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ABSTRACT   

Cholera is an infectious intestinal disease that occurs as a result of poor sanitation and lack of 

basic education in its transmission. It is characterized by profuse vomiting and severe diarrhea 

when an individual eats food or drinks water contaminated with the Vibrio cholerae. In this 

present work, a dynamic mathematical model that explicitly simulates the transmission 

mechanism of cholera by considering the role of control measures and the environment in 

transmitting the disease is developed. The model comprises two populations: the human 

population and the bacteria population and the number of awareness programs driven by 

disease prevalence and media coverage. The nextgeneration method is used to compute the 

basic reproduction number, 0. Moreover, the sensitivity indices of each parameter with respect 

to 0 of the model are computed. To show the impact of the model parameters, the model 

equations were solved over a specific time period using the Homotopy Perturbation Method. 

Necessary conditions of the optimal control problem were analysed using Pontryagin’s 

maximum principle with control measures such as awareness campaigns, vaccination of 

susceptible individuals, treatment of infected individuals and treatment of water bodies used 

to optimize the objective function. The results revealed that both the Disease-Free and 

Endemic Equilibria are shown to be locally and globally stable for values less than unity 

and unstable otherwise. The model simulations confirm the significant role played by control 

measures (education, vaccination, therapeutic treatment and treatment of water bodies) and the 

bacteria in the environment in the transmission dynamics as well as reducing the spread of 

cholera. The optimal control results revealed that the best strategy for controlling cholera is 

the application of all control measures and this is attained when 0.08. The research also 

affirmed that the worst-case scenario occurs when there is no any control strategy for the 

epidemic. This research revealed that the effective reproduction number c
0 tends to zero 

 as the human-to-environment contact rate tends to zero  

0 . This implies that Cholera will die out in the shortest time when control activities are 
taken to curb the human-to-environment contact which will eventually lead to reducing the 
spread of Cholera diseases. The research also revealed that at a hygiene-conscious rate, 1 

0.75, 2 0.75 the effective reproduction number was minimal while the hygieneconscious rate, 

1 0.25, 2 0.25 resulted in a high effective reproduction number. This implies that an increase 
in the hygieneconscious rate of Cholera will result in a low rate of Cholera infection among 

the human population. As the awareness rate  is varies from 0.25 to 0.75 the 
effective reproduction number tends to zero. This is therefore indicating that the increase in 
awareness programmes (covering villages and market squares) will reduce greatly the spread 
of Cholera diseases.   
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1.0                                                      INTRODUCTION    1.1 Background to the Study   

The cholera epidemic is a fatal waterborne disease-causing diarrhea, dehydration, and 

vomiting in an individual (WHO, 2019; WHO, 2018c). It is caused by a bacterium called 

Vibrio cholerae. Cholera is transmitted through ingesting contaminated drinks and food, 

contact with cholera patient’s faeces, and touching vomit and corpse killed by the bacterium 

without using protective agents (WHO, 2019; WHO, 2018c; Panja, 2019). The incubation 

period of cholera is less than 24 hours to 5 days. The infection is frequently asymptomatic. 

Not more than 25% of the infected persons become symptomatic; of these, 10–20% 

experience severe disease (WHO, 2019). A continuous drastic loss of body fluids leads to 

dehydration, thus neglecting treatment as soon as the case occurs will accelerate the death of 

the infected person within hours (Lilje et al., 2015).   
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The disease has two modes of transmission: direct and indirect transmission. Direct 

transmission (human–human) is very uncommon as compared to indirect (environment– 

human) which occurs by ingesting contaminated food or water (Brachman and Abrutyn, 

2009; CDC, 2004). An estimated 100,000–120,000 deaths are due to cholera every year in 

the world with only a small proportion being reported to World Health Organization (WHO) 

(Chaignat, 2014).   

There are environmental factors that play a great role in the propagation of cholera infection. 

As Vibrio cholerae can move in the aquatic environment, every alteration in the hydrological 

cycle has a probability to affect the pathogenic concentration in water. The rain and its 

seasonal behaviour, droughts and floods, can increase or decrease the transmission process 

(Codeco, 2001).   

Nevertheless, relevance has to be given to the environmental matrix in which the disease 

spreads into disease-free regions (Bertuzzo et al. 2008; Bertuzzo et al. 2010) together with 

consideration on individual mobility and travelers carrying the disease in long-distance 

journeys. Susceptible people traveling on a daily basis may contact the disease in destination 

sites and take the disease back to the possibly uninfected communities where they regularly 

live. At the same time, infected individuals not showing severe symptoms can carry the illness 

releasing bacteria via their faeces (Mari et al., 2012). Finally, symptomatic infected 

individuals locally increase the bacteria concentration, which is, then, spread along the 

hydrological network.   

Experiments for the spreading of infectious disease in individuals are unethical. 

Epidemiologists and other researchers use mathematical modelling and numerical simulation 
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for scientific understanding of the dynamics and preventive method of infectious disease, for 

determining sensitivities, changes of parameter values, and forecasting (Codeco, 2001;  

Ayoade et al., 2018; Ratchford and Wang, 2019; Nyabadza et al., 2019; Eustace et al., 2018; 

Kwasi-Do et al., 2020). The models are based on cohorts, namely, susceptible, infected, and 

recovered, for individual populations incorporated with some preventive measures such as 

treatment, vaccination, chlorination, hygiene, and sanitation through education. Treatment is 

more recommended when cases occur, that is, a short-term plan for controlling and 

eradicating the disease. Education is a long-term plan for controlling and eradicating the 

disease, especially in creating awareness of water treatment, sewage removal, food safety, 

personal hygiene, and environment sanitation (Panja, 2019; Kumar et al., 2020).    

This present work focuses on the development and analysis of a dynamic mathematical model 

that explicitly simulates the transmission mechanism of cholera by taking into account the 

role of control measures and the environment in the transmission of the disease.   

1.2 Statement of the Problem   

Cholera remains a significant threat to public health in the developing world, with cyclic 

outbreaks occurring twice per year in endemic areas (Jensen et al., 2006). For instance, on 

the 6th of September 2018, a cholera outbreak in Harare was declared by the Ministry of 

Health and Child Care (MoHCC) of Zimbabwe (WHO, 2018a). As of 15 September 2018, 

3621 cumulative suspected cases, including 71 confirmed cases, and 32 deaths had been 

reported (case fatality ratio: 0.8%); of these, 98% (3564 cases) were reported from the densely 

populated capital Harare (WHO, 2018a). The City of Harare is facing a plethora of 

challenges, notably due to insufficient safe water supplies, frequent sewer pipe bursts, 

uncollected refuse and rampant illegal vending (WHO, 2018a). This has negatively impacted 

on public health in the city exposing residents to diarrhoeal disease outbreaks, an upsurge in 
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typhoid fever cases and sporadic outbreaks of cholera (WHO, 2018a). As of the year 2018, 

the disease has also claimed more than 67 lives in Zambia and Malawi did report some cases 

of cholera in Lilongwe.    

In Nigeria, cholera is an endemic and seasonal disease, occurring annually mostly during the 

rainy season and more often in areas with poor sanitation, with the first series of cholera 

outbreaks reported between 1970 and 1990. Major epidemics also occurred in 1992, 

19951996, and 1997. The Federal Ministry of Health reported 37,289 cases and 1,434 deaths 

between January and October 2010, while a total of 22,797 cases of cholera with 728 deaths 

and case-fatality rate of 3.2% were recorded in 2011. Outbreaks were also recorded in 2018 

with the Nigeria Centre for Disease Control (NCDC) reporting 42,466 suspected cases 

including 830 deaths with a case fatality rate of 1.95% from 20 out of 36 States from the 

beginning of 2018 to October 2018 (NCDC, 2019). In 2016, a record of 768 cases of cholera 

was recorded in Nigeria (WHO, 2018b).   

Thus, the cholera tragedy continues to devastate disadvantaged countries and communities. 

Hence, the needs for this research to analyse qualitatively the controlling mechanisms of 

cholera epidemics in a population by implementation of adequate preventive measures.   

   

1.3 Significant of the Study   

The dynamics of cholera involve multiple interactions between the human host, the pathogen, 

and the environment (Hethcote, 2000), which contribute to both direct (human-tohuman) and 

indirect (environment-to-human) transmission pathways.   
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Understanding the fundamental mechanism in the disease transmission is crucial for effective 

prevention and intervention strategies against a cholera outbreak. To this effect, mathematical 

modelling provides a unique approach to gain basic insights into the dynamics of infectious 

diseases. Therefore, by exploring the potential effects of disease-control strategies such as 

water chlorination, mathematical modeling can predict the dynamics of explosive epidemics 

often associated with cholera outbreaks.   

Mathematical modeling enables us to characterize the general and specific behavior of the 

systems analytically and to understand which aspect contribute the most to the observed 

dynamics as well as making policy decisions for preventive measures and control strategies.   

Hence, the need for this research work.   

   

   

1.4 Justification of the Study   

The application of differential equations in the transmission dynamics of infectious diseases 

have been extensively used in several papers (Bolarin and Bamigbola, 2014; Bolarin and 

Abdullahi, 2016; Ocheche, 2013; Wang and Modnak, 2011). The analysis of these models 

predicted and suggested several control strategies for the control and eradication of the 

infections (diseases).   

Some of the control strategies being suggested were early detection and reporting, vaccination 

and mass immunization, therapeutic treatment and good sanitation practices. It is therefore 

important that adequate attention is paid to stopping the spread of such diseases by using 

effective control strategies and measures.   
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This research work will help to consolidate previous works on cholera and its complications, 

by incorporating hygiene consciousness and awareness programme driven by media   

coverage to our system of differential equations to investigate their effects in control of the 

disease.   

1.5 Scope and Limitation of the Study   

This research work focuses on the mathematical modeling of the dynamics of Cholera 

transmission and control strategy taking into consideration the hygiene consciousness and 

awareness programme and it is limited to mathematical analysis of the disease.    

1.6 Aim and Objectives of the Study   

The aim of this research is to develop and analyze mathematical model of the dynamics of 

cholera transmission incorporating hygiene consciousness and awareness programme as  

control strategies.   

The objectives of the study are to:   

1. Establish the existence of the disease-free equilibrium and endemic equilibrium of the 

model.   

2. Analyse the condition for local stability of the disease-free equilibrium and endemic 

equilibrium.   

3. Analyse the condition for global stability of the disease-free equilibrium and endemic 

equilibrium.   
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4. Carry out the sensitivity analysis of the model using Nigeria Demographic data.   

5. Obtain the analytical solution of the model using the Homotopy perturbation method            

(HPM).   

6. Carry out a graphical simulation of the solutions of the model equations using   

MAPLE 17 software.    

7. Perform optimal control analysis of the model.   

1.7 Definition of Terms   

Analytical solution: This involves framing the problem in a well understood form and 

calculating the exact solution.   

Basic Reproduction number: This is the average number of secondary cases of disease 

made by a typical infectious person (during his infectious period) in a wholly (completely) 

susceptible population.   

Disease-Free Equilibrium Point: The disease-free equilibrium point is the steady-state 

solutions determined when there is no disease ( I 0).    

Effective Reproduction number: This is the average number of secondary cases of disease 

made by a typical infectious person (during his infectious period) in a wholly (completely) 

susceptible population where control measure such as treatment, vaccination, quarantining,  

etc.   

Equilibrium: This is the state of rest of a body. A state of balance between opposing forces 

or actions that is either static (as in a body acted on by forces whose resultant is zero) or 

dynamic (as in a reversible chemical reaction when the rates of reaction in both directions are 

equal).   
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Endemic Equilibrium Point: The endemic equilibrium points are steady-state solutions 

determined when I 0, and there exist at least one endemic equilibrium point.   

Global Stability: This means that the attracting basin of trajectories of a dynamical system 

is either the state space or a certain region in the state space which is the defining region of 

the state variables of the system.    

Homotopy Perturbation Method: This is a semi-analytical technique for solving linear as 

well non-linear ordinary/partial differential equations.   

Incidence: This is the occurrence, rate or frequency of a disease, crime or other undesirable 

thing, for example, an increase incidence of cholera.    

Infected: This is the compartment used for persons who have cholera infections.  Local 

Stability: If points near an equilibrium tend to move towards the equilibrium over time, the 

equilibrium is said to be locally stable.   

Mathematical Model: A mathematical model is a description of a system using mathematical 

concepts and language.   

Numerical simulation: This is a calculation that is run on a computer following a program 

that implements a mathematical model for a physical system. Numerical simulation are 

required to study the behavior of systems whose mathematical models are too complex to 

provide analytical solutions as in most nonlinear systems.   

Optimal control: This is a condition of dynamics systems that satisfy design objectives and 

is achieved with control laws that execute following defined optimality criteria.   
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Prevalence: This is the proportion of a particular population found to be affected by a medical 

condition at a specific time.   

Recovered: These are group of persons who have been treated and recovered from the  cholera 

illness.   

Sensitivity Analysis: This is the study of how the uncertainty in the output of a mathematical 

model or system can be divided and allocated to different sources of uncertainty in its inputs.   

Stable equilibrium: This is the state of a system such that when slightly moved tends to 

come back to its original state of rest or in other word, an equilibrium is considered stable if 

the system always returns to it after small disturbance.   

Susceptible: These are individuals who are not yet infected but can still be infected.   

Unstable equilibrium: If the system moves away from the equilibrium after small 

disturbance, then the equilibrium is unstable.   

   

   

   

   

   

   

   

   

CHAPTER TWO   
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2.0                                      LITERATURE REVIEW   

2.1 Overview of Cholera Diseases   

Cholera is a disastrous water-borne infectious disease that is caused by the bacterium vibrio 

cholera (V. cholera). It is a very serious problem in many developing countries due to 

inadequate access to safe drinking water supply, improper treatment of reservoirs and 

improper sanitation.   

 In 2019, the Norwegian Refugee Council (NRC) reported that the overcrowded displacement 

of camps coupled with a lack of basic sanitation facilities and hygiene will cause another 

cholera outbreak in northeast Nigeria if action is not taken to prevent it and if the camps are 

not decongested and sanitation facilities improved, cholera will inevitably return, and 

vulnerable displaced people will bear the brunt of the epidemic again (NCDC, 2019).    

For instance, 466 people are sharing one latrine at one of the displacement camps in the state 

of Borno, according to the Humanitarian Office for the Coordination of Humanitarian Affairs 

(OCHA). This is nine times above the agreed humanitarian standards, which is set at 50 

people per latrine in emergency situations. As a result of lack of sanitation, people choose to 

defecate in the open, exacerbating an already vulnerable situation and increasing the 

likelihood of the spread of disease (NCDC, 2019).   

In 2019, about 400,000 people need emergency shelter in the northeast Nigeria, just over 

2,288 people have been reached with 24% safe water been made accessible to the total 

number of people in need (NCDC, 2019).   
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2.1.1 Signs and symptoms of cholera disease   

The vast majority of the time, the symptoms of cholera is hard to distinguish from diarrhea 

caused by many other possibilities. The Bacteria will be present in an infected person's feces 

for 7 - 14 days, however (WHO, 2014), around 1 in 10 cases display the characteristic signs 

and symptoms of cholera. They are extreme diarrhea, nausea and vomiting, and dehydration. 

With diarrhea, the infected person may lose as much as a litre of fluid an hour. The Diarrhea 

from cholera has a pale, milky Appearance, and for this reason, diarrhea from cholera is 

generally called "rice - water stool." Nausea and vomiting may last for several hours at a time. 

Dehydration Causes electrolyte imbalance, which can lead to muscle spasms and shock, 

specifically hypovolemic shock. Signs and symptoms for cholera dehydration also include 

irritability, lethargy, sunken eyes, dry mouth, extreme thirst, dry and shriveled skin, little or 

no urine output, low blood pressure, and an irregular heartbeat (Mayo Clinic Staff, 2014).   

2.1.2 Key Tests for Identification of cholera   

The main test for identification for V. cholera is serologic identification, searching for the 

presence of 01 serotype antigens. This Can be shown by using an agglutination test. Most 

serotypes of cholera that do not Cause epidemic or pandemic outbreaks also do not produce 

cholera toxin (CDC & P, 2014). V. cholera samples are generally taken from stool samples of 

infected persons. The stool will have the Appearance of "rice - water stool (Finkelstein, 2014).  

It will have a white, pasty layer similar to water after it has been used to boil rice. The stool 

will also have a fishy odor. The above are quick methods for identification, which is important 

since cholera can turn deadly very rapidly. Another Test is noting whether the serotype 

produces cholera toxin. Only the three pathogenic serotypes will (CDC & P, 2014).   
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2.1.3 Control/Treatment of cholera diseases   

Anyone thought to be suffering from cholera should be treated with Oral Rehydration 

Solution (ORS), which contains salts, sugar, and electrolytes. It is dissolved in water and 

administered orally throughout the period of infection. Rehydration is the key to overcoming 

cholera (CNN Library, 2014).   

2.1.4 Prevention/Vaccines against cholera diseases   

Cholera is a disease spread primarily by poor sanitation. The Best way to combat cholera is 

to improve waste management, water treatment, and food preparation. Currently, there are 

three vaccines for cholera available. One is Dukoral, which is World Health Organization   

(WHO) prequalified, and the other is ShanChol and Euvichol, which is licensed in India. Two 

doses of ShanChol and Euvichol provide protection against cholera for three years while a 

single dose provide short-time protection. The two are currently available for mass 

vaccination campaign through the global OCV stockpile, which is supported by Gavi, the 

vaccine alliance. Dukoral is the third vaccine available. The vaccines are both administered 

orally, two times (six weeks apart). Their effectiveness lasts for about two years (Mayo Clinic 

Staff, 2014). The Vaccines may take several weeks for their benefits to begin taking shape in 

a person, so vaccination should not replace standard prevention and control measures (CDC 

& P, 2013).   

Currently, the research into cholera vaccines is still in progress. For example to see if one dose 

of vaccine is sufficient instead of two doses.   
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2.1.5 History of cholera diseases   

The Word cholera comes from the Greek 'khole' Meaning 'illness from bile.' The First notable 

reports specifically referencing cholera come from John Snow of London, England, and 

Filippo Pacini of Florence, Italy. Both Reports come from 1854. Pacini was the first to 

identify V. Cholera as the ctiologic agent of cholera, though his discovery was not widely 

known until Robert Koch Publicized his own independent research in1884. John Snow did 

not discover the cause of cholera, but he did impart knowledge on how to stop a local outbreak 

(Davis, 2014). There have been seven epidemic outbreaks of cholera since 1817. The First 

six outbreaks were caused by the classical 01 biotype. The Seventh outbreak was caused by 

the ElT or 01 Biotype (Finkelstein, 2014).    

2.2 Review of Related Works   

In an effort to gain deeper understanding of the complex dynamics of cholera, several 

mathematical models have been published. For example, Codeco (2001) proposed a model 

that explicitly accounted for the environmental component, i.e., the V. cholera concentration 

in the water supply, into a regular SIR epidemiological model. The incidence (or, the infection 

force) was modeled by a logistic function to represent the saturation effect. Hartley et al. 

(2006) extended Codeco’s work to include a hyper infectious state of the pathogen, 

representing the “explosive” infectivity of freshly shed V. cholerae, based on the laboratory 

observations (Merrell et al., 2002). This model was rigorously analyzed in (Liao and Wang,   

2011). Joh et al. (2009) modified Codeco’s model by a threshold pathogen density for 

infection with a careful discussion on human environment contact and in-reservoir pathogen 
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dynamics. Mukandavire et al. (2011) proposed a model to study the 2008–2009 cholera 

outbreaks in Zimbabwe. The model explicitly considered both human-to-human and 

environment-to-human transmission pathways. The results in their work demonstrated the 

importance of the human-to-human transmission in cholera epidemics, especially in such 

places as Zimbabwe, a landlocked country in the middle of Africa. Moreover, Tien and Earn 

(2010) published a water-borne disease model which also included the dual transmission 

pathways, with bilinear incidence rates employed for both the environment-to-human and 

human-to-human infection routes. No saturation effect was considered in Tien and Earn’s 

work. A rigorous global stability analysis was conducted in (Tian and Wang, 2011) for many 

of the aforementioned models. In addition, Neilan et al. (2010) modified the cholera model 

proposed by Hartley et al. (2006) and added several control measures into the model. They 

consequently analyzed the optimal intervention strategies and conducted numerical 

simulation based on their model. No human-to-human infection route is considered in their 

work.   

Liao and Wang (2011) considered three types of controls: vaccination, therapeutic treatment  

(including hydration therapy, antibiotics, etc.), and water sanitation but he did not incorporate 

the role of education control strategy in their model, also they did not consider a logistic growth 

of vibrio cholera.   

Ochoche (2013) developed a mathematical model for the control of cholera transmission 

dynamics using water treatment as a control strategy. The model was designed by dividing 

the system into compartments leading to corresponding differential equations. The model was 

built on the assumption that cholera is contracted only through the ingestion of contaminated 

water. Conditions were derived for the existence of the disease free and endemic equilibrium. 

He proved that the disease free equilibrium is locally asymptotically stable under prescribed 

conditions on the given parameters.    
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Sani et al. (2013) worked on a deterministic mathematical model on cholera dynamics and 

some control strategies. In their study, a system of four differential equations with two control 

measures which are therapeutic treatment and sanitary measures were considered.   

Madubueze et al. (2015) considered the bifurcation and stability analysis of the dynamics of 

cholera model with controls. The existence of backward bifurcation is investigated in their 

work and the numerical simulation performed revealed that combine control measures will 

help to reduce the spread of cholera in the human population. Pransenjit and Debasis (2012) 

worked on the qualitative analysis of a cholera bacteriophage model. In their work, they 

concluded that by using phage as a biological control agent in endemic areas, one may also 

influence the temporal dynamics of cholera epidemic while reducing the excessive use of 

chemicals. Adewale et al. (2015) worked on the mathematical analysis of the effect of growth 

rate of vibrio-cholera in the dynamical spread of cholera. In their work, they developed a 

mathematical model that incorporated phage virus which serves as a biological control of 

cholera bacteria in the population; they concluded that phage virus plays a vital role in 

reducing the spread of cholera in the population.   

Wang and Modnak (2011) presented and analyzed a cholera epidemiological model with 

control measures incorporated. This model was extended from the one proposed in 

Mukandavire et al. (2011) by including the effects of vaccination, therapeutic treatment, and 

water sanitation. Equilibrium analysis is conducted in the case with constant controls for both 

epidemic and endemic dynamics. Optimal control theory was applied to seek costeffective 

solution of multiple time-dependent intervention strategies against cholera outbreaks. Their 

model equations are:   
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dS  B  

S                                                                    (2.1) dt B   

 

dI  B  

 B I                                                                         

dR  

S                                                                                            

dB  

B                                                                                                       

(2.4)   

dt  

Edward and Nyerere (2015) formulated a mathematical model that captures some essential 

dynamics of cholera transmission with public health educational campaigns, vaccination, 

sanitation and treatment as control strategies in limiting the disease. The reproduction 

numbers with single and combined controls are computed and compared with each other to 

assess the possible community benefits. Numerical simulation shows that in a unique control 

strategy, treatment yields the best results followed by education campaign, then sanitation 

and vaccination being the last. Furthermore, they noted that the control of cholera is very 

much better when they incorporated more than one strategy, in two controls the results were 

N  h SI  e S   v t 

K   

  

dt  h SI    e S  

(2.2)   

  K    a t 

a t I  R  v t 

(2.3)   dt   

  

I  w t 
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better than one strategy, and in three control strategies the results were far better than in two 

control strategies. Further simulations with all four interventions showed the best results 

among all combinations attained before. They performed sensitivity analysis on the key 

parameters that drive the disease dynamics in order to determine their relative importance to 

disease transmission and prevalence. Their model equations are:    

dS  B  

S                                                                  

I                                                                          (2.6) dt B  

 

dR  

R                                                                                                  

dt  

B                                                                       

Yang (2017) proposed two differential equation-based models to investigate the impact of 

awareness programs on cholera dynamics. The first model represents the disease transmission 

rates as decreasing functions of the number of awareness programs, whereas the second 

dt  1 1   e  S  B  K    R  h  

(2.5)     

  

  
dI   B   

1 1 e S  d  h  

K   

  
  

I  S  h    

(2.7)   

  

dB  
b 1 

K  
B  1 e  I  p  w 

(2.8)   dt  K    
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model divides the susceptible individuals into two distinct classes depending on their 

awareness/unawareness of the risk of infection. He studied the essential dynamical properties 

of each model, using both analytical and numerical approaches. He found that the two models, 

though closely related, exhibit significantly different dynamical behaviors. Namely, the first 

model follows regular threshold dynamics while rich dynamical behaviors such as backward 

bifurcation may arise from the second one. His results highlighted the importance of 

validating key modeling assumptions in the development and selection of mathematical 

models toward practical application. His model equations are:   

Model 1:   

dS  B  

S                                                              

 

dI  B  

I                                                                      

 
R                                                                                                       

(2.11)  

B                                                                                                          

(2.12)  

dt  N  1 M  SI  2 M  S  B  K    R  

(2.9)     

  

dt  1 M  SI    2 M  S  B  K    

(2.10)     

  

dR   

I  

dt   

  
dB   

M  I  

  
dt   



 

25   

   

dM  

M                                                                                                       (2.13)  

dt  

Model 2: dSu   N 1SuI 2Su B   Su                                

(2.14)   

  

 

dt   K  

 

dR  

R                                                                                                         (2.17)   

dt  

dB  

B                                                                                                                   (2.18)   

dt  

dM  

M                                                                                                         (2.19)   

dt  

  I  

S u M  1 p R  kS a  

dS a    S u M  1 1 S a I  2 2 S a  B    p R k  S a                                          (2.15)     

  

dt      B K   

dt  1 S  u  1 S a  I  2 S u  2 S a  B  K    I                                                 

(2.16)     

I  

I  

I  

  

  B  
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2.3 Summary of Review and Gap to Fill   

In reviewing the above literatures, we observed that several works have been done on the 

dynamics of Cholera and control strategy. Some authors worked on the dynamics of Cholera 

and control strategy without considering the hygiene conscious compartment. Others 

concentrated on vaccination, therapeutic treatment and water sanitation but ignored 

awareness programme.   

  

 

  

 
  

 

dI   

  

 B  
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In view of the above, this research work modified the models of Wang and Modnak (2011);  

Edward and Nyerere (2015); Yang (2017) by adding:   
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(i) hygiene conscious compartment   

(ii) and awareness programme (covering villages and market squares)  

compartment  as a control strategy and also consider that vibrio bacteria grow logistically. 

So we have four types of controls: vaccination, therapeutic treatment (including hydration 

therapy, antibiotics, just to mention a few), water sanitation and awareness programme.   

   

   

   

   

   

   

   

   

   

   

   

CHAPTER THREE    
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t t 

t t 

t 

3.0              MATERIALS AND METHODS   

3.1 Mathematical Formulation   

The cholera model developed in (Wang and Modnak, 2011; Edward and Nyerere, 2015;   

Yang, 2017) is a combined system of human populations and the environmental component   

(SIR-B), with the environment-to-human transmission represented by a logistic (or 

Michaelis-Menten type) function and the human-to-human transmission by the standard mass 

action law. We now extend these models by adding vaccination, treatment, hygiene 

consciousness, awareness programme, and water sanitation.   

The total human population is divided into six compartments depending on the 

epidemiological status of individuals. These compartments include: Susceptible Unaware 

individuals,Su , Susceptible Aware individuals,Sa , Hygiene Conscious individuals, H , 

Symptomatically Infected individuals, I , Vaccinated individuals, V  and  

Recovered individuals, R . We assume that the total population is non-constant, which is a 

reasonable assumption for a relatively short period of time and for low-mortality diseases 

such as cholera. The concentration of the vibrios in the environment (that is contaminated 

water) is denoted by B  and the number of the awareness programs driven by disease 

prevalence and media coverage is denoted byM . Vaccination reduces the risk of 

infection by a factor f 0,1 and the efficacy of the vaccine is . Let a constant  stands 

t 

t 

t 

1 f  
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1 f  ,  

for the number of newborn babies and immigrants into the population, then f are recruitment 

rate into vaccinated class while  are the recruitment rate into  

susceptible class.   

Individuals in the Sa compartment have lower chances of contracting the disease than those 

in Su . Unaware individuals may switch to the aware group due to the involvement with the 

awareness programmes, and aware individuals may lose the awareness of cholera after a 

period of time. Furthermore, the susceptible population increases due to the incoming of 

newborns and immigrants, loss of vaccination and loss of immunity of individuals at the rates  

1 and respectively. On the other hand, the susceptible population decreases  

due to the infection and vaccination strategy.   

Concentration of Vibrio Cholerae in food and water that yields 50% chance of catching 

cholera disease is denoted by K ,  is the rate at which infected people recovered from cholera 

disease, w is the loss rate of Vibrio Cholerae in the environment,  is the contribution of each 

infected person to the population of Vibrio Cholerae in the environment.   

The total human population size N Su Sa H I V R. For the unaware  compartment Su , the direct 

and indirect transmission rates are represented by 1 and 2, respectively, which are assumed to 

be constant at all times. For the aware compartment Sa , the disease transmission rates are 

lower and are given by b1 1 andb2 2 , respectively, where  

1 f  
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1 d 

1 r 

0 b1,b2 1. For the hygiene conscious compartment H , the disease transmission rates are lower 

and are given by c1 1 and c2 2, respectively, where 0 c1,c2 1.The human contribution rate  is 

also assumed to be constant. Unaware individuals gain knowledge of the disease and enter the 

Sa class through interacting with the awareness programs at a rate  

. Meanwhile, aware individuals become unaware of the disease over time and enter the Su 

class at a rate q . In addition, recovered individual go back to the Sa and Su classes, at the 

fractions p and , respectively. Hygiene conscious individual go back to the Sa and 

Su classes, at the fractions d and , respectively. Also, vaccinated individual go back  

to the Sa and Su classes, at the fractions r and  , respectively.    

3.1.1 Model assumptions   

The formulation of our model is guided by the following assumptions:   

1. The total population of individuals is not constant.   

2. Controls are implemented continuously.   

3. Vaccination is introduced to the susceptible population at rate of  

4. Therapeutic treatment is applied to the infected individuals at a rate of a .   

5. Water sanitation leads to the death of vibrios at a rate of w .   

1 p 

2 
  .    



 

32   

   

6. The number of the awareness programs driven by disease prevalence and media coverage 

covered both villages and market squares.    

7. On recovery, there is temporary immunity.   

The above description leads to the compartmental diagram in Figure 3.1. The parameters and 

variables indicated in Figures 3.1 are described in Tables 3.1 and 3.2.    
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Figure 3.1: Schematic Diagram of the Model   
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Table 3.1: Description of Variables   

                             

Variables    Definitions    

Su    
Susceptible unaware individuals    

Sa    Susceptible aware individuals    

H    Hygiene conscious individuals    

I    Symptomatically infected individuals    

V    Vaccinated individuals    

R 
Recovered individuals    

B 

The concentration of the vibrios in the environment (that is 

contaminated water)    

M    Number of the awareness programs driven by disease 

prevalence and media coverage    

   

   

Table 3.2: Description of parameters   

   

 
Parameters    Definitions    

 

t  

t  

t  

t  

t  

t  

1 f      
Recruitment rate into the susceptible unaware class     

2 
      

Rate at which the susceptible unaware humans are vaccinated     

  3     Rate at which the susceptible aware humans are vaccinated     

1 
      

Vaccination loss rate     

    Rate at which the recovered humans are susceptible     

f     Recruitment rate into the vaccinated class      

    Natural death rate     

t      

t      
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   Disease induced death rate    

w    Rate at which water sanitation leads to the death of vibrios    

  

N   Total population                                                                     

Human to human transmission rate   

Environm ent to human transmission rate   

Infected human shedding rate    

Rate at which the susceptible unaware humans are hygiene conscious   

Rate at which the susceptible aware humans are hygiene conscious   

Hygiene conscious loss rate   

b1    Proportion of direct disease transmission rate for the aware compartment   

b2    Proportion of indirect disease transmission rate for the aware 

compartment   

c1    Proportion of direct disease transmission rate for the hygiene conscious 

compartment   

c2    Proportion of indirect disease transmission rate for the hygiene conscious 

compartment   

d   Proportion of hygiene conscious class  
r  

 
Proportion of vaccinated individual  

p   
Proportion of 

recovery class   

Awareness programme stimulated rate   

Natural death rate of vibrios from environment   

 Growth rate of number of awareness programmes   

1 
  

    

1     

2     

    

1     

2     
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a   Therapeutic treatment rate   

K   
Carry capacity for V. cholera   

 

3.1.2 The model equations   

From the assumptions, descriptions and the compartment diagram in Figure 3.1, we formulate 

the following system of differential equations:   

1V               

  

dt  

Su0  

 
dH    B  

    Recovery rate of infected humans    

    Awareness programme decay rate    

    Rate at which susceptible unaware humans are aware    

  
q     Rate at which susceptible aware humans loss their awareness    

    

dS u    1 f  1 S u  I  2 S u  B  B K    S u  M  1 p R  qS a  1 r 

(3.1)     

  

  

dS a    S u  M  b 1 1 S a  I  b 2 2 S a  B    p R  r 1 V  d H                                          (3.2)   

  
  

dt      B  K   

q  
  3 2 

  S a  ,   S a  0 S a 0   

1 d H  2 
  1 

  S u  ,   S u  0 



 

37   

   

  H H0                    (3.3)   

dI  B  

I0(3.4) dt   

   

 

 

dV  

  V V0                                                         (3.5)   

dt  

dR  

  R R0                                                                         (3.6)   

dt  

dB  

  B B0                                                                                   (3.7)   

dt  

dM  

M                                                                              (3.8)   

  

 
dt    0  

dt  1 S  u  2 S a  c 1 1 HI  c 2 2 H B  K    H ,    

  
  0 

f 2 S u  3 S a  1 
  V ,    

  0 

a I  R ,    

  0 

I  w B ,    

  0 

I  M ,      M 0 

1 S u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H   a  1 
  I ,  I 0 

  B  K   
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3.2 Basic Properties of Model    

For the special case when the rates of all three control parameters are positive constants, i.e.  2 

0, a 0, w 0 , we will examine the positivity and invariant region of the solutions of equations 

(3.1) – (3.8).    

3.2.1 Positivity of solution   

Since the model monitors human population, we need to show that all the state variables remain 

non-negative for all times.   

Theorem 3.1: Let   

 

(3.1) – (3.8) are positive for all t 0.  Proof: 

Consider equation (3.1)    

 
  

dt  

Su                         Su0 i.e. dS u   

(3.10)   

 
dt dS  

dS u    1 f  1 S u  I  2 S u  B  B K    S u  M  1 p R  qS a  1 r 1 V  

             (3.9)     

  

1 f  2   1   

  

  

1 d H  2 
  1 

  S u  ,  S u  0 
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Solving, we have                          

(3.12)   

Su  

 

Consider equation (3.2)   dSa    Su M b1 1Sa I b2 2Sa  B B K    p R  r 1V  

d H                                    (3.14)   

Sa                                                                                           

(3.15)   

dS 
a   

Sa   dt                                                                                           (3.16)   

  

u    
2   1   S u  1 f  

(3.11)   dt   

  

1 
f  

1 e 2 1 t  ce 2 1 t 

t   

  

2 
  1 

    

dt   

q  3 
  2 

  S a  ,   S a  0 S a 0   

i.e.  dS  a  
    q  3     2 

dt   

  

  q    

  3   2 
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Solving, we have   

Sa                                                                                                     (3.17)   

Taking initial condition, we get   

Sa 0                                                                                            

(3.18)   

Consider (3.4)   

dI  B  

K                                            (3.19)   

 

i.e.   

dI  

dt   I                                                                                                 (3.20)   

  

 

dI  

dt                                                                                               (3.21)   

Solving, we have   

I                                                                                                          (3.22)  

Taking initial condition, we get   

I 0                                                                                                   (3.23)   

t c 1 e q 3 2 t 

t S a 0 e q 3 2 t  

dt    1 S  u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H B  

  
  

a  1 
  I ,  I 0 I 0   

a  1 
  

I    a  1 
  

  

t c 2 e a 1 t 

t I 0 e a 1 t  
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Similarly, it can be shown that   

 

H 0                                                                                                     (3.26)   

B 0                                                                                                       (3.27)   

M 0                                                                                       (3.28)  

 

for all time t 0.   

3.2.2 Invariant region   

Theorem 3.2: Let  be the solution 

of system (3.1)   

–  (3.8)  with  initial  conditions   

. The compact   

,I 

 ,V, a  

Su,S  ,R  H,B,M  ,WB   

S u t , S a t , I t , R t , V t , H t , B t , M t 

S u  0 , S a  

0 , I 0 , R 0 , V 0 , H 0 , B 0 , M 0 

8 , W H        ,   

t H 0 e t  

t B 0 e w t  

t M 0 
  e vt  

v     v    
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invariant and attract all solution in .   

Proof: We follow the proof given by Mushanyu et al. (2018). Consider,   

 

This gives   

dW H   W I W W 0 for W                               (3.31)   

  

  

 

  
  

set,  
  1 

  1 w   is positively    

W M  1 v 1 
      

  

8 
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dW  

From (3.31) – (3.33), we have  0 which implies that  is a positive invariant set. We dt  

also note that by solving (3.31) – (3.33), we have   

 

as t   and hence  is an attractive set.   

dW  M    I  vM  W H  vW M  0   for  W M  1 v    1 
                          (3.33)   

  

  

dt        

with  1 
  0   and  w 0 .    

  

  0 W H  , W B  , W M  1 
,  

1 
  w , 

1 
v   1 

                                (3.34)     
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3.3 Model Analysis   

The model system (3.1) – (3.8) is analysed qualitatively to get insights into its dynamical 

features which give better understanding of the impact of control strategies on the 

transmission dynamics of Vibrio cholera virus.   

3.3.1 Disease free equilibrium (DFE)   

The disease-free equilibrium (DFE) point is state where there is absence of cholera infection 

in the population. The disease free equilibrium of model system (3.1) – (3.8) is obtained by 

setting   

dSu  dSa  dI  dR  dV  dH  dB  dM    
0,                                                  

(3.35) dt  dt  dt  dt  dt  dt  dt  dt  

and in the absence of disease, I  B  0 so that:   

From equation (3.5), we have   

V 

0 

                                 

we have   

M 0                                                                                                                            

(3.37)   

  

v  and  

from (3.3),   

1 
f 

1 2 
S u 0 

  1 3 
S a 0 

  

(3.36)     

and from equation (3.8),  
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CBAB11  

From (3.6), we have   

R0  0                                                                                                                                                      (3.39)   

Substituting (3.36) – (3.39) into (3.1) – (3.2) and solve simultaneously yields   

   

   

  

  

 

H 0 

 CBAB11  

  

H 
  0 

  1 BCAC 11 
  BA 11 CC  2 

CA 11 BB 00 
                                                                  (3.38)     

  

S u 0 
  BCAC 11 

  BA 11 CC  

  

  

S a 0 
  CBAB 11 

  CA 11 BB 00 
  

  

  

  

  

  

  

  

  

  

1 BAC 0 C 11 AB 11 CC  2 

CA 11 BB 00 
    ,                             (3.40)    
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Hence DFE is    

 

V  
  0 f  

  2 BAC 0 C 11 AB 11 CC  1 3 CBAB 11 
  

CA 11 BB 00 
    

  

1 
    1 

    

M  0 
    v     

  
where    
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3.3.2 Basic reproduction number, R0    

The basic reproduction number denoted by R0 is the average number of secondary infections 

caused by an infectious individual during his or her entire period of infectiousness (Diekmann 

et al., 1990). The basic reproduction number is an important non-dimensional quantity in 

epidemiology as it sets the threshold in the study of a disease both for predicting its outbreak 

and for evaluating its control strategies. Thus, whether a disease becomes persistent or dies 

out in a community depends on the value of the reproduction number, R0 .  

Furthermore, stability of equilibria can be analyzed using R0 . If R0 1 it means that every 

infectious individual will cause less than one secondary infection and hence the disease will 

die out and when R0 1, every infectious individual will cause more than one secondary infection 

and hence the disease will invade the population. A large number of R0 may indicate the 

possibility of a major epidemic. For the case of a model with a single infected class, R0 is 

simply the product of the infection rate and the mean duration of the infection.   

Since the infection components in this model are I and B , then from equation (3.4) and (3.7)    

 

 0   

Partial differentiation of Fi with respect to I and B gives the new infection matrix   

F K0Sa0  

c2H 
                                                   (3.43)   

u  

  B    

F i  1 S u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H B K                                             

  (3.42)   

  

  

b 
1  0 

S 
a 0   

c 
1 
H 0 2 S u 

0 
  

b 2 

1 S 0   

0  
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On the other hand,   

Vi                                                                                                   

Partial differentiation of Vi with respect to I and B gives the transition matrix   

V                                                                                     (3.45)  

It follows that   

 

It follows that the next generation matrix is given by   

a  1 
  

I  
  

I  w B  

(3.44)     

a  1 
    0         

    w 

  

  1     

  0     

  

V  
  1 a  

  1                                                                           (3.46)   

    1     

  

a  
  1 w   w   
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number with controls) denoted by R0
c which is given by   

 

 

Substituting    

BAC0C11 AB11CC   CBAB11  

 

into equation (3.48) we get   

c 
  1         2 S u 0 

  1 b 1 
  K 2 b 2 w S a 0 

    

  
  

1 
  K w     

  

R 0 
  a  1 

  1 c 
  1 K 2 c 2 w H  0 

                         

(3.48)     

  

  

  

S u 0 
    
CA 11 BB 00 

  ,    , S a 0 
    

H 
    0 1 BAC 0 C 1 1 AB 1 1 CC  

2 CBAB 11 
  C A 11 BB 00 
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When there is no any intervention we have: 0 . Thus, the   

basic reproduction number for system (3.1) – (3.8) is:   

 

 
 

2   3   a  w  1   2   

  2   AC   
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in R0 comes from the direct (human to human) transmission route, and the second term 

represents the contribution from the indirect (environment to human) transmission route.    

3.3.2.1. Analysis of R0
c with unique control strategy    

In this sub-section, we use effective reproduction number in equation (3.49) to compute 

reproduction numbers for individual control strategy (intervention). The similar approach was 

done by Stephen et al. (2014a, 2014b) and Nyerere et al. (2014a, 2014b).    

If vaccination is the only control that is 0 in (3.49) then the basic  

reproduction number with vaccination only is given by:   

R0
V  0.0549287856 4    

If awareness campaign is the only control that is  0, a  2  3  w  0 in 

(3.49) then the basic reproduction number with awareness campaign only is given by:    

R0
A  0.8178062310    

If treatment is the only control, we have a 0 in (3.49) then the basic  

reproduction number with treatment only is given by:   

R0
T  0.2504395594   

2 
  3 

  0 ,  a  w  

0 ,  2 
  3 

  w  
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If sanitation is the only control that is w 0 in (3.49) then the basic  

reproduction number with sanitation only is given by:    

R0
S  0.03973953413   

   

   

   

3.3.2.2. Analysis of R0
c with two control strategies    

In this section, we further analyse the effective reproduction number in equation (3.49) by 

computing reproduction numbers for the combination of two control strategies   

(interventions).    

If the combination of vaccination and awareness campaign is the only intervention that is   

3  0,  0, a  w  0 in (3.49) then the basic reproduction number with 

vaccination and education campaign only is given by:    

R0
VA  0.3132754649    

If the combination of vaccination and treatment is the only intervention that is 0, a 

0, w 0 in (3.49) then the basic reproduction number is given by:   

R0
VT  0.0989874770 2   

If the combination of vaccination and water sanitation is the only intervention that is 0, 

w  0, a  0 in (3.49) then the basic reproduction number is given by:   

0 ,  a  2 
  3 

  

2 
  

2 
  3 

  

2 
  3 
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R0
VS  0.05476273250    

If the combination of treatment and awareness campaign is the only intervention that is 

0, a 0, 2 3 w 0 in (3.49) then the basic reproduction number is given by:   

R0
TA  0.5398014031   

If the combination of water sanitation and awareness campaign is the only intervention that is 

w 0, a 0, 2 3 0 in (3.49) then the basic reproduction number is given by:   

R0
SA  0.8175555096    

If the combination of water sanitation and treatment is the only intervention that is w 0, a  

0 in (3.49) then the basic reproduction number is given by:   

R0
ST  0.2503089462   

3.3.2.3. Analysis of  R0
c with three control strategies    

Lastly, we analyse the effective reproduction number in (3.49) by computing reproduction 

numbers for the combination of three control strategies (interventions).    

If the combination of water sanitation, treatment and awareness campaign is the only 

intervention that is w 0, a 0, 0, 2 3 0 in (3.49) then the basic reproduction number is given by:    

R0
STA  0.5396913686    

If the combination of water sanitation, vaccination and awareness campaign is the only 

intervention that is w 0, 2 3 0, 0, a 0 in (3.49) then the basic reproduction number is given by:    

0 ,  2 
  3 
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R0
SVA  0.3176535300    

If the combination of treatment, vaccination and awareness campaign is the only intervention 

that is 2 3 0, a 0, 0, w 0 in (3.49) then the basic reproduction number is   

given by:    

R0
TVA  0.2133539861    

If the combination of treatment, vaccination and water sanitation is the only intervention that 

is 2 3 0, a 0, w 0, 0 in (3.49) then the basic reproduction number is given   

by:   

R0
TVS  0.1002509183   

3.4 Stability Analysis of the Disease-Free Equilibrium Point   

Here, we investigate the local and global stability of the disease-free equilibrium point,   

E0  Su0,Sa0,I0,R0,V0,H0,B0,M0  

3.4.1 Local stability analysis of the disease-free equilibrium point   

Theorem 3.3: If c0 1, then the disease free equilibrium (DFE) point E0 of the dynamical system 

(3.1) – (3.8) is locally asymptotically stable, and if c
0 1, then E0 is unstable.   

Proof: We linearize model system (3.1) – (3.8) by computing its Jacobian matrix, J  

The Jacobian matrix is computed by differentiating each equations in the system with respect  

.     

E .  
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S u   

M   

S u   

  

B      

M      

M      

  

M    
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i.e.   

 
  B        

I     S K   
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The Jacobian matrix at disease free equilibrium is given by the relation;   

  

  1 
  

2 
  

1 
  
1 

  
B K   B K 2   

      

  0   0     0   0   0   w   
  

  0   0     0   0   0   0   

  c H  
  0  
  0  

   1  1 
  

2 
2 
  

2  
   
2  

  
0     

  0 

v  
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10  0  0   
20  0  0   
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a 1 
  

  

0   1 
  

  

  0   
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    K w H  0 
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3.4.2 Global stability analysis of the disease-free equilibrium point   

Theorem 3.4: If c0 1, the disease-free equilibrium (DFE) point E0 of the dynamical system (3.1) 

– (3.8) is globally asymptotically stable.   

Proof: Define a Lyapunov function:   

 

Then, the derivative of L along solutions of system (3.1) – (3.8) is    

   

 

     
 

 

  

dS  

L  NS u  1 S u 0 
  dx NS a  1 Sx a 

  0 dx NH 1 Hx 0 
  dx 0 c I  

2 S u 0 
  K b 2 S a 0 w c 2 H 0 

  B     (3.55)     

  x      

  S u  dt   

  

  

dLdt  1 S u 0 
  

1 SS aa 0 
  dSdt a   
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1 HH 0 
  dHdt  c 0 

  

dIdt  2 S u 
  0 

K b 2 S a 0 w c 2 H 0 dBdt       (3.56)     

  

  S 
  0   B   

  1 S uu  11 df H 1 S u 2 I 12 S u  BS u K  

S u M  1 p R  qS a  1 r 1 V    

  

a  1 
  I  
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c 
0 1  S u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H 

  
B      

  

  

  B  K     

2 S u 0 
  b 2 S a 0 

  c 2 H  

0 I  w B K w   
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0 
  

 

 
  

 

H0    

  

 
H  

dL  
                              That is 

(3.57) 

dt  

   

 

 

c 1, we get dL   0 which implies that the disease-free equilibrium E0 of system (3.1) If dt  

– (3.8) is globally asymptotically stable.   

   

H 0   S u 0 M     

    

    

    

c 
0  a  1 

  I  2 S u 0   b 2 S a 0   c 2 H 0 1   1   B   B  K K    

  

SS uu 
  0 1 p R  qS a  1 r 1 V  1 d H SS aa 0 

  qSS au M  

r 1 Vp R d H    

  

1 
  

c  a  1 
  I   

S u  2 S a  0   

c 
0 

  1 1 S u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H   B  

  B  K    
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3.5 Existence of Endemic equilibrium (EE) Point   

We proceed to investigate the endemic equilibrium  EE  point of model equations 
(3.1) –  (3.8). The endemic equilibrium point is a positive steady state solution where the 
disease persists in the population. In this case, the infected variables are non-zero. For 
simplicity, we denote   

 

The endemic equilibrium satisfies   

N  Su  Sa  H V  I  R                                                                                         (3.58)  

From (3.6),   

I                                                                                                                           (3.59)    

From (3.7),   

B                                                                                                                             (3.60)    

From (3.8),   

M                                                                                                                       

(3.61)   

  

v  

From (3.5),   

a  

R    

  

I  

w   

I  
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V a                                                                                                   (3.62)  

From (3.4),   

a I                             

  

 

  
 

  

 

 

From (3.3),   

0                                                                   (3.65)   

Since I > 0, substituting equations (3.59) - (3.62) into (3.63) - (3.65) yields   

A 0   ,                         

(3.66

)  Su  

where   

f  2 S u  3 S 

1   

I  2 B  S u  b 1 1 I  b 2 2 B  S a  c 1 1 I  c 2 2 B    H  

(3.63)     

1 
    

  

  

  B  K      B  K      B  K    

From (3.2),    

M    

2 S u  b 1 1 I  

R  f 1                          (3.64)     

  
  bB 2 2 KB  q 13 S a  d H  p  

  1 
      

1 S u  2 S a  c 1 1 I  
c 2 2 B  

H  

  

  B  K     

A 5 I 5 
  A 4 I 

  4 A 3 I 3 
    A 2 I 2 

  A 1 I  

S a  H  V  B 5 
    5   B 4 I 

  4 B 3 I 3 
  B 2 I 2 

  B 1 I  B 0 
  I    
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A 
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 3  3   

  

 

   
   

3   

    

3   3     3     

  

  2 n 6 
  2 1 n 7 2 

  2   

n 7 1 n 4   

  
  

2   d 2 2 
    

  

3     

3   3     3       
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n 1 n 3 1 
  n 5 n 0 3   

n 6 
  3   2   
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23   n 
    6 3   2 
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  1 n 3 
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  5 1 n 0 

  n 6 
  2   2 
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From (3.58), we have Su  Sa  H V  N  I  R  N bI , where b 1 

denote   

 
  

 

. We   

  

 

h A0                                                                 (3.67)   

and   

   

a   

  

I A 5 I 5   A 4 I 4   A 3 I 3   A 2 I 2   A 1 I  

  



 

 

g                                                   
(3.68)   

Then at the endemic equilibrium we have   

h .                                                                                             

(3.69)   

, it is straightforward to see h 0 and h

0.  

We further make the following assumption:   

79   

I N  bI B 5 I 5   B 4 I 4   B 3 I 3   B 2 I 2   B 1 I  B 0 

I 

I 

I g I ,  I  0 ,  
N  

  

  b    

Since  A i  0   i  0 ,1,2,3,4, 5 
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bB i                                                                                                                       (3.70)    

N   

It is worth noting that b  1. Here we introduce this condition to facilitate our analysis that 

follows.   

Based on assumption (3.70), we obtain   

30bB5I4 20 NB5 bB4 I3 12 NB4 bB3 I2 6 NB3 bB2 I 2

 NB2  

 is increasing since   

0.                                                                                                  

(3.71)   

B  i 1   

g I 

bB 1 0     

Now we denote  I h I g I . Then  I 

I h I g I 
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(ii) If there exists I* 0 such that h , then there  

is a                unique intersection in ;   

(iii) Otherwise, there are two intersections in .   

   

3.6 Stability Analysis of the Endemic Equilibrium Point   

Here, we investigate the local and global stability of the endemic equilibrium point,   

E*  Su*,Sa*,I*,R*,V*,H*,B*,M*  

3.6.1 Local stability analysis of the endemic equilibrium point   

Theorem 3.5: If c
0 1, the endemic equilibrium (EE) point E* of the dynamical system   

In addition, notice that  R 0 
c  g  

0 B  
  0 N  . Hence, the following results can be  

obtained:    

h 0   A 0   

(1)   If  R 0  c  1 , then  h I   and  g I   have a unique intersection in  .    

(2)   If  R 0  c  1 , then there are two possibilities:    

) ( i   If  0 0 , these two curves have no intersection in  ;    

) ii (   If  0 0 , there is a unique intersection in  .    

(3)   If  R 0  c  1 , then there are three possibilities:    

) ( i   If  h  I g I   for all  I  0 , then there is no intersection in  ;    
2 2 2 2 

I * g I *   and  h I * g I * 

2 

2 

.     
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(3.1) – (3.8) is locally asymptotically stable.   

Proof: The Jacobian matrix of the system (3.1) – (3.8) at E* is given by   

 

where   

 
 

 



 

89   

   

A necessary and sufficient condition for local asymptotic stability is for the real part of the 

eigenvalue to be in the negative half plane (Lewnard et al., 2014). Thus, it can be shown that 

J  given by (3.68) has eigenvalues which all have a negative real part.   

In what follows, the characteristic equation of J  is of the form J I 0 

given  

by:   

 

where a0  

1   

 

The Routh-Hurwitz criterion (Nisbet and Gurney, 1982) requires   

E * 

E * E * 
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a1 0, a2 0 and a1 a0a2 0                                                                                 (3.74) as the necessary 

and sufficient conditions for the locally asymptotical stability; i.e., all roots of the polynomial 

(3.73) have negative real parts. Note that at the endemic equilibrium, using  

equations of (3.4) and (3.7) yields                             

From equation (3.75) we can easily obtain   

 

Using the fact that all model parameters as well as P , P1, P2 , Q , Q1, Q2 and Q3 are positive, it 

is then straight forward to observe that all the inequalities in (3.74) hold.   

3.6.2 Global stability analysis of the endemic equilibrium point    

Let E* Su ,Sa
*,I*,R*,V*,H*,B*,M*  denote an endemic equilibrium (EE) of model (3.1)   

– (3.8). To establish the global stability of E* , we make the following assumptions:   

a  1 
  1 S u *  b 1 S a *  c 1 H * 0 ,   

    

w a  1 
  Q 3 1 S u *  b 1 S a *  c 1 H * w 0   

* 

a  
  1 1 S u *  b 1 S a *  c 1 H * 2 

S 
I  u * *  

b 
K 2 

S a * w 
c 

2 H  
*                                     

  (3.75)   
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0                                                                                                (3.76)   

0                                                                                       

  

 
   

Theorem 3.7: Suppose that (i) assumptions (3.76) and (3.77) are satisfied; (ii)  is constant.   

If c
0 1, the endemic equilibrium (EE) point E* of the dynamical system (3.1) – (3.8) is globally 

asymptotically stable.   

Proof: We define a Lyapunov function:   

 

 

 

  

  B *  K    B  K    

  for  M 0   M  M max   and  0   B  B max  .     

  S u *  dx   S    S *    H   

L  SS  u * u 1 x  S a * a 1 x a  dx H *  1 Hx *  dx II *  1  

I x *  dx       (3.78)     

  
  

  

  

2 S u *  I b 2 S a *  c 2 H * B *  B *  1 B *  dx 1 S u *  b 1 SI a ** c 1 H * I *  MM *  

1 Mx *  dx   
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Then, the derivative of  L   along solutions of system (3.1)  –   (3.8)  is   dLdt  S u *  dS u  

1 S a *  dSdt a    1 HH *  dHdt  1 II *  dI dt      (3.79)     

  
  

By direct calculations, we have that:    

  B     

1 S u *  dS u  1 S u * I * 1 SS uu *  1 SS u * u II *  2 S u *  B * B *  

K  1 SS uu *  1 SS u * u  BB * B * KK    

  

  S u  dt     

* B *  K   B    x    
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  B     

* I * 1   S *    S I    B *   

1 S  u  S uu  1 S u * u I *  2 S u *  B *  K  1 SS uu *  1 SS u * u  BB * B * KK  

  

  

  

  B     

1 SS a *  dSdt  a  b 1 1 S a * I * 1 SS aa *  1 SS a * a II *  b 2 2 S a *  B * B *  K  

1 SS aa *  1 SS a * a BB * B * KK    

  

  a      
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H*  

BB* B 

 

 

1 H *  dH  c  H  * I * 1 HH *  1 HHI * I *    

  

  H  dt   1 
  1     

  

  B     

* 
  1   H *    H     

  

B *  c 2 2 H   B *  K  H  1 

* KK  H H *  H 2 
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and   

BB* B*  

BB*  

 
 

  B        

I *  S I   I    B *   

b 1  1 S a * I * 1 I  S  * a I *  I *  b 2 2 S a *  B *  K  1 II *  

SS a * a BB * B * K K   II 
  *       (3.83)     

  a   

  

  B     

c 1 1 H * I * 1 II *  HHI * I *  II *  c 2 2 
H 

*  B * B *  K    1 I *  H 
*  

B  B * K  II *    

  

K   

  I  H B *    

2 S u  *  b 2 S a *  I *  c 2 H * B * B *    K  1 BB *  dBdt  2 S u *  B * B *  K   1 

II *  BB *       (3.84)     

    

* 
  1   B *  I   B    B *   

b 2 2 S a  B *  K  B  I *  B *  c 2 2 H *  B *  K  1 

II *  BB *    
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* I * 1 MM *  II *  MM *    

c 1  1 H   
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For the function v x lnx, we know that x 0 leads to v 0. And if x 1, then  

  
 

x 1 x 
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b1 MMI*
*I 

1 

II*  

  

 

 
 

1 S a * I * SS a a *  1 SS a 
a 

* III * * I  1 

MM *    
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c1  

Moreover, we can obtain   

II *  

1 H * I * MM *  ln M M *  II *  ln II *    
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102   

   

 

 

* 
  B   B *   I   ln I *  BB *  ln   BB *    

b 2  2 S a 
  *   K  I *  I    

B *   

* 
  I   

c 2  2 H B * 
  K    I *  ln II *  BB *  ln BB *    
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dL    *  nvariance   

One can see that the largest invariant subset, where   0, is E . By LaSalle’s I dt  

  

Principle (LaSalle, 1979), E* is globally asymptotically stable when c
0 1.   

3.7 Sensitivity Analysis of Model Parameters   

In this section, we perform sensitivity analysis to determine the contribution of each parameter 

to the basic reproduction number. This analysis determines the level of contribution of each 

parameter value to the reproduction number (Osman et al., 2018).    

The effective reproductive (basic reproductive number with controls);   

 

  

 

  2 0 
    

b  
  

c 
    1 K w S u  1 b 1 

  K 2 
  

2 w S a 0 
  1   
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Sensitivity index of the model parameter is given by the relation;   

 
where X represents any parameter in the model.   

For 1:   

          S                                                                                                   

(3.99)   

          S                                                                                                  (3.98)   

  

 

0 
  a  

  1 1 c 
  1 K 2 c 2 w H  0 

                         

(3.96)     

  

  

  

c  
    

X   

S    X c 0 
    

0 
                                                                                                                 

(3.97)     

  

X   c 0   

  

c   

c 
  

0 
    

0 
  1 

1   

For  2 :     

  

  

1    

c 0   

c 0   
c  0   2 
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          S                                                                                                   

(3.100)  

          S                                                                                                   

(3.101)  

For :   

                                                                                                (3.103)  

                                                                                                (3.104) 

          S                                                                                                

(3.102)   

  

 
  

 

  

For  w    :   

  

  

  

c 0   

           S w  c 0   

c   
0 

      

w   

w   

c   

0   

0   

  

  

K  K    c 0   

  

2   

For    :   

  

  

2   

c 0   

c 0   
c  0   

  

  

For  K    :   

  

  

  

c 0   

c 0   
c  0   

K   

c   

c 
  

0 
      0 

    

For    :   

           S  c 0   

c   

    0   
  

c   
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          S 
                                                                                                

(3.105)   

          S                                                                                                 

(3.106)   

  

 

 

For :   

          S                                                                                                  (3.109)           

S                                                                                                   (3.108)   

  

  

a    a    c 0   

  

2   

For  a  :     

  

  

2    

c 0    

           S c 0   
c  0   

a    

                                                                                                 (3.107)  

c   

  

  

For  :     

  c   

    0   

c 0   
c  0 

      

c 0 
    

0 
    

For  1 :     

c    

1 c 0   

For  2   :   

  
0  

    

1    

1  

c    

0    

c 0   
c  0   2  
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          S                                                                                               

(3.110) 

  

 

  

 

  

 

And similarly for other parameters.   

Table 3.3: Sensitivity Index of the Parameter Values   

                              

 

  

  

For  1 :     

      c   

0   

c 0   
c  0 

      1 
  

f   0   
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Parameters    Sensitivity Index   

1    0.2788515937    

                                                                                              
(3.111)  

For f :  f  

                                                                                               (3.112) 

          S f   c  

0.7211484063    

0.7211484063    

K    -0.7211484063    

 -0.7125972390    

w    -0.008551166870    

- 0.6568105028    

0.4052468096    

- 0.4004237081    

0.01972919981    

a    -0.5573687407    

1   

For  :     

  c   

1   0   

           S c 0   

c   
0 
      

  

  
c   

0   

    

c 0 

c   
0 
      

2 
      

    

    

1 
      

2 
      

3 
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- 0.4628099174    

- 0.1665709271    

- 0.009208972845    

 
  

f   -0.03050679816   

1.00000000000   

0   

- 0.06762473393   

0   

v   -0.04620627709   

 -0.06762473392   

q   0.00004732727241   

 
   

Table 3.3 shows the sensitivity indices of the effective reproduction number with respect to 

parameters. Thus, the negative indices are 

indicating that they had a negative impact on the transmission of disease as the values of the  

    

1     - 0.4031770561     

2     - 0.03417063174     

  

K , , w , , 2 , a , , 1 ,  f  , , , , , 1 , 2   

    

    

1 
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parameter are increasing. The positive indices are indicating that they  

had a great impact on the transmission of disease as the values of the parameter are increasing. 

This indicates that, to eradicate cholera, stakeholders should devise strategies and implement 

it to reduce these parameters.   

   

   

Table 3.4: Values for Variables used for the Graphical Presentation    

                              

Variables    Values per  year    Source    

Su  
   

100,423,617     E10    

Sa   43,038,693    E9    

H  49,596,906    E7    

I 
0    42,466    E4    

V 
   

5,244,305    E6    

R  41,636    E5    

B 
   

275,000     Assumed    

M 
   

100     Assumed    

N    198,387,623     E1    

   

   

Table 3.5: Values for Parameters used for the Graphical Presentation   

   

 
Parameters    Value    Description    Unit    Source    

1 0.011    Human to human  /day    Wang and Modnak (2011)    

transmission rate    

2 0.075    Environment to  /day    Mukandavire et al. (2011)    

human transmission   

0      

0      

0      

1 , 2 , , 1 , 3 , , q 

0  

0  

0  

0  
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rate    

Infected human  Cells/ml/day    Lemos-Paiao et al. (2016)    

  shedding rate      

K    2000000    
Concentration of  

Cells/ml    Merrell et al. (2002)    

vibrio in the environment    

  

    

    0.033      Decay rate of vibrios     /day     Sun  et al . (2017)     
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w   0.0004   Disinfection rate   /year   Assumed   

0.018   Natural death rate   /year   E11   

0.075   Vaccination loss rate   /year   Assumed   

0.3366   /year   E14   

Vaccination rate for unaware humans   

0.6733   Vaccination rate for  /year   E15   

  aware humans     

a   1.1   Treatment rate   /day   Assumed   

0.98   Recovery rate   /day   E13   

0.01158   /year   Assumed   

Hygiene conscious   

loss rate   

1   0.0195   Death rate (due to  /day   NCDC (2019); E12  

  infection)     

f   0.75   Proportion      Assumed   

7588327   Recruitment rate   /day   E3   

0.002   /year   Neilan et al. (2010)  

    

1     

2     

3     
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Immunity waning  

rate   

0.03   Awareness growth  /day   Assumed  rate   

0.01   Awareness  /day   Assumed   

  stimulated rate     

v   0.03   
Awareness decay 

rate   

/day   Assumed   

   0.95   Awareness rate   /day   Assumed   

  

q   0.0003   Awareness loss rate   /year   Assumed   

1   0.1   /day   Assumed   

Hygiene conscious rate for unaware humans   

2   
0.3   

Hygiene conscious  /day   Assumed   

  rate for aware 

humans   

  

r   0.4   
Proportion of 

vaccinated individual   

   Assumed   

d   0.45   Proportion of 

hygiene conscious   

class   

   Assumed   

p   0.75   
Proportion of recovery 

class   

   Assumed   

b1    0.0003   
Proportion of direct 

disease transmission   

rate for the aware 

compartment   

   Assumed   

c1    0.001   

Proportion of direct 

disease transmission  

rate for the hygiene  

   Assumed   

conscious compartment   
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b2    0.4   
Proportion of 

indirect disease   

transmission rate for 

the aware 

compartment   

   Assumed   

c2    0.0002   Proportion of 

indirect disease   

transmission rate for 

the hygiene   

   Estimated  

  

conscious compartment   

   

See appendix, for the estimation of variables and parameters values shown in Tables 3.4 and   

3.5, used in graphical presentation.   

3.8 Model Solution Via Homotopy Perturbation Method (HPM)   

Homotopy perturbation method (HPM) was first proposed by He and was successfully 

applied to various engineering problems (He, 2006). We apply Homotopy-perturbation to 

equations (3.1) – (3.8), where details can be found in He (2006). We construct a homotopy 

in the form:   
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0           

 
 

 

dS  u     h dSdt u  1 S u    I  2 S u  B  BK  S u M  2 
  1 

  S u  

(3.113)     

1 h   

dI   B     

1 h dI dt  h dta  1 S 1 u b 1 SI  a  c 1 H I  2 S u  b 2 S a  c 2 H B  

K  0           (3.115)    
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0                                                                

0                                              

0             

dS    dSa b S I b S B S M   

1 h dR    h 
dR  

a I  R 

(3.116)   dt  dt     

1 h dV    h 
dV  

f 2 S u  3 S a  1 
  V  

(3.117)   dt  dt     

1 h dH    h 
dH  

1 S u  2 S a  c 1 1 HI  c 2 2 H  
B  

H  

(3.118)   dt  dt   B  K    
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0                                                                        

                                                                      
(3.120)   

Let   

                                                                                      

(3.121)   

                                                  

 

1 h dB    h 
dB  

I  w B 

(3.119)   dt  dt     

dM      
dM     

1 h   h   I  M  0   

dt   dt     

3 
  B 2 ...  

B B 0 hB 1 h    

M  M 0 hM 1 h 2 M 2 ...   
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Substituting (3.121) and (3.122) into equations (3.113) – (3.120) and collecting the 

coefficient of power of h , we have:  h0:   

M  

and   

                                                                                     (3.122)   

0                                                                                                                       

(3.123)  

0                                                                                                                       

(3.124)  

dt  

0                                                                                                                         

(3.125)  

dt  

0                                                                                                                        

(3.126)  

dt  

M 0 
  hM 1 

  h 2 M 2 
  ...   

dS  a 0 
  

dI  0 
  

dR  0 
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0                                                                                                                         

(3.127)  

dt  

0                                                                                                                        

(3.128)  

dt  

dB 0   0                                                                                                                         (3.129)   

 

dM 0   0                                                                                                                       (3.130)   

 

dt h1:    

  

 

 

 

dV  0 
  

dH  0 
  

dt   

  

b 2 2 S a 0 
  B 0 

  1 B 
  0 S u 0 M 0 

  q  3 
  2 

  S a 0 
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dt  K   K                 (3.132)  p 

R0  r 1V0  d H0  0  

 

 

 

  

 

1  

  

dt  K   K   

0                                                                                          

(3.137)   

dt  

dI 
  1 1 S u 0 

  b 1 S a 0 
  c 1 H 0 I 0 

  2 S u 0 
  b 2 S a 0 

  c 2 H 0 B 
  0 1 B 0 

    

  

dt   K  K                     (3.133)     

a  1 
  I 0 

  0   

dB  1 
  I 0 

  w B 0 
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0                                                                                          (3.138)   

dt 

h2 :   

dM  1 
    I 0   M 0 

  
  

  



 

 

 

dSu2   b S I b S I b S B 1 1 B0  b S B1 1 2B0   

  

  

0                                                                                  

                                                 
1                                                                          (3.143)   

dt  

dR  2 
  a I 1 

  R 1 
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(3.142) dt  

112   

 

0                                                                                           (3.145)  

dt  

0                                                                                                 (3.146)  

dt  

Solving equation (3.123) – (3.146), we obtain   

Su  t2                         

Sa  t2                         

dH 2 
    1 S u 

  1 2 S a 
  1 c 1 1 H 1 I 0 

  c 1 1 H 0 I 1 
  c 2 2 H 1 

  B 
  0 1 B 0 

    

  

dt   K    K  
                      (3.144)   

c 2 2 H 
  0 B    1 1 2   B 0   H 1 

  0   

K    K    

dB  2 
  I 1 

  w B 1 
  

dM  2 
  I 1 

  M 1 
  

t lim h 1 S u 0 t hS u 1 t h 2 S u 2 t ... S u 0 
  A 0 t  

A 
  8 

(3.147) 2   

  

t lim h 1 S a 0 t hS a 1 t h 2 S a 2 t ... S a 0 
  A 1 t  

A 
  9 

(3.148) 2   
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A 10 t2                                       (3.149) I limh  

1 

  

 
2  

R 11 t2                                           

2  

 

B 14 t2                                           

2  

M 15 t2                                   

Where   

t 

t lim h 1 R 0 t hR 1 t h 2 R 2 t R 0 
  A 3 t  

A 

(3.150)     

  

t lim h 1 B 0 t hB 1 t h 2 B 2 t B 0 
  A 6 t  

A 

(3.153)     

  

t lim h 1 M 0 t hM 1 t h 2 M 2 t M 0 
  A 7 t  

A 

(3.154) 2   

  

2 I 2 t ... I 0 
  A 2 t  

I 0 t hI 1 t h   
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3.9 Optimal Control Analysis   

In this section, we discussed the optimal control of the model by minimizing the spread of 

cholera using the control parameters u1,u2,u3 and u4 . Let ui t 1, for i 1,2,3,4 , be linear   

functions. The control measures   u1, u2, u3   and u4 are very effective when u1 

u3  u4 1 and not effective when u1  u2  u3  u4  0. The control measure    

A 10 
  2 A 

  0 b 2 A 1 
  c 2 A 5 BK 0 

  1 BK 
  0 2 S u 

  0 b 2 S a 
  0 c 2 H 0 AK 

  6 

1   2 KB 0 
  ,   

  

  

a  1 
  A 2 

    

u 2 
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u1 : is the awareness campaign given to individuals to help reduce cholera;  u2 : is the 

vaccination strategy that can improve the immunocompetence of susceptible            individuals;  

u3 : is the treatment strategy that aims at increasing the recovery rate of infected individuals; 

u4 :is the sanitation strategy (treatment of water bodies) that aims at killing vibrio in          

contaminated water.    

Thus, the optimal control system now reads:    

  

 

  

 

  

 

 
 

dS u    1 f  1 S u  I  2 S u  B  B K    u 1 t S u M  1 p R  qS a  1  

r 1 V    
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Subject to the initial conditions   

Su 

 B0,  

M 

Considering the use of bounded Lebesgue measurable control (Kwasi-Do et al. (2020)), we 

define the objective function to be minimized as   

u1,u2,u3,u42 a1u1
2 2 a2u2

2 2 a3u3
2 2 J 

dt                    a4u4
2 

(3.156) where  is the time period of intervention. The dynamics of the controls to minimize the 

objective function is given by system (3.155). The associated basic reproduction number for 

system (3.155) is given as:    

1 1 1 

0 S u 0 ,  S a  0 S a 0 ,  H 0 H 0 ,  I 0 I 0 ,  V 0 V 0 ,  R 0 R 0 ,  B 0 

0 M 0     

0 t F  
1 I  2 B  1   

0 , t F 
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 where   

 

We minimize the infectious human population (I) and bacteria (B), as well as the cost involved 

in implementing the control measures u1,u2,u3 and u4 . The functional objective   

1    2 ,  

includes the social cost which relates to enlightening susceptible individuals   a1u1 2  

  

 

1 2 , treating  

infected individuals 1   a3u3
2 and vaccinating  

susceptible individuals a2u2  

  

 

  
  

  2   AC 1 
  

A 1 C    2 b 2   AB 1 
  

A 1 B 0 
    



 

131   

   

  

 
2 2  

1    2 . The quantity 1 represents the cost associated with  

treatment of water bodies   a4u4 2  

  

 

minimizing the infected human population, and 2 represents the cost associated with 

minimizing the bacteria population in the environment. The costs corresponding to 1I and   

1 2 ,  1 a2u2
2 ,  1 

a3u3
2 and 1   a4u4

2 are  2B are linear, whereas the cost 

control functions  a1u1  

  

  
  

 
2 2  2 

 2  

nonlinear. The Lagrangian of the optimal control problem is given by    

L                                                  

  

 
  

  

 2  2  2  

To determine the Lagrangian minimum value, the Hamiltonian, H*, for the control problem is 

defined as   

1 I  2 B  
1   

a 1 u 1 2   
1   

a 2 u 2   2   1 
a 3 u 3   2   1 

a 4 u 4   2 

(3.158)     

  

  2     
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v Sa dS a     

H  

  

 
  

 
  

  
  

 
2 2  2  2  dt  dt  

             (3.159) dH  dI  dV 

 dR dB dM vH v M dt dt dt dt 

dt dt  

   

where vSu , vSa , vH , vI , vV , vR , vB , and vM are the adjoint variables. The differential  equations of 

the adjoint variables are obtained by taking the partial derivatives of the Hamiltonian equation, 

that is, equation (3.162), with respect to the state variables which gives   

v I 
  v V 

  v R 
  v B 

  

* 
  I  2 B  1   a 1 u 

  12 1   a 2 u 22 
  1   a 3 u 32 

  1   a 4 u 42 
  v S u  dS u  

1   
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v I  1 S u  b 1 S a  c 1 H I  2 S u  b 2 S a  c 2 H B BK  
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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v B  I   
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Simplifying (3.163) – (3.167) yields    
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K     

 

   

   

Theorem 3.8: Given the optimal controls u1,u2,u3 and u4 . and the solutions   

Su ,Sa ,H,I,V,R,B,and M of corresponding state equation (3.168) which minimizes the objective 

function J u1,u2,u3,u4 over the region Ω, then there exist adjoint variables vSu , v  

Sa , vH , vI , vV , vR , vB , and vM satisfying   

Su ,Sa ,H,I,V,R,B,M                                                                                                        

v I  v H  c 2 2 H  B K 
  2 u 4 v B 

        (3.168)   

  

dv M  u 1 S u  v S a  v S u  v M  dt     

  

dv i  H *    ,  i 

(3.169)   dt   i   
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Thus, the optimal solutions u1
* , u2

* , u3
* and u4

*  are given by u1
*  

min 1,max 0,u1   

u 2* 11,,maxmax

                              
Proof: Differentiating the Hamiltonian with respect to the different control measures u1,u2,u3and 

u4  and equating them to zero, we obtained   

H*  

0                              

(3.171)   

     2 

 0                              
(3.172)   

  

0                                                                                                                (3.173)   

0                                                                                                                                             (3.174)   

*  minmin 

(3.170)     

  

u 3 
    

u 4  *  min 1 ,max 0 , u 4   

00 ,, uu 3 2 

  a 1 u 1 
  v S a  v S u  S u M  

a 2 u  

v V  v S u  S u  v V  v S a  S a  

H *   

u 3 
    a 3 u  3 

  v R  v I  I  

  

H *   

u 4 
    a 4 u  4 

  v B B  

u 1   

H *   

u 2 
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Making u1,u2,u3and u4 the subject from equations (3.171) - (3.174) respectively, gives   

u2                                                                                                       (3.175)   

Therefore, u1,u2,u3and u4 are used in MAPLE to make simulations.   

   

   

   

   

   

   

   

CHAPTER FOUR   

4.0            RESULTS AND DISCUSSION   

4.1 Analysis of Results    

In this thesis, an epidemic model for the transmission dynamics of cholera was formulated 

and analysed. The main objective of this study was to assess the impact of the incorporated 

control strategies on the transmission dynamics of the disease. Numerical simulations of 

u 1 
  v  S u  va S 1 a  S u M     

  

v V  v S u  S u  v V  v S a  S a    

  

a 
  2 

v  R  v I  I     

u 3 
    

a 3 
  u 4 

  v B B  

  a 4 
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model system (3.1) – (3.8) are carried out using a set of parameter values given in Tables 3.4 

and 3.5. MAPLE 17 version is used in the numerical simulations.    

Since most of the parameters values were not readily available; we used data from literature 

and the missing data were estimated (Appendix). Tables 3.4 and 3.5 show the set of parameter 

values which were used.   

4.2 Graphical Presentation of Results and Discussion   

We performed the numerical simulations of the system of differential equations (3.1) – (3.8) of 

the susceptible unaware humans, susceptible aware humans, hygiene conscious humans, 

vaccinated humans, recovered humans, and the infectious humans to determine the changes in 

the various populations of these compartments with time.   

4.2.1 Reproduction number graphs   

Graphical representations showing the variations in reproduction numbers with respect to 

contact rate between the susceptible and the contaminated environment are provided in  

Figures 4.1 – 4.3.   
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Figure 4.1: Variations of a mono-control reproduction number with respect to 

humanenvironment contact rate   

   

Figure 4.1 shows that, R0
S R0

T R0
V R0

A R0. We see from the figure that R0 is worst case scenario, 

it occurs when there is no any control strategy for the epidemic. The basic reproduction 

number R0 grows very sharp with respect to an increase in human-environment contact rate. 

Such an increase in R0 above unity implies that there is a high eruption of cholera in the 

community.   
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The best case scenario is R0
S which takes account for water sanitation. It is noted that treating water 

with chlorine plays an important role in combating cholera as compared to vaccination.   

This is because addition of chlorine in water kills the vibrio cholera virus whereas vaccinating 

individual just boost immunity of an individual, it is clear from literature that no vaccine is 

perfect, the vaccines usually wanes with time and thus previously vaccinated individual might 

be easily infected with the disease if the vaccine has already expired (Andrews and Basu, 

2011). Another concern about vaccination is coverage; it is practically not easy to attain mass 

vaccination because of several reasons; including financial constraints and infrastructure 

constraints. That governments opt to offer clean water to its individuals because it is not only 

cheaper but also is healthier than vaccination. In so doing they tend to limit the eruption of 

the disease.   

The next to the best case scenario occurs at graph R0
T , here treatment is the only intervention 

offered to infected individuals. It can be noticed that the reproduction number with treatment 

strategy is very small indeed less than unity, which means that the disease dies out. After 

treatment individuals recover, since recovery is not permanent the recovered individuals 

might become susceptible again to the disease.   

The next to best case scenario after vaccination occurs at graph R0
A , here awareness campaign 

is emphasised to individuals. This includes awareness on self-hygiene, importance of using 

toilets, drinking boiled water, humans not to contaminate water, use of oral salts to help 

already infected individuals, avoiding direct contact to infected individuals etc. It can be 

noticed from Figure 4.1 that awareness campaign is important because individual awareness 

about the disease limit the spread of the epidemic better.   
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Figure 4.2: Variations of a bi-control reproduction numbers with respect to 

humanenvironment contact rate   

   

Clearly, we observe in Figure 4.2 that there is a drastic reduction in disease as compared to  Figure 

4.1. Our simulations with bi-controls lead to the inequality:   

R0
VT R0

TA R0
ST R0

VA R0
VS R0

SA as seen from Figure 4.2. It is obvious that R0
SA is worst case 

scenario, it occurs when a combination of sanitation and awareness as control strategies to 

limit the epidemic cholera. It is at the peak, this implies that there is a high increase in 
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reproduction number with respect to human-environment contact rate. Such an increase 

results in the eruption of cholera in the community.   

The best case scenario occurs at graph R0
VT , here two control strategies namely vaccination 

and treatment are incorporated. The next to best case scenario occurs at graph R0
TA , in which 

the combination of treatment and awareness were considered, followed by R0
ST which is a 

combination water sanitation and treatment. Furthermore, we have R0
VA , which is a 

combination of vaccination and awareness, followed by R0
VS which is a combination of 

vaccination and water sanitation.   

From Figure 4.2, it can be further seen that most of the reproduction numbers are less than 

0.20; this implies that there is a good control of the disease. Therefore, increasing the number 

of controls together with their associated parameters values yield a rapid decay of the 

reproduction number curves. This means that the disease is not endemic and it dies out. We 

can therefore conclude that combination of two control strategies is better than one control 

strategy as it yields better results in diminishing cholera from the community.   
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Figure 4.3: Variations of a tri-control reproduction numbers with respect to 

humanenvironment contact rate   

   

Clearly, we observe in Figure 4.3 that there is a drastic reduction in disease as compared to 

both Figure 4.1 and Figure 4.2, where most of the reproduction numbers are far less than 

unity. This implies that there is a control of the disease. Three controls give results that are 

marked obtained with unique control and a combination of two interventions. Therefore, 

increasing the number of controls together with their associated parameters values yield a 

rapid decay of the reproduction number curves. This means that disease is not endemic and  

it dies out.   
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Our simulations with tri-controls lead to the inequality: R0
c R0

VTA R0
STA R0

VSA as seen from Figure 

4.3. It is obvious that R0
VSA is worst case scenario, which is a combination of vaccination, 

sanitation and awareness as control strategies to limit the epidemic cholera. R0
VSA is at the 

peak, this implies that there is a high increase in reproduction number with respect to respect 

to human-environment contact rate. Such an increase results in the eruption of cholera in the 

community.   

With regard to the three controls, the best case scenario occurs at graph R0
VTA , where three 

control strategies such as vaccination, treatment and awareness are incorporated. The next to 

best case scenario occurs at graph R0
STA, in which the combination of sanitation, treatment 

and awareness were considered. Furthermore, we have R0
VSA , which is a combination of 

vaccination, sanitation and awareness.   

From Figure 4.3, it can be further seen that most of the reproduction numbers are less than 

0.20, which implies that there is a good control of the disease. Therefore, increasing the 

number of controls together with their associated parameters values yield a rapid decay of the 

reproduction number curves. This means that the disease is not endemic and it dies out. It is 

obvious from Figure 4.3, reproduction number with all four controls, R0
c is the least and of 

course the best strategy among all controls.   

We can therefore conclude that the more you increase combination of control strategies the better 

you control cholera.   
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4.2.2 Sensitivity analysis graphs   

Graphical representations showing how “sensitive” a model is to changes in the value of the 

parameters of the model and to changes in the structure of the model are provided in Figures   

4.5 – 4.10.   
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Figure 4.4: Sensitivity of the reproduction number R0
c to the parameters 3 and  at different 

values of 2   

    



   

Figure 4.   
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2   ,    

4 showed that increase in the value of vaccination rate for unaware humans,  

resulted into a decrease in the reproduction number, which may reduce the persistence of 

cholera in the population. Also in Figure 4.4, it can be seen that an increase in the awareness 

rate, , will lead to decrease in the reproduction number and increase in the vaccination rate 

for aware human, 3, will lead to decrease in the reproduction number.    

   

   



   

Figure 4.   
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2   ,    

Figure 4.5: Sensitivity of the reproduction number R0
c to the parameters 3 and a at 

different values of 2   

   

5 showed that increase in the value of vaccination rate for unaware 

humans,  resulted into a decrease in the reproduction number, which may reduce 

the persistence of cholera in the population. Also in Figure 4.5, it can be seen that 

an increase in the treatment rate, a , will lead to decrease in the reproduction number 

and increase in the vaccination rate for aware human, 3, will lead to decrease in the 

reproduction number.    



   

Figure 4.   
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2   ,    

 
6 showed that increase in the value of vaccination rate for unaware 

humans,  resulted into a decrease in the reproduction number, which may reduce 

the persistence of cholera in the population. Also in Figure 4.6, it can be seen that 

an increase in the disinfection rate, w , will lead to decrease in the reproduction 

    

Figure 4.6: Sensitivity of the reproduction number  R 0 c   to the parameters  3   and   w   at  

different values of  2     

    



   

Figure 4.   
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2   ,    

number and increase in the vaccination rate for aware human, 3, will lead to decrease 

in the reproduction number.   



   

Figure 4.   
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2   ,    

 



   

Figure 4.   
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2   ,    

   



   

Figure 4. hygiene conscious rate for unaware humans,   
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1 
    

7 showed that increase in the value of   

, resulted into a decrease in the reproduction number, which may reduce the persistence 

of cholera in the population. Also in Figure 4.7, it can be seen that an increase in the 

awareness rate, , will lead to decrease in the reproduction number and increase in the hygiene 

conscious rate for aware human, 2, will lead to decrease in the reproduction number.    



   

Figure 4. hygiene conscious rate for unaware humans,   
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1 
    

 
8 showed that increase in the value of   

, resulted into a decrease in the reproduction number, which may reduce the persistence 

of cholera in the population. Also in Figure 4.8, it can be seen that an increase in the treatment 

    

Figure 4.8: Sensitivity of the reproduction number  R 0 c   to the parameters  2   and  a   at  

different values of  1     

    



   

Figure 4. hygiene conscious rate for unaware humans,   
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1 
    

rate, a , will lead to decrease in the reproduction number and increase in the hygiene 

conscious rate for aware human, 2, will lead to decrease in the reproduction number.   

 

    

Figure 4.9: Sensitivity of the reproduction number  R 0 c   to the parameters  2   and  w   at  

different values of  1     



   

Figure 4. hygiene conscious rate for unaware humans,   
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1 
    

   

9 showed that increase in the value of   

, resulted into a decrease in the reproduction number, which may reduce the persistence 

of cholera in the population. Also in Figure 4.9, it can be seen that an increase in the 

disinfection rate, w , will lead to decrease in the reproduction number and increase in the 

hygiene conscious rate for aware human, 2, will lead to decrease in the reproduction number.   

4.2.3 HPM Simulation graphs   

Graphical representations showing the variations in human population and bacteria 

concentration with respect to time are provided in Figures 4.10 – 4.18. Graphical 

representations showing the variations in human population with respect to time are provided 

in Figures 4.10 – 4.16. Figure 4.17 showed a change in the concentration of the bacteria in 

the environment while Figure 4.18 is the graph of number of the awareness program driven 

by disease prevalence and media coverage.   

   



 

171   

   

   

Figure 4.10: A graph showing the population of human   
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Figure 4.11: A graph showing the population of human   

   

Figure 4.10 and Figure 4.11 show the population of Infected human, Recovered human and   

Vaccinated human. They are all increase with time.   
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Figure 4.12: A graph showing the effects of the human to human contact rate on  

Infectious population    

Figure 4.12 shows effects of the human to human contact rate in disease transmission. An 

increase in human to human interactions increase the infectious population and thereby 

contribute significantly to the spread of the cholera infections in the population.   
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Figure 4.13: A graph showing the effects of the vaccination rate for unaware humans 

on vaccinated humans population   

   

Figure 4.13 shows effects of the vaccination rate for unaware humans in disease transmission. 

An increase in vaccination rate for unaware humans increase the vaccinated humans 

population.   
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Figure 4.14: A graph showing the effects of the treatment rate on recovered humans 

population   

   

Figure 4.14 shows effects of the treatment rate in disease transmission. An increase in 

treatment rate lead to an increase in the recovered humans population.    
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Figure 4.15: A graph showing the effects of the awareness rate on susceptible aware 

humans population   

   

Figure 4.15 shows effects of the awareness rate in disease transmission. An increase in 

awareness rate lead to an increase in the susceptible aware humans population.   
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Figure 4.16: A graph showing the effects of the recovery rate on recovered humans 

population   

   

Figure 4.16 shows effects of the recovery rate in disease transmission. An increase in 

recovery rate lead to an increase in the recovered humans population.   
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Figure 4.17: A graph showing the effects of the infectious contact with environment on  

Bacteria concentration    

In Figure 4.17, as infectious humans interact with the environment by activities that 

contaminate the environment, the bacteria responsible for the cholera infections increases in 

the environment. This could be attributed to the infectious humans’ contributions to the  

pollution of the environment.   
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Figure 4.18: A graph showing the effects of the awareness stimulated rate on number 

of the awareness programmes   

   

Figure 4.18 shows effects of the awareness stimulated rate in disease transmission. An 

increase in awareness stimulated rate lead to an increase in the number of the awareness 

programmes.   

4.3 Optimal Control Simulations   

Maple 17 version was used to simulate the optimal control model using the set of parameters 

obtained from the datasets. Some of these parameters are estimated for the sake of 



 

180   

   

illustrations. Table 3.5 represents the values of the model parameters used for the 

simulations.   

The following initial conditions were also considered:   

 

We described the controls using the following strategies (I, II, III, IV and V). However, 

Figures 4.19, 4.22 – 4.24 represent the control profiles while the rest of the plots are the 

graphs of infectious human population and bacteria population plotted against time. They 

represent the effect of the optimal controls u1,u2,u3 and u4 in reducing the number of infected 

individuals as well as the bacteria in the environment.   

4.3.1 Strategy I: Control with awareness campaign, vaccination of susceptible 

individual, treatment of infected individual and treatment of water bodies   

The strategy applied is to obtain the optimal control simulations that describes the 

effectiveness of the four control measures, that is, u1 0,u2 0,u3 0and u4 0, when applied on the 

infectious class. Figure 4.19 shows the control profile when all four controls are incorporated 

and when there is no control.   
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0 R 0 
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Figure 4.19 is the control profile when all four controls were considered. Clearly, we 

observed in Figure 4.19 that there is a drastic reduction in disease when all controls are 

incorporated as compare to when there is no control.   

    

Figure 4.19: Control profile when  u 1 
  0 ,  u 2 

  0 ,  u 3 
  0   and   u 4 

  0     
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Figure 4.20: A graph showing the effectiveness of the four control measures u1, 

u2, u3 and u4  in the bacteria population to check its effect on the spread of 

cholera   

   

(1) Bacteria Population. When no control measures are applied, that is, u1 u2 u3 u4  

0, the bacteria population is observed to increase. Access to safe drinking water and 

sanitation is very critical when it comes to the transmission of cholera. Therefore, when no 

control measure is being applied, the disease becomes persistent in the population. In the 

presence of control measures; that is, u1 0, u2 0, u3 0 and u4 0, the bacteria population in the 

environment decreases. Because treatment of water bodies minimizes the concentration of 
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the bacteria in the population, individuals thus get access to safe drinking water. Also 

awarene ss campaign creates the awareness for infected individuals more especially not to 

spread the disease since the purpose of awareness campaign strategy is to explore the 

awareness of the disease, mode of transmission, and prevention. This therefore reduces the 

bacteria population in the environment as shown in Figure 4.20.   

   

   

Figure 4.21: A graph showing the effectiveness of the four control measures u1, 

u2, u3 and u4  in the infected population to check its effect on the spread of 

cholera   
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(2) Infected Individuals. When no control measure is applied, the number of infected 

individuals will increase in the population. On the other hand, when control measures are 

applied such as awareness campaign, vaccination of susceptible individuals and treatment of 

infected individuals, infected individuals would know the causes, transmission, and effects 

of cholera. This would reduce their actions which target environmental conditions that spread 

cholera. These activities may include disruption of water bodies by defecating near water 

banks, individuals littering around causing bad sanitation systems, individuals crowding up 

in camps.    

Hence, the number of infected individuals in the population would decrease as shown in 

Figure 4.21. On the other hand, when water bodies are treated, the rate of being reinfected  

decreases.      
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Figure 4.22 is a control profile when only three different controls are being applied. This 

shows that a combination of awareness campaign with vaccination of susceptible individuals 

and treatment of infected individuals gives a better result in reducing the number of infected 

individuals in the population and this is follow by a combination of water treatment with 

vaccination of susceptible individuals and treatment of infected individuals.   

   

      

Figure 4.22: Control profile when  u 1 
  u 2 

  u 3 
  ,  0 u 1 

  u 2 
  u 4 

  0 ,  u 1 
  u 3 

  u 
  4 0   and   

u 
  2 u 

  3 u 4 
  0     
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Figure 4.23 is a control profile when only two different controls are being applied. This 

shows that a combination of awareness campaign with treatment of infected individuals gives 

a better result in reducing the number of infected individuals in the population and this is 

follow by a combination of water treatment with vaccination of susceptible individuals and 

then by a combination of awareness campaign with vaccination of susceptible individuals.  

A combination of awareness campaign with water treatment is worst case scenario.   

   

    

Figure 4.23: Control profile when  u 1 
  u 2 

  0 ,  u 1 
  u 3 

  0 ,  u 1 
  u 3 

  0   and   u 1 
  u 4 

  0     
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Figure 4.24 is a control profile when only one control is being applied. This shows that 

treatment of infected individuals gives a better result in reducing the number of infected 

individuals in the population and this is follow by vaccination of susceptible individuals, then 

by water treatment and lastly by awareness campaign.   

    

Figure 4.24: Control profile when  u 1 
  0 ,  u 2 

  ,  0 u 3 
  0   and   u 4 

  0     
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4.3.2 Strategy II: Control with awareness campaign only   

The strategy applied is to obtain the optimal control simulations that describes the 

effectiveness of one control measure (that is, awareness campaign) when applied. This 

strategy is show in shown in Figure 4.25.   

   

Figure 4.25: A graph showing the effectiveness of awareness campaign as the only 

control measure to check its effect on the spread of cholera   

   

Bacteria Population. When there are no control measures being applied, the bacteria 

population increases in the environment. Community engagement helps in the control of 

cholera. When individuals are educated by practically showing individuals how and the need 

to wash one’s hands with soap and running water after visiting the toilet, it will reduce the 
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bacteria they pick up from such areas. This helps reduce the bacteria population in the 

environment as shown in Figure 4.25.   

Thus, applying just awareness campaign as a control measure is effective in controlling the 

spread of cholera.   

4.3.3 Strategy III: Control with vaccination of susceptible individual only   

The strategy applied is to obtain the optimal control simulations that describes the 

effectiveness of one control measure (that is, vaccination of susceptible individuals) when 

applied. This strategy is show in shown in Figure 4.26.   
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Figure 4.26: A graph showing the effectiveness of vaccination as the only control 

measure in the infected population   

   

Infected Individuals. Infected individuals increase when there are no control measures being 

applied. Meanwhile, when susceptible individuals are vaccinated, their immunity will be 

boosted against cholera. This help reduces the number of infected individuals in the 

population as shown in Figure 4.26.   

4.3.4 Strategy IV: Control with treatment of infected individual only   

The strategy applied is to obtain the optimal control simulations that describes the 

effectiveness of one control measure (that is, treatment of infected individual) when applied.   
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This strategy is show in shown in Figure 4.27 and Figure 4.28.   

   

Figure 4.27: A graph showing the effectiveness of treatment as the only control 

measure in the bacteria population   

(1) Bacteria Population. The bacteria population in the environment increases when 

there are no control measures applied. However, when number of infected individuals as a 

major contributors of the bacteria in the environment are reduced through therapeutic 

treatment, the spread of the bacteria in the environment would reduce as shown in Figure 

4.27.   
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Figure 4.28: A graph showing the effectiveness of treatment as the only control 

measure in the infected population   

   

(2) Infected Individuals. Infected individuals increase when there are no control measures 

being applied. Meanwhile, when infected individuals are treated and recovered, the number 

of infected individuals in the population will be reduced as shown in Figure 4.28.   
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4.3.5 Strategy V: Control with treatment of water bodies only   

Here, the strategy applied is to obtain the optimal control simulations that describe the 

effectiveness of treatment of water bodies as the only control measure being applied. This 

strategy is show in shown in Figure 4.29 and Figure 4.30.   

   

Figure 4.29: A graph showing the effectiveness of treatment of water bodies as the 

only control measure in the bacteria population   

   

(1) Bacteria Population. The bacteria population in the environment increases when 

there are no control measures applied. However, when infected water bodies are treated, the 
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bacteria population in the water body decreases due to the reduction in the concentration of 

the growth of the bacteria as shown in Figure 4.29.   

   

Figure 4.30: A graph showing the effectiveness of treatment of water bodies as the 

only control measure in the infected population   

   

(2) Infected Individuals. Infected individuals increase when there are no control measures 

being applied. Meanwhile, when infected water bodies are treated, individuals will have 

access to good drinking water and this will help in reducing the number of infected 

population.    
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CHAPTER FIVE   

5.0         CONCLUSION AND RECOMMENDATIONS   

5.1 Conclusion    

In this thesis, we have formulated a deterministic mathematical model for transmission 

dynamics of cholera that incorporates four control strategies namely awareness campaign, 

vaccination, treatment, and sanitation. From the model we have derived the effective 

reproduction number from which we have deduced the basic reproduction number, and the 

reproduction numbers with combination of two, and three control strategies. The effective 

reproduction number computed has been used to measure the relative impact for individual 

or combined intervention for effective disease control. We have derived both the Disease 

Free Equilibrium (DFE) and the Endemic Equilibrium points (EE) and proved that both the 

DFE and EE are locally and globally asymptotically stable  when R0
c 1.   

Moreover, we have performed sensitivity analysis on the basic reproduction with all control 

strategies, from which we have noted that the most sensitive parameters are the vaccination 

loss rate, vaccination rate for aware humans, awareness loss rate, effective contact between 

the susceptible and infected individuals, effective contact between the susceptible and 

environment, bacteria shed rate into the water supply by infected human, and recruitment 

rate. These strategies need high attention when at all we need to control cholera outbreak 

wherever it occurs.   
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Numerical simulations of the model have shown that, whenever the control strategies are 

carried out solely then treatment is best alternative to cholera, but when there are two 

combinations strategies then the best combination is treatment and awareness.   

On the other hand, when a combination of three control strategies is implemented then the 

best combination is the one with vaccination, treatment and awareness. It has been noted that 

the best combination is the one that incorporated all four control strategies. From this study 

we conclude that the more one increases combination of control strategies then cholera can 

be eradicated from the community.   

5.2 Recommendations   

Based on the findings from this research, we recommend as follows:   

(i) Proper awareness campaign and sensitization be given to the public by relevant 

authorities and NGO's of the dangers of open defecation and urinating in source of 

drinking water. This will reduce the contribution of each infected person to the aquatic 

reservoir (parameter ).   

(ii) Government should provide portable water to the populace in order to discourage 

drinking of untreated water. This will reduce the rate of exposure to contaminated water 

(parameter 2).The same was recommended by Ochoche (2013).   

(iii) People suffering from cholera should be immediately quarantined so as to 

reduce the contact rate between the infected and the susceptible humans (parameter 2).  
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Early treatment of all cholera patients is highly recommended to save the life of 

the sick humans since cholera kill in very short time (parameter ).    

(iv) People should be restricted to enter in places where cholera outbreak occurs, 

this will help to limit the spread of the disease (parameter ). In case the economy  

allows, vaccination strategy should be established to areas where cholera is 

chronic.   

   

5.3 Contributions to Knowledge    

1. Our study provides a modeling framework to investigate more difficult situation on 

cholera dynamics under the impact of awareness programmes and humans’ hygiene 

consciousness, and the findings from the model confirm the positive effect of awareness 

programmes and humans’ hygiene consciousness in lowering the infection risk and 

reducing the disease prevalence.    

2. The thesis established that the best strategy for the controlling of cholera is the application 

of all the control measures, that is, applying both awareness campaigns, vaccination of 

susceptible individual, treatment of infected individual and treatment of water bodies with   

0.07471714947 1 attained.   

3. The thesis established that the best alternative strategy   

c 
0 
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(i) when three control measures are to be applied are the combination of awareness 

campaigns, vaccination of susceptible individual and treatment of infected individuals with 

0.2133539861 1 attained.   

(ii) when two control measures are to be applied are the combination of awareness 

campaigns and treatment of infected individuals with 0.5398014031 1 attained.   

(iii) when one control measures is to be applied is the treatment of infected individuals 

with 0.2504395594 1 attained.   

4. The thesis also affirmed that the worst case scenario occurs when there is no control 

strategy for the epidemic.   
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APPENDIX   

Estimation of Variables and Parameter Values   

We estimated the parameter values based on the available data from the Nigeria Centre for 
Disease Control (NCDC), Worldometers and Macro Trends and reliable related literature. 
The estimates are clearly explained in the following sub-sections.   

E1: The Total Population, N   

       According to Nigeria Centre for Disease Control (NCDC), Worldometers and Macro   

Trends, the Nigeria total population at 2018, is 198,387,623   

The total population N 198,387,623   
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E2: Birth Rate    

The number birth per 1,000 is 38.25   

 Birth rate  0.03825  

   

E3: Constant Recruitment    

The number of new birth in 2018 = Recruitment Rate   Birth 

Rate  Total Population    

               0.03825 198,387,623  7,588,327   

E4: Number of Symptomatic Infected I   

The NCDC estimate that, there are 42,466 cases of cholera in Nigeria in 2018, 
resulting in 830 deaths. We assume that the number of infected persons to be the same as 
the Total Confirmed Cases   

 I  42,466   

E5: Number of Recovered R   

From E4 the number of cases is 42,466 and the number of death is 830. Recovered R 

42,466 - 830 41,636.   

 R  41,636   

E6: Number of Vaccinated V   

According to Global Task Force on Cholera Control, the number of vaccinated 

individual in 2018 is 5,244,305 and the percentage of vaccinated is 101%. Therefore,   

Vaccinated V  5,244,305   

E7: Number of Hygiene conscious Individual H   

We assume that the 25% of the total population are hygiene conscious.   

 H  25%of 198,387,623 49,596,906   

E8: Number of Susceptible S   

S  N  V H I R   

  S 198,387,623 5,244,305 49,596,906 42,466 41,636 S  
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1     

198,387,623 54,925,313 143,462,310  

 E9: Number of Susceptible aware Sa   

We assume that the number of Susceptible aware Sa are less than the number of 

Susceptible unaware Su .  Also, that the 30% of the number of Susceptible E8 are aware of 

cholera.    

 Sa  30% of 143,462,310  43,038,693   

E10: Number of Susceptible unaware Su   

Number of Susceptible unaware   

Su  Numberof Susceptible  Numberof Susceptible aware  

 
 
  

143,462,310 43,038,693 100,423,617  

E11: Natural Death Rate    

The number death per 1,000 is 18   

 Natural Death rate  0.018   

E12: Disease-induced death Rate  

 
    

  

0.98  

Numberof Cases 42466  

   

E14: Vaccination rates for susceptible unaware humans 2   

   

Total Death of Cholera   830   

    1 
      0.0195     

  
Total Confirmed cases   42466   

E13: Recovery Rate       

From E4 and E5    

Recov ered    
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We assume that the rate at which susceptible unaware humans are vaccinated 2 is 

less than the rate at which susceptible aware humans are vaccinated 3 .  According to   

Global Task Force on Cholera Control, the percentage of vaccinated is 101%. Therefore,     

1  x 1.01

 0.3366 3  

E15: Vaccination rates for susceptible aware humans 3   

We assume that the rate at which susceptible unaware humans are vaccinated 2 is less 

than the rate at which susceptible aware humans are vaccinated 3 .  According to   

Global Task Force on Cholera Control, the percentage of vaccinated is 101%. Therefore,     

2  

3   x 1.01
6733

   

  

   

  2 
  

0.         3 
  


