanalysis) grid-based 2 meter above ground 

daily temperature data from ECMWF repository for the four surveyed cities from 1990 

to 2019. To achieve this, the study analyzed LULC change, NDVI, NDBI and LST for 

the four cities using Idrisi Terrset version 18.21 software and ArcGIS ArcMap 10.8 

software. For the ERA-Interim data, R Statistical package software version 3.6.1 was 

employed to detect the trend and seasonality in the maximum noon-time temperature of 

the four cities using non-parametric Mann-Kendall trend and seasonal trend tests. The 

statistical properties of the data were first analyzed by graphical examination of the data, 

using time plots, and boxplots. Also, the normality test of Shapiro-Wilk (S-W test) was 

applied. Pettitt test was then employed to test for single change-point detection in the 

temperature series. The thesis established that built-up areas increased from 312.90 km2 

(9.19%), 70.32 km2 (12.94%), 58.48 km2 (11.85 %) and 14.06 km2 (1.13%) in Ibadan, 

Owerri, Kano and Birnin Kebbi respectively in 1990 to 1,039.54 km2 (30.55%), 209.16 

km2 (38.50%), 216.03 km2 (43.77%) and 123.03 km2 (9.85%) in 2019 respectively. This 

implied a high rate of urbanization process in all the cities, and a concomitant decrease in 

other land cover types; with a resultant imbalance in the ecosystem of the urban 

environment. The study also established differences in values of the mean noon-time air 

temperature; indicating higher temperature values in Birnin Kebbi (27.49°C) and Kano 

(25.56°C) both in the Sudan, in contrast with lower temperature values of 24.08°C and 

23.17°C for Ibadan and Owerri respectively located in the Rainforest. Furthermore, the 

thesis established a Tau statistics of 0.070, 0.098 and 0.091, and corresponding p-values 

are 0.045, 0.005 and 0.0098 which are less than 0.05 confidence level for Kano, Ibadan 

and Owerri respectively; indicating significant rising trends of noon-time temperature in 

the three cities. Aside the mean LST-NDBI correlation of 0.94, 0.98, 0.96, 0.98 in Ibadan, 

Owerri, Kano and Birnin Kebbi respectively, the study established an increase in 

coverage areas of high LST areas from 18.12%, 18.07% and 14.71% respectively in 

Ibadan, Owerri and Birnin Kebbi respectively in 1990 to 27.00%, 52.12% and 64% in 

2019. This implied that as the urban sizes increase in the cities, the coverage area of higher 

LST increases. The study recommended adequate urban land use planning and initiation 

of urban greening processes and carbon sequestration as mitigating measures for high 

LSTs in the cities. 
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The past three or four decades have undergone unprecedented urbanization, especially in 

the developing countries (Kumi-Boateng et al., 2015). Particularly, Sub-Saharan Africa 

is urbanizing fast, with cities and towns growing at an annual rate of about four percent 

over the past 2 decades (Henderson et al., 2017). Due to unprecedented urbanization, 

more than  half of the world’s population now resides in urban location and this number 

may continue to rise (United Nations, 2014; UN DESA, 2012). The United Nations (UN, 

2010) estimated  a global rise in the population of city inhabitants from 790 million in 

1950 to approximately 3.5 billion in 2010, and projected that given the present pace of 

increase, the population will rise to 5.9 billion in 2045.  

Approximately three-quarters of the urban population of the world as well as its largest 

cities are at present concentrated in low and middle income countries (Revi et al., 2014), 

particularly in informal settlements and slums (McMichael et al., 2008). In these 

countries rapid urban sprawl is closely related to rapid economic growth (World Bank, 

2008; Satterthwaite et al., 2010). This is occasioned by the fact that in the developing 

nations, cities, particularly capital cities, are locations where majority of modern 

productive activities are concentrated, where the vast majority of paid employment 

opportunities abound (Cohen, 2006), and where there is availability of basic and better 

services such as better transportation, sewer, water, educational and health care services 

among others (Bhatta, 2010). Urbanization is therefore largely attributed to rapid 

population increase caused by a mass immigration of people (Josh and Bhatta, 2012) into 

urban areas in search of economic opportunities; with rural-urban  migration being the  

principle  component  of  rapid  and  unplanned  growth  of  towns  and  cities  in  the 

developing countries (Jahan, 2012). 

About ninety per cent of the projected rise in global urban population is expected to 

occur in Africa and Asia (United Nations, 2014). For instance, Nigeria, India, and China 
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combined are predicted to account for thirty-seven percent of the projected growth of the 

world urban population between 2014 and 2050 (Aliyu and Amadu, 2017). Predictions 

have suggested that by 2030 Africa will attain the urban age when half of Africans will 

live in urban areas (Opoko and Oluwatayo, 2014). Specifically, Nigeria’s urban 

population has expanded rapidly over the past 50 years and may continue to grow 

relatively fast in the coming decades (Bloch et al., 2015). At the current growth rate of 

about 2.8 percent to three percent annually, it is estimated that Nigeria's urban population 

will double in the next two decades (Aliyu and Amadu, 2017). Consequently, the number 

of people living in Nigeria’s urban centres will likely hit 100 million by 2020 (Oyeleye, 

2013). 

Several drivers of urbanization have been identified. The main drivers include natural 

population increase, growth of urban areas through merger processes, transformation of 

countrysides into small urban settlements, and rural-urban migration (Aliyu and Amadu, 

2017). Specifically, in Nigeria, urbanization has been largely attributed to rapid 

population increase caused by a high entrance of people into cities from the countrysides 

(Ohwo and Abotutu, 2015).  Other important factors influencing urbanization in Nigeria 

as highlighted by Ohwo and Abotutu (2015) include creation of new states and new Local 

Government Areas (LGAs) with consequent establishment of state capitals and LGA 

headquarters, as well as the establishment of new universities and colleges in virtually 

every state (Aliyu and Amadu, 2017). The major pull factor of population to urban areas 

in the country is the perceived opportunities offered by these urban centres (Ohwo and 

Abotutu, 2015).  It has been predicted that by year 2030, agglomeration of cities and 

population migration from rural areas to urban centres will raise world-wide proportion 

of urban coverage by seventy percent of the world’s present urban population (Kumar et 

al., 2015). Similarly, the amount of global urban land is expanding at twice the population 
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growth rate and is predicted to triple by 2030 if present trends in population density 

continue (Angel et al., 2011; Seto et al., 2012). A major implication of urbanization in 

Nigeria is that most urban centres in the country lack adequate planning and effective 

management strategies to accommodate the influx of people (Ohwo and Abotutu, 2015). 

This results in serious pressure on the socioeconomy supporting structures and the 

environment (Ohwo and Abotutu, 2015). 

Urbanization is known to be the prime anthropogenic activity with enormous irreparable 

consequences on adjoining ecosystems (Mahmoud et al., 2016). Some of its impacts have 

been highlighted by Cui and Shi (2012). The impacts include increased air and water 

contamination, decreased water supply, inadequate housing and poor sanitation facilities. 

Others are drastic reduction in natural vegetal cover and carbon sequestration, and traffic 

jams. Another important impact of urbanization process is its effects on land surface 

temperarue (LST) which refers to the radiative skin temperature of the land surface which 

plays a significant role in the science of the land surface through the processes of energy 

and water exchange with the air (Zhang et al., 2009). LST is a very important biophysical 

parameter which modulates the the lowest layers of the atmosphere and plays vital roles 

in the energy balance of the surface (Zoran, 2011). Urbanization process results in the 

conversion of natural vegetal cover, exposed soil, and surface water to modern non-

evaporating impervious land use/land cover (LULC) classes (Polydoros et al., 2018; 

Paranunzio et al., 2019). The modern urban surfaces which have replaced natural 

landscapes include buildings, rooftops, asphalt, concrete, bricks, tiles, metals, roads, 

parking lots, pavements and other impervious surfaces (Goswami et al., 2013; Kaiser, 

2014; Jiang et al., 2015; Liu et al., 2015). The high proportions of impervious surfaces of 

the urban landscapes are largely created for transportation, commercial usage, industrial 

uses, and housing units (Jin and Dickinson, 2010).  These materials inhibit the penetration 
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of water into the soil; resulting in the absorption of most of the incident shortwave 

radiation which is transformed into sensible heat (Gusso et al., 2017).  

These impervious surfaces alter the thermodynamic properties of soil, surface energy 

budget of the Earth, change the nature of the circulation of ambient atmosphere, 

and create large amount of waste heat from human activities (Van and Bao, 2015). 

Moreover, the rooftops and walls of high-rise structures with darker surfaces, parking 

lots, roads and pavements constructed with asphalt and concrete tend to have low 

albedos. These dark low-albedo surfaces absorb higher amount of solar radiation and 

convert it to thermal energy, resulting in excess amounts of heat energy accumulation in 

the immediate vicinity to above average levels (Effat et al., 2014). The subsequent 

energy release from these processes causes cities to possess higher temperatures than the 

adjacent unurbanized areas, resulting in Urban Heat Island (UHI) (Gusso et al., 2017). 

UHI is an environmental phenomenon which results when cities possess higher air 

temperatures than their adjacent countryside surroundings due to the anthropogenic 

modifications of land surfaces (Abutaleb et al., 2015). 

Furthermore, urban areas are responsible for the production of more than seventy percent 

of the Green House Gas (GHG) emissions with implications on the changing climate 

(Sabel et al., 2016). It is therefore, unequivocally evidenced from many scientific studies 

that urbanization negatively alters the natural environment and leads to modifications in 

microclimates of urban areas (Ashraf, 2015). Consequently, it is a key contributor to 

innumerable modifications in the earth’s surface temperatures (Singh et al., 2014).  

Therefore, LULC changes, municipal heating, as well as alterations in urban climatic 

variables have been identified as some of the profound signatures of urbanization (Morris 

et al., 2016).  
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Existing studies have established relationships between long term trends in air 

temperature of large urban centres and intensities of urban sprawls (Chen et al., 2011; 

Babalola and Akinsanola, 2016; Liu et al., 2016; Ukaegbu et al., 2017; Aremu et al., 

2017; Chaithanya et al., 2017; Kotharkar and Bagade, 2018; Dissanayake et al., 2019). 

Studies have also shown that increasing urbanization has brought about changes in the 

energy balance in densely built city centres such as Shanghai (China), Guangzhou 

(China) and Cairo in Egypt (Jin et al., 2011; Xiong et al., 2012; Frey and Parlow, 2012); 

resulting in higher mean air and LST than those of their neighbouring countrysides.  

Concerns have been expressed on these local climate modifications within cities across 

the globe. The implication of this urbanization trend in cities is that increasing number of 

people are influenced by the microclimate of cities and vice versa. Furthermore, apart 

from new economic, managerial and social challenges associated with growing cities, 

there is a deformed energy budget which pulls them toward a warmer climatic condition 

(Mirzaei, 2015). 

With an increase in local ambient temperature, human exposure to heat increases, 

particularly during hot seasons in hot regions of the world in the low and middle income 

countries, where urban dwellers who cannot afford the cost of air conditioning and other 

cooling methods are subjected to very severe heat stress and health risks (Ojeh et al., 

2016). Consequently, the socio-economic development, health leisure activities, and 

productivity of the workers are negatively affected (Ojeh et al., 2016). The increasing 

thermal load in warm and hot tropical cities, raises the feelings of discomfort and places 

higher demands on cooling and a concomitant increase in energy utilization (Elsayed, 

2012). Also, there are indications that the elevated night-time temperatures often 

associated with the UHI will make it more difficult for many city-dwellers to recover from 
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any heat stress they may have experienced during the day (Loughnan et al., 2009; Martiello 

and Giacchi, 2010).  

There is a consensus that rising daytime and nocturnal temperatures will put vulnerable 

populations and groups across all social strata and geographical locations at higher risk 

of heat-related diseases and death, particularly infants; frail older people; and those with 

existing physical or mental illnesses (McMichael et al., 2008). Diseases associated with 

temperature, especially those transmitted by arthropod vectors are influenced by 

temperature increase (Araujo et al., 2015). Increased urban temperatures also exacerbate 

pollution levels due to increased energy consumption for cooling purposes (Campbell-

Lendrum and Corvalan, 2007; Blake et al., 2011; Liu and Zhang, 2011; Xie and Zhou, 

2015). This is because increased use of electricity generating sets raises the level of 

carbon-monoxide in the atmosphere.  

Since heat is a peculiar problem urban dwellers experience in their everyday lives, it 

becomes absolutely necessary to develop effective strategies capable of reducing impacts 

of urban heat. There is an urgent need to implement heat watch-warning technologies that 

will mitigate the impacts of heat waves and related phenomenon and protect the 

vulnerable populations of the ever-growing urban centres. As such, it is very important 

that these cities incorporate climatological considerations in their design to provide for 

sustainable living and working environments (Roth and Chow, 2012).  

 

 

1.2  Statement of the Research Problem 
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In well-planned cities, there are potentials for the inhabitants to have better access to 

employment opportunities, health care, education and public services compared to their 

rural counterparts (UNDP, 2016). Also, well-managed city centres possess lower per 

capita energy, climate and ecosystem footprints as well as lower costs per person for 

infrastructure and basic services. Furthermore, the concentration of resources, ideas and 

energy in cities is a fertile ground for the creativity and technological innovation needed 

to solve the many developmental challenges facing the world today (UNDP, 2016).  

Unfortunately, in developing countries like Nigeria, the inherent opportunities of 

urbanization are lost due to lack of adequate resources, basic infrastructure, services and 

well-conceived planning (Opoko and Oluwatayo, 2014). This is because urban Centres 

in developing countries, particularly, the urban fringes are associated with unplanned and 

uncontrolled development, and occupation of unsuitable sites (Ukoje, 2016). Poorly 

maintained, inadequate, or non-existent infrastructure; poor land use planning and 

enforcement have been identified as non- climatic stressors that aggravate urban climate 

problem (Barata et al., 2011).  

Unplanned, hasty, rapid urbanization in modern cities affects the ecosystems of cities and 

often results in adverse ecological impacts; which include eradication and breaking-up 

of natural biomes, production of man-made pollutants, increased LST, and reduced 

moistness (Efe and Eyefia, 2014). The incessant increase in urban air temperature occurs 

mainly as a result of heat release from higher energy consumption, increase in built-up 

surfaces which possess high heat capacities and conductions, as well reduced vegetal 

cover (Coutts et al., 2008; Chaithanya et al., 2017).  

Owing to high rates of environmental deterioration being witnessed in Nigerian cities, 

they are rated among urban areas with the lowest liveability index in the world. As a 
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result, it is estimated that only between 20 and 30 percent of the urban population enjoy 

decent urban life in Nigeria (Daramola and Ibem, 2010). Furthermore, Opoko and 

Oluwatayo (2014) have posited that virtually every city in Nigeria is susceptible to the 

changing climate, as well as other natural or anthropogenic disasters. Urban centres like 

Birnin Kebbi, Ibadan, Owerri and Kano which are the focal cities of this study are all 

state administrative headquarters that are rapidly growing and experiencing similar 

conditions with other cities in Nigeria. Ukoje (2016) has pointed out that the 

administrative functions of towns as state capitals and their strategic location have 

encouraged immigration and accelerated the urbanisation process and the geographical 

expansion of the towns. These capital cities have therefore witnessed unprecedented 

physical haphazard expansion (Oriye, 2013). 

Globally, studies have shown that there are negative associations between cities and urban 

health, especially, high surrounding temperatures which are known to be responsible for 

higher mortality or morbidity rates (Heaviside et al., 2016); with steady increase in such 

fatalities in the last few decades (Stone and Norman, 2006). These problems associated 

with rising urban temperatures place ever increasing demands on planners and public 

officials to devise effective strategies for managing climate in these  urban centres. 

Consequently, globally, urban planning and management strategies are increasingly 

employed in addressing the challenges associated with local climate effects (Sailor et al., 

2016). In Nigeria, master plans may exist for most of the urban centres particularly for 

new developing areas within and around the cities, however, such plans more often than 

not are either not implemented at all, or are poorly implemented and enforced. As such, 

areas designated as green areas and meant to make such centres liveable are often 

converted into other uses as in the case of Festac Town, Lagos (Fasona and Omojola 

(2004) and Abuja (Jibril, 2010; Fanan et al., 2011). 

https://www.researchgate.net/profile/Eziyi_Ibem?el=1_x_100&enrichId=rgreq-b58eddb7de3138bbc9bd3f46c5713e64-XXX&enrichSource=Y292ZXJQYWdlOzI2ODM3MTExOTtBUzoyNzUzOTYyMTQxMjg2NDBAMTQ0MjY3MDk4MjE5Mw==
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To provide information that will guide policy formulation in physical development 

planning and mitigate the effects of anticipated increase in the heat islands of these cities 

for improved environments, there is a need for regular up to date assessment of changes 

in the thermal environments of these urban centres. A good understanding of the spatial 

and periodic differences in local climates of these city centres is very expedient for 

effective and coherent development of adaptation strategies (van Hove et al., 2015). In 

the light of problems associated with rising urban LSTs and the need for city planning 

and management, several attempts have been made to characterize LST in different urban 

centres in Nigeria. For example, Babalola and Akinsanola (2016) and Dissanayake et al. 

(2019) assessed land temperature characteristics of the coastal City of Lagos located in 

Fresh and Swamp water rainforest belt of Nigeria.  

Ukaegbu et al. (2017) assessed land temperature characteristics in Owerri, while Aremu 

et al. (2017) assessed urban growth and intensity of UHI in Akure, both located within 

the Rainforest Belt of the country. Similarly, Ifatimehin et al. (2010) and Alabi (2012) 

documented LULC change and LST characteristics in Lokoja, while Ifatimehin et al. 

(2015) studied LST in Anyigba both located within Southern-Guinea Savanna, Nigeria. In 

addition, Ogunjobi et al. (2018) examined LULC change and its implication on Sokoto 

Metropolis, Sahelian belt of Nigeria. 

However, there  is more to be done with respect to making comparison between and 

within different ecological zones. This work intended to fill this gap. The work attempted 

characterizing LST dynamics of four (4) cities located in two different ecological zones 

utilizing the same time frame to map trend variability between the different ecological 

zones. It considered one large metropolitan city each for Sudan Savanna and Rainforest 

zones of Nigeria and one moderately populated city each for the two ecological zones. 
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Hence, the study attempted to provide a wider outlook of the temperature characteristics 

of urban centres in Nigeria. Moreover, most documented studies utilized single data 

sources such as meteorological data (Alabi, 2012) or remotely sensed data (Babalola and 

Akinsanola, 2016; Ukaegbu et al., 2017; Ogunjobi et al., 2018; Dissanayake et al., 2019). 

In contrast, this work combined both data sources for more explicit characterization of 

temperature in the cities and analysed other related biophysical indices of land surface 

temperature as done by Dissanayake et al. (2019). 

The study examined cities in two critical ecological zones of Nigeria; namely the 

Rainforest and the Sudan Savanna. The Rainforest zone is undergoing unprecedented 

deforestation or loss of vegetal cover due to anthropogenic activities which may 

consequently lead to several deleterious effects and may worsen the challenge of global 

climate change, particularly higher temperatures. Similarly, the Sudan Savanna region 

which is located on already dry marginal lands  may be exposed to greater challenges 

associated with  vegetal cover removal, urbanization and climate change. 

Specifically, Ibadan and Kano Metropolis were chosen as case studies of urban 

agglomerates for the Rainforest and Sudan Savanna respectively, while Owerri and Birnin 

Kebbi were selected to represent relatively small urban centres in the Rainforest and 

Sudan Savanna belts respectively. Kano and Ibadan Metropolitan cities are highly 

populated agglomerates with population of 3,820,000 and 3,383,000 respectively 

according to United Nations (UN, 2018). Kano Municipal has a population density of 

about 1,000 persons per km2 within Kano closed-settled zone (Nabegu, 2010). Owerrii 

and Birnin Kebbi are cities with relatively small populations with estimated figures of 

873,000 (United Nations, 2020 estimate) and 375, 550 estimated from the 2006 

population census respectively (Nigeria Bureau of Statistics, 2012). Apart from their 
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locations in different ecological zones and demographic size, the surveyed urban centres 

also differ considerably in economic and administrative functions. 

1.3 Research Questions 

Consequent upon the preceding section, the research addressed the following questions: 

i. What is the nature of the LULC trends in the study areas (Birnin Kebbi, Ibadan 

Metropolis, Kano Metropolis and Owerri Metropolis) from 1990 to 2019? 

ii. What are the trends in air temperature in the study areas from 1990 to 2019?  

iii. What are the trends in the LST in the study areas from 1990 to 2019? 

iv. Is there a variation in LST trend across the two ecological zones (Rainforest and 

Sudan Savanna) from 1990 -2019? 

v. What are relationships between LSTs and NDVI and NDBI in the selected 

settlements from 1990 to 2019. 

vi. How has urbanization affected LST in the study area from 1990 to 2019?  

1.4 Aim and Objectives 

The aim of this work was to examine the effects of urbanization on LST in parts of Sudan 

Savanna and Rainforest Ecological Zones of Nigeria.  

 The specific objectives of this study were to: 

i.  Examine LULC trends in the study areas (Birnin Kebbi, Ibadan Metropolis Kano 

Metropolis, and Owerri) from 1990 to 2019.  

ii. Analyse the trends in air temperature in the study areas from 1990 to 2019.  

iii. Examine the trends in LST in the study areas from 1990 to 2019.  
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iv. Compare the variation in LST trend across the two ecological zones (Tropical 

Rainforest and Sudan Savanna) from 1990 -2019. 

v. Examine relationships between LSTs and NDVI and NDBI in the selected 

settlements from 1990 to 2019. 

vi.  Analyse the effect of urbanization on LST in the study area from 1990 to 2019?  

1.5  Justification for the Study 

Rising urban temperatures have far reaching implications. High surrounding temperatures 

have adverse implications on urban dwellers’ health in terms of increased mortality or 

morbidity (Heaviside et al., 2016). Higher urban heat not only negatively influences 

human health through increased mortality rates brought about by heat stress (Nastos and 

Matzarakis, 2012) and more frequent sleeplessness events during hot nights (Vineis, 

2010), there are also implications on labour productivity (Zander et al., 2015).  

Furthermore, it has been opined that there are thresholds for human to cope with 

temperature changes (Kenney et al., 2004; Lin et al., 2015). As urban areas expand, there 

may be a corresponding increase in the number of people who are potentially vulnerable 

to risks of rising temperatures (Smith et al., 2011). Consequently, public health costs may 

become higher as the magnitude of urban heat increases because adapting urban centres 

to the new optimum climatic scenario will require large capital (Jeong, 2012). In addition, 

there is an expected rise in the cost required for cooling urban buildings (Santamouris et 

al., 2001).  

Aside implications on human well-being, higher urban air temperatures result in an 

increase in the emissions of biogenic hydrocarbons and higher evaporation rates of 

synthetic volatile organic compounds (Elsayed, 2012). Urban thermal fluxes also have 

implications on tourism as warmer temperatures may result in extra cooling costs, 
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changes in plant, wildlife and insect population and distribution, and an altered 

seasonality which may negatively impact the agreeable temperatures that draw tourists to 

tourism destinations (Gonzales, 2016). Furthermore, higher urban temperatures have 

implications on the local meteorological conditions by changing local wind patterns; 

stimulating clouds and fog formation; increasing frequency of lightning episodes; and 

altering the formation of precipitation (Liu and Zhang, 2011). 

With rapid urbanization in a changing climate, the consequences and the magnitude of 

rising urban temperatures will increase. Therefore, assessing urban temperatures and the 

consequences of increased temperature in the selected cities of Ibadan, Kano, Owerri and 

Birnin Kebbi is very expedient; as it will provide precise information to urban planners 

in those cities to reduce heat risk in the cities. Identifying causes and implications of intra-

urban variability of the thermal environment has been pointed out as the necessary action 

in improving urban planning and development (Lehoczky et al., 2017).  

This study is timely as it provides insight into the present temperature characteristics in 

the cities of Ibadan, Kano, Owerri and Birnin Kebbi, and will serve as a framework for 

policy formulation by urban planners towards the mitigation of the current trends. 

Moreover, micoclimatic studies is key in climate science. This study will therefore offer 

a good appreciation of the spatio-temporal variability in local climate/surface temperature 

regimes of Ibadan, Kano, Owerri and Birnin Kebbi to allow for the identification of places 

with thermal and/or thermodynamically-related local climatic effects.  

The outcome of this study will also ameliorate information gap arising from the relatively 

few long-term observational data on the spatial variability of local climate within cities 

in Nigeria, particularly, within the selected cities in the different climatic zones. Since 

data on the thermal behaviour and characteristics of urban surface is important for urban 
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planning, environmental management, and improving the quality of urban centres, the 

time series information that this study yielded would serve as basis for decision making 

and necessary action by urban planners, environmental managers/protection agencies, 

and development partners working in the selected cities and states in their bid to make 

the urban environment worth living. Furthermore, the outcome of the study on LST 

characteristics, as well as LULC dynamics in the two climatic zones will stimulate 

interests in further researches on related subject matters and at the same time provide the 

basis for such researches. Finally, the original contribution of this work will add to 

existing body of knowledge on urbanization and its attendant issues. 

1.6 Scope and Limitations of the Study 

This work focused on the LST and LULC dynamics in selected Nigerian cities. The 

choice of the focus area is necessitated by the fact that the urban microclimate is a 

vulnerable system that is highly sensitive to temperature changes often escalated by 

unprecedented urbanization (Benali et al., 2012). This work centred on four selected cities 

in the Rainforest and Sudan Savanna zones of Nigeria namely, Ibadan, Kano, Owerri and 

Birnin Kebbi (Figure 1.1). The selection consists of one metropolitan city and one small 

city in each of the two ecological zones. Kano and Ibadan Metropolitan Centres were 

selected to represent large-sized cities in the Sudan Savanna and the Tropical Rainfall 

respectively. For the small-sized cities, Birnin Kebbi and Owerri were selected to 

represent the Sudan and Rainforest respectively.  

The essence for this selection criterion is to enable comparisons of LST dynamics 

between small and large cities in the two ecological zones. Remotely sensed Landsat 

images and ERA Interim (European Reanalysis) gridded satellite temperature data 

(maximum) were the data used for the study. Remotely sensed Landsat images were 
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chosen for this study because of their relatively high spatial resolution, and their ability 

to depict temperature variations in the heterogeneous urban/suburban environments 

(Morabito et al., 2016).  

The temporal scope for the study was 1990 to 2019. The study adopted decadal intervals 

(1990, 2000, 2010, and 2019) due to the unprecedented urbanization witnessed in urban 

centres in the developing countries over the last four decades (Kumi-Boateng et al., 

2015). However, due to the non-availability of useful imageries for Ibadan in 2000 and 

2010, and Kano in 1990, 2000 and 2010, satellite imageries of the succeeding years (1991, 

2001 and 2011) were used. In addition, satellite datasets corresponding to the same month 

and date were not available for virtually all the years and locations.  

 
Figure 1.1 Nigeria Showing the study cities 

Source: Department of Geography, Federal University of Technology, Minna (2019) 
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1.7  Study Areas 

1.7.1 General overview of Rainforest and Sudan Savanna ecological zones of Nigeria 

1.7.1.1  Rainforest ecological zone of Nigeria 

The Rainforest Ecological Zone coincides with Koppen’s tropical humid climate (Af) 

climate (Figure 1.2). The zone occupies only about 9.7 percent of  Nigeria’s total land 

mass, and is the most densely populated and the source of Nigeria’s bulk timber and a 

home to an enormous number of plants and animals (Adaohuru et al., 2012). The zone 

covers Ogun, Ondo, Osun, Ekiti, Abia, Ebonyi, Imo, Edo, Anambra, Enugu and parts of 

Oyo states. Some major towns and cities within the zone are Benin City, Abeokuta, 

Akure, Ijegu Ode, Ibadan, Ogoja, Owerri, Ado Ekiti, Asaba, Awka, Enugu, Uyo, 

Umuahia, and Abakaliki, among others.  

The mean annual rainfall of the ecological zone ranges from 2,500mm at the southern 

fringes to 1,220mm at the northern fringes of the zone, and a mean yearly relative 

humidity of about 76.05 percent (Adepoju and Salami, 2017; Gbiri et al., 2019). The zone 

is characterized by a long period of rainfall; lasting between March/April and November; 

and a dry period lasting between December and March (Adepoju and Salami, 2017). The 

zone experiences a monthly mean minimum temperature of about 22.49°C; a monthly 

mean maximum temperature of about 31.24°C; and mean yearly temperature of about 

26.6°C (Adepoju and Salami, 2017).   

The Rainforest ecological zone is the richest in terms of tree species composition, 

abundance and diversity (Akpan-Ebe, 2017). Structure-wise, the vegetation is well 

stratified into distinguishable layers with some trees exceeding a height of more than 50 

metres (Adekunle et al., 2013; Akpan-Ebe, 2017; Ambe and Onnoghen, 2019). The zone 

houses the largest number of economic trees such as Khaya spp., Entandrophragma spp, 
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Lovoa trichiliodes, Milicia excelsa Triplochiton scleroxylon, Diospyros spp, Celtis 

milbraedii, Ceiba pentandra, Lophira alata, Terminalia spp., Gossweilerodendron 

balsamiferum, Afzelia bipindensis, Antiaris africana, and Brachystegia nigerica and etc 

(Orimoogunje et al., 2009; Akpan-Ebe, 2017).  

Figure 1.2 Nigeria showing Ecological Zones 

Source: Department of Geography, Federal University of Technology, Minna (2019) 

The trees are ever-green throughout the year because the temperature and precipitation 

are sufficiently high for continuous growth (Adekunle et al., 2013). 

1.7.1.2  Sudan Savanna ecological zone of Nigeria 

The Sudan Savanna zone of Nigeria lies between latitudes 9°30' and 12°31' N and 

longitudes 4° and 14°30' E (Figure 1.2) . It covers approximately 22.8 million hectares 

(Damisa et al., 2010). The region runs east-west of the Northern part of Nigeria and 

occupies an area over 250 km band width and covering almost the entire northern states 
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bordering the Niger Republic. The zone covers over one quarter of Nigeria's total area. 

According to the Federal Department of Forestry (FDF, 2019), it stretches from the 

Sokoto Plains through the Northern section of the High Plains of Nigeria, to the Chad 

Basin. It comprises areas around Sokoto, Kano, Birnin Kebbi, Zamfara, Katsina and 

Borno States of Nigeria (Haruna and Murtala, 2019). Some of the major towns and cities 

within the Sudan Savanna include Kano, Sokoto, Katsina, Birnin Kebbi, Gusau, Kaura 

Namoda, Potiskum, Dutse, Damaturu, Nguru and Hadejia, among others.  

The climate of Sudan Savanna is of the tropical wet and dry type, symbolized as Aw by 

Koppen. The region has a single annual rainfall regime with total amount ranging from 

600 mm in the northern fringe to 1,140 mm at the southern fringe (Damisa et al., 2010; 

Butu and Emeribe, 2019). The rainy season lasts for a period of 100-150 days, falling 

from May/June to September, while the dry period lasts from September to April. The 

relative humidity of the zone is generally less than 40 percent, except during the few rainy 

months when it rises to 60 percent and above (FDF, 2019).  

Vegetation of this zone is made up of short grasses (about 1- 2 m high), and trees which 

vary in density from place to place. Most of these have umbrella-shaped canopies which 

become smaller as one move northwards. Examples of trees include stunted species, such 

as Acacia species, Ceiba pentandra (silk cotton) and the Adansonia digitata (baobab). 

The length of growing period provides opportunities for the cultivation of rainfed cereals, 

groundnuts, cowpea, cotton, pigeonpea, irrigated rice and wheat, and vegetables. 

Cropping systems are based on cereal-legume. The zone is considered very suitable for 

the cultivation of grain crops like as millet, sorghum, acha and rice, and grain legumes 

such as beans, cowpea etc (Butu and Emeribe, 2019). The zone has the highest population 

density in Northern Nigeria. It is also worthy to note that the main concentration of cattle 

production in the country occurs in the zone, primarily because it is relatively free from 
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tsetse fly infestation (Butu and Emeribe, 2019). Intense cultivation in this region, coupled 

with heavy grazing, bush burning and trees-cutting for fuel and building construction  

have promoted desertification in the zone (Butu and Emeribe, 2019). 

1.7.2 Birnin Kebbi 

1.7.2.1  Location and size of Birnin Kebbi 

Birnin Kebbi is the capital of Kebbi State and the headquarters of Gwandu Emirate. 

Located in the north-western part of Nigeria, it it is positioned between latitudes 12º 15’ 

N and 12º 35’ N; and longitudes 4º 01’E and 4º 38’E (Figures 1.3). The mean elevation 

of the metropolis is about 250 metres above sea level. The metropolis covers about 1,385 

km2. It is bounded to the north-east by Argungu LGA; to the south by Kalgo LGA; to the 

east by Gwandu LGA; and to the west by Arewa Dandi LGA (Abubakar and Sawa, 2016).  

1.7.2.2  Weather and climate of Birnin Kebbi 

Kebbi State enjoys a Tropical Continental (cT) type of climate which is characterized by 

distinct wet and dry seasons. In Birnin Kebbi and environs, the highest mean daily 

temperature is recorded at the peak of the dry season, just before the onset of the rains in 

April, while the lowest is recorded during the peak of the Harmattan period. The mean 

temperature during the hot season is 37oC but this falls to as low as 8oC during the peak 

of Harmattan (December-February). Higher relative humidity is is recorded in the 

southern areas where Birnin Kebbi is located than in the north. The season 

notwithstanding, relative humidity is generally lower in the afternoon compared to the 

morning. This is because water holding capacity of the air increases during the day with 

rising air temperature (Abubakar, 2015). 
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Figure 1.3  Birnin-Kebbi 

Source: Department of Geography, Federal University of Technology, Minna (2019) 

1.7.2.3  Geology of Birnin Kebbi 

The geology of Birnin Kebbi comprises thick vast sequences of sedimentary deposits of 

the Sokoto basin, underlaying about  fifty percent of the area. The Sokoto basin is part of 

an elongated sedimentary basin underlying most of north-western Nigeria and part of 

eastern Niger republic. The remaining part of the area is underlain by the precambrian 

basement complex rocks (Abubakar and Sawa, 2016).  

1.7.2.4  Relief of Birnin Kebbi  

The relief of Kebbi State is generally gently rolling to undulating. There are outcrops and 

steep cliffs of limestone, which sometimes reach 15 metres in height within the town and 

up to 30 metres outside. The elevation of the state is largely less than 300 metres 

(Abubakar, 2015). 
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1.7.2.5  Soils of Birnin Kebbi 

The principal soils that make up the Birnin Kebbi region are the vertisols, which are 

heavy, cracking clay soils with more than 35 percent clay, and have shrinking and 

swelling properties. The soils are high in minerals but have problems associated with 

spillage, poor drainage, flood and erosion (Abubakar, 2015).  

1.7.2.6  Vegetation of Birnin Kebbi 

The vegetation of the area is  heterogeneous in nature and heavily disturbed by intense 

anthropogenic influences such as long periods of intensive cultivation, grazing, fuelwood 

extraction and bush burning. These influences have transformed the vegetation into a 

form of parkland dominated by trees like, Piliostigma, Ziziphus, Mangifera Indica and 

Tamarindus (Abubakar, 2015; Mohammed and Jeb, 2014). Acacia and neem trees, shrubs  

and grasses dominate the vegetative cover of Birnin Kebbi (Abubakar, 2015). The grasses 

and herbs of the savanna serve as sources of food for herbivorous wild life.  

1.7.2.7  Drainage of Birnin Kebbi 

Birnin Kebbi is sandwiched between two fertile extensive flood plains (Ogunbajo et al., 

2015). It is drained by the Rima and the Shella rivers covering broad flood plains, located 

in the north and south-east of the town respectively. Shella river flood plain is situated 

about 3 km south-east of the town and is about 1.5 km wide. The Rima river flood plain 

occupies north-west of the town, and runs southerly before finally emptying into the River 

Niger (Ogunbajo et al., 2015). The major tributaries of the Rima river include Gawon, 

Zamfara and Gubinka which take their sources from the basement complex region of 

Sokoto State (Abubakar, 2015). 
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1.7.2.8  Population of Birnin Kebbi 

Birnin Kebbi has an estimated population of about 375, 550 from the 2006 population 

census (NBS, 2012). The population of the city is a mix of multiple ethnic groups, major 

among who are Kabawas, Fulanis, Zabarmawas Dakarkaris, Kambaris, Gungawas, 

Dandawas, and more recently Yorubas, Igbos, Urhobos, etc. However, the diversity of 

the ethnic composition within the metropolis has greatly multiplied, especially with the 

present status as a state capital and a host to several higher institutions of learning.  

1.7.2.9  Socio-economy of Birnin Kebbi 

Birnin Kebbi functions as the state capital,  local government headquarters, and the seat 

of Gwandu Emirate. These functions have made the city a centre of trade and commerce 

for the entire northwest sub-region and neighbouring Niger and Benin Republics. 

Opportunities facing the people of Birnin Kebbi have been determined principally by its 

economic base (Danboyi, 2006). The local economy has continued to attract migrants, 

from within and outside the country; resulting in rapid population increase, physical 

growth, and development of the town (Abubakar, 2015).  

1.7.3  Ibadan metropolis 

1.7.3.1   Location and size of Ibadan metropolis 

The city of Ibadan is located in the south-western part of Nigeria, approximately on 

longitude 3o5′ to 4o36′ East of the Greenwich Meridian, and latitude 7o23′ to 7o55′ north 

of the Equator (Figure 1.4), and has a mean elevation of 230 metres. It covers about 3,400 

km2 and  is made up of eleven (11) Local Government Councils, of which six comprise 

the outer areas namely: Akinyele, Lagelu, Egbeda, Ona-Ara, Oluyole and Iddo. The 

remaining  five LGAs  occupy the inner city or the core area where the metropolis is 
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situated and comprise Ibadan North East, Ibadan North, Ibadan North West, Ibadan South 

West, and Ibadan South East.  

1.7.3.2  Weather and climate of Ibadan 

 Ibadan lies within the tropical rain forest region. The temperature of this area is almost 

uniform throughout the year, with little deviation from the mean annual temperature of 

27°C. February and March are the hottest with 28oC and 29oC respectively, while August 

with temperature of 25 °C is the coolest (Awopetu and Baruwa, 2017). The range between 

month of highest temperature and the month of lowest temperature is 3.7oC (Owolabi and 

Adebayo, 2016). The mean annual rainfall is 1,400 mm with a low co-efficient of 

variation of about 10 percent. Rainfall is highly seasonal with well-marked rainy and dry 

seasons. The wet season commences in March and lasts till October, with double maxima 

rainfall occurring in July and September and a break in August (Owolabi and Adebayo, 

2016; Awopetu and Baruwa, 2017). 

1.7.3.3   Geology of Ibadan 

Ibadan and environs falls within the Pre-Cambrian rocks of Southwestern Nigeria. The 

major rock types are schist-quartzites, granite-gneiss, banded gneiss, augen-gneiss, and 

migmatites, while minor rock types such as pegmatite, aplites, quartz veins, and dolerite 

dykes intruded the main rocks in places. 

1.7.3.4   Relief of Ibadan 

Ibadan lies mostly on lowlands influenced by rocky outcrops and series of hills which 

contain mainly granite. The average elevation of the city is 230 m above mean sea level 

(Onyebuchi et al., 2016). 
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Figure 1.4  Ibadan Metropolis in Oyo State Setting 

Source: Department of Geography, Federal University of Technology, Minna (2019) 

1.7.3.5  Vegetation of Ibadan 

The vegetation of Ibadan area consists of evergreen tree compositions which range from 

shrubs to dense vegetation, made up of a number of recognizable strata (Olatoye et al., 
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2021). The tallest stratum consists of intermittent foliage canopies which comprise 

emergent trees with rounded tops, followed by trees with an unbroken layer of spreading 

crowns with heights ranging from 15 - 30 metres. The third layer consists of an irregular 

stratum comprising varying sizes of trees with thick undergrowth. Below this stratum are 

shrubs which are quite distinct from small trees comprising significant foliage and 

possessing heights around two metres (Olatoye et al., 2021). Aside trees, the vegetation 

also comprises herbs, climbers as well as epiphytic, saprophytic, and parasitic plants. 

Examples of tree species include Celtis zenkeri, Sterculia rhinopetala, Strombosia spp., 

Trilepsium madagascariensis, Triplochiton scleroxylon, Terminalia superba, Antiaris 

africana, Milicia excelsa, Terminalia ivorensis, Tectona grandis, Gmelina arborea, and 

Pinus caribaea (Olatoye et al., 2021). 

1.7.3.6  Soils  of Ibadan 

Soils in Ibadan are closely related to the geological formations and the rock type. The 

Soils are predominantly ferruginous, typical of basement complex rock areas of South 

Western Nigeria (Arohunsoro and Omotoba, 2017). The soils are highly erodible due to 

the availability of thick depth of weathered overburden averagely varying in thickness 

between 0 and 14 metres (Arohunsoro et al., 2017). The charnockite rock forms the 

predominant rock type in the basin and the parent material from which the soils are 

formed basically (Arohunsoro et al., 2017). 

1.7.3.7  Drainage of Ibadan metropolis 

Ibadan metropolis is drained by three major rivers, Rivers Ogunpa, Ona and Ogbere and 

their several tributaries include Omi, Kudeti, Alaro and Alapata. The combinations of 

hills and river valleys provide a good drainage for the city (Onyebuchi et al., 2016). 
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1.7.3.8  Population of Ibadan metropolis 

Ibadan Metropolitan is a highly populated agglomerate with population of 3,383,000 

respectively according to United Nations (UN, 2018). 

1.7.3.9  Socio-economy of Ibadan 

Ibadan is an important commercial centre. Virtually every street and corner in the 

traditional core and the inner suburbs of the city is a market square or stall. The largest 

daily market stretches in a belt from the railway station in the west to the centre of the 

city and is Ibadan’s commercial core. Other economic activities include agriculture 

(carried out by many urban part-time farmers who augment their earnings with other 

work), manufacturing, service industries and handicrafts (such as weaving, spinning and 

dyeing, pottery making, and blacksmithing. 

1.7.4  Kano metropolis 

1.7.4.1  Location and size of Kano metropolis 

Kano Metropolis is situated between latitude 12o25׳ and 12o40׳N, and longitude 8o35׳E 

and 8o45׳E with a mean elevation of 482 metres (Figure 1.5). The city covers about 500 

km2 and  is the largest city in the Sudan Region of Nigeria and the third largest town in 

Nigeria after Lagos and Ibadan (Nabegu, 2010; Ayila et al., 2014).  

The Metropolis is made up of eight (8) LGAs. They are Dala, Fagge, Gwale, Kano 

Municipal, Nassarawa, Tarauni and parts of Ungogo and Kumbotso local governments. 

It is bordered by Madobi and Tofa Local Government Areas (LGAs) at the south-west, 

Gezawa LGA at the east, Dawakin Kudu LGA at the south-east, and Minjibir LGA at the 

north-east (Figure 1.5). 
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Figure 1.5  Kano Metropolis in Kano State Setting 

Source: Department of Geography, Federal University of Technology, Minna (2019) 

1.7.4.2  Weather and climate of Kano metropolis 

Kano Metropolis is  located in the Sudan Savanna. The climate of the area is influenced 

by the movement of two air masses namely; the maritime air masses originating over 



49 
 

Atlantic Ocean and the dry air masses coming from the Sahara desert. Consequently, the 

area is characterized by wet season (May to September) which is characterized by south 

western maritime winds that carry warm and humid air, and the dry season (October to 

April) characterized by the tropical dry continental wind (Harmattan) from the north. The 

annual average rainfall of about 690 mm majorly falls from June through September. The 

temperature is generally very hot throughout the year, though from December through 

February, the city is noticeably cool. The average nighttime temperatures during the cold 

months range from 11° to 14 °C. During the hot season (mid – March to mid-May), the 

maximum temperature reading may be as high as 40oC. The average temperature for these 

hot months may range between 30oC and 32oC.   

1.7.4.3   Geology of Kano metropolis 

Geologically, more than four fifth of Kano is underlain by quartzite, undifferentiated 

Meta-sediments and basement complex rocks of the Precambrian origin (Mallam et al., 

2016; Kankara, 2019). Prolonged weathering of the rock produced deep clayish regoliths 

which have been subjected to lateralization (Kankara, 2019). 

1.7.4.4   Relief of Kano metropolis 

Kano Municipal area lies within the Hausa plains and its highest elevation is in a village 

called Husure at eastern part of the area, about 564 m above sea level and minimum 

elevation of 488 m down south of the area (Kankara, 2019).  

1.7.4.5  Vegetation of Kano metropolis 

The vegetation of Kano metropolitan area has been largely affected by human 

interference through cultivation, grazing, construction and annual bush burning, which 

has now reduced it to parkland (Mallam et al., 2016). Small short trees and shrubs are 
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more common on fallow lands where regeneration takes place (Mallam et al., 2016). 

Dominant vegetation in the study area include Acacia albida, Acacia nilotica , Adanosia 

digitata, Angogeissus leiocarpus, Aoedirachata indica, Balanties aegyptica), Diospyros 

mespiliformis, Khaya senegalensis, Selecarya birrea, and Ziziphus spina-christi 

(Kankara, 2019) which are very resistant to drought.  

The dominant soils in Kano Metropolitan area are the less rich, slightly acid soils derived 

from wind rip soils which are generally shallow and coarse (Mallam et al., 2016). Some 

parts of the study area are covered hydromorphic soils which are used for wetland 

cultivation and block construction for building purposes (Mallam et al., 2016).  

1.7.4.6  Drainage of Kano metropolis 

The drainage of Kano Metropolitan area is largely influenced by the relief. River 

Challawa is the only big river with tributaries, Magaga, Takwami, Guzu-guzu, 

Kutumbulu, Iyaka and some lakes. Other major rivers that drain the town are the Jakara 

and the Kano Rivers. The rivers are largely demanded, particularly the Challawa where 

the popular Challawa Gorge dam was constructed in the year 1972 (Kankara, 2019). The 

area has a drainage density of 1.46 km2 (Kankara, 2019). The general pattern of drainage 

in the area is dendritic, mostly running in the north-south direction. The gentle slopes and 

undulating relief give the river a moderate to flowing character (Kankara, 2019). 

1.7.4. 7 Population of Kano metropolis 

Kano metropolis is among the fastest growing cities in Nigeria, with a current estimated 

of population of 3,820,000 according to United Nations (UN, 2018). Compared to the 

national average of 267 inhabitants per km2, it is one of the most crowded cities in Nigeria 

with a population density of about 1,000 inhabitants per km2 within the Kano closed-
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settled zone (Nabegu, 2010). Immigration and natural growth rate of 3 percent is expected 

to continue to increase the population and waste stream in the years to come. 

1.7.4.8  Socio-economy of Kano 

Kano Metropolis has been the largest and most influential commercial town in the Sudan 

zone (Dankani and Abubakar, 2011) and for centuries, the most important commercial 

and industrial nerve centre of northern Nigeria attracting; millions from all parts of the 

country and beyond (Nabegu, 2010). It is called Nigeria’s centre of commerce due to its 

long flourishing marketing activities (Ayila et al., 2014). So, marketing and trading has 

been the dominant economic activity of the populace of the metropolitan Kano, although 

the land is mostly exploited by urban agriculture through waste water utilization to sustain 

daily needs (Ayila et al., 2014). It has about 43 existing market places and over 400 

privately owned manufacturing industries (Maigari, 2016). 

1.7.5  Owerri metropolis 

1.7.5.1  Location and size of Owerri metropolis 

Owerri is located in the south eastern part of Nigeria within latitudes 5°20ʹ and 5°32ʹN, 

and longitudes 6°51ʹ and 7°08ʹ E (Figure 1.6). It is located on mean elevation of 159 

metres and covers about 540 km2. It comprises Owerri Municipal, Owerri-west and 

Owerri-north local government areas, and parts of Mbaitoli and Ikeduru local government 

areas (Nwanya et al., 2019). It is the administrative, commercial, and entertainment 

capital of Imo state (Okere et al., 2018), being the landlord to most government ministries, 

departments and agencies and the epicentre of all socio-economic and religious activities 

in the State (Okeke, 2015). 
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1.7.5.2  Weather and climate of Owerri metropolis 

Owerri experiences a tropical climate with two main regimes; a dry season (November to 

March, and a wet season (April to November). The Rainfall values for Owerri ranges 

from 2,000 mm to 2,900mm  annually. The driest months record less than 23 mm rainfall 

per month. The mean daily temperature hovers around 25°C - 27°C throughout the year 

(Ogbomida et al., 2013; Okeke et al., 2015). Average humidity of 80 to 85 percent occurs 

during the rainy season, but the dry season records very low relative humidity with the 

absence of clouds. 

 
Figure 1.6  Owerri Metropolis in Imo State Setting 

Source: Department of Geography, Federal University of Technology, Minna (2019) 
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1.7.5.3  Geology of  Owerri metropolis 

Owerri Metropolitan area is underlain by the Benin Formation and consists largely of 

friable sands, conglomerates, coarse sandstone and isolated gravel units and intercalation 

of shale/clay lenses of Pliocene to Miocene age (Nwanya et al., 2019).  

1.7.5.4  Relief of Owerri metropolis 

It lies at the northern section of the eastern coastal lowland, which is characterized by 

southward dipping slope. To the southwest of the town, the terrain is flat with rolling hills 

running in a north-south direction to the east at about an elevation of 30m (Ogbomida and 

Emeribe, 2013). 

1.7.5.5  Soils of Owerri metropolis 

The Benin Formation upon which Owerri is situated has lithologies consisting of sands, 

silt, gravel and clayey intercalations. In many places within the area, the formation of the 

study area is overlain by a considerable thickness of lateric soil, composed of iron-stained 

regolith formed by the weathering and subsequent ferruginization of the weathered 

materials (Nwanya et al., 2019).  

1.7.5.6  Vegetation of Owerri metropolis 

The most important vegetation of the Owerri is the tropical rainforest which has long been 

disturbed and almost dominated by anthropogenic interference (Okeke, 2015), given rise 

to a mix of different types of plants; reflecting the extent of anthropogenic interference 

on the original vegetal cover (Ogbomida and Emeribe, 2013). In some parts of the city, 

vegetal cover is marked by frequent occurrence of umbrella trees (Musanga decropoides). 

According to Ogbomida and Emeribe (2013), the southern part of Owerri is relatively 

undisturbed with a dense forest consisting of 3 tree layers; high dominant trees, low 
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dominant trees, shrubs and herbs which are interwoven by lianas and climbers. Trees here 

attain the heights of between 25 and 30 metres.  

1.7.5.7  Drainage of Owerri metropolis 

Owerri  Metropolis is drained by two major rivers namely: Nworie River which flows 

from the west and covering an area of about 5 kilometres along its course, before 

emptying into the second river, which is Otamiri River flowing from the east. From the 

confluence of the two rivers around Emmanuel College Owerri, the Otamiri River flows 

southwards towards Nekede, Ihiagwa and Umuagwo, before emptying into the River 

Niger, around Imo and Rivers States border (Ogbomida and Emeribe 2013; Nnaji et al., 

2014; Echebima et al., 2019). 

1.7.5.8  Population of Owerri metropolis 

National Population Commission (NPC, 2007) puts the 2006 estimated population of 

Owerri Metropolis at 401,873 (211,298 male and 190,575 female) with a population 

density of 729 per square kilometre, a figure nearly 400 percent higher than more than 

present national population density (given the 2006 national estimate of 175,000,000 

population and land area of 923,768 km2). The high density was attributed to the spiralling 

rural-urban migration (Okere et al., 2018). Due to the high rate of urbanization, the United 

Nations (UN, 2020) put the population of the Owerri metropolitan area in 2020 

at 873,000, a 4.05 percent increase from 2019. 

1.7.5.9  Socio-economy of Owerri metropolis 

Civil services and trading are the dominant socio-economic activities of the residents of 

Owerri Metropolitan area. However, learned professionals, entrepreneurs, seasoned 
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artists and farmers who are predominantly natives also occupy the study area 

(Chukwuocha et al., 2016). 
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1 Urbanization and Urbanization Theories 

2.1.1  Urbanization explained 

Urbanization is often used to refer to a broad-based rural to urban transition relating to 

population; land utilization; economic activity;  culture; or any one of these (McGranahan 

and Satterthwaite, 2014). Thus, it is frequently used to refer to changes in land-use for 

specific areas (McGranahan and Satterthwaite, 2014). Blaschke et al. (2011) do not only 

see urban areas as geographical entities comprising dense accumulation of people or 

buildings, but also a multi-layered construct comprising manifold dimensions of social, 

technological and physical interconnections and services. Urban places are usually 

defined by demographers on the basis of population size and density (Weeks, 2003). For 

a place to be classified as urban, there has to be a sufficient quantum of people living in 

very close proximity to one another; life being obviously different from that in rural areas 

often expressed in terms of economic activities (Weeks, 2003). The urban thermal 

environment is affected by the physical characteristics of the land surface, and by human 

socioeconomic activities (Yue et al., 2007).   

Urbanization has been explained as the development of metropolises and sub-urban 

areas occasioned by population increase; resulting in key modifications in LULC in 

accordance with anthropogenic activities (Kaya et al., 2012). It is the process through 

which the population of urban areas increases, and is usually expressed relative to the 

total population (Kok et al., 2003). It has been recognized as a key anthropogenic process 

that does not only influence climate but also adversely affects the functioning of terrestrial 
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ecosystems (Zhang et al., 2014). Therefore,  it has been identified as the key influential 

and noticeable anthropogenic force on earth (Dawson et al., 2009). Accelerating 

urbanization has been identified as one of the most salient social phenomena (features) 

which characterize human civilization in the last millennium, particularly following the 

era of industrial revolution (Gu et al., 2012; Wu et al., 2014). It occurs with great vitality 

and energy and pervades the entire globe (Gu et al., 2012), and the process  may continue 

in the coming decades (van Hove et al., 2015).  

The global increase in urbanization is creating both opportunities and challenges for 

fostering people’s quality of life and managing the transition towards sustainability 

(Luederitz et al., 2015). It has thus been argued that urban living has the potential to fulfil 

basic human needs at the least cost due to economies of scale (Bettencourt et al., 2007).  

Some of the positive implications of urban growth as highlighted by Bhatta (2010) are 

increased economic production; opportunities for the underemployed and unemployed; 

and accessibility to basic and better services such as better transportation, sewer, water, 

as well as educational and health care facilities. Furthermore, urban development plays a 

significant role in the transition to lower birth rates and lower childhood infections while 

increasing life spans (Luederitz et al., 2015), and in fostering economic development and 

facilitating innovation (UN-Habitat, 2012). 

Therefore, urbanization has been described as a gift to humanity if it is controlled, 

coordinated and planned, but a curse if otherwise (Mohan et al., 2011). It has been 

recognized as both a driver for, and a consequence of governance, socioeconomic 

development, production, trade, knowledge, cultural transformation, and technological 

inventions (Wu et al., 2014; Ali et al.,  2017). As such, higher levels of urbanization often 

correspond to higher levels of economic and social development (Wu et al., 2014). 
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Urbanization, therefore does not only accommodate the core of the economy but in 

addition, the rising rate of population increase (Ali et al., 2017)). The rapid and 

unprecedented growth in urban centres has resulted in serious challenges (Zupancic 

et al., 2015). United Nations Development Project (UNDP, 2016) has expressed that 

development trends in cities have largely impacted on various fabrics of the urban areas 

such as, environmental pollution emanating from traffic gridlocks; the concentration of 

industries; and insufficient refuse disposal systems. Others are environmental 

degradation, loss of natural habitat and species diversity, and increased human health 

risks associated with heat, noise, and crowding (Zupancic et al., 2015). Bhatta (2010) 

has opined that in many large urban centres in developing countries, unplanned urban 

expansion is a common situation; resulting in high population of urban inhabitants in 

shantytowns within the cities or in urban fringes in poverty and degraded environments, 

due to the lack of vital urban services. 

Owing to the functions performed by them, urban dwellers have substantially greater and 

more diverse demands for resource consumption than agrarians, thereby adversely 

affecting ecosystems and landscapes at the local and regional scales (Wu et al., 2014).  

Consequently, urbanization puts increasing demand on additional infrastructures for 

housing, business and transport networks, generally achieved at the expense of natural 

landscapes such as agricultural lands, open spaces, and water (Byomkesh et al., 2012); 

with resultant consequences such as drastic and irreversible LULC conversion in and 

around city centres (Zhang, 2015), as well as significant reduction in such natural areas 

of the urban centres (Kong and Nakagoshi 2006; Swanwick et al., 2003). Urban centres 

in developing countries, where rates of urbanization are high because of mass exodus of 

migrants from rural to urban or from smaller to bigger cities (Mohan et al., 2011) are 

particularly subjected to more severe environmental and socioeconomic problems, 
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especially as their small- and medium-sized cities are predicted to be future homes to 

many (Redman and Jones,  2005; Wu, 2008).  

2.1.2 Theories of urbanization  

Bodo (2019), Kasarda and Crenshaw (1991) identified several theories from existing 

literature on drivers of urbanization and emergence of cities. Some of the theories have 

intersecting ideas with others while others emerged as a built up from other theories. 

Some of the theories include: the theory of self generated urbanization; modernization- 

theory; dependency/world-system theory; and theory of urban bias. 

2.1.2.1  Theory of self-generated urbanization 

The theory of self-generated urbanization express that, urbanization process requires two 

distinct conditions. The first condition is the generation of excess products which sustain 

people who are engaged in non-agricultural activities. The second condition is the 

accomplishment of a level of social advancement which enables big societies to work 

alone successfully (Bodo, 2015). These theorists are of the view that, these changes 

resulted in urbanization simultaneously in the Neolithic period when the first cities 

emerged in the Middle East (Wheatley, 1971). This theory expresses that rural to urban 

migration was the foundation of this form of urbanization; as migrants started trooping 

into cities for work at factories (Childe, 1950). This theory theory therefore identifies 

industrialization as the key factor responsible for the exodus of people from the rural areas 

to urban centres. This theory has however been criticized for over emphasizing rural to 

urban drift as the reason for urbanization, considering the fact that other cities have 

urbanized due to other reasons aside rural-urban migration (Bodo, 2015). 
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2.1.2.2  Modernization/ecological theory   

The modernization theory, which was prevalent between the 1950s and the 1970s affirms 

that urban growth occurs as a result of new inventions and novelties in cities brought 

about by industrialization, use/application of technology, information dissemination and 

cultural diffusion. These theorists consider urbanization from the perspective of 

modernization. There are three fundamental concepts to modernization/ecological set of 

theories. The first concept is that, the present levels of urban development in particular 

societies is not separable from their initial states at the begining of the modernization 

process, which normally begins with a differential set of institutional and infrastructural 

patterns derived from past technological-economic capacities (Kasarda and Crenshaw, 

1991). 

Secondly, these theories assume that, technology is essentially more imperative than the 

social organization of the society. They agree that social organization creates innovation 

and technology, but that the untilization of automation is the key driver of social 

transformation which boosts or increases economies. They therefore view industrialism 

rather than capitalism as having a unique impact on Third World societies. Thirdly, the 

model asserts that cultural diffusion, despite breeding inevitable social disequilibria 

eventually forces a rough convergence of First World and Third World development 

patterns.  

The theorists express that this kind of urbanization may be triggered by the concentration 

of social amenities and developmental projects in certain parts of the society occasioned 

by ethnic, racial or religious divisions and corrupt politics which create economic 

dichotomy and uneven developments in the world today. According to these theorists, the 

concentration of investments and opportunities in few places, particularly cities 
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necessitates unprecedented rural-urban migration stemming from rural-push and urban-

pull factors (Bodo, 2019). 

2.1.2.3  Dependency/world-system theory  

Dependency/world-system urbanization theory arose as a result of the inability of  

modernization theory to justify the conditions and implications of urbanisation in less 

developed nations (Bodo, 2015). Proponents of this theory are of the view that, this 

system is introduced either intentionally through coercion or by the intrinsic reasoning of 

capitalism in certain areas; and the attendant underdevelopment among the populace. The 

dependency/world-system theory rests on some assumptions. The first assumption is that 

there is the existence of a distinct system of industrialist development ideal in 

civilizations; attributed to a system of communal organisation. The Second assumption is 

that for capitalism to thrive, certain social structures will have to be apparent in the form 

of disparate deals, unequal advancement, individual social disparity, core-periphery 

echelons, and sovereign architectures (Kasarda and Crenshaw, 1991). The views of these 

theorists are that the social changes in the third world were as a result of structures and 

processes of the capitalist world system.  

2.1.2.4  Theory of urban bias  

The urban biase theory is premised on studies that revealed a growing disparity in  urban-

rural centres in the poor countries. This is occasioned by the fact that administrations of 

poor countries lean towards intervening in markets in ways that impose levies on 

agribusinesses; while leaders of the richer countries are inclined towards the reverse by 

mediating in strategies that grant subsidies to agriculturists. By implication, the 

proponents of this theory describe how the countryside populace as being parasitized by 

urban dwellers, who benefit tremendously by consuming low-priced produce from the 
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countrysides and inhabiting attractive urban edifices from the levies imposed on the 

contrysides. Hence, proponents of this theory are of the perspective that this bias in favour 

of the urban settlements creates disparity between the rural and urban areas; as regards 

consumption, wage and productivity levels. This necessitates mass exodus of the rural 

dwellers to cities for greener pastures and an improved standard of living. The sufferings 

and abject poverty among the rural populace may be attributed to city bias which results 

from the uneven distribution of available resources among the populace. The urban bias 

theorists believed that there are groups that hinder the economical development of the 

rural areas by pressuring the government to protect their interest by their location in urban 

areas at the expense of the rural areas.  

Summarily, the urbanization processes in developing and poor income countries may be 

explained by these theories collectively, This may be the reason such countries are 

currently experiencing unprecedented population explosion and urbanization in such 

countries. 

2.2 Urban Thermal Characteristics 

The subsequent transformation of vegetal and associated lands in urban areas leads to the 

modification of physical characteristics of land cover such as soil water, material thermal 

capacity, conductivity, reflectivity, and emmitance; with a consequent decrease in 

evapotranspiration (Hamilton and Erickson, 2012). The alterations are due to the 

substitution of the native surfaces with heat-trapping impermeable ones, which directly 

change the local climate in urban areas; leading to higher near surface air temperature 

than those of countrysides, especially at night (Kok et al, 2003). Urban areas, therefore, 

typically are characterized by impervious land cover surfaces. Impervious surfaces, often 

described as land cover types which inhibit water penetration are mostly associated with 
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transport facilities (streets, boulevard, parking-lots and walk-paths) and structures roof-

tops (Zhang et al., 2009). These surfaces modify the thermodynamic characteristics of 

soil, the earth’s surface energy budget, nature of circulation of ambient atmosphere, and 

create a large amount of waste heat from human activities (Van and Bao, 2015) such as 

heat released from urban houses, transportation and industries (Weng and Yang, 2004).  

The high proportions of impervious surfaces of the urban landscapes are largely 

created for transportation, commercial, industrial, and residential purposes (Jin and 

Dickinson, 2010). In remotely sensed data, classified impermeable surface areas (ISA) 

have been extensively utilized in quantifying and mapping the extent of urban 

growth/development and urban landuse in urban areas (Yuan and Bauer, 2007). 

Cities are known to have significant impact on climate both at local and regional scales 

(Sarrat et al., 2006) since the morphological characteristics and the thermal and radiative 

properties of the built-up surfaces have direct effects on the surface energy exchanges, 

much different from those observed above natural soils and vegetation (Oke, 1987). They 

alter atmospheric conditions at local to regional climate on daily, seasonal, and annual 

scales (Seto, 2009), through the modification of surface albedo and run-off, and the 

surface energy budget by the release of heat from anthropogenic heating, and the 

increasing atmospheric aerosols (Krehbiel and Henebry, 2016). As a consequence, 

increasing urbanization has resulted in diminished natural surfaces like vegetation, open 

ground or water (van Hove et al., 2015); leading to modifications in the energy budget in 

densely built city centres (Jin et al., 2011; Xiong et al., 2012; Frey and Parlow, 2012). 

This is because the decrease and fragmentation of large vegetated areas inhibit 

atmospheric cooling due to advection resulting from the temperature gradient between 

vegetated and urbanized areas (Kumar et al., 2015). 
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Building density contributes to higher temperature in urban areas due to the fact that 

most buildings are not located near open spaces but rather face other warm buildings; 

resulting in trapping of more heat (Hamilton and Erickson, 2012). Thus, the urban 

microclimate is a vulnerable system that is highly sensitive to temperature changes often 

escalated by unprecedented urbanization (Benali et al., 2012). Cities are, therefore, 

known to possess higher warming rates, with some already established to have warmed 

twice the rate of the globe during the past 50 years (Stone, 2006). There is no doubt that 

a changing climate, coupled with a growing urban population raises both the frequency 

and rates of intensity of heat, and raises the UHI effects, thereby posing increasing risks 

to the urban populace (Schatz and Kucharik, 2015).  

2.3 Land use/ Land Cover  (LULC) 

2.3.1  Definition of LULC 

Land cover may be defined as the natural and  cover of the earth surface, which may 

include water, vegetation, bare soils, and artificial surfaces (Obeidat et al., 2019). Land 

use, on the other hand, refers to the socioeconomic purposes and contexts for which lands 

are managed (Roy and Roy, 2010). Land use comprises more complicated aspects, 

because it incorporates social sciences and management principles. The terminogies “land 

use and land cover” are mostly used together.  

However, there is a glaring distinction between the two terminologies. On one hand, land 

cover implies the spatial dispersal of the different land cover classes on the surface of the 

earth, and may be directly estimated qualitatively or quantitatively with the use of 

remotely sensed data. On the other hand, land use and its modification requires the 

incorporation of natural and socio-scientific techniques in determining which 



65 
 

anthropogenic activities are taking place in different locations of the land-scape (Roy and 

Roy, 2010).   

2.3.2 Land use and land cover change (LULCC) 

LULCCs are probably the most important forms of environmental modifications globally, 

because they occur at spatial and time-based scales and have direct relevance in the daily 

survival of humans (Roy and Roy, 2010).  Land cover change may be defined as the 

transformation of the physical or biotic cover of the earth’s surface, while land use change 

simply means modifications in utilization of lands by humans (Obeidat et al., 2019). 

According to Patel et al. (2019), land cover change implies modifications in certain 

unceasing properties of the land like vegetal type and soil property, among others, while 

land-use change denotes alteration in how certain areas of land are being 

utilized/managed by human beings.  

Technically, LULCC refers to the measurable modifications in spatial extent of a given 

type of land use and land cover (Roy and Roy, 2010). LULCC in a generalized term may 

therefore be described as the anthropogenic modifications of the earth’s superficial 

coverage (Iwuji et al., 2017). They are manifestations of both human and natural/climate 

driven forces (Liu et al., 2009). Alterations in land use in several spatial and time-based 

spheres are the material evidences, and are pointers to ecological and anthropogenic 

dynamics as well as their relationships intermediated by availability of land (Roy and 

Roy, 2010). Singh et al. (2016) noted that LULCC varies across regions. For rural areas, 

changes may be attributable to agricultural expansion, forest fires and illegal tree felling, 

whereas in urban areas it may be attributable to urbanization and commercialization. 

LULCC, aside from altering the physical dimension of the spatial coverage of the various 

land cover classes, also stimulate many of the secondary courses that results in the 
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subsequent depletion of the earth’s ecosystems (Roy and Roy, 2010). This is because 

LULCCs result in the decrease in vegetal cover. The loss of a vegetal cover consequently 

results in many other harmful effects on the environment, vis-a viz:  biodiversity loss; 

climate change; alterations in radiative forcing; pollution of other natural ecosystems and 

a decrease in their values; and alterations in hydrological regimes, among others (Niyogi 

et al.,  2009). 

2.3. 3 Causes of LULCC 

Humans have modified land for food and other essential purposes from time immemorial 

(Iwuji et al., 2017; Obeidat et al., 2019). LULC modification also occurs substantially 

through natural processes such as volcanic eruption, earthquake, landslide and 

climatological events (Bekele et al., 2019). It is also believed that climate change 

indirectly affects LULC change by increasing the demand for more farmlands, especially 

in development countries whose economies are largely dependent on agriculture and by 

forcing climate change vulnerable communities to adjust their land use choices in order 

to handle such changes/alterations (Bekele  et al., 2019).  

Some socio-economic factors of land cover change such as poverty, tenure insecurity, 

and availability of market and credit facilities have further been suggested as major 

contributing factors to land cover changes (Wubie et al., 2016). Technological advances, 

political and socio-economic decisions or constraints have also been recognized as 

prominent drivers of LULC change (Cousins et al., 2015). Population explosion has been 

a dominant cause of LULC change in may emerging nations (Tewabe and Fentahun, 

2020). Consequently, in recent times, the intensity, degree, and rate of changes in LULC 

are far bigger than ever in history; with attendant unprecedented effects on ecosystems 

and environment processes at all scales (Iwuji et al., 2017; Obeidat et al., 2019). At 
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present, the magnitude of LULC changes induced by anthropogenic activities is greater 

in developing countries than in advanced nations (Obeidat et al., 2019); attributable to 

the higher rate of urbanization and urban sprawl (Mohan et al., 2011). 

2.3.4 Consequences of urban LULCC 

LULC changes, particularly the conversion of farmlands and forest covers into urban 

uses, are very important environmental changes which impact on ecology and human 

beings (Liu and Yang, 2015). Apart from depletion of biological diversity; water and land 

pollution and the emission of greenhouse gases (Iwuji et al., 2017; Namugize et al., 2018), 

LULCC has also been identified as the most important anthropogenic factor influencing 

the climate (Arsiso et al., 2018). Alemayehu et al. (2019) highlighted some consequences 

of LULCC to include changes in biological diversity; bio-geochemical cycles; soil 

nutrient richness, hydrological cycles, energy balance, land productivity, as well as the 

sustainability of ecological services. These changes also have associated consequences 

on human health (Patel et al., 2019). The LULCC brought about by the urbanization 

processes, eliminates and fragments natural habitats, leads to haphazard growth in urban 

areas, deterioration in the living conditions of cities, and worsening of urban environment 

scenery (Hassan et al., 2016). Consequently, there is a need to continuously monitor the 

changes and prediction (Alemayehu et al. (2019).  

2.3.5 The role of space technology in LUCC studies  

Understanding the spatial distribution and expansion of urban centres is key in urban 

spatial planning in relation to the advancement of environmental quality and sustainable 

land resource management (Bhatti and Tripathi 2014; Tewabe and Fentahun, 2020; 

Zaitunah and Sahara, 2021). Spatial information on LULC in an area is a requirement in 

the determination of changes in the quality and quantity of LULC (Roy and Roy, 2010) 
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and a basic requirement for this purpose is mapping the built-up areas (Bhatti and Tripathi 

2014). Conventional techniques such as ground surveys and aerial photography which are 

quite tasking and expensive are often employed in the mapping process (Bhatti and 

Tripathi 2014). With the quick expansion of city centres, the task of timely and precise 

mapping of urban built-up surfaces are somewhat challenging (Bhatti and Tripathi, 2014). 

Remote sensing alongside geographic information systems have been identified as viable 

scientific tools in studying and monitoring LULC, and mapping built-up areas (Bhatti and 

Tripathi 2014; Zaitunah and Sahara, 2021).  The numerous capabilities of remotely sensed 

data make them valuable for measuring, examining and studying environmental changes 

(Zaitunah and Sahara, 2021). Progress made in remote sensing in recent decades has 

enabled repetitive surveillance of the earth’s environment (Roy and Roy, 2010).  

In addition, the advancement in sensor capabilities in terms of spatial resolution, spectral 

variability and revisit frequency, makes it highly practicable to estimate the even slightest 

changes on the surface of the earth precisely (Roy and Roy, 2010).  Provision of synoptic 

and comprehensive views which are quite important for large urban areas and the 

availability of historical archives help in mapping and understanding urban sprawl over 

time (Bhatti and Tripathi 2014). According to He et al. (2010), the techniques employed 

in automatic mapping of  land cover of city centres using remote sensing techniques may 

be classified into two categories. The categories are those based on the classification of 

the input data, including pixel- and object-based classifications, and those based on the 

process of direct segmentation using the indices,like the normalized difference vegetation 

index (NDVI) and leaf area index. 
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2.3.6 Assessing LULCC 

 Conventionally, LULC change detection has been carried out using the vegetation 

indices (Obeidat  et al., 2019). Two common biophysical indices used in mapping urban 

areas are the NDVI and the normalized difference built-up index (NDBI). These indices 

help in depicting the effect of green and built-up surfaces on UHIs (Nádudvari, 2021). 

Built-up areas are effectively mapped through the arithmetic manipulation of recorded 

NDVI and NDBI images derived from satellite imagery (He et al., 2010). The NDVI 

index is used in detecting and quantifying vegetation coverage of a given area for different 

periods, particularly changes occasioned by anthropogenic activities using remote sensing 

procedures (Aburasa et al., 2015; Nwaerema and Moses 2019). It is used to measure the 

difference between near infrared (NIR) channel where vegetation is highly reflective due 

to the presence of chlorophyll in leaves, and the red channel which absorbs light 

(Nwaerema and Moses 2019). 

The NDVI is therefore computed by combining the Red and NIR bands of a sensor system 

(Aburasa et al., 2015). NDVI values range between -1 and +1. When NDVI value is 

negative, it signifies likely presence of water, if it is close to +1 it implies dense/ green 

vegetation and values close to zero indicate a likely absence of green (Nwaerema and 

Moses 2019). NDVI is therefore crucial in managing urban greening and the thermal 

environment (Nwaerema and Moses 2019).  NDVI is controlled by factors like dry or wet 

vegetatal cover, greenness of vegetatal cover, atmospheric contamination, moisture 

content of the atmosphere, mix of anthropogenic materials, dry or moist soils, among 

others (Guha and Govil, 2021). 

Zha et al. (2005) suggested the use of NDBI to map built environments in city centres 

due to the advantage of the unique spectral responses of built-up areas and other land 

https://www.tandfonline.com/doi/full/10.1080/01431161.2010.481681
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covers. Built-up index is a subset of the spectral indices classes, which is one of the most 

commonly used approaches for analyzing data in the optical domain (Azmi et al., 2016). 

The NDBI index supports an efficient method for mapping built surfaces due to its 

utilization of the reflectivity of built surfaces higher in the short-wave infrared region but 

less reflectivity in the near-infrared region (Nádudvari, 2021). The NDBI value ranges 

between -1 and +1, with greater NDBI numbers for built-up areas, and negative numbers 

for the non-built-up areas (Jothiman et al., 2021). Generally, the key interest in NDBI is in 

the fact that urban mapping is based on the extraction of constructed surfaces or 

impervious areas (Azmi et al., 2016). 

2.3.7 Empirical studies on LULCC 

Iwuji et al. (2017) in their study examined LULCC in Orlu LGA, Imo State, Nigeria 

between 1986 and 2013 using GIS, remotely sensed data. The result of this analysis 

provided four major classifications of LULC namely; bare soil, built up, water body and 

vegetal cover. Results of the study indicated that built surfaces increased rapidly between 

2000 and 2013 by 46.21 percent while bare soil and water bodies recorded drastic 

decrease occasioned by developmental trends in the area over the period. Consequently, 

vegetal cover decreased from 58.03 percent in 1986 to about 52.09 percent in 2013; an 

indication that Orlu is developing rapidly with regards to changes brought about by rapid 

increase in socioeconomic activities of the population.  

Bekele et al. (2019) examined LULC cover drivers in more fragile and dynamic 

landscapes of the East African Rift Valley region for the period 1986 to 2016. They 

utilized a combination of remotely sensed data, GIS, logistic regression, as well as 

descriptive statistics to quantify and analyze the data. Results of the image analysis 

revealed that during the overall study period grasslands/grazing areas, agricultural land, 
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and bare surfaces increased by 124, 42, and 34 percent respectively. On the other hand 

scattered acacia woodland, bush/shrubland, and swampy/marshy land have declined by 

52, 50, and 31 percent respectively. Further analysis of the data revealed that the most 

influential drivers of LULC change in the region include population growth (95 percent), 

firewood extraction (93 percent), agricultural land expansion (92 percent), charcoal 

making (92 percent), climate change/recurrent drought (79 percent), and overgrazing (71 

percent) in descending order of percentage of respondents.  

Meera et al. (2015) carried out vegetation change detection of Vellore District. They used 

remotely sensed Landsat TM image and SRTM DEM data layers to characterize the 

NDVI of the district in 2001 and 2006. The result shows different NDVI threshold values 

such as 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.5. The results show that forest/shrub land 

and barren lands decreased in coverage by about 6 percent and 23 percent from 2001 to 

2006 respectively, while agricultural land, built-up and water areas increased by about 19 

percent, 4 percent and 7 percent respectively. The Simulation results indicated that NDVI 

is beneficial for decision-making by policymakers.  

Nwaerema and Moses (2019) examined the NDVI of Port Harcourt metropolis and 

environs from 1986 to 2018 using algorithm of the Google Earth Engine (GEE) from 

Geographic Information Systems (GIS). The results indicate that in 1986, NDVI recorded 

lowest value of -0.08 and highest value of 0.43 with a range of 0.5. In 2003,  NDVI was 

ranged between 0.53 and -0.10 with a range of 0.63.  Lastly, in 2018, NDVI values ranged 

between 0.043 and -0.06 with a range of 0.49. The study therefore established that there 

is a rapid and intense decline of vegetal cover on the city’s green surface areas. 
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2.4 Urban Air Temperature 

Air temperature has been identified as an essential variable in various investigation fields, 

such as impact of global warming and climatic change, ecosystem, hydrological, 

agricultural, and human health studies (He et al., 2022).  As an important consideration 

in urban microclimate, it is largely affected by the radiative and thermal properties of 

built surfaces, as well as heat release occasioned by human activities (Potgieter et al., 

2021). Depending on the method of retrieval, meteorological data (air temperature data) 

may be classified as ground observations via meteorological station networks, simulated 

numerical model outputs, and remotely sensed data, with varying characteristics and 

utilization (Cheval et al., 2020;  He et al., 2022).  

The in-situ or ground-based observations are the oldest methods for acquiring information 

on the urban atmosphere, but currently, such observations in urban areas are carried out 

through World Meteorological Organizations (WMO) stations and urban meteorological 

networks (Cheval et al., 2020). Effective application of climate data in urban 

study/management requires a combined utilization of meteorological and ancillary data 

for comparable quality, continuity and fine temporal and spatial resolution (Cheval et al., 

2020). 

2.4.1 Data acquired from in situ measurements 

In-situ measurements of the various surface fluxes have traditionally been performed in a 

bid to have a better understanding of energy balance of urban centres (Xu et al., 2008). 

These conventional observation techniques, particularly weather observatories utilize 

point atmospheric temperature information acquired from ground observatory networks 

to interpolate and depict atmospheric temperature differences at comparatively smaller 
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scales (Chen et al., 2016). An example of  ground-based in-situ weather measuring system 

is depicted in Plate I. 

Apart from the traditional meteorological observatories, many in-situ techniques have 

been employed in acquiring urban thermal data. For instance, Zipper et al. (2016) 

acquired urban thermal data by installing 151 HOBO U23 Pro v2 temperature/RH 

sensors equipped with radiation shields on utility and streetlight poles on urban, rural, 

park, lake, or wetland LULC types in/and around Madison WI (USA). The sensors 

were mounted at an elevation of 3.5m, and logged instantaneous temperature data every 

15 minutes. 

 
Plate I Campbell ground-based weather station with different meteorological 

instruments (Source: Naipal et al., 2013) 

In-situ thermal data especially that from permanent meteorological observatories provide 

high temporal resolution and long period coverage but has a low spatial resolution 

(Srivanit and Hokao, 2012). Also, these traditional in-situ approaches of urban thermal 

data acquisition are somewhat limited in developing cities where meteorological stations 

are either unavailable or infrequent (Yow, 2007). In addition, there are also other factors 

inhibiting their use for measuring urban fluxes. Ground-based observations which are 
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reflections of only thermal condition around the weather observatories can hardly be used 

to estimate LST with desired precision (James and Charles, 2014). Also, conventional 

techniques of in-situ surface temperature estimation are often not feasible for all types of 

terrain conditions and are time consuming (Suresh et al., 2014). Moreover, weather 

observatories are often situated in park-like grounds where temperatures are consistently 

lower than those of nearby densely built areas where people live and work.  

Another limitation is that, because of the complexity of urban surfaces, the relative degree 

of the energy balance typically vary widely across a city and this may depart significantly 

from those of the restricted area covered by the in-situ measurement (Xu et al., 2008). 

Due to the uneven distribution and limited conditions of isolated meteorological 

observation stations, the observed LST data may not be a full representation of the 

distribution of LST across the region (Liu and Zhang, 2011). Lastly, as an independent 

technique constrained by physical and economic factors, ground observation have been 

employed only over small local-scale areas (Liu et al., 2016). 

2.4.2 Mobile ground-based temperature measurements 

Stationary in-situ measurements are often insufficient in describing and depicting fully, 

the spatial variability of air temperature in city centres (Hart and Sailor, 2009; 

Dobrovolný and Krahula, 2015). To overcome some of the limitations of stationary 

measurements, some systematic mobile measurements are made by thermometers 

attached to vehicles. Plate II is an example of ground-based mobile van used in 

meteorological data acquisition.  

Szymanowski and Kryza (2009) collected mobile air measurements (car  traverses) and 

automatic weather stations  located  in  various land use  types with  the  automatic 

meteorological units mounted on cars  using radiation-shielded, aspirated resistance 



75 
 

sensors (Pt-100) connected to the  data logger. Dobrovolný and Krahula (2015) employed 

a special resistance thermometer, featuring a NiCr-Ni sensor with a rapid response time 

of 0.8 second for up to 90 percent of temperature change mounted on the left roof of an 

automobile approximately 1.8 m above ground level.   

 
Plate II  Picture of Collaborative Lower Atmosphere Profiling System (CLAMPS-2) 

Source: Wagner et al. (2019) 

Similarly, Makido et al. (2016) utilized a Type-T fine (30 gauge) thermocouple on vehicle 

traverses to examine spatial variations in summer-time air temperatures in Doha. Tsin et 

al. (2016) collected Mobile temperature data in greater Vancouver, Canada on foot using 

a Met One 064-2 temperature sensor inside a radiation shield with an accuracy of ± 0.1 

°C and a response time of 10s in still air. Moving observations overcome the limitation 

of insufficient spatial details to an extent, but unable to provide synchronized views over 

cities (Srivanit and Hokao, 2012). 

2.4.3 Ground-based crowd sourcing  

Benjamin et al. (2021) has identified crowdsourcing as a relatively new form of 

atmospheric data collection technique which provides a high spatial density of data and a 

continuous, long time series. Crowdsourcing is the acquisition of data by enlisting the 

services of a large number of people and/or from a range of public sensors, typically 
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connected via the internet. A typical example of crowdsourcing is the use of Citizen 

Weather Stations (CWS) which are affordable and user‐friendly weather stations 

established by members of the public for personal interest or education (Benjamin et al., 

2021). Figure 2.1 is an illustration of ground-based crowdsourcing network 

 

Figure 2.1  An illustration of ground-based crowdsourcing network 

Source: Jurairat and Seng (2018) 

Due to the proximity of crowdsourced weather points to anthropogenic heat emissions, 

urban materials with high thermal inertia, and areas of reduced sky view factor, they 

record higher night-time temperatures, higher maximum temperatures on warm days, and 

cooler maximum temperatures on cool days (Potgieter et al., 2021). Crowdsourced 

weather stations provide very relevant data for health monitoring and urban planning 

(Potgieter et al., 2021). Furthermore, the large number of crowdsourced weather stations 

provide a high-resolution understanding of the variability of urban heat which is lacking 

traditional networks (Potgieter et al., 2021). The limitations of this climate data source, 

however, is the absence of metadata and the uneven distribution of stations with a possible 

socio-economic biases (Potgieter et al., 2021). 
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2.4.4 Climate simulation models 

Sophisticated mathematical and physical models have been developed and employed in 

studying land surface temperatures (Xiao et al., 2008). Notable among these replicas are 

energy equilibrium models (Oke  et  al.,  1999),  laboratory replicas (Cendese and  Monti, 

2003),  three-dimensional simulations (Saitoh et  al.,  1996), Gaussian models (Streutker, 

2003),  as well as many other mathematical simulations. Energy simulation models 

normally employ statistical analysis to establish relationship between causative factors 

and are more widely employed than other models (Xiao et al., 2008).  

Climate simulation models have proved to be useful data sources for urban thermal 

mapping (Nichol and Hang, 2012). They are, however, limited by the complexity of the 

roughness of the municipal canopy layer structure, difficulty of  carrying out a detailed 

mapping of surface materials across cities (Herold et al., 2006), and non-inclusion of  heat 

contributions from human activities (Nichol and Hang, 2012). Also, these models are 

either representations of local scale or neighborhood scale  (Arnfield, 2000; Grimmond 

et al., 2010), which are not easily scaled up to the entire urban centres and are therefore 

not readily useful in predicting temperature patterns at city  scale,  or permit studies of 

urban heat islands (Nichol and Hang, 2012). Of late, models are capable of simulating 

energy balance and air temperatures across entire urban centres but they utilize very huge 

and highly sophisticated databases (Ashie and Kono, 2011).    

2.4.5 Gridded temperature datasets  

Gridded climate datasets are alternative datasets to instrumental measurements, 

particularly for areas with spatially scarce distribution of meteorological stations or poor 

quality measurements (Cheval et al., 2020). Therefore, the scientific research community 

uses high-resolution gridded temperature datasets due to their spatial completeness and 
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their inclusion of variations resulting from topographic effects (Walton and Hall, 2018). 

They are reliable in-situ observations from various meteorological stations located at 

different locations globally, which are interpolated to grids using different interpolation 

methods (Kanda et al., 2020). One method is to interpolate or smooth data from 

irregularly spaced stations to a regular grid (Walton and Hall, 2018). Such datasets are 

referred to as station based. Other datasets utilize interpolation algorithms which match 

observations exactly at the station locations. Gridded data sets exist globally for different 

meteorological parameters such as temperature (maximum, minimum and Mean), 

precipitation and atmospheric pressure.  

Examples of interpolated temperature datasets include Asian Precipitation Highly-

resolved Observational Data Integration towards Evaluation of Water Resources 

(APHRODITE), Climate Research Unit Time-Series(CRU-TS), University of Delaware 

(UDEL), Hadley Centre/Climatic Research Unit Temperature (HadCRUT) series such as 

HadCRUT3 HadCRUT5, Climatic Research Unit Temperature (CRUTEM) series, and 

Ensembles gridded observational (E-OBS) dataset for precipitation, temperature and sea 

level pressure (Yasutomi et al., 201;Walton and Hall, 2018; Kanda et al., 2020). 

There is another category of gridded datasets whereby datasets are reconstructed to run 

atmospheric models which assimilate historical observations (Walton and Hall, 2018). 

These gridded datasets are called reanalysis datasets. In reanalysis datasets, irregular 

ground-based observations are fused with modelled outputs to synthesize state of the 

system which is uniform and homogenous across a grid with complete temporal coverage 

(Kanda et al., 2020). There is another category of gridded datasets whereby datasets are 

reconstructed to run atmospheric models which assimilate historical observations 

(Walton and Hall, 2018). These gridded datasets are called reanalysis datasets.  
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In reanalysis datasets, irregular ground-based observations are fused with modelled 

outputs to synthesize state of the system which is uniform and homogenous across a grid 

with complete temporal coverage (Kanda et al., 2020). Both gridded data and reanalysis 

originate from terrestrial and airborne observations, however, the reanalyzed data provide 

a multivariate, spatially complete, and coherent record of the global atmospheric 

circulation (Skoulikaris et al., 2020). Several studies compared reanalysis products with 

meteorological station data and revealed a strong correlation between the two datasets. 

(Skoulikaris et al., 2020). Examples of reanalysis datasets include European Centre for 

Medium-Range Weather Forecasts Reanalysis-Interim and Era 5,  National Centre for 

Atmospheric Prediction (NCEP) and the National Centre for Atmospheric Research 

(NCAR) NCEP-NCAR-Reanalysis and North American Regional Reanalysis (NARR) 

among others (Walton and Hall, 2018; Kanda et al., 2020).  

Generally, gridded datasets are widely utilized in computing historical trends, evaluation 

of regional climate models and for training statistical models for downscaling low-

resolution climate data to higher resolution (Walton and Hall, 2018). Meteorological 

reanalysis datasets are among the most widely utilized gridded datasets (Skoulikaris et 

al., 2020). They are particularly very s useful in areas whether in areas with excess data 

or where weather stations are inadequate or even non-existent (Bosilovich, 2013). 

However, the reliability of reanalysis datasets depends on the efficiency of data 

assimilation procedures, spatial resolution, and realism of land surface processes being 

represented (Kanda et al., 2020). 

ERA-Interim which is one of the latest global reanalysis products developed by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) was utilized for the 

study. ERA-Interim has been widely utilized, particularly for regions with scarce 

observations (Skoulikaris et al., 2020). The quality, accuracy and reliability of this data 
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has been attested by several studies. Donat et al. (2014) compared ECMWF’s ERA-

Interim, National Centre for Environmental Prediction (NCEP) reanalyses, and Japanese 

25-year Reanalysis Project (JRA25) and the result revealed that ERA-Interim 

demonstrated a greater agreement with the gridded in situ–based datasets than the rest 

two. Cornes and Jones (2013) revealed that the ERA-Interim reanalysis data are generally 

quite good at replicating both the seasonally and spatially varying trends in the indices 

and also able to depict the observed trends remarkably well at the station level. Zhao et 

al. (2020) compared ERA-Interim data with 2 meter air temperature data from 24 

meteorological stations in the Qilian Mountains (QLM), China and the results generally 

depicts that the monthly, seasonal, and annual variation show very high daily correlations 

with the observed records ranging from 0.956 to 0.996.   

Meteorological reanalyses utilise a wide variety of observation databases assimilated in 

a complex fashion into a numerical weather prediction model to produce a spatially and 

temporally coherent synthesis of various meteorological variables over the recent 

historical. The reanalysis forecast model remains unchanged for consistency of simulated 

weather data (Essou et al., 2016). Data assimilated by reanalysis come from 

measurements derived from different sources recorded for decades throughout the world.  

The dominant sources are terrestrial measurements networks, radiosondes, aircrafts, 

satellites, and floats (Wang et al., 2011). Terrestrial measurement networks comprise 

weather stations, buoys, and ships which provide surface data for variables such as 

temperature, relative humidity, atmospheric pressure, wind direction, as well as wind 

speed. Radiosondes, aircrafts, and satellites provide various atmospheric data, like  

radiance, wind, humidity, and pressure at different atmospheric heights (Essou et al., 

2016).  
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An advantage of reanalyses data is that though they are not direct observations, they 

provide variables throughout the world, including in areas where weather stations are 

nonexistent or scattered (Bosilovich, 2013). Many studies have compared data from 

reanalyses to weather station data in several regions of the world and generally conclude 

that in many cases, reanalyses are comparable to observations. (Bosilovich, 2013; Lorenz 

and Kunstmann 2012; Manzanas et al., 2014; Rusticucci et al., 2014; Vose et al., 

2012; Zhang et al., 2013). 

2.5 Land Surface Temperature  

Land Surface Temperature refers to the emmisive skin temperature of the earth surface; 

playing key roles in the physics of the land surface through the mechanism of energy and 

water exchanges with the encompassing air (Zhang et al., 2009). It has been recognised 

as a key biophysical parameter which modulates the atmospheric heat in the lowest 

atmospheric layers and plays vital roles in the radiation balance of the surface (Zoran, 

2011). It controls the physical and biochemical mechanisms occuring at the interface 

between the earth and its surrounding air (Zhang et al., 2009). It also determines the 

interior climate of structures and influences energy transfers that affect the well-being of 

urban inhabitants (Zoran, 2011). Studies have proven LST to be very effective in 

partitioning hidden heat fluxes, and consequently surface radiative response as a function 

of changing surface soil water content and vegetal cover (Zhang et al., 2009).     

LST as a key factor in the physics of land surface processes combines surface-atmosphere 

relations and the energy fluxes between the atmosphere and land (Gorgani et al., 2013). 

The relationship between LST and surface energy/and water balance occurs from local to 

global scales (Rozenstein et al., 2014).  Apart from the passive microwave, most LST 

measurements utilize the thermal infrared (TIR) channel in the electromagnetic spectrum 
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covering 8 to 15 µm (Tomlinson et al., 2011).  TIR remote sensing offers exclusive 

technique for extracting LST information because most of the energy recorded by the 

sensing device in this chanel is directly produced by land surfaces (Yu et al., 2014). With 

the exception of solar irradiation components, it is with the use of LST that most 

fluxes at the surface/atmosphere interface are parameterized (Sobrino et al., 2008). LST 

values are dependent on LULC; with waterbodies and vegetated areas possessing the 

lowest surface temperatures, while urban built- surfaces likeas airports, residential 

locations, industrial layouts exhibit very high  surface  temperatures values (Feizizadeh  

and   Blaschke, 2013; Mallick et al., 2013). LST is applied in a large number of fields 

such as city climate chang,  water cycle , and vegetal cover evalution. Other applications 

according to them include estimation of other geophysical parameter like 

evapotranspiration, vegetal water stress, soil water, and global circulation (Rozenstein et 

al., 2014; Sobrino et al., 2009). Owing to the increasing recognition of the roles of LST 

and applications in estimating several geophysical variables, keen interests have been 

stimulated in the development of techniques for  its measurement from space (Yu et al., 

2014). 

LST has been largely employed in studying urban climate. Wang et al. (2016) identified 

three categories of LST studies. The groups include investigating LST pattern and its 

potential relation to urban factors; studying the thermal equilibrium of city surfaces; as 

well as exploring relationships between LST and air temperature. The physical 

characteristics of the numerous urban land surface coverages, their colour, the ratio of 

received radiation by planar surfaces, arranement/orientation of streets, vehicular traffic 

congestion, and other human actions are key determinants of LSTs in city centres 

(Chudnovsky et al., 2004). LST has been widely utilized in several fields, notably in 

environmental studies, hydrology, urban climate studies, ecological, biophysical and 
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biochemical studies and very recently, the changing climate (Mildrexler et al., 2011; 

Rehman et al., 2015). For example, LST  derived  from  remotely sensed  imageries are 

utilized in validating and improving  global meteorological  model prediction, analyzing 

LULCC, monitoring drought, soil water estimation, as well as frost estimation (Wan et 

al., 2004). LST and information on emmision are largely utilized in the study of built up 

environments’ climate for establishing LST patterns and their interrelationships with 

surface features; and evaluating UHI relationship with surface thermal fluctuations so as 

to categorise  landscape characteristics, patterns, and courses (Weng, 2009). 

 It is, therefore, an important variable in studying temperature dynamics in cities 

(Falahatkar et al., 2011). It has been expressed that LST corresponds closely to the 

atmospheric temperature of the layer lying directly over it, as a result of heat energy  

transfer from the former to the latter (Voogt, 2002; Weng and Quattrochi, 2006). The  

LST  of urban surfaces are also largely known to be closely related to  the  distribution of 

LULC properties (Weng, 2003;  Weng  et  al.,  2004), with each component surface of 

the urban landscapes (such as lawn, parking lot, road, building, cemetery, and  garden) 

exhibiting distinct emmisivity, heat, moistness, and  aerodynamic characteristics (Xiao et 

al., 2008). 

 LST, therefore, regulates the atmosphericheat of the lower atmosphere, contributes to the 

earth’surface radiation equilibrium, and determines the interior heat of urban structures 

(Voogt and Oke, 2003; Srivanit et al., 2012). Advanced applications and techniques in 

remote sensing have revealed that LST exercises strong influence on the physical, and 

biochemical processes which occur at the boundary between the earth and its surrounding 

air (Zhang et al., 2009). Particularly, TIR remotely sensed imageries have been employed 
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in studying the thermal characteristics of urban environments, largely for analysis of LST 

and its interrelationship with surface features (Weng, 2009).  

2.5.1 Urban Heat Islan (UHI) phenomenon 

UHI is a climatic situation whereby cities  have elevated air temperature above the rural 

surroundings due to the anthropogenic modifications of land surfaces (Abutaleb et al., 

2015). UHI is an instance of an unintentional alteration  of the  microclimate primarily 

due to changes in the energy equilibrium  brought about by changes in land use, 

surface characteristics, and configuration of the of the city (Tomlinson et al., 2011). 

The modifications are largely as a result of conversion of pervious surfaces into 

impervious land covers arising from unprecedented urbanization (Benali et al., 

2012).  These water-resistant surfaces possess lower heat absorption capacities and 

energy conduction capabilities, leading to a faster increase in atmospheric heat when 

compared to pervious materials (Shen et al., 2015). 

In their submission, Li et al. (2016) considered general reduction of surface albedo in 

urban areas as a key contributor to the UHI. Heisler and Brazel (2010) attributed lower 

surface albedo to the dark surfaces that make up the urban montage as well as the 

absorption of short-wave radiation through the upward walls and the urban forms.   

UHI is also influenced by the relative absence of vegetation, the anthropogenic heat (AH) 

emission from human activities (Yow, 2007; Li et al., 2016) seasonal climatic conditions, 

daily synoptic conditions, and the diurnal cycle (Li and Norford, 2016). Anthropogenic 

heat refers to the energy released through man-made sources like vehicles, commercial 

and residential structures, industry, power plants and human metabolism (Quah and Roth, 

2012). It significantly influences the urban environment directly by changing the surface 
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air temperature, and indirectly by the modification of urban boundary layer structure, 

precipitation, and other conditions (Lin et al., 2008; Bohnenstengel et al., 2014). 

UHI is measured by surface temperature, which can vary between cities and countrysides 

by up to five degrees (United Nations, 2010b). The effects and magnitude of UHI vary 

according to LULC patterns, urban morhorlogy, urban size, seasonal disparities, ecology, 

urban form, landscape and setting of the study area (Aslan and Koc-San, 2016).  The UHI 

is most noticeable during conditions of light winds and cloudless skies particularly at 

night (Li and Norford, 2016; Cardoso et al., 2017) especially in large urban centres where 

its values may be as high as 10 °C in large cornubations (Heaviside et al., 2016). The 

reason being that the urban infrastructure radiates the shortwave solar energy absorbed 

during the day as longwave thermal infrared (TIR) radiation more slowly (Nguyen and 

Henebry, 2016). 

The degree of UHI is normally determined by computing the difference between the 

maximun mean temperature of city centres and neighbouring country sides (De Joanna 

and Francese, 2012). Its effects are keenly associated with many important issues, such 

as urban climatology, environmental change, and human–ecological interactions, which 

impact on the well-being of human life (Lu and Weng, 2006).  

2.5.2 Urban heat island types 

The scientific community has identified a number of UHI kinds observeable in city 

centres (Voogt and Oke, 2003; Oke, 2009) namely: Subsurface UHI, Surface UHI, Urban 

canopy layer UHI and Urban boundary layer UHI. Subsurface UHI refers to the 

subsurface heat in cities resulting from transmission of  heat surface soils and materials. 

The variability in the Subsurface UHI is attributed to the interface between radiant energy 

and the ground as well as the abilities of surfaces to reflect, engross or release energy. 
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Solar radiation has been identified as one of the vital factors that determine human thermal 

comfort under hot conditions (Norton et al., 2015). Surface is the temperature over  full 

three dimensional urban surface interface of cities (Norton et al., 2015). It is important 

to differentiate between energy exchanges at the roof top surfaces, walls, and ground 

surfaces because their processes are quite diverse. The Surface UHI is normally  strongest 

at day times (Yuan and Bauer, 2007), particularly in open areas exposed to direct sunlight 

(Norton et al., 2015). 

Urban canopy layer air UHI (UCL air UHI) refers to the air temperatures of the urban 

canopy layer such as as air around streets and under roof-tops levels; utilizing the height 

of the buildings as boundaries (Mills, 2007). In UHI studies, UCL temperatures are 

usually determined using approximately the height of people or the lower stories of 

buildings, between 1.5 and 3 m above ground (Heisler and Brazel, 2010). The UCL air 

UHI expresses the surface energy equilibrium affecting the air volume of the urban 

canopy (Oke, 2009). Processes within the UCL are determined by the urban structure and 

geometry. For instance, densely built urban areas tend to reveal a stronger urban-rural 

temperature difference (Hughes, 2006). The canopy-layer UHI is primarily a nocturnal 

phenomenon resulting from reduced cooling rates over the city in the late afternoon and 

evening compared to the non- built-up areas resulting in higher urban minimum 

temperatures (Roth, 2013).  Given its accessibility and relevance to human activities, the 

canopy layer UHI which is a local scale phenomenon is the most studied of all heat 

island types (Roth, 2013). 

Urban boundary layer air UHI (UBL air UHI)  is caused by a mixture of many local scale 

effects on city-wide scales and may extend hundred of metres above the surface. It varies 

greatly in thickness and turbulence over the course of a clear day (Heisler and Brazel, 
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2010). The development of this UHI layer  is as a resultof a mixture of frictional drag of 

the atmosphere over the earth surface and the rising air over warmth surfaces. This UBL 

air UHI more obvious durin night time. Due to experimental difficulties in probing the air 

at higher heights, less attention is given to the UHI of this layer when compared to the 

canopy-layer, but a few airplane, helicopter, remote sensing, balloon, and tower studies have 

been conducted since the 1960s in a wide range of cities (Roth, 2013). 

2.5.3 Relationship between LSTs and other biophysical parameters 

There exists relationships between LSTs and other biophysical parameters such as 

vegetation and non-vegetation indices; as such several Vegetation and non-vegetation 

indices have been employed in land surface temperature studies. This is due to the fact 

that intensity of UHI is interrelated with the area coverage and what makes up the vegetal 

cover and built areas as well as their modifications over time (Zhang et al., 2009). 

Vegetation indices are ratios of bands that are designed to numerically separate or stretch 

the pixel values of different features on remotely sensed images (Mwakapuja et al., 2013). 

They are determined by using the distinctive feature of leaf chlorophyll absorption in the 

visible channel and lack of absorption in the adjacent near infrared region to isolate 

different features (Mwakapuja et al., 2013). The contrasts are utilized by combining 

multispectral red band and near-infrared reflectance.  

There are several vegetation indices employed in LST studies notably the Normalized 

Differential Vegetation Index (NDVI). These indices provide for simple and fast 

interpretation of remotely sensed data in terms of vegetation health (Mwakapuja et al., 

2013).  NDVI is a characterization of vegetative density based on the amount and 

wavelength of the radiation reflected by the leaves of a plant (Ra et al., 2012). When 

vegetation is photosynthetically active, it is highly reflective in the near infrared channel 
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of the spectrum but reflects low in the red channel (Ra et al., 2012). Extensive 

documented evidence in the scientific community have established a strong 

interrelationship between LST and NDVI and other vegetation indices (Weng, 2009).  

Several of these works have revealed a strong negative correlation between LST and the 

NDVI (Liu et al., 2014). There exists a non-linear relationship between NDVI and LST 

due to the predominance of bare ground surfaces which display greater differences in 

surface temperature than the more luxuriant vegetated land covers (Zhang et al., 2009). 

NDVI measurements are dependent on seasonal changes which affect outcomes of 

surface urban heat island investigations (Li and Liu, 2008). The variability and 

nonlinearity of NDVI point to the fact that quantitative investigations of urban heat 

islands may not be sufficiently determined by it alone (Zhang et al., 2009). Thus, there is 

a possibility that combining NDVI and NDBI as substitutes to LULC may reveal 

relationships between them and LST in UHI studies (Zhang et al., 2009). 

NDBI was designed for identifying built surfaces and areas in cities (Zha et al., 2005). It 

is utilized in exploring the implications of green areas and built environments on UHI by 

estimating the ecological assessment indices of sub-urban locations (Liu and Zhang, 

2011). NDBI is not only utilized as pointer of city expansion and extent of growth, but 

also as indicator of urban imperviousness that favours more exchange of sensible heat (Li 

and Liu, 2008).   

LST has direct control on the UHI effect (Feizizadeh and Blaschke, 2013). The 

difference between LST of the urban areas and the surrounding non-urbanized surbubs 

is generally higher during the night time as a result of the  transformation of urban areas 

into urban sceneries which are largely categorized by high albedo (Joshi et al., 2015). 

The UHI effect varies from place to place and is a function of spatial factors such as the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6X2F-4W1JY7N-1&_user=2139813&_coverDate=08%2F31%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=7269&_sort=d&_docanchor=&view=c&_acct=C000054276&_version=1&_urlVersion=0&_userid=2139813&md5=67b25d967ba24f3c1ce6b4a018ebd270#bib42
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magnitude of urbanization and the amount of urban green space, and temporal factors 

such as season and the time of the day (Al-Gretawee et al., 2016). It is also affected by 

urban thermal, physical and geometric properties, and man-made water and heat causes 

existing in the area (Manik and Syaukat, 2015). The urban areas tend to have an above 

average temperature all year around. The difference in temperature between urban-built 

environment and rural centres ranges between 3˚C and 5˚C during  the  daytime but 

nocturnal differences may be up to 12 degrees celcius due to slow radiation of heat from 

urban surfaces due to canyon effects (Effat et al., 2014; Joshi et al., 2015). They are 

direct consequences of differences between urban structure and materials in cities and 

those of rural areas, and indirect consequences by urban influences on hydro-climate and 

atmospheric pollutants (Heisler and Brazel, 2010).  

They possess sparse vegetal cover but largely dominated by anthropogenic surfaces 

which absorb radiant energy from the sun and emit greater heat but retain limited moisture 

when compared with na, tural surfaces (Araujo et al., 2015).  Reduced water retention by 

artificial surfaces is attributable to rapid draining of rainfall through storm water pipes; 

with a consequent reduction of evapotranspiration and increased perceiveable warming 

of the local urban environment (Coutts et al., 2007).  

The magnitude of surface UHI varies with seasonal changes, because of seasonal 

variations in solar intensity, groundcover and weather (Effat et al., 2014). Due to these 

variations, UHIs are typically higher in summertime. Apart from seasonal variations, the 

severity of the intensity of urban heat also depends on a city’s location and characteristics 

(Parham and Haghighat, 2010) such as size and density of population, level of 

industrialization, as well as traffic pattern and density (Odindi et al., 2015).  The UHI  has 

a thoroughly investigated feature of inadvertent anthropogenic climate modification 
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(Roth and Chow, 2012). Rapid urbanization and increased temperature in urban centres 

(UHI) exist all around the world; both contributing to global climate change and, in turn, 

are exacerbated by global climate change (Mills, 2007; Heisler and Brazel, 2010). Several 

approaches have been employed in studying thermal conditions in urban settlements 

(Singh et al., 2014).   

2.5.4 The implications of urban land surface temperature (LST) 

2.5.4.1  The effects of urban LST on human health 

There are heightened awareness among bio-meteorologists, epidemiologists, 

climatologists and environmental health workers on health risk posed by rising rsing LST 

in urban areas (Tomlinson et al., 2011b) because there are intricate relationships between 

built environments, local temperatures, human health and well-being. Increased 

frequency, intensity, and long-lasting extremes of urban heat events; air pollution risks 

and ecosystem changes have been identified among the numerous major weather and 

climate drivers which affect human health (Luber et al., 2014).  

Excessive rainfall and increasing temperatures are believed to aggravate problems 

associated with interior air quality, which include the evolution of fungi and moulds; 

known for increasing breathing and asthma-related situations (Fisk et al., 2007). In 

addition, warmth, concentration of harbinger substances, and methane releases have been 

identified as some factors which contribute to worsened ground-level ozone and particle 

pollution levels (Luber et al., 2014) responsible for premature deaths. Also, temperature 

increase across the globe may result in related rise in untimely deaths associated with 

worsening ozone and particle contamination. Urban Centres impact on the health of their 

residents both negatively and positively (Nieuwenhuijsen, 2016).  



91 
 

Apart from genetic and lifestyle causes, disease and mortality rates are affected by 

numerous social and environmental factors that form a complex system of causality 

(Fecht et al., 2016), especially urban heat. In recent times, several studies have 

established positive relationship between cities and urban health; focusing on how 

specific urban characteristics potentially promote the health of urban dwellers. For 

instance, a study by Villeneuve et al. (2012) established  associations   between  access  

to  green  spaces  and lower  rates  of  mortality while the study of Ward et al. (2012) 

established associations between green spaces and  reduced   stress  levels. The health 

paybacks may result from mitigation measures like carbon sequestration strategies 

targeted at reducing greenhouse gas emissions through improving energy efficiency in 

buildings (Vardoulakis et al., 2014). 

On the other hand, studies have also been done to establish undesirable interrelationships 

between cities and urban wellbeing, especially, high surrounding temperatures which 

negatively  impacts on  human health  by way of increased  death  or  illness; as they can 

increase markedly during episodes of persistent very hot weather (heat waves) especially 

among  the aged (Heaviside et al., 2016). Sherwood and Huber (2010) have opined that 

heat stress imposes a robust upper limit to climate change adaptation, because at air 

temperature of 35.8°C and above, humans (and other mammals) lose the ability to 

dissipate metabolic heat. 

Observations and climate  change projections  have been utilized by several studies in 

attempts to measure heat-associated health impacts currently and in future (Kinney et al., 

2008; Huang et al., 2011; Vardoulakis and Heaviside, 2012; Hajat et al., 2014; 

Vardoulakis et al., 2014). Such epidemiological studies in various urban centres, 

particularly in high-income countries of Europe and North America and Japan’s 
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conurbations have revealed that temperature extremes are associated with marked 

increases in mortality (McMichael et al., 2008). For instance, Fujibe (2009) revealed that 

incidences of heat related mortalities in Japan now outweighs those of other natural 

factors like typhoon and cyclones. During summer, over one hundred thousand persons 

suffering from heat-stroke related ailments were hospitalized in Tokyo metropolitan area 

of Japan (Fire and Disaster Management Agency of Japan, 2011). This is supported by 

Rey et al. (2007), Knowlton et al. (2009), Lin et al. (2009) who expressed that heat-

waves are related with rising hospital admissions for cardiac, kidney, and breathing 

disorders.  

The severe heat waves recorded across European cities in 2003 were  reported to have 

had  far reaching effects  on  public  health,  the  economy,  infrastructure,  and  general 

environmental  health (Garcia-Herrera  et al., 2010). The consequences were particularly 

more obvious and severe in cities across northern and central Europe where an estimated 

70,000 deaths were related to the high temperatures recorded in August that year (Robine 

et al., 2008). France alone recorded 14,802 excess deaths with the city of Paris accounting 

for 2,085 of the heat related deaths (Le Tertre et al., 2006).  

Researches have shown strong relationships between urban hotness and mental health. 

Dodgen et al. (2016) observed that persons suffering mental illness are very susceptible 

to excessive  heat or heatwaves and noted aggressive behaviour, violence, and suicide as 

some implications of extreme heat on mental health and incidence of morbidity and 

mortality. Bouchama et al. (2007) who carried out six case-controlled studies that 

involved one thousand and sixty five heatwave related mortalities revealed that pre-

existing mental-illness tripled the danger of death; as a result of exposure to heatwave. 

An empirical study showed that the danger of mortality rises for patients with psychosis, 
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dementia, and substance abuse when the weather is hot (Hsiang et al., 2013). It has been 

established that the number of people admitted in hospitals for mental-illhealths 

associated with excessive heat, rising surrounding temperatures, and dampness have 

increased, especially for those with mental illness (Vida et al., 2012; Wang et al., 2014). 

Urban heat strain is also related with physiological and behavioural changes ranging from 

vasodilatation and sweating, heat syncope or fainting, nausea and headache, to heat 

strokes, and heart attacks, particularly during extreme conditions (Moonen et al., 2012). 

Other benign disorders include heat edema, heat tetanilla, heat pawns, heat exhaustion 

vomits, and frailty (Bhatta, 2010).  Given these risks and health implications of a warming 

urban environment, Sherwood & Huber (2010) have suggested that continued global 

temperature rises could eventually lead to human abandonment of large regions of the 

presently inhabited world. 

2.5.4.2  Effects of urban LST on urban energy consumption 

Moonen et al. (2012) has posited that heat islands in warm-climate urban centres can 

have grave implications on the overall energy consumption of the cities, particularly 

demand for air conditioning. Ohashi et al. (2007) noted that urban cooling also raises 

urban temperature; as their study revealed that heat emanated from air-conditioners used 

for cooling within buildings increased external air temperatures in the Tokyo central 

business area by as much as 1-2 °C. Cities contribute about 60 to 85 percent of the 

world’s energy consumption not only to meet the demand for heating/cooling but also 

because they are the main centres of fuel intensive industries (O’Malley et al., 2014). 

Santamouris et al. (2001) carried out studies in 30 urban and suburban stations and ten 

urban canyons in Athens (Greece). The study established a doubling of the air-
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conditioning burden for urban houses and a tripling of peak electricity load for cooling 

in the study area. 

2.5.4.3  Effects of urban LST on urban environment 

UHI affects the local meteorological conditions by changing local-wind pattern; 

stimulating the formation of clouds; raising the incidences of lightning occurrence; and 

inducing the occurence of precipitation (Liu and Zhang, 2011). Decreased wind speed in 

the urban centres due to their morphology results in significant reduction in their 

potential natural ventilation (Santamouris et al., 2001). The need for increased air 

conditioning due to higher ambient temperatures directly raises pollution levels 

(particularly the formation of smog) resulting from the burning of fossil fuels by power 

plants (Elsayed, 2012) and transfers the indoor heat burden to  the  external local  

environment (Roth and Chow, 2012). 

It has also resulted in the rise of greenhouse gas concentrations in the atmosphere (Roth 

and Chow, 2012). Some of the emissions and pollutants generated by majority of power 

plants include carbon dioxide, grainy substances, sulphur oxides, nitrous oxides, and 

noxious air (Bhatta, 2010). There are also indications already that higher urban 

temperatures increase the formation and concentration of smog (Elsayed, 2012). In 

addition, atmospheric chemical processes which lead to increase in ground-level ozone 

concentration may be accelerated with rise in urban temperature (Streutker, 2003). It has 

been posited that higher air temperatures may result in an increase in the emissions of 

biogenic hydrocarbons and higher evaporation rates of synthetic volatile organic 

compounds which are related to ground-level ozone (Elsayed, 2012). There is also a 

probability that additional warming of urban centres may stimulate urban ecological 
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activities due to alterations in the local distribution of plants and animals (Roth and Chow, 

2012). 

2.5.4.4  Effects of higher temperature on water quality and quantity 

Warmer urban climates are believed to substantially reduce the quality of water through 

thermal pollution (Hamilton and Erickson, 2012). This occurs when urban structures such 

as roofs, pavements, buildings or landscapes which have temperatures 27°C to 50°C 

higher than that of the atmosphere transfer the heat to water and aggravates storm water 

runoff (Hamilton and Erickson, 2012). Urban runoff which may be 11-17°C warmer than 

those from country sides, discharge into streams, rivers, and lakes; posing threats to the 

aquatic fauna and flora in and around the water bodies (Hamilton and Erickson, 2012). 

The aquatic lives, which are particularly sensitive to immediate changes in temperature, 

may die as a result of shock and their carcasses create bastions of bacteria; posing health 

hazards to neighbourhoods of streams (Hamilton and Erickson, 2012). In addition, 

increased run-off may carry contaminants such as oil, chemicals and microbes into 

drinking water sources, with implications for public health (Manik and Syaukat, 2015).  

Also, higher water temperatures decrease the dissolved oxygen level thereby increasing 

the risk of contamination (Manik and Syaukat, 2015). 

On the quantity of urban water supply, Barata et al. (2011) have noted that rising urban 

temperatures threaten water systems that capture, store, and transfer water to cities. They 

added that increased evaporation rates reduce surface water levels and fresh water 

availability. Furthermore, higher urban temperatures increase demand for water (Barata 

et al., 2011), thereby exacerbating the extraction of greater quantities of water from 

superficial and subterranean springs (Ashley and Cashman, 2006). A consequence of 

reduced surface water levels is an alteration in the exchange rate between groundwater 



96 
 

and surface water; further reducing the accessibility to fresh water supplies (Bates et al., 

2008).  

2.5.4.5  Economic implications of higher urban climates 

Higher urban temperatures are also known to have some economic implications. One of 

such is the higher cost related to higher consumption of electricity for the purpose of 

indoor air conditioning systems, refrigerators, and water use (Izquierdo et al. 2011).  

Public health costs may become higher as the magnitude of urban heat increases (Jeong, 

2012). Also, adapting urban centres to the new optimum climatic scenario will require 

capital that may be too complicated and large to be estimated (Jeong, 2012). Furthermore, 

economic projections have it that rising temperatures may result in loss of labour capacity 

during the peak months of heat stress and may double by 2050 (Dunne et al., 2013), 

leading to a decrease in the normal income globally by twenty-three percent by 2100 

(Burke et al., 2015).  

2.6 Data Sources for Assessing Land Surface Temperature 

2.6.1 Airborne thermal data 

This section summarizes roles of airborne thermal remote as highlighted by Harris and 

Coutts (2011). Airborne thermal remote sensing has been identified as is an striking 

opportunity for recognizing locations of exposure to high surface-heat in urban areas. It 

offers outstanding spatial image of the municipal scenery in time; giving room for a 

relative investigation of places of high surface temperature. A benefit of air-borne thermal 

remote sensing is its capability of observing high resolution (1-5 m) surface temperatures; 

permitting the recognition and investigation of discrete scenes elements. Also, in 

comparison with satellite remote sensing, air-borne heat-mapping permits for adjustibility 

in flying times.  There are however, some limitations in air-borne thermal mapping. One 
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of such limitations is that it offers data on the surface UHI, instead of the urban canopy 

layer UHI which is of most concern, and the most pertinent to human thermal well-being. 

Secondly, it views the earth surface from a steep viewing angle; thereby leading to  

sampling biases, as some three-dimensional surfaces (like walls) are overlooked. In 

addition, for most air-borne thermal remote sensing information, other auxiliary data 

(such as  aerial photographs, vegetation indices, and ground-based air temperature data) 

needed in processing, examining and interpreting the imagery. 

2.6.2 Remotely sensed thermal data 

A veritable tool and data source which has become indispensable and very reliable in 

environmental studies is remote sensing. Lillesand et al. (2004) defined remote sensing 

as the science and technique of gathering data about objects, areas, or phenomena by 

analyzing the information acquired, using devices that are not in contact with the objects, 

areas or phenomena under investigation. Remote sensing has also been defined as the 

science and technology through which features of objects of can be recognized, measured 

or analyzed without direct interaction with the object (Yadav et al., 2013), rather sensor 

devices such as cameras and scanners borne by aircrafts or satellite platforms are used in 

recording electro-magnetic radiation (Yadav et al., 2013). 

Joshi et al. (2016) expressed that remote sensing devices record the electromagnetic 

properties of land surfaces such as reflected energy (optical sensors), emitted energy 

(thermal infrared or passive microwave sensors) or scattered energy (active radar 

sensors). Technically, remote sensing systems/sensors have three resolutions namely: 

spatial resolution, spectral resolution and temporal resolution (Yadav et al., 2013). Spatial 

resolution implies the smallest detectable pixel size of features on the ground in the 

direction of and across the flight. Spectra resolution is the number, location in the 



98 
 

electromagnetic spectrum and bandwidth of the specific wavelength bands or spectral 

bands. Temporal resolution refers to the time lapse between two successive images of the 

same area.  

In terms of orbit, satellite remote sensing platforms are of two types; polar orbiting 

satellites and geostationary orbiting satellites. Polar Orbiting satellites are low-flying 

satellites platforms which orbit the earth in a nearly north-south path at an altitude of 

approximately 700 km - 1,700 km. They are positioned in a sun-synchronous orbit, 

which means that they cross a given latitude at the same solar time each day so that a 

particular area is seen under the same lighting conditions every time it is visited. This 

makes it easier to detect changes that have occurred between visits. The swath of each 

polar orbiting satellite is approximately 2600 km wide and they complete 14 orbits per 

day. They can provide global coverage twice in 24 hours. Because they operate at a 

distance closer to the earth, the images produced are of high spatial resolution. The 

advantage of higher spatial resolution (i.e. the smaller the pixel size) is that it yields 

more accuracy in image classification (Weeks, 2003). They provide comprehensive 

monitoring of the entire globe including the Polar Regions. They are however, capable 

of taking images of a limited area of the earth each time and have poor temporal 

resolution.  

Examples of polar orbiting satellites are National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR); Polar 

Operational Environmental Satellites (POES); NASA’s Earth Observation Systems such 

as Landsat and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS); 

Indian Remote Sensing Satellite (IRS), European Resource Satellite (ERS-1 and ERS-2); 

Tropical Rainfall Measuring Mission (TRMM) and Defense Meteorological Satellites 
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Program (DMSP). MODIS and AVHRR have higher temporal resolution and are capable 

of producing 1–2 images per day for the same area, but have low spatial resolution 

ranging from 250–1000 m. As such, they may not be able to detect the high level of 

detailed information and seriously impede their potential applications (Bai et al., 2015). 

Therefore to generate synthetic LST data with high spatial and temporal resolution, it may 

be necessary to develop new image fusions methods that can integrate complementary 

characteristics from multi-sensors (Bai et al., 2015). 

Geostationary orbiting satellites hover over the earth around the equator at an altitude of 

about 36,000 km. They complete one orbit in 24 hours synchronised with earth’s rotation 

about its own axis. This implies that geostationary satellites orbit the earth in the same 

time it takes the earth to rotate once. Therefore, the satellite appears to stay still, always 

above the same area of the earth. This orbit allows the satellite to monitor the same region 

all the time. The main advantages of geostationary satellites lie in their synoptic coverage 

and the high time-scale resolution of their data; since new scenes are captured every 15-

30 minutes. They are however characterized by a much coarser spatial resolution of 4 km 

(Jiang et al., 2015b). Therefore, a common solution for characterizing surface 

temperatures from these sensors is to downscale the images from 4 to 1 km while keeping 

its temporal resolution (Jiang et al., 2015b). Thermal downscaling is the technique to 

derive LSTs at high spatial and/or high temporal resolution. The classical way for this 

purpose is to utilize the inverse association between the NDVI and LST as evident in 

previous studies (Jiang et al., 2015b).   

Geostationary orbiting satellites are however limited by their coarse spatial resolution as 

compared to the polar orbiting satellites in view of their distance from the earth. In 

addition, due to the satellite’s viewing angle, useful information is restricted to the belt 
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between 70 degrees north and south of the latitudes. A disadvantage of coarse or lower 

spatial resolution images is reduced accuracy in image classification, because there is 

more likelihood that a the pixel may represent a mixture of different land covers (Weeks, 

2003). E xamples of sensors on geostationary platforms include NOAA’s Geostationary 

Operational Environmental Satellite series (GOES) and METEOSAT’s Second 

Generation (MSG) geostationary meteorological satellites.   

Remote sensing systems are either passive or active Passive remote-sensing systems 

operate by measuring the energy which is reradiated or reflected from the object of 

interest back to the remote sensor (Weeks, 2003). The sensors are most often optical 

(measuring light reflectance), but they may also be thermal (measuring heat reflection), 

depending on the wavelength of the energy that the sensor is designed to measure (Weeks, 

2003). Optical remote sensing has offered data for over four decades (Joshi et al., 

2016). Optical products are commonly available as multispectral images (ranging from 

visible to infrared wavelengths) consisting of several bands of data (Joshi et al., 2016). 

They provide a varied array of information on land-cover depending on its spectral 

reflectance (Joshi et al., 2016). Landsat, SPOT and MODIS satellites are examples of 

optical sensors that dominate land use /land cover analyses owing to their length of 

consistent datasets and the ease of availability (Joshi et al., 2016).  

Passive microwave sensors are remote sensing devises that do not possess their own 

radiation or illumination but instead are only sensitive to radiations from natural origins 

such as the Sun or artificial light (Kerle et al., 2004; Yadav et al., 2013). Passive sensor 

systems based on reflection of the Sun’s energy are only operational during daylight 

(Kerle et al., 2004). On the other hand, passive sensors which measure the longer 

wavelengths related to the Earth’s temperature do not depend on the sun as a 
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source of illumination and can be operated at any time (Kerle et al., 2004). Passive 

microwave measurement tends to be limited since they characteristically provide a 

very coarse spatial resolution (Tomlinson et al., 2011). 

Active sensors such as RADAR (Radio Detection and Ranging), LIDAR  (Light  

Detection  and  Ranging) and  SONAR  (Sound  Navigation and  Ranging) are systems 

which generate  their  own  source  of illumination  (Kerle et al., 2004).  They emit a 

controlled beam of energy to the surface and measure the amount of energy reflected 

back to the sensor (Kerle et al., 2004). The main advantages of active sensor  systems is 

that they have  a controlled illuminating signal, are typically not affected by the 

atmosphere and possess the ability to be operated day  and  night (Kerle et al., 2004). 

Although not as widespread as the optical sensors, active microwave technology, 

particularly Radar has also been employed in land surface and atmospheric mapping over 

the last two decades and is gaining more ground (Joshi et al., 2016). Spaceborne Imaging 

Radar-C/X-Band Synthetic Aperture  Radar  (SIR-C/X-SAR),  European Remote  

Sensing  (ERS-1 and  -2),  Advanced Synthetic Aperture Radar  (ASAR), Japanese Earth 

Resources Satellite (JERS-1), RADARSAT-1 and -2, Advanced Land Observation 

Satellite (ALOS-1) are some examples of active microwave systems that have been 

largely used in studies at regional scales. 

A limitation of Radar remote sensing is the inherent presence of speckle which results in 

measurement uncertainty and poor classification accuracies (Maghsoudi et al., 

2012). Another major constraint in the utilization of Radar remote sensors, particularly 

over hilly regions is topographic effects such as radar shadow caused by 

foreshortening and  layover on ground-range images  (Quegan and Yu, 2001) 

Moreover Observations using Synthetic Aperture Radar (SAR) require a relatively high 
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energy provision on satellite  platforms; thereby reducing the availability of dense  

time series of SAR data over several  areas  across the world (Joshi et al., 2016). In 

addition, until recently, satellite-based SAR data for large-scale multi-temporal 

assessments were constrained by low spatial and temporal coverage of medium 

resolution data (Rosenqvist et al., 2007).  

For panchromatic images which are mainly shades of gray, information is recorded for 

only one band of reflectance, using the brightness of the pixel in the visible range of 

wavelengths between 0.4 and 0.7 micrometres (Weeks, 2013). The panchromatic images 

are not utilized in image classification but are employed in deriving information about 

brightness and about the texture at the earth’s surface (Weeks, 2003). 

In recent times, important advancements have been achieved in satellite remote sensing 

technology (Walawender et al., 2014). There has been a continuous improvement in 

accessibility to satellite data (Walawender et al., 2014). Accessibility to remote sensing  

information stems in the fact there are different sensors on-board several satellites, 

covering a broad spectrum of spatial, temporal, radiometric and spectral-channel 

resolutions (Melesse et al., 2007) as well as their global coverage and diverse verification 

methods (Tomlinson et al., 2011). In addition, there are tremendous advancements in 

object-based image processing soft wares and methodologies (Blaschke et al., 2011). 

These advantages have resulted in the widening of its application in the monitoring of 

different processes occurring on the surface of the earth and its atmosphere (Walawender 

et al., 2014) and its wide utilization in natural resource mapping and as source of input 

data for environmental processes modeling (Melesse et al., 2007). 

Satellite remote sensing has provided major advances in understanding the climate 

system and its changes, by quantifying processes and spatio-temporal states of the 



103 
 

atmosphere, land and oceans (Yang et al., 2013). It contributes to the description of urban 

climate and provides a better understanding of the underlying climatic processes (Bechtel 

et al., 2012). It has proven to be highly valuable in estimating spatially continuous near 

surface air temperature (Chen et al., 2016c).  

Remote sensing plays crucial roles in detecting general environmental changes, including 

man-made transformations of the natural environment (Walawender et al., 2014). Some 

of the applications include modelling water resources, drainage basin delineation, 

radiation and water changes estimation, fractional vegetal coverage mapping, 

impermeable surface area delineation, urban designing and drought predictions based on 

soil water index using remotely-sensed data (Melesse et al., 2007). Using remote sensing 

technique in unison with GIS is increasing in the areas of meteorology and climatology 

(Tomlinson et al., 2011), particularly in urban centres. Driven by increasing societal 

needs, urban remote sensing is particularly attracting growing interests especially with 

advances in fine resolution imaging and more efficient methods (Melesse et al., 2007).  

One aspect of urban study that largely employs remote sensing techniques is the 

exploration of LST/UHIs (Tomlinson et al., 2011). Land surface temperature changes 

take advantage of thermal remotely sensed data which supply a practicable approach 

for the investigation of LST on extensive scales (Abutaleb et al., 2015). Thermal remote 

sensing is the branch of remote sensing which is concerned with acquiring, processing 

and interpreting information gathered principally in TIR channel of the light spectrum 

(Prakash, 2000). It measures the radiations 'emitted' from the surface of the target, as 

opposed to optical remote sensing where the radiations 'reflected' by the target under 

consideration are measured (Prakash, 2000). Its realm may be broadened to encompass 

not only the TIR but also the SWIR, NIR and in extreme cases even the visible channel 

of the light spectrum (Prakash, 2000). Thermal sensing devices measure data using 
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microwave wave-length range of 8 µm to 14 µm which are directly related to an object’s 

temperature (Kerle et al., 2004).  

Remotely sensed thermal infrared images provide a unique method for obtaining LST 

information at large scales (Jime´nez-Munoz et al., 2008). They are widely utilized in 

assessing the thermal urban environment, in identifying UHI in highly urbanized areas 

and in investigating LST patterns and its interrelationship with surface features (Weng, 

2009; Kaya et al., 2012). Sobrino et al. (2009) pointed out two reasons for TIR data 

contribution to a better knowledge of land surface processes. The first reason being the 

measurement of surface temperatures as co-related with specific scenes and biophysical 

elements, while the second is by relating surface temperatures with energy variations for 

specific scenes phenomena. 

In contrast with in situ measurement, remote sensing possesses the advantages of large 

spatial and temporal coverage and a relatively high spatial resolution. It provides good 

quality realtime information over wide areas; revealing the spatio-temporal variations in 

urban thermal environments at both local, regional and global levels (Chen et al., 2016c). 

Remote sensed data also provide outstanding cost-effective and timesaving technique for 

analyzing spatio-temporally dispersed LST (Senanayake et al., 2014). An advantage in 

using satellite data with respect to ground-based observations is the provision of spatially 

representative measurements of surface temperature over large areas of cities through 

quasi-continuous monitoring of the urban surfaces (Fabrizi et al., 2010).  Sensors on 

satellite platforms can provide a great deal of variable information for various global 

applications such as environmental monitoring and natural resource management on 

account of their repetitive measurement capability. Other related parameters which are 

inputs for estimating surface heat fluxes that remotely sensed data can provide 
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information on include surface albedo, vegetation index, surface emissivity (Chakraborty 

et al., 2013). It is difficult obtaining the spatial information from traditional ground based 

in situ measurements. 

Owing to these advantages, remote sensing techniques have been widely utilized in 

analysing surface temperature dynamics in urban areas (Mitraka et al., 2015). 

Particularly, TIR remote sensing techniques are employed in urban climate investigations, 

chiefly for analysing LST patterns and its interrelationship with surface features (Weng, 

2009). Extracting LST values from remotely sensed thermal imagery requires several 

methodologies like sensor radiometric corrections, atmospheric and surface emissivity 

corrections, and classification of spatial variability in land cover, among others. 

Satellite data at spatial resolutions of 100–1000 m are capable of providing dependable 

information on the extent of urban coverage and spatial distribution at a large scale, 

because of their synoptic view and wide coverage (Zhang et al., 2015). Moreover, 

improvements in sensor technologies and broadening knowledge of atmospheric physics 

have remarkably enhanced both the quality and the quantity of satellite data acquisition; 

making a multi-scale investigation of urban climate possible (Tomlinson et al., 2011). In 

addition, thermal digital sensing of the urban location does not only measure the 

magnitude of surface temperature of the entire metropolis, but also the spatial 

distribution of the surface UHI effects (Srivanit et al., 2012). These attributes make 

remote sensing a veritable tool in studying the changes of the earth’s surface and air. It 

has proven to be the most appropriate tool in assessing the spatio- temporal patterns and 

changes in city thermal landscapes, as well as urban surface energy budget (Weng, 2009). 

In contemporary times, different categories of satellite images have been employed by 

scientists to extract information on LST. The first category of  sensors are those on board 
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polar orbiting satellites, such as the Advanced Spaceborne Thermal Emission and 

Reflectance Radiometer (ASTER) Landsat Thematic Mapper (TM), Enhanced TM Plus 

(ETM+), Operational Land Imager (OLI), Synthetic Aperture Radar Imager (SAR), and 

Satellite Pour l’Observation de la Terre (SPOT) which obtain TIR data between 60 m and 

120 m spatial resolution (Anderson et al., 2012; Almeida et al., 2006; Şahin et al., 2011; 

Zhou et al., 2013; Ding and Shi, 2013; Sameen and Kubaisy, 2014) can provide thermal 

infrared (TIR) and are capable of providing details for LST and have proven to be 

appropriate in examining the spatial structures of urban heat islands (Zhou et al., 2013).  

Satellite sensors in this category have been frequently and extensively utilized in 

analyzing surface temperature changes and regional and global LST studies (Bai et al., 

2015). However, their low temporal resolutions render them insufficient for LST 

monitoring. International research programmes extensively utilize satellite observations; 

especially as they possess potentials to derive quantitative measurements of the dynamics 

of many atmospheric, oceanographic and terrestrial surface characteristics (Donoghue, 

2002).  Its utilization has resulted in key advances in understanding the climate system 

and its changes, through quantifying processes and spatio-temporal states of the 

atmosphere, land and oceans (Yang et al., 2013).  

The availability of several satellite  remote sensing platforms  has provided volumes  of  

very valuable datasets for measuring LST (Tomlinson et al., 2011). The thermal infrared 

sensors on board satellite platforms thermal measure top of the atmosphere (TOA) 

radiances, from which brightness temperatures are extracted (Dash et al.,2002). The TOA 

radiance is the outcome of the interaction between three fractions of energy vis-a-viz 

earth’s surface emitted radiance, atmosphere upwelling radiance, and sky down welling 

radiance scales (Abutaleb et al., 2015). TOA radiances are transformed to LST by 
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correcting for mospheric attenuation, angular effects and spectral emissivity values at 

the surface (Tomlinson et al., 2011). Remote sensing has also been employed in studying 

other aspects of the urban environment such as calculation of cooling degree-days, 

monitoring hot spells, assessing the effects of city development on runoff and measuring 

soil surface moisture (Tomlinson et al., 2011). In addition, biophysical attributes from 

remotely sensed optical data possess great potentials for parameterizing urban 

construction materials and composition, and for linking pixel-based LST measurements 

for a better understanding and modeling of the surface energy budget and the UHI 

phenomenon (Blaschke et al., 2011; Bechtel et al., 2012). 

In spite of the aforementioned benefits of TIR remote sensing, it is not without limitations. 

One limitation is that they are incapable of fully capturing radiant energy from vertical 

surfaces like walls of buildings, since the sensors largely record emissions from 

horizontal tops such as streets, roof tops and tree tops (Goldreich, 2006). Also, remotely 

acquired data represent radiation which travelled through the atmosphere, first as 

wavelength from the sun to the earth surface and, secondly, as wavelength  from the earth 

to the atmosphere (Mirzaei and Haghighat, 2010). Hence, the need for the correction of 

the data for accurate estimations of surface properties including solar reflectance and 

temperature (Abutaleb et al., 2015).  

Cloud coverage is another constraint of these satellites because, Clouds cause serious 

problems in optical wavelength remote sensing because they do not only hide the ground 

but also cast their shadows on the ground thereby impeding many applications. They 

reduce the usage of the image data and thus increases the time between two image 

acquisitions. In spite of the limitations, sensors in this category have been employed for 
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characterization of intra-annual variations of UHIs (Huang et al., 2006; Pongracz et al., 

2006; Wang et al., 2007; Zhou et al., 2008, 2011). 

Satellite data and GIS have also become the commonest methods for quantifying, 

mapping and detecting patterns of land use owing to their accurate geo-referencing 

procedures, digital format suitable for computer processing and repetitive data 

acquisition (Hassan et al., 2016). Du et al. (2014) pointed out that remotely sensed 

imagery is an effective source of information suitable for providing information on urban 

land surface features and their variations over time at various spatial and temporal scales. 

They added that the data sources are widely employed in various urban applications  like 

urban  structure  extraction,  urbanization  monitoring, and change detection among 

others. They also identified image classification and change detection as the most popular 

techniques for assessing LULCC in urban areas.  

Lu and Weng (2006) pointed out change detection is a complex process that involve key 

steps. The steps highlighted by them include the choice of suitable data, selection of a 

suitable classification or detection system, carrying out necessary image pre-processing, 

feature selection/extraction, choice of suitable classification techniques as well as 

carrying out post-classification processing and accuracy assessment. The choice of 

classification algorithms and remotely sensed data for urban LUCC analysis are functions 

of the characteristics of the satellite data, land use/cover categories, atmospheric 

condition, the objectives of the study, the capacity of hard and softwares, and the expertise 

of the user (Du et al., 2014). 

Automated urban land cover extraction methods have been developed and utilized for 

good resolution satellite images, like QuickBird, Ikonos, and WorldView, to map mixed 

ranges of urban land surface/cover (Bach et al., 2013). One of such extraction methods is 
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Object-Based-Image Analysis (Benz et al., 2004; Blaschke, 2010) which are preferred to 

pixel-based methods (Myint et al., 2011) which consider only spectral properties. In 

addition to spectral properties, Object Based Image Analysis (OBIA) consider other 

characteristics like shape, texture or adjacency criteria (Bach et al., 2013).   

2.7 Some Common Airborne/Space borne Sensors Employed in LST Studies 

2.7.1 Airborne imagery 

 Airborne sensors possess higher spectral resolution than satellite sensors, and due to low 

altitude in which the flights are performed, they offer higher spatial resolution images, 

with pixel sizes of only a few metres (Sobrino et al., 2008). Some examples of available 

airborne sensors are the digital-airborne imaging spectro-meter (DAIS), the airborne 

hyperspectral scanner (AHS), the airborne reflective/emissive spectrometer (ARES), the 

airborne hyperspectral Operative Modular Imaging Spectrometer (OMIS) among others 

(Sobrino et al., 2006; Xu et al., 2008). 

2.7.2 Advanced along-track scanning radiometer (AATSR) 

AATSR is one of the sensors onboard the Envisat satellite designed to obtain the high 

levels of sea surface temperature (SST) and LST for global climate change studies 

(Ouyang et al., 2017). AATSR measures seven channels of reflected and emitted 

radiation at 0.55 µm, 0.66 µm, 0.87 µm, 1.6 µm, 3.7 µm, 11 µm and 12 µm with both a 

nadir view resolution of 1 × 1 km2 and a forward view resolution of 1.5×2 km2. The 

AATSR swath width is 512 km and able to provide a global LST coverage about every 

three days (Sòria and Sobrino, 2007; Ghent, 2012). AATSR-derived LST products have 

been widely used in climate change, land–atmosphere feedbacks, modeling studies, land 

cover changes and many other applications (Ouyang et al., 2017). Currently, there are 

two methods of LST derivation and validation in AATSR and other satellite sensors (Li 
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et al., 2013; Coll et al., 2011). One method is the temperature based method (T-based) 

which directly compares the satellite-derived LST with in-situ observation data. The 

second method is radiance based method (R-based) which utilizes the atmospheric 

transfer equation to compute the at-sensor LST based on the land surface emissivity 

(LSE) spectra of the in-situ location and the atmospheric profiles. 

2.7.3  Moderate resolution imaging spectroradiometer (MODIS) 

The MODIS sensor is one of the sensors on board NASA’s Aqua and Terra satellites. 

Each of the two satellites have near polar orbits, given them a high temporal coverage. 

The Aqua has two acquisitions at nighttime and during daytime and vice-versa for Terra. 

They however have coarse spatial resolution of 1 km compared to Advanced Thermal 

Emission and Reflection Radiometer (ASTER), the Landsat series such as Enhanced 

Thematic Mapper Plus (ETM+) and the TIRS, all of which have spatial resolutions less 

than 100 m. LSTs are derived from MODIS bands 3 1  and 32 which are its TIR bands of 

(Srivastava et al., 2010). Despite the low resolution of MODIS data, their high temporal 

resolution have made them useful for LST and UHI studies (Tomlinson et al., 2012; 

Sobrino et al., 2013; Lehoczky et al., 2017). MODIS TIR data are also employed for 

water resource management and assessing agricultural drought and environmental 

biogeochemistry processes (Wang et al., 2015).  

However, the coarse spatial resolution of retrieved LST images from MODIS thermal 

infrared data has limited their applications in studies that require high spatial resolution in 

identifying detailed variation of thermal heat flux over places being investigated (Zhan et 

al., 2013) such as urban heat island monitoring and agro-drought monitoring (Wang et 

al., 2015). The need to increase its spatial resolution is therefore expedient if it is to be useful 

for more studies (Clinton et al., 2014; Nichol and Wong, 2009). Hence, several efforts 



111 
 

have been made to down-scale the coarse pixel of MODIS thermal infrared band data 

into better spatial resolution using several indices (Zhu et al., 2013: Wang et al., 2015).  

Kustas et al. (2003) developed and utilized an approach called DisTrad in establishing a 

simple linear regression equation between LST and NDVI to decompose MODIS LST 

image into a better spatial resolution while Essa et al. (2012) improved the evaluation of 

DisTrad by developing the E_DisTrad method for urban areas. To further improve the 

resolution of down-scaled MODIS thermal images, Wang et al. (2015) designed a more 

efficient technique called Double-step Pixel Decomposition (DSPD), which yields a 

higher spatial resolution with the thermal radiance of sub-pixels in the resulting 

decomposed LST image similar to those of the parent pixel from which the sub-pixels 

are generated.  

2.7.4 Advanced very high resolution radiometer (AVHRR) sensor 

The AVHRR sensor is one of the sensors commonly onboard several National Oceanic 

and Atmospheric Administration (NOAA) satellite platforms (Tomlinson et al., 2011). 

AVHRR has a spatial resolution of 1.1 kilometre and offers daily daytime global 

coverages.  The data are frequently utilized in national or global scale studies (Lu and 

Weng, 2006). The thermal infrared (TIR) channels of the sensor namely: channels 4 (10.3 

– 11.3 µ) and 5 (11.5 – 12.5µ), are increasingly utilized for LST assessments.   

2.7.5 Advanced space-borne thermal emission and reflection radiometer (ASTER) 

LST is extracted using ASTER’s thermal bands (bands 1 0 –14). The ASTER data, 

with spatial resolutions ranging from 15 m to 90 m ASTER, is capable of providing much 

more comprehensive information than some sensors and is therefore very suitable for the 

urban-related studies at local and regional scales (Lu and Weng, 2006). 
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2.7.6 Advanced microwave scanning radiometers (AMSRs) 

AMSRs were successfully deployed on two satellite systems; AMSR-E onboard the 

National Aeronautics and Space Administration’s (NASA’s) Aqua, and AMSR2 on-

board the Japan Aerospace Exploration Agency’s Global Change Observation Mission-

Water1 (JAXA’s GCOM-W1) satellites (Nguyen and Henebry, 2016). The AMSR-

E sensor is a passive microwave radiometer operating at 6 frequencies ranging from 6.925 

to 89.0 GHz. Both horizontally and vertically polarized radiation are measured at each 

frequency with an incidence angle of 55°. The ground spatial resolution at nadir is 75 × 

45km for the 6.925GHz channel (C-band). The AMSR-E is one of six sensors onboard 

Aqua, which was launched in 2002. They were designed to retrieve global data on 

precipitation, sea surface temperature, oceanic surface winds and integrated cloud water 

and water vapor, vegetation, sea ice, and snow cover (Lobl et al., 2003). AMSR-E data 

has however been employed in measuring LSTS in Urban centres (Nguyen and Henebry, 

2016). AMSR2 is a single-mission instrument satellite that was launched in May 2012 

and its data made are available beginning in August 2012 (Wu et al., 2016). 

2.7.7 Landsat sensors 

Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) 

provide thermal information using just one long-wave infrared (LWIR) band at a higher 

spatial resolution of 60 metres and has re-vist period of 16 days. Landsat-8 which was 

successfully deployed into space on 11 February 2013 has two principal sensors on-

board. One sensor is the Operational Land Imager (OLI) which has nine spectral bands 

in the visible (VIS), near infrared (NIR), and the shortwave infrared (SWIR) regions. 

The second is the Thermal Infrared Sensor (TIRS) w h i c h  h a s  two spectral bands in 

the Long Wave Infrared (LWIR) region.  

http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.466518&Name=Elena+S.+Lobl
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The thermal bands have spatial resolution of 100 metres with a revisit period of 16 days. 

The high spatial resolution of Landsat thermal bands places it at an advantage of studying 

meso and small scale phenomena but it is limited by its low temporal resolution (Oguro 

et al., 2011). As such, its applications are different from those of other sensors with 

coarser spatial resolutions and shorter revisit times (Rozenstein et al., 2014).  Landsat 

TIR imagery are widely utilized at the regional or local scale (Lu and Weng, 2006) 

because the sequence of Landsat sensors offers the lengthiest incessant archives of 

satellite based observations (Chander et al., 2009). Landsat has therefore become 

priceless and vital in observing worldwide change and a significant basis for moderate 

spatial resolution earth observations (Chander et al., 2009).   

2.8 The Role of Geographic Information System in Studying Urban Thermal 

Fluxes 

Walsund (2013) defined Geographic Information System (GIS) as a computerized 

information system with functions for collecting, storing, processing, analysing and 

visualizing geographical data vis-a viz maps, statistics and satellite images. GIS has also 

been defined as a computer-based system that allows for the combination of maps with 

other data pertaining to particular places in order to analyse those data and present the 

results as thematic maps or in graphic formats (Weeks, 2003). According to Saleh (2010), 

GIS technologies provide flexible avenues for recording, investigating and presenting 

digital information from several sources for urban elements identification, modification 

and database development. GIS presents a set of concepts, methods, and tools for 

exploring spatial patterns in data and is an invaluable tool for integration, analysis, and 

visualization of spatial information (Wilhelmi et al., 2004). It is often widely utilized with 

other ancillary data to convert remotely sensed urban data into tangible useful information 

(Blaschke et al., 2011).   
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Walsund (2013) has highlighted some common applications of GIS in urban centres 

namely: visualization, selection and search, graphical analysis, spatial correlation and 

localization. It provides a means to display and analyze comprehensive remotely sensed 

large-scale datasets (Chapman and Thornes, 2003). Remote sensing and GIS technologies 

have been extensively integrated and proven to be very effective in analysing and 

modelling cities (Saleh, 2010; Blaschke et al., 2011). Variables generated from processed 

remotely sensed information,  GIS thematic  overlays,  and  enumeration  information 

have been identified as three essential data sources for urban analyses; thus their 

integration is a central theme in urban analysis (Blaschke et al. 2011). GIS offers 

practical and relevant working environments for integrating, analyzing and visualizing 

climatological/meteorological information together with other spatial data sources 

(Dobesch et al., 2007). 

Lately, Global Positioning Systems (GPS) have played vital roles in GIS and remote 

sensing analyses. Merchant and Narumalani (2009) have pointed out some of its 

applications in various steps in GIS and remote sensing analysis. Some of the steps 

employed in GPS as highlighted by them include: image rectification, georeferencing 

thematic data in a GIS, collection of field data to support image analysis (such as ground 

truthing, calibration, or accuracy assessment), and development, or updating, of GIS 

databases portraying features such as roads and utilities. 

2.9 Algorithms for Extracting Land Surface Temperatures (LST) 

Several procedures have been advanced for retrieving LSTs from remotely sensed 

information. Commonly utilized algorithms are the Universal Single-Channel (USC) 

algorithm (Jime´nez-Munoz and Sobrino, 2003) and the split window procedure 

(Stathopoulou et al., 2004). For single-channel algorithms, the best wavelength for 



115 
 

retrieving LST depends on the atmospheric water vapor and varies from 11 mm to 10.5 

mm (Roy et al., 2010). The USC procedure is more frequently utilized in estimating from 

Landsat TIR remotely sensed infomation due to its comparatively straightforward data 

demands and precision. It only requires one TIR channel, makes use of same equation 

and constants for diverse sensing platforms, and requires only the atmospheric moistness 

contents and land surface emmitances as input (Chen et al., 2016c). In addition, Single-

channel methods provide similar or better results than split-window methods for low 

atmospheric water vapor content (Roy et al., 2010). Owing to these advantages the USC 

algorithm has been extensively utilized in studying UHI in urban centres globally (Dash 

et al., 2002; Sobrino et al., 2004).  

In contrast, split-window algorithms otherwise called two channels algorithms require 

concurrent information from no less than two frequencies (Chen et al., 2016). This 

algorithm has been largely employed by the scientific community in LST studies (Sobrino 

et al., 2009). With regard to the split-window technique, the best simulated results were 

obtained for wavelength combinations near to 11 mm and 12 mm (Roy et al., 2010). 

The algorithm provide better results for atmospheres with high humidity (Roy et al., 2010).  

Liu and Zhang (2011) in a study employed the mono-window algorithm to the Landsat 

TM, and the split-window algorithm to ASTER’s five thermal bands for the analysis of 

LST in Hong Kong. The split window algorithm allows for correction of atmospheric 

effects by using differential absorption in adjacent TIR bands instead of  depending on 

absolute atmospheric transmission in one band and is therefore less sensitive to the optical  

properties of the atmosphere (Srivastava et al., 2010). 

In addition to these algorithms Sobrino et al. (2006) identified two other algorithms 

namely: temperature and emissivity separation algorithm (TES) which utilizes at least 
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four thermal bands; and two-angle algorithm, which utilizes just one thermal band but 

two view angles. Abutaleb et al. (2015) also identified radiative transfer equation as 

another algorithm for extracting LST. Among these three LST retrieval methods: radiative 

transfer equation, mono-window procedure and single-channel procedure can be applied 

to Landsat data with good results (Abutaleb et al., 2015). 

2.10 Scales Employed in Urban Climate Studies 

Climates  of cities are categorized by varying processes occuring at different scales, 

occasioned by the biological/physical composition of urban centres,  and the structural 

arrangement of urban atmospheres (Roth, 2013).  Roth (2013) also pointed out that scale 

determines the size of the area from where the thermal influence emanates and how it 

changes over time. Oke (2004; 2009) identifies three scales which are often utilized for 

urban climate studies. The first according is the micro-scale climates which are 

consequences of the surface radiation equilibrium and entails the heat condition of 

individual structures, trees, streets and their intervening spaces. Typical micro-scales 

extend from one to hundreds of metres (Roth, 2013). 

The second is the local-scale which encompasses the temperature of localities which 

integrates microclimate consequences with similar combinations of city features. It is the 

resultant effect of the surface and urban canopy layer energy balances. Typical local scales 

extend from one to several kilometres (Roth, 2013). The third and largest scale is the 

meso-scale which entails the influence of urban centres on large scale weather spanning 

more than tens of kilometre. Plumes from discrete local-scale systems spread upwards and 

fuse, resulting in urban boundary layer (UBL) across  entire cities. 
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2.11 The Role of Vegetation in Ameliorating Temperatures in Urban Centres 

Urban vegetation is known to play crucial functions in mitigating climate change both 

locally and globally through several mechanisms of simultaneous cooling and a reduction 

in summertime energy demand for indoor cooling (Alavipanah et al., 2015). Its 

modifying roles in the urban thermal Environment makes it an indispensable component 

of urban sustainability (Shen et al., 2015). Emmanuel (2005) identified three 

complementary roles played by tree shades in combating urban heat islands. First, they 

limit solar penetration thereby restricting energy storage and the heating of the local 

environment. Secondly, tree shades reduce the direct gain of energy through windows 

and the resultant internal greenhouse effect. Thirdly, shades provide shelter from direct 

exposure to the sun. The magnitude of cooling provided by tree shades is a function of tree 

crown shape, density, tree growth rate and longevity, and the relative position of trees 

to buildings they shade (Doick and Hutchings, 2013).  

It is now unequivocal that urban green spaces are beneficial for mitigating UHI, 

evapotranspiration and provision of shades which cool the  urban environment (Voogt and 

Oke, 2003; Chen et al,. 2011). Urban green areas are known to provide numerous 

ecological services like food, materials as well as biodiversity supplies; air-pollutants 

removal; climate regulation; and soil erosion prevention (Qing et al., 2013). Other socio-

economic benefits of vegetation/green areas include provision of accessible green spaces 

in the vicinities of those inhabiting densely populated areas (Alexandri and Jones, 2008); 

improving human health and well-being (Tzoulas et al., 2007); capturing and retaining 

stormwater (Buccola and Spolek, 2011; Rowe, 2011); and the creation of habitats for 

other species (Solecki and Rosenzweig, 2004; Lundholm and Richardson, 2010). They 

play crucial roles in adjusting the microclimate, eliminating noise, beautifying the 
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environment among other roles (Davis et al., 2008), thereby supporting the creation and 

construction of high-quality human settlements (Jim and Chen, 2006).  

Studies have already documented significant negative correlations between land-surface 

temperatures and city-scale vegetation density (Zupancic et al., 2015). Apart from the 

impact of higher temperature, McCarthy and Pataki (2010) and Peters et al. (2010) have 

observed that in spite of the roles played by trees, they are subjected to a lot of hostilities 

by the urban centres. Some of such hostilities include high impervious surfaces, low soil 

moisture, soil compaction, deficiencies in nutrient and trace elements, toxicities, lack of 

rooting volume, frequent soil disturbance and air/water pollutants as well as high wind 

speeds in inner-city canyons.  

Consequent upon the functions of vegetal cover, urban green spaces have become 

indispensable for proper functioning of the urban ecosystem (Byomkesh et al., 2012) and 

in ameliorating the urban thermal environment. Greening of the urban environment has 

therefore been suggested as a stragegy for mitigating the human health implications of 

increasing urban temperatures (Alavipanah et al., 2015). This could be achieved through 

the provision of Green Infrastructure (GI). Norton et al. (2015) defined GI as “the network 

of designed and natural vegetation in cities and towns, such as public parks, recreation 

areas, residual vegetation, residential gardens, street trees, community gardens, and other 

innovative and emerging new urban greening technologies such as rain gardens, green 

roofs and green walls”. 

2.12 Review of  Empirical Studies 

2.12.1 Review of historic trends in LST/UHI studies 

Initiatives in the scientific study of urban thermal environments could be attributed to the 

early observations by Luke Howard some two hundred years ago (Hebbert and Mackillop, 
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2013). In his classic work, Howard (1833) revealed that the climate of London was 

warmer than surrounding areas. His conclusion was drawn on the analysis of his daily 

recordings of the pressure, temperature, humidity, precipitation and evaporation at 

locations outside London from 1806 to 1830, a maintained diary of his observations and 

collated newspaper articles on any event of meteorological interest, as well as recorded 

meteorological data from the Royal Society in central London. Howard was not actually 

particular about the climate of the city of London, rather with climate generally as viewed 

from the vantage point of London. His interest in UHI was stimulated by the observed 

deviation between his recordings and those gathered at London’s Royal Society. 

 Howard therefore identified UHI as the variation between the atmospheric temperature 

of the city and that of the rural environments (∆Tu-r) and hypothesized that this difference 

surges from the fringes of the city toward its centre, and particularly greatest during night-

time of winter months. In Howard’s analysis, four basic factors of UHI were pointed out 

namely: anthropogenic sources of heat, the geometry of the urban landscape, effects of 

urban roughness, and limited evaporation in the rural areas. 

Howard’s publications were followed by increased attention in urban climate studies 

from the 1930s to 1960s (Heisler and Brazel, 2010). However, after the second world 

war, particularly during environmental era of the 60s and 70s, there was an 

unprecedented rise in urban climate surveys (Heisler and Brazel, 2010). The 

investigations simultaneously became less descriptive, rather they were more inclined 

towards numerical and hypothetical modeling, and became more consolidative and 

interdisciplinary (Brazel and Quatrocchi, 2005). 
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2.12.2 Empirical studies on land surface temperature in the US, Canada and 

Europe 

Roth and Chow (2012) reviewed the work of Nieuwolt (1966) who documented a 

study of ambient temperature in Singapore by a team of university student scholars in 

1984. The team combined measured dry ambient and wet bulb temperature records 

acquired from nine urban locations across southern Singapore over several days and 

compared the data simultaneous readings taken at Paya Lebar Airport, which was then 

located in a predominantly rural area 10 km northeast of the city centre. The study 

revealed that maximum daytime temperature was as high as 3.5°C, with the peak 

magnitudes recorded at the city’s centre now the city’s Central Business District 

(CBD) on days  when ‘the  weather was  fine, with  occasional cloudiness but no  

precipitation. The study suggested that the temperature differences were attributed to 

increased radiation absorption and lower surface moisture in urban areas.  

Oke (1973) demonstrated the relationship between the sizes of villages, towns or cities as 

determined by their number of inhabitants, and the degree of the UHIs they produce. He 

achieved this by analyzing information collected using automobile traverses in ten 

locations on the St. Lawrence Lowland with population sizes ranging between a thousand 

and two million residents. The outcome of the study showed an inverse relationship 

between the UHI under cloudless skies with the regional wind speed, and the logarithm 

of the population.  

Block (1978) demonstrated the scientific validity of making use of air-borne and satellite 

TIR sensing as a technique for measuring the UHIs of selected towns/cities in eastern 

Nebraska (USA). The study revealed the superiority of these techniques over traditional 

temperature  measurement  techniques  as  it revealed many  interlaced pockets of warm 

and cool areas that were previously undetected  by conventional sensors.   
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Quattrochi and Luvall (1997) utilized 15- channel  5 metre resolution Advanced Thermal 

and Land Applications Sensor (ATLAS)  airborne thermal  infrared record of Alabama, 

Huntsville (USA) to investigate modifications in  the temperature values  of LULC during 

daytime and nighttime. At the same time, the work investigated the interrelationship 

between land-cover radiance and vegetation quantity, by assessing NDVI. The study 

revealed a strong inverse relationship between NDVI and radiance of inhabited lands , 

farmlands, and unused land-cover types, revealing that the radiance of  land-cover types 

are significantly determined by the quantity of flora present. The predominance of 

forestlands, farmlands, and  built-up surfaces associated with different levels of  vegetal  

cover demonstrated  noticeable  differences  with  commercial facilities  land-cover types  

in  the city core, and supports  the occurence of UHIs. 

Benali et al. (2012) utilized a statistical approach to estimate maximum, minimum and 

average temperatures of Portugal over a 10 year period using remotely sensed LST data 

from MODIS and auxiliary data. The study employed an expanded technique with a 

mixed reboot and pocketknife re-sampling. The statistical models estimated average 

temperature with Model Efficiency (MEF) Index of 0.941 and a root mean square error 

(RMSE) of 1.33 °C. For the maximum and minimum temperatures, the best MEF 

achieved was 0.919 and 0.871, respectively, with a 1.83 and RMSE of 1.74 °C. The 

developed datasets provided weekly 1 km estimations and accurately described both the 

intra and inter annual temporal and spatial patterns of air temperature. 

Shen et al. (2015) spatiotemporally explored the characteristics of urban   temperatures of 

Saskatoon (SK), Canada using multitemporal remotely sensed information and historic 

insitu observations. The study involved several processes such as surface brightness 

retrieval, Pearson correlation, linear regression modelling, and buffer analysis applied on 
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different remotely sensed data.  Result showed that both Landsat and MODIS datasets are  

capable of yielding obvious estimates of diurnal air temperature with a significant adjusted 

R2 of 0.803 and 0.518 respectively at the spatial resolution of 120 metres and 1000 metres, 

respectively.  

Findings of the study also revealed that the Saskatchewan River and urban green area 

demonstrated statistically significant cooling effects on the ambient urban surface 

temperatures within 500 m and 200m.  In addition, a multiple linear regression model with 

four influential factors as independent variables can be developed to estimate urban 

surface temperatures with a highest adjusted R2 of 0.649 and a lowest standard error of 

0.076.  

Simiarly, Landsat TM imagery has been largely employed in several other studies of heat 

island effects (Ifatimehin et al., 2009; Ifatimehin et al., 2010; Rehman et al., 2015; Xie 

and Zhou, 2015; Kumar et al., 2015; Chen et al., 2016, Alhawiti and Mitsova, 2016) 

because it provides sufficient spatial resolution at 120 m for analyzing the sub-urban heat 

island at both local and micro levels. Alhawiti and Mitsova (2016) utilized Operational 

Land Imager (OLI) data over four time frames to analyze the relationship between 

urban thermal environments and urban land use in the City of Fort Lauderdale, located 

in Broward County, Florida’s southeast coast. The study also computed Normalized 

Difference Vegetation Index and Normalized Difference Built-up Index and examined 

their correlations with LST for each land use. The results indicate that the highest 

maximum land surface temperature was observed in high density residential and 

commercial areas near the city’s downtown while coastal areas and areas near water 

bodies were found to have lower land surface temperatures.  
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Morabito et al. (2018) used a replicable framework tagged “Building Thermal 

Functional Area” (BTFA) to carry out summer building-proxy thermal analyses of 

Parma, Northern Italy using remote sensing data. The study integrated daytime and 

nighttime ASTER images, the local urban cartography and the Italian imperviousness 

databases. For each residential building (n = 8898), the BTFA was assessed and the 

correspondent ASTER-LST value and the imperviousness density were calculated.  

Results of the study revealed that both daytime and nighttime surface temperature (ST) 

and BTFA significantly increased (p < 0.001) when high levels of imperviousness 

density surrounded the residential buildings, particularly during daytime and in densely 

urbanized areas. It also indicated that ST_BTFA differences between urban and 

park/rural areas were higher during nighttime (above 1 °C) than daytime (about 0.5 

°C). The study therefore demonstrated its usefulness in identifying urban thermal hot-

spots that would benefit most from mitigation responses. 

Goddard and Tett (2019) estimated the effect of Urbanization on daily maximum and 

mini- mum temperatures in the United Kingdom. Urban fractions were calculated for 

10 km × 10 km areas surrounding meteorological weather stations. The study utilized 

a robust linear regression to estimate relationship between urban fraction and 

temperature difference between station measurements and ERA-Interim reanalysis 

temperatures. The study shows that for an urban fraction of 1.0, the daily minimum 2-

m temperature increased by 1.90 ± 0.88 K while the daily maximum temperature was 

not significantly affected by urbanization. 
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2.12.3 Empirical studies in land surface temperature in Asia and Middle 

East 

Saaroni et al. (2000) studied the Surface UHI of Tel-Aviv, Israel using night-time radiant 

surface temperatures acquired by a thermal sensor installed on a helicopter, in combination 

with a number of on the ground and in-situ measurements including air temperatures acquired 

by automobile transects through the city and fixed location sensors on roof tops. The study 

revealed that while the inner city area had a higher air temperature than the city margins at 

night, it was cooler than that of a station that was based along the seashore (reversed during 

the day) due to the moderating effect of the ocean.   

Chang et al. (2010) utilized Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite, images acquired by a high resolution airborne campaign and meteorological data 

to estimate the surface heat fluxes over a large portion of Chiayi urban area of Taiwan. 

The results indicated that surface heat fluxes determined from both airborne and satellite 

images were feasible for estimating surface heat flux. The correlation coefficient of 

surface heat fluxes with in-situ corresponding observations exceeded 0.80. The satellite-

observed surface skin temperature and land surface energy fluxes were analyzed for 

different land cover types. For the urban surface which was rather dry, half of net 

radiation was converted  to  sensible  heat  flux  for  heating  the  surface,  whereas  over  

90 percent net radiation was converted to latent heat flux for wet surfaces such as 

evergreen broadleaf or water. Surface heat flux was also proven to be an indicator of the 

magnitude of urban heat island effect.  

Srivanit et al. (2012) assessed the urban area thermal characteristics of Bangkok 

metropolitan area (BMA) by investigating the relationships between the land surface 

temperature (LST) and the Normalized Difference Vegetation Index (NDVI), using 

Landsat imageries of 1994, 2000 and 2009. The study revealed that average surface 
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temperature (Mean±S.D.) in the BMA was about 26.01±5.89°C in 1994 increased to 

37.76±2.84°C in 2000 and further to 39.79±2.91°C in 2009; leading to an  intensified  

urban  thermal  effect  in  the  urban  area.    

Joshi et al. (2015) carried out isotherm mapping of Ahmedabad City, Gujarat State, India 

using Geo-informatics technology. He combined data collected using in situ Infrared Gun 

for different time periods of the day at different administrative zones of the city  from 

January to April, 2014 and  Landsat TM data covering the city was acquired during the 

winter  of January 2013 and the summer of April 2013. 

Xiong et al. (2012) assessed the impacts of rapid urbanization on the thermal environment 

of Guangzhou, South China. The study utilized quantitative thermal remote sensing and 

spatial statistics techniques to establish relationships between UHI, LST, NDBI, and 

NDVI. It analyzed 1990, 2000, 2005 and 2009 Landsat TM/ETM+ images of  the city  in 

a bid to investigate the spatiotemporal variations in the land surface temperature (LST) 

over five land use/land cover types and over different urban/rural zones. It revealed an 

obvious existence of the UHI effect between 1990 and 2009, and showed that high 

temperature anomalies were closely related with built-up land and densely populated and 

heavily industrialized districts. It also shows that the mean LST difference between the 

urban downtown area and the suburban area were on average 0.88, 0.49, 0.90 and 1.16 

K  for 1990, 2000, 2005 and 2009 respectively  at the 99.99percent confidence level. In 

addition, it showed a positive relationship between LST and NDBI, and a negative 

relationship between LST and NDVI.  

Omran (2012) assessed the impact of land-use/land-cover change (LULCC) on surface 

temperature in the Ismailia Governorate, using Landsat images to quantify the changes 

from 1984 to 2011. The study identified six land-use/land-cover classes in the area 
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namely: urban, vegetation, waterlogged 1 and 2, bare land, and water with the highest 

overall accuracy and Kappa coefficient of 93.04 percent and 80.65 percent, respectively. 

The results revealed a notable land-use change in the study area. The study revealed a 

marked increase in built-up area during the 27 year period. It revealed that built-up area 

with temperature of 37.65˚C in 1984 and 43.876˚C in 2011; and Barren land with 

temperature of 37.34˚C in 1984 and 42.801˚C in 2011 exhibited the highest surface 

radiant temperature, while vegetated surfaces (28.73˚C in 1984 and 32.96˚C in 2011), 

water (25.94˚C in 1984 and 27.32˚C in 2011), waterlogged (34.54˚C in 1984 and 35.60˚C 

in 2011) recorded low radiant temperatures respectively.  

Xie and Zhou (2015) assessed the impact of urbanization on urban heat island effect in 

Wuhan, China using Landsat Thermal imageries of 1987 and 2007. The study shows that 

Wuhan experienced rapid urban expansion from 1987 to 2007. While the areal extent 

with higher temperatures did not always correspond to the urbanized area, the percent 

impervious surface area (ISA) was found to efficiently explain the LST variation in urban 

areas, especially in high-density ones. The normalized difference vegetation index 

(NDVI) generated by the study was a sufficient indicator to express surface temperature 

variation only in natural context. 

Ashraf (2015) investigated the temporal changes in surface temperature of Patna 

Municipal Corporation (PMC), I n d i a  over a period of 25 years (1989 – 2014) using 

Remote Sensing and GIS Techniques. He employed spatiotemporal model and statistical 

techniques to determine the variations in Urban Heat Island (UHI) effect in the study 

area.  The results show that the dense built up and commercial/residential areas had higher 

surface temperature in comparison with adjoining areas while the urban greens 
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(vegetation) were cooler. The study showed a strong correlation (R2=0.742 between LST 

and Urban Heat Island with time. 

Rehman et al. (2015) utilized a geospatial approach to analyze land surface 

temperature (LST) and Normalized Difference Vegetation Index (NDVI) in Keti 

Bunder, Sindh, Pakistan. Multi-date Landsat-5 TM Landsat-7 ETM+, and Landsat-8 

OLI / TIRS satellite images of 2000, 2010 and 2014 respectively were utilized for 

the study. The study revealed a gradual increase in the maximum LST from 39°C in 

2000, to 42°C in 2010 and 45°C in 2014. On the contrary, there was an increase in the 

mean NDVI value from (-0.165 in 2010 to - 0.009 in 2014, attributed to the growth of 

government-established mangroves plantations. 

Kumar et al. (2015) studied urban surface temperature changes of Vijayawada City 

(India) by comparing remotely sensed Landsat satellite images of the study area in 2001 

and 2014. The result indicates that the urban LST not only increased but the area with 

high temperature also increased significantly with a corresponding decrease in areas with 

low temperatures. It shows an increase in the areas of high temperature (30 to 39°C) 

from 31104.8 hectares in 2001 to 47502.2 hectares in 2014. In contrast the areas with 

low temperature range (24 to 30°C) decreased from 54410.9 hectares in 2001 to 38013.6 

hectares in 2014. 

Zhou et al. (2016) studied the spatiotemporal trends of urban heat island effect along the 

urban development intensity gradient (UDI) in 32 major Chinese cities from 2003 to 

2012, utilizing Aqua MODIS data and Landsat TM/ETM+ images. The study revealed 

that daytime and night-time temperature increased significantly (p < 0.05, mostly in linear 

form) along a rising UDI for 27 and 30 out of 32 cities, respectively, with the south eastern 

and north western parts of the country experiencing more rapid increases. The study also 
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showed that trends in temperature change differed greatly by season and during daytime 

in particular; with the temperature increasing more rapidly in summer than in winter 

during the day and the reverse occurring at night for most cities. Inter-annually, 

temperature increased significantly in about one-third of the cities during both the day 

and night times from 2003 to 2012, especially in suburban areas (0.25 < UDI ≤ 0.5).  

Insignificant trends were however observed for most of the remaining cities. The study 

also established that temperature patterns along the UDI gradient were largely a function 

of local climate-vegetation conditions, while that across years were dominated by human 

activities. The study therefore showed that strong and highly diverse urbanization has 

effects on local climate cross China. 

Chen et al. (2016) examined the effects of continuously expanding concretized 

anthropogenic urban surfaces on its thermal environment. They studied the 

spatiotemporal variation of the daily surface urban heat island (SUHI) in Shanghai from 

1989 to 2013, which was a period of massive developmental changes in the metropolitan 

area. They utilized a set of remotely sensed Landsat data (TM and OLI) to derive the 

spatial patterns of Shanghai’s LST). The derived LST pattern was further classified into 

five LST classes to examine the relative SUHI intensity level across the entire 

metropolis. 

They also conducted spatial association and centroid movement analysis to establish the 

trends of LST changes at both local and holistic scales. The study further investigated 

the potential drivers for the present spatiotemporal variation of SUHI by analyzing 

different indicators such as land use change, population density, nocturnal light data, and 

vegetation and compared such with LST changes. Using the quantitative analysis and the 

socioeconomic context of the metropolis, the study identified the areas of rising LST, 
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proffered possible reasons for such variations, and districts that are most susceptible to 

extreme heat conditions were projected. 

Chen et al. (2016b) simulated UHI in Guangzhou, China, utilizing the Weather Research 

and Forecasting (WRF) model coupled with an Urban Canopy Model (UCM) with new 

land-use data extracted from Remotely Sensed data. The simulations revealed that 

experiments with the extracted data have the potentials to reasonably reproduce majority 

of the observed temporal characteristics of the 2-m temperature, and can capture the 

characteristics of Urban Heat Island (UHI).  

Makido et al. (2016) established the relationship between urban form and temperature 

moderation, by examining the spatial and temporal variation of air temperature 

throughout Doha (Qatar) by conducting vehicle traverses using highly resolved 

temperature and GPS data logs. They utilized Ordinary Least Squares (OLS), Regression 

Tree Analysis (RTA), and Random Forest (RF) statistical approaches to explain near-

surface air temperatures using land cover variables. The predictions of the statistical 

models were validated by computing the Root Mean Square Error (RMSE). The study 

suggests that temporal variations in urban heat are mediated by different factors 

throughout the day.  The average RMSE for OLS, RTA and RF is 1.25, 0.96, and 0.65 

(in Celsius), respectively, suggesting that the RF is the best model for predicting near-

surface air temperatures in Doha. 

Liu et al. (2016) assessed the contribution of LCTs, vegetation fractional coverage 

(VFC) and percentage of impervious surface area (ISApercent) to urban surface energy 

fluxes using remote sensing. They utilized an advanced urban surface energy flux 

algorithm in combination with satellite images and meteorological data to investigate the 

thermal environments in the city of Suzhou, China. Multiple Endmember Spectral-
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unmixing Analysis  (MESMA) were used to retrieve  the per-pixel  sensible heat flux 

(H) and latent heat flux (LE) and the resultant heat fluxes were  assessed using 

evaporation pan  data  collected from meteorological stations and ratios of the heat fluxes 

to the net radiation (Rn). They also investigated, spatial patterns of urban heat energy 

using an integrated analysis among LST, heat fluxes, LCTs, VFC and ISA percent.  

The study revealed high values of sensible heat flux and LST over the urbanized areas, 

but low values for latent heat flux. Conversely, the vegetated area was characterized with 

high LEs but low LSTs and sensible heat flux. The study also revealed a statistically-

significant correlation (p < 0.05; R2 = 0.88) between LE and VFC at the zonal level, and 

a statistically-significant correlation (p < 0.05; R2 = 0.90) between H and ISApercent.  

Yang et al. (2017) mapped the influence of land use/land cover changes on the urban Heat 

Island Effect of Changchun. They examined Landsat data acquired in 1984, 1992, 2000, 

2007, and 2014 to establish their spatio-temporal patterns. The results revealed dramatic 

changes in both land use / land cover and UHI patterns of the city over the 30 year period. 

It shows that the urban area grew more than four times from 143.15 km2   in 1984 to 

577.45 km2 in 2014 while the percentage of UHI regions rose from 15.27percent in 1984 

to 29.62percent in 2014. The study established that average LST of the city rose 

continuously consistent with the transformation in different land uses and land cover type 

into urban areas. It established a very strong positive relationship between LST with 

impervious surface area (ISA). 

Ali et al. (2017) studied the spatial variation in the land surface temperature across 

specific zones in Bhopal city (India) in a bid to understand how the surface temperature 

varies with the spatial characteristics of the landscape. Mono Window Algorithm was 

used to extract LST from Landsat 8 TIRS imagery data. The study revealed that green 
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spaces had the lowest surface temperature of about 30.5°C in parks with dense tree cover 

and possessed highest mean normalized difference vegetation index value of about 0.5. 

The built up/barren areas on the other hand had surface temperature as high as 36.1 °C. 

The study reveals the correlation that exists between surface vegetation and surface 

temperature across the landscape of the city; as dense tree cover and land surface 

temperature exhibited a strong negative correlation, while decreased vegetation cover and 

successive increase in urban built up area were found to be related with high surface 

temperatures.  

Chaithanya et al. (2017) estimated land surface temperature of  Calicut City and Suburbs, 

India using Mono Window Algorithm from Landsat images of 2003, 2008 and 2015. The 

study classified the satellite data into land use categories such as vegetation, built up and 

water bodies; calculated land surface temperature; and derived NDVI of the study 

locations over the study period. The study revealed a gradual rise in LST from 2003 to 

2015 owing to the decrease in urban vegetation as observed in the land use. They also 

found negative correlation between NDVI and LST.  

Miles and Nansen (2017) assessed the UHI in 28 cities in northern West Siberia (NWS) 

utilizing MODIS MOD 11A2 land surface temperature (LST) 8-day composite product. 

The study demonstrated that all 28 cities exhibited a persistent UHI in both summer and 

winter. It also revealed differences in summer and winter regarding the UHI effect. 

Correlation analysis employed by the study revealed the strongest relationships between 

the UHI and population (log P)while regression models using log P alone explained 65–

67 percent of the variability of UHIs in the region.  

Kotharkar and Bagade (2018) utilized data collected from fixed station points and mobile 

traverse survey conducted during the month of December 2015 and February 2016 of 
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winter season to measure canopy layer heat island (CLHI) in a compact city of Nagpur, 

India using Local Climate Zone (LCZ) classification. The study also assessed the inter-

LCZ temperature difference within the city and identified areas that require intervention 

in curbing heat island. The methodologies employed by the study include temperature 

buffer analysis, sensor lag determination, forecasting, outlier analysis and Pearson – 

correlation technique. The result reveals that during winter period the UHI intensity 

within built LCZ in the city ranges from 1.76 to 4.09 °C, with the compact low-rise LCZs 

at the urban core having warmer temperatures than other major LCZ in the inner areas of 

the city. It further reveals thermal variation between traditional LCZs and the LCZs with 

subclasses. 

2.12.4  Empirical studies on land surface temperature in Africa 

Odindi et al. (2015) quantified multi-seasonal heat contribution of major Land-Use-Land-

Cover (LULC) within the Ethekwini Municipal Area (EMA), South Africa using Landsat 

8 and MODIS Land Surface and Temperature (LST) data-sets. In order to assess the 

contribution of urban greenery as possible remedy to Urban Heat Island (UHI), major 

LULCs were grouped into four functional zones. Contribution Index (CI) was used to 

determine multi-seasonal heat contribution to the area. Results revealed that impervious 

surfaces were the major heat source while the green spaces were the major heat sinks. It 

also showed that the built-up/green spaces transition zones accounted for significantly 

lower heat contribution to the entire landscape; revealing the value of developing greenery 

mosaics within the often densely built-up urban areas. The study further demonstrates the 

value of remotely sensed data-sets in understanding the implication of LULC types on the 

urban micro-climate. 
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Aremu et al. (2017) utilized a time series of Landsat data from 1986 to 2014 to determine 

the urban growth and the intensity of urban heat island in Akure town (Nigeria). From the 

remotely sensed data, the study evaluated the spatial distribution of urban surface 

temperature and NDVI in the urban area. The study indicated that the greatest urban 

growth occurred in Akure South with 54.22 percent and 58.96 percent for 1986-1999 and 

1999-2014 periods respectively. The study further revealed that greater growth occurred 

in the second period with a total of 60.20 km² compared to the total of 49.96 km² in the 

first period.  

The study also demonstrated that urban growth over the entire study area had a yearly 

increase of 47.79 km². It showed that changes in LULC were accompanied by changes in 

NDVI and LST. In 1986, average NDVI (mean ± S.D.) in the non-built up area was 0.30 

± 0.07 and for the built-up area, it was 0.16 ± 0.09. However, this statistics reduced to 

0.28 ± 0.06 and 0.13 ± 0.06 the non-built up area and the built-up area respectively in 

1999. In 2014 the statistics was 0.24 ± 0.05 for non-built up and 0.06 ± 0.04 for built-up. 

It revealed that temperature in the non-built up area in 1986 was 24.01 ± 2.21 and 27.28 

± 1.12 for the built-up area but this difference increased to 26.52 ± 2.02 and 29.86 ± 1.66 

for non-built up and the built-up respectively in 1999. Year 2014 saw a further increase 

to 31.48 ± 2.03 and 33.82 ± 1.07 respectively.  Lastly, difference between the urban/built-

up and non-built up significantly widened; leading to a higher intensity of UHI in the 

town. 

Nse et al. (2020) examined land cover changes and the relationship with LST and NDVI 

in Uyo, Nigeria using multispectral Landsat imageries of the study area for the years 

1986, 2000 and 2018. Maximum Likelihood Classification (MLC) algorithm to extract 

land cover classes. LST was derived using a single channel algorithm applied on the 
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imagery thermal bands, while the NDVI equation was employed in computing the NDVI 

of the imageries. Lastly, the relationship between land cover, LST and NDVI was 

evaluated using the Contribution Index (CI) and Pearson’s Correlation analysis. The 

result shows that vegetation decreased from 278 km2 in 1986 to 219 km2 in 2018, 

wetlands declined from 20 km2 to 17 km2 during the period. Barren lands also declined 

from 33km2 to 25km2 while built-up areas increased from 69 km2 to 139 km2. 

Furthermore, the results  shows that the mean LSTs in the city were 21.67 °C (1986), 

25.40 °C (2000) and 26.04 °C (2018) with built up areas making the highest contribution 

to LST and the lowest was by vegetation. The study also revealed a high negative 

correlation between LST and NDVI at the three periods of study.  

2.13 Review of Statistical Studies on Urban LST   

Eliasson and Svensson (2003) statistically surveyed spatial air temperature variations in 

Göteborg, Sweden in relation to urban land use. The study utilized temperature data 

collected during an 18-month period at 30 sites in the city; a continuously updated land 

use/land cover data base of the town, the Master Plan of the city, and a separate site 

description analysis. The essence of the study was to investigate whether or not the 

temperature variations which revealed intra-urban air temperature differences of up to 9 

°C in the urban district are statistically significant. The study applied two statistical 

methods; one stepwise multiple regression analysis and an analysis of variance test. 

Temperature anomalies, calculated as the temperature deviation at every station from the 

mean of all stations during each hour, were used in the statistical analysis. The multiple 

regression analysis was performed on monthly, seasonal and single day data sets to 

determine the relative effect of surface cover on the temperature pattern.  
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The results of the multiple regression analysis revealed that surface cover played an 

important role in governing air temperature differences in the area. The analysis of 

variance was carried out to test if the 12 land use classes contained in the Master Plan 

could be differentiated on the basis of temperature data. The results showed that only the 

air temperature deviations in land use classes, urban dense, multi-family and single 

houses, could be differentiated on a statistical basis.  

The study also employed a site description analysis which includes a test of three methods 

using aerial or fish-eye photos for characterization of surface cover in the urban district. 

The results show statistically significant temperature variations between different land 

use/land cover categories on a diurnal basis and for all weather conditions.  

Makido et al. (2016) examined the spatial and temporal variation of air temperature 

throughout Doha (Qatar). They acquired summer time near surface air temperature data 

across the city by means of vehicle traverses using highly resolved temperature and GPS 

data logs to determine spatial differences in summertime air temperatures. The study used 

three statistical approaches vis a viz  Ordinary Least Squares (OLS), Regression Tree 

Analysis (RTA), and Random Forest (RF). The study revealed that temporal variations in 

urban heat are mediated by different factors throughout the day. The average RMSE for 

OLS, RTA and RF is 1.25, 0.96, and 0.65 (in Celsius), respectively, suggesting that the 

RF is the best model for predicting near-surface air temperatures. 

Silva et al. (2017) utilized statistical techniques to study the spatial and temporal 

variability patterns of the urban heat island (UHI) in the Metropolitan Area of Sao Paulo 

(MASP) using hourly temperature observations for a 10-year period (January 2002 to 

December 2011). The study used principal component analysis (PCA) and cluster 

analysis (CA) multivariate analysis techniques to determine the dominant modes of UHI 
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variability and to identify the homogeneity between the temperature observations in the 

area. The PCA method was employed in obtaining the spatial patterns and to define 

temporal variability. For the spatial patterns three major modes of variability were 

recognized; explained by 66.7 percent, 24.0 percent and 7.8 percent of the total variance 

in the air temperature.  

The results revealed that the first and third PCAs were associated with wind movement 

in the area while the second which was related to the level of urbanization, the release of 

heat stored in the urban canopy and the release of heat by human sources was considered 

the most important mode.  For the temporal variability, the PCA revealed two modes of 

variability explained by 49.4percent and 30.9percent of the total variance in the area. The 

result of the CA identified six homogeneous groups corresponding to the PCA patterns 

observed. The study further revealed that the standard UHI based on the scale and annual 

seasons for the period shows maximum values between 14:00 and 16:00 local time while 

minimum values were obtained between the hours of 07:00 and 09:00 local time.  
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CHAPTER THREE 

3.0           MATERIALS AND METHODS 

3.1.1 Field surveys 

A preliminary reconnaissance field visit was paid to the selected cities to garner firsthand 

information about the urban/suburban environments of the cities. Interactions with 

residents of the cities during the pre-field visit already indicated a rapid expansion of the 

cities and a somewhat higher temperature in recent times. A thorough field survey was 

then performed in all the cities under focus. The field surveys utilized a Global 

Positioning System (GPS) receiver to acquire needed geographic coordinates. 

Information acquired during the field survey was used for several purposes  

The field survey was  used to get acquainted with different LULC patterns in the study 

locations and was utilized in LULC classification procedure. Secondly, it was used to 

associate the ground-truth information of specific land use types with their imaging 

characteristics to enable image classification and production of  land use maps. The recce 

provided information on anthropogenic activities within the cities and to obtain ancillary 

data like knowledge-based, existing land-use, and topographic maps. Office 

reconnaissance was also carried out on the selected city centres. This involved review of 

documented literatures, journals, information guides, and cadastral maps etc. related to 

each of the selected cities to develop a very sound knowledge base of the study centres.  

3.1.2 Climatic data 

Temperature data used for this study is daily ERA Interim (European Reanalysis) grid-

based 2 metre above ground daily noontime maximum temperature (oC) data products of 

the European Centre for Medium-Range Weather Forecasts (ECMWF) from 1990 to 

2019. ERA-Interim is a global frequently used atmospheric reanalysis data. The spatial 
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resolution of the data set is approximately 80 km on a default grid size of 0.75° x 0.75° 

latitude/longitude but was projected on 0.125° x 0.125° (14km by 14km) 

latitude/longitude grid. Maximum temperature was used because; being an hourly data 

there was no significant variation between the minimum and maximum values of the same 

hour. The ERA-Interim data were downloaded at ECMWF website. The data points for 

each of the four cities are presented on Table 3.1 

 

Table 3.1 Temperature data coordinates for the surveyed cities 

City Latitude Longitude Ecological Zone 

Birnin Kebbi 12° 22' 30" 4° 22' 30" Sudan 

Kano 12° 0' 00" 8° 30' 00" Sudan 

Ibadan 7° 22' 30" 3° 52' 30" Tropical Rainforest 

Owerri 5° 22' 30" 6° 52' 30" Tropical Rainforest 

Source: Author’s work (2023) 

The data utilized are those of 12:00hrs time-interval at 2m above the ground and step 12. 

ERA-Interim is a spatially and temporally complete data set of multiple variables at high 

spatial and temporal resolution, improved low-frequency variability and improved 

stratospheric circulation. The fair spatial distribution of the observation point justifies it 

adoption for interpolation between the non-observed points.  

3.1.3  Satellite imageries 

Remotely sensed Landsat satellite imageries were used for this study because of their 

relatively high spatial resolution and their ability to depict temperature variations in the 

heterogeneous urban/suburban environments. The datasets were also chosen on the basis 

of their quality, consistency, resolution, duration of program, time of observation, 

frequency of observation and availability. The datasets are freely available at the Global 

Visualization (Glovis), Earth Explorer and Global Land Cover Facility (GLCF) web 
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interfaces of the United States Geological Survey (USGS), which enable users to preview 

data for quality issues like presence of clouds, data loss or sensor introduced errors. 

Quality control by USGS includes resampling of the data, projection using the Universal 

Transverse Mercator (UTM) Projection System and WGS-84 datum, systematic 

radiometric correction along with geographic referencing, and topographic correction 

using Digital Elevation Models (DEM) from several official sources.  

Cloud-free multi-temporal remotely sensed Landsat data sets were acquired for the work. 

Cloud-free imageries were utilized because clouds cause serious problems in optical 

wavelength remote sensing, since they do not only hide the ground but also cast their 

shadows on it thereby impeding many applications. The utilized data sets include 

Thematic Mapper (TM) imageries, Enhanced Thematic Mapper Plus (ETM+) imageries, 

and Operational Land Imager (OLI) imageries for the urban centres surveyed. 

The spectral characteristics and the band resolution of Landsat data images are presented 

in Table 3.2. Landsat TM sensor which was onboard Landsat 4 and Landsat 5 satellite 

series has seven spectral bands with a spatial resolution of 30 metres for Bands 1 to 5 and 

7. ETM+ sensor onboard Landsat 7 has eight spectral bands with a spatial resolution of 

30 metres for Bands 1 to 7, and 15 metres resolution for Band 8 (panchromatic). The OLI 

and Thermal Infrared Sensor (TIRS) have nine spectral bands with a spatial resolution of 

30 metres for Bands 1 to 7 and  band 9. The spatial resolution for Band 8 (panchromatic) 

is 15 metres. Thermal bands (band 6 for Landsat TM and ETM+,  and bands 10 and 11 

for Landsat OLI) are useful in providing more accurate surface temperatures. The 

approximate scene dimension of all Landsat series is 170 km north-south by 183 km east-

west. The approximate area coverage of each Landsat scene is 31,110 kilometres square.  
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Table 3.2  The Band Characteristics of the Landsat Satellite Data 

 Bands 
Wavelength 

(micrometres) 

Resolution 

(metres) 

Landsat  4 and 5 

Thematic 

Mapper(TM) 

   

Band 1 – Blue 0.45-0.52 30 

Band 2 – Green 0.52-0.60 30 

Band 3 – Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5  - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 – Thermal 10.40-12.50 120* (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 

 
* TM Band 6 was acquired at 120-metres resolution, but products are 

resampled to 30-metres pixels. 

Landsat 7 Enhanced 

Thematic Mapper 

Plus (ETM+) 

Band 1 – Blue 0.45-0.52 30 

Band 2 – Green 0.52-0.60 30 

Band 3 – Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 – Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 

Band 8 – Panchromatic .52-.90 15 

 
* ETM+ Band 6 is acquired at 60-meter resolution, but products are 

resampled to 30-metres pixels. 

Landsat 8 Operational 

Land Imager (OLI) 

and Thermal Infrared 

Sensor(TIRS) 

  

Band 1 - Ultra Blue (coastal/aerosol) 0.43 - 0.45 30 

Band 2 – Blue 0.45 - 0.51 30 

Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 

Band 8 – Panchromatic 0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

 Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

 Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

 
*TIRS bands are acquired at 100 meter resolution, but are resampled 

to 30 meter in delivered data product. 

Source: USGS (2016) 

The Landsat satellite images were ortho-rectified/georeferenced L2T (terrain corrected) 

products from source. However, the geometric accuracy was verified by overlaying and 

comparing with existing maps. Coordinate system verification and projection to Universal 

UTM Zone 32, WGS 1984, Minna Datum was ascertained. The data were used to map 

the LULC of the surveyed cities during the period under review. The thermal bands (band 
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6 for TM, and ETM+ or Bands 10 and 11 for OLI) were used to assess the thermal 

properties of land surfaces (i.e. LST) in the surveyed urban centres. The thermal bands 

were also used to elucidate multi-temporal and multi-spatial variations of thermal 

properties of land in the surveyed urban centres. The study adopted decadal intervals 

(1990, 2000, 2010, and 2019) due to the unprecedented urbanization witnessed in urban 

centres in the developing countries over the last four decades. However, due to the non-

availability of useful imageries for Ibadan in 2000 and 2010, and Kano in 1990, 2000 and 

2010, satellite imageries of the succeeding years (1991, 2001 and 2011) were used.  

In addition, no satellite image was obtained during the wet season between April and 

October due to the presence of clouds which limit the radiometric resolution and 

consequently, their usability. Available Landsat data sets which were available, sourced 

and used for the study are presented in Table 3.3.  

Table 3.3 Landsat Image Datasets 

S/N Location Data Source Path Row Acquisition Data 

1. Birnin Kebbi Landsat TM 191 051 16th October, 1990 

  Landsat ETM+ 3rd October, 2000 

  Landsat ETM+ 15th October, 2010 

  Landsat OLI 16th October, 2019 

2. Owerri Landsat TM 188 056 12th  December, 1990 

  Landsat ETM+ 17th December, 2000 

  Landsat ETM+ 16th December, 2010 

  Landsat OLI 3rd February, 2019 

3. Ibadan Landsat TM 191 055 27th December, 1991 

  Landsat ETM+ 7th March, 2000 

  Landsat ETM+ 3rd January, 2011 

  Landsat OLI 1st January, 2019 

4. Kano  Landsat TM 188 052 11th November, 1991 

  Landsat ETM+ 13th October, 2001 

  Landsat ETM+ 29th October, 2011 

  Landsat OLI 25th October, 2019 

Source: Author (2023) 
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3.2.4 Software components 

Basically three (3) main softwares were used for this study namely: 

(a) Idrisi Terrset version 18.21 

 This is an integrated software system used for the analysis and display of spatial data. It 

includes tools for GIS analysis, image processing, surface analysis, vertical applications 

for land change analysis, earth trend modeler, climate change and adaptation modeler, 

ecosystem services and more. The software also includes a comprehensive suite of image 

processing tools; making it an excellent choice for land cover mapping application with 

remotely –sensed data which is an important aspect of this study. Tools are also provided 

for image restoration, enhancement, classification and transformation.  The software also 

provides a host of machine learning tools, among which include artificial neural network 

classifiers, maximum likelihood classier, and land change and time series analysis most 

of which were utilized for this study. 

(b) ArcMap 10.8  

ArcMap 10.8 was used in producing National, State and Local government boundary 

maps of the study area and to extract the study area from each satellite scene and thereafter 

exported to Idrisi for further image analysis. ArcGIS is both vector and raster based 

software designed by ESRI. It provides a scalable framework for implementing GIS 

(Geographic Information System) for users. ArcGIS is an integrated family of GIS 

software products for building a complete GIS. More specifically, modules such as Arc-

Map, Arc-Catalogue and spatial analysis were used in digitl image processing. The 

software was also used for LST mapping, as well as computation of NDVI and NDBI. 

The software was also used for the embellishment of images that were processed in the 

Idrisi environment due to its greater flexibility and choice of tools. 
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(c) Microsoft Excel 

This is a flexible statistical and data management tool. It was used to generate tabulated 

report, charts, trends and descriptive display and analysis. 

3.2 Methodology for Data Analysis 

3.2.1  Methodology for achieving objective 1 

3.2.1.1   Importing the image into processing softwares 

All the required satellite images (TM, ETM+ and Landsat OLI) were imported into the 

ArcGIS software to create sub-scenes covering the urban areas and fringes of the surveyed 

urban centres, using the shape files of each urban centre. The subset images were then 

imported into the Idrisi Terrset for further processing such as LULC trend 

mapping/classification, LST mapping, as well as computation of NDVI and NDBI. The 

final outputs from these softwares were re-imported into ArcGIS for final editing. Details 

of the methodology are shown in Figure 3.1  

3.2.1.2  Image enhancement  

Image enhancement processes are employed to improve the appearance of images or 

convert them to formats better suited for analysis by a human or a machine. Image 

enhancement techniques are used to improve the appearance of certain features by 

modifying the colours or intensities. Two image enhancement techniques were employed 

to improve the quality of the satellite images that were processed and analyzed. The 

techniques are contrast stretching and Histogram equalization. 

Contrast refers to the difference between the intensity of two adjacent pixels in an image. 

Low- contrast images emerged from non-uniform lighting conditions, non-linearity or 

small dynamic range of the imaging sensor. Contrast stretching focuses on improving the 
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contrast in an image by `stretching' its range of intensity values to span a desired or 

permissible range.  

 
Figure 3.1 Work Flow Chart 

Source: Author (2023) 



145 
 

It equalizes the contrast throughout the image via simultaneous adjustment of each grey 

value at the darkest and lightest portions, thereby promoting the visualization of the 

details and structure of the very light or dark regions. It differs from the other algorithms 

in that it only applies a linear scaling function to the image pixel values resulting in a less 

harsh result. Prior to stretching, the upper and lower pixel value limits over which the 

image is to be normalized will be specified.         

Histogram equalization is a very common technique for enhancing the images. Histogram 

equalization stretches the histogram across the entire spectrum of pixels (0 – 255). It 

increases the contrast of images for the finality of human inspection and can be applied 

to normalize illumination variations in image understanding problems (Shukla et al., 

2017). It is one of the operations that are applied in obtaining new images based on 

histogram specification or modification (Shukla et al., 2017). Generally, histogram 

equalization preserves the image details such that both global and local contrasts are 

enhanced with minimum distortion in the image appearance (Iwasokun and Akinyokun, 

2014). 

3.2.1.3  Layer stacking or image compositing 

To further enhance the images for easy identification of land surface features, the TM and 

ETM+ satellite images were displayed in False Color Composite (FCC) that is a 

combination of band (4,3,2) while those of OLI were displayed in 5,3,2 combination 

because it  produces superior results due to the sensitivity of band 4 and 3 to vegetal cover 

and sensitivity of band 4 to water contents. The FCC provides better visualization and 

identification of built up areas, bare lands, vegetation, and farm land. The 2019 images 

were rescaled from sixteen (16) to eight such that it could correlate with the 1990, 2000 

and 2010 images.  
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3.2.1.4   Creation of training sites for image classification 

The first operation was the sub-setting of the imageries by using boundary file of Area of 

interest (AOI) to extract the study area from the entire satellite image scene, this is 

because a single scene of Landsat image covers 170km by 185km and 16km radius. Thus, 

the major reasons for this operation was to define the study area more precisely, reduce 

file size, reduce processing time,  and reduced storage space. Creation of training sites or 

Areas Of Interest (AOI) were carried out as pre-classification exercise on the layer 

stacked images. The next step towards achieving this is by developing spectral signatures 

from specified locations in the image.  

The ground-truthing experience, geographical coordinates taken during the field visit, and 

high resolution google earth images were used in developing the spectral signatures.  

These specified locations were given the generic name 'training sites' and were defined 

by the user. Generally, vector layers were digitized over the raster scenes. The vector 

layers consisted of various polygons overlaying different land use types.  

The LULC categories of interest in this study include forest cover; light vegetation; bare 

surfaces; built up areas; agricultural lands; and water bodies. Details of the classification 

scheme in the study are presented in Table 3.4. Multiple polygons were created for each 

land use category to help ensure that the software has sufficient information to create the 

spectral signatures. The training sites helped the Idrisi software  develop spectral 

signatures for the outlined areas.  

3.2.1.5  Image classification 

The multi-temporal images were classified into the desired six classes. The essence of 

classification was to categorize all pixels in a digital image into one of several land cover 

classes or themes. These categorized data were then used to produce thematic maps of 
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the land cover present in an image. Layer stacked multispectral data were used to perform 

the classification and the spectral pattern present within the data for each pixel was used 

as the numerical basis for categorization. The objective of image classification is to 

identify and portray as unique colours, the features occurring in an image in terms of the 

object or type of land cover these features actually represent on the ground. The training 

sites or ROIs already generated  were used for the image classification exercise. 

Table 3.4 Classification Scheme Used for this Study   
S/N Class  Description 

1 River/ water 

bodies                                             

Open water features such as rivers, streams, lakes and reservoirs, 

permanent open water, ponds, canals, permanent/seasonal wetlands, 

low-lying areas, marshy land, and swamps. 

2 Built-up Areas under urban and rural built-up including homestead areas. All 

infrastructure—residential, commercial, mixed use industrial areas, 

villages, settlements, road network, pavements, and man-made 

structures. 

3 Forest cover  Area cover with thick vegetation 

4 Bare surfaces Open land devoid of vegetation 

5 Farmland/Agricult

ural  

lands 

Fallow land, earth and sand land in-fillings, construction sites, 

developed land, excavation sites, open space, bare soils, and the 

remaining land cover types. 

6 Light Vegetation  Trees, natural vegetation, mixed forest, gardens, parks and 

playgrounds, grassland, vegetated lands, agricultural lands, and 

crop fields. 

Source: Author’s Analysis (2023) 

Supervised classification was done on the images. Unlike unsupervised classification 

where the groupings of pixels with common characteristics are based on the software 

analysis of an image without the user providing sample classes, in supervised 

classification, a user selects sample pixels in an image that are representatives of specific 

classes and then directs the image processing software to use these training sites as 

references for the classification of all other pixels in the image. In this study, the created 

areas of interest were used by the image processing software to develop a statistical 

characterization of the reflectance (signature analysis) for each information class.  



148 
 

Maximum likelihood supervised classifier algorithm of the Idrisi Terrset was used for 

classifying the images into classes using the training sites already established on the 

images. The algorithm served as a statistical decision criterion to assist in the 

classification of overlapping signatures by assigning pixels to the class of highest 

probability. The maximum likelihood classifier was chosen because it is considered to 

give more accurate results than other hard classifiers since its procedure assumes that 

each training class in each band is normally distributed (Gaussian).  Idrisi carries out 

maximum likelihood classification by calculating the following discriminant functions 

for each pixel in the image (Richards, 1999): 

                (3.1) 

Where: 

i = class 

x = n-dimensional data (where n is the number of bands) 

p(ωi) = probability that class ωi occurs in the image and is assumed the same for all 

classes 

|Σi| = determinant of the covariance matrix of the data in class ωi 

Σi
-1 = its inverse matrix 

mi = mean vector 

The Idrisi software was chosen because the processes involved in the classification are 

less complicated. It has been effectively and widely employed in Digital Image 

Processing (DIP). Its algorithm for carrying out accuracy assessment of the classified 

images is also quite simple and straight forward. Field observations and site visits were 

done to aid in correlating the LST against the land cover categories. Also, high resolution 

google earth images were employed in enhancing the accuracy of the classification 
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exercise. The statistical coverage of the classes were extracted from the software and used 

to derive percentage changes calculated after Bissadu (2015) as follows:  

   Percentage change    ₌   
observe change

sum of chnge
  × 100                                                           (3.2) 

The classification results were utilized in correlating the land surface temperatures with 

the existing land cover to accurately classify and map the land cover categories. Field 

observations and site visits were done to aid in correlating the LST against the land cover 

categories. 

3.2.1.6  Accuracy assessment 

Accuracy assessment otherwise known as thematic accuracy was performed on each of 

the classified images. This was achieved using the function of accuracy in the processing 

software. An accuracy assessment is carried out by determining a confusion matrix, which 

establishes relationships between the mapped class label and that observed on the ground 

or reference data for a sample of cases at specific locations. The overall accuracy is 

determined by dividing the number of correctly classified pixels by the total number of 

reference pixels. It  is the most suitable technique for calculating accuracy assessment.  

The Kappa coefficient of agreement is utilized in improving the overall accuracy. It it is 

used in expressing the proportional reduction in error generated by a classifier compared 

to the error in an entire random classification (Al-Ahmadi and Hames, 2009). In an error 

matrix, the producer’s accuracy is the ratio calculated by the number of correctly 

classified pixels in one class divided by the total number of referenced pixels of this class. 

On the other hand, the user’s accuracy refers to the ratio which is calculated by the number 

of correct classified pixels in one class divided by the total number of classified pixels in 

this class. The overall classification accuracy is calculated by the number of correct 
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classified pixels divided by the total number of classified pixels. The kappa coefficient is 

often used for estimating the accuracy of the classification (Bakr et al., 2010). The Kappa 

values such as: 0.80 (i.e., 80 percent) represents strong agreement; 0.40 and 0.80 (i.e., 

40–80 percent) represent moderate agreement; and a value below 0.40 (i.e., 40 percent) 

represent poor agreement (Congalton and Ross, 1999). 

3.2.1.7  Post classification LULC change detection 

After classification of imageries for the individual years and carrying out accuracy 

assessment of each classified image in Idrisi environment, change detection was carried 

out in ArcGIS environment. The change detection was carried out in two phases namely; 

change detection by area calculation and change detection by nature.  

Three steps were utilized for determining change detection. The first step was to calculate 

the magnitude of change, by subtracting observed change of each period of years from 

the previous years. The second step was to calculate the trends through subtracting the 

percentage of the previous land use from the recent land use and dividing by the previous 

land use and multiplying by 100 (B-A/Ax100).  The last step was to calculate the annual 

rate of change by dividing the percentage change by 100 and multiplying by the number 

of the study years, that is 30 years (199-2019). 

The nature of change was derived through map overlay. The four classified imageries for 

each study location were exported to ArcGIS in TIF (Geo Tiff) format TIFF, overlayed 

and analyzed in ArcMap. The areas of the classified LULC in each image were then 

calculated using the area module of the ArcMap in generating the magnitude, trends and 

percentage change of each of the classes in each image. 
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3.2.1.8  Computation of normalized difference vegetation index (NDVI) 

The NDVI, which is the most commonly used satellite-based measure of vegetated 

regions is used for determining the vigour or health of vegetation/vegetation abundance. 

It was calculated to estimate the relationship between LST and vegetation for all the cities 

being investigated. NDVI makes it possible to compare images over time to assess 

ecologically significant changes. The formula for computing NDVI after Qin et al. (2004) 

is given below: 

NDVI =
NIR− RED 

NIR+ RED  
                                                                                                                     (3.3)                

 

Where 𝑁𝐼𝑅 and 𝑅𝐸𝐷 are reflectances in the near-infrared band (0.76-0.90μ𝑚) and the 

red band (0.63-0.69 μm) respectively for Landsat TM, ETM+ and OLI. 

NDVI values range between -1 and 1 with vegetated areas generally yielding high values 

due to their relatively higher near-infrared reflectances and low reflectances in the visible. 

In contrast, water, clouds, and snow possess higher reflectance potentials in the visible 

range than near-infrared reflectance and thereby yield negative index values. The equation 

was adopted because of its wide usage arising from its advantages, such as lower influence 

of atmospheric variations, its high sensitivity to chlorophyll, reduced noise through 

normalization between −1 and +1, as well as the possibility to assess and monitor 

ecologically significant seasonal changes (Ogashawara and Bastos, 2012). 

The Multi-temporal NDVI layers for all the cities were re-classified using the mean-

standard deviation method after Bozorgi and Nejadkoorki (2019). Accordingly, the NDVI 

layers were grouped into five interval classes namely: the low NDVI, secondary low-

NDVI, medium NDVI, secondary high-NDVI, and high NDVI areas (Table 3.5). 
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Table 3.5 Threshold values for NDVI Classes 

NDVI classification     Category interval 

High NDVI area      Ts>μ+std 

Secondary high NDVI area      μ+0.5std<Ts ≤ μ+std 

Medium NDVI area      μ-0.5std ≤ Ts ≤ μ+0.5std 

Secondary low NDVI area      μ-std ≤ Ts<μ-0.5std 

Low NDVI area      Ts<μ-std 

Source: Author’s Analysis, 2023 

Where:  

Ts =  Normalized NDVI Value 

μ = Mean 

std Standard Deviation 

 

3.2.1.9  Computation of normalized difference built-up index (NDBI) 

The NDBI is a useful measure of the intensity of imperviousness using satellite data 

(Bhatti and Tripathi, 2014) It was computed for all the selected cities.  This index was 

initially developed for use in bands 4-5 of Landsat TM imagery but has worked accurately 

with with successive Landsat series or other multi-temporal sensors. NDBI is useful in 

highlighting the distribution of urban surfaces due to their typically  higher reflectances 

in the short-wave infrared band in comparison with the near-infrared band. It was 

calculated using the following Equation by Limin and George (2003). 

NDBI =
SWIR −  NIR  

SWIR +  NIR  
                                                                                                   (3.4) 

 

Where 

𝑆𝑊𝐼𝑅 is the short-wave infrared band ranging from 1.57 - 1.65μ𝑚, while 𝑁𝐼𝑅 is the 

near-infrared band ranging from 0.85 to 0.88μ𝑚.  

The Multi-temporal NDBI layers for all the cities were re-classified using the mean-

standard deviation method after Bozorgi and Nejadkoorki (2019). Accordingly, the NDBI 
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layers were characterized into five interval classes namely: the low NDBI, secondary low-

NDBI, medium NDBI, secondary high-NDBI, and high NDBI areas (Table 3.6). 

Table 3.6  Threshold values for NDBI Classes 

NDBI classification     Category interval 

High NDBI area      Ts>μ+std 

Secondary high NDBI area      μ+0.5std<Ts ≤ μ+std 

Medium NDBI area      μ-0.5std ≤ Ts ≤ μ+0.5std 

Secondary low NDBI area      μ-std ≤ Ts<μ-0.5std 

Low NDBI area      Ts<μ-std 

Source: Author’s Analysis, 2023 

Where:  

Ts =  Normalized NDBI Value 

μ = Mean 

std Standard Deviation 

3.2.2  Methodology for achieving objective 2  

Temperature data was downloaded in Network Common Data Form (NetCDF) format 

but were extracted for the four study cities using the Grid Analysis and Display System 

(GrADS) software into Comma Separated Values (CSVs). To detect the trend and 

seasonality in the maximum noon-time temperature for the four selected cities in the two 

ecological zones of Nigeria, non-parametric Mann-Kendall trend and seasonal trend tests 

were done. To achieve these, statistical properties of the data were first determined 

through graphical examination of the data; using time plots, boxplots, density plots and 

Q-Q plots. In addition, the normality test of Shapiro-Wilk (S-W test) was applied. Pettitt 

test was employed in testing for single change-point detection in the temperature series. 

The brief discussions of the statistics are as follows: 

3.2.2.1  Shapiro-Wilk test for normality 

The Shapiro-Wilk test is a powerful test for verifying if climatic data series are normally 

distributed (Shapiro, 1980; Gilbert, 1987). In recent times, Shapiro-Wilk test has become 
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highly preferred because of its good power properties as compared to a wide range of 

alternatives (Mendes and Pala, 2003). The S-W test is similar to computing correlations 

between the quantiles of the standard normal distribution and ordered data points of the 

climatic series. The null hypothesis assumes that the population follows a normal 

distribution while the alternative assumes that the population does not follow normal 

distribution. The test statistic equation by Shapiro and Wilk (1965) is given as follows: 
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where, )(iy is the ordered sample values and ia is the constance generated from the 

means, variances and covariances of the order statistics of a sample of size (n) from a 

normally distributed population (Pearson and Hartley, 1972). 

3.2.2.2  Mann-Kendall trend test 

Mann-Kendall test is a non-parametric method which is widely employed to check the 

null hypothesis of no trend versus the alternative that there exists a monotonic increase 

or decrease in trend of a climatic time series data. The test statistic S is computed as 

follows:  
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The mean of S is E[S] =0 and the variance 
2  is: 
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where p is the number of the tied groups in the data set and jt is the number of data 

points in the jth  tied group. The statistic S is approximately normally distributed for data 

values greater than or equal to 10 and provided that the following Z-transformation is 

employed: 
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The significance of trend is usually measured using Z critical values. A positive Z value 

indicates rising or increasing trends while the negative Z value reveals downward or 

decreasing trends. 

The statistic S is closely related to Kendall’s   as given as follows: 
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3.2.2.3  Sen’s slope estimator 
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A simple non-parametric technique to estimate the true slope, and an intercept, if a linear 

trend is present in a time series was developed by (Sen, 1968). The slope is calculated 

thus: 
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       kjNi  ,,.3,2,1                                       (3.9) 

for (  nji 1 , where q is the slope, X denotes the variable, n is the number of data, 

and i, j are indices. 

Sen’s slope is then computed as the median from all slopes: b = median iq . The intercepts 

are calculated for each time (t) as given by: 

btXa tt                      (3.10) 

Also, the corresponding intercept,  as well as the median of all intercepts. 

The Sen’s estimator of slope is the median of these N values of iq . The N values of iq  

are ranked from the smallest to the largest. The Sen’s estimator is: 
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A hundred (1  ) percent two-sided confidence interval about the slope estimate was 

obtained by the non-parametric technique based on the normal distribution. 

3.2.2.4  Pettitt’s test for change-point detection 

The Pettitt test non-parametric test after Pettitt (1979), is used to detect a single change-

point in climatic or hydrological series with continuous data. The null hypothesis assumed 
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that the observations followed one or more distributions that have the same location 

parameter (no change) while the alternative hypothesis assumed that there existed a 

change point. The ranks nrrr ,..........,.........2,1  of  nxxx ,..........,.........2,1  were used to 

calculate the statistics: 
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The test statistic is the maximum of the absolute value given as: 

TtT UK ,max ,                             (3.11) 
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The change-point of the series is located at TK , provided that the statistic is significant. 

The significant probability of TK  is approximated for 05.0p  with: 
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3.2.2.5  Mann-Kendall seasonal test 

The Mann-Kendall statistic for the gth season is given as follows: 
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The mean of gS  is 0g  and the variance including the correction term for ties is: 
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According to Hirsch et al. (1982), seasonal Mann-Kendall statistic for the entire series is 

calculated as: 
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The statistic gS is approximately normally distributed, with: 

ggg Sz   

If continuity=TRUE then a continuity correction will be employed: 

ggg SSz /)1)(sgn(   

3.2.3    Methodology for achieving objective 3 

This objective was achieved by extracting LST  from processed Landsat imageries. The 

universal single-channel (USC) algorithm was used for retrieving/investigating LST 

values from the thermal-infrared bands of Landsat Images, with the aid of ArcGIS 

application software. The LSTs were extracted from Landsat TM and ETM+ band 6, 

and Landsat 8 (OLI) band 10. Band 11 data of Landsat 8 TIR was not used because it is 

significantly more contaminated by stray light than Band 10 and is therefore not 

recommended for any quantitative analysis (USGS, 2016).  

The Digital Numbers (DN) values for each image were converted to radiance, and 

radiance was further converted to reflectance. Emissivity was estimated from reflectance, 

and subsequently the emissivity corrected surface temperature; which served as part of 

atmospheric correction was derived. The formula for approximating the LST was then 
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inputted and the final output was the LST map for each of the stipulated years. The various 

steps and processes adopted have been detailed as follows: 

 

 

3.2.3.1  Radiometric calibrations 

In order to minimise radiometric differences between images, the digital numbers of the 

Landsat images were converted to normalised atmospheric reflectance, using the equation 

by Trotter et al. (2017) as follows: 

Lλ = Gain × DN + bias                                                                               (3.12) 

Where:  

Lλ = the normalised atmospheric reflectance (in Watts * m−2 * sr−1 * µm−1) 

DN = Digital numbers of the Landsat images 

Gain and Bias =  conversion coefficients 

3.2.3.2. Conversion to at-sensor spectral radiance (Qcal – Lλ) 

Calculating At-Sensor spectral radiance is crucial in converting image data from multiple 

sensors and platforms into physically meaningful common radiometric scales (Chander 

and Markham, 2003). Radiometric calibration of the Landsat images encompasses 

rescaling of the digital numbers (Q) transmitted from the satellite to calibrated digital 

number (Qcal), with same radiometric scaling for all scenes processed on the ground for a 

specific period. The Landsat image calibration formula was adapted from Chander and 

Markham (2003) and Chander et al. (2009) as folllows: 

Lλ = 
𝐿𝑀𝐴𝑋λ−LMINλ

(𝑄𝐶𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
 (Qcal − Qcalmin) + LMINλ                                               (3.13) 

 

Or 
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Lλ = Grescale × Qcal + Brescale                                                                             (3.14) 

Where: 

Grescale  = (
𝐿𝑀𝐴𝑋λ−LMINλ

(𝑄𝐶𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
 ) 

 

Brescale  = LMINλ − 
𝐿𝑀𝐴𝑋λ−LMINλ

(𝑄𝐶𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
 Qcalmin  

 

Lλ = Spectral radiance at the sensor’s aperture [W/ (m2srμm)] 

Qcal = Quantised calibrated pixel value (DN)   

Qcalmin  = Minimum quantised calibrated pixel value corresponding to LMIN (DNλ)  

Qcalmax   =  Maximum quantised calibrated pixel corresponding to LMAX (DNλ)  

LMINλ =  Spectral At-sensor radiance that is scaled to Qcalmin [W/ (m2srμm)] 

LMAXλ = Spectral At-sensor radiance that is scaled to Qcalmax [W/ (m2srμm)]  

Grescale   =  Band-specific rescaling gain factor [W/ (m2srμm))/DN]  

Brescale   =  Band-specific rescaling bias factor [W/ (m2srμm)] 

 

3.2.3.3  Conversion of radiance top of atmosphere (TOA) reflectance (Lλ – ρλ) 

This was done to achieve a reduction in scene-to-scene variability and this was achieved 

by converting the At-sensor spectral radiance to exo-atmospheric TOA reflectance, also 

known as in-band planetary albedo (Gallo et al., 1993). The TOA reflectance of the earth 

was computed using the equation by Chander and Markham (2003) and Chander et al. 

(2009). 

ρλ =  
π• Lλ•d2 

ESUNλ• cosƟs 
                                                                                      ( 3.15) 

 

Where;  

ρλ   = Planetary TOA reflectance (unitless)   

π   =        Mathematical constant approximately equal to 3.14159 (unitless) 

Lλ   =  Spectral radiance at the sensor’s aperture [W/ (m2srμm)] 

d  =  Earth-sun distance (astronomical units) 

ESUNλ  =  Mean exo-atmospheric solar irradiance [W/ m2lam)]  

Ɵs   =  Solar zenith angle (degrees) 

 

3.2.3.4 Conversion from at-sensor spectral radiance to land surface 

temperature (Lλ - LST) or brightness temperatures 

The thermal bands data of Landsat 5, 7 and 8 were converted from At-sensor spectral 

radiance to effective Land Surface Temperature. The LST assumes that the earth surface 
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is a black body and includes atmospheric effects (absorption and emission along path). 

The LST uses the pre-launched calibration constants given by Plank’s equation (Gallo et 

al., 1993). The conversion formula from the At-sensor spectral radiance to LST utilized 

is the one given by Chander and Markham (2003) and Chander et al. (2009) as follows: 

LST = 
𝐾2

𝐼𝑛 (
𝐾1+𝐸

𝐿𝜆
+1)

        (3.16) 

Where: 

LST  = Land Surface Temperature (Kelvin) 

K2  = Calibration constant 2 (Kelvin) 

K1  = Calibration constant 1 [W/ (m2srμm)] 

Lλ  = Spectral radiance at the sensor’s aperture [W/ (m2srμm)] 

E  =  Emissivity corrected reflectance 

In  = Natural Logaritm 

Temperature values was converted from degree kelvin (K) to degree Celsius (oC) by 

subtracting 272.15 from the kelvin value, which is the conversion rate from kelvin to 

Celsius. 

3.2.3.5  Re-classification of LST ranges 

To garner a better understanding of the SUHI intensity, which is the LST difference 

between the city centre and the surbubs, the multi-temporal LST layers for all the cities 

were re-classified using the mean-standard deviation method after Bozorgi and 

Nejadkoorki (2019). Accordingly, the LST layers were grouped into five interval classes 

namely: the low temperature, secondary low-temperature, medium temperature, 

secondary high-temperature, and high temperature (Table 3.7)  

3.7 Threshold values for classification of LST 
Temperature classification     Category interval 

High temperature area      Ts>μ+std 

Secondary high temperature area      μ+0.5std<Ts ≤ μ+std 

Medium temperature area      μ-0.5std ≤ Ts ≤ μ+0.5std 

Secondary low temperature area      μ-std ≤ Ts<μ-0.5std 

Low temperature area      Ts<μ-std 

Source: Author’s Analysis, 2023 
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Where:  

Ts =  Normalized LST Value 

μ = Mean 

std Standard Deviation 

The threshold values for the classification are indicated in Table 3.7. For instance, if a 

pixel’s LST is lower than the mean LST, 𝜇, minus the standard deviation (std), then the 

heat intensity of this pixel will be classified as “low”. The other threshold values will be 

𝜇-std/3, 𝜇+std/3, and 𝜇+1std and ≥ 𝜇+1std for low, medium, high, and very high 

respectively.  

The benefit of using mean value and standard deviation is that spatial differences of LST 

can be revealed regardless of the actual LST values which vary between different years.  

3.2.4 Methodology for achieving objective 4  

To achieve objective 4, statistics of the results of the analysed data in objective three for 

each city in the two ecological zones were extracted and compared using analytical charts. 

3.2.5  Methodology for achieving objective 5 

This was achieved by relating the results of the derived NDBI and NDVI in objective one 

with LST results of objective three. The Pearson Product Moment Correlation coefficient 

was performed for a relationship between the two variables. Pearson Product Moment 

Correlation coefficient as used by Mukaka (2012) is given as: 

𝑟 =  
𝑁 ∑ 𝑥𝑦−∑ 𝑥 ∑ 𝑦

√⌈𝑁 ∑ 𝑥2−(∑ 𝑥)2⌉⌊𝑁 ∑ 𝑦2 −(∑ 𝑦2−(∑ 𝑦)
2

⌋

                                                                   (3.17) 

Where: 

N = Number of pairs of scores 

∑ 𝑥𝑦 = Sum of pairs of scores 

∑ 𝑥 = Sum of x Scores 
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∑ 𝑦 = Sum of y Scores 

∑ 𝑥2 = Sum of squared x scores 

∑ 𝑦2  = Sum of squared y scores 

 

3.2.6  Methodology for achieving objective 6 

To achieve objective 6, temperature values (in ℃) for each city were extracted randomly 

from the LST maps generated in objective three for each year and overlaid on the 

classified land use/land cover maps generated in objective one for each year.  
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSIONS 

4.1 Landuse /Landcover trends of Ibadan, Owerri, Kano and Birnin Kebbi from 

1990 to 2019 

This section presents the results of  the analysis of landuse/land cover changes, 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up 

Index for the four cities from 1990 to 2019. The results are presented in sections 4.1.1 to 

4.1.5. 

4. 1.1 Landuse/ landcover (LULC) changes in Ibadan 

4.1.1.1  LULC trends in Ibadan from 1990 to 2019 

Results of the landuse/landcover classification of Ibadan in 1990 and 2019 are presented 

in Figures 4.1 - 4.3. Figures 4.1 and 4.2 are the classified images of 1990 and 2019 

repectively while Figure 4.3 is the statistics of each LULC class.  Classified maps of 2001 

and 2011 shown in appendix B.  



165 
 

 
Figure 4.1 Landuse/landcover of Ibadan Metropolis in 1990 

 

Figure 4.2 Landuse/landcover of Ibadan Metropolis in 2019 
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Figure 4.3 revealed a progressive increase in built up areas from 1990 to 2019. It  shows 

that in 1990 built up areas covered 312.90 km2 and accounted for about 9.19 percent of 

the total coverage area. In 2001, it covered 479.45 km2 and accounted for about 14.09 

percent of the total area coverage. 

 
Figure 4.3. LULC of Ibadan 1990-2019 

It further increased to 755.29 km2 and accounted for about 22.21 percent of the total 

coverage in 2011, and finally, to 1,039.54 km2  (30.55 percent) in 2019. The results are 

similar to those of Edobor and Bello  (2017) whose study showed a progressive increase 

in built up from 107 km2 in 1972 to 192 km2 and 381 km2 in 1986 and 2000 respectively.  

The rapid growth in built-up coverage may be attributed to the continuous increase in the 

population of the city occasioned by rural-urban and urban-urban migration as a result of 

perceived oppurtunities.  

Ibadan has been acclaimed to be one of the rapidly expanding cities in Nigeria (Kasim et 

al., 2020). Consequently, built-up areas seemed to have increased with corresponding 

decrease in vegetal cover; particularly forest cover, as well as other land cover classes. 

The growth in the built up area may be associated with increase in residential areas and  

human activities brought about by population growth. Mohammed et al. (2019) raised 
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concerns about the threat rapid increase in urban growth poses to urban green and blue 

spaces. 

The result showed a progressive decrease in forest cover between 1990 and 2019. In 1990, 

forests covered an area of 712.66 km2 and accounted for about 20.94 percent of the entire 

area. 1n 2001, forests covered an area of 408.28 km2 and accounted for about 12 percent 

of the entire area. By 2011, forest cover had reduced to 278.55 km2 (8.19 percent) of the 

entire area, while 2019 witnessed a further reduction in forest  cover to 253.05 km2 and 

accounted for about 7.44 percent of the entire area. The persistent decline in forest cover 

may suggest that agricultural lands and built up areas may have encroached on forest 

cover.  

 

With the exception of 2001 which witnessed a higher coverage of light vegetation, Ibadan 

experienced continuous decrease in light vegetation from 1990 to 2019. Light vegetation 

occupied 1316.21 km2 and accounted for 38.68 percent of the metropolitan area in 1990.  

In 2001, light vegetation increased and occupied 1367.78 km2 (40.19 percent) of the 

metropolitan area. In 2001, light vegetation decreased to 1,298.88 km2 (38.20 percent) of 

the metropolitan area and further decreased to 1,092.51 km2  (32.11 percent) of the 

metropolitan area. The decrease in light vegetation may be attributable to expansion of 

built areas, conversion of land into farmlands, and firewood harvesting. 

Bare surfaces did not exhibit any established pattern during the study period, nor was 

there any significant change.  In 1990, they covered an area of 155.01 km2 accounting for 

4.56 percent of the land cover. In 2001, they covered an area of 482.62 km2 (14.18 percent 

of the land cover) while in 2011, they covered an area of 238.32 km2, accounting for 7.01 

percent of the land cover. 1n 2019, bare surfaces covered an area of 289.27 km2, 

accounting for 8.50 percent of the land cover. The absence of much change in bare surface 
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may be attributed to the fact that they consists largely of rock outcrops and exposed sand 

from the river bed which may only be visible in the absence of vegetation or water on the 

surface. 

Water bodies occupied 14.70 km2 (0.43 percent), 14.80 km2 (0.43 percent), 13.63 km2 

(0.40 percent) and 12.73 km2 (0.37 percent) of the land cover in 1990, 2001, 2011 and 

2019 respectively.of the land cover in 1990. Thus water body did not experience any 

significant change throughout the study period. The slight decline in the percentage of 

water bodies may be attributed to encroachment on water bodies and wetlands by built 

surfaces. Agricultural lands covered 891.51 km2, (26.20 percent), 650.14 km2 (19.10 

percent), 815.94 km2 (23.99 percent) and 715.55 km2 (21.03 percent) in 1990, 2001, 2011 

and 2019 respectively. The seeming decrease in agricultural lands over the period may be 

attributed to annexation by built areas. 

4.1.1.2  Assessment of classification accuracy of LULC in Ibadan 

The accuracy of classification for the four periods of 1990, 2001, 2011 and 2019 for 

Ibadan showed an overall accuracy of 82.65 percent, 84.31 percent, 83.62 percent and 

85.00 percent respectively (See Table 4.1). This was considered a decent overall accuracy 

and, therefore acceptable for the succeeding change detection and analysis. The user’s 

accuracy for different land cover categories ranged between 62.03 percent and 92.00 

percent while the producer’s accuracy ranged between 68.49 percent and 90.99 percent. 

The overall Kappa was also calculated for each of the classified maps to determine their 

accuracy. The results of the four periods 1990, 2001, 2011 and 2019 revealed Kappa 

statistics of 0.80, 0.84, 0.82 and 0.84 respectively. The Kappa coefficient for the four 

periods ranges from substantial agreement to almost perfect agreement on the kappa 

scale, an indication that it is usable.  
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4.1.1.3 The magnitude and percentage change in LULC in Ibadan from 1990 

to 2019 

The magnitude and percentage change in land use/land cover  in Ibadan 1990 and  2019 

are presented in Table 4.2, while those of 1990 – 2001,  2001 – 2011 and 2011 – 2019  

respectively are shown in Appendix C1. Results showed that between 1990 and 2001, 

built up, increased in magnitude by 166.55km2 (15.26 percent) at an annual change rate 

of 1.68 percent. between 2001 and 2011, built up increased in magnitude by 275. 84 km2 

(31.14 percent) at an annual change rate of 3.11 percent. Furthermore, between 2011 and 

2019, built up areas in Ibadan increased in magnitude by 284.25 km2 (42.53 percent) at 

an annual change rate of 3.40 percent.  Generally, between 1990 and 2019, built up 

increased in magnitude by 726.64 km2 (42.19 percent) from 312.90 km2 in 1990 to 

1039.54 km2 in 2019 at an annual change rate of 12.24 percent (Table 4.2).   
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Table 4.1  Classification Accuracy Assessment of Ibadan LULC Imageries (1990, 2001,2011 and 2019)  

 1990 2001 2011 2019 

Class Name Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Built-up areas 82.76 89.50 92.35 98.00 83.60 83.10 79.92 86.09 

Forest cover 88.29 70.47 80.15 86.20 80.51 92.00 90.10 74.76 

Light Vegetation 81.37 86.48 84.74 93.37 87.54 62.03 87.84 80.97 

Bare Surface 80.21 78.61 93.20 86.01 84.31 85.5 75.78 87.65 

Water Bodies 81.00 85.76 82.70 69.40 81.81 83.40 90.99 70.00 

Agricultural lands 81.98 83.67 79.12 80.07 84.19 90.43 68.49 80.53 

Overall 

Classification 

Accuracy (%) 

82.65 84.31 83.62 85.00 

 

Overall Kappa 0.801 0.837 0.823 0.844 

Source: Author’s Analysis (2023) 
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Table 4.2 Magnitude and Percentage  Change in LULCof Ibadan between 1990 

and 2019 
LULC Class 1990 

Extent 

(km2) 

2019 

Extent 

(km2) 

Magnitude of 

Change (km2) 

Percentage 

of Change 

Annual Rate 

% 

Change 

Built up 312.90 1039.54 726.64 42.19 12.24 

Forest cover 712.66 253.05 -459.61 -26.69 -7.74 

Light Vegetation 1316.21 1092.51 -223.7 -13.57 -3.94 

Bare surface 155.01 289.27 134.26 7.79 2.26 

Water body 14.70 12.73 -1.97 -0.11 -0.03 

Agricultural lands 891.51 715.55 -175.96 -10.22 -2.96 

Total 3402.98 3402.98 1722.14 100  

Source: Author’s Analysis (2023) 

The extent of built-up area coverage for 1990 and 2019 is shown in Figure 4.4. The 

increase in the urban built up area may be attributed to urban population explosion 

occasioned by  the influx of rural dwellers to the urban and suburban areas  in search 

of white collar jobs and  presumed better quality of life which puts demand on urban 

residential houses, necessitating the expansion in the urban coverage.  

Forest coverage for the periods 1990- 2001, 2001-2011, 2011- 2019 are shown in 

Appendix C1. It showed that between 1990 and 2001, forest cover changed in 

magnitude by -304.38 km2 (27.89 percent) at an annual change rate of 3.07 percent. 

Between 2001 and 2011, it changed in magnitude by -129.73 km2 (-14.65 percent) at 

an annual change rate of -1.47 percent. Lastly, between 2011 and 2019, forest cover 

changed in magnitude by 25.50 km2 (-3.82 percent) at an annual change rate of -1.47 

percent.  

In general, during the study period between 1990 and 2019, forest cover decreased in 

magnitude by -459.61 km2 (-26.69 percent), from 712.66km2 in 1990 to 253.05 km2 in 

2019, at an annual change rate of -7.74 percent. The progressive decrease in forest cover 

may be attributed to demand for fuel wood, land clearance for urban infrastructural 

development, proliferation of educational institutions, and urban agriculture expansion. 
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Forest coverage for the periods 1990- 2001, 2001-2011, 2011- 2019 are shown in 

Appendix C1. It showed that between 1990 and 2001, light vegetation increased in 

magnitude by 51.57 km2 (4.73 percent) at annual change rate of 0.52 percent. Between 

2001 and 2011, it decreased in magnitude by -68.90 km2 (-7.78 percent) at annual 

change rate of -0.78 percent. 

 
Figure 4.4 Built-up Area Coverage of Ibadan Metropolis in 1990 and 2019 

 

Lastly, between 2011 and 2019, it decreased in magnitude by -206.37 km2 (-30.88 

percent) at annual change rate of -2.47 percent. Generally, from 1990 to 2019, light 

vegetation decreased in magnitude by -223.70 km2 (13.57 percent) from 1316.21 km2 

in 1990 to 1092.51 km2 in 2019, at annual change rate  of -3.94 percent (Table 4.2). 

Bare surface coverage for the periods 1990- 2001, 2001-2011, 2011- 2019 are shown 

in Appendix C1. It showed that bare surfaces increased in magnitude between 1990 and 

2001 by 327.61 km2 (30.03 percent) at an annual change rate of 3.30 percent. It 

decreased in magnitude between 2001 and 2011 by -244.30 km2 (-27.58 percent) at an 
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annual change rate of 2.76 percent. However, between 2011 and 2019, bare surfaces 

increased in magnitude by 50.95 km2 (7.62 percent) at an annual change rate of 0.61 

percent. Generally, from1990 to 2019, bare surfaces increased in magnitude by 134.26 

km2 (7.79 percent) from 155.01 km2 in 1990 to 289.27 km2
 at an annual change rate of 

2.26 percent (Table 4.2).  

Water bodies coverage for the periods 1990- 2001, 2001-2011, 2011- 2019 are shown 

in Appendix C1. Results revealed that water bodies had a very insignificant decrease in 

magnitude of 0.01 km2 (0.001 percent) between 1990 and 2001. Furthermore, it had a 

very insignificant magnitude of change of -1.21 km2 (-0.14 percent) between 2001 and 

2011.  Water bodies further decreased in magnitude to -0.90 km2 (-0.13 percent) 

between 2011 and 2019. By and large, water bodies decreased in magnitude to -1.97 

km2 (-0.11 percent) from 14.70 km2 in 1990 to 12.73 km2 in 2019, an annual change 

rate of -0.03 percent. The slight decrease in water bodies may be attributed to 

encroachment on floodplains by built surfaces. 

Agricultural land coverage for the periods 1990- 2001, 2001-2011, 2011- 2019 are 

shown in Appendix C1. It depicted that agricultural lands increased in magnitude by 

241.37 km2 (22.12 percent) at an annual change rate of 2.43 percent between 1990 and 

2001. The  lands’ area coverage further increased in magnitude by 165.80 km2 (18.72 

percent) at an annual change rate of 1.87 percent between 2001 and 2011.  However, 

between 2011 and 2019, agricultural lands decreased in magnitude by -100.39 km2 (-

15.02 percent) at an annual change rate of -1.21 percent. By and large, between 1990 

and 2019, agricultural lands generally decreased in magnitude by -175.96 km2 (-10.22 

percent) from 891.51 km2 in 1990 to 715.55 km2 at an annual change rate of -2.96 

percent (Table 4.2). The decrease in agricultural land may be attributed to its annexation 

by built surfaces due to urban expansion. 
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4.1.1.4  LULC Conversion model for Ibadan metropolis from 1990-2019 

Land Change Modeler in Idrisi software was used to generate land use conversion 

model for the various land use land cover classes of Ibadan between 1990 and 2019 as 

presented in Figure 4.5. The conversion model for the periods 1990 - 2000, 2000 -2010, 

and 2010 – 2019 respectively are depicted in Appendix D1. The result of LULC 

analysis for Ibadan city for the first period (1990 - 2001) showed that almost all the 

land cover classes lost and gained some grounds. Agricultural lands, light vegetation 

and bare surfaces recorded high losses of -393.14 km2 (-39.44 percent), -347.87 km2 (-

19.92 percent) and -103.37 km2 (-63.09 percent) respectively during the period. 

High gains were recorded by agricultural lands, bare surfaces and forest with 410.77 

km2 (40.49 percent), 315.29 km2 (83.91 percent) and 115.16 km2 (41.24 percent) 

coverages respectively. Bare surfaces, forest, agricultural lands, and built up areas 

recorded positive gains of 211.92 km2 (56.40 percent), 109.92 km2 (39.36 percent), 

17.64 km2 (1.74 percent and 7.71 km2 (2.41 percent) respectively, while light vegetation 

and water bodies had a net loss of -346.78 (-24.78 percent and -0.41 (-2.75 percent) 

respectively. Bare surfaces, agricultural lands and water bodies contributed positively 

to net changes in built up areas, with contributions of 4.64 km2, (2.86 percent), 2.07 

km2 (0.21) and 1.64 km2 (10.76 percent) respectively. 

The second period (2001 – 2011) similarly recorded losses and gains in all land cover 

classes. Forest cover, light vegetation, and built up areas recorded net positive gains of 

14 km2 (52.36 percent), 13.39 km2 (52.36 percent) and 7.08 km2 (6.87 percent) 

respectively. The bare surfaces, water bodies, and agricultural lands recorded net losses 

of -46.41 km2 (-29.59 percent), -20.74 km2 (-0.66 percent), and -18.1 km2 (-39.56) 

respectively. The result also shows that light vegetation (1.75 km2 or 5.92 percent) and 

agricultural lands (1.61 km2 or 4.5 percent) contributed positively to net change in the 
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urban areas while forest cover contributed negatively (-4.85 km2 or -3.15 percent) to 

net change in urban. 

The third period (2011-2019) also recorded losses and gains in all land cover classes. It 

shows that only built up areas recorded net positive gains of 590.47 km2, while the 

forest cover, light vegetation, bare surfaces water bodies and agricultural lands recorded 

net losses of -51.74 km2, -338.03 km2, -24.33 km2, -2.67 km2 and -173.7 km2 

respectively. 

The result for the period also showed that all land cover classes contributed positively 

to net changes in built up areas with net contributions of 57.16 km2, 317.74 km2, 

43.28km2, 2.32 km2 and 169.98 km2  by forest cover, light vegetation, bare surfaces, 

water bodies and agricultural lands respectively. Generally, all land cover classes 

recorded net losses and gains during the entire study period (1990 – 2019). The general 

outlook is presented in Figure 4.5a. Built up areas lost -24.54 km2 (-27.77 percent) and 

gained 623.69 km2 (90.72 percent), forest cover lost -36.55 km2 (-98.06 percent) and 

gained 23.05 km2 (96.96 percent), light vegetation lost -401.54 km2 (-94.49 percent) 

and gained 29.59 km2 (55.81 percent), bare surfaces lost -41.04 km2 (-94.32 percent) 

and gained 36.95 km2 (93.74 percent) while agricultural lands lost -236.27 km2 (-94.13 

percent) and gained 30.11 km2 (67.14 percent). Water bodies lost -3.97 km2 and gained 

0.52 km2. 

By and large, Figure 4.5b shows that only built up areas experienced a positive net 

change (gain) of 599.15 km2  (87.15 percent). Other land cover classes experienced 

negative net changes (losses). Forest cover, light vegetation, bare surfaces and 

agricultural lands all experienced negative net changes of  -13.5 km2 (-56.79 percent), 

-371.95 km2 (-701.45 percent), -4.09 km2 (10.36 percent) -206.16 km2 and (-459.74 

percent) respectively. The result for the period also showed that all land cover classes 
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contributed positively to net changes in built up areas (Figure 4.5c) with net change 

contributions of 26.44 km2 (70.92 percent), 348.38 km2 (81.98 percent), 27.31 km2 

(62.76 percent), 3.14 km2 (79.09 percent) and 193.88 km2 (77.24 percent) by forest 

cover, light vegetation, bare surfaces, water bodies and agricultural lands respectively. 

Thus, light vegetation made the greatest contribution to the net changes in built up. 

Figure 4.5  Land cover transition for Ibadan for 1990-2019   
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4. 1.2 LULC changes in Owerri 

4.1.2.1 LULC trends in Owerri Metropolis from 1990 to 2019 

The Landuse/landcover maps of Owerri metropolitan area in 1990 and 2019  are shown 

in Figures 4.6  and 4.7 while the statistics for the land use classes are presented in Figure 

4.8. LULC maps of 2000, and 2011 are presented in Appendix B. Results showed that 

Owerri witnessed a progressive expansion of built up areas into other land use classes 

from 1990 to 2019. Figure 4.8 shows that built up areas occupied 70.32km2 (12.94 

percent), 166.55 km2 (21.45 percent), 170.55 km2 (31.39 percent), 209.16 km2 (38.50 

percent) of the coverage area in 1990, 2000, 2010 and 2019 respectively.  

 
Figure 4.6 Landuse/landcover of Owerri Metropolis in 1990 

This is similar to the study by Echebima et al. (2019) whose study in parts of Owerri 

revealed that built up areas increased at a rate of 0.65 percent of the total land area 

annually between 1986 and 2016. The economic and industrial activities of Owerri, 

occasioned by its assemblage of well-developed road infrastructure, the surge in the 
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number of tertiary institutions, and the volume of activities in the city have been 

identified as factors that increase rural – urban migration (Emeribeole and Iheaturu, 

2016) and resultant increase in the built environment. 

 Figure 4.7 Landuse/landcover of Owerri Metropolis in 2019 

 

Figure 4.8 LULC of Owerri 1990-2019 
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Forest cover decreased progressively between 1990 and 2019. Analysis shows that 

forest cover occupied 70.16 km2 (12.91 percent), 17.00 km2 (3.13 percent), 21.43 km2 

(3.94 percent) and 21.35 km2 (3.93 percent) in 1990, 2000, 2010 and 2019 respectively.  

In the same vein, light vegetation decreased progressively between 1990 and 2019. It 

occupied 255.09 km2 (46.94 percent), 179.75 km2 (33.08 percent), 157.08 km2 (28.91 

percent) and 141.52 km2  (26.05 percent) in 1990, 2000, 2010 and 2019 respectively; 

indicating a progressive decrease in light vegetation coverage. The continuous decrease 

in light vegetation coverage may be as a result of annexation by built up areas. 

Echebima et al. (2019) also observed that forests and sparse vegetation decreased at a 

rate of 0.73 percent and 0.05 percent of the total land cover respectively annually over 

a period of three decades. A model of land land use and land cover by Echebima et al. 

(2019) depicted that Owerri metropolitan area may be devoid of vegetation cover by 

2039 if the rate of conversion of vegetal cover to built surfaces continuous unabated 

and may trigger changes in the local climate of the metropolis. Construction and 

agricultural activities contributed to the continuous depletion and degradadation of the 

natural forest, as they lead to the removal of forest vegetal cover. 

Bare surfaces did not follow a definite pattern between 1990 and 2019. Analysis shows 

that bare surfaces occupied 58.98 km2 (11.04 percent), 19.30 km2 (3.55 percent), 29.24 

km2 (5.38 percent) and 29.12 km2 (5.36) in 1990, 2000, 2010 and 2019 respectively. 

This may be because they are easily converted ito built surfaces like roads, pavements 

and buildings. Water bodies decreased progressively between 1990 and 2010 but 

increased slightly in 2019. It occupied 9.11 km2 (1.68 percent), 8.55 km2 (1.57 percent), 

5.56 km2 (1.02 percent) and 6.19 km2 (1.14 percent) in 1990, 2000, 2010 and 2019 

respectively. The continuous decrease in coverage by water surfaces may have been as 

a result of encroachment on wet/marsh lands by urban infrastructures (roads and 
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buildings) and increased water usage for domestic and industrial activities by the 

spiralling urban population in and around the metropolis. 

Agricultural lands increased progressively during the study period, except for the 

derease in 2019. They occupied 78.79 km2 (14.50 percent), 202.28 km2 (37.22 percent), 

1.59 km2 (29.34 percent) and 135.94 km2 (25.02 percent) in 1990, 2000, 2010 and 2019 

respectively. Rising food insecurity in urban areas may have resulted in intensification 

of agricultural activities as a means of augmenting food supply.  

4.1.2.2  Assessment of classification accuracy of LULC in Owerri 

The accuracy of classification for the four periods of 1990, 2000, 2010 and 2019 for 

Owerri showed an overall accuracy of 81.45 percent, 82.62 percent, 84.70 percent and 

85.21 percent respectively (see Table 4.3). This was considered a decent overall 

accuracy and, therefore acceptable for the succeeding change detection and analysis.  

The user’s accuracy for different land cover categories ranged between 72.29 percent 

and 93.73 percent while the producer’s accuracy ranged between 73.60 percent and 

93.55 percent. The overall Kappa was also calculated for each of the classified maps to 

determine their accuracy. The results of the four periods 1990, 2000, 2010 and 2019 

revealed Kappa statistics of 0.78, 0.80, 0.82 and 0.81 respectively. The Kappa 

coefficient for the four periods ranges from substantial agreement to almost perfect 

agreement on the kappa scale, an indication that it is usable.  

4.1.2.3 The magnitude and percentage change in land use/land cover in 

Owerri from 1990-2019 

The magnitude and percentage change in Landuse/landcover in Owerri 1990 to 2019 

are presented in Table 4.4 while those of 1990 - 2000, 2000 - 2010, and 2010 – 2019 

and are presented in Appendix C2. Results revealed  that between 1990 and 2000, built 

up, increased in magnitude by 13.62km2 (1.36 percent) at an annual change rate of 1.68 
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percent. From 2000 to 2010, built up increased in magnitude by 54.00 km2 (39.45 

percent), at an annual change rate of 3.95 percent. Lastly, between 2010 and 2019, built 

up areas in Owerri increased in magnitude by 38.61 km2 (49.20 percent) at an annual 

change rate of 4.43 percent.  Generally, between 1990 and 2019, built up increased in 

magnitude by 138.84 km2 (35.14 percent) from 70.32 km2 in 1990 to 209.16 km2 in 

2019 at an annual change rate of 10.19 percent (Table 4.4).     

The extent of built-up area coverage for 1990 and 2019 is shown in Figure 4.9. The 

persistent increase in the urban built up area may be attributed to urban population 

explosion occasioned by  the influx of rural dwellers to the urban and suburban areas  

in search of white collar jobs and  presumed better quality of life which puts demand 

on urban residential houses, necessitating the expansion in the urban coverage.  

Between 1990 and 2001, forest cover decreased in magnitude by -53.16 km2 (15.66 

percent) at an annual change rate of 1.57 percent. Between 2000 and 2010, it increased 

in magnitude by 4.43 km2 (3.24 percent) at an annual change rate of 3.20 percent. 

Lastly, between 2010 and 2019, forest cover decreased in magnitude by -0.08 km2 (0.10 

percent) at an annual change rate of 0.01 percent. In general, between 1990 and 2019, 

forest cover diminished in magnitude by -41.81 km2 (12.45 percent) from 70.16 km2 in 

1990 to 21.35 km2, in 2019, at an annual change rate of 3.61 percent. 
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Table 4.3  Classification Accuracy  Assessment of Owerri LULC Imageries (1990, 2001,2011 and 2019)  

 1990 2000 2010 2019 

Class Name Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Built-up areas 83.32 93.50 90.35 93.73 73.60 83.10 80.87 84.82 

Forest cover 81.20 72.29 81.95 88.24 79.96 91.19 66.43 87.95 

Light Vegetation 79.71 83.10 80.74 92.38 91.33 75.63 85.11 80.69 

Bare Surface 85.25 82.61 90.76 88.67 82.84 85.58 79.98 83.85 

Water Bodies 82.29 84.13 85.70 83.50 93.55 80.40 91.68 83.25 

Agricultural lands 80.11 82.99 79.01 82.47 85.10 89.43 80.75 92.52 

Overall Classification 

Accuracy (%) 

81.45 82.62 84.70 85.21 

Overall Kappa 0.78 0.802 0.82 0.81 

 Source: Author’s Analysis (2023)
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Figure 4.9 Built-up Area Coverage of Owerri Metropolis from 1990 to 2019 

 

The progressive decrease in forest cover may be attributed to demand for fuel wood, 

land clearance for urban infrastructural development, proliferation of educational 

institutions, and urban agriculture expansion. Results also showed that between 1990 

and 2000, light vegetation decreased in magnitude by -75.34km2 (22.19 percent) at 

annual change rate of 2.22 percent. Between 2000 and 2010, light vegetation further 

decreased in magnitude by -22.67 km2 (16.56 percent) at annual change rate of 1.66 

percent. In addition, between 2010 and 2019, light vegetation decreased in magnitude 

by -15.56 km2 (19.83 percent) at annual change rate of 1.78 percent. Generally, By and 

large, light vegetation decreased in magnitude by -113.57 (28.96 percent) from 255.09 

km2 in 1990  to 141.52 km2 in 2019 at annual change rate of 8.40 percent (Table 4.4). 
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Table 4.4  Magnitude and Percentage Change in LULC of Owerri between 1990 

and 2019 
LULC Class 1990 

Extent 

(Sq. 

km) 

2019 Extent 

(Sq. km) 

Magnitude of 

Change (Sq. 

km) 

Percentage 

of Change 

Annual Rate 

of Change % 

Built up 70.32 209.16 138.84 35.14 10.19 

Forest cover 70.16 21.35 -48.81 12.45 3.61 

Light Vegetation 255.09 141.52 -113.57 28.96 8.40 

Bare surface 59.98 29.12 -30.86 7.87 2.28 

Water body 9.11 6.19 -2.92 0.74 0.21 

Agricultural lands 78.79 135.94 57.15 14.57 4.23 

Total  543.45 543.45 392.15 100  

Source: Author’s Analysis (2023) 

Bare surfaces decreased in magnitude between 1990 and 2000 by -40.68 km2 (11.98 

percent) at an annual change rate of 1.20 percent. It further decreased in magnitude 

between 2000 and 2010 by -22.67 km2 (16.56 percent) at an annual change rate of 1.66 

percent. The period 2010 and 2019, also witnessed a slight decrease in the magnitude 

of bare surfaces by -0.12 km2 (0.15 percent) at an annual change rate of 0.01 percent. 

The general trend in Owerri between 1990 and 2019 is that bare surfaces decreased in 

magnitude by -30.86 km2 (7.87 percent) from 59.98 km2 in 1990 to 29.12 km2, at  an 

annual change rate of 2.28 percent (Table 4.4). The general decrease in bare surfaces 

may be attributed to the incursion of built up areas into it. 

Appendix C2 also depicts that between 1990 and 2000, water bodies had a very 

insignificant decrease in magnitude of -0.56 km2 (0.16 percent) at an annual rate of 0.02 

percent. It further decreased by a greater magnitude of -2.99 km2 (2.18 percent) at an 

annual rate of 0.22 percent between 2000 and 2010. However, it increased slightly in 

magnitude between 2010 and 2019 by magnitude of 0.63 km2 (0.80 percent) at the rate 

of 0.07 percent per annum. Summarily, from 1990 to 2019, water bodies decreased in 

magnitude to -2.92 km2 (0.74 percent) from 9.11 km2 in 1990 to 6.19 km2 in 2019 at an 

annual change rate of 0.21 percent (Table 4.4). 
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Lastly, the study depicted that agricultural lands increased in magnitude by 123.49 km2 

(36.38 percent) at an annual change rate of 3.64 percent between 1990 and 2000. It 

however decreased in magnitude by -42.86 km2 (31.31 percent) at an annual change 

rate of 3.13 percent between 2000 and 2010.  The period 2010 to 2019 witnessed a 

further decrease in the magnitude of agricultural lands by -23.48 km2 (29.21 percent) 

at an annual change rate of 2.70 percent. By and large, owing to the high magnitude of 

increase in the period 1990 to 2000, agricultural lands may be said to have generally 

increased in magnitude by 57.15 km2 (14.57 percent) from 78.79 km2 in 1990 to 135.94 

km2 in 2019, at an annual change rate of 4.23 percent (Table 4.4). 

4.1.2.4  LULC conversion model for Owerri metropolis between 1990 and 2019 

The results of LULC analysis for Owerri city between 1990 and 2019 are presented in 

Figure 4.10 while those periods 1990 to 2000, 2000 to 2010, and 2000 to 2019 are 

presented in Appendix D2. For the first period (1990 - 2000) shows that almost all the 

land cover classes lost and gained some grounds. Built-up areas lost -11.11 km2 (-2.04 

percent) and gained 25.01 km2 (4.36 percent). Forest cover lost -28.93 km2 (-41.24 

percent) and gained 69.57 km2 (62.79 percent). Light vegetation lost –68.62 km2 (-

26.90 percent) and gained 8.09 km2 (4.16 percent). Bare surfaces lost 27.20 km2 (-45.35 

percent) and gained 21.18 km2 (39 .25 percent). Water bodies lost 5.54 km2 (-60.86 

percent) and gained 4.96 km2 (58.16 percent). Agricultural lands lost 28.91 km2 (-36.60 

percent) and gained 41.80 km2 (45.60) during the period. 

Built-up areas, forest cover and agricultural lands recorded net positive gains of 13.60 

km2 (36.68 percent), 40.64 km2 (2.37 percent), and 12.89 km2 (14.06 percent) 

respectively while light vegetation, bare surfaces and water bodies had  net losses of     

-60.53 km2 (-31.11 percent) -6.02 km2 (-11.15 percent)  and -0.58 km2 (-6.83 percent) 

respectively. Only forest cover and water bodies contributed positively to net changes 
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in built-up areas; contributing  18.56 km2 (26.20 percent) and 0.26 km2(2.46 percent). 

Other land cover classes contributed negatively to net changes in built-up areas, though 

not significantly. 

The second period (2000 – 2010) similarly recorded losses and gains in all land cover 

classes. Light vegetation, agricultural lands, forest cover,  bare surfaces  and water 

bodies recorded losses of -93.00  km2 (-47.80 percent), 76.03 km2 (-82.93 percent), 

65.02 km2 (-58.68 percent), 42.14 km2 (78.09 percent) and -6.37 km2 (-74.75 percent) 

respectively. The highest gain during the period of 580.49 km2 (97.91 percent) was 

recorded by bare surfaces while water bodies recorded the least gain of 3.40 km2 (61.24 

percent). Light vegetation, forest cover,  agricultural lands and built surfaces recorded 

gains of 85.41 km2 (45.68 percent), 63.43 km2 (58.08 percent) 60.69 km2 (79.50 

percent) and 35.91 km2 (40.15 percent) respectively.  

Only bare surfaces recorded net gain of 511.85 km2 (90.46 percent). Built up areas, 

forest cover, light vegetation, water bodies and agricultural lands recorded net losses of 

-400. 00 km2 (-541.64 percent), -1.59 km2 (-1.46 percent), -7.59 km2 (-4.06 percent),    

-2.91 km2 (-53.49 percent) and -15.34 km2 (-20.10 percent) respectively (Appendix 

D2). The result also shows that forest cover, light vegetation, water bodies and 

agricultural lands made positive contributions of  0.05 km2 (0.04 percent), 2.19 km2 

(1.13 percent), 0.28 km2 (3.34 percent), and 4.984 km2 (5.43 percent) respectively to 

the net changes in built-up area while bare made a negative contribution of  -491.85 

km2 ( -911.46  percent) to the net changes in built up area. 

The third period (2010-2019) also recorded losses and gains in all land cover classes. 

The result shows that bare surfaces, light vegetation and forest cover recorded high 

losses of -563.62 km2 (-99.61 percent), -113.95 km2 (60.95) and -100.68 km2 (-92.19 

percent) respectively, while high gains of 582.87 km2 (88.51 percent), 136.04  km2 
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(83.46 percent) and 71.86 km2 (49.60 percent) were recorded by built up, agricultural 

lands and light vegetation respectively. The study also revealed that only built–up areas 

and agricultural lands recorded positive net changes of 569.10 km2 (86.42 percent) and 

86.66 km2 (53.16 percent) respectively, while bare surfaces recorded a high net negative 

change of -554.22 km2 (-4,784.07 percent). The result for the period also shows that 

bare surfaces, light  vegetation, forest cover and agricultural lands made positive 

contributions of 93.03 km2 (526.35 percent), 12.01 km2 (22.45 percent) 5.44 km2 (5.94 

percent) and 19.06 km2 (14.55 percent) respectively to the net changes in the built up 

area. 

Generally, all land cover classes recorded net losses and gains during the entire study 

period (1990 – 2019). The general outlook is presented in Figure 4.10A. Built up areas 

lost -14.80 km2 (-2.64 percent) and gained 113.15 km2 (17.18 percent), forest cover lost 

-60.72 km2 (-86.54 percent) and gained 40.99 km2 (81.28 percent), light vegetation lost 

-163.84 km2 (-64.23 percent) and gained 53.62 km2 (37.01 percent), bare surfaces lost 

-58.15 km2 (-96.94 percent) and gained 9.75 km2 (84.17 percent) agricultural lands lost 

-54.57 km2 (-69.26 percent) and gained 138.78 (85.14 percent). Water bodies lost -6.66 

km2 (-73.14) and gained 2.45 km2 (50.06 percent). 

By and large, Figure 4.10B shows that only built up areas and agricultural lands 

experienced a positive net change (gain) of 98.35 km2  (14.93 percent) and 84.21 km2  

(51.66 percent). Other land cover classes experienced negative net changes (losses). 

Light vegetation recorded the highest net negative change; losing an area of 110.22  

km2 (-76.08 percent). The result for the period also showed that all land cover classes 

contributed positively to net changes in built up areas (Figure 4.10C) with net change 

contributions of 18.69 km2 (26.63 percent), 35.92 km2 (14.08 percent), 24.06 km2 

(40.12 percent), 1.17 km2 (12.85 percent) and 18.51 km2 (23.49 percent) by forest 
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cover, light vegetation, bare surfaces, water bodies and agricultural lands respectively. 

Thus, light vegetation made the greatest contribution to the net changes in built up. 

 
Figure 4.10 Land cover transition for Owerri for 1990-2019   

4. 1.3 LULC changes in Kano 

4.1.3.1  LULC trends in Kano from 1991 to 2019 

The Landuse/landcover maps of Kano metropolitan area in 1991 and 2019  are shown 

in Figures 4.11 and 4.12 while the statistics for the land use classes are presented in 

Figure 4.13. LULC maps of 2001, and 2011 are presented in Appendix B. The results 

reveal a progressive increase in built up areas from 1991 to 2019. Figure 4.13 shows 
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that built up areas covered 58.48 km2 and accounted for about 11.85 percent of the total 

coverage area. In 2001, it covered 102.66 km2, comprising about 20.80 percent of the 

total area coverage. It further increased to 167.73 km2 and accounted for about 33.99 

percent of the total coverage in 2011, and finally, to 216.03 km2 or 43.77 percent of the 

total area coverage in 2019.  

The result shows that Kano Metropolis witnessed a progressive decrease in forest cover 

from 1991 to 2011 but a slight increase in 2019. The forest covered 19.61 km2 (3.97 

percent), 15.54 km2 (3.15 percent), and 5.92 km2 (1.20 percent) of the total coverage 

area in 1991, 2001 and 2011 respectively, while 2019 had forest area coverage of 11.12 

km2 (2.25 percent). The progressive decline in forest vegetal cover may be attributed to 

the expanding built-up areas in the metropolis which have led to the depletion of the 

already scanty vegetal cover of the metropolis. 

Figure 4.11 Landuse/landcover of Kano Metropolis in 1991 
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Figure 4.12 Landuse/landcover of Kano Metropolis in 2019 

 
Figure 4.13  LULC of Kano 1991-2019 

Kano Metropolis witnessed a progressive increase in light vegetation from 1991 to 

2011; covering 37.80 km2, (7.66 per cent), 58.22 km2 (11.80 percent) and 136.07 km2 

(27.57 percent) in 1991, 2001 and 2011 respectively. 2019 however recorded higher 
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percentage coverage of light vegetation; covering an area of 73.56 km2 (14.86 per cent). 

Bare surfaces did not seem to exhibit any established pattern during the study period; 

as the area coverage was nearly uniform from 1991 and 2011 but reduced markedly in 

2019. They covered 77.81 km2 (15.77 percent), 71.68 km2 (14.52 percent), 72.03 km2 

(14.60 percent) and 49.46 km2 (10.02 percent). 

Water bodies occupied 5.69 km2 (1.15 percent), 2.14 km2 (0.43 percent), 1.38 km2 (0.28 

percent) and 1.41 km2 (0.29 percent) of the land cover in 1991, 2001, 2011 and 2019 

respectively. This depicted a progressive decrease in area coverage between 1991 and 

2011 but an increase in 2019. Agricultural lands covered 294.14 km2 (59.60 percent), 

243.29 km2 (49.30 percent), 110.39 km2 (22.37 percent) and 142.15 km2 (28.80 percent) 

in 1991, 2001, 2011 and 2019 respectively. This depicted a progressive decrease in its 

area coverage from 1991 to 2011, and an increase in 2019. The general decrease in 

agricultural land may not be unconnected with the rapid urbanization taking place in 

Kano, sepecially the road infrastructure projects undertaken by the government which 

has taken over erstwhile farmlands. 

4.1.3.2  Assessment of classification accuracy of LULC in Kano 

The accuracy of classification for the four periods of 1991, 2001, 2011 and 2019 for 

Kano showed an overall accuracy of 83.65 percent, 84.99 percent, 85.62 percent and 

87.90 percent respectively (see Table 4.5). This was considered a decent overall 

accuracy and, therefore acceptable for the succeeding change detection and analysis. 

The user’s accuracy for different land cover categories ranged between 75.29 percent 

and 97.08 percent while the producer’s accuracy ranged between 68.19 percent and 

91.80 percent. 
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4.1.3.3 The magnitude and percentage change in LULC in Kano from 1991-

2019 

The magnitude and percentage changes in landuse/landcover of Kano in 1991 and 2019 

are presented in Table 4.6 while those of 1991 – 2001, 2001 - 2011, and 2011 – 2019 

respectively are presented in Appendix C3.  Between 1991 and 2001, built up areas 

increased in magnitude by 44.18 km2 (34.19 percent) at an annual change rate of 3.42 

percent. Between 2001 and 2011, built up areas increased in magnitude by 65.07 km2 

(22.71 percent), at an annual change rate of 2.27 percent.   

Lastly, between 2011 and 2019, built up areas in Kano increased in magnitude by 

216.03 km2 (23.81 percent) at an annual change rate of 2.26 percent. Generally, 

between 1991 and 2019, built up increased in magnitude by 157.55 km2 (40.79 percent) 

at an annual change rate of 11.42 percent (Table 4.6).   

The extent of built-up area coverage for 1991 and 2019 is shown in Figure 4.14. The 

persistent increase in the urban built up area may be attributed to urban population 

explosion occasioned by  the influx of rural dwellers to the urban and suburban areas  

in search of white collar jobs and  presumed better quality of life which puts demand 

on urban residential houses, necessitating the expansion in the urban coverage.  

Between 1991 and 2001, forest cover decreased in magnitude by -4.07 km2 (3.15 

percent) at an annual change rate of 0.32 percent. Between 2001 and 2011, it further 

decreased in magnitude by -9.62 km2 (3.36 percent) at an annual change rate of 0.34 

percent. Lastly, between 2011 and 2019, forest cover increased in magnitude by 5.20 

km2 (3.05 percent) at an annual change rate of 0.24 percent. The general outlook of the 

forest cover between 1991 and 2019 is that it decreased in magnitude by -6.49 km2 

(2.19 percent) at an annual change rate of 0.61 percent. The progressive decrease in 

forest cover may be attributed to high urbanization  and its attendantconsequences. 
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Table 4.5  Accuracy Assessment of Kano LULC Imageries (1991, 2001,2011 and 2019)  

 1991 2001 2010 2019 

Class Name Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Built-up areas 88.06 79.50 89.70 97.08 81.08 84.00 83.62 89.75 

Forest cover 84.28 90.47 80.18 85.20 72.99 90.00 68.19 78.71 

Light Vegetation 80.40 85.02 69.05 83.31 82.59 80.93 91.80 90.97 

Bare Surface 87.00 81.91 90.23 85.01 84.31 86.15 69.79 84.85 

Water Bodies 84.00 88.33 87.56 75.29 86.84 83.04 80.99 77.20 

Agricultural limits 77.98 79.75 80.18 80.11 80.58 81.07 78.32 79.56 

Overall 

Classification 

Accuracy (%) 

83.65 84.99 85.62 87.90 

 

Overall Kappa 0.76 0.82 0.85 0.84 

 

Source: Author’s Analysis (2023) 
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Table 4.6  Magnitude and Percentage of Change in LULC of Kano between 1991 

and 2019 

LULC Class 1991 

Extent 

(Sq. 

km) 

2019 Extent 

(Sq. km) 

Magnitude of 

Change (Sq. 

km) 

Percentage 

of Change 

Annual Rate 

of Change % 

Built up 58.48 216.03 157.55 40.79 11.42 

Forest cover 19.61 11.12 -8.49 2.19 0.61 

Light Vegetation 37.80 73.36 35.56 9.21 2.57 

Bare surface 77.81 49.46 28.35 7.34 2.05 

Water body 5.69 1.41 -4.28 1.11 0.31 

Agricultural lands 294.14 142.15 151.99 39.35 11.02 

Total  493.53 493.53 386.22 100  

Source: Author’s Analysis (2023) 

Between 1991 and 2001, light vegetation increased in magnitude by 20.42 km2 (15.80 

percent) at annual change rate of 1.58 percent. Between 2001 and 2011, it increased in 

magnitude by 77.85 km2 (27.17 percent) at an annual change rate of 2.72 percent (Table 

4.13). Lastly between 2011 and 2019, light vegetation decreased in magnitude by             

-62.71 km2 (36.76 percent) at an annual change rate of 2.94 percent. Generally, from 

1991 to 2019 light vegetation increased in magnitude by 35.56 km2 (9.21 percent) at an 

annual change rate of  2.57 percent (Table 4.6). 

Bare surfaces decreased in magnitude between 1991 and 2001 by -6.13 km2 (4.74 

percent) at an annual change rate of 0.47 percent. It increased in magnitude between 

2001 and 2011 by 0.35 km2 (0.12 percent) at an annual change rate of 0.01 percent. 

Between 2011 and 2019, bare surfaces decreased in magnitude by -22.57 km2 (13.23 

percent) at an annual change rate of 1.03 percent. Generally, from1990 to 2019, bare 

surfaces decreased in magnitude by 28.35 km2 (7.34 percent) at an annual change rate 

of 2.05 percent.  

Results also revealed that water bodies decreased in magnitude by -3.55 km2 (2.75 

percent) between 1991 and 2001 at an annual change rate of 0.28. It decreased in 

magnitude by -0.76 km2 (0.27 percent) between 2001 and 2011, at an annual change 
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rate of 0.03 percent.  It decreased in magnitude 0.03 km2 (0.02 percent) between 2011 

and 2019. By and large, from 1990 to 2019, water bodies decreased in magnitude by -

4.28 km2 (1.11 percent) an annual change rate of -0.31 percent (Table 4.6). 

 
Figure 4.14 Built-up Area Coverage of Kano Metropolis from 1990 to 2019 

 

Agricultural lands decreased in magnitude by -50.85 km2 (39.36 percent) at an annual 

change rate of 3.94 percent between 1991 and 2001. It decreased in magnitude by 132.9 

km2 (46.38 percent) at an annual change rate of 4.64 percent between 2001 and 2011. 

Between 2011 and 2019, agricultural lands decreased in magnitude by 31.76 km2 (18.62 

percent) at an annual change rate of 1.48 percent (Table 4.14). By and large, between 

1990 and 2019, agricultural lands generally decreased in magnitude by 151.99 km2 

(39.35 percent) at an annual change rate of 11.02 percent (Table 4.15). 
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4.1.3.4  LULC conversion model for Kano metropolis from 1991-2019 

The results of LULC analysis for Kano Metropolis between 1991 and 2019 are 

presented in Figure 4.15 while those of 1991 to 2001, 2001 to 2011, and 2011 to 2019 

respectively are presented in Appendix D3. The results of LULC analysis of the city 

for the first period (1991 - 2001) showed that all the land cover classes lost and gained 

some grounds. Built-up areas lost -7.90 km2  (-12.81 percent), forest cover lost -15.06 

km2 (-4.9 percent) and gained  10.99 km2 (3.62 percent), light vegetation lost -14.35 

km2 (-37.96 percent) and gained 34.77 km2 (59.72 percent), bare surfaces lost -48.44 

km2 (-62.26 percent) and gained 42.31 km2 (59.03 percent), water surfaces lost -4.30 

km2 (-75.60 percent) and gained 0.75 km2 (35.21 percent), and lastly, agricultural lands 

lost -98.42 km2 (33.46 percent) and gained 47.56 km2 (19.55 percent).  

The second period (2001 – 2011) similarly recorded losses and gains in all land cover 

classes. The analysis showed that whereas the greatesr losses were recorded by forest 

cover, built up recorded the greatest gain. Forest cover lost  – 301.28 km2 and gained 

only 3.83 km2 during the period. Bulit up areas lost just -11.70 km2 and gained 364. 60 

km2. Light vegetation lost -30.43 km2and gained 108.28 km2. 

Agricultural lands lost -160.31 km2 and gained just 27.41 km2. Water bodies also 

experienced more losses, as it gained only 0.72 km2 and lost -1.48 km2. Lastly, there 

was no significant change in bare surfaces during the period; as -50.68 km2 was lost 

and 51.04 km2 was gained. This implies that during this period, built up and light 

vegetation recorded net positive gains of 352.90 km2 and 77.85 km2 respectively, while 

forest cover and agricultural lands recorded net losses of -297.45 km2 and 132.90 km2 

respectively. Water bodies and bare surfaces recorded insignifant negative (-.076 km2) 

and positive (0.36 km2) net changes respectively. Furthermore, the result showed that 

forest cover (294.21 km2 ) was the highest net contributor to net changes in built up 
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areas while agricultural lands, bare surfaces and bare surfaces also made significant 

contributions of 31.15 km2, 14.24 km2 and 13.01 km2 respectively. 

 
Figure 4.15  Land cover transition for Kano for 1990-2019   

The third period (2011-2019) also recorded losses and gains in all land cover classes. It 

shows that built up areas lost -21.92 km2 and gained 70.22 km2 . Forest cover lost -3.69 

and gained 8.89. light vegetation lost -97.66 km2 and gained 34.95. bare surfaces lost -

55.63 km2.and gained 33.06 km2. Agricultural lands lost -50.83 km2 and gained 82.59 

km2. Lastly, water bodies lost -0.91 km2 and gained 0.94 km2. This implies that built 

up areas and agricultural lands recorded positive net changes (gains) of 48.30 km2 and 

31.76 km2 respectively, while light vegetation and bare surfaces recorded significant 
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net losses of  -62.71 km2 and -22.57 km2. The result for the period also shows that bare 

surfaces and agricultural lands made signifiacant contributuions of 29.22 km2 and 16.63 

km2 respectively to the net changes in built up areas. 

Generally, all land cover classes recorded net losses and gains during the entire study 

period (1991 – 2019). The general outlook is presented in Figure 4.15a. Built up areas 

lost -7.09 km2 (-12.13 percent) and gained 452.48 km2 (89.80 percent), forest cover lost 

-304.16 km2 (-98.93 percent) and gained 7.84 km2 (70.50 percent), light vegetation lost 

-22.91 km2 (-60,59 percent) and gained 58.46 km2 (79.69 percent), bare surfaces lost -

58.02 km2 (-74.57 percent) and gained 29.67 km2 (59.99 percent), agricultural lands 

lost -184.45 km2 (-62.71 percent) and gained 32.46 km2 (22.84 percent) while water 

bodies lost -4.74 km2 (-83.29 percent and gained 0.46 km2.(32.61 percent). 

By and large, Figure 4.15b shows that only built up area experienced a positive net 

change (gain) of 445.38 km2 (88.39 percent). Other land cover classes experienced 

negative net changes (losses). Forest cover, agricultural lands, light vegetation, bare 

surfaces, and water bodies all experienced negative net changes of -296.33 km2 (-

2665.14 percent), -1591.99 km2 (-106.92 percent), 35.56 km2 (48.47 percent) -28.35 

km2 (-57.32 percent) and -4.28 km2 (-303.25 percent) respectively. The result for the 

period also shows that all land cover classes contributed positively to net changes in 

built up areas (Figure 4.15c) with net contributions of 297.58 km2 (96.79 percent), 

109.09 km2 (37.09 percent), 15.37 km2 (40.66 percent), 22.48 km2 (15.11 percent) and 

0.86 km2 (15.11 percent) by forest cover, agricultural lands, light vegetation, bare 

surfaces, and water bodies respectively. Thus, forest cover made the greatest 

contribution to the net changes in built up. 
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4.1.4 LULC changes in Birnin Kebbi 

This section is the presentation of results of LULC analysis of Birnin Kebbi, also 

located in the Sudan Savanna  ecological belt from 1990 to 2019. 

4.1.4.1  LULC trends in Birnin Kebbi from 1990 to 2019 

The Landuse/landcover maps of Kano metropolitan area in 1990 and 2019  are shown 

in Figures 4.16 and 4.17 while the statistics for the land use classes are presented in 

Figure 4.18. LULC maps of the city in 2000 and 2010 are presented in Appendix B. 

The results reveal a progressive increase in built up areas from 1990 to 2019. Figure 

4.22 shows that in 1990, built up areas covered 14.06 km2 and accounted for about 1.13 

percent of the total coverage area. In 2000, it covered 26.96 km2, comprising about 2.16 

percent of the total area coverage.  

Figure 4.16 Landuse/landcover of Birnin Kebbi Metropolis in 1990 
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Figure 4.17 Landuse/landcover of Birnin Kebbi Metropolis in 2019 

 
Figure 4.18  LULC of Birnin Kebbi 1990-2019 

 

Built-up further increased to 65.34 km2 and accounted for about 5.23 percent of the total 

coverage in 2010, and finally, to 123.03 km2 or 9.85 percent of the total area coverage 

in 2019.  
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The result shows that forest cover in Birnin Kebbi Metropolis did not exhibit any 

definite pattern. It increased in coverage area from 165.44 km2 (13 .25 percent) in 1990 

to 197.54 km2 (15.82 percent) in 2000. In 2010, it occupied only about 25.36 km2 (2.03 

percent) but in 2019 it increased to 101.48 km2 (8.13 percent). Light vegetation 

increased progressively between 1990 and 2010 but witnessed a decrease between year 

2010 and 2019. Light vegetation increased from 359.27 km2 (28.77 percent) in 1990 to 

384.24 km2 (30.77 percent) in year 2000  and a further increase to 502.13 km2  (40.21 

percent)  in 2010. However, between 2010 and 2019, it decreased to 333.83 km2 (26.73 

percent).  

Bare surfaces did not seem to have exhibited any established pattern during the study 

period. It covered about 100.80 km2 (8.07 percent) in 1990 but reduced to 295.99 km2 

(23.70 percent) 1n 2000. In 2010, the distribution of bare surfaces increased to 461.71 

km2 (38.97 percent) and decreased to 403.48 km2 (32.31 percent). Water bodies 

occupied 6.08 km2 (0.49 percent), 59.14 km2 (4.74 percent), 8.15 km2 (0.65 percent) 

and 13.72 km2 (1.10 percent) of the land cover in 1990, 2000, 2010 and 2019 

respectively. Agricultural lands decreased progressively from 1990 to 2010 but 

increased in 2019. It covered 603.23 km2; (48.30 percent), 285.02 km2 (22.82 percent), 

186.19 km2 (14.91 percent) and 273.35 km2 (21.89 percent) in 1990, 2000, 2010 and 

2019 respectively.  

4.1.4.2  Assessment of classification accuracy of LULC in Birnin Kebbi 

The accuracy of classification for the four periods of 1990, 2000, 2010 and 2019 for 

Birnin Kebbi showed an overall accuracy of 82.65 percent, 85.31 percent, 84.62 percent 

and 87.80 percent respectively (See Table 4.7). This was considered a decent overall 

accuracy and, therefore acceptable for the succeeding detection of change and analysis. 

The user’s accuracy for different land cover categories ranged between 62.63 percent 
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and 96.38 percent while the producer’s accuracy ranged between 78.20 percent and 

93.35 percent. 

The overall Kappa was also calculated for each of the classified maps to determine their 

accuracy. The results of the four periods 1990, 2000, 2010 and 2019 revealed Kappa 

statistics of 0.76 0.82, 0.85 and 0.84 respectively. The Kappa coefficient for the four 

periods ranges from substantial agreement to almost perfect agreement on the kappa 

scale, an indication that it is usable.  

4.1.4. 3 The magnitude and percentage change in LULC in Birnin Kebbi from 

1990-2019 

The magnitude and percentage changes in landuse/landcover of Birnin Kebbi in 1990 

and 2019 are presented in Table 4.8 while those of 1990 – 2000, 2000 - 2010, and 2010 

– 2019 respectively are presented in Appendix C4.  The results show that between 1990 

and 2000, built up, increased in magnitude by 12.90 km2 (91.75 percent) at an annual 

change rate of 9.18 percent. Between 2000 and 2010, built up areas increased in 

magnitude by 38.36 km2 (142.28 percent), at an annual change rate of 14.23 percent. 

Lastly, between 2010 and 2019, built up areas in Birnin Kebbi increased in magnitude 

by 57.69 km2 (88.29 percent) at an annual change rate of 9.81 percent.  Generally, 

between 1990 and 2019, built up increased in magnitude by 108.97 km2 (775.04 

percent) at an annual change rate of 26.73 percent.   

Table 4.7  Magnitude and Percentage of Change in LULC between 1990 and 

2019 
LULC Class 1990 

Extent 

(Sq. km) 

2019 Extent 

(Sq. km) 

Magnitude of 

Change (Sq. 

km) 

Percentage 

of Change 

Annual Rate 

of Change 

% 

Built up 14.06 

 

123.03 

 

108.97 775.04 26.73 

Forest cover 165.44 

 

101.48 

 

-63.96 38.66 1.33 

Light Vegetation 359.27 

 

333.83 

 

-25.44 7.08 0.24 

Bare surface 100.80 

 

403.48 

 

302.68 300.28 10.35 

Water body 6.08 

 

13.72 

 

7.64 125.66 4.33 
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Agricultural lands 603.23 

 

273.35 

 

-329.88 54.69 1.89 

Total  1248.88 1248.881 838.57 1301.41 44.84 

Source: Author’s Analysis, 2023 
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Table 4.8  Classification Accuracy Assessment of Birnin Kebbi LULC Imageries (1990, 2001,2011 and 2019)  

Class Name 1990 2000 2010 2019 

 Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Built-up areas 84.53 95.50 93.35 96.14 83.60 93.10 81.32 76.98 

Forest cover 78.20 64.29 80.15 87.20 81.50 94.11 82.63 91.00 

Light 

Vegetation 

80.71 85.30 84.74 96.38 90.33 62.63 80.80 89.09 

Bare Surface 83.21 80.65 93.20 85.67 85.55 85.5 79.20 81.15 

Water Bodies 80.00 80.76 82.70 79.50 91.45 83.40 84.11 93.60 

Agricultural 

limits 

81.10 82.50 79.12 82.47 88.17 90.43 89.61 81.70 

Overall 

Classification 

Accuracy (%) 

82.65 85.31 84.62 87.80 

 

Overall Kappa 0.801 0.83 0.823 0.844 

Source: Author’s Analysis, 202
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The extent of built-up area coverage for 1990 and 2019 is shown in Figure 4.19. The 

persistent increase in the urban built up area may be attributed to urban population explosion 

occasioned by the influx of rural dwellers to the urban and suburban areas in search of white 

collar jobs and  presumed better quality of life which puts demand on urban residential 

houses, necessitating the expansion in the urban coverage.  

 
Figure 4.19 Built-up Area Coverage of Birnin Kebbi from 1990 to 2019 

 

Between 1990 and 2000, forest cover increased in magnitude by 32.10 km2 (19.40 percent) 

at an annual change rate of 1.94 percent. Between 2000 and 2010, it decreased in magnitude 

by -172.18 km2 (87.16 percent) at an annual change rate of 8.72 percent. Lastly, between 

2010 and 2019, forest cover increased in magnitude by 72.16 km2 (300.15 percent) at an 

annual change rate of 33.35 percent. The general outlook of the forest cover between 1990 

and 2019 is that it decreased in magnitude by -63.96 km2 (38.66 percent) at an annual change 
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rate of 1.33 percent. The progressive decrease in forest cover may be attributed to the 

increase in urban size which results in deforestation. 

Between 1990 and 2000, light vegetation increased in magnitude by 24.97 km2 (6.95 

percent) at annual change rate of 0.70 percent. Between 2000 and 2010, it further increased 

in magnitude by 117.89 km2 (30 .68 percent) at an annual change rate of 3.07 percent. Lastly 

between 2010 and 2019, light vegetation decreased in magnitude by -168.30 km2 (33.52 

percent) at an annual change rate of 3.72 percent. Generally, from 1990 to 2019 light 

vegetation decreased in magnitude by -25.44 km2 (7.08 percent) at an annual change rate of  

0.24 percent. 

Bare surfaces increased in magnitude between 1990 and 2000 by 195.19 km2 (193.64 

percent) at an annual change rate of 19.36 percent. It further increased in magnitude between 

2000 and 2010 by 165.72 km2 (55.99 percent) at an annual change rate of 5.60 percent. 

However, between 2010 and 2019, bare surfaces decreased in magnitude by -58.23 km2 

(12.61 percent) at an annual change rate of 1.40 percent. Generally, from1990 to 2019, bare 

surfaces increased in magnitude by 302.68 km2 (300.28 percent) at an annual change rate of 

10.35 percent.  

Water bodies increased in magnitude by 53.06 km2 (872.70 percent) between 1990 and 2000 

at an annual change rate of 0.28. It decreased in magnitude by -50.99 km2 (86.22 percent) 

between 2000 and 2010 at an annual change rate of 8.62 percent.  It increased in magnitude 

by 5.57 km2 (68.34 percent) between 2010 and 2019. By and large, from 1990 to 2019, water 

bodies increased in magnitude by 7.64 km2 (125.66 percent) an annual change rate of 4.33 

percent. 
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Between 1990 and 2000, agricultural lands decreased in magnitude by -318.21 km2 (52.75 

percent) at an annual change rate of 5.28 percent. It further decreased in magnitude by -98.83 

km2 (34.67 percent) at an annual change rate of 3.47 percent between 2000 and 2010. 

However, between 2010 and 2019, agricultural lands increased in magnitude by 87.16 km2 

(46.81 percent) at an annual change rate of 5.20 percent. By and large, between 1990 and 

2019, agricultural lands generally decreased in magnitude by -329.88 km2 (54.69 percent) at 

an annual change rate of 1.89 percent (Table 4.8). 

4.1.4.4  LULC conversion model for Birnin Kebbi metropolis from 1990-2019 

The results of LULC analysis for Birnin Kebbi Metropolis between 1990 and 2019 are 

presented in Figure 4.20 while those of 1990 to 2000, 2000 to 2011 and 2010 to 2019 are 

presented in Appendix D4. The results of LULC analysis for Birnin Kebbi city for the first 

period (1990 - 2000) showed that almost all the land cover classes lost and gained some 

grounds. Forest cover lost -1444.39 km2 (-96.03 percent) and gained 137.87 km2 (69.77 

percent). Light vegetation lost -165.84 km2 (-46.16) and gained 1529.20 km2 (88.77 percent). 

Agricultural lands lost -375.35 km2 (-66.22 percent) and gained 57.25 km2 (20.08 percent). 

Bare surfaces lost -51.23 km2 (-43.07 percent) and gained 18.95 km2 (70.30 percent). Water 

bodies lost -3.95 km2 (-64.96 percent) and gained 57.01 km2 (96.39 percent). Summarily, 

for the period 1990 to 2000, greater losses were recorded by forest cover, light vegetation 

and agricultural lands. 

The net changes of the land use classes revealed that forest cover and agricultural lands 

recorded net negative changes of -1,306.53 km2 (-661.23 percent) and -318.09 km2 (-111.56 

percent) respectively, while light vegetation, bare surfaces, built up areas and water bodies 

recorded positive net gains of 1,361.36 km2 (79.14 percent), 195.31 km2 (65.96 percent), 
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12.89 km2 (47.83 percent) and 53.06 km2 (89.71 percent) respectively. Forest cover, 

agricultural lands, light vegetation and bare surfaces contributed 6.53, 4.72, 1.29 and 0.35 

km2 respectively to net changes in built up areas while there was no contribution by water 

bodies. 

 

Figure 4.20 Land cover transition for Birnin Kebbi for 1990-2019   
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Statistics of losses and gains by the land use/land cover classes for the period 2000 – 2010 

(Appendix D) showed that light vegetation lost -597.22 km2 (-2.13 percent) and gained 

726.52 km2 (2.5 percent). Bare surfaces lost -258.92 km2 (-93.71), and gained 443.29 (95.97 

percent). Forest cover lost -184.18 km2 (-99.59 percent) and gained 24.56 km2. Water bodies 

lost 55.29 km2 and gained 8.10 km2. Forest cover, agricultural lands, water bodies  and built 

up all recorded net losses of -159.62 km2 (-678.95 percent), -81.45 km2 (-53.1 percent), -

47.20 km2 (-625.86 percent) and 25.46  km2 (-58.74  percent) respectively, while light 

vegetation and bare surfaces recorded net gains of  129.35 km2 (0.38 percent) and 184.37 

km2 (35.89 percent) respectively. Light vegetation, bare surfaces, agricultural lands and 

forest cover contributed -22.60, -1.88, -0.84 and 0.1 km2 respectively to the net losses in 

built up areas. The seeming loss of built up area over the period may be explained largely 

by the increased coverage of light vegetation which may have covered some built up 

surfaces. 

Between 2010 – 2019 are 76.95, built up area gained 72.54 km2 (100.00 percent) Bare 

surfaces lost -244.76 km2 (-52.99) and gained 184.26 (45.90 percent). Forest cover lost -

22.25 km2 (-87.73 percent) and gained 95.75 km2 (96.85 percent). Water bodies lost -2.70 

km2 (-33.17 percent) and gained 8.27 km2(60.31 percent). Agricultural lands lost -120.23 

km2 (-64.55 percent) and gained 202.82 km2 (60.31 percent).The net gains and losses of the 

various land use and land cover classes indicated that built-up, forest cover, agricultural 

lands and water bodies  all recorded net gains of 72.54 km2 (100.00 percent), 73.50 km2 

(74.34 percent), 82.58 km2 (30.72 percent) and 5.57 km2 (40.60 percent) respectively, while 

light vegetation and bare surfaces recorded net losses of  -173.70 km2 (-0.59 percent) and -

60.50 km2 (-15.07 percent) respectively. Light vegetation, bare surfaces, agricultural lands 
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and forest cover contributed 29.19, 27.22, 15.56 and 0.57 km2 respectively to the net gains 

in built up area.  

The general outlook of the land use /land cover transition of Birnin Kebbi between 1990 and 

2019 is presented in Figures 4.20. The Statistics of losses and gains by the land use/land 

cover classes for the period 1990 -2019 are shown in Figure 4.20A. Between 1990 and 2019, 

built-up lost -2.51 km2 and gained 109.37 km2. Forest cover lost -1367.69 km2 and gained 

54.76 km2. Light vegetation lost  -180.42 km2 and gained 78.54 km2. Bare surfaces lost -

68.54 km2 and gained 1,477.46 km2. Water bodies lost -3.40 km2 and gained 10.72 km2. The 

seeming gain in water bodies may be attributed to deforestation which may have exposed 

some water bodies initially covered by vegetation. Agricultural lands lost -82.12 km2 and 

gained 173.82 km2.  

By and large, the net gains and losses of the various land use and land cover classes are 

presented in Figure 4.20B. Built-up, bare surfaces and water bodies recorded net gains of 

106.89, 1,408.92 and 7.32 respectively km2, whereas forest cover, light vegetation and 

agricultural lands recorded net losses of water bodies  and built up all recorded net losses of 

-1,312.93 km2, -101.88 km2 and 108.30 km2 respectively, while light vegetation and bare 

surfaces recorded net gains of  129.35 km2 (0.38 percent) and 184.37 km2 (35.89 percent) 

respectively. Lastly, during the period, forest cover (29.36 km2), light vegetation (13.40 

km2), bare surfaces (17.04 km2), water bodies (0.01 km2) and agricultural lands (47.05 km2) 

all contributed positively to the net change in built up (Figure 4.20C). 

4.1.5 Urban built up coverage between 1990 and 2019 

This section is a comparative analysis of urban built coverages for Ibadan, Owerri, Kano and 

Birnin Kebbi between 1990 and 2019. The percentage built up coverage for the four cities 
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from 1990 to 2019 is presented in Figure 4.21. It shows that Owerri Metropolis recorded the 

least increase in built-up surfaces. It increased by 297.53 percent from 12.94 percent in 1990 

to 38.50 percent in 2019. In Ibadan, built-up surfaces increased in percent coverage by 

332.43 percent from 9.19 percent in 1990 to 38.50 percent in 2019. Built-up surfaces in Kano 

metropolis increased in size by 369.37 percent from 11.85 percent in 1990 to 43.77 percent 

in 2019. Birnin Kebbi recorded the highest increase in built-up surfaces. It increased by 

871.68 percent from 1.13 percent in 1990 to 9.85 percent in 2019. The high rate of increase 

in urban built surfaces may be attributed to its establishment as the capital of Kebbi State in 

1991 and establishment of higher institutions of learning which has resulted in the influx of 

people into the city.  

 
Figure 4.21  Built up coverage of the four cities from 1990 to 2019 

The high urbanization rate of Birnin Kebbi may have also contributed to the high rate of bare 

surfaces. 
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4.2  NDVI of Selected Cities from 1990 to 2019 

The following section is the presentation of results of NDVI analysis of the Ibadan, Owerri, 

Kano and Birnin Kebbi from 1990 to 2019. 

4.2.1  NDVI of Ibadan metropolis 1990-2019 

NDVI images of Ibadan Metropolis in 1990 and 2019 are presented in Figures 4.22 and 4.23 

while those of 2001 and 2011 are shown in Appendix E. Results showed that the maximum 

recorded NDVI of the city was 0.97, 0.25, 0.12 and 0.42 in 1990, 2001, 2011 and 2019 

respectively, while the minimum was -0.95, -0.65, -0.39 and -0.02 in 1990, 2001, 2011 and 

2019 respectively. This implied that both maximum (0.97) and minimum (-0.97) NDVI 

values in the city were recorded in Ibadan in 2019. 

 
Figure 4.22  NDVI of Ibadan Metropolis in 1990 
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Figure 4.23  NDVI of Ibadan Metropolis in 2019 

The mean NDVI values of -0.08, -0.13, -0.08 and 0.24 were recorded in 1990, 2001, 2011 

and 2019 respectively; indicating that the highest mean value was recorded in 2019, while 

the lowest mean value was recorded in 2001. For standard deviation, recorded values were 

1.85, 0.09, 0.07, and 0.07 in 1990, 2001, 2011 and 2019 respectively, indicating that 1990 

had the highest standard deviation. The high NDVI points were concentrated around the non-

urbanized locations of the city such as thick and light vegetation areas of the city, which 

possessed insignificant concentrations of built up surfaces, while the lowest NDVI values 

were concentrated in the built areas (particularly the core of the city), bare surfaces, and 

water surfaces which devoid of vegetal cover.   

Figure 4.24 shows the statistics of re-classified NDVI images of Ibadan in 1990, 2001, 2011 

and 2019 respectively while the classification maps are shown in Appendix F. The statistics 

showed that in 1990, low NDVI areas (-0.95 to -0.23) occupied 253.64 km2 (7.45 percent of 
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the total area). The secondary low NDVI areas (-0.23 to -0.15) occupied 596.06 km2 (17.52 

percent). The medium NDVI areas (-0.15 to -0.09) occupied 958.37 km2 (28.16 percent). 

The secondary high NDVI areas (-0.09 to -0.04) covered 1205.39 km2 (35.42 percent). The 

high NDVI areas (-0.04 to 0.97) covered 389.61 km2 (11.45 percent). This implied that in 

1990, high and secondary high NDVI areas (-0.09 to 0.97) collectively occupied 1595.00 

km2 and covered 46.87 percent of Ibadan. Low and secondary low NDVI areas (-0.95 to -

0.15) collectively occupied 849.70 km2 and covered 24.97 percent of the Metropolis. This 

implied that higher NDVI values dominated the scene of Ibadan Metropolis in 1990. 

 

Figure 4.24 Ibadan NDVI  Class Chart 1990 – 2019 

In 2001, low NDVI areas (-0.65 to -0.25) occupied 920.63 km2 (27.05 percent of the total 

area). The secondary low NDVI areas (-0.25 to -0.18) covered 869.35 km2 (25.55 percent).  

The medium NDVI areas  (-0.18 to -0.11) covered 637.90 km2 (18.74 percent). The 

secondary high NDVI areas (-0.11 to -0.06) occupied 557.07 km2 (16.37 percent). The high 

NDVI areas (-0.06 to 0.25) covered 418.12 km2 (12.29 percent). This implied that in 2001, 
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high and secondary high NDVI areas (-0.09 to 0.97) collectively covered 975.19 km2 and 

covered 28.66 percent of Ibadan Metropolis, indicating a coverage area decrease of 18.21 

percent from 46.87 percent in 1990 to 28.66 percent in 2001.  

Similarly, medium NDVI areas decreased in percentage coverage by 9.42 percent from 28.16 

percent in 1990 to 18.74 percent in 2001. On the contrary low and secondary low NDVI 

areas (-0.95 to -0.15) collectively covered 1,789.98 km2 and covered 52.60 percent of the 

Metropolis, indicating a coverage area increase of 27.63 percent from 24.97 percent in 1990 

to 52.60 percent in 2001. 

In 2011, low NDVI areas (-0.39 to -0.22) covered 1279.38 km2 (37.59 percent of the total 

area). The secondary low NDVI areas (-0.25 to -0.18) occupied 961.06 km2 (28.24 percent). 

The medium NDVI areas (-0.14 to -0.08) covered 546.00 km2 (16.04 percent). The 

secondary high NDVI areas (-0.08 to -0.03) occupied 406.67 km2 (11.95 percent). The high 

NDVI areas  (-0.03 to 0.12) occupied 209.96 km2 (6.17 percent). This implied that in 2011, 

high and secondary high NDVI areas (-0.08 to 0.12) collectively occupied 616.63 km2 and 

covered 18.12 percent of Ibadan Metropolis, indicating a progressive coverage area decrease 

of 10.54 percent from 28.66 percent in 2001 to 18.12 percent in 2011. Similarly, medium 

NDVI areas decreased progressively in percentage coverage by 2.02 percent from 18.74 

percent in 2001 to 16.04 percent in 2011.  

In 2019, low NDVI areas (-0.02 to -0.14) occupied 749.73 km2 (22.03 percent of the total 

area). The secondary low NDVI areas (-0.14 to 0.20) covered 977.33 km2 (28.72 percent).  

The medium NDVI areas (0.20 to 0.25) occupied 771.45 km2 (22.67 percent). The secondary 

high NDVI areas (0.25 to 0.29) covered 582.00 km2 (17.10 percent). The high NDVI areas 

(0.29 to 0.43) occupied 322.55 km2 (9.48 percent). This implied that in 2019, high and 
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secondary high NDVI areas (0.25 to 0.43) covered 904.55km2 and covered 26.58 percent of 

Ibadan Metropolis, indicating a coverage area higher than 2011 by 8.46 percent.  

Similarly, medium NDVI areas increased in percentage coverage by 6.63 percent from 16.04 

percent in 2011 to 22.67 percent in 2019. On the contrary, low and secondary low NDVI 

areas (-0.02 to 0.20) collectively occupied 1727.06 km2 and covered 50.75 percent of the 

Metropolis, indicating a lower coverage area of 15.09 percent, from 65.84 percent 2011 to 

50.75 percent in 2019.  

This result therefore demonstrated an association between land use/land cover in Ibadan city 

over the study period, and was corroborated with results of previous studies (Kasim et al., 

2020; Seun et al., 2022) which revealed higher NDVI values over semi-urban areas and areas 

that had thicker vegetal cover, while lower NDVI values were recorded over water, bare and 

built surfaces across the city. The persistent increase in areas with very low and low NDVI 

values indicated that increase in built and bare surfaces during the study period resulted in 

reduced coverage areas of vegetal cover. This may be explained by heightened 

anthropogenic activities resulting from urbanization such as land clearing for agricultural 

activities or construction or tree felling for other purposes.  

4.2.2  NDVI of Owerri metropolis 1990-2019 

NDVI images of Owerri Metropolis in 1990 and 2019 are presented in Figures 4.25 and 4.26 

while those of 2000 and 2010 are shown in Appendix E. Results showed that the maximum 

recorded NDVI of the city was 0.42, 0.28, 0.42 and 0.27 in 1990, 2000, 2010 and 2019 

respectively, while the minimum was -0.12, -0.32, -0.17 and -0.01 in 1990, 2000, 2010 and 

2019 respectively. This implied that maximum (0.42) was recorded in 1990 and 2010 while 

the minimum (-0.32) NDVI values in the city were recorded in Ibadan in 2000.  
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Figure 4.25  NDVI of Owerri Metropolis in 1990 

 
Figure 4.26  NDVI of Owerri City in 2019 
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The mean NDVI values of 0.27, 0.05, 0.05 and 0.15 were recorded in 1990, 2000, 2010 and 

2019 respectively; indicating that the highest mean value was recorded in 1990, while the 

lowest value was recorded in 2000 and 2010. For standard deviation, recorded values were 

0.05, 0.08, 0.09, and 0.04 in 1990, 2000, 2010 and 2019 respectively, indicating that 2000 

had the highest standard deviation. The low NDVI points are concentrated around the city 

core comprising of Owerri-North, Owerri-West and Owerri Municipal Local Government 

Areas which have the highest percentage of built-up area and vegetal cover. 

Figure 4.27 shows the statistics of re-classified NDVI images of Owerri in 1990, 2000, 2010 

and 2019 respectively while classification maps are shown in Appendix F. The statistics 

showed that in 1990, low NDVI areas (-0.12 to 0.13) 19.95 km2 (3.67 percent). Secondary 

low areas (0.13 to 0.21) 38.41 km2 (7.07 percent). The medium NDVI areas (0.21 to 0.26) 

occupied 88,275 points covering an area of 79.45 km2 (14.62  percent). The secondary high 

NDVI areas (0.26 to 0.31) occupied 183.15 km2 (33.70 percent). The high NDVI area (0.31 

to 0.43) covered 222.45 km2 (40.94 percent). 

 

Figure 4.27 Owerri NDVI Class Charts 1990 – 2019 
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This implied that in 1990 high and secondary high NDVI areas (0.26 to 0.43) collectively 

occupied 450,669 points (405.60km km2) and covered 74.64 percent of Owerri Metropolis, 

whereas low and secondary low NDVI areas (-0.12 to 0.21) collectively occupied 58.37 km2 

and covered about 10.74 percent of the Metropolis. 

In 2000,  low NDVI areas (-0.32 to -0.13) occupied 26.53 km2 (4.92 percent of the total 

area). The secondary low NDVI areas (-0.13 to -0.04) covered 46.42 km2 (8.60 percent).  

The medium NDVI areas (-0.04 to 0.04) occupied 91.94 km2 (17.04 percent). The secondary 

high NDVI areas (0.04 – 0.09) covered 180.06 km2 (33.37 percent). The high NDVI areas  

(0.09 – 0.28) covered 194.63 km2 (36.07 percent). This implied that in 2000, high and 

secondary high NDVI areas (0.04 – 0.28) collectively occupied 374.69 km2 and covered 

69.44 percent of Owerri Metropolis, indicating a coverage area lower than 1990 by 5.20 

percent. On the contrary, low and secondary NDVI areas (72.95 km2) increased slightly in 

percentage coverage by 2.78 percent from 10.74 percent in 1990 to 13.52 percent in 2000. 

Similarly, medium NDVI areas increased in coverage from 79.45 km2 (14.62 percent) in 

1990 to 91.94 km2 (17.04 percent) in 2000, a difference of 2.42 percent. 

In 2010, low NDVI areas (-0.17 to -0.02) covered 38.99 km2 (7.17 percent of the total area). 

The secondary low NDVI areas (0.02 to 0.11) occupied covered 52.90 km2 (9.73 percent). 

The medium NDVI areas (0.11 to 0.19) covered 90.26 km2 (16.61 percent). The secondary 

high NDVI areas (0.19 to 0.25) covered 169.74 km2 (31.24 percent). The high NDVI areas 

(0.25 to 0.42) occupied 191.54km2 (32.25 percent).  

This implied that in 2010, high and secondary high NDVI areas (0.19 to 0.42) collectively 

occupied 361.28 km2 and covered 66.48 percent of Owerri Metropolis, indicating a coverage 

area lower than 2000 by 2.96 percent. Similarly, medium NDVI areas decreased in 



220 
 

percentage coverage from 17.04 percent in 2000 to 16.61 percent in 2010. On the other hand, 

low and secondary low NDVI areas (-0.17 to 0.11) collectively occupied 91.87 km2 and 

covered 16.91 percent of the Metropolis, indicating a coverage area higher than year 2000 

by 3.39 percent. 

In 2019, low NDVI areas (0.01 - 0.10) occupied 64.45 km 2 (11.86 percent of the total area). 

The secondary low NDVI areas (0.10 – 0.13) covered 102.01 km2 (18.77 percent). The 

medium NDVI areas (0.13 – 0.16) 115.02 km2 (21.17 percent). The secondary high NDVI 

areas (0.16 – 0.19) covered 123.43 km2 (22.71 percent). The high NDVI areas (0.12 – 0.27) 

138.51 km2 (25.49 percent). This implied that in 2019, high and secondary high NDVI areas 

(0.16 – 0.27) collectively occupied 261.95 km2 and covered 48.20 percent of Owerri 

Metropolis, indicating a coverage area lower than 2010 by 18.28 percent. On the contrary, 

low and secondary low NDVI areas (0.01 – 0.13) collectively covered 166.46 km2 and 

covered 30.63 percent of the Metropolis, indicating an increase in percentage coverage by 

13.72 percent from 16.91 percent in 2010 to 30.63 percent in 2019. Similarly, medium NDVI 

areas increased in percentage coverage from 16.61 percent in 2010 to 21.17 in 2019. 

As in the case of Ibadan, the study demonstrated an association between land use/land cover 

in Owerri metropolis during the period, and corroborated the results of Kasim et al., 2020 

and Seun et al., 2022 which depicted higher NDVI values over semi-urban areas and areas 

that had thicker vegetal cover, while lower NDVI values were recorded over water, bare and 

built surfaces across the city. The city also witnessed a persistent increase in areas with very 

low and low NDVI values; indicating that increase in built and bare surfaces during the 

period resulted in reduced coverage areas of vegetation. This may be explained by 

heightened rate of deforestation occasioned by urbanization.  
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4.2.3  NDVI of Kano metropolis 1991-2019 

NDVI images of Kano Metropolis in 1991 and 2019 are presented in Figures 4.28 and 4.29 

while those of 2001 and 2011 are shown in Appendix E. Results showed that the maximum 

recorded NDVI of the city was 0.43, 0.17, 0.42 and 0.40 in 1991, 2001, 2011 and 2019 

respectively, while the minimum was -0.34, -0.59, -0.37 and -0.24 in 1991, 2001, 2011 and 

2019 respectively. This implied that maximum (0.43) was recorded in 1991 while the 

minimum (-0.59) NDVI values in the city were recorded in Ibadan in 2001. The mean NDVI 

values of 0.02, -0.22, 0.06 and 0.12 were recorded in 1991, 2001, 2011 and 2019 

respectively; indicating that the highest mean value was recorded in 2019, while the lowest 

value was recorded in 2001.  

 
Figure 4.28  NDVI of Kano Metropolis in 1991 
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Figure 4.29  NDVI of Kano City in 2019 

For standard deviation, recorded values were 0.04, 0.05, 0.09, and 0.05 in 1991, 2001, 2011 

and 2019 respectively, indicating that 2011 had the highest standard deviation while 1991 

recorded the least. The lowest NDVI points are concentrated around the city core comprising 

of Dala, Fagge, Gwale, Kano Municipal, Nassarawa, Government Areas which have the 

highest percentage of built-up area and vegetal cover. 

Figure 4.30 shows the statistics of re-classified NDVI images of Kano metropolis in 1991, 

2001, 2011 and 2019 respectively while classification maps are shown in Appendix F. The 

statistics showed that in 1991, low NDVI areas (-0.35 to -0.27) occupied 8.61 km2 (8.62 

percent of the total area). The secondary low NDVI areas (-0.27 to 0.02) covered 191.91 km2 

(38.88 percent). The medium NDVI areas (0.02 to 0.05) covered 196093 km2 (39.90 

percent). The secondary high NDVI areas (0.05  to 0.13) covered an area of 50.85 km2 (10.30 

percent). The high NDVI areas (0.13  to 0.43) occupied 11.28 km2 (2.28 percent).  
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Figure 4.30 Kano NDVI Class Charts 1991 – 2019 

This implied that in 1991 high and secondary high NDVI areas (0.05 to 0.43) collectively 

occupied 11.12 km2 and covered 2.26 percent of Kano Metropolis, whereas low and 

secondary low NDVI areas (-0.35 to 0.02) collectively occupied 386.84 km2 and covered 

about 78.38 percent of the Metropolis. In 2001, low NDVI areas (-0.59 to -0.38) covered 

25.77 km2 (5.22 percent of the total area). The secondary low NDVI areas(-0.38 to -0.27) 

covered 164.61 km2 (33.35 percent). The medium NDVI areas (-0.27 to -0.22) occupied 

230.70 km2 (46.75 percent). The secondary high NDVI areas (-0.22  to -0.15) covered 69.30 

km2 (14.04 percent).  

The high NDVI areas (-0.15 to 0.17) occupied 3.15 km2 (0.64 percent). This implied that in 

2001, high and secondary high NDVI areas (-0.22 – 0.17) collectively occupied 72.45 km2 

and covered 14.68 percent of Kano Metropolis, indicating a coverage area higher than 1991 

by 12.42 percent. Similarly, medium NDVI areas increased in coverage from 19.37 percent 
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in 1990 to 46.75 percent in 2001. On the contrary, low and secondary NDVI areas (-0.59 to 

-0.27) collectively covered 190.38 km2 or 38.57 percent, a decrease of 39.81 percent.  

In 2011, low NDVI areas (-0.08 to -0.06) covered 81.80 km2 (16.58 percent of the total area). 

The secondary low NDVI areas (-0.06 to -0.20) occupied 74.83 km2 (15.16 percent). The 

medium NDVI areas (-0.20 to 0.09) covered 109.45 km2 (22.18 percent). The secondary 

high NDVI areas (0.09 to 0.15) covered 147.56 km2 (29.90 percent). The high NDVI areas 

(0.15 to 0.42) covered 79.90 km2 (16.19 percent). This implied that in 2011, high and 

secondary high NDVI areas (0.09 to 0.42) collectively occupied 227.45 km2 and covered 

46.09 percent of Kano Metropolis. Similarly, medium NDVI areas decreased in percentage 

coverage from 46.75 percent in 2001 to 22.18 percent in 2011. On the other hand, low and 

secondary low NDVI areas (-0.38 to -0.20) collectively covered 156.63 km2 (31.74 percent) 

of the Metropolis, indicating a coverage area higher than year 2001 by 17.06 percent. 

In 2019, low NDVI areas (-0.24 - 0.01) covered 1.05 km2 (0.21 percent of the total area). 

The secondary low NDVI areas (-0.01 to 0.08) occupied 105.01 km2 (21.28 percent). The 

medium NDVI areas (0.08 – 0.13) occupied 123.22 km2 (24.97 percent). The secondary high 

NDVI areas (0.13 – 0.17) occupied 200.23 km2 (40.57 percent). The high NDVI areas (0.17 

– 0.40) covered 64.02 km2 (12.97 percent). This implied that in 2019, high and secondary 

high NDVI areas (0.13 – 0.40) collectively occupied 264.25 km2 and covered 53.54 percent 

of Kano Metropolis, indicating a coverage area higher than 2011 by 7.45 percent. Similarly, 

medium NDVI areas increased in percentage coverage from 22.18 percent in 2011 to 24.9 

in 2019. On the contrary, low and secondary low NDVI areas (-0.24 – 0.08) collectively 

occupied 106.06 km2 and covered 21.49 percent of the Metropolis, indicating an decrease in 

percentage coverage by 21.49 percent. 
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4.2.4  NDVI of Birnin Kebbi metropolis 1990-2019 

NDVI images of Birnin Kebbi Metropolis in 1990 and 2019 are presented in Figures 4.31 

and 4.32 while those of 2000 and 2010 are shown in Appendix E. Results showed that the 

maximum recorded NDVI value of the city was 0.17, 0.60, 0.48 and 0.56 in 1990, 2000, 

2010 and 2019 respectively, while the minimum was -0.01, -0.39, -0.51 and -0.28 in 1990, 

2000, 2010 and 2019 respectively. This implied that maximum value (0.60) was recorded in 

2000 while the minimum (-0.51) NDVI values in the city were recorded in Ibadan in 2010. 

The mean NDVI values of 0.13, 0.14, 0.04 and 0.25 were recorded in 1990, 2000, 2010 and 

2019 respectively; indicating that the highest mean value was recorded in 2019, while the 

lowest value was recorded in 2000.  

 
Figure 4.31  NDVI of Birnin Kebbi Metropolis in 1990 
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For standard deviation, recorded values were 0.05, 0.10, 0.06, and 0.06 in 1990, 2000, 2010 

and 2019 respectively, indicating that 2000 had the highest standard deviation while 1990 

recorded the least. The high NDVI points were concentrated along the flood plains because 

of the cultivated agricultural crops, while lowest NDVI values occupied built surfaces and 

open/bare surfaces.  

Figure 4.32  NDVI of Birnin Kebbi City in 2019 

 

Figure 4.33 shows the statistics of re-classified NDVI images of Birnin Kebbi metropolis in 

1990, 2000, 2010 and 2019 respectively while classification maps are shown in Appendix 

F. The statistics showed that in 1990, low NDVI areas (-0.01 to 0.34) covered 185.41 km2 

(14.85 percent). Secondary low areas (0.34 to 0.05) covered 388.65 km2 (31.12 percent). 

The medium NDVI areas (0.05 to 0.07) occupied 334.59 km2 (26.79 percen). The secondary 
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high NDVI areas (0.07 to 0.10) covered 212.10 km2 (16.98 percent). The high NDVI areas 

(0.10 to 0.17) covered 128.13 km2 (10.26 percent). 

 
Figure 4.33 Birnin Kebbi NDVI Class Charts 1991 – 2019 

This implied that in 1990 High and secondary high NDVI areas (0.73 to 0.17) collectively 

occupied 340.23 km2 and covered about 27.24 percent of the Metropolis, whereas low and 

secondary low NDVI areas (-0.01 to 0.53) collectively occupied 574.04 km2 and covered 

45.97 percent of Birnin Kebbi Metropolis. 

In 2000, low NDVI areas (-0.39 to 0.01) covered 118.63 km2 (9.50 percent of the total area). 

The secondary low NDVI areas (0.01 to 0.10) covered 334.28 km2 (26.77 percent). The 

medium NDVI areas (0.01 to 0.18) covered 386.14 km2 (30.92 percent). The secondary high 

NDVI areas (0.18 – 0.28) occupied 285.99 km2 (22.90 percent). The high NDVI areas (0.28 

– 0.60) covered 123.84 km2 (9.92 percent). This implied that in 2000, high and secondary 

high NDVI areas (0.18 – 0.60) collectively occupied 409.83 km2 and covered 32.82 percent 

of Birnin Kebbi Metropolis, indicating a coverage area higher than 1990 by 5.58 percent. 

Similarly, medium NDVI areas increased in coverage from 334.59 km2 (26.79 percent) in 
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1990 to 386.14 km2 (30.92 percent) in 2000, a difference of 4.13 percent. On the contrary, 

low and secondary NDVI areas (536.26 km2) decreased slightly in percentage coverage by 

9.71 percent from 45.97 percent in 1990 to 36.26 percent in 2000.  

In 2010, low NDVI areas for the year (-0.51 to -0.04) covered 123.03 km2 (9.85 percent of 

the total area). The secondary low NDVI areas (-0.04 to 0.02) occupied 412.95 km2 (33.00 

percent). The medium NDVI areas (0.02 to 0.07) covered 418.74 km2 (33.53 percent). The 

secondary high areas (0.07 to 0.14) covered 233.90 km2 (18.73 percent). Finally, the high 

NDVI areas (0.14 to 0.48) covered 61.06 km2 (4.89 percent). Collectively, in 2010, 

secondary high and high NDVI areas (0.07 to 0.48) occupied 294.96 km2 and covered 23.62 

percent of Birnin Kebbi Metropolis, indicating a coverage area lower than 2000 by 9.20 

percent. On the contrary, medium NDVI areas increased in percentage coverage from 30.92 

percent  in 2000 to 33.53 percent in 2010. Similarly, low and secondary low NDVI areas (-

0.51 to 0.02) collectively occupied 535.17 km2 and covered 42.85 percent of the Metropolis, 

indicating a coverage area higher than year 2000 by 6.59 percent.  

In 2019, low NDVI areas (-0.28 - 0.09) covered 16.40 km 2 (1.31 percent of the total area). 

The secondary low areas (0.09 – 0.19) occupied 146.71 km2 (11.75 percent). The medium 

NDVI areas (0.19 – 0.25) occupied 404.39 km2 (32.38 percent). The secondary high NDVI 

areas (0.25 – 0.31) 491.10 km2 (39.32 percent). The high NDVI areas (0.31 – 0.56) covered 

190.26 km2 (15.23 percent).  This implied that in 2019, secondary high and high NDVI areas 

(0.25 – 0.56) collectively occupied 681.36 km2 and covered 54.56 percent of Birnin Kebbi 

Metropolis, indicating a coverage area higher than 2010 by 30.94 percent. On the contrary, 

low and secondary low NDVI areas (-0.28 – 0.19) collectively occupied (163.12 km2) and 

covered 13.06 percent of the Metropolis, indicating a decrease in percentage coverage by 
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29.19 percent from 42.85 percent in 2010 to 32.38 percent in 2019. Similarly, medium NDVI 

areas decreased in percentage coverage by 1.15 percent from 33.53 percent in 2010 to 32.38 

in 2019.  

Summarily, the NDVI values across the four locations varied from year to year; with a 

successive decline in areas with high NDVI in all locations. The high NDVI values were 

found in areas within the metropolis of the cities that had higher concentration of vegetal 

coverage, such as forests, light vegetation, and agricultural lands while bare surfaces, water 

bodies and bare surfaces which were void of vegetation recorded the lowest NDVI values. 

Results were similar to those of Kasim et al. (2020) whose work revealed a higher NDVI in 

surb-urban settlements in Ibadan with thicker vegetal cover in 2009, and a decline in the 

communities with high NDVI in 2009 when compared to 2000. This may be a function of 

several factors, such as yearly rainfall amount which determines the availalabity of moisture 

for foliage, agricultural activities which resulted in the loss of vegetal cover, and 

urbanization. The reduction in the locations with high values over time may be a consequent 

of rising urbanization, which has led to increase in built-up and bare surfaces. 

4.2.5 Analysis of variance (ANOVA) in mean NDVI of Ibadan, Owerri, Kano 

and Birnin Kebbi 1990-2019 

The Analysis of variance in NDVI for Ibadan, Owerri, Kano and Birnin Kebbi from 1990 to 

2019 were computed from Appendices K1-4 and presented in Table 4.9 and Figure 4.33. 

The table indicates that the p-value was greater than 0.00 but less than significance value of 

0.05; depicting a significance difference in NDVI for the four locations. That is, NDVI 

differed across the four location. 
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Table 4.9  Analysis of Variance in NDVI for  Ibadan, Owerri, Kano and Birnin 

Kebbi from 1990 to 2019 

Analysis of Variance for NDVI 

 

Source   DF        SS       MS      F      P 

 

LOCAT     3   1.53977  0.51326  15.49  0.000 

year      3   1.60591  0.53530  16.15  0.000 

Error   313  10.37257  0.03314 

Total   319  13.51825 

 

Grouping Information Using the Tukey Method and 95% Confidence 

 

LOCAT   N     Mean  Grouping 

1      80   0.1333  A 

4      80   0.1137  A B 

2      80   0.0369    B 

3      80  -0.0422      C 

*Means that do not share a letter are significantly different 

1=Kebbi, 2=Kano, 3=Ibadan,  4=Owerri 

Source: Author’s work (2023) 

Using Tukey pairwise comparison test, the study established that Birnin Kebbi had the 

highest mean NDVI (0.1333), followed by Owerri (0.1137) but the difference in the mean 

NDVI for Birnin Kebbi and Owerri were not statistically significant at 5 percent significance 

level. Kano (0.0369) followed Owerri in the mean NDVI but the difference between mean 

NDVI for Kano and Owerri were statistically the same but Birnin Kebbi was statistically 

different from Kano. Lastly, Ibadan (-0.0422) had the least mean NDVI which was 

statistically different from all other three locations.  

This implied that NDVI values were generally higher in Birnin Kebbi, probably as a result 

of  the  two rich fertile extensive flood plains of the Rima and Shella Rivers (Ogunbajo et 

al., 2015) which constitute a large portion of the city and are largely cultivatedand were still 

green as at the time the imageries were acquired. It also implied that the smaller towns 

(Birnin Kebbi and Owerri) recorded high mean NDVI values than the larger cities (Kano 
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and Ibadan); depicting urbanization effects on NDVI. The implication is that increase in the 

urban sizes negatively affects NDVI values. 

 
Figure 4.34  Interval Plot for NDVI versus location for the cities (1990-2019) 

4.3.  NDBI of study cities from 1990 – 2019 

This section presents the rsults of NDBI analysis of Ibadan, Owerri, Kano and Birnin Kebbi 

from 1990 to 2019. 

4.3.1 NDBI of Ibadan metropolis 1990-2019 

NDBI images of Ibadan Metropolis in 1990 and 2019 are presented in Figures 4.35 and 4.36 

while those of 2001 and 2011 are shown in Appendix G. Results showed that the maximum 

recorded NDBI of the city was 0.95, 0.68, 0.65 and 0.50 in 1990, 2001, 2011 and 2019 

respectively, while the minimum was -0.09, -0.39, -0.25 and -0.28 in 1990, 2001, 2011 and 

2019 respectively. This implied that maximum (0.95) was recorded in 2001 while the 

minimum (-0.39) NDBI values in the city were recorded in 2001.  
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Figure 4.35  NDBI of Ibadan Metropolis in 1990 

 
Figure 4.36  NDBI of Ibadan Metropolis in 2019 
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The mean NDBI values of 0.12, 0.19, 0.12 and -0.07 were recorded in 1990, 2001, 2011 and 

2019 respectively; indicating that the highest mean value was recorded in 2001, while the 

lowest value was recorded in 2019. For standard deviation, recorded values were 0.09, 0.09, 

0.08, and 0.08 in 1990, 2001, 2011 and 2019 respectively, indicating that 1990 and 2001 had 

the highest standard deviation while 2011 and 2019 recorded the least. The high NDBI points 

were concentrated around the urbanized areas of the city, particularly the core local 

government areas which have significant concentrations of built up areas.  

Figure 4.37 shows the statistics of re-classified NDBI images of Ibadan metropolis in 1990, 

2001, 2011 and 2019 respectively while classification maps are shown in Appendix H. The 

statistics showed that in 1990, low NDBI areas (-0.97 to 0.05) occupied 920.63 km2 (27.05 

percent of the total area). The secondary low NDBI areas  (0.05 to 0.11) covered 869.34 km2 

(25.55 percent).  The medium NDBI areas (0.11 to 0.17) occupied 708,780 points covering 

an area of 637.90 km2 (18.74 percent).  

 

 Figure 4.37 Ibadan NDBI 1990 – 2019 
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The secondary high NDBI areas (0.17 to 0.24) occupied 557.07 km2 (16.37 percent). The 

high NDBI areas  (0.24 to 0.95) covered 418.12 km2 (12.29 percent). This implied that in 

1990, high and secondary high NDBI areas (0.17 to 0.95) collectively occupied 975.19km2 

and covered 28.66 percent of Ibadan. Low and secondary low NDBI areas (-0.97 to 0.11) 

collectively had occupied 1789.98 km2 and covered 56.20 percent of the Metropolis. This 

implied that low NDBI values dominated the scene of Ibadan Metropolis in 1990. 

In 2001, low NDBI areas  (-0.09 to 0.10) occupied 638.42 km2 (18.76 percent of the total 

area); lower than 1990 by 8.29 percent. The secondary low NDBI areas (0.10 to 0.17) 

occupied 734.52  km2 (21.58 percent), lower than 1990 by 3.97 percent.  The medium NDBI 

areas (0.17 to 0.23) occupied 717.95  km2 (21.10 percent), higher than 1990 by 2.36 percent. 

The secondary high NDBI areas (0.23 to 0.30) occupied 693.34 km2 (20.38 percent), higher 

than 1990 by 4.01 percent. The high NDBI areas (0.30 to 0.68) covered 618.84 km2 (18.18 

percent), 5.89 percent higher than 1990.  This implied that in 2001, high and secondary high 

NDBI areas (0.23 to 0.68) collectively occupied 1,312.17 km2 and covered 38.56 percent of 

Ibadan, indicating a coverage area increase of 9.9 percent higher than 1990. Similarly, 

medium NDBI areas increased in coverage area by 2.36 percent. On the contrary low and 

secondary low NDBI areas (-0.09 to - 0.17) collectively 1,372.94 km2 and covered 40.34 

percent of the Metropolis, which was 15.86 percent lower than 1990.  

In 2011,  low NDBI areas (-0.25 to 0.06) occupied 847.34 km2 (24.9 percent of the total 

area). The secondary low NDBI areas (0.06 to 0.11) covered 884.73 km2 (26.00 percent).  

The medium NDBI areas (0.11 to 0.18) occupied 689.05 km2 (20.25 percent). The secondary 

high NDBI areas (0.18 to 0.25) covered 543.82 km2 (15.98 percent). The high NDBI areas 

(0.25 to 0.65) occupied 438.12  km2 (12.87 percent). This implied that in 2011, high and 
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secondary high NDBI areas (0.18 to 0.65) collectively occupied 981.94 km2 and covered 

28.85 percent of Ibadan Metropolis. The  low and secondary low NDBI areas (-0.25 to 0.11) 

collectively occupied 1,988,864 points (1,732.08 km2) and covered 50.90 percent of the area. 

1n 2019,  low NDBI areas for the year (-0.28 to -0.15) occupied 684.27 km2 (20.11 percent 

of the total area). The secondary low NDBI areas for the year (-0.15 to -0.10) occupied 

789.49 km2 (23.20 percent).  The medium NDBI areas for the year (-0.10 to -0.04) occupied 

690.54 km2 (20.29 percent). The secondary high NDBI areas (-0.04 to 0.01) occupied 648.84 

km2 (19.07 percent). The high NDBI areas of the year (0.01 to 0.50) occupied 589.93 km2 

(17.34 percent). This implied that in 2019, high and secondary high NDBI areas (-0.04 to 

0.05) collectively occupied 1.238.77 km2 and covered 36.40 percent of Ibadan Metropolis, 

indicating a coverage  area higher than 2011 by 7.74 percent. Similarly, medium NDBI areas 

increased in percentage coverage by 1.55 percent between  2011 and 2019. On the contrary 

low and secondary low NDBI areas (-0.28 to -0.10) collectively covered 1,473.76 km2 and 

covered 43.31 percent of the Metropolis, indicating a coverage area decrease of 9.29 percent 

between 2011 and 2019. 

4.3.2  NDBI of Owerri 1990-2019 

NDBI images of Owerri Metropolis in 1990 and 2019 are presented in Figures 4.38 and 4.39 

while those of 2000 and 2010 are shown in Appendix G. Results showed that the maximum 

recorded NDBI of the city was 0.47, 0.60, 0.36 and 0.13 in 1990, 2000, 2010 and 2019 

respectively, while the minimum was -0.12, -0.25, -0.48 and -0.26 in 1990, 2000, 2010 and 

2019 respectively.  
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Figure 4.38  NDBI of Owerri Metropolis in 1990 

 
Figure 4.39  NDBI of Owerri City in 2019 
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This implied that the maximum (0.60) value for the city was recorded in 2000 while the 

minimum values (-0.48) was recorded in 2010. The mean NDBI values of 0.09, 0.19, 0.07 

and -0.09 were recorded in 1990, 2000, 2010 and 2019 respectively; indicating that the 

highest mean value was recorded in 2000, while the lowest value was recorded in 2019. For 

standard deviation, recorded values were 0.08, 0.08, 0.08, and 0.05 in 1990, 2000, 2010 and 

2019 respectively, indicating only 2019 standard deviation less than 0.08 had the highest 

standard deviation while 2011 and 2019 recorded the least. The high NDBI points were 

concentrated around the urbanized areas of the city, particularly the core three local 

government areas which have significant concentrations of built-up areas. 

Figure 4.40 shows the statistics of re-classified NDBI images of Ibadan metropolis in 1990, 

2001, 2011 and 2019 respectively while classification maps are shown in Appendix H. The 

statistics showed that in 1990, that low NDBI area (-0.12 to 0.03) occupied 157.85 km2 

(29.05 percent). Secondary low areas (0.03 to 0.09) covered 160.79 km2 (29.59 percent).  

 

Figure 4.40 Owerri NDBI 1990 – 2019 
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The medium NDBI area (0.09 to 0.15) occupied 104.30 km2 (19.19 percent). The secondary 

high NDBI area (0.15 to 0.23) covered 76.70 km2 (14.11 percent). The high NDBI area (0.23 

to 0.47) occupied 43.77 km2 (8.05 percent). This implied that in 1990 high and secondary 

high NDBI areas (0.15 to 0.47) collectively occupied 120.47 km2 (22.17 percent of Owerri 

Metropolis), whereas low and secondary low NDBI areas (-0.12 to 0.09) covered 318.65 

km2 (58.64 percent of the Metropolis). 

In 2000, low NDBI areas (-0.25 to 0.04) occupied 165.57 km2 (30.72 percent of the total 

area). The secondary low NDBI areas (0.04 to 0.10) occupied 153.77 km2 (28.53 percent). 

The medium NDBI areas  (0.10 – 0.16) occupied 94.56 km2 (17.55 percent). The secondary 

high NDBI areas (0.16 -0.24) covered 86.50 km2 (16.05 percent). The high NDBI areas of 

the year (0.24 – 0.60) occupied 38.52 km2 (7.15 percent). This implied that in 2000, high 

and secondary high NDBI areas (0.16 – 0.60) collectively occupied 125.02 km2 (23.20 

percent of Owerri Metropolis); indicating a coverage area higher than 1990 by 1.03 percent. 

Similarly, low and secondary NDBI areas (354,827 points or 319.34 km2) increased slightly 

in percentage coverage by 0.62 percent from 58.64 percent in 1990 to 59.26 percent in 2000. 

On the contrary medium NDBI areas reduced in coverage from 104.30 km2 (19.19 percent) 

in 1990 to 94.56 (17.55) in 2000, a difference of 1.64 percent. 

In 2010, low NDBI areas (-0.48 to -0.14 occupied 174.39 km2 (32.09 percent of the total 

area). The secondary low NDBI areas (-0.14 to -0.09) occupied 138.50 km2 (25.49 percent). 

The medium NDBI areas 44 percent). The secondary high NDBI areas (-0.22 to 0.06) 

covered 83.51 km2 (15.37 percent). The high NDBI areas (0.06 to 0.36) covered 41.4 km2 

(7.62 percent). This implied that in 2010, high and secondary high NDBI areas (-0.22 to 

0.36) collectively occupied 124.91 km2 (22.99 percent of Owerri Metropolis); indicating a 
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coverage area lower than 2000 by 0.21 percent. Similarly, low and secondary low NDBI 

areas (-0.48 to -0.09) collectively occupied312.90 km2 and covered 57.58 percent of the 

Metropolis; indicating a coverage area lower than year 2000 by 1.68 percent. On the 

contrary, medium NDBI areas (99.09 km2) increased in percentage coverage from 17.55 

percent in 2000 to 19.44 percent in 2010. 

In 2019, low NDBI areas (-0.26 to -0.15) occupied 108.67 km 2 (20.00 percent of the total 

area). The secondary low NDBI areas (-0.15 to 0.11) covered 122.77 km2 (22.59 percent). 

The medium NDBI areas (-0.11 to -0.07) covered 110.33 km2 (20.30 percent). The 

secondary high NDBI areas (-0.07 to -0.03) occupied 111.72 km2 (20.56 percent). The high 

NDBI areas (-0.03 to 0.13) covered 89.94 km2 (16.55 percent). This implied that in 2019, 

high and secondary high NDBI areas (-0.07 to 0.13) collectively occupied 201.65 km2 (about  

37.11 percent of Owerri Metropolis), indicating a coverage area higher than 2010 by 14.12 

percent. Similarly, medium NDBI areas (110.33 km2) increased in percentage coverage from 

19.44 percent in 2010 to 20.30 in 2019. On the contrary, low and secondary low NDBI areas 

(-0.26 to -0.11) collectively occupied 231.44 km2 (42.59 percent of the Metropolis), 

indicating a decrease in percentage coverage by 14.99 percent from 57.58 percent in 2010 

to 42.59 percent in 2019.  

4.3.3 NDBI of Kano metropolis 1991- 2019 

NDBI images of Kano Metropolis in 1991 and 2019 are presented in Figures 4.41 and 4.42 

while those of 2001 and 2011 are shown in Appendix G. Results showed that the maximum 

recorded NDBI of the city was 0.52, 0.99, 0.46 and 0.33 in 1991, 2001, 2011 and 2019 

respectively, while the minimum was -0.38, 0.97, -0.49 and -0.30 in 1991, 2001, 2011 and 

2019 respectively. 
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Figure 4.41  NDBI of Kano in 1991 

 
Figure 4.42  NDBI of Kano in 2019 
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This implied that the maximum (0.99) value for the city was recorded in 2001 while the 

minimum value (-0.49) was recorded in 2011. The high NDBI in 2001 may be attributed to 

the large presence of bare surfaces during the year. The mean NDBI values of 0.31, 0.97, 

0.05 and 0.05 were recorded in 1991, 2001, 2011 and 2019 respectively; indicating that the 

highest mean value was recorded in 2001, while the lowest values were recorded in 2011 

and 2019.  

For standard deviation, recorded values were 0.05, 0.01, 0.06, and 0.04 in 1991, 2001, 2011 

and 2019 respectively, indicating a higher standard deviation in 2011 and the lowest in 2001 

standard deviation less than 0.08 had the highest standard deviation while 2011 and 2019 

recorded the least. The high NDBI points concentrated around the urbanized areas of the 

city, particularly the core areas which have significant concentrations of built-up surfaces 

such as Tudun Wada, Gwagwarwa, Dakata, Kawaji, Gama (all in Nassarawa LGA) and 

Kurna Asabe, Jakara and Sanka settlements (all in Dala), other locations in Kano Municipal, 

Fagge, Gwale and Tarauni, as well as commercial locations (markets) such as Kurmi, Sabon 

Gari, Kantin Kwari, Yankaba, Kofar Ruwa, Kasuwar Rimi and Yanlemo markets.  

Figure 4.43 shows the statistics of re-classified NDBI images of Kano metropolis in 1991, 

2001, 2011 and 2019 respectively while classification maps are shown in Appendix H. The 

statistics showed that in 1991, low NDBI area (-0.38 to 0.14) occupied 173.98 km2 (2.13 

percent). Secondary low areas (0.14 to 0.23) covered  198.87 km2 (40.30 percent). The 

medium NDBI area (0.23 to 0.29) occupied 80.52 km2 (16.32 percent).  
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Figure 4.43 Kano NDBI 1991 – 2019 

The secondary high NDBI area (0.29 to 0.33) covered 29.64 km2 (6.01 percent). The high 

NDBI area (0.33 to 0.51) occupied 10.52 km2 (2.13 percent). This implied that in 1991 high 

and secondary high NDBI areas (0.29 to 0.51) collectively occupied 40.16 km2 (8.14 percent 

of Kano), whereas low and secondary low NDBI areas (-0.38 to 0.23) collectively 372.85 

km2 and covered about 75.55 percent of the Metropolis. 

In 2001, low NDBI areas (0.971 – 0.986) occupied 10.62 km2 (2.15 percent of the total area). 

The secondary low NDBI areas (0.986 to 0.988) covered 40.27 km2 (8.16 percent). The 

medium NDBI areas (0.988 to 0.989) occupied 48.18 km2 (9.76 percent). The Secondary 

high NDBI areas (0.989 to 0.991) occupied 24.77 km2 (25.28 percent). The high NDBI areas  

(0.991 – 0.998) occupied 269.70 km2 (54.65 percent). This implied that in 2001, secondary 

high and high NDBI areas (0.989 to 0.998) collectively covered 194.46 km2 (79.93 percent 

of Kano), indicating a coverage area higher than 1990 by 4.38 percent. On the contrary, low 
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and secondary NDBI areas (0.971 - 0.988) covered 50.89 km2 and increased in percentage 

coverage by 2.17 percent in 2001.  

In 2011, low NDBI areas (-0.49 to -0.07 occupied 27.35 km2 (5.54 percent of the total area). 

The secondary low NDBI areas (-0.07 to 0.001) covered 101.16 km2 (20.50 percent). The 

medium NDBI areas (0.001 to 0.05) occupied 142.06 km2 (28.78 percent). The secondary 

high NDBI areas (0.054 to 0.11) occupied 149.58 km2 (30.31 percent). The high NDBI areas 

(0.11 to 0.46) covered 73.40 km2 (14.87 percent). This implied that in 2011, high and 

secondary high NDBI areas (0.05 to 0.46) collectively covered 222.97 km2 (45.18 percent 

of Kano), while low and secondary low NDBI areas (-0.49 to 0.001) collectively occupied 

128.51 km2 (26.04 percent of the Metropolis). 

In 2019, low NDBI areas for the year (-0.30 to -0.56) occupied 148.17 km2 (30.02 percent 

of the total area). The secondary low NDBI areas (-0.56 to 0.003) covered 161.08 km2 (32.64 

percent). The medium NDBI areas (0.003 to 0.05) covered 130.25 km2 (26.39 percent). The 

secondary high NDBI areas (0.05 to 0.07 covered 43.23 km2 (8.76 percent). The high NDBI 

areas  (0.07 to 0.33) occupied 10.81 km2 (2.19 percent), This implied that in 2019, high and 

secondary high NDBI areas (0.41 to 0.33) collectively occupied 54.04 km2 (10.95 percent 

of Kano); indicating a coverage area lower than 2011 by 34.23 percent. On the contrary, low 

and secondary low NDBI areas (-0.30 to 0.003) collectively covered 154.62 km2 (62.66 

percent of the Metropolis); indicating an increase in percentage coverage by 36.62 percent 

in 2019.  
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4.3.4 NDBI of Birnin Kebbi metropolis 1990-2019 

NDBI images of Birnin Kebbi Metropolis in 1990 and 2019 are presented in Figures 4.44 

and 4.45 while those of 2000 and 2010 are shown in Appendix G. Results showed that the 

maximum recorded NDBI of the city was 0.24, 0.36, 0.64 and 0.27 in 1990, 2000, 2010 and 

2019 respectively, while the minimum was -0.01, -0.54, -0.82, and -0.44 in 1990, 2000, 2010 

and 2019 respectively. This implied that both maximum (0.64) and minimum (-0.82) values 

for the city were recorded in 2010. The mean NDBI values of 0.13, -0.01, 0.07 and -0.02 

were recorded in 1990, 2000, 2010 and 2019 respectively; indicating that the highest mean 

value was recorded in 2000, while the lowest value was recorded in 2019. For standard 

deviation, recorded values were 0.05, 0.13, 0.18, and 0.08 in 1990, 2000, 2010 and 2019 

respectively, indicating a higher standard deviation in 2010 and the lowest in 1990. 

Figure 4.44  NDBI of Birnin Kebbi in 1990 
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Figure 4.45  NDBI of Birnin Kebbi in 2019 

The high NDBI points concentrated around the urbanized and densely populated residential, 

high Traffic, industrial, and market areas such as the CBD, Makerar Gwandu, Kofar Kola, 

Rafin Atiku, Badariya, Bayan Kara, Takalau,Tudun Wada, Nasarawa 1, Nasarawa 2 and 

Gwadangwaji. 

Figure 4.46 shows the statistics of re-classified NDBI images of Birnin Kebbi metropolis in 

1990, 2000, 2010 and 2019 respectively while classification maps are shown in Appendix 

H. The statistics showed that in 1990, low NDBI areas (-0.10 to 0.01) covered 80.73 km2 

(6.46 percent). Secondary low areas (0.01 to 0.08) occupied 107.19 km2 (8.58 percent). The 

medium NDBI areas (0.03 to 0.13) covered 222.31 km2 (17.80 percent). The secondary high 

NDBI areas (0.13 to 0.17) occupied 445.61 km2 (35.68 percent). The high NDBI areas (0.17 

to 0.24) covered 393.04 km2 (31.47 percent).  
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Figure 4.46  Birnin Kebbi NDBI 1990 – 2019 

This implied that in 1990, high and secondary high NDBI areas (0.13 to 0.24) collectively 

occupied 419.32 km2 (67.15 percent of the city), whereas low and secondary low NDBI areas 

(-0.10 to 0.08) collectively covered 187.92 km2 (15.05 percent of the Metropolis). 

In 2000,  low NDBI areas (-0.54 to -0.24) occupied 144.69 km2 (11.59 percent of the total 

area). The secondary low NDBI areas (-0.24 to -0.01) covered 98.15 km2 (7.86 percent). The 

medium NDBI areas (-0.10 to -0.00) occupied 261.35 km2 (20.93 percent). The Secondary 

high NDBI areas (0.00 to 0.08) covered 451.14 km2 (36.12 percent). The high NDBI areas 

(0.08 – 0.36) occupied 293.55 km2 (23.51 percent). This implied that in 2000, secondary 

high and high NDBI areas (0.00 to 0.36) collectively covered 744.69 km2 (59.81 percent of 

the area), indicating a coverage area lower than 1990 by 7.34 percent. On the contrary, low 

and secondary NDBI areas (-0.54 to -0.01) which covered 558.34 km2 increased in 

percentage coverage by 4.39 percent from 15.05 percent in 1990 to 19.44 percent in 2000. 

Similarly, medium NDBI areas increased in coverage from 222.31 km2 (17.80 percent) in 

1990 to 261.35 km2 (20.93 percent) in 2000, a difference of 3.13 percent. 
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In 2010, low NDBI areas (-0.82 to -0.54 occupied 90.50 km2 (7.25 percent of the total area). 

The secondary low NDBI areas (-0.54 to -0.28) covered 34.43 km2 (2.76 percent). The 

medium NDBI areas (-0.28 to -0.00) occupied 138.95 km2 (11.13 percent). The secondary 

high NDBI areas (-0.00 to 0.12) covered 514.29 km2 (41.18 percent). The high NDBI areas 

(0.12 to 0.64) occupied 470.71 km2 (37.69 percent). This implied that in 2010, high and 

secondary high NDBI areas (-0.00 to 0.64) collectively occupied 985.00 km2 (78.87 percent 

of the city), indicating a coverage area higher than 2000 by 11.72 percent. On the contrary, 

low and secondary low NDBI areas (-0.82 to -0.28) collectively covered 124.93 km2 (10 

percent of the Metropolis), indicating a coverage area lower than year 2000 by 5.05 percent. 

Similarly, medium NDBI areas decreased in percentage coverage by 9.80 percent from 20.93 

percent in 2000 to 11.13 percent in 2010.  

In 2019,  low NDBI areas (-0.44 to -0.16) 125.08 km 2 (10.02 percent of the total area). The 

secondary low NDBI areas (-0.16 to -0.07) covered 122.44 km2 (9.80 percent). The medium 

NDBI areas (-0.07 to -0.01) covered 294.09 km2 (23.55 percent). The secondary high NDBI 

areas (-0.01 to 0.05) occupied 446.89 km2 (37.78 percent). The high NDBI areas (0.05 to 

0.27) covered 260.38 km2 (20.85 percent). This implied that in 2019, high and secondary 

high NDBI areas (-0.01 to 0.27) collectively occupied 707.27 km2 (56.63 percent of the city), 

indicating a coverage area lower than 2010 by 22.24 percent. On the contrary, low and 

secondary low NDBI areas (-0.44 to -0.07) collectively occupied 247.52 km2 (19.82 percent 

of the Metropolis), indicating an increase in percentage coverage by 9.82 percent in 2019. 

Similarly, medium NDBI areas increased in percentage coverage by 11.42 percent from 

12.13 percent in 2010 to 23.55 percent in 2019.  
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For  the four cities, high/positive NDBI values occupied the highly urbanized core areas of 

the cities which were either bare/open or possessed very sparce vegetal cover, while the 

lowest negative NDBI values occupied the suburban areas which were characterized by 

vegetal cover or water bodies. This is similar to the study by Kasim et al.  (2020) who 

established high NDBI recorded high NDBI readings in the core settlements in Ibadan 

metropolis and negative values in settlements with characterized by more vegetal cover.  

4.3.5 Analysis of variance (ANOVA) in mean NDBI of Ibadan, Owerri, Kano 

and Birnin Kebbi 1990-2019 

The Analysis of variance in NDBI for Ibadan, Owerri, Kano and Birnin Kebbi from 1990 to 

2019 computed from Appendices K1-4 is presented in Table 4.10 and Figure 4.46. The table 

established that the p-value was greater than 0.00 but less than significance value of 0.05, 

indicating a significance difference in NDBI for the four locations.  

Table 4.10  Analysis of Variance in NDVI for  Ibadan, Owerri, Kano and Birnin 

Kebbi from 1990 to 2019 

Analysis of Variance for NDBI 
 

Source   DF       SS      MS       F      P 

LOCAT     3  25.4771  8.4924  124.11  0.000 

year      3   7.7456  2.5819   37.73  0.000 

Error   313  21.4173  0.0684 

Total   319  54.6399 

 

Grouping Information Using the Tukey Method and 95% Confidence 

 

LOCAT   N     Mean  Grouping 

 

2      80   0.2836  A 

3      80   0.1578    B 

4      80   0.0589    B 

1      80  -0.4584      C 

*Means that do not share a letter are significantly different. 

1=Kebbi, 2=Kano, 3=Ibadan, 4=Owerri 

Source: Author’s work (2023) 
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The Tukey pairwise comparison test revealed that Kano had the highest mean NDBI 

(0.2836), which was statistically different from all other three locations. Kano was followed 

by Ibadan and Owerri which recorded mean NDBI values of  0.1578 and 0.0589 respectively. 

The mean NDBI for Ibadan was higher than that of Owerri but was not statistically 

significant.   

 

Figure 4.47  Interval plot of NDBI versus Locations 1990 -2019 

 

Lastly, Birnin Kebbi had the least mean NDBI (-0.4584 ) which was statistically significantly 

different from all other three locations. This analysis therefore revealed the relationship 

between the  urbanizarion and NDBI. Kano, which had the highest population density among 

the four cities and is higly congested recorded the highest mean  NDBI followed by Ibadan 

which is the largest in terms of landmass but possesses lower density. Consequently, Birnin 

Kebbi which was the least in terms of size also had the least mean NDBI. 
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4.4. Analysis and Results of Trends in Air Temperature 

The descriptive analysis of maximum noon-time temperature, the time plots for the four 

cities, trend analysis for the period 1990-2019 using Mann-Kendall, Sen’s slope estimator, 

Pettitt tests for change point and Seasonal Mann-Kendall test were investigated using R 

statistical package 3.6.1 version. The results and discussions are as follows: 

4.4.1 Descriptive statistics for the maximum noon-time temperatures for the four 

cities 

Table 4.11 shows the descriptive statistics of the maximum noontime temperature in Birnin 

Kebbi, Kano, Ibadan and Owerri. It shows that Birnin Kebbi had the highest mean 

temperature followed by Kano, Ibadan and Owerri respectively. This depicts the implication 

of latitudinal location on the temperature of the cities; as Birnin Kebbi which is located at a 

higher latitude in the Sudan recorded the highest mean, while Owerri located in the lower 

latitude of the Rainforest recorded the least mean temperature. 

Table 4.11  Descriptive Statistics for the Maximum Noon-Time Temperatures 

Statistics Birnin 

Kebbi 

Kano Ibadan Owerri 

Mean 27.49 25.56 24.08 23.17 

Skew 0.39 -0.09 0.47 0.60 

Kurtosis -0.72 -0.69 -0.59 -0.06 

Minimum 21.41 18.66 22.07 21.49 

Maximum 33.12 31.84 27.51 26.67 

Range 11.71 13.18 5.44 5.18 

1st Quartile 25.69 23.54 23.04 22.32 

Median 26.86 25.44 23.98 23.03 

3rd Quartile 29.58 27.83 24.96 23.85 

Standard Deviation 2.66 3.16 1.18 0.97 

Coefficient of 

Variation 

0.097 0.12 0.05 0.04 

  Source: Author’s Work (2023) 

The standard deviation and the coefficient of variation from the mean value were higher for 

Kano than those of Birnin Kebbi, Ibadan and Owerri in that order.  
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4.4.2 Time and box plots of maximum noon-time temperature for the four cities 

Figures 4.48a, b, c and d present the maximum temperature plots against the time (years) for 

the four cities. The graphs reveal that the maximum temperatures of the cities do not depict 

any temporal trend especially for Birnin Kebbi. For Kano, Ibadan and Owerri trends are not 

quite discernible, although trends are suspected to be present. 

 
Figure 4. 48a: Time plot of the time series observation of Birnin Kebbi in Nigeria against 

months for the period 1990 – 2019 

 
Figure 4. 48b: Time plot of the time series observation of Kano in Nigeria against Months 

for the period 1990 – 2019 
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Figure 4. 48c: Time plot of the time series observation of Ibadan in Nigeria against 

months for the period 1990 – 2019 

 

 
Figure 4. 48d: Time plot of the time series observation of Owerri in Nigeria against 

months for the period 1990 – 2019 

 

The box plot for the four cities is shown in Figure 4.49. It revealed five important statistics 

namely: minimum value, 25th percentile, median, 75th percentile, and the maximum value of 

the distribution as well as identification of potential outliers in the observations. From the 

boxplot, it is apparent that only one observation was found to be above the upper adjacent 

value in Owerri. No outliers were detected for every other city. The plot also revealed that 
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more data is lying in the upper half of the range in Birnin Kebbi and Kano while those of 

Ibadan and Owerri were around the middle and lower half of the range respectively. In other 

words the upper half of the maximum temperature was heavily weighted for Sudan Savanna 

cities (Birnin Kebbi and Kano) while those of Tropical Rainforest cities (Ibadan and Owerri) 

are otherwise. 

 
Figure 4.49  Box plots of Maximum Noon-time temperature against time for Birnin Kebbi 

(a), Kano (b), Ibadan (c) and Owerri (d). 

 

4.4.3 Normal probability plots and Shapiro Wilk normality test of maximum 

temperature series for the four cities 

 

The normal probability plots of maximum temperature series for the four cities are depicted 

in Figure 4.50. The plots reveal significant deviations from straight line on the normal 

probability plots.  
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Figure 4. 50 Normal Probability Plot of Maximum Noon-time temperature for Birnin 

Kebbi, Kano, Ibadan and Owerri 

 

Therefore, the series may not be normally distributed. The results of Shapiro Wilk normality 

test presented in Table 4.12 is a further validation of non-normality of the maximum 

temperature series for Birnin Kebbi, Kano, Ibadan and Owerri from the normal probability 

plots. Since the p-values are all less than 0.05 significant value, it is concluded that the 

maximum temperature series collected for the period of 1990 to 2019 in the for the four 

cities are not normally distributed. 

4.4.4  Mann-Kendall and Sen’s slope estimate results of maximum temperature for 

the four cities 

Mann-Kendall and Sen’s slope estimate results of maximum noon-time temperature for the 

four cities are presented in Table 4.13. From the result, the Tau statistic for Birnin Kebbi is 

0.045 and the corresponding p-value is 0.1976. Since the p-value is greater than 0.05, it is 

concluded that there is no significant trend in Birnin Kebbi. However, the Tau statistics 

results for Kano, Ibadan and Owerri were 0.071, 0.098 and 0.091 and the corresponding p-

values are 0.045, 0.005 and 0.010, indicating significant trends in the three cities.  
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Table 4.12  Shapiro Wilk Normality Test Result 

City W-Statistic P-Value 

Birnin Kebbi 0.9591 1.8e-08 

Kano 0.9801 7.15e-05 

Ibadan 0.9620 4.7e-08 

Owerri 0.9620 4.729e-08 

 Source: Author’s Analysis (2023) 

Since the p-values were less than 0.05 alpha value, the implication is that a trend was present 

in the data for Kano, Ibadan and Owerri respectively; with greater trends in the cities located 

within the Tropical Rainforest (Ibadan and Owerri).  

Table 4.13  Mann-Kendall Trend and Sen’s slope Results of Maximum Noon-Time 

Temperature for Birnin Kebbi, Kano, Ibadan and Owerri 

City Tau p-value Sen’s 

Slope 

p-value 95percent Confident 

Interval 

Birnin 

Kebbi 

0.0455 0.1976 0.0013 0.2849 -0.0011 0.003703 

Kano 0.0708 0.0447 0.0023 0.0609 -0.0001 0.006089 

Ibadan 0.0985 0.0053 0.0015 0.0136 0.0003 0.002624 

Owerri 0.0911 0.0098 0.0011 0.0224 0.0002 0.001979 

 Source: Author’s Analysis (2023) 

For the Sen’s slope estimates, the slopes are all positive, indicating increasing trends over 

the years for the four cities. However, Ibadan and Owerri slopes showed significant 

differences at 5 percent significant level, Kano at 10 percent level, while slope for Birnin 

Kebbi is not statistically different from zero. These are further validated from the 95 percent 

confident interval reported. Any interval that contained zero is reported not statistically 

different from zero at 95 percent, indicating that the slope estimate is not statistically 

significant. The results are similar to those of Amadi et al. (2014) whose Mann-Kendall’s 

test results for 20 synoptic weather cities across Nigeria (1950-2012) showed general 

warming trends across the locations and indicated that 17 cities had significant increasing 

trends in the minimum temperature at the 0.01 level of significance while 16 cities revealed 
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significant increasing trends in the maximum temperature at the 0.01 and 0.05 significance 

levels.  

The mean annual maximum noon-time temperature trends for the four cities are presented 

in Figure 4.51. It shows higher temperature values in the two Sudan Savanna Cities (Birnin 

Kebbi and Kano) than the cities in the Tropical Rainforest (Ibadan and Owerri). 

 
Figure 4.51:  Annual temperature trends across the four cities from 1990-2019 

 

According to Najib et al. (2017), temperature in Nigeria had higher values in the far north, 

occasioned by the effect of the Sahara Desert, which is characterized by fewer cloud cover, 

resulting in more solar irradiation; while, lower temperature values in the south are 

attributable to much higher cloud cover and abundant vegetal cover. 

4.4.5 Mann-Kendall seasonal trend test results 

Mann-Kendall Seasonal Trend Test Results for the four cities are presented in Table 4.14. 

The results indicate a sufficient statistical evidence of a significant seasonal increase at 0.05 

significant level in maximum noon-time temperature series for the four cities from 1990 - 

2019. 
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Table 4.14  Seasonal Mann-Kendall Trend Test Results of Maximum Noon-Time 

Temperature for Birnin Kebbi, Kano, Ibadan and Owerri 

City S Var S Z p-value 

Birnin Kebbi 695 37678.33 3.5753 0.0003498 

Kano 1047 37677.00 5.3888 7.092e-08 

Ibadan 1490 37659.33 7.6729 1.682e-14 

Owerri 1259 37663.67 6.4822 9.042e-11 

 Source: Author’s Analysis (2023) 

In Table 4.15, the seasonal Mann-Kendall trend result indicates increasing trend in almost 

all the months of the year. For Birnin Kebbi, there are eleven months of increasing trend of 

which only July was statistically significant at 5 percent level, while the month of January 

witnessed a decrease in trend, although not statistically significant. The rising trend may be 

attributed to the urbanization trend in these cities which has resulted in the removal of vegetal 

cover, and subsequent release of carbon dioxide and other greenhouse gases.  

Table 4.15  Seasonal Mann-Kendall trend Results for Individual Seasons (Months) 
 Birnin Kebbi Kano Ibadan Owerri 

Months Z(trend) P-Value Z(trend) P-Value Z(trend) P-Value Z(trend) P-

Value 

January -0.250 0.8027 -1.035 0.3007 0.464 0.6426 1.998 0.0457 

February 1.106 0.2687 1.142 0.2535 0.375 0.7078 0.517 0.6048 

March 0.786 0.4321 1.374 0.1693 0.928 0.3534 -0.553 0.5801 

April 0.161 0.8724 0.000 1.0000 1.840 0.0657 1.588 0.1123 

May 0.981 0.3263 2.481 0.0131 4.069 4.72e-5 1.481 0.1385 

June 1.802 0.0715 1.945 0.0518 2.554 0.0106 1.304 0.1923 

July 1.963 0.0496 4.158 3.2e-05 4.052 5.07e-5 3.194 0.0014 

August 1.250 0.2114 3.248 0.0012 3.714 0.0002 2.588 0.0096 

September 1.856 0.0634 3.105 0.0019 2.534 0.0112 2.643 0.0082 

October 1.802 0.0715 2.320 0.0203 3.676 0.0002 2.802 0.0051 

November 0.607 0.5440 -0.518 0.6047 2.356 0.0184 2.644 0.0081 

December 0.161 0.8724 0.339 0.7345 -0.143 0.8865 2.089 0.0366 

Source: Author’s Analysis (2023) 

Kano witnessed a decreasing trend in the months of January and November, and increasing 

trends in the months of February - April and December but not statistically significant at 5 

percent alpha level. However, from the months of May to October in Kano, there has been 

a significant increasing trend of temperature with the p-value <.05 alpha value. In Ibadan, 
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December showed a decreasing trend over the years while, January to March are increasing 

but not significant statistically. However, there has been significant increase in temperature 

from the months of April to November for the period under consideration. In Owerri, 

January, and July - December have witnessed increasing trends of temperature over the years 

and are statistically significant at 5 percent alpha value. The months of February to June 

witnessed increasing trend in temperature but not statistically significant. These increases 

might be attributed partly due to the general increase in the size of the cities, and partly due 

to the global rise in temperature due to anthropogenic forcings. 

A graphical representation of the mean monthly temperature of the four cities during the 

period under consideration is presented in Figure 4.52.  

 
Figure 4.52  Mean monthly noon-time temperature of the cities from 1990 to 2019 

 

It shows that not only are temperature values higher in the two Sudan Savanna cities (Birnin 

Kebbi and Kano); they are more variable seasonally compared to the two cities in the 

Tropical Rainforest (Ibadan and Owerri). The higher values in the Sudan cities may be 
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attributed to their location in the drier latitudes, the continuous loss of vegetal cover to 

natural factors and anthropogenic activities, as well as desertification. Birnin Kebbi and 

Kano recorded the highest monthly mean temperature values between the months of March 

and June. The results are also in consonance with Amadi et al. (2014) whose study 

demonstrated latitudinal dependence of basic temperature characteristics; with the northern 

region of Nigeria showing higher temperature variability than the southern region.  

With low temperature values of 20.60°C and 21.17°C in the months of January and 

December for Kano and Birnin Kebbi respectively, Kano Metropolis particularly recorded 

temperatures much lower than those of the Tropical Rainforest which are generally 

characterized by lower temperatures. The lower temperature in Kano city is attributable to 

the Harmattan season which occurs between the end of November and mid-March 

(Okeahialam, 2016) and is more severe in the Sudan ecological zone. The Harmattan dust is 

largely made up of dense silicon content which reduces radiation from the sun, and its 

attendant warmth, hence the associated low temperature (Enete et al., 2012).   For the cities 

in the Rainforest ecological zone, temperature peaks in March (25.82 °C for Ibadan and 

24.41°C in Owerri) and declines steadily till July from when a near uniform temperature is 

sustained until September, after which the temperature rises following the cessation of the 

rainy season. 

4.4.6 Pettitt Test for Single Change-Point in Temperature for the cities 

Results for the Pettitt Test for Single change-Point in temperature for the four cities are 

presented in Table 4.16 and Figure 4.53.  
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Table 4.16  Pettitt test for single change-point in maximum temperature for the cities 

City U p-vale K Year-Month 

Birnin Kebbi 3943 0.2723 146 February, 2002 

Kano 5544 0.0388 146 February, 2002 

Ibadan 5251 0.0583 179 November, 2004 

Owerri 5342 0.0515 143 November, 2001 

 Source: Author’s Analysis (2023) 

The results reveal that the general rising trend began in the month of February 2002 for 

Birnin Kebbi and Kano, both located in the same ecological zone. However, Birnin Kebbi is 

not statistically significant at 5 percent level. For Ibadan and Owerri both in the same 

ecological zone, an increasing trend was experienced in the month of November. The change 

in trend in Owerri was earlier (2001), while that of Ibadan occurred later. Also, an increasing 

change point was observed in November 2004 and 2001 in Ibadan and Owerri. The results 

for Ibadan and Owerri were statistically significant only at 10 percent significance level with 

p-values of .058 and .051 respectively. 

Conclusively, these analysis is in agreement with documented evidences from several 

studies. For instance,  analysis of temperature data of Agios Nikolaos, Evrytania central 

Greece, from 1973 to 2019 by Kaoukis et al. (2022), aside showing a significant rising trend 

in temperature values on yearly and seasonal basis; particularly during summer, also 

indicated a rise in the daily temperature range and the number of days which recorded very 

high temperature. 

Results of the study are also in tandem with Ajaaj et al. (2017) who utilized multiple 

statistical tests in examining long term tendencies in yearly and seasonal temperature in 18 

sampled mega cities cutting across six continents of the world, with the urban and peri-urban 

areas classified based using percentage of land imperviousness. 
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Figure 4.53  Pettitt’s Test for Single Change-Point Detection in Maximum temperature 

for Birnin Kebbi (a), Kano (b), Ibadan (c) and Owerri (d) for the period 1990-2019 

 

Results of the study indicated that approximately seventy percent of the urban locations 

revealed higher positive air temperature trends when compared with peri-urban locations. 

Results are also similar to the works of Subarna (2017) who carried out an evaluation of 

temporal changes in temperature in Jakarta from 1901 to 2002 with the use of Mann-Kendall 

trend test and the statistical linear trend test method, with the results of the two tests 

indicating an increase in the monthly mean values in the air surface temperature at a decadal 

rate of approximately 0.152°C. Furthermore, the study was corroborated by Song and Park 

(2021) whose study in South Korea revealed temperature rise of 2°C rise in stations with 

high trend slope and 0.5°C rise at stations with low trend slopes. The study also established 

a positive relationship between city locations and the trend slope; and an inverse relationship 

between forest areas and the trend slope, implying that expansion of urban areas into forested 

areas was a key factor in the long-term rise in urban temperature. 
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4.5 Trends in LST of the Study Locations from 1990 to 2019 

This section presents the results for the analysis of LST in Ibadan, Owerri, Kano and 

Birnin Kebbi cities from 1990 to 2019. 

4.5.1   LST of Ibadan 1990-2019 

LST images of Ibadan Metropolis in 1990 and 2019 are presented in Figures 4.54 and 4.55 

while those of 2001 and 2011 are shown in Appendix I. Results showed that the maximum 

recorded LST of the city was 40.50℃, 79.24℃, 46.42℃ and 37.42℃ in 1990, 2001, 2011 

and 2019 respectively, while the minimum was 13.45℃, -31.04℃, 18.64℃, and 23.31℃ in 

1990, 2001, 2011 and 2019 respectively. This implied that both maximum (79.24℃) and 

minimum (-31.04℃) LST values of the city were recorded in 2001.  

 
Figure 4.54  LST of Ibadan Metropolis in 1990 
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Figure 4.55  LST of Ibadan Metropolis in 2019 

 

The mean LST values of 24.89℃, 3.40℃, 30.44℃ and 27.69℃ were recorded in 1990, 

2001, 2011 and 2019 respectively; indicating that the highest mean value was recorded in 

2010, while the lowest value was recorded in 2001. Figure 4.55 shows the statistics of re-

classified LST images of Ibadan metropolis in 1990, 2001, 2011 and 2019 respectively while 

classification maps are shown in Appendix J. The statistics showed that in 1990, low LST 

areas areas (13.45 – 22.78℃) occupied 1279.38 km2 (37.59 percent). The secondary low 

temperature areas (22.78– 24.16℃) covered 961.06 km2 (28.24 percent).  

The medium temperature areas (24.16 – 25.54℃) covered  546.00 km2 (16.04 percent). The 

secondary high temperature areas (25.54– 27.88℃) covered 406.67 km2 (11.95 percent). 

The high temperature areas (27.88 – 40.50℃) occupied 209.96 km2 (6.17 percent). This 

implied that in 1990 high and secondary high temperature areas (25.54 – 40.50℃) 
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collectively occupied 616.63 km2 (18.12 percent of Ibadan Metropolis), whereas low and 

secondary low temperature areas (13.45 - 24.16℃) collectively occupied 2,240.44 km2  

(65.84 percent of the Metropolis). The remaining 546.00 km2 (16.04 percent) was 

characterised by moderate temperature. 

 Figure 4.56  Ibadan LST 1990 – 2019 

 

In 2001, low temperature areas (-31.04 to -1.95℃) covered 1072.89 km2 (31.53 percent). 

The medium temperature areas (4.12 – 8.90℃) occupied 802.22 km2 (23.57 percent). The 

secondary high temperature areas (8.90 – 14.55 covered 500.30 km2 (14.70 percent). The 

high temperature areas (14.55 – 79.24℃) 146.62 km2 (4.31 percent). This implied that in 

2001 high and secondary high temperature areas (89.90 – 79.24℃) collectively occupied 

646.92 km2 (19.01 percent of Ibadan Metropolis), indicating a coverage area higher than 

year 1990 by 12.84 percent. Similarly, medium temperature areas 802.22 km2 increased in 

percentage coverage from 16.04 percent in 1990 to 23.57 percent in 2001. On the contrary, 

low and secondary low temperature areas (-31.04 – 4.12℃) collectively covered 1,953.93 
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km2 (57.42 percent of the Metropolis), indicating a coverage area lower than year 1990 by 

8.42 percent. The remaining 802.22 km2 (23.57 percent) occupied by medium temperature. 

In 2011, low temperature areas (18.64 – 28.26℃) covered 389.61 km2 (11.45 percent). The 

secondary low temperature areas (28.26 – 29.68℃) occupied 1,205.39 km2 (35.42 percent). 

The medium temperature area (29.68 – 31.11℃) covered 958.37 km2 (28.16 percent). The 

secondary high temperature areas (31.11 – 33.51℃) occupied 596.06 km2 (17.52 percent). 

The high temperature areas (33.51– 46.42℃) covered 253.64 km2 (7.45 percent). This 

implied that in 2011 high and secondary high temperature areas (31.11 – 46.42℃) 

collectively covered 849.70 km2 (24.97 percent of Ibadan Metropolis), indicating a coverage 

area higher than 2001 by 5.96 percent. Similarly, medium temperature areas (958.37 km2) 

increased in percentage coverage from 23.57 percent in 2001 to 28.16 percent in 2011. On 

the contrary, low and secondary low temperature areas (18.64 – 29.68℃) collectively 

occupied 1,595.00 km2 (46.87 percent of the Metropolis), indicating a coverage area lower 

than year 2001 by 10.55 percent. 

In 2019, low temperature areas (23.31–26.02℃) occupied 780.62 km2 (22.94 percent). The 

secondary low temperature areas (26.02 – 27.40℃) covered 956.99 km2 (28.12 percent). 

The medium temperature areas (27.40 – 28.90℃) occupied 746.53 km2 (21.94 percent). The 

secondary high temperature areas (28.90 – 30.61℃) covered 528.98 km2 (15.54 percent). 

The high temperature areas (30.61 – 37.42℃) 389.95 km2 (11.46 percent). This implied that 

in 2019 high and secondary high temperature areas (28.90 – 37.42℃) collectively occupied 

918.93 km2 (27.00 percent of Ibadan Metropolis), indicating an area coverage higher than 

year 2011 by 2.03 percent. Similarly, low and secondary low temperature areas (23.31 – 

27.40℃) collectively covered 1,737.61 km2 (51.06 percent of the Metropolis), indicating a 
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coverage area higher than year 2011 by 4.19 percent. On the contrary, medium temperature 

areas (746.53 km2) decreased in percentage coverage from 28.16 percent in 2011 to 21.94 

percent in 2019. 

4.5.2   LST of Owerri 1990 to 2019 

LST images of Owerri Metropolis in 1990 and 2019 are presented in Figures 4.57 and 4.58 

while those of 2000 and 2010 are shown in Appendix I. Results showed that the maximum 

recorded LST of the city was 39.16℃, 41.75℃, 43.07℃ and 29.50℃ in 1990, 2001, 2011 

and 2019 respectively, while the minimum was 29.50℃, 29.75℃, 20.73℃, and 15.83℃ in 

1990, 2000, 2010 and 2019 respectively.  

 
Figure 4.57  LST of Owerri Metropolis in 1990 
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Figure 4.58  LST of Owerri City in 2019 

This implied the maximum LST (43.07℃) value was recorded in 2010 while the minimum 

(15.83℃) value of the city was recorded in 2019. The mean LST values of 32.89℃, 33.13℃, 

34.86℃ and 25.19℃ were recorded in 1990, 2000, 2010 and 2019 respectively; indicating 

that the highest mean value was recorded in 2010, while the lowest value was recorded in 

2019. For standard deviation, recorded values were 1.35, 1.66, 2.03, and 1.74 in 1990, 2000, 

2010 and 2019 respectively, indicating a higher standard deviation in 2010 and the lowest 

in 1990. 

The high LST areas were largely located within the core LGAs (Owerri Municipal, Owerri 

West and Owerri North) that make up Owerri metropolis, which characteristically comprise 

densely populated residential, high Traffic, industrial, and market areas. The high LST areas 

include Eke Onunwa and new markets, Ikenebu, Wetheral, Warehouse, Nekede, Amakaohia, 
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Relief, Egbu, New Owerri, Concorde Area, World Bank Estate (Area C), Eziobodo Area, 

FUTO-Obinze Area, Avu, and Irete among others. 

Figure 4.59 shows the statistics of re-classified LST images of Owerri metropolis in 1990, 

2000, 2010 and 2019 respectively while classification maps are shown in Appendix J. The 

statistics showed that in 1990, low temperature areas (29.50 – 31.97℃) occupied 199.24 

km2 (36.67 percent).  

 
Figure 4.59 Owerri LST 1990 – 2019 

Secondary low temperature areas (31.97 – 32.95℃) covered 132.19 km2 (24.33 percent). 

The medium temperature areas (32.95 – 33.90℃) occupied 113.80 km2 (20.94 percent). The 

secondary high temperature areas (33.90 – 34.88℃) occupied 62.71 km2 (11.54 percent). 

The high temperature areas (34.88 – 39.16℃) covered 35.47 km2 (6.53 percent). This 

implied that in 1990 high and secondary high temperature areas (33.90 – 39.16℃) 

collectively occupied 98.18 km2 and (8.07 percent of Owerri Metropolis), whereas low and 
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secondary low temperature areas (29.50 – 32.95℃) 331.44 km2 (60.99 percent of the 

Metropolis). 

In 2000, low temperature areas (29.75 – 32.10℃) 143.38 km2 (26.56 percent of the total 

area). The secondary low temperature areas (32.10 – 33.51℃) covered 192.42 km2 (35.65 

percent). The medium temperature areas (33.51 – 34.93℃) occupied 99.09 km2 (18.36 

percent). The secondary high temperature areas (34.93 – 36.76℃) covered 84.29 km2 (15.62 

percent). The high temperature areas (36.76 – 41.75℃) 20.55 km2 (3.81 percent). This 

implied that in 2000, high and secondary high temperature areas (29.75 - 33.51℃) 

collectively covered 104.84 km2 (19.42 percent of Owerri Metropolis), indicating a coverage 

area higher than year 1990 by 1.35 percent. Similarly, low and secondary low temperature 

areas (29.74 – 33.51℃) collectively covered 335.79 km2 (62.22 percent of the Metropolis), 

indicating an area coverage higher than year 1990 by 1.23 percent. On the contrary, medium 

temperature areas decreased in percentage coverage from 20.94 percent in 1990 to 18.36 

percent in 2000.  

In 2010, low temperature areas (20.73 – 28.27℃) covered 0.03 km2 (0.01 percent of the total 

area). The secondary low temperature areas (28.27 – 33.08℃) occupied 145.50 km2 (26.77 

percent). The medium temperature areas (33.08 – 34.92℃) covered 185.48 km2 (34.13 

percent). The secondary high temperature areas (34.92– 37.20℃) covered 138.29 km2 

(25.45 percent). The high temperature areas (37.20 – 43.07℃) covered 74.12 km2 (13.64 

percent). This implied that in 2010, high and secondary high temperature areas (34.92 – 

43.07℃) collectively occupied 212.41 km2 (39.09 percent of Owerri Metropolis), indicating 

an area coverage higher than year 2000 by 19.67 percent. Similarly, medium temperature 

areas increased in percentage coverage from 18.36 percent in 2000 to 34.13 percent in 2010. 
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On the contrary, low and secondary low temperature areas (20.73 – 33.08℃) collectively 

occupied 145.53 km2 (26.78 percent of the Metropolis), indicating a coverage area lower 

than year 2000 by 35.44 percent.  

In 2019, low temperature areas (15.83 – 21.46℃) covered 24.34 km2 (4.48 percent of the 

total area). The secondary low temperature areas (21.46 – 23.71℃) occupied 49.45 km2 

(9.10 percent). The medium temperature areas (23.71 – 25.27℃) covered 186.39 km2 (34.30 

percent). The secondary high temperature areas (25.27– 26.61℃) occupied 178.27 km2 

(32.81 percent). The high temperature areas (26.61 – 29.50℃) covered 104.97 km2 (19.32 

percent). This implied that in 2010, high and secondary high temperature areas (25.27 – 

29.50℃) collectively covered 283.25 km2 (52.12 percent of Owerri Metropolis); indicating 

a coverage area higher than year 2010 by 13.03 percent. Similarly, medium temperature 

areas increased in percentage coverage from 34.13 percent in 2010 to 34.30 percent in 2019. 

On the contrary, low and secondary low temperature areas (15.83 – 23.71℃) collectively 

covered 73.79 km2 (13.58 percent of the Metropolis), indicating a coverage area lower than 

year 2010 by 13.20 percent. 

4.5.3   LST of Kano 1991 to 2019 

LST images of Owerri Metropolis in 1991 and 2019 are presented in Figures 4.60 and 4.61 

while those of 2001 and 2011 are shown in Appendix I. Results showed that the maximum 

recorded LST of the city was 30.92°C, 42.19°C, 46.53°C and 21.59°C in 1991, 2001, 2011 

and 2019 respectively, while the minimum was -0.27°C, 14.32°C, 18.11°C, and -1.94°C in 

1991, 2001, 2011 and 2019 respectively. This implied that the maximum LST (46.53°C) 

value was recorded in 2011 while the minimum (-0.27°C) value of the city was recorded in 

1991.  
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Figure 4.60 LST of Kano Metropolis in 1991 

 
Figure 4.61  LST of Kano City in 2019 
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The mean LST values of 25.18°C, 35.77°C, 39.22°C and 16.02°C were recorded in 1991, 

2001, 2011 and 2019 respectively; indicating that the highest mean value was recorded in 

2011, while the lowest value was recorded in 2019. For standard deviation, recorded values 

were 1.44, 1.65, 1.59, and 1.64 in 1991, 2001, 2011 and 2019 respectively, indicating a 

higher standard deviation in 2001 and the lowest in 1991. The high LST areas were largely 

located within the core LGAs, which characteristically comprise densely populated 

residential, high Traffic, industrial, and market areas.  

Figure 4.62 shows the statistics of re-classified LST images of Kano metropolis in 1991, 

2001, 2011 and 2019 respectively while classification maps are shown in Appendix J. The 

statistics showed that in 1991, low LST areas (-0.27°C to 17.34°C) occupied 1.06 km2 (0.22 

percent). Secondary low areas (17.34°C to  22.11°C) covered 10.05 km2 (2.04 percent). The 

medium LST areas (22.11°C to 24.07°C) occupied of 95.58 km2 (19.37 percent).  

 
Figure 4.62  Kano LST 1991 – 2019 
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that in 1991 high and secondary high LST areas (24.07°C to 30.92°C) collectively covered 

386. 84 km2 (78.38 percent of Kano Metropolis), whereas low and secondary low LST areas 

(-0.27°C to 22.11°C) collectively covered 11.12 km2 (2.26 percent of the Metropolis). 

In 2001,  low LST areas (14.32°C to 29.19°C) occupied 3.18 km2 (0.63 percent of the total 

area). The secondary low LST areas (29.19°C to 32.57°C) covered 20.90 km2 (4.24 percent). 

The medium LST areas (32.57°C to 34.87°C) occupied 110.81 km2 (22.45 percent). The 

secondary high LST areas (34.87°C – 36.29°C) covered 186.04 km2 (37.70 percent). The 

high LST areas (36.29°C – 42.19°C) occupied 172.65 km2 (34.98 percent). On the contrary, 

low and secondary LST areas (14.32°C to 32.57°C) covered 24.03 km2 and increased slightly 

in percentage coverage by 2.61 percent from 2.26 percent in 1991 to 4.87 percent in 2001. 

Similarly, medium LST areas increased in coverage from 19.37 percent in 1991 to 22.45 

percent. 

In 2011,  low LST areas (18.11°C to 34.38°C) covered 1.03 km2 (0.21 percent of the total 

area). The secondary low LST areas (34.38°C to 37.61°C) occupied 27.80 km2 (5.63 

percent). The medium LST areas (37.61°C to 39.51°C) covered 122.39 km2 (24.80 percent). 

The secondary high LST areas (39.51°C to 40.85°C) covered 225.98 km2 (45.79 percent). 

The high LST areas (40.85°C to 46.53°C) occupied 116.33 km2 (23.57 percent). This implied 

that in 2011, secondary high and high LST areas (39.51°C to 46.53°C) collectively occupied 

342.31 km2 (69.36 percent of Kano Metropolis), indicating a coverage area lower than 2001 

by 3.32 percent. On the contrary, medium LST areas increased in percentage coverage by 

2.35 percent from 22.45 percent in 2001 to 24.80 percent in 2011. similarly, low and 

secondary low LST areas (18.11°C to 37.61°C) collectively covered 28.83 km2 (5.84 percent 

of the Metropolis), indicating a coverage area higher than year 2001 by 0.97 percent. 
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In 2019,  low LST areas  (-1.94°C to 11.53°C) occupied 5.78 km 2 (1.17 percent of the total 

area). The secondary low LST areas (11.53°C – 14.12°C) covered 47.07 km2 (9.54 percent). 

The medium LST areas (14.12°C – 15.59°C) occupied 122.67 km2 (24.86 percent). The 

secondary high LST areas (15.59°C – 17.07°C) covered 171.41 km2 (34.37 percent). The 

high LST areas (17.07°C – 29.53) covered 146.59 km2 (29.70 percent). This implied that in 

2019, high and secondary high LST areas (15.59°C – 21.59°C) collectively occupied 318.00 

km2 (64.43 percent of Kano Metropolis), indicating a coverage area lower than 2011 by 4.93 

percent. On the contrary, low and secondary low LST areas (-1.94°C – 14.12°C) collectively 

occupied 52.86 km2 (10.71 percent of the Metropolis), indicating an increase in percentage 

coverage by 4.87 percent from 5.84 percent in 2011 to 10.71 percent in 2019. Similarly, 

medium LST areas increased in percentage coverage from 24.80 percent in 2011 to 24.86 

percent in 2019. 

4.5.4   LST of Birnin Kebbi 1990-2019 

LST images of Birnin Kebbi Metropolis in 1990 and 2019 are presented in Figures 4.63 and 

4.64 while those of 2000 and 2010 are shown in Appendix I. Results showed that the 

maximum recorded LST of the city was 29.03℃, 40.82℃, 47.13℃ and 42.63℃ in 1990, 

2000, 2010 and 2019 respectively, while the minimum was -1.22℃, 26.81℃, 29.51℃, and 

27.00℃ in 1990, 2000, 2010 and 2019 respectively. This implied that the maximum LST 

(47.13℃) value was recorded in 2010 while the minimum (-122℃) value of the city was 

recorded in 1990. The mean LST values of 9.05℃, 35.73℃, 41.22℃ and 33.60℃ were 

recorded in 1990, 2000, 2010 and 2019 respectively; indicating that the highest mean value 

was recorded in 2010, while the lowest value was recorded in 1990. For standard deviation, 

recorded values were 2.53, 2.11, 2.40, and 2.47 in 1990, 2000, 2010 and 2019 respectively, 

indicating a higher standard deviation in 1990 and the lowest in 2000.  
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Figure 4.63  LST of Birnin Kebbi Metropolis in 1990 

 
Figure 4.64  LST of Birnin Kebbi City in 2019 
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The high LST areas were largely located within the core areas of Birnin Kebbi, which 

characteristically comprise densely populated residential, high Traffic, and market areas 

such as CBD, Makerar Gwandu, Kofar Kola, Rafin Atiku, Badariya, Bayan Kara, 

Takalau,Tudun Wada, Nasarawa 1, Nasarawa 2, Gwadangwaji. 

Figure 4.65 shows the statistics of re-classified LST images of Birnin Kebbi metropolis in 

1990, 2000, 2010 and 2019 respectively while classification maps are shown in Appendix J. 

In 1990,  low temperature areas (-1.22 – 6.61℃) occupied 257.50 km2 (20.62 percent). 

Secondary low temperature areas (6.61 – 8.98℃) covered 434.43 km2 (34.79 percent). The 

medium temperature areas (8.98 – 11.23℃) occupied 373.21 km2 (29.88 percent). The 

secondary high temperature areas (11.23 – 15.62℃) covered 174.37 km2 (13.96 percent). 

The high temperature areas (15.62 – 29.03℃) occupied  9.37 km2 (0.75 percent). This 

implied that in 1990 high and secondary high temperature areas (11.23 – 29.03℃) 

collectively covered 183.74 km2 (14.71 percent of Birnin Kebbi Metropolis), whereas low 

and secondary low temperature areas (-122 – 8.98℃) collectively covered 691.93 km2 

(55.40 percent of the Metropolis). 

 
Figure 4.65 Birnin Kebbi LST 1990 – 2019 
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In 2000,  low temperature areas (26.81 – 31.66℃) occupied 118.68 km2 (9.50 percent of the 

total area). The secondary low temperature areas (31.66 – 33.52℃) covered 117.01 km2 

(9.37 percent).  The medium temperature areas (33.52 – 35.41℃) occupied 218.64 km2 

(17.51 percent). The secondary high temperature areas (33.41– 36.78℃) covered 424.73 

km2 (34.01 percent). The high temperature areas (36.78 – 40.86℃) occupied 369.82 km2 

(29.61 percent). This implied that in 2000, high and secondary high temperature areas (35.41 

– 40.86 ℃) collectively covered 794.55 km2 (63.62 percent of Birnin Kebbi Metropolis), 

indicating a coverage area higher than year 1990 by 48.91 percent. 

 On the contrary, low and secondary low temperature areas (26.81 – 33.52℃) collectively 

covered 235.69 km2 (18.87 percent of the Metropolis), indicating a coverage area lower than 

year 1990 by 36.53 percent. Similarly, medium temperature areas decreased in percentage 

coverage by 12.37 percent from 29.88 percent in 1990 to 17.51 percent in 2000. In 2010,  

low temperature areas (29.51 – 35.59℃) occupied 49.04 km2 (3.93 percent of the total area). 

The secondary low temperature areas (35.59 – 38.36℃) covered 106.10 km2 (8.50 percent). 

The medium temperature areas (38.36 – 40.57℃) occupied 237.52 km2 (19.02 percent).  

The secondary high temperature areas (40.57– 42.36℃) 471.68 km2 (37.77 percent). The 

high temperature areas (42.36 – 47.13℃) occupied 384.53 km2 (30.79 percent). Thus in 

2010, high and secondary high temperature areas (40.57 – 47.13℃) collectively  covered 

856.21 km2 (68.56 percent of the metropolis), indicating a coverage area higher than year 

2000 by 4.94 percent. Similarly, medium temperature areas for the year increased in 

percentage coverage by 1.51 percent from 17.51 percent in 2000 to 19.02 in 2010. On the 

contrary, low and secondary low temperature areas (29.51 – 38.36℃) collectively occupied 

172,386 points (155.15 km2) and covered 12.42 percent of the metropolis, indicating a 

coverage area lower than year 2000 by 6.45 percent.  
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In 2019,  low temperature areas  (27.00 – 30.56℃) occupied 188.96 km2 (15.13 percent of 

the total area). The secondary low temperature areas (30.56 – 32.95℃) covered  180.88 km2 

(14.48 percent). The medium temperature areas (32.95 – 34.60℃) covered 402.87 km2 

(32.26 percent). The secondary high temperature areas (34.60– 36.32℃) occupied 345.58 

km2 (27.67 percent). The high temperature areas (36.32 – 42.63℃) covered 130.57 km2 

(10.46 percent). Hence in 2019, high and secondary high temperature areas (34.60 – 

42.63℃) collectively covered 476.16 km2 (38.13 percent of the metropolis), indicating a 

coverage area lower than year 2010 by 30.43 percent. 

 On the contrary, low and secondary low temperature areas (27.00 – 32.95℃) collectively 

covered 369.85 km2 (29.61 percent of the Metropolis), indicating a coverage area higher 

than year 2010 by 17.19 percent. Similarly, medium temperature areas  increased in 

percentage coverage by 13.24 percent from 19.02 percent in 2010 to 32.26 percent in 2019.  

4.5.5 Analysis of variance (ANOVA) in mean LST of Ibadan, Owerri, Kano 

and Birnin Kebbi 1990-2019 

The Analysis of variance in LST for Ibadan, Owerri, Kano and Birnin Kebbi from 1990 to 

2019 computed from Appendices K1-4 is presented in Table 4.17 and Figure 4.66.  

Table 4.17  Analysis of Variance in mean LST for  Ibadan, Owerri, Kano and Birnin 

Kebbi from 1990 to 2019 

Analysis of Variance for LST 

Source   DF       SS      MS      F   P-value 

LOCAT     3   7924.8  2641.6  25.40   0.000 

year      3   8472.5  2824.2  27.16   0.000 

Error   313  32547.4   104.0 

Total   319  48944.7 

S = 10.1973   R-Sq = 33.50%   R-Sq(adj) = 32.23% 

Grouping Information Using the Tukey Method and 95% Confidence 

LOCAT   N    Mean  Grouping 

1      80   33.47  A 

4      80  31.377  A B 

3      80   27.42    B 

2      80   20.42      C 

*Means that do not share a letter are significantly different 

1=Kebbi,2=Kano,3=Ibadan,4=Owerri  

Source: Author (2023) 

 

The table established that the p-value was greater than 0.00 but less than significance value 

of 0.05, indicating a significance difference in LST for the four regions. This implied that 
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LST differed across the four regions. Tukey pairwise comparison test revealed that Birnin 

Kebbi recorded the highest mean LST (33.47°C) followed by Owerri(31.38°C) but the 

difference in the mean LST for Birnin Kebbi and Owerri were not statistically significant at 

5 percent significance level.    

 
Figure 4.66  Interval plot of LST versus Locations 1990 -2019 

 

Ibadan metropolis followed Owerri with a mean LST of 27.42°C but the difference between 

mean LST for Ibadan and Owerri were statistically the same. Birnin Kebbi was however 

statistically different from Ibadan. Lastly, Kano had the least mean LST (20.42°C), which 

was statistically different from all other three locations.  

Results of the LST analysis in the four cities is related to those of similar studies elsewhere. 

The work of Rahman et al. (2022) did not only suggest that bigger districts in Bangladesh 

possessed greater urban heat islands than smaller ones because of high population and 

unplanned urban expansion, but further showed that high land surface temperature areas in 

4321

36

32

28

24

20

LOCAT

L
S

T

Interval Plot of LST vs LOCAT
95% CI for the Mean

The pooled standard deviation was used to calculate the intervals.



280 
 

all districts increased as urban expansion increased. Similar to the results from the four cities, 

the work of Çolakkadıoğlu (2023) showed an expansion in urban surfaces, decreased vegetal 

cover, and an increase in average LST values over a 30-year period in Osmaniye Province, 

Turkey. Li et al. (2021) showed that the area of sub-urban heat island intensity in Kampala 

increased tremendously from 22,910 hectres in 2003 to 27,900 hectres in 2016.  

However, the annual daytime sub-urban heat island intensity in some areas decreased from 

of 2.2˚C in 2003 to 1.9˚C in 2017; probably due to the closeness of those areas to Lake 

Victoria. Similarly, the role of vegetation in mitigating the effects of LST was substantiated 

by Sohail et al. (2023) whose study revealed decreasing trends in the LST records of 

Islamabad between 2000 and 2020, as vegetation over the study area increased. 

However, a study by Al Blooshi et al. (2020) in Al-Ain, a desert city in Abu Dhabi Emirate, 

United Arab Emirate revealed a surprising result; as overall LST in the city decreased by 

between of 3˚C-5˚C between 1988 and 2017 despite urban expansion in the desert 

environment. This drop in LST values was not unconnected with the increase in green spaces 

in the recently developed urban areas, and the extension of date plantations around the city. 

This study therefore demonstrated the mitigative roles that urban greening can pay in the 

study cities, particularly the drier cities in Sudan Savanna. 

4.6.  Variation in LST trend across the two Ecological Zones from 1990 -2019 

 

4.6.1.   LST trends in the two cities in Sudan Savanna from 1990 to 2019 

Figure 4.67 shows the comparison of maximum LST trends in the two cities in Sudan 

Savanna from 1990 to 2019. It shows a rising trend in LST of the ecological zone between 

1990 and 2010 and a decline in 2019. Kano recorded higher LST of 30.92°C, 42.19°C, and 

46.53°C in 1990, 2000, and 2010 respectively and a declined value of 21.9°C in 2019. Birnin 
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Kebbi recorded somewhat lower LST than Kano Metropolis. It recorded higher LST of 

29.03°C, 40.86°C, and 47.13°C in 1990, 2000, and 2010 respectively and a declined value 

of 43.32°C in 2019. It generally shows that the size of the built up area with its concomitant 

commercial, industrial and domestic activities may be largely responsible for the higher LST 

recorded in Kano Metropolis. 

 
Figure 4.67     Maximum LST of Sudan Savanna Cities from 1990-2019 

 

4.6.2.  LST trends in the two cities in the Rainforest from 1990 to 2019 

Figure 4.68 shows the comparison of maximum LST trends in the two cities in Rainforest 

from 1990 to 2019. It shows that the LST for the two cities in the zone did not follow any 

particular pattern. Generally, Ibadan recorded higher LST than Owerri. It recorded LST of 

40.50°C, 79.24°C, and 46.42°C and 37.42°C in 1990, 2000, 2010 and 2019 respectively. 

Owerri recorded LST of 39.16°C, 41.75°C, 43.07°C and 29.50°C in 1990, 2000, 2010 and 

2019 respectively. The size of the built up area with its concomitant commercial, industrial 

and domestic activities may be largely responsible for the higher LST recorded in Ibadan 

Metropolis. 
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Figure 4. 68  Maximum LST of Rainforest Cities from 1990-2019 

 

4.6.3.  Mean maximum LST trends in Sudan Savanna and the Rainforest from 1990 to 

2019 

 

Figure 4.69 shows the comparison of mean maximum LST trend for the cities in the Sudan 

Savanna and Rainforest ecological zones from 1990 to 2019. It generally shows that Tropical 

Rainforest recorded higher LST than the Sudan Savanna. It recorded LST of 39.83°C, 

60.50°C, 44.75°C and 33.46°C in 1990, 2000, 2010 and 2019 respectively, whereas, the 

Sudan Savanna recorded LST of 29.98°C, 41.53°C, 46.83°C and 31.96°C in 1990, 2000, 

2010 and 2019 respectively. The satellite images for the Tropical Rainforest were mostly 

acquired between December and March, while those of the Sudan Savanna were acquired in 

October, which marks the early onset of dry season in the zone. The higher LST in the 

Tropical rainforest may therefore be explained by the fact that the influence of the Harmattan 

is less severe in the zone. It may also be as a result of higher commercial / industrial activities 

in the zone.  
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Figure 4.69   Mean Maximum Yearly LST for the Rainforest and Sudan Ecological Zones 

1990 -2019 

The larger size of the urban centres in the Tropical Rainforest may be responsible for the 

higher LST in the zone.  

4.7 Relationship between LST and NDBI/NDVI 

This section presents the results of the analysis of the relationship between LST and NDBI 

and NDVI in Ibadan, Owerri, Kano and Birnin Kebbi cities from 1990 to 2019. 

4.7.1  Relationship between LST and NDBI in Ibadan 1990-2019 

The scatter plots for LST-NDBI relationships of Ibadan from 1990 to 2019 were plotted 

using 20 interval classes generated from the computed LST and NDVI imageries presented 

in Appendix K1. The results are presented in Figure 4.70. They show strong positive 

correlations of R2 = 0.87, 0.97, 0.98 and 0.93 for 1990, 2001, 2011 and 2019 respectively, 

with the strongest correlation in 2011 and the weakest in 1990. 

1990 2000 2010 2019

Tropical Rainforest 39.83 60.50 44.75 33.46

Sudan Savanna 29.98 41.53 46.83 31.96

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

L
S

T
  

(℃
)



284 
 

 
Figure 4.70 Ibadan scatter plots for LST-NDBI Relationship (1990 -2019) 

 

4.7.2  Relationship between LST and NDBI in Owerri 1990-2019 

The scatter plots for LST-NDBI relationships of Owerri from 1990 to 2019 were plotted 

using 20 interval classes generated from the computed LST and NDVI imageries presented 

in Appendix K2. The results are presented in Figure 4.71. They show strong positive 

correlations of R2 = 0.99, 0.97, 0.96 and 0.99 for 1990, 2000, 2010 and 2019 respectively, 

with the strongest correlation in 1990 and 2019, and the weakest in 2010. 
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Figure 4.71 Owerri scatter plots for LST-NDBI Relationship (1990 -2019) 

4.7.3  Relationship between LST and NDBI in Kano 1991-2019 

The scatter plots for LST-NDBI relationships of Kano from 1991 to 2019 were plotted using 

20 interval classes generated from the computed LST and NDVI imageries presented in 

Appendix K3. The results are presented in Figure 4.72. They show strong positive 

correlations of R2 = 0.967, 0.966, 0.948 and 0.955 for 1991, 2001, 2011 and 2019 

respectively, with the strongest correlation in 1991, and the weakest in 2010. 
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Figure 4.72 Kano LST-NDBI Correlation 1990-2019 

 

4.7.4  Relationship between LST and NDBI in Birnin Kebbi 1990-2019 

The scatter plots for LST-NDBI relationships of Birnin Kebbi from 1990 to 2019 were 

plotted using 20 interval classes generated from the computed LST and NDVI imageries 

presented in Appendix K4. Results are presented in Figure 4.73. They show strong positive 

correlations of R2 = 0.988, 0.994, 0.969 and 0.996 for 1991, 2001, 2011 and 2019 

respectively, with the strongest correlation in 2019, and the weakest in 2010. 
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Figure 4.73 Birnin Kebbi LST-NDBI Correlation 1990-2019 

The NDBI-LST correlation results for the four cities were in consonance with the studies by 

Malik et al. (2019) and Tanaji et al. (2021) whose studies established strong positive 

relationships between NDBI and LST. The strong correlation implied that increase in built 

surfaces in the cities led to increase in LST, and is therefore a major contributor to UHI. 

Thus, the continued removal of vegetal cover in the four cities and consequent 

transformation of land cover into impervious artificial surfaces resulted in LST increase in 

the cities. 
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4.7.5  Relationship between LST and NDVI in Ibadan 1990-2019 

The scatter plots for LST-NDVI relationships of Ibadan from 1990 to 2019 were plotted 

using 20 interval classes generated from the computed LST and NDVI imageries in 

Appendix K1. They are presented in Figure 4.74. They show strong negative correlations of 

R2 = 0.76, 0.85, 0.961 and 0.96 for 1990, 2001, 2011 and 2019 respectively, with the 

strongest correlation in 2011, and the weakest in 1990.  

 
Figure 4.74 Ibadan scatter plots for LST-NDVI Relationship (1990 -2019) 
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4.7.6  Relationship between LST and NDVI in Owerri 1991-2019 

The scatter plots for LST-NDVI relationships of Owerri from 1990 to 2019 were plotted 

using 20 interval classes generated from the computed LST and NDVI imageries presented 

in Appendix K2 are presented in Figure 4.75. They show strong negative correlations of R2 

= 0.993, 0.988, 0.973 and 0.933 for 1990, 2000, 2010 and 2019 respectively, with the 

strongest correlation in 1990, and the weakest in 2010. 

 

Figure 4.75  Owerri scatter plots for LST-NDVI Relationship (1990 -2019) 
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4.7.7  Relationship between LST and NDVI in Kano 1991-2019 

The scatter plots for LST-NDVI relationships of Birnin Kebbi from 1990 to 2019 were 

plotted using 20 interval classes generated from the computed LST and NDVI imageries 

presented in Appendix K3. They are presented in Figure 4.76. They show strong negative 

correlations of R2 = 0.960, 0.964, 0.985 and 0.963 for 1991, 2001, 2011 and 2019 

respectively, with the strongest correlation in 2019, and the weakest in 2010. 

 
Figure 4.76  Kano scatter plots for LST-NDVI Relationship (1990 -2019) 
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4.7.8  Relationship between LST and NDVI in Birnin Kebbi 1990-2019 

The scatter plots for LST-NDVI relationships of Birnin Kebbi from 1990 to 2019 were 

plotted using 20 interval classes generated from the computed LST and NDVI imageries 

presented in Appendix K4. They are presented in Figure 4.77. They show strong negative 

correlations of R2 = 0.99, 0.98, 0.95 and  0.97 for 1990, 2000, 2010 and 2019 respectively, 

with the strongest correlation in 1990, and the weakest in 2010. 

 
Figure 4.77  Birnin Kebbi scatter plots for LST-NDVI Relationship (1990 -2019) 
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The NDVI-LST correlation results for the four cities were in consonance with the studies by 

Malik et al. (2019) and Tanaji et al. (2021) whose studies established strong negative 

relationships between NDVI and LST. The strong inverse relationship implied that areas 

with the least vegetal cover in the cities experienced greater LST values and vice-versa. 

Thus, as the cities lose their vegetal cover to urban expansion, LST may continue to rise and 

become widespread in the cities. In other words, an increase in vegetal cover in these cities 

reduces the intensity of land surface temperatures in them and may therefore be exploited as 

measures to mitigate its effects in the urban areas.  

Results of this study were also compared with other scientific studies across the globe. 

Çolakkadıoğlu (2023) revealed a strong inverse correlation between land surface 

temperature and normalized difference vegetation index, and a strong positive correlation 

between LST and NDBI. In the same vein, study by Seun et al. (2022) revealed an inverse 

relationship between land surface temperature and normalized difference vegetation index 

over south-west Nigeria with r2 of −0.8738, −0.8594, and −0.8546 for 1986, 2002, and 2017 

respectively, suggesting that depletion in vegetal cover in geographical locations increases 

the intensity of the LST over the locations. Similarly, Kaiser et al. (2022) observed 

increasing strong inverse relationships between normalized difference vegetation index and 

land surface temperature (R = −0.55, −0.58, −0.59, and −0.76) in 1989, 1999, 2008 and 2018 

respectively for four urban districts of Porto Alegre City, Brazil.  

4.8 Urbanization Effects on LST Values 

4.8.1 Temperature values of urban built-up in Ibadan metropolis from 1990 to 2019 

This section discusses the effects of urbanization on the LST values in Ibadan Metropolis 

from 1990 to 2019. The temperature values over the different LULC types in the metropolis 
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during the period are presented in Figure 4.78. The recorded maximum and minimum 

temperature values for Ibadan in 1990 as presented earlier in section 4.5.1 are 40.50℃ and 

13.45℃ respectively. An overlay of the LST map on the LULC map showed that the built 

areas accounted for much of the highest temperature areas, falling within the high LST class 

range of 27.88℃ to 40.50℃. Moderate temperatures were recorded over agricultural lands 

and bare surfaces, while vegetated areas and water bodies recorded the lowest temperatures. 

The recorded maximum and minimum temperature values for Ibadan in 2001 as presented 

earlier in section 4.5.1 were 79.24℃ and -31.04℃ respectively. An overlay of the LST map 

on the LULC map of 2001 shows that the highest temperature points were located within the 

heavily built areas while the very low temperature points were situated within the vegetated 

areas and water bodies. The areas of high temperature fell within the temperature range of 

14.55℃ to 79.24℃.  
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Figure 4.78 LULC LST Values of Ibadan from 1990-2019
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The recorded maximum and minimum temperature values for Ibadan in 2011 as presented 

earlier in section 4.5.1 were 46.42℃ and 18.64℃ respectively. An overlay of the LST map 

on the LULC map  2011 shows that high temperature points were located within the heavily 

built areas while the very low temperature points were situated within the vegetated areas 

and water bodies. The areas of high temperature areas largely fall within the temperature 

range of 33.51– 46.42℃. Water bodies accounted for the lowest temperature of 18.64℃. 

The recorded maximum and minimum temperature values for Ibadan in 2019 as presented 

earlier in section 4.5.1 were 37.42℃ and 23.31℃ respectively. An overlay of the LST map 

on the LULC map of 2019 showed that highest temperature points were equally located 

within the heavily built areas while the very low temperature points were situated within the 

vegetated areas and water bodies. The temperature of the urban built-up for the year fell 

within the temperature range of 30.61 to 37.42℃.  

The high LST areas were largely located within the core local government areas that make 

up Ibadan metropolis, which characteristically comprise densely populated residential, high 

Traffic, industrial, and market areas such as Mokola, Adeoyo-Yemetu, Bere, Ojoba, Kudeti, 

Bode, Yejide, Salvation Army, Sabo, Challenge, Liberty, Sweetco, Molete, Bode Market, 

Dugbe Market, Moniya, Ojo, Idi-Ape areas, among others. The result on high temperature 

coverage as presented in section 4.5.1 showed that high LST over built surfaces covered 6.17 

percent, 4.35 percent, 7.45 percent and 11.46 percent for 1990, 2001, 2011 and 2019 

respectively. This implied that with the exception of 2001, percentage coverage of high 

temperature areas seemed to have increased as the urban built-up increased in areal coverage. 
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Having presented the results of the effects of urbanization on LST in Ibadan Metropolis from 

1990 to 2019, the next section presents the result of urbanization effects in Owerri, another 

city in the Tropical Rainforest Ecological zone of Nigeria. 

4.8.2 Temperature values of urban built-up in Owerri metropolis from 1990 to 2019 

This section discusses the effects of urbanization on the LST values in Owerri Metropolis 

from 1990 to 2019. The temperature values over the different LULC types in the metropolis 

during the period are presented in Figure 4.79. The recorded maximum and minimum 

temperature values for Owerri in 1990 as presented earlier in section 4.5.2 are 39.16℃ and 

29.50℃ respectively. An overlay of the LST map on the LULC map showed that the built 

areas accounted for much of the highest temperature areas, falling within the high LST class 

ranging of 34.88℃ to 39.16℃. Moderate temperatures were recorded over agricultural lands 

and bare surfaces, while vegetated areas and water bodies recorded the lowest temperatures. 

The recorded maximum and minimum temperature values for Ibadan in 2000 as presented 

earlier in section 4.5.2 were 41.75℃ and 29.75℃ respectively. An overlay of the LST map 

on the LULC map of 2000 shows that the highest temperature points were located within the 

heavily built areas while the very low temperature points were situated within the vegetated 

areas and water bodies. The areas of high temperature fell within the temperature range of 

36℃ to 41.75℃.  Water bodies recorded mean temperature of 30.71℃. 

The recorded maximum and minimum temperature values for Owerri in 2010 as presented 

earlier in section 4.5.2 were 43.07℃ and 20.73℃ respectively. An overlay of the LST map 

on the LULC map 2010 shows that highest temperature point of 43.07℃ was located within 

the heavily built metropolitan area while the very low temperature points were situated 

within the vegetated areas and water bodies.  
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The recorded maximum and minimum temperature values for Ibadan in 2019 as presented 

earlier in section 4.5.2 were 29.50℃ and 15.83℃ respectively. An overlay of the LST map 

on the LULC map of 2019 showed that highest temperature points were equally located 

within the heavily built areas while the very low temperature points were situated within the 

vegetated areas and water bodies. The temperature of the urban built-up for the year fell 

within the temperature range of 26.61℃ to 29.50℃.  

The high LST areas were largely located within the core local government areas that make 

up Owerri metropolis namely Owerri Municipal, Owerri West and Owerri North local 

government areas, which characteristically comprise densely populated residential, high 

Traffic, industrial, and market areas, such as the commercial areas of Douglas (which houses 

most commercial activities such like  markets  such as  Eke  Onunwa  and  new  markets;  

banks,  illegal  roadside  shops,  schools,  fuel  stations, churches, and so on), Ikenebu, 

Wetheral, and  Warehouse. Other highly populated residential and commercial areas with 

concomitant higher LSTs inlude Nekede, Amakaohia, Relief, Egbu, New Owerri, Concorde 

Area, World Bank Estate (Area C), Eziobodo Area, FUTO-Obinze Area, Avu, and Irete 

among others. 

The result on high temperature coverage as presented in section 4.5.2 showed that high LST 

over built surfaces covered 6.53 percent, 3.81 percent, 13.64 percent and 19.32 percent for 

1990, 2000, 2010 and 2019 respectively. This implied that with the exception of 2000, 

percentage coverage of high temperature areas seemed to have increased as the urban built-

up increased in areal coverage.  



298 
 

 
Figure 4.79  LULC LST Values of Owerri from 1990-2019
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4.8.3 Temperature values of urban built-up in Kano metropolis from 1991 to 2019 

This section discusses the effects of urbanization on the LST values in Kano Metropolis 

from 1991 to 2019. The temperature values over the different LULC types in the metropolis 

during the period are presented in Figure 4.80. The recorded maximum and minimum 

temperature values for Kano in 1991 as presented earlier in section 4.5.3 are 30.92℃ and -

0.27℃ respectively. An overlay of the LST map on the LULC map showed that the built 

areas and bare surfaces accounted for much of the highest temperature areas of 30.92℃ were 

recorded in the core of the metropolis.  Moderate LST of 25 ℃ and 30 ℃ were recorded 

agricultural lands and bare surfaces, while water bodies recorded the lowest temperatures of 

-0.27℃. 

The recorded maximum and minimum temperature values for Kano in 2001 as presented 

earlier in section 4.5.3 were 42.19℃ and 14.32℃ respectively. An overlay of the LST map 

on the LULC map of 2001 showed that the highest temperature points were located within 

the heavily built areas while the very low temperature points were situated within the 

forested areas and water bodies. The areas of high LST fell within the neighbourhood of 

32.61℃.  

The recorded maximum and minimum temperature values for Kano in 2011 as presented 

earlier in section 4.5.3  were 46.53℃ and 18.11℃ respectively. An overlay of the LST map 

on the LULC map 2011 showed that high temperature points were located within the heavily 

built areas while the very low temperature points were situated within the vegetated areas 

and water bodies. The areas of high temperature areas largely fell within the temperature 

range of 40.85– 46.53℃). Moderately low LST falling within the range of 37.61 – 39.51℃  
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The recorded maximum and minimum temperature values for Kano in 2019 as presented 

earlier in section 4.5.3 were 21.60℃ and -.94℃ respectively. An overlay of the LST map 

on the LULC map of 2019 showed that highest temperature points were equally located 

within the heavily built areas while the very low temperature points were situated within the 

vegetated areas and water bodies. The temperature of the urban built-up for the year hovered 

around 21.60 ℃. High temperature points were recorded at heavily built residential areas 

such as such as Tudun Wada, Gwagwarwa, Dakata, Kawaji, Gama (all in Nassarawa LGA) 

and Kurna Asabe, Jakara and Sanka settlements (all in Dala) as well as other locations in 

Kano Municipal, Fagge, Gwale and Tarauni. Similarly, commercial locations (markets) such 

as Kurmi, Sabon Gari, Kantin Kwari, Yankaba, Kofar Ruwa, Kasuwar Rimi and Yanlemo 

markets and so on, as well as industrial estates like Sharada, Challawa and Bompai industrial 

estates are were locations of high LSTs. 

The result on high temperature coverage as presented in section 4.5.3 showed that high LST 

over built surfaces covered 43.83 percent, 34.98 percent, 23.57 percent and 29.70 percent 

for 1991, 2001, 2011 and 2019 respectively. Mohammed et al. (2019) attributed rising 

temperature in Kano Metropolis to rapid urban expansion and poor planning, while Tanko 

et al. (2017) concluded that urbanization is the key factor leading to the occurrence of surface 

UHI in Kano Metropolis. 

4.8.4 Temperature values of urban built-up in Birnin Kebbi metropolis from 1990 

to 2019 

This section discusses the effects of urbanization on the LST values in Birnin Kebbi 

Metropolis from 1990 to 2019.  
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Figure 4.80  LULC LST Values of Kano from 1991 - 2019
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The temperature values over the different LULC types in the metropolis during the period 

are presented in Figure 4.81 The recorded maximum and minimum temperature values for 

Birnin Kebi in 1990 as presented earlier in section 4.6.4.1 are 29.02℃ and -1.22℃ 

respectively. An overlay of the LST map on the LULC map showed that the built areas 

accounted for much of the highest temperature areas, hovering around 29.02℃. Moderate, 

low and very low (-1.22℃) LSTs were recorded on agricultural lands, vegetated flood plains 

and water bodies respectively.  

The recorded maximum and minimum temperature values for Birnin Kebbi in 2000 as 

presented earlier in section 4.5.4 were 40.86℃ and 26.81℃ respectively. An overlay of the 

LST map on the LULC map of 2000 showed that the highest temperature points were located 

within the built areas, hovering between 38.17℃ and 40.86℃.  

The recorded maximum and minimum temperature values for Birnin Kebbi in 2010 as 

presented earlier in section 4.5.4 were 47.13℃ and 29.51℃ respectively. An overlay of the 

LST map on the LULC map 2010 showed that highest temperature point (47.13℃) were 

located within the heavily built areas; while the lowest temperature points were situated on 

water bodies.  

The recorded maximum and minimum temperature values for Ibadan in 2019 as presented 

earlier in section 4.5.4 were 42.63℃ and 27.00℃ respectively. An overlay of the LST map 

on the LULC map of 2019 showed that highest temperature points were equally located 

within the heavily built areas and bare surfaces while the very low temperature points were 

recorded within the vegetated flood plains and water bodies.  
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Figure 4.81  LULC LST Values of Birnin Kebbi from 1990 - 201
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The high LST areas were largely located within the densely populated residential, high 

Traffic, industrial, and market areas such as the CBD, Makerar Gwandu, Kofar Kola, Rafin 

Atiku, Badariya, Bayan Kara, Takalau,Tudun Wada, Nasarawa 1, Nasarawa 2, Gwadangwaji 

The result on high temperature coverage as presented in section 4.5.4  showed that high LST 

over built surfaces covered 0.75 percent, 29.61 percent, 30.79 percent and 10.46 percent for 

1990, 2000, 2010 and 2019 respectively. This implied that with the exception of 2019, 

percentage coverage of high temperature areas seemed to have increased as the urban built-

up increased in areal coverage. 

In all the cities, the study established the interesting relationship between LST and 

distribution of vegetation, as vegetation and water bodies demonstrated the ability to reduce 

LST. This is because across all the cities, low LST was recorded over vegetal cover and water 

bodies. On the other hand, LST profiles showed that the core of the cities where built-surfaces 

and bare grounds are highly concentrated recorded the highest LST. The higher LSTs are as 

a result of the construction materials with varying surface properties such as albedo, thermal, 

capacity, and heat conductivity, which have the capability to raise the LST of the cities.  

Results from the four cities are similar to the work of Baram et al. (2021) whose study 

depicted LULC change as a key influence on rise in LST in Halabja City, Iraq between 1999 

and 2019. The work showed that low temperatures of 30°C and 31°C coincided with areas 

with vegetal cover while high temperatures varying between 44°C and 53°C coincided with 

barren lands and built surfaces.  Similarly, the work of Ali et al. (2017) revealed that green 

spaces like parks with dense tree cover in Bhopal city (India) recorded the lowest surface 

temperature of about while possessing highest mean normalized difference vegetation index 

value of about 0.5.  
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4.9 Summary of findings 

The Study analysed the LULC changes in Ibadan and Owerri in the Rainforest, and Kano 

and Birnin Kebbi in the Sudan savanna from 1990 to 2019, using multi-temporal Landsat 

imageries. It also analysed two biophysical parameters of urban LULCC, specifically NDVI 

and NDBI. The study went further to analyse the spatio-temporal dynamics/trends of noon 

time ERA Interim temperatures of the four cities from 1990 to 2019. The study also carried 

out mapping of LSTs of the locations using the Landsat data of the same period. The study 

also examined relationships between LSTs and NDVI and NDBI in the cities over the period. 

In addition, the study compared the variation in LST trend across the two ecological 

Rainforest and Sudan Savanna during the period. Finally, the study analysed the effect of 

urbanization on the LSTs of the cities during the said period. 

For urban LULCC analysis, six LULC classes for each of the cities were produced for 

1990/199, 2000/2001, 2010/2011 and 2019, using maximum likelihood supervised 

classification scheme. Rigorous procedures were employed in ensuring the accuracy and 

efficacy of the classified maps. The analysis revealed progressive expansion in built-up in all 

the cities during the 30 year period from the base year of 1990.  The analysis revealed that 

built up areas in Ibadan, Owerri, Kano and Birnin Kebbi increased from 312.90 km2, (9.19 

percent), 70.32km2 (12.94 percent), 58.48 km2 (11.85 percent) and 14.06 km2 (1.13 percent) 

respectively in 1990 to 1,039.54 km2 (30.55 percent), 209.16 km2 (38.50 percent), 216.03 

km2 (43.77 percent) and 123.03 km2 (9.85 percent) in 2019. The increase in the urban built 

areas was at the detriment of all other LULC types. 

The study also examined the temporal changes of vegetation and built-up indices of the four 

cities during the period. The results of the NDVI analysis did not have any established pattern 
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in all the four cities during the period. The result showed that in Ibadan, the highest maximum 

NDVI values (0.97) were recorded in 1990 while the lowest maximum values (0.12) in 2011. 

In Owerri, highest maximum NDVI values (0.43) were recorded in 1990 while the lowest 

maximum values (0.27) were recorded in 2019.  

Kano, highest maximum NDVI values (0.43) were recorded in 1991 while the lowest 

maximum values (0.17) were recorded in 2001. In Birnin Kebbi, highest maximum NDVI 

values (0.60) were recorded in 2001 while the lowest maximum values (0.17) were recorded 

in 2001. Generally, the results showed a progressive percentage decrease in coverage areas 

of high and secondary high NDVI values in all the cities during the thirty-year period, and a 

corresponding percentage increase in coverage areas of low and secondary low NDVI values.  

The progressive decrease in percentages coverage area of high NDVI values in all the cities 

were attributed to the progressive expansion of the urban built environments and conversion 

of vegetal covers into other land use types. For NDBI, the progressive increase in built 

surfaces led to a progressive percentage increase in coverage areas of high and secondary 

high NDBI values in all the cities during the thirty-year period, and a corresponding 

percentage decrease in coverage areas of low and secondary low NDBI values. 

The results of the analysis of noon-time temperature showed positive Sen’s slope estimates, 

indicating increasing trends over the years for the four cities, with Ibadan and Owerri 

showing significant differences at 5 percent significant level, while Kano was significant at 

10 percent level, Mann-Kendall Seasonal trend test results for the four cities also indicate a 

sufficient statistical evidence of a significant seasonal increase at 0.05 significant level in 

maximum noon-time temperature series for the four cities from 1990 - 2019. 
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The results of the LST analysis for Ibadan did not have any established pattern, as it recorded 

the highest maximum LST in 2000 and lowest in 2019. However, Owerri, Kano, and Birnin 

Kebbi seemed to have a rising pattern as they recorded higher maximum LSTs as evidenced 

between 1990 and 2011. Generally, the results showed a progressive percentage increase in 

coverage areas of high and secondary high LST values in all the cities during the thirty-year 

period, and a corresponding percentage decrease in coverage areas of low and secondary low 

LST values. The progressive increase in percentages coverage area of high LST values in 

these cities were attributed to the progressive expansion of the urban built environments and 

conversion of vegetal covers into other land use types. 

The study showed very strong positive correlation (R2 = 0.87- 0.99) between LST and NDBI 

in all the surveyed cities, and very strong negative correlation (R2 = 0.76 - 0.99) between LST 

and NDVI. The study also generally showed that Tropical Rainforest recorded higher LST 

than the Sudan Savanna.  
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CHAPTER FIVE 

5.0   CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusion 

This study aimed at examining the effects of urbanization on land surface temperature in 

parts of Sudan Savanna and Rainforest Zones of Nigeria. To achieve this aim, the study 

assessed land use/land cover change in four cities in the two ecological zones and analysed 

the NDVI, NDBI and air temperature of the cities from 1990 to 2019. It also assessed the 

LST of the four cities over the same period and established relationships between LST and 

NDVI/NDBI in these cities. Furthermore the study examined the relationship between 

urbanization and LST, and made comparisons between LST across the cities and the two 

ecological zones. Conclusively, the study established that expansion of built up areas in the 

four cities led to depletion in the vegetal cover of the cities and resulted in air higher 

temperatures and LST over increasing areas of the cities. It also established very strong 

positive and negative relationships between LST and NDVI and NDI respectily. 

5.3 Recommendations 

Based on the findings of this study the following recommendations are considered 

worthwhile: 

i. With the general rising trend in LST across the cities of Ibadan, Kano, Owerri and 

Birnin Kebbi, there is a need for urban planners, ministries, departments, agencies, 

and international donor organizations to properly and adequately plan cities and 

initiate green and blue infrastructures in the cities. The greening processes may have 

cooling effect and serve as mitigating measures for high urban LSTs, in the cities of 



286 
 

Ibadan, Kano, Owerri and Birnin Kebbi, but also vigorously pursue the sustenance of 

their implementation. 

ii. Also, there is need for government at all levels, civil society organizations, 

development partners, and community heads/local authorities to motivate community 

participation in urban greening processes, particularly in Sudan Savanna located 

cities of Kano and Ibadan whose vegetion are naturally sparse and are 

characteristically warmer. The motivation should go beyond community sensitization 

and enlightenment. It should be holistic by incorporating the provision of finances, 

urban greening infrastructure, technical support, and monitoring of progresses made.  

iii. Aside, the provision of green infrastructures, this study suggests the massive adoption 

of clean energy sources to provide power for the urban environment in Ibadan, Kano, 

Owerri and Birnin Kebbi in place of fossil fuels. Funding sources may be explored 

by planners, development partners, administrators, communities/community leaders, 

and city dwellers for the provision of infrastructure for exploiting the opportunities 

provided by the vast solar energy in Tropical Africa as a source of domestic and 

commercial power supply. This may reduce the level of greenhouse gases (GHGs) in 

the city centres and ameliorate their urban heat highland (UHI) effects. 

iv. Development planners in the cities of Ibadan, Kano, Owerri and Birnin Kebbi may 

decongest city centres through proper and adequate planning, provision and access to 

affordable landed properties, provision of mortgage services, infrastructural 

development (road/drainage infrastructures, communication infrastructures, 

establishment of greenies and recreational parks) and provision of social amenities 
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(public water and electricity supply, hospitals, markets) in rural areas and at urban 

fringes or satellite communities. These will encourage and facilitate outmigration to 

the planned urban fringes. 

v. This study also recommends the integration of Landsat images with those of higher 

spatial/spectral resolution passive optical imageries and active sensors like Radio 

Detection and Ranging (RADAR) and Light Detection and Ranging (LIDAR) for 

more adequate and comprehensive surveys of the urban environments, with view to 

improving their livability. 

5.4 Contributions to Knowledge 

The thesis established that built-up areas increased from 312.90 km2 (9.19%), 70.32 km2 

(12.94%), 58.48 km2 (11.85 %) and 14.06 km2 (1.13%) in Ibadan, Owerri, Kano and Birnin 

Kebbi respectively in 1990 to 1,039.54 km2 (30.55%), 209.16 km2 (38.50%), 216.03 km2 

(43.77%) and 123.03 km2 (9.85%) in 2019 respectively. This implied a high rate of 

urbanization process in all the cities, and a concomitant decrease in other land cover types; 

with a resultant imbalance in the ecosystem of the urban environment. The study also 

established differences in values of the mean noon-time air temperature; indicating higher 

temperature values in Birnin Kebbi (27.49°C) and Kano (25.56°C) both in the Sudan, in 

contrast to lower temperature values of 24.08°C and 23.17°C for Ibadan and Owerri 

respectively located in the Rainforest.  

Furthermore, the thesis established a Tau statistic of 0.070, 0.098 and 0.091 with 

corresponding p-values of 0.045, 0.005 and 0.0098 which are less than 0.05 confidence level 

for Kano, Ibadan and Owerri respectively; indicating significant rising trends of noon-time 
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temperature in the three cities. Aside the mean LST-NDBI correlation of 0.94, 0.98, 0.96, 

0.98 in Ibadan, Owerri, Kano and Birnin Kebbi respectively, the study established an increase 

in coverage areas of high LST areas from 18.12%, 18.07% and 14.71% respectively in 

Ibadan, Owerri and Birnin Kebbi in 1990 to 27.00%, 52.12% and 64% in 2019. This implied 

that as the urban sizes increase in the cities, the coverage area of higher LST increase. 
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APPENDICES 

Appendix A 1 Coordinates of Sample Points for Owerri 
S/N Feature (LULC) Lat. Long. S/N Feature 

(LULC) 

Lat.  Long. 

1 Bare Surface 5.46533 7.07518 34 Forest Cover 5.473039  7.041181 

2 Light Vegetation 5.46534 7.07537 35 Bare Surface 5.473378  7.049872 

3 Agricultural land 5.46513 7.07527 36 Bare Surface 5.470004  7.029702 

4 Agricultural land 5.46494 7.07508 37 Built Up 5.470895  7.033708 

5 Light Vegetation 5.46499 7.07517 38 Built Up 5.469546  7.02674 

6 Agricultural land 5.46412 7.07519 39 Bare Surface 5.46844  7.033264 

7 Thick Vegetation 5.46233 7.07456 40 Built Up 5.368029  7.005325 

8 Light Vegetation 5.46242 7.07448 41 Forest Cover 5.365709  7.012705 

9 Bare Surface 5.46154 7.07407 42 Bare Surface 5.362098  7.011231 

10 Bare Surface 5.46274 7.07218 43 Bare Surface 5.380063  6.997097 

11 Bare Surface 5.46262 7.07226 44 Thick Vegetation 5.381839  7.002201 

12 Bare Surface 5.47758 7.06884 45 Forest Cover 5.376003  6.979951 

13 Water Body 5.465217 7.06997 46 Water Body 5.378106  6.981661 

14 Bare Surface 5.47678 7.14303 47 Bare Surface 5.37435  6.976538 

15 Bare Surface 5.474531 7.127077 48 Built Up 5.404729  6.970064 

16 Forest Cover 5.489637 7.145844 49 Farmland 5.404651  6.967412 

17 Agricultural land 5.487121 7.129159 50 Thick Vegetation 5.409891  6.963892 

18 Built Up 5.477361 7.124337 51 Built Up 5.445873  6.962909 

19 Bare Surface 5.471672 7.139487 52 Forest Cover 5.444535  6.962609 

20 Forest Cover 5.49567 7.131887 53 Light Vegetation 5.487703  7.012364 

21 Light Vegetation 5.485743 7.090795 54 Built Up 5.489303  7.016731 

22 Built Up 5.494851 7.086001 55 Forest Cover 5.484381  7.009179 

23 Forest Cover 5.504095 7.108276 56 Thick Vegetation 5.536924  6.97646 

24 Bare Surface 5.51974 7.061865 57 Forest Cover 5.514376  6.978298 

25 Light Vegetation 5.521701 7.072176 58 Light Vegetation 5.515701  6.975298 

26 Bare Surface 5.515832 7.053697 59 Bare Surface 5.517596  6.98111 

27 Bare Surface 5.47758 7.06884 60 Built Up 5.516976  6.98107 

28 Bare Surface 5.48008 7.05491 61 Built Up 5.517075  7.019761 

29 Light Vegetation 5.48416 7.05377 62 Forest Cover 5.501632  7.017419 

 

 

 

Appendix A 2 Coordinates of Sample Points for Kano 
Lat Long Location_Feature 
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12.11556 8.660492 Water body 

11.9685 8.524282 Thick vegetation 

11.9673 8.525878 Thick vegetation 

11.96831 8.523694 Bare Surface 

11.97127 8.526096 Built Up 

11.97281 8.525096 Agricultural Land 

12.00692 8.514679 Built Up 

12.01497 8.512146 Built Up 

12.05045 8.536135 Light Vegetation 

12.04725 8.531594 Light Vegetation 

12.04937 8.527986 Bare Surface 

11.96395 8.471813 Bare Surface 

11.98354 8.468001 water body 

11.98439 8.467811 Light Vegetation 

11.98561 8.468958° Agricultural Land 

11.9861 8.468644 Light Vegetation 

11.99828 8.553832 Bare Surface 

11.9984 8.558875 Built Up 

11.99869 8.559514 Light Vegetation 

12.00028 8.55956 Light Vegetation 

12.0045 8.560162 Light Vegetation 

12.00766 8.559359 Thick vegetation 

12.00782 8.558491 Agricultural Land 

12.04537 8.519893 Built Up 

12.06139 8.545934 Built Up 

12.04063 8.5312 Thick vegetation 

12.03992 8.53172 Bare Surface 

12.05518 8.486676 Built Up 

12.06589 8.558551 Agricultural Land 

12.06264 8.562201 Agricultural Land 

12.02289 8.536798 Built Up 

12.02223 8.540711 Bare Surface 
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Appendix B: Landuse/Landcover classified images of the four cities from 2000 - 2010 
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Appendix C 1: LULC Classes of Ibadan from 1991 – 2019 

Magnitude and Percentage Change in LULCof Ibadan between 1990 and 2001 

LULC Class 1990 

Extent 

(km2) 

2001 

Extent 

(km2) 

Magnitude of 

Change 

(km2) 

Percentage 

of Change 

Annual 

Rate  of % 

Change 

Built up 312.90 479.45 166.55 15.26 1.68 

Forest cover 712.66 408.28 -304.38 27.89 3.07 

Light Vegetation 1316.21 1367.78 51.57 4.73 0.52 

Bare surface 155.01 482.62 327.61 30.03 3.30 

Water body 14.70 14.80 0.01 0.001 0.00 

Agricultural lands 891.51 650.14 241.37 22.12 2.43 

Total 3402.98 3402.98 1091.19 100  

 

Magnitude and Percentage of Change in LULC of Ibadan between 2001 and 2011 

LULC Class 2001 

Extent 

(km2) 

2011 

Extent 

(km2) 

Magnitude 

of 

change 

(km2) 

% 

Change 

Annual Rate 

of % 

Change 

Built up 479.45 755.29 275.84 31.14 3.11 

Forest cover 408.28 278.55 -129.73 -14.65 -1.47 

Light Vegetation 1367.78 1298.88 -68.9 -7.78 -0.78 

Bare surface 482.62 238.32 -244.3 -27.58 2.76 

Water body 14.80 13.63 -1.21 -0.14 -0.01 

Agricultural lands 650.14 815.94 165.8 18.72 1.87 

Total  3402.98 3402.98 885.78 100  

 

Magnitude and Percentage Change in LULC of Ibadan between 2011 and 2019 

LULC Class 2011 

Extent 

(km2) 

2019 

Extent 

(km2) 

Magnitude 

of 

Change 

(km2) 

Percentage 

of Change 

Annual Rate 

of % 

Change 

Built up 755.29 1039.54 284.25 42.53 3.40 

Forest cover 278.55 253.05 25.5 3.82 0.31 

Light Vegetation 1298.88 1092.51 -206.37 -30.88 -2.47 

Bare surface 238.32 289.27 50.95 7.62 0.61 

Water body 13.63 12.73 -0.9 -0.13 -0.13 

Agricultural lands 815.94 715.55 -100.39 -15.02 -1.21 

Total  3402.98 3402.98 668.36 100  
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Appendix C 2: LULC Classes of Owerri from 1990 – 2019 

Magnitude and Percentage Change in LULC of Owerri between 1990 and 2000 

LULC Class 1990 

Extent 

(Sq. 

km) 

2000 

Extent 

(Sq. km) 

Magnitude 

of 

Change 

(Sq. km) 

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 70.32 116.55 46.23 13.62 1.36 

Forest cover 70.16 17.00 -53.16 15.66 1.57 

Light Vegetation 255.09 179.75 -75.34 22.19 2.22 

Bare surface 59.98 19.30 -40.68 11.98 1.20 

Water body 9.11 8.55 -0.56 0.16 0.016 

Agricultural lands 78.79 202.28 123.49 36.38 3.64 

Total  543.45 543.45 339.46 100  

 

Magnitude and Percentage of Change in LULC of Owerri between 2000 and 2010 

LULC Class 2000 

Extent 

(Sq. 

km) 

2010 

Extent 

(Sq. km) 

Magnitude 

of 

Change 

(Sq. km) 

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 116.55 170.55 54.00 39.45 3.95 

Forest cover 17.00 21.43 4.43 3.24 0.32 

Light Vegetation 179.75 157.08 -22.67 16.56 1.66 

Bare surface 19.30 29.24 9.94 7.26 0.76 

Water body 8.55 5.56 -2.99 2.18 0.22 

Agricultural lands 202.28 159.42 -42.86 31.31 3.13 

Total  543.45 543.45 136.87 100  

 

Magnitude and Percentage Change in LULC of Owerri between 2010 and 2019 

LULC Class 1990 

Extent 

(Sq. 

km) 

2019 

Extent 

(Sq. km) 

Magnitude 

of 

Change (Sq. 

km) 

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 70.32 209.16 138.84 35.14 10.19 

Forest cover 70.16 21.35 -48.81 12.45 3.61 

Light Vegetation 255.09 141.52 -113.57 28.96 8.40 

Bare surface 59.98 29.12 -30.86 7.87 2.28 

Water body 9.11 6.19 -2.92 0.74 0.21 

Agricultural lands 78.79 135.94 57.15 14.57 4.23 

Total  543.45 543.45 392.15 100  
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Appendix C 3: LULC Classes of Kano from 1991 - 2019 

Magnitude and Percentage of Change in LULC  of Kano between 1991 and 2001 

LULC Class 1991 

Extent 

(km2) 

2001 

Extent 

(km2) 

Magnitude of 

Change 

(km2) 

Percentage 

of Change 

Annual Rate 

of Change 

% 

Built up 58.48 102.66 44.18 34.19 3.42 

Forest cover 19.61 15.54 -4.07 3.15 0.32 

Light Vegetation 37.80 58.22 20.42 15.80 1.58 

Bare surface 77.81 71.68 -6.13 4.74 0.47 

Water body 5.69 2.14 -3.55 2.75 0.28 

Agricultural lands 294.14 243.29 -50.85 39.36 3.94 

Total  493.53 494.53 129.2 100 

 

 

Magnitude and Percentage of Change in LULC of Kano between 2001 and 2011 

LULC Class 2001 

Extent 

(km2) 

2011 

Extent 

(km2) 

Magnitude of 

Change 

(km2) 

Percentage 

of Change 

Annual Rate 

of Change % 

Built up 102.66 167.73 65.07 22.71 2.27 

Forest cover 15.54 5.92 -9.62 3.36 0.34 

Light Vegetation 58.22 136.07 77.85 27.17 2.72 

Bare surface 71.68 72.03 0.35 0.12 0.01 

Water body 2.14 1.38 -0.76 0.27 0.03 

Agricultural lands 243.29 110.39 132.9 46.38 4.64 

Total  493.53 496.53 286.55 100 10 

Magnitude and Percentage of Change in LULC of Kano between 2011 and 2019 

 

LULC Class 2011 

Extent 

(km2) 

2019 

Extent 

(km2) 

Magnitude of 

Change 

(km2) 

Percentage 

of Change 

Annual Rate 

of Change 

% 

Built up 167.73 216.03 48.3 28.31 2.26 

Forest cover 5.92 11.12 5.2 3.05 0.24 

Light Vegetation 136.07 73.36 -62.71 36.76 2.94 

Bare surface 72.03 49.46 -22.57 13.23 1.06 

Water body 1.38 1.41 0.03 0.02 0.00 

Agricultural lands 110.39 142.15 31.76 18.62 1.48 

Total  493.52 493.53 170.57 100 8 
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Appendix C 4: LULC Classes of Birnin Kebbi from 1990 - 2019 

Birnin Kebbi Magnitude and Percentage of Change in LULC between 1990 and 2000 

LULC Class 1990 

Extent 

(Sq. 

km) 

2000 

Extent 

(Sq. km) 

Magnitude 

of 

Change (Sq. 

km) 

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 14.06 

 

26.96 

 

12.9 91.75 9.18 

Forest cover 165.44 

 

197.54 

 

32.1 19.40 1.94 

Light Vegetation 359.27 

 

384.24 

 

24.97 6.95 0.70 

Bare surface 100.80 

 

295.99 

 

195.19 193.64 19.36 

Water body 6.08 

 

59.14 

 

53.06 872.70 87.27 

Agricultural lands 603.23 285.02 -318.21 52.75 5.28 

Total  1248.88 1248.88 

 

636.43 1237.19 123.73 

 

Birnin Kebbi Magnitude and Percentage of Change in LULC between 2000 and 2010 

LULC Class 2000 

Extent 

(Sq. km) 

2010 

Extent 

(Sq. km) 

Magnitude 

of 

Change 

(Sq. km) 

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 26.96 

 

65.34 

 

38.36 142.28 14.23 

Forest cover 197.54 

 

25.36 

 

-172.18 87.16 8.72 

Light Vegetation 384.24 

 

502.13 

 

117.89 30.68 3.07 

Bare surface 295.99 

 

461.71 

 

165.72 55.99 5.60 

Water body 59.14 

 

8.15 

 

-50.99 86.22 8.62 

Agricultural lands 285.02 186.19 -98.83 34.67 3.47 

Total  1248.88 

 

1248.88 

 

643.97 437.00 43.71 

 

Birnin Kebbi Magnitude and Percentage of Change in LULC between 2010 and 2019 

LULC Class 2010 

Extent 

(Sq. km) 

2019 Extent 

(Sq. km) 

Magnitude 

of 

Change 

(Sq. km)  

Percentage 

of Change 

Annual 

Rate 

of Change 

% 

Built up 65.34 

 

123.03 

 

57.69 88.29 9.81 
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Forest cover 25.36 

 

101.48 

 

76.12 300.15 33.35 

Light Vegetation 502.13 

 

333.83 

 

-168.3 33.52 3.72 

Bare surface 461.71 

 

403.48 

 

-58.23 12.61 1.40 

Water body 8.15 

 

13.72 

 

5.57 68.34 7.59 

Agricultural lands 186.19 273.35 

 

87.16 46.81 5.20 

Total  1248.88 

 

1248.88 365.91 549.72 61.07 
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Appendix D1 LULC Transitions in Ibadan between 1990 and 2019 
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Appendix D2 LULC Transitions in Owerri between 1990 and 2019 
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Appendix D3 LULC Transitions in Kano between 1991 and 2019 
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Appendix D4 LULC Transitions in Birnin Kebbi between 1990 and 2019 
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Appendix E: NDVI of the four cities from 2000 – 2010 
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Appendix F: Classified NDVI of the four cities from 2000 – 2010 
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Appendix G: NDBI of the four cities from 2000 – 2010 
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Appendix H: Classified NDBI of the four cities from 2000 – 2010 
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Appendix I: LST of the four cities from 2000 – 2010 
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Appendix J: Classified LST of the four cities from 2000 – 2010 
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Appendix K1:  Values for LST (°C), NDVI and NDBI Classes for Ibadan 1990 - 2019 

 1990 2001 2011 2019 

SN LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI 

             

1 13.87253 -0.94595 -0.7875 -20.1865 -0.36111 -0.000078 19.07294 -0.327532 -0.09513 24.74614 0.041692196 -0.21473 

2 15.46373 -0.3369 -0.08904 -10.6347 -0.3262 0.029880 20.71382 -0.309596 -0.03577 25.18872 0.05943895 -0.19928 

3 18.43399 -0.31434 -0.02896 -4.55626 -0.30526 0.050851 23.7768 -0.289667 -0.01132 25.6313 0.077185704 -0.18384 

4 20.34343 -0.28426 -0.00643 -1.08286 -0.28796 0.071822 25.74586 -0.269738 0.009628 26.12921 0.094932458 -0.16531 

5 21.29816 -0.26171 0.016099 2.390531 -0.27174 0.095788 26.73039 -0.247816 0.03058 26.68243 0.112679212 -0.14678 

6 21.82856 -0.23163 0.03863 5.429752 -0.2551 0.119755 27.27735 -0.223901 0.055024 27.23566 0.132200641 -0.12516 

7 22.78328 -0.20907 0.068671 8.468972 -0.23757 0.146717 28.26188 -0.201980 0.082959 27.84421 0.153496746 -0.10354 

8 23.73801 -0.179 0.098712 11.50819 -0.21978 0.176675 29.2464 -0.178065 0.114387 28.45276 0.174792851 -0.07883 

9 24.58665 -0.15644 0.136263 14.54741 -0.20225 0.203637 30.12154 -0.158136 0.145814 29.06131 0.19431428 -0.05412 

10 25.54137 -0.12636 0.173814 17.15246 -0.1791 0.230600 31.10607 -0.136214 0.180733 29.66986 0.215610385 -0.02941 

11 26.4961 -0.1038 0.211365 19.32333 -0.15663 0.257562 32.0906 -0.114292 0.212161 30.22308 0.235131814 -0.0047 

12 27.45082 -0.08125 0.248916 22.36255 -0.13402 0.284524 33.07513 -0.092371 0.240096 30.77631 0.252878568 0.016918 

13 28.29946 -0.05869 0.278957 25.40177 -0.11236 0.308491 34.38783 -0.070449 0.26454 31.27421 0.270625322 0.035449 

14 29.25419 -0.03613 0.301488 28.87517 -0.08982 0.326466 35.37236 -0.048527 0.285492 31.71679 0.286597401 0.050892 

15 30.10283 -0.02109 0.324019 33.65109 -0.06796 0.344441 36.2475 -0.028598 0.302951 32.10405 0.300794804 0.066335 

16 30.95147 0.001463 0.35406 38.86118 -0.04651 0.362416 36.79446 -0.014648 0.320411 32.49131 0.313217532 0.084867 

17 31.9062 0.02402 0.391611 46.24215 -0.02597 0.380390 37.23203 -0.000698 0.344855 32.87857 0.32564026 0.106487 

18 33.17916 0.046577 0.459203 56.22816 -0.00592 0.401361 38.54473 0.021224 0.379774 33.32115 0.339837663 0.152816 

19 34.55821 0.114249 0.564346 69.68756 0.016667 0.497227 40.4044 0.041153 0.456597 34.37228 0.357584417 0.313422 

20 40.49871 0.971429 0.947368 79.2394 0.245283 0.676976 46.42097 0.116883 0.645161 37.41502 0.428571433 0.504915 
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Appendix K2  Values for LST (°C), NDVI and NDBI Classes for Owerri 1990 - 2019 

 1990 2000 2010 2019 

SN LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI 

1 29.50442 -0.04423 -0.04437 29.74832 -0.27532 -0.13762 21.17076 -0.10507 -0.34288 16.79441 0.047127 -0.21836 

2 29.99685 -0.00105 -0.02363 30.68967 -0.24489 -0.07749 22.22183 -0.0798 -0.24389 17.75955 0.057331 -0.19539 

3 30.48928 0.027014 -0.00751 31.16035 -0.2168 -0.04075 24.76192 -0.05681 -0.21089 18.45659 0.067536 -0.18008 

4 30.98171 0.050762 0.010924 31.63102 -0.19104 -0.01736 25.813 -0.03613 -0.19109 19.10001 0.076721 -0.16936 

5 31.47414 0.07451 0.029355 32.1017 -0.16763 0.002683 27.73996 -0.01315 -0.17459 19.74344 0.085905 -0.15864 

6 31.96657 0.096099 0.050089 32.57238 -0.14188 0.022727 29.22898 0.009829 -0.15479 20.38686 0.09611 -0.14486 

7 32.459 0.119847 0.073128 33.04305 -0.11613 0.042771 30.63041 0.037405 -0.12839 20.97667 0.106314 -0.12954 

8 32.95143 0.143595 0.098471 33.51373 -0.08804 0.066155 31.5939 0.064982 -0.09869 21.62009 0.11754 -0.11423 

9 33.44386 0.167343 0.126117 34.45508 -0.05761 0.096221 32.11943 0.094857 -0.06899 22.31713 0.129785 -0.09738 

10 33.89841 0.191091 0.153764 34.92576 -0.02717 0.126286 32.55738 0.124731 -0.03599 23.06779 0.142031 -0.08054 

11 34.39084 0.214839 0.179106 35.39644 -0.00142 0.156352 33.52086 0.152308 -0.00299 23.76484 0.154277 -0.06216 

12 34.88327 0.238587 0.204449 36.33779 0.031354 0.186418 34.48435 0.179885 0.026707 24.40826 0.166523 -0.04532 

13 35.3757 0.260176 0.227488 36.7614 0.057105 0.213143 35.79819 0.207461 0.053107 24.89083 0.177748 -0.03 

14 35.83025 0.279606 0.250526 37.23208 0.080515 0.239868 36.76167 0.230442 0.079506 25.3734 0.188973 -0.01622 

15 36.32268 0.296878 0.271261 37.70275 0.099244 0.266593 37.63757 0.251124 0.105906 25.85597 0.199178 -0.00397 

16 36.77723 0.31199 0.291996 38.59704 0.115631 0.289977 38.1631 0.269509 0.132305 26.39215 0.207342 0.006752 

17 37.26967 0.327103 0.312731 39.06771 0.129677 0.313362 39.039 0.285595 0.158704 26.92834 0.214485 0.017472 

18 37.72422 0.340056 0.331162 39.49132 0.146064 0.343427 39.91489 0.303979 0.188404 27.51814 0.222649 0.029723 

19 38.21665 0.361645 0.356504 40.85629 0.169475 0.380174 40.79078 0.331556 0.241203 28.16157 0.236935 0.0481 

20 39.16363 0.428571 0.471698 41.75057 0.279503 0.597315 43.06811 0.414286 0.3567 29.50204 0.271632 0.129264 
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Appendix K3  Values for LST (°C), NDVI and NDBI Classes for Kano 1990 - 2019 

 1991 2001 2011 2019 

SN LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI 

1 1.931307 0.42623 -0.30357 6.832704 0.233766 0.974116 12.31695 0.435897 -0.65826 0.363335 0.397631 -0.21243 

2 3.643717 0.307633 -0.16012 8.602885 0.15902 0.976886 13.98159 0.31679 -0.53467 2.024801 0.295708 -0.17024 

3 5.845385 0.258979 -0.08315 10.87883 0.124851 0.978658 16.70553 0.255315 -0.44869 3.409356 0.258418 -0.13798 

4 6.94622 0.222488 -0.03067 12.01681 0.097088 0.98032 19.42948 0.201524 -0.36808 4.886215 0.231073 -0.1082 

5 8.536314 0.189037 0.011321 13.66054 0.073597 0.982093 21.39677 0.155418 -0.28747 6.455377 0.208699 -0.0809 

6 10.12641 0.158628 0.049808 15.30428 0.052241 0.983644 23.06141 0.113154 -0.21224 8.02454 0.188812 -0.05857 

7 11.7165 0.128219 0.081297 16.94802 0.03302 0.984863 25.0287 0.074732 -0.14776 9.409095 0.17141 -0.03623 

8 13.3066 0.09781 0.112786 18.59176 0.015935 0.98586 26.99599 0.040152 -0.09402 10.51674 0.154009 -0.0139 

9 14.77438 0.070441 0.144276 20.10906 -0.00115 0.986635 28.96329 0.013257 -0.04565 11.43978 0.136607 0.005955 

10 16.36447 0.049155 0.175765 21.7528 -0.0161 0.9873 30.93058 -0.0098 -0.00266 12.27051 0.116719 0.023326 

11 17.83225 0.03395 0.207255 23.2701 -0.03318 0.987965 33.20054 -0.02901 0.034952 13.00894 0.096832 0.040697 

12 19.78929 0.018746 0.238744 25.29316 -0.05027 0.988629 35.47049 -0.04822 0.072568 13.74737 0.076944 0.055587 

13 21.62401 0.003541 0.270234 27.18979 -0.06949 0.989183 37.43779 -0.07127 0.104811 14.4858 0.057057 0.067995 

14 23.09179 -0.01775 0.298224 28.70708 -0.08871 0.989627 38.79976 -0.09817 0.131679 15.22423 0.042141 0.080403 

15 24.07031 -0.03903 0.319217 29.71862 -0.10793 0.989959 40.0104 -0.12506 0.153174 15.87035 0.029711 0.092811 

16 24.92651 -0.06032 0.333213 30.60371 -0.12288 0.990513 41.37237 -0.14811 0.174669 16.51648 0.009824 0.105219 

17 25.90503 -0.0816 0.347208 31.61524 -0.13783 0.991178 42.28036 -0.17885 0.201538 17.1626 -0.02249 0.125072 

18 26.39429 -0.10897 0.361203 32.121 -0.15278 0.992175 43.18834 -0.23264 0.239154 17.80873 -0.05978 0.162297 

19 26.76124 -0.15763 0.378697 32.50033 -0.18054 0.993726 44.39898 -0.30949 0.314387 18.36255 -0.09956 0.221855 

20 30.91995 -0.23669 0.511653 36.79934 -0.22966 0.997493 48.78756 -0.39786 0.572327 21.59318 -0.15673 0.333528 
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Appendix  K4:  Values for LST (°C), NDVI and NDBI Classes for Birnin Kebbi 1990 – 2019 

 

  1990 2000 2010 2019 

SN LST NDVI NDBI LST NDVI DBI LST NDVI NDBI LST NDVI NDBI 

1 36.27589 0.575342 -0.73926 31.66409 0.494505 -0.82646 31.12926 0.459294 -0.78531 6.863727 0.557964 -0.9584 

2 37.23493 0.451874 -0.68541 32.1371 0.376664 -0.76952 32.09759 0.330395 -0.73501 7.696509 0.436907 -0.9151 

3 37.74642 0.405156 -0.63984 32.61012 0.338445 -0.72682 32.58175 0.279513 -0.69245 8.40117 0.394373 -0.88263 

4 38.64152 0.368449 -0.59841 33.08314 0.303411 -0.68886 33.06591 0.238808 -0.65376 9.169892 0.361655 -0.85377 

5 39.15301 0.331742 -0.55699 33.98617 0.274747 -0.6509 33.96508 0.204887 -0.61894 9.938613 0.332209 -0.82852 

6 39.60056 0.295035 -0.51557 34.9322 0.246082 -0.61294 34.9334 0.174358 -0.58412 10.70734 0.306034 -0.79965 

7 40.49566 0.261665 -0.47414 35.40522 0.217418 -0.57498 35.83256 0.143829 -0.5493 11.54012 0.283131 -0.7744 

8 41.4547 0.228295 -0.43272 35.87824 0.188754 -0.53228 36.73172 0.113300 -0.51448 12.3729 0.260229 -0.74914 

9 42.3498 0.194925 -0.39543 36.30825 0.16009 -0.49432 37.70005 0.086164 -0.48353 13.20568 0.237326 -0.72028 

10 43.2449 0.164892 -0.36229 36.78127 0.131426 -0.45636 38.59921 0.062419 -0.45644 14.03846 0.214423 -0.68781 

11 44.20394 0.138196 -0.32916 37.6843 0.099576 -0.41365 39.49837 0.038674 -0.42936 14.87124 0.188249 -0.65534 

12 45.09904 0.114838 -0.29602 38.15732 0.067727 -0.37095 40.39753 0.014929 -0.39841 15.70403 0.162074 -0.62287 

13 45.99415 0.091479 -0.26702 38.58733 0.035878 -0.32824 41.2967 -0.005423 -0.37132 16.53681 0.1359 -0.5904 

14 46.82531 0.06812 -0.23802 39.06035 0.000844 -0.2808 42.12669 -0.029168 -0.34424 17.30553 0.109725 -0.55432 

15 47.27286 0.048098 -0.20902 39.49037 -0.03419 -0.2286 42.61085 -0.052913 -0.31716 18.01019 0.080279 -0.51464 

16 47.72042 0.028076 -0.17588 39.96338 -0.07241 -0.17166 43.44085 -0.076657 -0.2862 18.58673 0.041017 -0.47134 

17 48.16797 0.00138 -0.13446 40.3934 -0.11381 -0.11472 43.92501 -0.103794 -0.24751 19.09921 -0.00479 -0.42444 

18 49.06307 -0.03866 -0.08061 41.29643 -0.15522 -0.05778 44.75501 -0.144499 -0.20108 19.67575 -0.05059 -0.37393 

19 49.89424 -0.09206 0.002241 41.72645 -0.19662 -0.00085 45.65417 -0.198773 -0.13531 20.25229 -0.09967 -0.30899 

20 51.68444 -0.15546 0.167939 42.62948 -0.24121 0.203186 47.38332 -0.259831 0.046535 22.04598 -0.15856 -0.16829 
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