STRUCTURAL HEALTH MONITORING OF A LATTICE TOWER

BY

OKUNYOMI, Oladipupo Owhofasa MEng/SIPET/2018/9244

DEPARTMENT OF CIVIL ENGINEERING FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

APRIL, 2023

STRUCTURAL HEALTH MONITORING OF A LATTICE TOWER

BY

OKUNYOMI, Oladipupo Owhofasa MEng/SIPET/2018/9244

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING IN CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

APRIL, 2023

ABSTRACT

Structural health monitoring of a lattice tower is presented. This research was prompted by the requirements of the Nigerian Communications Commission (NCC) that all masts should be checked for their structural health status every five (5) years. However, In the bid to cut down maintenance costs, some telecommunication network providers have adopted tower sharing without checking their structural health status to ensure their capability of bearing extra load from additional equipment, consequently creating an upsurge in the construction and maintenance of telecommunication towers. In this study, a lattice tower with the weakest parameter was selected: a 45m tower, with three (3) legs, erected over nine (9) years and shared by three (3) telecommunications operators in the Federal Capital Territory (FCT), Nigeria. The tower's structural stability and utilization percentages were determined. The auditing of the tower and foundation was also carried out. There were no twisted or missing members on the tower and no visible crack or blister on the three (3) stub columns. The average compressive strengths of the stub columns determined using the Proceq digital Schmidt hammer were 25.1, 25.9 and 25.9 N/mm² for legs A, B and C, respectively. From the structural analysis of the lattice tower using the Effective Projected Area (EPA) model, the tower utilization percentage was found to be at 59% after optimization. While results obtained from the STAAD pro. V8i analyses show that the utilization ratios (actual ratio to allowable ratio) of the tower members are less than one (\leq 1) and there was no failed member identified after the structural analysis. The lattice tower can be said to be stable and fit for continuous use. However, the tower paint needs repainting, and it is recommended that structural status be checked whenever additional telecommunication antennas are to be installed on the tower by telecommunications network providers to prevent structural damage and consequent collapse of the tower.

TABLE OF CONTENTS

Content	Page
Acknowledgments	VI
Abstract	VII
Table of Contents	VIII
List of Tables	
XII	
List of Figures	XIII
List of Plates	XIV
List of Appendices	XVI
CHAPTER ONE	
1.0 INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	1
1.3 Aim and Objectives of the Study	2
1.3.1 Aim	2
1.3.2 Objectives	2

1.4 Justification of the Study	2
1.5 Scope of Study	3
CHAPTER TWO	
2.0 LITERATURE REVIEW	4
2.1 Telecommunications Towers	4
2.2 Classification of Telecommunications Towers	5
2.3 General Requirements of Telecoms Towers	8
2.3.1 Components of telecommunications towers	9
2.3.1.1 Structural steel	9
2.3.1.2 Bolts and nuts	10
2.3.1.3 Connections	10
2.3.1.4 Ladders and cable runways	11
2.3.1.5 Aviation warning lights	12
2.3.1.6Tower grounding and lightening protection	13
2.3.1.7 Anchors and templates	13
2.3.1.8 Radio frequency antenna poles and brackets	14
2.4 Telecommunications Infrastructure Sharing	14

2.4.1 Passive infrastructure sharing	15
2.4.2 Active infrastructure sharing	15
2.4.3 Spectrum infrastructure sharing	16
2.5 Record of Tower Failures in Nigeria	16
2.6 Structural Health Monitoring of Towers	20
2.7 Structural Health Monitoring of Towers of a Lattice Tower	23
CHAPTER THREE	
3.0 RESEARCH METHODOLOGY	24
3.1 Methodology Concept	24
3.2 Tower Identification	25
3.3 Audit of the Lattice Tower	27
3.3.1 Foundation Audit using digital Schmidt hammer	27
3.3.2 Members audit	30
3.4 Structural analysis of the tower	33
3.4.1 Structural analysis using EPA model	33
3.4.2 Structural analysis using the STAAD Pro. V8i	36

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION	42
4.1 Tower Physical Inspection	42
4.2 Tower Foundation Auditing	42
4.3 Tower Analysis using EPA Model	43
4.4 Tower Analysis using STAAD Pro. V8i	46
CHAPTER FIVE	
5.0 CONCLUSION AND RECOMMENDATIONS	63
5.1 Conclusion	63
5.2 Recommendations	63
5.2 Recommendations5.3 Contribution to Knowledge	63 64

LIST OF TABLES

Table	Title	Page
2.1	Aviation Warning Light Standard	12
2.2	Record of Tower Failures in Nigeria	17
3.1	Tower Identification	25
3.2	Antenna Types	33
3.3	Equipment Loading	38
3.4	Wind Pressure Calculation	39
3.5	Wind Load on Equipment	41
4.1	Tower Physical Inspection	42
4.2	Compressive Strength of Stub Columns	43
4.3	Tower Utilization Percentages	44
4.4	STAAD Pro computation sheets	45

LIST OF FIGURES

Figure		Page
2.1:	Layout of a Typical Telecommunication Site	5
2.2:	Self Supporting Tower	6
2.3:	Monopole Tower	7
2.4:	Guyed Tower	8
3.1:	Research Methodology Chart	24
3.2:	Digital Schmidt hammer display screen	28
3.3:	Maximum Wind Flow Map of Nigeria	36
3.4:	Multiplying Factor Chart	40

LIST OF PLATES

Plate		Page
I:	Lagos Tower collapse	17
II:	Cross River tower collapse	18
III:	FCT tower collapse	18
IV:	Sokoto tower collapse	19
V:	Akwa Ibom -1 tower collapse	19
VI:	Akwa Ibom -2 tower collapse	20
VII:	Site Name	26
VIII:	On-site Coordinates	26
IX:	Approach View	26
X:	On Site with a Rigger	26
XI:	Proceq Digi-Schmidt 2000	29
XII:	Hammer and Display Unit	29
XIII:	Marking of Test Point	29
XIV:	Testing of Foundation	29
XV:	Display Unit showing Reading	30

XVI:	Toolbox	31
XVII:	Tower Legs A, B and C	31
XVIII:	Tower Physical Inspection	32
XIX:	Bolt Torquing	32
XX:	Types of Antennas	32
XXI:	Base Station of Operators	32

LIST OF APPENDICES

A	ppendix		Page
	А	NCC Notification Letter on Tower Collapses	69
	B1	Site Layout	71
	B2	Foundation Drawing	75
	B3	Soil Test Report	79
	С	Tower Drawing	89

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

In the recent past, the number of telecommunication towers has risen astronomically due to licensing of more network providers like Globacom, MTN, Airtel and Etisalat (Okonji, 2013). This is also due to the growing demand for wireless and broadcast communication which has prompted a dramatic rise in construction and maintenance of towers. Failure of such structures is however a major concern (Sharma *et al.*, 2015).

Tower sharing which involves sharing of one tower by two or more network operators has also increased in a bit to reduce maintenance cost. Such towers may need to be strengthened or made taller to support several sets of antennas (GSMA, 2012). Existing towers will have to be assessed to ensure they are capable of withstand extra equipment.

It is therefore extremely important that towers are effectively maintained to ensure continued safety and efficient operation throughout their lifetime. The above statements call for increased awareness on the structural health monitoring of lattice towers in Nigeria.

1.2 Statement of the Research Problem

Failure of towers is generally due to high intensity winds. Several studies have been carried out by considering wind and earthquake loads (Sharma *et al.*, 2015).

Another problem the telecommunications towers is facing is the upkeep of the aging towers along with staying within a maintenance budget that is decreasing (Sullins, 2006).

1.0

While new towers can be built taking into consideration the ultimate load-bearing capacity required, existing towers may not have been designed to cater for the additional load requirements of service providers who decide to share (GSMA, 2012).

1.3 Aim and Objectives of the Study

1.3.1 Aim

The aim of this research work is to assess the structural health status of a selected lattice tower.

1.3.2 Objectives

The objectives of the study include the following:

- i. to select a lattice tower with weakness parameter based on number of legs, height, years of service and number of operators sharing the tower.
- ii. to determine the structural integrity of the selected lattice tower by carrying out tower audit.
- iii. to determine the tower loading utilization percentage and the stability using the Effective Projected Area model and the STAAD pro. V8i software respectively.

1.4 Justification of the Study

In recent years, a number of tower failures caused by heavy rains and strong windstorms were recorded in Nigeria as shown in Table 2.1. These failures resulted in great economic loss and loss of lives. On the other hand, the Nigeria Communication Commission (NCC), specified that 'major inspections (structural health monitoring) be performed at least once in every 5 years for self-supporting towers (NCC, 2009).

In this backdrop, the assessment of structural integrity of the selected lattice tower will help determine stability of the tower. It will further show the possible threat posed by poorly maintained towers and their potential danger to life and properties in their host communities.

1.5 Scope of Study

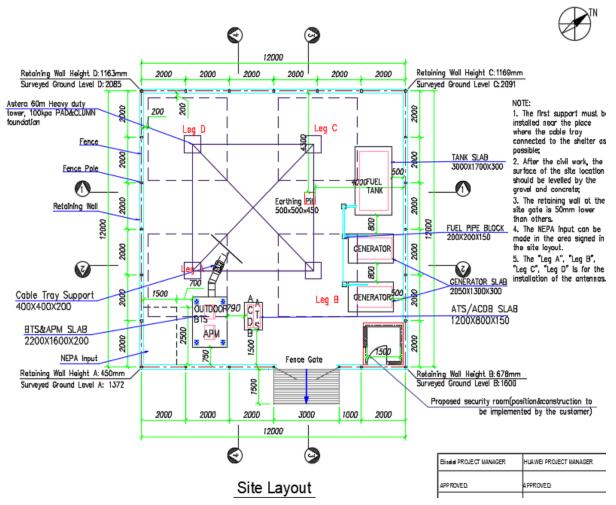
The scope of study is limited to structural health monitoring of a lattice tower with 3legs, erected over nine years ago, having a height of 45m and shared by three telecommunication network operators (Glo, Etisalat and Airtel).

Investigation includes thorough physical inspection, non-destructive test on tower's stub column using Schmidt hammer and structural analyses of the entire towers using the Effective Projected Area (EPA) model and STAAD pro. V8i software.

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Telecommunications Towers


A telecommunications tower or mast is a combination of steel structures that are designed in order to support radio antennas for telecommunication and broadcasting purposes. The towers used for telecommunication purposes in the public, require elevated antennas to effectively transmit and receive radio communications (Al-jassani and Al-suraifi, 2017).

Bello (2010) defines mast as a freestanding structure which supports antennas at a height where they can transmit and receive radio waves. Telecommunication masts may be of several types, and range in height from 30 to 300 meters or more (Ogbonna *et al.*, 2016). The type of tower used for an application is usually dependent on the design height.

A telecommunication tower is housed in a cell site or base station site. A cell site is a cellular-enabled mobile device site where electronic communications equipment and antennas are placed on a radio mast, tower, or other raised structure to create a cell in a cellular network. Figure 2.1 shows the site layout of a typical telecommunications site.

In order to have optimal network coverage, cell sites are often located in close proximity to the target users; the reason telecom operators also site their masts in residential neighbourhoods (Michael *et al.*, 2013).

4

Figure 2.1: Layout of a typical telecommunication site (Source: Etisalat Tower Specification, 2012)

2.2 Classification of Telecommunications Towers

Al-jassani and Al-suraifi (2017), classified telecommunications towers based on various criteria such types of structural action, material sections, numbers of legs, types of weight and capacity, types of shapes and so on. Based on structural action, towers can be classified into three major group namely self-supporting towers, monopoles towers and guyed towers.

Self-supporting towers are supported on ground or on buildings. Though the weight of these towers is more, they require less base area and are suitable in many situations. Most of the television microwave power transmission and flood light towers are self-100 supporting towers as 80 60 tower height z [m] 40 20 0 -20 -40 -60 └--20

Figure 2.2: Self-supporting tower (Source: Etisalat Tower Specification, 2012)

0

20

Monopole towers are single self-supporting pole which are sometimes placed on roofs of high-rise buildings, when number of antennae required is less or height of tower required is less than 9m. They use minimal space and resemble a single tube, require one large foundation, typically not exceed 45 m height and the antennas are mounted on the exterior of the tower, as shown in Figure 2.3.

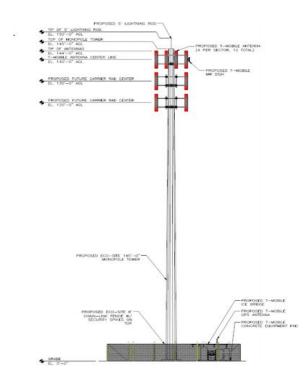


Figure 2.3: Monopole Tower (Source: Etisalat Tower Specification, 2012)

Guyed towers provide height at a much lower material cost than self-supporting towers due to the efficient use of high-strength steel in the guys. Guyed towers are normally guyed in three directions over an anchor radius of typically 2/3 of the tower height and have a triangular lattice section for the central mast. Tubular masts are also used, especially where icing is very heavy and lattice sections would ice up fully. These towers are much lighter than self-supporting type but require a large free space to anchor guy wires. Whenever large open space is available, guyed towers can be provided.

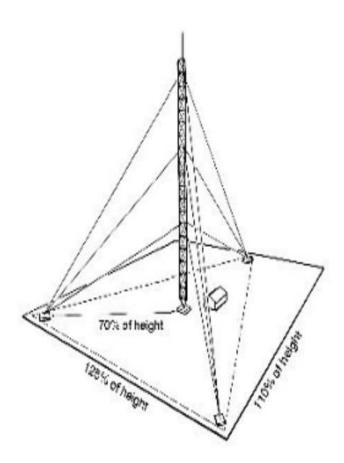


Figure 2.4: Guyed tower (Source: Etisalat Tower Specification, 2012)

2.3 General Requirements of Telecoms Towers

According to Etisalat Tower Specification (2012), for self-supporting latticed tower of modular design, heights can be varied with minimal additional manufacturing. Also, towers will preferably be tapered, with 3-leg and 4-leg variations. Tower members will be made in shapes, sizes and weights to make for easy handling, shipping and local distribution with regular equipment and trucks. Tower shall be designed to be assembled on site by bolts and nuts/washers, without any need for welding, riveting, drilling, or any other form of splicing apart from bolts and nuts.

Each tower will come complete with all accessories which include, but not limited to: Holding down bolts and templates, platforms, ladders, cable supports, radio antenna mountings, microwave antenna mountings, aviation warning light with power cable, lightening spike with copper conductor, insulated grounding cable, naked cables and so on.

2.3.1 Components of telecommunications towers

Telecommunications towers is made of hot dipped galvanized structural steel sections. The sections may be angular sections or tubular sections. Other components include bolts, nuts, raised platform, aviation warning light, paint, and so on.

2.3.1.1 Structural steel

Towers will be made in galvanized steel members. As a minimum, Grade 300WA Steel (to SABS 1431) shall be used for the design and manufacture of the tower members. Minimum Yield Strength for standard steel less than 16mm thick should be 235 N/mm²; for high tensile steel less than 16mm thick should be 355 N/mm² and for High tensile steel exceeding 16mm thick should be 345 N/mm². Steel sections beyond 35mm thick shall not be utilized in any parts of the towers. Generally, minimum thickness for tower leg members shall be 6mm and for other members (braces) shall be 4mm. Commercial grade steel may be used for the cat ladders and internal platforms.

All steel components for the towers shall be hot-dipped galvanized to the specifications of *ASTM A123*, *SABS SO 1461*, or any internationally acceptable equivalent. All drilling of holes, markings and welding shall be completed for every component prior to hot-dipped galvanization.

Every structural member or fabricated structural sub-assemblies of the tower (except bolts and nuts), shall have a part number clearly marked on it. This part number, which shall have a minimum character of 10mm, will be permanently engraved or stamped on the member prior to galvanization; should be visible after galvanization and painting; and should be positioned on the member to be visible after tower installation.

2.3.1.2 Bolts and nuts

All bolts that are M10 or bigger, except Holding down Bolts, shall be Grade 8.8 (high tensile strength). Galvanized flat washers (2mm thick or thicker) must be used on the nut end of the bolt but spring washers are not allowed. Double locking nuts are only required on squeeze type connections, but flat metal-on-flat metal connections do not need double lock nuts. The choice of number of nuts to be adopted for such connections is left to the tower manufacturer.

Bolts that are less than M10 must be stainless steel Grade 304. Such bolts (eg bolts holding Aviation Warning Lamps) must be supplied with double nuts and must allow for a minimum of 5mm of thread to protrude once both nuts are in place. Holding down bolts may be black bolts but the threaded portion that will be exposed above the foundation must be hot dip galvanized.

The grade, type, size, torque, and location of all bolts must be clearly indicated on the tower erection drawings.

2.3.1.3 Connections

Tower design should be such that bolts are able to be tightened against flat steel surfaces that bear on each other in such a way that the full design tension for the bolts can be achieved. The joint configuration shall be such that a torque wrench can be used to tighten each bolt without disturbing adjacent bolts. A maximum of only two members shall be connected per individual bolt (except for joint plates and bosom angles).

Sleeve fitting pipe member connections are not recommended on the legs of latticed towers/masts. Where pipe legs are used, drainage holes must be provided in the pipe leg that is flush with the flange plate. Also, the bottom flange of the bottom leg member must allow drainage through the grout if there is a hole in the flange through a 20 mm drainage hole, else, the bottom flange shall contain no holes or be suitably plugged and sealed.

2.3.1.4 Ladders and cable runways

The tower design and manufacture shall include for one access ladder, at least one working platform and rest platforms (spaced not more than 15m along tower height). The access ladder shall be a caged ladder containing stringers and hoops. The ladder, which shall be about 450mm wide (\pm 50mm), shall start from the ground level and reach the full height of the tower, while the hoops and stringers shall start at about 1.5m from the bottom of the tower and terminate at the last working platform.

Cat ladder rungs must be evenly spaced to allow comfortable climbing and will be between

12mm and 16mm diameter thick. Spacing of ladder rungs shall be 250mm (\pm 50 mm). Horizontal safety hoop having a diameter of 700mm (\pm 50mm) must be provided on cat ladders, at spacing not exceeding 1m. Vertical stringers must also be provided to hold the hoops in place and provide adequate protection during climbing. Both sides of the cat ladder will allow for cable runs in such a way that the cables will not impede climbing but will be accessible at any point from the ladder. Cable support systems shall be in angle sections or flat plates and shall allow for cable runs of 300mm wide and 150mm deep. They will allow cable clamps to be attached at 1m spacing, full height of the tower.

2.3.1.5 Aviation warning lights

Aviation Warning Light systems, which are to be powered by 220V, 50Hz A.C. power; shall be provided with photo-sensitive day/night switches and conform to ICAO regulations. The lamp is to be protected by a watertight transparent cover mounted in such a manner that an electrical switch will disconnect the power supply to the lamp when the cover is opened Specifications for the design and manufacture of Modular Self- Supporting Lattice Towers for use in Nigeria.

All Aviation light brackets, threaded bolts and nuts shall be fabricated in Stainless Steel grade 304 or better. Bolts' length must allow for a minimum of 5mm of thread to protrude after nuts are in place. Aviation Lights will typically be mounted as scheduled Table 2.1 below:

Table 2.1	A viation	Warning	Light Stand	ard
1 abic 2.1	Aviation	wannig	Light Stand	aru

35m, 40m and 45m	
Towers	Double lights at the top of the tower. Lights should be red and
	fixed, with Intensity not below 100 Candelas
50m and 60m Towers	Double lights at the top of the tower and three (3) single lights
	between 25m and 30m height. Lights should be red and
	flashing, with Intensity not below 1600 Candelas
70m and 80m Towers	Double lights at the top of the tower and three (3) single lights
	between 37m and 40m height. Lights should be red and
	flashing, with Intensity not below 1600 Candelas
90m Towers	Double lights at the top of the tower, three (3) single lights
	between 30m and 35m height and another three (3) single
	lights between 60m and 65m height. Lights should be red and

2.3.1.6 Tower grounding and lightening protection

A Lightening spike made in galvanized steel and with a minimum length of 1200mm shall be designed and supplied with every tower/mast/monopole. The spike may be a 16mm diameter rod or 38mm x 38mm angle section with a sharpened point. The actual length of the spike should be established using the 45° protective angle assumption (that is., all tower members, AWL and antennae are included within a 45° angled cone subtending from the top of the spike).

Provision shall be made for the installation of the lightening spike at the uppermost section of the tower. 70mm^2 insulated copper cables shall be supplied with the tower for the connection of the lightening spike to the earth ring on ground and for providing grounding points for antennae installed along the height of the tower. Minimum length of continuous insulated 70mm2 copper cable to be supplied with tower shall be 2 x tower height + 10m (example, a 35m tower will be supplied with 80m continuous length of 70mm² insulated copper cable). Alternatively, half of the cables may be the insulated type of continuous length while the remaining half is 3mm x 25mm copper flat bars or 70mm2 bare copper cable of continuous length.

2.3.1.7 Anchors and templates

Each tower shall be supplied with an appropriate anchor system complete with template. The template will guide in the installation of the anchor system for accurate placement of tower at a later date. Anchor systems shall generally consist of bolts, nuts and washers. Anchor bolts (which may be galvanized or black bolts) must be black bolts of strength and number, adequate to effectively transfer the tower leg reactions to the bearing structure. Where black bolts are used as anchor bolts, the exposed threaded portion of the bolts must be hot dip galvanized.

2.3.1.8 Radio frequency antenna poles and brackets

Each tower shall be supplied with at least three (3) RF Antenna support poles and brackets. The poles shall be 76mm diameter hollow pipes of 3mm minimum thickness made in hot-dipped galvanized steel and about 2.5m long. Each pole shall be designed to have 2 horizontal beams/brackets, each beam/bracket to be fixed at about 300mm from each end of the pole. Tower suppliers shall design appropriate bracket systems to hold the poles to the beams and the beams to the tower leg using galvanized standard steel sections like angles, U-bolts, threaded rods, plates etc. Provision must be made on the bracket system for adjustments to be made in the beams' lengths to compensate for the taper of the tower and ensure poles are installed vertical if necessary. The poles and brackets shall be designed to effectively transfer the wind load on the panel antenna to the tower legs at a height of 70m under the specified wind and environmental conditions.

2.4 Telecomummication Infrastructure Sharing

Infrastructure sharing is a process where two or more operators share different infrastructure in a particular site as a mechanism for cost reduction, quality of service improvement and rapid network expansion while at same time creating a positive environmental impact with good economic sustainability (Idachaba, 2010). Benefits of telecommunications infrastructure sharing includes savings in capital and operational expenditures, rapid deployment of telecommunications network services and reduction of adverse environmental impact. Infrastructure shared in the telecommunications industry includes tower structure, right of way, ground space, fibre duct, trenches, poles, electric power, antennas, and so on.

Infrastructure sharing can be broadly categorized into three types namely: passive infrastructure sharing, active infrastructure sharing and spectrum sharing (Nosiri *et al.*, 2015).

2.4.1 Passive infrastructure sharing

This involves the sharing of non-electronic equipment like site space, tower, mast, poles, and power supply (Ghassan *et al.*, 2007). It is the most common type of telecommunications infrastructure sharing. This method is appropriate mainly in urban centres with limited resource availability, in rural areas that are uneconomical to deploy new infrastructure.

According to the publication of GSMA (2012), passive infrastructure sharing requires the consideration of many technical, practical, and logistical factors although the principle is simple in theory. Any potential impact must be assessed and fully understood before sharing commences to ensure that there are no adverse effects on the operation of the site and the supporting network equipment and systems. Operators must consider items such as load bearing capacity of towers, azimuth angle of different service providers, tilt of the antenna, height of the antenna, before executing the agreement.

15

2.4.2 Active infrastructure sharing

This type of sharing involves sharing of electronic components and resources such as microwave radio equipment, fibre structure, switching centers, sharing common network both circuit-switched and packet-oriented domains. This method is often serving as lease lines for network redundancies and traffic backhaul services.

2.4.3 Spectrum infrastructure sharing

This is also referred to as spectrum trading. It is a model that has recently come to the fore in the last decade. It involves telecommunications operators leasing their spectrum to one another. As spectrum is a scarce resource that may often be underutilized by one operator in a given area, spectrum sharing remains a viable option for two or more operators.

Spectrum sharing is the logical partitioning of optical spectrum on a submarine cable for different end-users, such that each end-user has its own 'virtual fibre pair. It seeks to address network efficiency concerns by allowing telecommunications companies to leverage on non-linear gains in spectral efficiency. The benefits of spectrum trading provide operators chance to minimize network congestion and carry greater amounts of traffic. It increases flexibility to accommodate shifting demand driven by market changes and removes entry barriers for new operators which results into healthy competition.

2.5 Record of Tower Failures in Nigeria

In the last decade, several tower failures were recorded in Nigeria as shown in Table 2.2. It can be deduced from the table that most of the collapse cases involved towers

supported on three legs. This justifies the selection of the three-legged lattice tower for this study.

Table 2.2. Record of tower families in Frigeria				
		Tower	Extent of	
State	Casualty	Туре	Collapse	Source
Lagos	1	3-Legged	Total Collapse	Akoni (2014)
Cross				
River	2	3-Legged	Total Collapse	Kalu (2014)
			-	
Rivers	3	3-Legged	Total Collapse	Azubuike (2017)
			_	
Taraba	3	3-Legged	Total Collapse	Chronicle (2018)
ECT	NI:1	2 Laggad	Total Callance	Uraii (2010)
FUI	INII	5-Legged	Total Collapse	Ikeji (2019)
Kano	Nil	Monopole	Total Collapse	On site report
Ituno	1,111	monopole	-	on she report
Solvoto	NJI	3 Loggod		On site report
	1911	J-Leggeu	Conapse	On site report
	2 711		T 101	
	N1l	3-Legged	-	On site report
Akwa				
Ibom	Nil	3-Legged	Collapse	Tom (2021)
Akwa				
Ibom	Nil	4-Legged	Total Collapse	Abia (2021)
		22	1	
Benue	7	3-Legged	Total Collapse	Dada (2022)
	Lagos Cross River Rivers Taraba FCT Kano Sokoto Cross River Akwa Ibom Akwa	Lagos1Cross2River2Rivers3Taraba3FCTNilKanoNilSokotoNilCrossNilRiverNilAkwaIbomIbomNilAkwaNilIbomNil	Lagos Cross River13-Legged Cross RiverRivers23-LeggedRivers33-LeggedTaraba33-LeggedFCTNil3-LeggedKanoNilMonopoleSokotoNil3-LeggedCrossRiverNilRiverNil3-LeggedAkwaNil3-LeggedJbomNil3-LeggedAkwaNil3-LeggedAkwaNil3-Legged	StateCasualtyTypeCollapseLagos13-LeggedTotal CollapseCross23-LeggedTotal CollapseRiver23-LeggedTotal CollapseRivers33-LeggedTotal CollapseTaraba33-LeggedTotal CollapseFCTNil3-LeggedTotal CollapseKanoNil3-LeggedTotal CollapseKanoNil3-LeggedCollapseRiverNil3-LeggedCollapseRiverNil3-LeggedCollapseAkwaNil3-LeggedCollapseAkwaNil3-LeggedCollapseAkwaNil3-LeggedCollapseAkwaNil3-LeggedTotal CollapseAkwaNil3-LeggedCollapseAkwaNil3-LeggedTotal CollapseAkwaNil3-LeggedTotal Collapse

Table 2.2: Record of tower failures in Nigeria

Plate I: Lagos tower collapse (Source: Akoni, 2014)

Plate II: Cross River tower collapse (Source: Kalu, 2014)

Plate III: FCT tower collapse (Source: Ikeji, 2019

Plate IV: Sokoto tower collapse (Source: On site picture)

Plate V: Akwa Ibom tower collapse I (Source: Tom, 2021)

Plate VI: Akwa Ibom tower collapse II (Source: Abia, 2021)

2.6 Structural Health Monitoring of Towers

The collapse of transmission towers causes great economic loss and sometimes fatal accidents. The fact that transmission towers collapse during hurricanes or typhoons attracts researchers to accomplish their research on this issue (Siti *et al.*, 2017).

Several authors have contributed theoretical and experimental investigations to the structural health monitoring of steel telecommunication towers. It is fair to mention investigations made by Husain *et al.* (2017) performed research on the appraisal of the spatial distribution of Global System for Mobile Telecommunications (GSM) Infrastructure in Gombe Metropolis, Nigeria. The objectives of the study were to appraise the conformity of existing spatial distribution of GSM masts and base stations to planning standards with a view to developing alternative proposals which will minimize potential harmful effects of GSM masts on residents and contribute to environmental sustainability, while meeting socio-economic objectives of the GSM operators.

Sharma *et al.* (2015) who performed research based on a comparative analysis of steel telecommunication tower subjected to seismic and wind loading. In their research a comparative analysis is being carried out for different heights of towers using different bracing patterns for Wind zones I to VI and Earthquake zones II to V of India. The Gust factor method is used for wind load analysis, modal analysis and response spectrum analysis are used for earthquake loading. The results of displacement at the top of the towers and stresses in the bottom leg of the towers are compared.

Lahodny and Janata (2014) carried out full-scale measurements on one tower and one guyed mast. The measured characteristics, especially the power spectral densities of the wind velocities and the structure response, are compared with theoretical presumptions. The measured structures are situated on different terrains. Subsequently, a practical method for the theoretical evaluation of the structure response to turbulent wind is proposed. The method, based on the spectral analysis approach, considers the contribution of all significant mode shapes. The method can be used for a wide range of towers and masts, especially for those which do not meet EN standards criteria for commonly used equivalent static methods.

Jesumi and Rajendran (2013) modeled five steel lattice towers with different bracing configurations such as the X-B, single diagonal, X-X, K and Y bracings for a given range of height. The heights of the towers are 40m and 50m with a base width of 2m and 5m respectively. The tower of height 40m has 13 panels and the tower of height 50m has 16 panels. 70-72% of the height is provided for the tapered part and 28-30% of the height is provided for the straight part of the tower. The towers have been analyzed for wind loads with STAAD Pro. V8i, to compare the maximum joint displacement of

each tower. Optimized design has been carried out to estimate and to compare the weight of each tower. From the results obtained, Y bracing has been found to be the most economical bracing system up to a height of 50m.

Siddesha (2010) presented the analysis of microwave antenna tower with Static and Gust factor method. He compared the towers with angle and square hollow sections. The displacement at the top of the tower was considered the main parameter. The towers with different configurations have also been analyzed by removing one-member present in the regular tower in lower panels. Square sections were found to be most effective for legs as compared to the angle sections. Square hollow sections used in bracing along with the leg members did not show any appreciable reduction of displacement. X-type and M-type bracings in square hollow sections for legs and bracings in the lower first panel of towers showed maximum reduction in displacement as compared to the regular towers with angle sections.

Da Silva *et al.* (2005) presented a paper on an alternative structural analysis modeling strategy for the steel tower design considering all the actual structural forces and moments combining three-dimensional beam and truss finite elements. Comparisons of the two above-mentioned design methods with a third method based on the use of spatial beam finite elements to model the main structure and the bracing system on two actually built steel telecommunication towers (40 and 75m high steel towers) have been described. Generally, in all the cases studied the maximum stress values for the structural tower modeling based on the three investigated methodologies were significantly modified. The lateral displacement values were not significantly changed

when the usual truss model, the beam model or the combined beam and truss model were considered.

Albermani *et al.* (2004) that investigated the possibility of strengthening steel truss towers from a restructure and rearrangement of their bracing systems. The adopted solution consisted on the addition of axially rigid systems to intermediate transverse planes of the tower panels.

Kahla (2000) presented a dynamic modelled on the rupture of a cable present in guyed steel towers. The analysis indicated that the guyed steel towers cable rupture, disregarding the wind actions, was one of the most severe critical load hypotheses for the investigated structures.

2.7 Structural Health Monitoring of Towers of a Lattice Tower

In view of the background works carried out in paragraph 2.6, the collapses of tower recorded in the recent past and the prevailing tower sharing by some telecommunication network providers; this research will study the health status of a lattice tower located in FCT, Abuja. This tower is 45m high, supported on 3-legs, erected nine (9) years ago and shared by three telecommunication network providers.

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Methodology Concept

The concept shall involve identification and selection, tower auditing and analyzing the tower to determine its structural integrity. To achieve the desired aim of the study, identification of towers supported on 3-legs erected over 5 years and having two or more telecoms' operators hosting their radio antennas on the tower were made. Additionally, a tower of 45m height was selected.

Thereafter, the tower was thoroughly inspected to ascertain the structural integrity of its members and accessories. Subsequently, the tower loading was analysed to determine its stability and percentage utilization. The steps undertaken are presented in Figure 3.1.

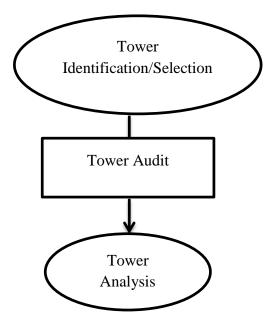


Figure 3.1: Research methodology Chart

3.2 Tower Identification

The tower has been in service for over nine years and was previously used by one network operator (9mobile). However, it was acquired by an infrastructure provider (IHS), who has now leased it to two more telecom operators (Airtel and MTN). This indicates that tower sharing is now taking place on a tower previously erected to be used by a single telecom operator. The tower is a 45m, 3-Legged tower and it is located in Abuja – FCT. 3-legged towers are known not to be as stable as 4-legged towers. Most of the tower collapses are associated with 3-legged towers as shown in Table 2.1.

The relevant documents (Site approved drawing, Soil test report, Tower drawing) were obtained to aid the tower's modelling, design, and analyses as show in the appendix. Details of the lattice tower selected for this research work are presented in Table 3.1.

S/No	Item	Description
1	Site Identification	B0653 (IHS_ ABJ_0704E)
2	Number of Operators	3
3	Site Location	Plot 7, Unity Hill Estate, Behind Sunny-Ville Estate, Dakwo District, FCT, Abuja, FCT
4	Site Coordinates	Latitude: 8.97312, Longitude: 7.43745
5	Tower Manufacturer	Mast Projects
6	Type of Tower	Medium duty Lattice Tower
7	Tower Design Capacity	12 m ²
8	Years of Service	9 years
9	Tower Height	45m
10	Tower Top Rating	$1.2m^2/m$ spread over the upper 10m of tower
11	Tower legs	3 legs

Table 3.1: Tower identification

Plate VII: Site Name

Plate VIII: On-site coordinates

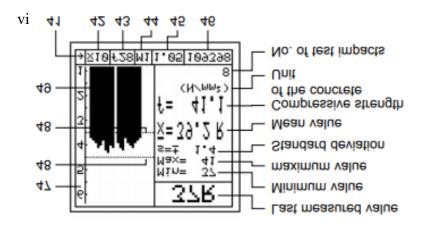
Plate IX: Approach view

Plate X: On Site with a Rigger

3.3 Audit of the Lattice Tower

After tower identification, approval was obtained from 9mobile to visit the selected site for tower audit. Subsequently, a site visit was scheduled. The audit involved carrying non-destructive test on the towers' foundation, taking records of the number of antennas on the tower and inspecting of the tower structural members and accessories. The audit could be grouped into two categories namely the tower foundation and the tower member audit.

3.3.1 Foundation audit using digital Schmidt hammer


A non-destructive test was carried out on the tower stub columns. The stub column is the vertical member which forms part of the tower foundation. It is a reinforced concrete footing through which the tower is anchored. The tower legs are held to the foundation by galvanized hold down bolts.

Lattice towers are usually supported by three or four legs which rest on stub columns. Hence, the non-destructive test was carried out on all the stub columns. The test is carried out on the exposed surfaces of the stub columns above the finished floor level.

The test was carried out using a digital Schmidt hammer (Proceq). The Schmidt hammer or rebound hammer is a mechanical device used to perform quick, non-destructive quality test on concrete. The tower legs were labelled alphabetically from A-C in anticlockwise direction for easy referencing. Also, the exposed stub columns are also checked for the presence of cracks and surface blisters.

Test Procedure

- i. Mark up the test points which are at least 200mm apart
- ii. Use a grindstone to smoothen the test surface.
- iii. Position the concrete test hammer perpendicular to the test surface.
- iv. Deploy the impact plunger of the Schmidt hammer by pushing the rebound hammer towards the test surface until the push button springs out.
- v. Perform the non-destructive test by pushing rebound hammer against the test surface at moderate speed until the impact is triggered (a loud beep acknowledge impact registration).
- vi. The values of the rebound number (R) and the corresponding compressive strength (N/mm²) are displaced on the digital Schmidt hammer screen.
- vii. Repeat the test at seven more points and click "end button" on the display panel of the Schmidt hammer to obtain the average compressive strength in N/mm². (See figure 3.2).

Figure 3.2: Digital Schmidt hammer display screen. (Source: Proceq digi-Schmidt instruction manual, 2000)

Plates XI-XV show some of the tools and procedures used for the foundation audit.

Plate XI: Proceq Digi-Schmidt 2000

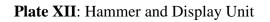


Plate XIII: Marking of test points. as "X"

Plate XIV: Testing of the foundation

Plate XV: Display unit showing readings.

3.3.2 Members audit

The tower audit was done with the support of a professional tower installer called Rigger. A Rigger is a person specialized in erecting towers as well as carrying out maintenance works on the tower. The tower audit involves the thorough inspection of the tower members and bracings, the bolts and nuts conditions at the connections, the state of other tower accessories like the access ladder, rest platforms, paints, aviation warning lights and earth cables. Any defect noted on the tower and recommended for correction. During the tower audit, records of all the telecoms equipment (antennas) installed on the tower are also recorded for use in structural analyses of the tower.

The steps below are taking to record the installed telecommunications equipment.

- i. Note the number of legs the tower is supported.
- ii. Label each of the tower legs alphabetically in an anticlockwise order.

- iii. On each of the tower legs, list out the various types of telecommunication antennas mounted (radio frequency antennas, transmission antennas and remote radio units).
- iv. Then record the dimensions of the antennas and heights of installation.

These activities provide cognizance on the state of the tower and the maintenance history of the tower. The data obtained after the audit are compared with the industry laid-down specifications to ascertain the state of the tower. Table 3.2 below shows the tower accessories description while Plates XVI-XXIII show some of the tools and members' audit procedures used.

Plate XVI: Toolbox

Plate XVII: Tower legs A, B and C

Plate XVIII: Tower physical inspection

Plate XIX: Bolt torquing

Plate XX: Types of Antennas

Plate XXI: Base Stations of Operators

Antenna Type	Dimension (mm)	Total Number
Tri-band Antenna	2500 x 300 x 200	3
Dual-band Antenna	1500 x 170 x 150	8
Mono-band	1300 x 150 x 100	11
Radio Remote Unit	480 x 290 x 180	17
Microwave Antenna 1	300 x 150	2
Microwave Antenna 2	600 x 300	7

3.4 Structural Analysis of the Tower

The selected lattice tower is analysed using two methods. The use of the Effective Projected Area model (EPA) and the use of a design software called STAAD Pro. V8i. (Structural Analysis and Designing Program).

3.4.1 Structural analysis using EPA model

The Effective Projected Area (EPA) model is based on the exposed surface areas of the antennas and the tower members. Since the effect of self-weight of the antennas is not significant when compared to the effect of wind forces on the projected areas of the antennas, it is safe to assume that the effect of wind forces alone suffices to give a quick overview of the load-carrying capacity of the tower. The model is computed using the Microsoft Excel.

The spreadsheet idealizes the tower as a single pole and calculates the effect of existing and future loads on the tower using the lever-arm created by the wind load on

the antennas with the fulcrum at the base of the tower. Effects of various combinations of antennas loading can also be quickly considered using the spreadsheet.

The computation for the EPA takes into consideration the tower height, tower capacity, tower design wind speed, tower top rating, lever arm, antenna areas and antenna installation heights. The tower design wind speed (Vs) is obtained from the tower assembly drawing tower capacity (TC) and tower top rating (TR) are obtained from the Etisalat tower specification (2012). The antenna areas (A) are obtained from the dimensions (frontal area) of each antenna while each antenna's installation height (Ah) is recorded on site.

The tower lever arm is calculated as shown in equation 3.1.

$$LA = TH - \frac{TR}{2} \tag{3.1}$$

Where:

LA = Tower lever arm (m) TH = Tower height (m) TR = Tower top rating (m)

The Effective Projected Area for the antenna is calculated as shown in equation 3.2.

$$EPA = A \left(\frac{Ah}{LA}\right) \tag{3.2}$$

Where:

EPA = Effective Projected Area (m²)A = Antenna area (m²)A h = Height of antenna installation (m)LA = Tower lever arm (m) The spreadsheet sums up the total antennas EPAs installed on the tower. The percentage utilization of the tower capacity resulting from the effect of wind forces on the projected areas of the antennas is computed by relating the summation of EPAs to the original design capacity of the tower.

Tower utilization percentage formula is calculated as shown in equation 3.3.

$$TUP = \left(\frac{\Sigma EPA}{TC}\right) \ 100 \tag{3.3}$$

Where:

TUP = Tower utilization percentage (%) Σ EPA = Summation of EPA (m²) TC = Tower capacity (m²)

The tower loading is optimized using the local basic wind speed as provided by the Nigeria Meteorological Agency in figure 3.3. to obtain the optimized tower utilization percentage.

Optimized tower utilization percentage formula is calculated as shown in equation 3.4.

$$OTUP = \left(\frac{Vb}{Vs}\right)TUP \tag{3.4}$$

Where:

OTUP = Optimized tower utilization percentage (%) TUP = Tower utilization percentage (%) Vb = Basic wind speed (m/s) Vs = Tower design wind speed (m/s) If the tower utilization is below 100%, the tower is assumed to be safe to carry the existing antenna loads. Otherwise, a tower with utilization value above 100% is termed overloaded. Such tower is recommended for load shedding and further structural analysis.

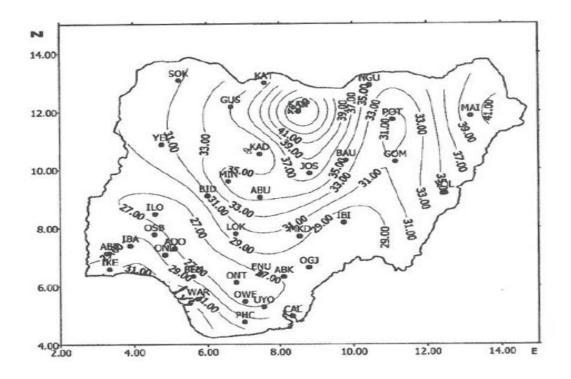


Figure 3.3: Maximum wind flow map for Nigeria (30 years and above) in m/s. (Source: Soboyejo, 1971)

3.4.2 Structural analysis using the STAAD Pro. V8i

The STAAD Pro. V8i software is used for modelling tower and carrying out the structural analysis. The analyses are based on the tower's self-weight, equipment load, wind load on the antennas and wind intensity on the tower members.

It has a friendly user interface. The tower model starts with the setting-out of the structure in a grid system. The dimensions are defined, and subsequently the nodes are connected with beams. The topmost layer is drawn inside the base grid and

thereafter elevated in the Y-plane. Once the simple model is drawn, the tower members are defined with material specifications from the tower assembly drawing. Finally, the tower is loaded with calculated loads.

STAAD Pro. V8i can generate quite a large range of outputs. For this research work, the outputs are limited to the stresses on the tower members and safety of the tower. The tower design is based on steel work design guide to BS 5950-1: 2000.

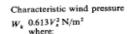
Loadings

There are different types of loads acting on the tower which includes the self-weight of the tower, live load from installed equipment, wind load on the mounted equipment and tower members. The loads acting on the selected lattice tower are derived below. **Self-weight** of the tower is automatically generated in STAAD Pro. V8i by using the summed up the weights of all the sections. The weight obtained was distributed downwardly on all the tower members.

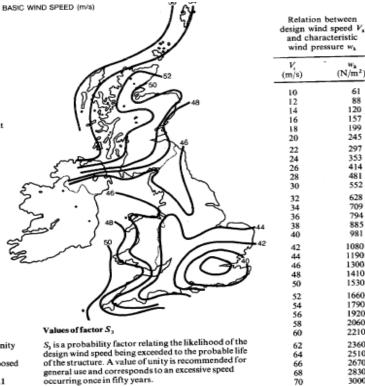
Equipment loads or antenna loads on the tower is calculated by calculating the weight of all installed equipment on the tower as shown in Table 3.3. Thereafter, the load is transferred to STAAD Pro. V8i and applied to the tower nodes where the equipment is installed.

S/N	Description	Numbers	Length (mm)	Width (mm)	Thickness (mm)	Weight (kg)	Total weight (kg)	Total weight (kN)
1	Tri-band Antenna	3	2500	300	200	25	75	0.75
2	Dual-band Antenna	8	1500	170	150	20	160	1.6
3	Mono-band	11	1300	150	100	10	110	1.1
4	Radio Remote Unit	17	480	290	180	15	255	2.55
5	Microwave Antenna 1	2	300	NA	150	10	20	0.2
6	Microwave Antenna 2	7	600	NA	300	14	98	0.98

Table 3.3: Equipment loading


Wind pressure on the tower is calculated based on BS 6399-2 1997. It takes into consideration local basic wind speed (V_b) and three multiplying factors (S₁, S₂, S₃) to obtain the design wind speed (Vs). The multiplying factors for topography, height above ground, and structure life represent S₁, S₂, and S₃ respectively. The values for the multiplying factors are obtained from Figure 3.4. Thereafter, the wind pressure (W_k) per node was calculated using equation 3.5.

$$Wk = 0.613 \, Vs^2 \tag{3.5}$$


The wind pressures obtained are applied vertically on tower joints in the STAAD Pro. V8i. model at 2m intervals.

Height (m)	Abuja Basic wind speed (V _b) (m/s)	Topography multiplying factor (S ₁)	Height above ground and wind braking multiplying factor (S ₂)	Life of structure (S ₃)	Design wind speed (Vs) (m/s)	Wind pressure (W _k) (N/m ²)	Wind pressure (W _k) (KN/m ²)
2	35	1	0.78	1	27.3	456.86277	0.46
4	35	1	0.78	1	27.3	456.86277	0.46
6	35	1	0.79	1	27.65	468.6522925	0.47
8	35	1	0.79	1	27.65	468.6522925	0.47
10	35	1	0.9	1	31.5	608.24925	0.61
12	35	1	0.9	1	31.5	608.24925	0.61
14	35	1	0.9	1	31.5	608.24925	0.61
16	35	1	0.94	1	32.9	663.51733	0.66
18	35	1	0.94	1	32.9	663.51733	0.66
20	35	1	0.96	1	33.6	692.05248	0.69
22	35	1	0.96	1	33.6	692.05248	0.69
24	35	1	0.96	1	33.6	692.05248	0.69
26	35	1	0.96	1	33.6	692.05248	0.69
28	35	1	0.96	1	33.6	692.05248	0.69
30	35	1	1	1	35	750.925	0.75
32	35	1	1	1	35	750.925	0.75
34	35	1	1	1	35	750.925	0.75
36	35	1	1	1	35	750.925	0.75
38	35	1	1	1	35	750.925	0.75
40	35	1	1.03	1	36.05	796.6563325	0.80
42	35	1	1.03	1	36.05	796.6563325	0.80
44	35	1	1.03	1	36.05	796.6563325	0.80
46	35	1	1.03	1	36.05	796.6563325	0.80

Table 3.4: Wind Pressure Calculation

- design wind speed in m/s V. $= VS_1S_2S_3$
- basic wind speed in m/s (read from adjoining map) ν
- multiplying factor relating to \$1 topology
- multiplying factor relating to height S_2 above ground and wind braking
- multiplying factor related to life of S3 structure

 (N/m^2)

61 88 120

157

199

245

297

353 414

481 552

2210

2360

2510 2670

2830

3000

Values of factor S₁

 S_1 may generally always be taken as unity except in the following cases: On sites adversely affected by very exposed hill slopes and crests where wind acceleration is known to occur: $S_1 = 1.1$ On sites in enclosed steep-sided valleys completely sheltered from winds: $S_1 = 0.9$

S₃ is a probability factor relating the likelihood of the design wind speed being exceeded to the probable life of the structure. A value of unity is recommended for general use and corresponds to an excessive speed occurring once in fifty years.

		Topo-						Hei	ght of:	structu	are h (n	n)					
Structure		graphical factor	5	10	. 15	20	30	40	50	60	80	100	120	140	160	180	200
Cladding etc.		1 2 3 4	0.88 0.79 0.70 0.60	1.00 0.93 0.78 0.67	1.03 1.00 0.88 0.74	1.06 1.03 0.95 0.79	1.09 1.07 1.01 0.90	1.12 1.10 1.05 0.97	1.14 1.12 1.08 1.02	1.15 1.14 1.10 1.05	1.18 1.17 1.13 1.10	1.20 1.19 1.16 1.13	1.22 1.21 1.18 1.15	1.24 1.22 1.20 1.17	1.25 1.24 1.21 1.19	1.26 1.25 1.23 1.20	1.27 1.26 1.24 1.22
rtical or rrizontal ion	≯ 50 m	1 2 3 4	0.83 0.74 0.65 0.55	0.95 0.88 0.74 0.62	0.99 0.95 0.83 0.69	1.01 0.98 0.90 0.75	1.05 1.03 0.97 0.85	1.08 1.06 1.01 0.93	1.10 1.08 1.04 0.98	1.12 1.10 1.06 1.02	1.15 1.13 1.10 1.07	1.17 1.16 1.12 1.10	1.19 1.18 1.15 1.13	1.20 1.19 1.17 1.15	1.22 1.21 1.18 1.17	1.23 1.22 1.20 1.19	1.24 1.24 1.21 1.21
Maximum vertical or maximum horizontal dimension	> 50 m	1 2 3 4	0.78 0.70 0.60 0.50	0.90 0.83 0.69 0.58	0.91 0.78	0.96 0.94 0.85 0.70	1.00 0.98 0.92 0.79	1.03 1.01 0.96 0.89	1.06 1.04 1.00 0.94	1.08 1.06 1.02 0.98	1.11 1.09 1.06 1.03	1.13 1.12 1.09 1.07	1.14	1.17 1.16 1.13 1.12	1.19 1.18 1.15 1.14	1.19	1.21 1.21 1.12 1.12 1.13

Notes

h is height (in metres) above general level of terrain to top of structure or part of structure. Increase to be made for structures on edge of cliff or steep hill.

Topographical factors

 open country with no obstructions
 open country with scattered wind-breaks
 country with many wind-breaks; small towns; submits
 city centres and other environments with large and frequent obstructions. ons; suburbs of large cities

Figure 3.4: Multiplying factor chat. (Source: Reinforced concrete designer's handbook 10th ed. by Reynolds and Steedman,1998).

The wind load on the equipment is generated from the force the wind exerts on the projected surface area of the equipment. The force is calculated by multiplying the force coefficient of each antenna which is based on shapes by highest wind pressure by projected area of the antenna. It is obtained using equation 3.6.

$$F = cf.Wk.A \tag{3.6}$$

Where:

$$\label{eq:F} \begin{split} F &= Force \\ cf &= force \ coefficient \\ W_k &= wind \ pressure \\ A &= Area \end{split}$$

The force values obtained per equipment are applied perpendicularly to the tower members where the antennas are installed. Table 3.5 shows the forces acting on each type of antenna.

Description	Length (h) (mm)	Width (b) (mm)	Thickness (a) (mm)	h/b	a/b	Force coefficient (cf)	Area (A) (m ²)	Force (F) (KN)
Tri-band Antenna	2500	300	200	8.33	0.67	1.7	0.75	1.02
Dual-band Antenna	1500	170	150	8.82	0.88	1.7	0.26	0.35
Mono-band	1300	150	100	8.67	0.67	1.7	0.20	0.26
Radio Remote Unit	480	290	180	1.66	0.62	1.2	0.14	0.13
Microwave Antenna 1	300	NA	150	NA	NA	1.2	0.07	0.07
Microwave Antenna 2	600	NA	300	NA	NA	1.2	0.28	0.27

Table 3.5:	Wind load	on equi	pment
------------	-----------	---------	-------

CHAPTER FOUR RESULTS AND DISCUSSION

4.1 Tower Physical Inspection

The outcome of physical inspection of the lattice tower member and accessories are

presented in Table 4.1.

4.0

Item	Description
Structural Members	No warped member detected
Access Ladder	Accessible and railings are in good condition
	Gratings on platforms are not blocked and do not accumulate water or not corroded
Rest Platforms Bolts and Nuts	No missing bolts and nuts were observed. Bolts and nuts are properly tightened.
Aviation Warning Light	Aviation warning lights (AWL) are in place and functional
Earthen cables	Copper cables for tower earthen
Antennas	Antennas properly clamped
Tower paint	Faded
Thunder Arrestor	Properly bolted

Table 4.1: Tower Physical Inspection

It was observed from the physical inspection that the tower members and accessories are in good condition with the only exception being the tower paint. The red and white paint of the telecommunications tower is washed-out and needs repainting.

4.2 Tower Foundation Auditing

The average compressive strengths of the tower legs are presented in Table 4.2.

	Rebound Values (R)		
S/N	Leg A	Leg B	Leg C
1	26	28	42
2	27	30	28
3	35	27	35
4	30	25	27
5	32	33	30
6	33	30	31
7	25	28	28
8	25	30	26
Mean Compressive strength X (R) Mean Compressive	28.5	29	29
strength F (N/mm ²)	25.1	25.9	25.9

Table 4.2: Compressive Strength of Stub Columns

The mean compressive strength of the stub columns obtained using the Schmidt hammer are 25.1, 25.9 and 25.9 N/mm² for legs A, B and C respectively. These values meet the recommended concrete strength of the foundation (25/19 MPa) as stated in the foundation drawing in Appendix B2. The physical conditions of the stubs are also okay as there was no visible cracks or blisters on them. Furthermore, there were no visible compaction failure around the foundation.

4.3 Tower Analysis using EPA Model

The tower utilization percentage derived from the existing antenna using the EPA model is presented in Table 4.3.

		Existing Telecommuni	ication Antenna	as on Tower	
Lever arm LA (TH - TR/2) (m)	Antenna	Exposed Surface (mm)	Area A (m ²)	Height Ah (m)	Effective Projected Area EPA A* Ah/LA (m ²)
40	GSM 1	2500 x 300	0.75	24	0.45
	GSM 1	2500 x 300	0.75	24	0.45
	GSM 1	2500 x 300	0.75	24	0.45
	GSM 2	1500 x 170	0.26	28	0.18
	GSM 2	1500 x 170	0.26	28	0.18
	GSM 2	1500 x 170	0.26	28	0.18
	GSM 2	1500 x 170	0.26	34	0.22
	GSM 2	1500 x 170	0.26	34	0.22
	GSM 2	1500 x 170	0.26	34	0.22
	GSM 2	1500 x 170	0.26	44	0.28
	GSM 2	1500 x 170	0.26	44	0.28
	GSM 3	1300 x 150	0.20	20	0.10
	GSM 3	1300 x 150	0.20	20	0.10
	GSM 3	1300 x 150	0.20	20	0.10
	GSM 3	1300 x 150	0.20	30	0.15
	GSM 3	1300 x 150	0.20	30	0.15
	GSM 3	1300 x 150	0.20	30	0.15
	GSM 3	1300 x 150	0.20	32	0.16
	GSM 3	1300 x 150	0.20	38	0.19
	GSM 3	1300 x 150	0.20	38	0.19
	GSM 3	1300 x 150	0.20	42	0.20
	GSM 3	1300 x 150	0.20	42	0.20
	RRU	480 x 290	0.14	20	0.07
	RRU	480 x 290	0.14	20	0.07
	RRU	480 x 290	0.14	20	0.07
	RRU	480 x 290	0.14	30	0.10
	RRU	480 x 290	0.14	30	0.10
	RRU	480 x 290	0.14	30	0.10
	RRU	480 x 290	0.14	32	0.11
	RRU	480 x 290	0.14	38	0.13
	RRU	480 x 290	0.14	38	0.13
	RRU	480 x 290	0.14	42	0.15
	RRU	480 x 290	0.14	42	0.15
	RRU	480 x 290	0.14	24	0.08
	RRU	480 x 290	0.14	24	0.08
	RRU	480 x 290	0.14	24	0.08
	RRU	480 x 290	0.14	24	0.08
	RRU	480 x 290	0.14	24	0.08
	RRU	480 x 290	0.14	24	0.08
		ub-Total A			6.46

Table 4.3: Tower utilization percentage

	Ех	sisting Telecommunicat	ion Antennas o	on Tower	
Lever arm LA (TH - TR/2) (m)	Antenna	Exposed Surface (mm)	Area A (m ²)	Height Ah (m)	Effective Projected Area EPA A* Ah/LA (m ²)
#VALUE!	GSM 1	0.60	0.28	16	0.11
	GSM 1	0.60	0.28	26	0.18
	GSM 1	0.30	0.07	28	0.05
	GSM 2	0.60	0.28	32	0.23
	GSM 2	0.60	0.28	32	0.23
	GSM 2	0.60	0.28	33	0.23
	GSM 2	0.60	0.28	37	0.26
	GSM 2	0.60	0.28	38	0.27
	GSM 2	0.30	0.07	39	0.07
	Sub	-Total B			1.63
S	ummation of Ef	fective Projected Area			8.09

Table 4.3: Tower	utilization	percentage continued

Tower Height (TH)	45	М
Tower Type	Medium Duty Latti	ce Tower
Tower Capacity (TC)	12	m^2
Tower is rated for top (TR)	10	М
Percentage utilization based on EPA (ΣΕΡΑ/ΤC) *100	67.4%	
Tower Design Wind Speed	40	m/s
Abuja Basic Wind Speed	35	m/s
Percentage utilization based on local wind speed (OTUP) (Vb/Vs *100)	59.0%	

The present tower utilization percentage is at 67.4%. However, after optimization of the tower design wind speed with the local basic wind speed the tower utilization percentage is dropped to 59%. The tower loading can be termed satisfactory.

4.4 Tower Analysis using STAAD Pro. V8i

The computation sheets presented as Table 4.1 shows output from the STAAD Pro V8i software. It captures details such as design inputs, tower model, loading animations, tower utilisation ratio and failed member check.

Table 4.4: STAAD Pro computation sheets

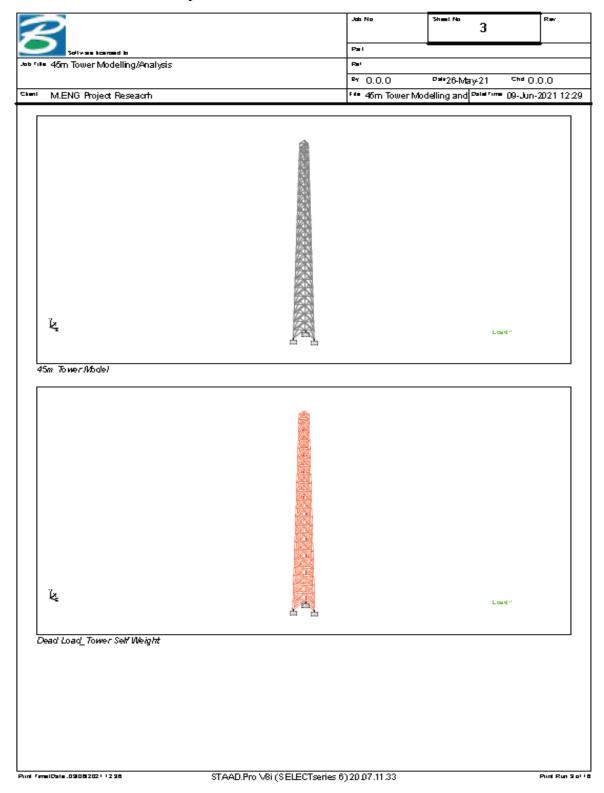
Part Part Normal Market Modelling/Analysis Part Image: DotAlphate Modelling Analysis Part Image: DotAlphate Modelling/Analysis Part I		Image: advise Modeling/Analysis Image: advise Modeling/Analysis Image: advise Modeling/Analysis Image: advise Modeling/Analysis Image: advise Modeling and [Devise / Image: Book advise / Image:	Rev								
Instrume	-										
Image: NENO Project Research P# 0.0.0 P##28/May21 Chell 0.00 P## 0.0.0 P##28/May21 Chell 0.00 Chell 0.00 <td< td=""><td></td><td>Software hoes</td><td>and la</td><td></td><td></td><td></td><td>Pal</td><td>-</td><td></td><td></td><td></td></td<>		Software hoes	and la				Pal	-			
MENG Project Research ## 45m Tower Modelling and [number of 00-Jun-2021 12:29 Job Information Immer of Brighter Tower Approved Jammer of Basin Load 0.0.0 SMA Date: 20-May 21 0.0.0 SMA Immer of Basin Load 141 Highest Beam 383 Immer of Basin Load 142 148 Immer of Basin Load 20-B 0.0.0 SMA Immer of Basin Load 20-B 0.0.0 SMA Immer of Basin Load Cases 0 0.0.0 SMA Immer of Basin Induct are data for: 1.0.0 Norther Study Norther Study Norther Study Immer of Basin Induct are data for: 1.0.0 Norther Study Norther Study Norther Study Immer of Data Induct Are data for: Norther Study Norther Study	46m	n Tower Mo	delling/Analysi:	5			Ref.				
Inclusion inspired relations Approximation Approximation Job Information Engineer Checked Approxed Imme: 0.0.0 0.0.0 SM.A Datative Type SPACE FRAME Immer of Nodes 144 Immer of Nodes 144 Hybest Node 148 Immer of Basic Load Cases -2 Immer of Nodes -2 Immer of Combination Load Cases -2 Immer of Nodes -2 Immer of Basic Load Cases -2 Immer of Nodes -2 Immer of Combination Load Cases -2 Immer of Nodes -2 Immer of Combination Load Cases -2 Immer of Nodes -2 Immer of Dombination Load Cases -2 Immer of Nodes -2 Immer of Nodes 10EAO LOAD -TOWNER SELF WHEIGHT -2 -2 Primary 1 DEAO LOAD -TOWNER SELF WHEIGHT -2 -2 Primary 3 WINDLOAD WUX -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2							By	0.0.0	¤≢•26-May-21	сыя О.(0.0
Engineer Checked Approved hame: 0.0.0 0.0.0 SM.A Date: 28Msy-21 0 SM.A Structure Type SPACE FRAME 148 humber of Baments 144 Hybest Node 148 humber of Banents 348 Hybest Node 383 humber of Banents 348 Hybest Node 383 humber of Banents 348 Hybest Node 383 humber of Combination Load Cases 2 1 humber of Banents 348 Hybest Node 383 humber of Banents 144 Expected Node 148 humber of Combination Load Cases 2 1 1 humber of Banents 148 Hybest Near Cases 1 manue of Combination Load Cases Name 1 1 hybe D DEAD LOAD - TOWER SELF WEIGHT 1 Primary 2 UVE LOAD - EOUIPMENT SELF WEIGHT 1 Primary 3 WIND LOAD WUZ 1	•• ¹ M.E	NG Projec	t Research				F da a	46m Tower Mod	elling and Cale form	99-Jun-2	021 12 29
Engineer Checked Approved hame: 0.0.0 0.0.0 SM.A Structure Type SPACE FRAME humber of Bamets 141 Hybest Node humber of Bamets 348 Hybest Node humber of Bamets 348 Hybest Node humber of Bamets 348 Hybest Beam 2 Namber of Combination Load Cases 2 Number of Basic Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 2 Number of Basic Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 141 Primary 1 DEAD LOAO - TOWER SELF WEIGHT Primary 3 WIND LOAD WUZ Primary 4 WIND LOAD WUZ Primary 5 WIND LOAD WUZ Primary 5 WIND LOAD WUZ Primary 4 WIND LOAD WUZ Primary 5							· · · ·				
Engineer Checked Approved hame: 0.0.0 0.0.0 SM.A Structure Type SPACE FRAME humber of Bamets 141 Hybest Node humber of Bamets 348 Hybest Node humber of Bamets 348 Hybest Node humber of Bamets 348 Hybest Beam 2 Namber of Combination Load Cases 2 Number of Basic Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 2 Number of Basic Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 2 Number of Combination Load Cases 141 Primary 1 DEAD LOAO - TOWER SELF WEIGHT Primary 3 WIND LOAD WUZ Primary 4 WIND LOAD WUZ Primary 5 WIND LOAD WUZ Primary 5 WIND LOAD WUZ Primary 4 WIND LOAD WUZ Primary 5											
Imme 0.0.0 0.0.0 SMA Date: 26May-21	<u>Job</u>	Infor	<u>nation</u>								
Date 26-May-21 Structure Type SPACE FRAME Number of Nodes 141 Highest Node Number of Basic Load Cases -2 Number of Basic Load Cases -0 Included h this printed as data for: -2 Number of Combination Load Cases 0 Included h this printed as data for: -2 All The Whole Structure Name			Engineer	T 0*	recked	App	proved	٦			
Date 26-May-21 Structure Type SPACE FRAME Number of Nodes 141 Highest Node Number of Basic Load Cases -2 Number of Basic Load Cases -0 Included h this printed as data for: -2 Number of Combination Load Cases 0 Included h this printed as data for: -2 All The Whole Structure Name											
SPACE FRAME STUCTURE Type SPACE FRAME Interest in the printed are state by the state in					0.0.0	s	M.A	_			
Number of Nodes 141 Highest Node 148 Number of Basic Load Cases -2 -2 Number of Combination Load Cases 0 Inducted In this printput are cells for: -2 Number of Combination Load Cases 0 Inducted In this printput are cells for: -2 Number of Notice are cells for load cases:	Late:		(6-May-21								
Number of Nodes 141 Highest Node 148 Number of Benetz 381 Highest Beam 383 Number of Basic Load Cases 0 Number of Combination Load Cases 0 Number of Combination Lad Cases 0 Number of Combination Lad Cases 0 Number of Combination Lad Cases 0 Number of Notice Is this printed are results for head cases: Nume Year U Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 3 WIND LOAD WLX Primary 4 WIND LOAD WLZ Primary 3 WIND LOAD WLX Primary 3 WIND LOAD WLX Primary 4 WIND LOAD WLX 2 IsAt0X150X15 41000 3 IsAt0X150X15 41000 4 IsAt0X150X15 41000 3 IsAt0X150X15 43000 4 IsAt0X150X10 23000 3 IsAt0X150X10 23000 3 <	Struct	ture Time	SPACEER	AME							
Number of Bernerts 348 Highest Beam 383 Number of Combination Load Cases -2 Number of Combination Load Cases 0 Inducted In this printbut are state for: 0 Inducted In this printbut are state for: 0 Inducted In this printbut are state for: 0 Inducted In this printbut are state for boad cases: 0 Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 UVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WULX Primary 4 WIND LOAD WULX Primary 5 WIND LOAD WULX Primary 6 WIND LOAD WULX Primary 6 WIND LOAD WULX Primary 6 WIND LOAD WULX 2 IsAndox (160X) 15 412000 1.064-3 376.344 32006 STEEL 3 IsAndox (160X) 10 23.800 1.101-5 300.401 33.83 STEEL 4 IsA100X (160X) 10 23.800 60.31.94 32.906 STEEL </td <td>011001</td> <td>ia ciype</td> <td>01760211</td> <td>, tol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	011001	ia ciype	01760211	, tol							
Number of Basic Load Cases -2 Number of Combination Load Cases 0 Inducted is this printbut are data for:	Numb	er of Node	s <u>14</u> 1	Highest N	Node	148					
Number of Combination Load Cases D Inducted I: this prinbut as data 6:: XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Numb	er of Bern	ents 348	3 Highest B	Beam	383					
Number of Combination Load Cases D Inducted I: this prinbut as data 6.r: All The Whole Structure Inducted I: this prinbut as results for load cases: Image: Combination Acad Cases: Image: Combination Acad Cases: Image: Combination Acad Cases: Primary 1 DEAD LOAD: COUPMENT SELF WEIGHT Primary 2 UVE LOAD: COUPMENT SELF WEIGHT Primary 4 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 6 WIND LOAD WUX 1 ISA160X150X18 611000 1 ISA160X150X18 611000 1 ISA160X150X18 611000 1 ISA160X150X12 27.600 3 ISA160X150X12 27.600 4 ISA160X150X12 27.600 5 ISA10X120X10 23.300 </td <td><u></u></td> <td></td> <td>land C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u></u>		land C								
Included is this prinbut are class for load cases: Type Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 UVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WIX Primary 4 WIND LOAD WIX Primary 5 WIND LOAD WIX Primary 6 WIND LOAD WIX Primary 10 188450X150X18 15A160X150X18 61 1000 18854 2 18A160X150X18 61 3000 3 184160X150X112 34800 3 184160X150X12 34800 3 184160X150X12 27.800 4 18A10X120X12 27.800 5 18410X120X12				7000							
All The Whole Structure Included h this printed are results for load cases: Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 LIVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WULX Primary 4 WIND LOAD WULX Primary 5 WIND LOAD WULX Primary 6 WIND LOAD WULX Primary 6 WIND LOAD WULX 1 15A160X150X18 611000 1.81450X150X12 34.800 1.98243 2 15A160X150X12 34.800 3 15A160X150X12 34.800 4 15A160X150X12 27.600 5 15A120X120X12 27.600 6 15A120X120X12 27.600 7 <td>NUTTER</td> <td></td> <td></td> <td>2083 </td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NUTTER			2083	U						
All The Winole Structure Inducted in this printed are results for load cases: Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 UVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WUX Primary 4 WIND LOAD WUX Primary 5 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 5 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 7 WIND LOAD WUX Primary 6 WIND LOAD WUX Primary 7 WIND LOAD WUX 1 15A160X160X18 511000 1.8450X150X10 29200 1.85Ex3 442 263 56 570 3 15A160X160X12 34.800 1.19Ex3 208 0.01 16 934 STEEL 4 15A160X160X12 24.800 1.922.540 7.833 STEEL 6 15A120X120X8 18.800 4	Included	d in this w	intout are data i	њr:							
Type L/C Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 LIVE LOAD - EOUIPMENT SELF WEIGHT Primary 3 WIND LOAD WLX Primary 4 WIND LOAD WLX Primary 5 WIND LOAD WLX Primary 5 WIND LOAD WLX ANTENNA Section Area I// (cm*) J 1 ISA160X150X18 611000 188 E+3 442 263 56 570 STEEL 2 ISA160X150X18 43 000 1.46 E+3 376 344 32 906 STEEL 3 ISA160X150X10 29 200 101 E+3 308 001 16 934 STEEL 4 ISA160X150X10 29 200 101 E+3 308 001 16 933 STEEL 5 ISA120X120X10 23 300 694.498 132 540 7 833 STEEL 6 ISA120X120X10 23 300 691.496 155 D98 13 478 STEEL 7 ISA10X120X10 23 300											
Type L/C Name Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 LIVE LOAD - EOUIPMENT SELF WEIGHT Primary 3 WIND LOAD WLX Primary 4 WIND LOAD WLX Primary 5 WIND LOAD WLX Primary 5 WIND LOAD WLX ANTENNA Section Area I// (cm*) J 1 ISA160X150X18 611000 188 E+3 442 263 56 570 STEEL 2 ISA160X150X18 43 000 1.46 E+3 376 344 32 906 STEEL 3 ISA160X150X10 29 200 101 E+3 308 001 16 934 STEEL 4 ISA160X150X10 29 200 101 E+3 308 001 16 933 STEEL 5 ISA120X120X10 23 300 694.498 132 540 7 833 STEEL 6 ISA120X120X10 23 300 691.496 155 D98 13 478 STEEL 7 ISA10X120X10 23 300											
Primary 1 DEAD LOAD - TOWER SELF WEIGHT Primary 2 UVELOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WLX Primary 4 WIND LOAD WLZ Primary 6 WIND LOAD WLZ Primary 6 WIND LOAD WLX Primary 6 WIND LOAD WLX ANTENNA Section Properties 1 ISA160X150X18 61000 1 ISA160X150X18 61000 2 ISA160X150X15 43000 3 ISA160X150X12 34800 3 ISA160X150X12 34800 4 ISA160X150X12 34800 5 ISA120X120X12 27.800 6 ISA120X120X12 27.800 7 ISA120X120X10 23.300 6 ISA100X160X18 18.800 10 ISA60X60K6 9.200 9 ISA60X60K6 9.200 10 ISA60X60K6 9.200 10 ISA60X60X6 5.750 <				<u>'s for load ca</u>							
Primary 2 LIVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WULX Primary 4 WIND LOAD WULX Primary 5 WIND LOAD WULX ANTENNA Section Properties (cm ²) (cm ²) Material 1 ISA150X150X18 61 D00 1.88E+3 442 263 56 570 STEEL 2 ISA150X150X18 61 D00 1.88E+3 442 263 56 570 STEEL 3 ISA150X150X16 43 D00 1.46E+3 376 344 32 906 STEEL 4 ISA150X150X15 43 D00 1.18E+3 32 906 STEEL 5 ISA120X120X10 23 300 501.465 155 D98 13 478 STEEL 6 ISA120X120X10 23 300 504.498 132 540 7 833 STEEL 7 ISA120X120X10 23 300 504.498 132 540 STEEL 8 ISA10X120X10 23 300 504.498 STEEL 13 486 9 ISA20X120X10	1 1	ype	80		1431						
Primary 2 LIVE LOAD - EQUIPMENT SELF WEIGHT Primary 3 WIND LOAD WULX Primary 4 WIND LOAD WULX Primary 5 WIND LOAD WULX ANTENNA Section Properties Prop Section Area (cm ²) (cm ²) (cm ²) Material 1 ISA150X150X18 61 D00 1.85E+3 442 263 56 570 STEEL 2 ISA150X150X15 43 D00 1.45E+3 376 344 32 906 STEEL 3 ISA150X150X15 43 D00 1.45E+3 368 001 16.934 STEEL 4 ISA150X150X10 29 200 1.01E+3 308 001 16.934 STEEL 5 ISA120X120X10 23 300 604.698 9.833 STEEL 6 ISA120X120X10 23 300 604.48 9.833 STEEL 7 ISA120X120X10 23 300 604.48 9.833 STEEL 8 ISA100X120X8 18.800 414.192 107.904 4.02	Pri	imarv	1	DEAD LO	DAD - TOWE	R SELF WE	IGHT				
Primary 4 WIND LOAD WLZ Primary 5 WIND LOAD WLX ANTENNA Section Properties Prop Section Area (m ²) Image: Mathematical and the mathematis and the mathematical and the mathemathematical and the mathem		/									
Primary 5 WIND LOAD WILX ANTENNA Section Properties Prop Section Area (cm ²) (cm ²) (cm ²) (cm ²) 1 ISA160X150X18 61 000 1.68E+3 442.263 66.570 STEEL 2 ISA160X150X15 43 000 1.46E+3 376.344 32.906 STEEL 3 ISA160X150X12 34.800 1.19E+3 206.048 9.833 STEEL 4 ISA160X150X10 29.200 1.01E+3 206.048 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 6 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 7 ISA100X100X8 15.400 236.028 60.319 3.345 STEEL 9 ISA00X100X8 15.400 236.028 60.319 3.345 STEEL 10 ISA00X60X6 9.290 91.201 23.420 1.130 STEEL <td< td=""><td>Pri</td><td>imary</td><td>3</td><td>VANDLC</td><td>) AD WLX</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Pri	imary	3	VANDLC) AD WLX						
Section Properties Prop Section Area (cm ²) (cm ²) (cm ²) (cm ²) Material 1 ISA150X150X18 51 D00 1.88E+3 442 203 56 570 STEEL 2 ISA150X150X15 43 D00 1.46E+3 376 344 32 906 STEEL 3 ISA150X150X15 43 D00 1.46E+3 376 344 32 906 STEEL 4 ISA150X150X10 29 200 1.01E+3 308 D01 16.934 STEEL 5 ISA120X120X12 27 800 591.465 155 D98 13.478 STEEL 6 ISA120X120X10 23 300 604.598 132 540 7.833 STEEL 7 ISA120X120X10 23 300 604.598 132 540 7.833 STEEL 8 ISA100X100X8 15.400 236 .028 60 3191 3.345 STEEL 9 ISA00X90X8 13.800 169.724 43 580 3.004 STEEL 10 ISA60X60X6 9.290 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-								
Prop Section Area (cm ²) Im (cm ²) Im (cm ²) J (cm ²) Material 1 ISA150X150X18 51 D00 1.68E+3 442 263 56 570 STEEL 2 ISA150X150X15 43 000 1.45E+3 376 344 32 906 STEEL 3 ISA150X150X15 43 000 1.19E+3 308 001 16 934 STEEL 4 ISA150X150X10 29 200 101E+3 260 488 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155 098 13.478 STEEL 6 ISA120X120X10 23.000 604.598 132.540 7.833 STEEL 7 ISA120X120X8 18.800 414.192 107.904 4028 STEEL 8 ISA100X100X8 15.400 236.028 33.046 STEEL 9 ISA400X90X8 13.800 169.724 43.580 3.004 STEEL 10 ISA400X60X6 5.750 31.745 8.071 0.4908 S	Pri	imary	5	VUNDLO	IAD WLX AN	ITENNA					
Prop Section Area (cm ²) Im (cm ²) Im (cm ²) J (cm ²) Material 1 ISA150X150X18 51 D00 1.88E+3 442.263 56.570 STEEL 2 ISA150X150X15 43 D00 1.45E+3 376.344 32.906 STEEL 3 ISA160X150X15 43 D00 1.45E+3 308.001 16.934 STEEL 4 ISA150X150X10 29.200 D1D1E+3 260.488 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 6 ISA120X120X10 23.300 504.598 132.540 7.833 STEEL 7 ISA120X120X8 18.800 414.192 107.904 40.28 STEEL 8 ISA100X100X8 15.400 236.002 3.045 STEEL 10 9 ISA400X60K6 9.290 91.201 23.420 1.130 STEEL 10 ISA400X60K6 5.680 20.764 5.489 0.698<											
Prop Section Area (cm ²) Im (cm ²) Im (cm ²) J (cm ²) Material 1 ISA150X150X18 51 D00 1.88E+3 442.263 56.570 STEEL 2 ISA150X150X15 43 D00 1.45E+3 376.344 32.906 STEEL 3 ISA160X150X15 43 D00 1.45E+3 308.001 16.934 STEEL 4 ISA150X150X10 29.200 D1D1E+3 260.488 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 6 ISA120X120X10 23.300 504.598 132.540 7.833 STEEL 7 ISA120X120X8 18.800 414.192 107.904 40.28 STEEL 8 ISA100X100X8 15.400 236.002 3.045 STEEL 10 9 ISA400X60K6 9.290 91.201 23.420 1.130 STEEL 10 ISA400X60K6 5.680 20.764 5.489 0.698<	Sect	tion P	ropertie	s							
(cm ²) 1 ISA150X150X18 511000 1.68E+3 442.263 56.570 STEEL 2 ISA150X150X16 43.000 1.45E+3 376.344 32.906 STEEL 3 ISA150X150X112 34.800 1.19E+3 308.001 16.934 STEEL 4 ISA150X150X10 29.200 1.01E+3 260.468 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 6 ISA120X120X10 23.300 504.568 132.540 7.833 STEEL 7 ISA120X120X8 18.800 414.192 107.904 4.028 STEEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEEL 9 ISA60X60X6 9.290 91.201 23.420 1.130 STEEL 10 ISA60X60X6 5.680 20.764 5.489 0.698 STEEL <td< th=""><th></th><th></th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>				<u> </u>							
1 ISA150X150X18 51 000 1.68E+3 442 263 56.570 STEEL 2 ISA150X150X15 43 000 1.45E+3 376.344 32 906 STEEL 3 ISA150X150X15 43 000 1.45E+3 376.344 32 906 STEEL 4 ISA150X150X10 29 200 1.01E+3 260.468 9.833 STEEL 5 ISA120X120X12 27.600 591.465 155.098 13.478 STEEL 6 ISA120X120X10 23.300 504.598 132.540 7.833 STEEL 7 ISA120X120X8 18.800 414.192 107.904 4.028 STEEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEEL 9 ISA90X90X8 13.800 169.724 43.580 3.004 STEEL 10 ISA60X80X6 9.290 91.201 23.420 1.130 STEEL 12 ISA60X60X6 5.680 20.764 5.489 0.698	riop) °		0.000	1	1		Material	-		
2 ISA150X150X15 43 000 1.45E+3 376 344 32 906 STEEL 3 ISA150X150X12 34 800 1.19E+3 308 001 16 934 STEEL 4 ISA150X150X10 29 200 1.01E+3 260.468 9.833 STEEL 5 ISA120X120X12 27.600 591.465 165.098 13.478 STEEL 6 ISA120X120X10 23.300 504.698 132.540 7.833 STEEL 7 ISA120X120X10 23.300 504.698 132.540 7.833 STEEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEEL 9 ISA90090X8 13.800 169.724 43.580 3.004 STEEL 10 ISA80080K6 9.290 91.201 23.420 1.130 STEEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEEL 12 ISA60X60X6 5.680 20.764 5.489 0.698 STEEL 13 ISA60X60X6 5.680 20.764 5.489 0	1	10.04.000						Material	7		
3 ISA150X150X12 34,800 1.19E+3 308,001 16,934 STEEL 4 ISA150X150X10 29,200 1.01E+3 260,468 9,833 STEEL 5 ISA120X120X12 27,600 591,465 155,098 13,478 STEEL 6 ISA120X120X10 23,300 504,598 132,540 7,833 STEEL 7 ISA120X120X18 18,800 414,192 107,904 4,028 STEEL 8 ISA100X100X8 15,400 236,028 60,319 3,345 STEEL 9 ISA900X90X8 13,800 169,724 43,580 3,004 STEEL 10 ISA90X90X8 13,800 169,724 43,580 3,004 STEEL 11 ISA90X60X6 9,290 91,201 23,420 1,130 STEEL 12 ISA60X60X6 5,680 20,764 5,489 0,698 STEEL 13 ISA50X50X6 5,680 20,764 5,489 0,698 STEEL <td></td> <td>I ISA1608</td> <td></td> <td>(am²)</td> <td>(cm*)</td> <td>(cm.*)</td> <td>(cm*)</td> <td></td> <td>]</td> <td></td> <td></td>		I ISA1608		(am²)	(cm*)	(cm.*)	(cm*)]		
5 ISA120X120X12 27.600 591.465 155.098 13.478 STEL 6 ISA120X120X10 23.300 504.698 132.540 7.833 STEL 7 ISA120X120X8 18.800 414.192 107.904 4.028 STEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEL 9 ISA90X90X8 13.800 169.724 43.580 3.004 STEL 10 ISA60X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X50X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA160x150x10 29.200 1.01E+3 260.468 9.833 STEL			15DX 18	(om²) 51.000	(am [*]) 1.68E+3	(ст.*) 442.263	(am*) 56.570	STEEL			
6 ISA120X120X10 23 300 504.598 132 540 7.833 STEL 7 ISA120X120X8 18 800 414.192 107 904 4028 STEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEL 9 ISA90X90X8 13.800 169.724 43.580 3.004 STEL 10 ISA80X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X50X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA10x150x10 29.200 1.016+3 260.468 9.833 STEL 16 ISA100x150x12 40.900 2.056+3 437.536 19.814 STEL	2	ISA150X	150X 18 150X 15	(cm³) 51,000 43,000	(cm*) 1.68E+3 1.45E+3	(cm.*) 442.263 376.344	(cm*) 56.570 32.906	STEEL STEEL			
7 ISA120X120X8 18.800 414.192 107.904 4.028 STEL 8 ISA100X100X8 15.400 236.028 60.319 3.345 STEL 9 ISA900X90X8 13.800 169.724 43.580 3.004 STEL 10 ISA80X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X50X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA100x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x150x12 40.900 2.05E+3 437.536 19.814 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL <t< td=""><td>2 3 4</td><td>ISA150X ISA150X ISA150X</td><td>15DX 18 15DX 15 15DX 12 15DX 10</td><td>(cm³) 51,000 43,000 34,800 29,200</td><td>(am⁴) 1.68E+3 1.45E+3 1.19E+3 1.01E+3</td><td>(cm.*) 442.263 376.344 308.001 260.468</td><td>(cm*) 56.570 32.906 16.934 9.833</td><td>STEEL STEEL STEEL STEEL</td><td></td><td></td><td></td></t<>	2 3 4	ISA150X ISA150X ISA150X	15DX 18 15DX 15 15DX 12 15DX 10	(cm ³) 51,000 43,000 34,800 29,200	(am ⁴) 1.68E+3 1.45E+3 1.19E+3 1.01E+3	(cm.*) 442.263 376.344 308.001 260.468	(cm*) 56.570 32.906 16.934 9.833	STEEL STEEL STEEL STEEL			
8 ISA100X100X8 15.400 236.028 60.319 3.345 STEL 9 ISA90X90X8 13.800 169.724 43.580 3.004 STEL 10 ISA90X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA60X60X5 5.750 31.745 8.071 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X50X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA150x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL	2 3 4 5	ISA150X ISA150X ISA150X ISA150X	15DX 18 15DX 15 15DX 12 15DX 12 15DX 10 12DX 12	(cm ³) 51,000 43,000 34,800 29,200 27,600	(am [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465	(cm*) 442.263 376.344 308.001 260.468 155.098	(om*) 56.570 32.906 16.934 9.833 13.478	STEEL STEEL STEEL STEEL STEEL			
9 ISA90X90X8 13800 169.724 43580 3.004 STEL 10 ISA80X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X60X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA160x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL <t< td=""><td>2 3 4 5 6</td><td>ISA150X ISA150X ISA150X ISA120X ISA120X</td><td>15DX 18 15DX 15 15DX 12 15DX 12 15DX 10 12DX 12 12DX 10</td><td>(cm³) 51,000 43,000 34,800 29,200 27,600 23,300</td><td>(om[*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.598</td><td>(cm[*]) 442.263 376.344 308.001 260.468 155.098 132.540</td><td>(em*) 56,570 32,906 16,934 9,833 13,478 7,833</td><td>STEEL STEEL STEEL STEEL STEEL STEEL</td><td></td><td></td><td></td></t<>	2 3 4 5 6	ISA150X ISA150X ISA150X ISA120X ISA120X	15DX 18 15DX 15 15DX 12 15DX 12 15DX 10 12DX 12 12DX 10	(cm ³) 51,000 43,000 34,800 29,200 27,600 23,300	(om [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.598	(cm [*]) 442.263 376.344 308.001 260.468 155.098 132.540	(em*) 56,570 32,906 16,934 9,833 13,478 7,833	STEEL STEEL STEEL STEEL STEEL STEEL			
10 ISA80X80X6 9.290 91.201 23.420 1.130 STEL 11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X60X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X60X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA160x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.346 STEL 17 ISA20x20x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL <td>2 3 4 5 6 7</td> <td>ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X</td> <td>150X 18 150X 15 150X 12 150X 10 120X 12 120X 12 120X 10 120X 8</td> <td>(cm³) 51,000 43,000 29,200 27,600 23,300 18,800</td> <td>(om[*]) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 591.465 504.598 414.192</td> <td>(cm[*]) 442.263 376.344 308.001 260.468 155.098 132.540 107.904</td> <td>(om*) 56,570 32,906 16,934 9,833 13,478 7,833 4,028</td> <td>STEEL STEEL STEEL STEEL STEEL STEEL STEEL</td> <td></td> <td></td> <td></td>	2 3 4 5 6 7	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 12 120X 10 120X 8	(cm ³) 51,000 43,000 29,200 27,600 23,300 18,800	(om [*]) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 591.465 504.598 414.192	(cm [*]) 442.263 376.344 308.001 260.468 155.098 132.540 107.904	(om*) 56,570 32,906 16,934 9,833 13,478 7,833 4,028	STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
11 ISA70X70X6 8.060 60.196 15.417 0.986 STEL 12 ISA60X660X5 5.750 31.745 8.071 0.490 STEL 13 ISA60X660X5 5.750 31.745 8.071 0.490 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA150x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 460.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 6 7 8	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 8 100X8	(am ²) 51,000 43,000 29,200 27,600 23,300 18,800 15,400	(om [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.598 414.192 236.028	(cm [*]) 442.263 376.344 308.001 260.468 155.098 132.540 107.904 60.319	(om*) 565570 32,906 16,934 9,833 13,478 7,833 4,028 3,345	STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
13 ISA60X50X6 5.680 20.764 5.489 0.698 STEL 14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA100x150x10 29.200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 6 7 8 9	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA100X ISA90X9	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 10 120X8 100X8 00X8	(cm ³) 51,000 43,000 29,200 27,600 23,300 18,800 15,400 13,800	(am ²) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.598 414.192 236.028 169.724	(cm*) 442 263 376 344 308 001 260 468 155 098 132 540 107 904 60 319 43 580	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
14 ISA20x20x3 1.120 0.634 0.172 0.035 STEL 15 ISA150x150x10 29 200 1.01E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 8 7 8 9 10	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA100X ISA90X9 ISA80X8	150X 18 150X 15 150X 12 150X 10 120X 10 120X 10 120X 8 100X8 00X8 00X6	(am ³) 51,000 43,000 34,800 29,200 27,600 23,300 18,800 15,400 13,800 9,290	(cm [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.998 414.192 236.028 169.724 91.201	(orr.*) 442 263 376 344 308 D01 260 468 155 D98 132 540 107 904 60 319 43 580 23 420	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
15 ISA150x150x10 29 200 1 D1E+3 260.468 9.833 STEL 16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 6 7 8 9 10 11	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA100X ISA90X9 ISA80X8 ISA70X7	150X 18 150X 15 150X 12 150X 10 120X 12 120X 12 120X 10 120X8 100X8 100X8 00X8 00X6 00X6	(am ³) 51,000 43,000 34,800 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060	(cm [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 591.465 504.598 414.192 236.028 169.724 91.201 60.196	(orr.*) 442 263 376 344 308 001 260 468 155 098 132 540 107 904 60 319 43 580 23 420 15 417	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
16 ISA100x100x8 15.400 236.028 60.319 3.345 STEL 17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 7 8 9 10 11 12 13	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA100X ISA60X8 ISA70X7 ISA60X6 ISA50X5	150X 18 150X 15 150X 12 150X 10 120X 10 120X 10 120X 8 100X8 00X8 00X8 00X8 00X6 00X5 00X6	(cm ³) 51,000 43,000 34,800 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680	(cm ⁴) 1.68E43 1.46E43 1.19E43 1.01E43 591.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764	(cm*) 442 263 376 344 308 001 260 468 155 098 132 540 107 904 60 319 43 580 23 420 15.417 8 071 5.489	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
17 ISA200x150x12 40.900 2.05E+3 437.536 19.814 STEL 18 ISA110x110x12 25.100 460.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.698 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 6 7 8 9 10 11 12 13 14	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA120X ISA100X9 ISA60X8 ISA70X7 ISA60X6 ISA50X5 ISA20x2	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 8 100X 8 00X 8 00X 8 00X 6 00X 7 00X 7 0	(cm ³) 51,000 43,000 34,800 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680 1,120	(cm ⁴) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 591.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634	(cm*) 442 263 376 344 308 001 260 468 155 098 132 540 107 904 60 319 43 580 23 420 15.417 8 071 5.489 0.172	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.035	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
18 ISA110x110x12 25.100 450.033 117.653 12.326 STEL 19 ISA120x120x10 23.300 504.698 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 8 7 8 9 10 11 12 13 14 15	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA100X ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 8 100X8 0X8 0X8 0X6 0X6 0X6 0X6 0X6 0X6 0X6 0X7 0X7 0X8 0X8 0X8 0X8 0X8 0X8 0X8 0X8	(cm ³) 51,000 43,000 34,800 29,200 27,600 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,760 5,760 5,760 5,760 1,120 29,200	(cm [*]) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 591.465 504.598 414.192 236.028 169.724 91.201 60.196 31.746 20.764 0.634 1.01E+3	(cm*) 442 263 376 344 308 D01 260.468 155 D98 132 540 107.904 60 319 43 580 23.420 15.417 8 D71 8 J71 5.489 0.172 260.468	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.035 9.833	STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL			
19 ISA120x120x10 23.300 504.598 132.540 7.833 STEL 20 ISA100x100x12 22.600 333.243 86.784 11.174 STEL	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA100X ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA150X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 8 100X8 00X8 00X8 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X6 00X8 00X	(cm ³) 51,000 43,000 34,800 29,200 27,800 23,300 15,400 13,800 9,290 8,060 5,750 5,680 5,680 5,680 1,1,20 29,200 15,400	(cm [*]) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 501.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634 1.01E+3 236.028	(cor.*) 442 263 376 344 308 D01 260.468 155 D98 132 540 107.904 60 319 43 580 23.420 15.417 8.D71 5.489 0.172 260.468 60 319	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.035 9.833 3.345	STEEL			
20 ISA100x100x12 22.600 333.243 86.784 11.174 STEEL	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA100X ISA60X6 ISA60X6 ISA60X6 ISA60X6 ISA60X6 ISA50X2 ISA150X ISA100X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 10 120X 8 100X 8 00X 8 00X 6 00X 6 100X 8 100X 8 100	(cm ³) 51,000 43,000 34,800 29,200 27,800 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680 1,120 1,120 15,400 15,400 40,900	(cm [*]) 1.68E+3 1.45E+3 1.19E+3 1.01E+3 501.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634 1.01E+3 236.028 2.05E+3	(cm*) 442 263 376 344 308 001 260.468 155 098 132 540 107 904 60 319 43 580 23 420 15.417 8 071 5.489 0.172 260.468 60 319 437 536	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.698 0.035 9.833 3.345 19.814	STEEL			
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA150X ISA100X ISA100X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 10 120X 8 100X 8	(cm ³) 51,000 43,000 34,800 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680 1,120 29,200 29,200 15,400 40,900 25,100	(cm [*]) 1.68E+3 1.46E+3 1.19E+3 1.01E+3 501.465 504.698 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634 0.634 1.01E+3 236.028 2.05E+3 450.033	(cm*) 442 263 376 344 308 D01 260 468 155 D98 132 540 107 904 60 319 43 580 23 420 15 417 8 D71 5 489 0.172 260 468 60 319 437 536 117 653	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.480 0.698 0.035 9.833 3.345 19.814 12.326	STEEL			
	2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19	ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA120X ISA100X ISA60X6 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA150X ISA100X ISA110X	150X 18 150X 15 150X 12 150X 10 120X 10 120X 10 120X 8 100X8 00X8 00X8 00X8 00X6 00X6 00X6 00X5 00X6 150x10 100x8 150x12 110x12 120x10	(cm ³) 51,000 43,000 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680 1,120 29,200 15,400 15,400 15,400 25,100 25,100 23,300	(cm ⁴) 1.68E43 1.46E43 1.19E43 1.01E43 591.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634 1.01E43 20.6E43 2.05E43 450.033 504.598	(cm*) 442 263 376 344 308 001 260 468 155 D98 132 540 107 904 60 319 43 580 23 420 15 489 0.172 260 468 60 319 437 536 117 853 132 540	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.035 9.833 3.345 19.814 12.326 7.833	STEEL STEEL			
22 ISA120x120x8 18.800 414.192 107.904 4.028 STEEL	2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19	ISA150X ISA150X ISA150X ISA150X ISA120X ISA120X ISA120X ISA120X ISA120X ISA100X ISA60X6 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA50X5 ISA150X ISA110X	150X 18 150X 15 150X 12 150X 10 120X 12 120X 10 120X 8 100X 8 00X 8 00	(cm ³) 51,000 43,000 29,200 27,600 23,300 18,800 15,400 13,800 9,290 8,060 5,750 5,680 1,120 29,200 15,400 15,400 15,400 25,100 25,100 23,300	(cm ⁴) 1.68E43 1.46E43 1.19E43 1.01E43 591.465 504.598 414.192 236.028 169.724 91.201 60.196 31.745 20.764 0.634 1.01E43 20.6E43 2.05E43 450.033 504.598	(cm*) 442 263 376 344 308 001 260 468 155 D98 132 540 107 904 60 319 43 580 23 420 15 489 0.172 260 468 60 319 437 536 117 853 132 540	(cm*) 56.570 32.906 16.934 9.833 13.478 7.833 4.028 3.345 3.004 1.130 0.986 0.490 0.698 0.035 9.833 3.345 19.814 12.326 7.833	STEEL STEEL			

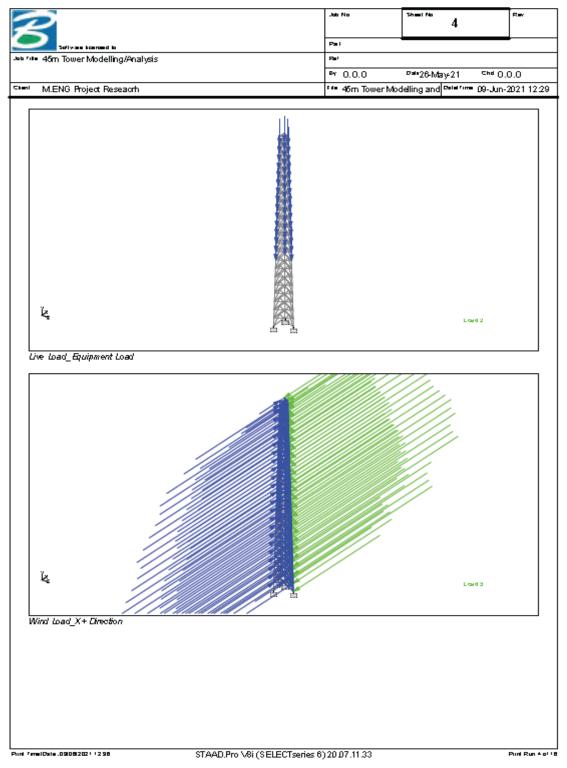
Puni femalOsia.090820211298

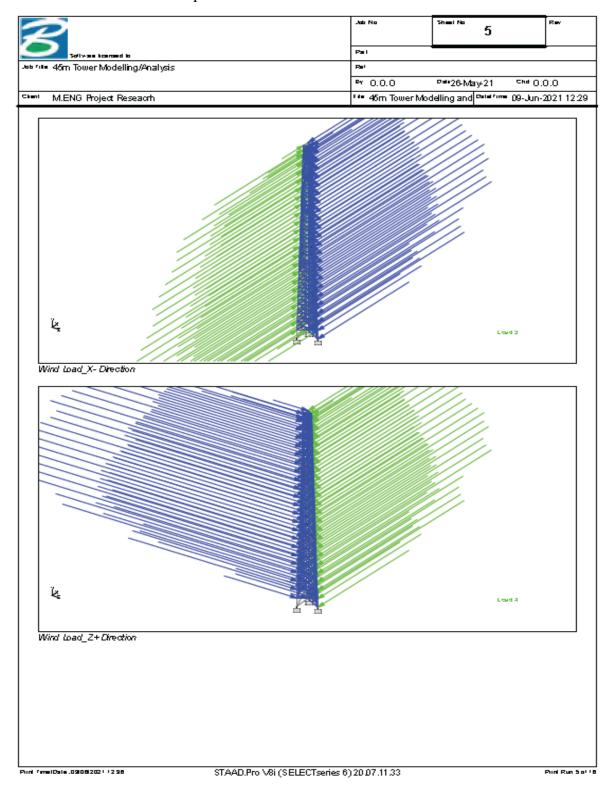
STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

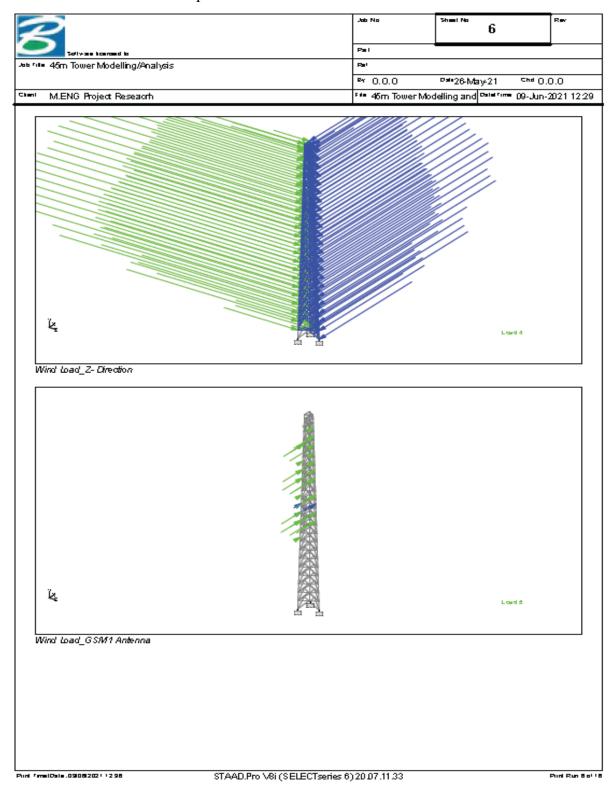
Puni Run 1 el 18

2	Jab No	^{3h=1 No} 2	R	
Software incorrect in	Pat			
- 46m Tower Modelling/Analysis	Pat .			
	₩ 0.0.0	¤≢26-May-21	Chd 0.0.0	D
Chemi M.ENG Project Research	👫 46m Tower Moo	lelling and ^{Date form}	09-Jun-202	21 12 29

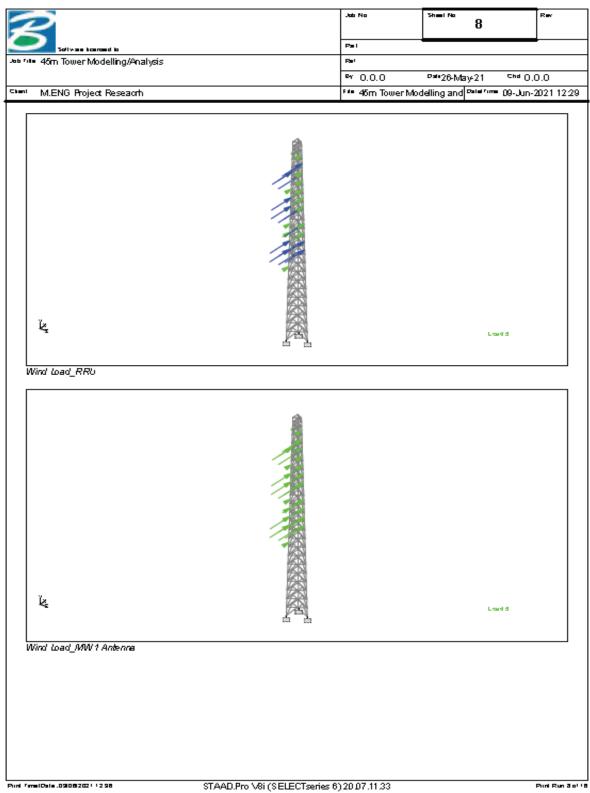

Section Properties Cont...


Prop	Section	Area	h//	Ŀ	J	Material
		(cm²)	(cm*)	(cm*)	(cm*)	
23	\$A125x95x8	17.000	335.972	72.076	3.686	STEEL
24	ISA100x100x7	13.700	208.550	54,556	2.247	STEEL
25	ISA100x100x6	11.700	182.269	46.515	1.418	STEEL
26	ISA100x75x6	10.100	128.549	26.746	1.238	STEEL
27	ISA75x75x6	8,660	74.692	19.074	1.058	STEEL
28	ISA65x65x5	6.250	40.755	10.335	0.531	STEEL
29	ISA60x60x4	4.710	25.861	6.771	0.252	STEEL
30	ISA30x30x3	1.730	2.307	0.610	0.053	STEEL
31	ISA90x90x6	10.500	131.495	33,683	1274	STEEL
32	ISA80x80x6	9.290	91.201	23.420	1.130	STEEL
33	ISA75x75x5	7 270	63.504	16.152	0.615	STEEL
34	ISA70x70x5	6.770	51.254	13,065	0.573	STEEL
35	ISA60x60x5	5.750	31.745	8D71	0.490	STEEL
36	ISA50x50x3	2,950	11.347	2,953	0.089	STEEL
37	ISA45x45x3	2.640	8.196	2.128	0800	STEEL
38	ISA200x150x10	34,300	1.73E+3	370.155	11.500	STEEL
39	ISA130x130x10	25.100	650.783	166.674	8.500	STEEL
40	ISA130x130x9	22,900	589.885	154.135	6.209	STEEL
41	ISA130x130x8	20.300	532.234	136.463	4.369	STEEL
42	ISA125x95x6	12,900	258.549	55.548	1.562	STEEL
43	ISA40x40x3	2.340	5.679	1.485	0.071	STEEL
44	ISA35x35x3	2.030	3.748	0.978	0.062	STEEL
45	ISA45x45x4	3.470	10.576	2.756	D.188	STEEL
46	ISA50x50x4	3,880	14.695	3.829	0.209	STEEL
47	ISA70x46x5	5.520	31.600	5.360	0.469	STEEL
48	IS A65x55x5	5.270	24.124	6.215	0.448	STEEL
49	ISA75x50x5	6.020	40.283	7.233	0.510	STEEL
50	ISA25x25x3	1.410	1.303	0.338	0.044	STEEL


Puni femalOsia.09082021 1298


STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Puni Run 2 ol 18



Jab No Shaal No Rev 7 Pat 🏎 🗤 46m Tower Modelling/Analysis Re! ™ 0.0.0 Chd 0.0.0 ¤≢•26-May-21 Charl M.ENG Project Research file 46m Tower Modelling and Cale films 09-Jun-2021 12:29 Ë, Load 3 Wind Load_GSM2 Antenna k, Load S Wind Load_GSM3Antenna STAAD.Pro V8i (SELECTseries 6) 20 07.11.33 Puri femalData .090820211298 Puni Run 1 ol 18

2						Jab No.		Shaal No	9	Rev	
2	livan koncerd k					Pat					
• 45m Te	ower Modelling.	/Analysis				Rei					
						PY 0.0.1	D	¤≢•26-	May-21 °	.⊧d 0.0.0	
MENO	3 Project Resea	acth							nd Caleforne DQ	. Jun-2021 12	220
101.0140	o mojea neser	adm				-611	lower	oodaning al	10 D	-5511-252112	. 20
ئلار											
											1 1
	d_MW2Anteni ation Ra										
	-		Actual	Allovable	Ratio	Clause	LVC	Ax	Þ	ly]
Jtiliz	ation Ra	<u>tio</u>	Actual . Ratio		Ratio (Act./Allow.)	Clause	L/C	Ax (am²)	12 (am*)	ly (cm*)	
Jtiliz	- ation Ra Analysis	tio Design				Clause BS-4.7 (C)	L/C			I	(a
Jtiliz Beam	- ation Ra Analysis Property	tio Design Property	Ratio	Ratio	(Act./Allow.)			(am²)	(am [*])	(cm [*])	(a
Jtiliz Beam 19	Aralysis Property ISA60X50X6	tio Design Property ISA20x20x3	Ratio 0.284	Ratio 1.000	(Act./Allow.) 0.284	BS-4.7 (C)	3	(cm²) 1.120	(cm*) 0.159	(cm*) 0.647	(ä
Jtiliz Beam 19 21	Aralysis Aralysis Property ISA60X50X6 ISA150X150	tio Design Property ISA20x20x3 ISA150x150b	Ratio 0.284 0.948	Ratio 1.000 1.000	(Act./Allow.) 0.284 0.948	BS-4.7 (C) BS-4.8.2.2	3	(cm ³) 1.120 29.200	(cm*) 0.159 259.308	(cm ⁴) 0.647 1.02E+3	(q
Jtiliz Beam 19 21 22	Analysis Property ISA60X50X6 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x150x ISA100x100x	Ratio 0.284 0.948 0.921	Ratio 1.000 1.000 1.000	(Act./Allow.) 0.284 0.948 0.921	BS4.7 (C) BS4.8.22 BS4.8.3.3.1	3 4 4	(cm ³) 1.120 29.200 15.400	(cm*) 0.159 259.308 59.766	(cm ⁴) 0.647 1.02E+3 236.581	
Jtiliz Beam 19 21 22 23	Analysis Property ISA60X50X6 ISA150X150 ISA150X150 ISA150X150 ISA150X150	tio Design Property ISA20x20x3 ISA150x150x ISA100x100x ISA200x150x	Ratio 0.284 0.948 0.921 0.862	Ratio 1 000 1 000 1 000 1 000 1 000 1 000	(Act./Allow.) 0.284 0.948 0.921 0.862	BS4.7 (C) BS4.8.2.2 BS4.8.3.3.1 BS4.8.3.3.1	3 4 4 4	(cm ³) 1.120 29.200 15.400 40.900	(om ⁴) 0.159 259.308 59.766 434.669	(cm*) 0.647 1.02E+3 236.581 2.05E+3	
Jtiliz Beam 19 21 22 23 24 25 26	Analysis Property ISA60X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964	Ratio 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(Act./Allow.) 0.284 0.948 0.921 0.862 0.995 0.991 0.964	BS4.7 (C) BS4.8.22 BS4.8.3.3.1 BS4.8.3.3.1 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4	(cm ³) 1.120 29.200 15.400 40.900 25.100 23.300 22.600	(om*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937	(cm ⁴) 0.647 1.02E+3 236.581 2.05E+3 451.681 506.264 334.090	
Jtiliz Beam 19 21 22 23 24 25 26 26 27	Analysis Propetty ISA60X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA00x20x3 ISA150x150b ISA100x100b ISA110x110x ISA120x120b ISA120x120b ISA100x100b ISA90x90x11	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999	Ratio 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(Act./Allow.) 0284 0948 0921 0862 0995 0991 0964 0999	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.32.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4	(cm ³) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862	(cm*) 0.647 1.02E+3 236.581 2.05E+3 451.661 506.264 334.090 238.720	
Jtiliz Beam 19 21 22 23 24 25 26 27 28	Aralysis Propetty ISA60X50X66 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x150b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA20x120b ISA120x120b	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956	Ratio 1.000	(Act./Allow) 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800	(em*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491	(cm ⁴) 0.647 1.02E43 236.581 2.05E43 451.661 506.264 334.090 238.720 415.606	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 29	ation Ra Aralysis Propetty ISA60X50X66 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x150x ISA100x100x ISA100x100x ISA100x100x ISA120x120x ISA120x120x ISA120x120x ISA120x120x ISA120x120x	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956 0.954	Ratio 1.000	(Act./Allow) 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956 0.954	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 25.100 23.300 22.600 20.200 18.800 17.000	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442	(em*) 0.647 1.02E+3 236.681 2.05E+3 451.661 506.264 334.090 238.720 415.606 336.605	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 29 30	ation Ra Analysis Propetty ISA500000 ISA150000 ISA150000 ISA150000 ISA150000 ISA150000 ISA150000 ISA150000 ISA1500000 ISA1500000 ISA1500000 ISA1500000 ISA1500000 ISA15000000 ISA15000000 ISA15000000 ISA150000000 ISA1500000000 ISA1500000000 ISA15000000000000000000000000000000000000	tio Design Property ISA20x20x3 ISA150x150b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA00x90x12 ISA120x120b ISA120x120b ISA120x120b	Ratio 0.284 0.948 0.921 0.962 0.995 0.991 0.964 0.999 0.956 0.954 0.954	Ratio 1 000	(Act./Allow) 0.284 0.948 0.921 0.862 0.995 0.995 0.964 0.956 0.955 0.954 0.954	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 25.100 23.300 22.600 22.600 18.800 17.000 15.400	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766	(cm ⁴) 0.647 1.02E+3 236.681 2.05E+3 451.661 506.264 334.090 238.720 415.606 336.605 236.681	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 28 29 30 31	Analysis Property ISA5000008 ISA15000560 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA200x1500 ISA100x1000 ISA200x10100 ISA200x10100 ISA120x1200 ISA120x1200 ISA120x1000 ISA100x1000	Ratio 0.284 0.948 0.921 0.962 0.995 0.991 0.964 0.999 0.956 0.954 0.941 0.957	Ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 991 0 964 0 999 0 956 0 954 0 941 0 957	BS4.7 (C) BS4.8.2.2 BS4.8.3.3.1 BS4.8.3.3.1 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 22.600 18.800 17.000 15.400 13.700	(cm*) 0.159 259.308 59.768 434.669 116.025 130.874 85.937 81.862 106.491 71.1442 59.766 53.709	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 2.05E+3 451.681 506.264 334.090 238.720 415.606 336.605 236.581 209.396	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 30 31 32	ation Ra Analysis Property ISA60X50X66 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x150b ISA100x100b ISA200x150b ISA100x100b ISA200x120b ISA120x120b ISA120x120b ISA120x120b ISA120x100b ISA100x100b ISA100x100b	Ratio 0.284 0.948 0.921 0.962 0.995 0.991 0.964 0.999 0.956 0.954 0.941 0.941 0.957 0.993	Ratio 1.000	(Act./Allow) 0284 0.948 0.921 0.862 0.995 0.991 0.964 0.964 0.956 0.954 0.954 0.957 0.993	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869	(err.*) 0.647 1.02E+3 236.581 2.05E+3 2451.681 506.284 334.090 238.720 415.606 336.605 236.681 209.396 182.915	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 30 31 32 33	ation Ra Analysis Property ISA60X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA20x90x11 ISA120x1200 ISA120x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.956 0.9564 0.9554 0.954 0.957 0.993 0.861	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 995 0 996 0 964 0 956 0 954 0 941 0 967 0 993 0 861	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.321 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 63.709 45.869 45.869	(err.*) 0.647 1.02E+3 236.581 2.05E+3 451.661 506.264 334.090 238.720 415.606 336.605 238.681 236.581 236.381 182.915 182.915	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 26 27 28 30 31 32 30 31 32 33 34	ation Ra Analysis Property ISA60X50X60 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA120X1200 ISA120X1200	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000	Ratio 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.966 0.956 0.954 0.957 0.993 0.861 0.969	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 991 0 964 0 999 0 956 0 954 0 944 0 944 0 944 0 945 0 944 0 945 0 965 0 861 0 969	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.321 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 16.400 13.700 11.700 11.700 10.100	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 63.709 45.869 45.869 26.180	(err.*) 0.647 1.02E+3 236.581 2.05E+3 451.661 506.264 334.090 238.720 415.606 336.605 238.681 236.581 236.581 239.386 182.915 182.915 182.915	
Jtiliz Beam 19 21 22 23 24 25 26 27 27 28 29 30 31 30 31 32 33 34 35	ation Ra Aralysis Propetty ISA60X50X6 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA150X150 ISA120X120 ISA120X120 ISA120X120 ISA120X120	tio Design Property ISA20x20x3 ISA150x150x ISA150x150x ISA100x100x ISA100x100x ISA120x120x ISA120x120x ISA120x120x ISA120x120x ISA120x100x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x75x6	Ratio 0.284 0.948 0.921 0.962 0.991 0.964 0.956 0.954 0.954 0.957 0.993 0.961 0.969 0.969	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 995 0 999 0 956 0 956 0 956 0 954 0 941 0 957 0 993 0 861 0 969 0 996	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 10.100 8.660	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869 45.869 45.869 26.180 18.713	(err.*) 0.647 1.02E+3 238.681 2.05E+3 451.661 506.264 334.000 238.720 415.606 338.605 238.581 209.396 182.915 182.915 182.915	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 28 28 29 30 31 31 32 30 31 33 34 35 36	ation Ra Analysis Propetty ISA600X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200	tio Design Property ISA20x20x3 ISA150x150b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA120x122b ISA120x122b ISA120x122b ISA120x120b ISA100x100b ISA100x100b ISA100x100b ISA100x75xf ISA75x75x6 ISA75x75x6	Ratio 0.284 0.948 0.921 0.962 0.995 0.995 0.956 0.956 0.954 0.941 0.957 0.941 0.957 0.993 0.861 0.969 0.955	Ratio 1.000	(Act./Allow) 0.284 0.948 0.921 0.862 0.995 0.994 0.996 0.956 0.956 0.954 0.954 0.941 0.957 0.993 0.861 0.969 0.955	BS4.7 (C) BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.23 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 5 5 5	(cm ²) 1.120 29.200 15.400 20.200 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 8.660 8.660	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 46.869 46.869 26.180 18.713 18.713	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 2.05E+3 4.05E	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 28 28 28 30 31 31 32 30 31 32 33 34 35 36 37	ation Ra Analysis Propetty ISA5000006 ISA1500006 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA1200000 ISA1200000 ISA1200000 ISA12000000 ISA12000000 ISA120000000 ISA12000000000000000000000000000000000000	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA120x1220 ISA125x95x4 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x75x6 ISA75x75x6 ISA75x75x6	Ratio 0.284 0.948 0.921 0.862 0.995 0.995 0.964 0.964 0.964 0.956 0.956 0.956 0.956 0.956 0.961 0.969 0.969 0.969 0.993	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 991 0 964 0 956 0 956 0 954 0 957 0 993 0 861 0 969 0 996 0 996 0 996 0 990 0 990	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.23 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 8.660 8.660 8.660	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869 45.869 26.180 18.713 18.713 18.713	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 4.05E	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 33 34 33 35 37 38	ation Ra Analysis Propetty ISA60X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA200x1500 ISA100x1000 ISA120x1200 ISA120x1200 ISA120x1000 ISA120x1000 ISA120x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x75x6 ISA75x75x6 ISA75x75x6 ISA75x75x6	Ratio 0.284 0.948 0.921 0.995 0.995 0.995 0.964 0.964 0.964 0.965 0.961 0.961 0.969 0.961 0.969 0.961 0.963 0.961	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 991 0 964 0 999 0 956 0 954 0 941 0 967 0 993 0 861 0 969 0 969 0 996 0 851 0 905	BS4.7 (C) BS4.8.3.3.1 BS4.8.3.3.1 BS4.8.3.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.2.2 BS4.8.3.3.1 BS4.8.3.3.1 BS4.8.3.3.1 BS4.8.3.3.1	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 8.660 8.660 8.660 6.250	(em*) 0.159 259.308 59.766 434.669 116.025 130.874 86.937 61.862 106.491 71.442 59.766 53.709 46.869 46.869 26.180 18.713 18.713 18.713 10.081	(err.*) 0.647 1.02E+3 236.581 2.05E+3 2451.681 506.284 334.080 238.720 415.606 336.605 236.681 209.396 182.915 182.	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39	ation Ra Analysis Propetty ISA60X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200	tio Design Property ISA20x20x3 ISA150x150 ISA100x100	Ratio 0.284 0.948 0.921 0.995 0.995 0.994 0.956 0.954 0.940 0.961 0.961 0.969 0.969 0.961 0.969 0.963 0.903 0.903 0.905	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 995 0 996 0 956 0 956 0 954 0 941 0 969 0 969 0 861 0 998 0 861 0 998 0 851 0 905 0 940	BS4.7 (C) BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 8.660 8.660 8.660 6.250 4.710	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 63.709 45.869 26.180 18.713 18.713 18.713 18.713 10.081 6.558	(err.*) 0.647 1.02E+3 236.581 2.05E+3 451.661 506.284 334.090 238.720 415.606 336.605 236.681 209.386 182.915 182.9	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	ation Ra Aralysis Propetty ISA600/500/6 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1500/1500 ISA1200/1200	tio Design Property ISA20x20x3 ISA150x150b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x100b ISA100x75x6 ISA75x75x6 ISA75x75x6 ISA75x75x6 ISA65x65x5 ISA85x65x5	Ratio 0.284 0.948 0.921 0.965 0.991 0.964 0.956 0.954 0.954 0.940 0.969 0.961 0.969 0.960 0.961 0.905 0.905 0.905 0.905 0.940 0.663	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 995 0 999 0 964 0 999 0 956 0 954 0 941 0 943 0 861 0 969 0 996 0 851 0 903 0 905 0 905 0 905 0 905	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 5	(cm ²) 1.120 29.200 15.400 20.200 23.300 22.600 20.200 18.800 17.000 16.400 13.700 11.700 11.700 11.700 10.100 8.660 8.660 8.660 8.660 4.710 4.710	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 63.709 45.869 45.869 26.180 18.713 18.713 18.713 18.713 18.713 10.081 6.558 6.558 6.558	(err.*) 0.647 1.02E+3 236.581 2.05E+3 451.661 506.264 334.090 238.720 415.606 336.605 236.581 209.396 182.915 182.9	
Jtiliz Beam 19 21 22 23 24 25 26 26 27 27 28 29 30 31 30 31 32 30 31 32 33 34 35 36 37 38 39 40 41	ation Ra Aralysis Propetty ISA60035006 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA150001500 ISA120001200 ISA120001200 ISA120000008 ISA0000008 ISA0000008	tio Design Property ISA20x20x3 ISA150x150x ISA150x150x ISA150x150x ISA150x150x ISA150x120x ISA120x120x ISA120x120x ISA120x120x ISA120x120x ISA120x120x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x100x ISA100x75x6 ISA75x75x6 ISA75x75x6 ISA75x75x6 ISA65x65x5	Ratio 0.284 0.948 0.921 0.962 0.995 0.991 0.964 0.956 0.954 0.954 0.941 0.969 0.965 0.969 0.969 0.969 0.903 0.905 0.940 0.9693	Ratio 1.000	(Act./Allow) 0 284 0 948 0 921 0 862 0 995 0 995 0 999 0 966 0 954 0 947 0 943 0 969 0 969 0 996 0 9851 0 905 0 905 0 940 0 663 0 999	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 11.700 10.100 8.660 8.670 8.600 8.670 8.600 8.670 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.7000 8.70000 8.70000 8.70000 8.700000 8.7000000000000000000000000000000000000	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.481 71.442 59.766 53.709 45.869 45.869 26.180 18.713 18.713 18.713 18.713 18.713 18.713 18.758 6.558 6.558 6.558	(err.*) 0.647 1.02E+3 236.581 2.05E+3 205E+3 205E+3 205E+3 205E+3 206.284 334.090 238.720 415.606 336.605 236.581 209.396 182.915	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 28 28 29 30 31 31 32 30 31 32 33 34 35 36 37 38 38 39 40 41 42	ation Ra Aralysis Propetty ISA600%50%6 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1200X1200 I	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x75x6 ISA75x75x6	Ratio 0.284 0.948 0.921 0.965 0.995 0.995 0.996 0.954 0.954 0.957 0.993 0.961 0.966 0.955 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905	Ratio 1.000	(Act./Allow)) 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956 0.954 0.957 0.993 0.861 0.969 0.969 0.969 0.996 0.851 0.903 0.905 0.940 0.944	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 20.200 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 10.100 8.660 8.660 8.660 8.660 4.710 4.710 4.710 4.710	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869 45.869 26.180 18.713 18.713 18.713 18.713 18.713 16.558 6.558 6.558 6.558	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 2.05E+3 4.050.264 3.34.080 2.38.720 4.15.606 2.38.720 4.15.606 2.38.605 2.38.605 2.38.605 2.38.605 2.38.605 1.82.9174 2.8.074	
Jtiliz Beam 19 21 22 23 24 25 26 27 28 28 28 28 28 30 30 31 31 32 30 31 33 34 35 36 37 38 38 39 40 41 42 43	ation Ra Analysis Propetty ISA600X50X6 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA150X1500 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA120X1200 ISA00X900X8 ISA00X900X8 ISA00X900X8	tio Design Property ISA20x20x3 ISA150x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA120x1200 ISA120x1200 ISA120x1200 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA00x60x4 ISA60x60x4 ISA60x60x4 ISA60x60x4	Ratio 0.284 0.948 0.921 0.965 0.995 0.995 0.964 0.964 0.956 0.956 0.956 0.966 0.956 0.961 0.969 0.969 0.965 0.903 0.905 0.903 0.905 0.940 0.905 0.944 0.986	Ratio 1.000	(Act./Allow)) 0284 0948 0921 0862 0995 0995 0995 0995 0996 0956 0956 0954 0957 0993 0956 0958 0961 0969 0996 0956 0996 0996 0996 0996 0996	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 40.900 25.100 23.300 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 11.700 11.700 11.700 8.660 8.660 8.660 8.660 8.660 4.710 4.710 4.710 1.120	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869 45.869 26.180 18.713 18.713 18.713 18.713 10.081 6.558 6.558 6.558 0.159	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 2.05E+3 4.050 2.05E+3 4.000 2.38.720 4.15.606 3.36.605 2.38.605 2.38.605 1.82.917 4.100 2.80.074 2.80	
Jtiliz Beam 19 21 22 24 25 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42	ation Ra Aralysis Propetty ISA600%50%6 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1500X1500 ISA1200X1200 I	tio Design Property ISA20x20x3 ISA160x1500 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x1000 ISA100x75x6 ISA75x75x6	Ratio 0.284 0.948 0.921 0.965 0.995 0.995 0.996 0.954 0.954 0.957 0.993 0.961 0.966 0.955 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905 0.903 0.905	Ratio 1.000	(Act./Allow)) 0.284 0.948 0.921 0.862 0.995 0.991 0.964 0.999 0.956 0.954 0.957 0.993 0.861 0.969 0.969 0.969 0.996 0.851 0.903 0.905 0.940 0.944	BS4.7 (C) BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.22 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1 BS4.8.33.1	3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	(cm ²) 1.120 29.200 15.400 20.200 22.600 20.200 18.800 17.000 15.400 13.700 11.700 11.700 10.100 8.660 8.660 8.660 8.660 4.710 4.710 4.710 4.710	(cm*) 0.159 259.308 59.766 434.669 116.025 130.874 85.937 61.862 106.491 71.442 59.766 53.709 45.869 45.869 26.180 18.713 18.713 18.713 18.713 18.713 16.558 6.558 6.558 6.558	(err.*) 0.647 1.02E+3 2.05E+3 2.05E+3 2.05E+3 4.050.264 3.34.080 2.38.720 4.15.606 2.38.720 4.15.606 2.38.605 2.38.605 2.38.605 2.38.605 2.38.605 1.82.9174 2.8.074	

Puni femalData .090820211298

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Puni Run Sol 18

2						Jab No		Shaal N	['] 10	Rev	
2 30	iyan kenendik					Pat					-
• 46m To	ower Modelling.	/Analysis				Par I					
						PY 0.0.	0	Date 26-	May-21 S	-™ 0.0.0	
MENO	3 Project Resea	acth								-Jun-2021 12	20
M.ENC	o Hojed Nesea	aan				40m	lower	wootaling a	nal ne	9-Jun-2021 12	28
Jtiliz	<u>ation Ra</u>	<u>tio Cont</u>	<u> </u>								
Beam	Analysis	Design		Allowable		Clause	L/C	Ax	E L	ly	b
	Property	Property	Ratio	Ratio	(Act./Allow.)		<u> </u>	(om²)	(am [*])	(cm*)	(án
46	ISA150X150	ISA100×100	0.975	1.000	0.975	BS-4.8.3.3.1	4	11.700	45,869	182.915	1
47	ISA150X150	ISA100x100	0.933	1.000	0.933	BS-4.8.3.3.1	4	11.700	45,869	182.915	1
48	ISA150X150	ISA100x100	0.847	1.000	0.847	BS-4.8.3.3.1	4	11.700	45,869	182.915	1
49	ISA150X150	ISA90x90x6	0.965	1.000	0.965	BS-4.8.3.3.1	4	10.500	33,268	131.910	
50	ISA150X150	ISA90x90x6	0.895	1.000	0.895	BS-4.8.3.3.1	4	10.500	33,268	131.910	1
51	ISA150X150	ISA100x75xt	0.966	1.000	0.966	BS-4.8.3.3.1	4	10.100	26.180	129.114	1
52	ISA150X150	ISA80x80x6	0.982	1.000	0.982	BS-4.8.3.3.1	4	9.290	22,899	91.722	_
8	ISA150X150	ISA80x80x6	0.862	1.000	0.862	BS-4.8.3.3.1	4	9.290	22,899	91.722	_
54	ISA150X150	ISA75x75x6	0.922	1.000	0.922	BS-4.8.3.3.1	4	8.660	18,713	75.052	!
55	ISA120X120	ISA75x75x5	0.935	1.000	0.935	BS-4.8.3.3.1	4	7.270	15,924	63.732	
58	ISA120X120	ISA70x70x5	0.954	1.000	0.954	BS-4.8.3.3.1	4	6.770	12,893	51.426	
57	ISA120X120	ISA65x65x5	0.989	1.000	0.989	BS-4.8.3.3.1	4	6.250	10.081	41.010	
58	ISA120X120	ISA65x65x5	0.833	1.000	0.833	BS-4.8.3.3.1	4	6.250	10.081	41.010	
59	ISA120X120	ISA60x60x5	0.842	1.000	0.842	BS-4.8.3.3.1	4	5.750	7,871	31.944	
60	ISA120X120	ISA60x60x4	0.993	1.000	0,993	BS-4.8.2.2	5	4.710	6.558	26.074	
61	ISA100X100	ISA60x60x4	0.919	1.000	0,919	BS-4.8.2.2	5	4.710	6.558	26.074	(
62	1SA90X90X8	ISA60x50x3	0.943	1.000	0.943	BS-4.8.3.3.1	4	2.950	2,891	11.409	
63 64	1SA90X90X8	ISA45x45x3	0.840	1.000	0.840	BS-4.8.3.3.1 BS-4.8.2.2	5	2.640	2072	8.252	
	1SA80X80X6	ISA60x60x4	0.853	1.000	0.853		-	4.710	6.558	26.074	
65 66	1SA80X80X6	ISA30x30x3 ISA20x20x3	0.746	1 000	0.746	BS-4.8.3.3.1 BS-4.8.3.3.1	4	1.730	0.574	2.342	
67	ISA70X70X6	ISA20x20x3	0.149	1.000	0.019		4		0.159	0.647	
07 68	ISA70X70X6 ISA150X150	ISA200x150	0.808	1.000	0.808	BS-4.8.3.3.1 BS-4.8.3.3.1	4	1.120	369.013	1.74E+3	11
69	ISA150X150	ISA150x150	0.941	1000	0.941	BS-4.8.3.3.1 BS-4.8.3.3.1	4	29.200	259,308	1.04E+3	
70	ISA150X150	ISAI50x150	0.880	1000	0.880	BS-4.8.3.3.1 BS-4.8.3.3.1	4	29.200	259,308	1.02E+3	
71	ISA150X150	ISAI50x150	0.793	1.000	0.000	BS-4.8.3.3.1 BS-4.8.3.3.1	4	29.200	259,308	1.02E+3	
72	ISA150X150	ISAI30x130	0.783	1000	0.783	BS-4.8.3.3.1	4	25.100	165.783	651.674	
73	ISA150X150	ISA130x130	0,944	1000	0.944	BS-4.8.3.3.1	4	22.900	152.432	591.589	$-\dot{\epsilon}$
74	ISA150X150	ISA130x130	0.953	1000	0.953	BS-4.8.3.3.1	4	20.300	135.125	533.572	
75	ISA150X150	ISA120x120	0.974	1.000	0.974	BS-4.8.3.3.1	4	18.800	106.491	415.606	
76	ISA150X150	ISA120x120	0.858	1000	0.858	BS-4.8.3.3.1	4	18.800	106,491	415.606	
77	ISA120X120	ISA125x95x6	0.979	1.000	0.979	BS-4.8.3.3.1	4	17.000	71.442	336.605	
78	ISA120X120	ISA100x100b	0.963	1.000	0.963	BS-4.8.3.3.1	4	15.400	59,766	236.581	
79	ISA120X120	ISA125x95xt	0.930	1.000	0.930	BS-4.8.3.3.1	4	12.900	54.742	259.355	
80	ISA120X120	ISA100x100b	0.913	1.000	0.913	BS-4.8.3.3.1	4	11.700	45,869	182.915	
81	ISA120X120	ISA90x90x6	0.910	1.000	0,910	BS-4.8.3.3.1	4	10.500	33,268	131.910	
82	ISA120X120	ISA80x80x6	0.956	1.000	0.956	BS-4.8.3.3.1	4	9.290	22,899	91.722	-
83	ISA100X100	ISA75x75x6	0.866	1.000	0.866	BS-4.8.3.3.1	4	8.660	18.713	75.052	1
84	1SA90X90X8		0.885	1.000	0.885		4	6.770	12.893	51.426	- 10
85	1SA90X90X8	ISA60x60x5	0.874	1.000		BS-4.8.3.3.1	4	5.750	7.871	31.944	1
86	1SA80X80X6	ISA60x60x4	0.614	1.000	0.614	BS-4.8.3.3.1	4	4.710	6.558	26.074	1
87	1SA80X80X6	IS:A60x60x4	0.838	1.000	0.838	BS-4.8.3.3.1	5	4.710	6.558	26.074	
88	ISA70X70X6	ISA40x40x3	0.969	1.000	0,969	BS-4.9	5	2.340	1.435	5.730	
89	1SA70X70X6	ISA20x20x3	0.660	1.000	0.660	BS-4.8.3.3.1	4	1.120	0.159	0.647	
90	1SA60X50X6	ISA35x35x3	0.986	1.000	0.986	BS-4.9	3	2.030	0.939	3.787	1
91	1SA50X50X6	ISA40x40x3	0.893	1.000	0.893	BS-4.8.3.3.1	3	2.340	1.435	5.730	1
92	1SA50X50X6	ISA45x45x3	0.846	1.000	0.846	BS-4.8.3.3.1	4	2.640	2.072	8.252	1
93	1SA60X50X6	ISA60x50x3	0.835	1.000	0.835	BS-4.9	4	2.950	2,891	11.409	1
94	1SA50X50X6	ISA60x50x3	0.979	1.000	0.979	BS-4.8.3.3.1	4	2.950	2.891	11.409	

Puni femalOsia.090820211298

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

PiniRun 10 of 16

>						Jab No		Shaal N	່ 11	Rev	
						Pal		_			
	twan transit to ower Modelling,	Analysis				- Rei					
	ower robdening.	o a la lysis						R		™ 0.0.0	
						PY 0					
M.EN0	3 Project Resea	ach				F 40	5m Tower	·Modelling a	nd ^{Date form} (0)	9-Jun-2021 12	29
Utiliz	<u>ation Ra</u>	tio Cont	<u></u>								
Beam	Analysis	Design	Actual .	Allowable	Ratio	Clause	L/C	Ax	Þ	ly	b
	Property	Property	Ratio	Ratio	(Act./Allow.)			(cm²)	(cm*)	(cm*)	(in
95	ISA60X50X6	IS:A45x45x3	0.893	1000	0.893	BS-4.8.3.3			2072	8.252	0
96	ISA50X50X6	ISA45x45x3	0.855	1.000	0.855	BS-4.9	3		2072	8.252	ſ
97	ISA50X50X6	IS:A45x45x3	0.930	1.000	0.930	BS-4.8.3.3			2072	8.252	
98	1S,A50X50X6	IS:A45x45x4	0.946	1.000	0.946	BS-4.8.3.3			2.681	10.651	
99	ISA60X50X6	IS:A45x45x4	0.949	1.000	0.949	BS-4.9	4		2.681	10.651	
100	1SA50X50X6	ISA50x50x4	0.866	1.000	0.866	BS-4.8.3.3.			3.742	14.782	
101	1SA50X50X6	ISA50x50x3	0.821	1.000	0.821	BS-4.8.3.3.		2.950	2,891	11.409	
102	1SA50X50X6	ISA45x45x3	0.970	1.000	0.970	BS-4.9	3	2.640	2.072	8.252	0
103	1SA50X50X6	ISA50x50x3	0.901	1.000	0.901	BS-4.8.3.3.			2,891	11.409	
104	1SA50X50X6	ISA50x50x4	0.932	1.000	0.932	BS-4.8.3.3.			3.742	14.782	(
105	ISA50X50X6	ISA50x50x3	0.882	1.000	0.882	BS-4.9	3		2,891	11.409	
106	1SA50X50X6	ISA50x50x3	0.941	1.000	0.941	BS-4.8.3.3.			2,891	11.409	
107	1SA50X50X6	ISA50x50x4	0.998	1.000	0.998	BS-4.8.3.3.			3.742	14.782	
108	1SA50X50X6	ISA50x50x3	0.974	1.000	0.974	BS-4.9	3	2.950	2,891	11.409	
109 110	1SA50X50X6	ISA45x45x4	0.934	1.000	0.934	BS-4.8.3.3. BS-4.8.3.3.		3.470	2,681	10.651	
	1SA50X50X6	ISA60x60x4	0.806	1.000	0.806				6.558	26.074	
111 112	ISA50X50X6 ISA50X50X6	ISA45x45x4 ISA50x50x4	0.952	1.000	0.952	BS-4.9 BS-4.8.3.3.	3		2.681 3.742	10.651 14.782	
112	1SA5DX5DX6	ISA60x60x4	0.834	1000	0.834	BS-4.8.3.3.	.1 3		6.558	26.074	
114	1SA5DX5DX6	ISA45x45x4	0.962	1000	0.962	BS-4.9	3	3.470	2,681	10.651	
114	1SA5DX5DX6	ISA60x50x4	0.842	1000	0.842	BS-4.8.3.3.			3.742	14.782	
116	1SA60X50X6	ISA60x60x4	0.959	1000	0.959	BS-4.8.3.3			6.558	26.074	
117	1SA60X50X6	ISA45x45x4	1000	1000	1000	BS-4.9	3		2.681	10.651	
118	1SA60X50X6	ISA60x50x4	0.865	1000	0.865	BS-4.8.3.3.			3.742	14.782	
119	1SA60X50X6	ISA60x60x4	0.972	1000	0.972	BS-4.8.3.3			6.558	26.074	
120	1SA60X50X6	ISA60x50x4	0.900	1000	0.900	BS-4.9	3		3,742	14.782	
121	ISA60X50X6	ISA50x50x4	0.922	1000	0.922	BS-4.8.3.3.		3.880	3.742	14.782	
122	1S,A50X50X6	ISA70x45x5	0.968	1.000	0.968	BS-4.8.3.3			5.172	31.787	
123	ISA60X50X6	ISA50x50x4	0.914	1.000	0,914	BS-4.9	3		3.742	14.782	
124	1SA50X50X6	ISA60x60x4	0.752	1.000	0.752	BS-4.8.3.3.			6.558	26.074	
125	1S,A50X50X6	IS:A60x60x5	0.890	1.000	0.890	BS-4.8.3.3			7,871	31.944	
126	1S,A50X50X6	IS:A50x50x4	0.986	1.000	0.986	BS-4.9	3		3.742	14.782	
127	1S,A50X50X6	IS:A60x60x4	0.811	1.000	0.811	BS-4.8.3.3			6.558	26.074	
128	1SA50X50X6	ISA60x60x5	0,974	1.000	0.974	BS-4.8.3.3			7.871	31.944	
129	1SA50X50X6	IS:A60x60x4	0.697	1.000	0.697	BS-4.9	3	4.710	6.558	26.074	1
130	ISA60X50X6	ISA60x60x4	0.819	1.000	0.819	BS-4.8.3.3	.1 3		6.558	26.074	
131	ISA60X50X6	ISA65x65x5	0.894	1.000	0.894	BS-4.8.3.3.	.1 4	6.250	10.081	41.010	1
132	1S,A50X50X6	ISA70x45x5	0.936	1.000	0.936	BS-4.9	4		5.172	31.787	í
133	1S,A50X50X6	ISA70x70x5	0.993	1.000	0.993	BS-4.8.3.3	.1 4	6.770	12,893	51.426	(
134	1SA60X50X6		0.964	1.000		BS-4.8.3.3			6.558	26.074	0
135	ISA60X50X6		0.997	1.000		BS-4.9	4	-	6.034	24.305	(
136	ISA60X50X6		0.901	1.000		BS-4.8.3.3.			15,924	63.732	(
137	1SA60X50X6		0.967	1.000		BS-4.8.3.3			6.558	26.074	0
138	ISA60X50X6		0,914	1.000		BS-4.9	4		7,871	31.944	Ĺ
139	ISA60X50X6		0,975	1.000	0.975	BS-4.8.3.3		-	15,924	63.732	í
140	ISA60X50X6	ISA60x60x4	0.985	1.000	0.985	BS-4.8.3.3		-	6.558	26.074	í
141	ISA60X50X6	ISA60x60x5	0.971	1.000	0.971	BS-4.9	4		7,871	31.944	í
142		ISA75x75x6	0.859	1.000	0.859	BS-4.8.3.3			18.713	75.052	1
143	ISA50X50X6	IS A65ාස්රාස්	0.989	1.000	0.989	BS-4.8.3.3.	.1 3	5.270	6034	24.305	

Puni fmeiDale.090820211298

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Puni Run 11 ol 18

\sim						Jab No		Shaai Ne	12	Rev	
						Pal		_			_
	was koncerd to was kieled allings	Weaksia				Rai					_
40m Io	wer Modelling.	Mananysis									
						Pr 0.0.1	0	Date 26-	May-21 S	:hd 0.0.0	
M.ENG	i Project Resea	acrh				54• 46m 1	Towerl	Modelling a	nd ^{Date f} irme ()9)-Jun-2021 12	29
<u>Utiliz</u> a	ation Ra	tio Cont	. <u></u>								
Beam	Analysis	Design		Allowable		Clause	L/C	Ax	Þ	ly	IX.
	Property	Property	Ratio	Ratio	(Act./Allow.)			(am²)	(am [*])	(cm*)	(cm
144	ISA50X50X6	IS A65ාස්රාස්	0,977	1.000	0.977	BS-4.9	4	5.270	6D34	24.305	0.
145	ISA50X50X6	ISA75x75x5	0.993	1.000	0.993	BS-4.8.3.3.1	4	7.270	15,924	63.732	0.
146	ISA60X50X6	ISA60x60x4	0,976	1.000	0.976	BS-4.8.3.3.1	3	4.710	6.558	26.074	0.
147	ISA60X50X6	IS A65ාස්රිාස්	0.976	1.000	0.976	BS-4.9	4	5.270	6D34	24.305	0.
148	ISA60X50X6	ISA75x75x6	0.861	1.000	0.861	BS-4.8.3.3.1	4	8.660	18.713	75.052	1.
149	ISA50X50X6	ISA60x60x4	0.969	1.000	0.969	BS-4.8.3.3.1	3	4.710	6.558	26.074	0.
150	ISA50X50X6	ISA60x60x4	0.996	1.000	0.996	BS-4.9	4	4.710	6.558	26.074	0.
151	ISA50X50X6	ISA75x75x6	0.873	1.000	0.873	BS-4.8.3.3.1	4	8.660	18.713	75.052	1.
152	1SA50X50X6	ISA60x60x4	0.713	1.000	0.713	BS-4.9	3	4.710	6.558	26.074	0.
153	1SA50X50X6	ISA50x50x4	0.861	1.000	0.861	BS-4.9	3	3.880	3.742	14.782	0.
154	1SA50X50X6	ISA60x60x4	0.905	1.000	0.905	BS-4.8.3.3.1	4	4.710	6.558	26.074	0.
155	1SA50X50X6	ISA40x40x3	0.870	1.000	0.870	BS-4.8.3.3.1	4	2.340	1.435	5.730	0.
158	1SA50X50X6	ISA40x40x3	0.892	1.000	0.892	BS-4.8.3.3.1	3	2.340	1.435	5.730	0.
159	1SA50X50X6	ISA45x45x3	0.881	1.000	0.881	BS-4.8.3.3.1	4	2.640	2072	8.252	0.
160	ISA50X50X6	ISA45x45x3	0.874	1.000	0.874	BS-4.8.3.3.1	3	2.640	2072	8.252	0.
161	ISA50X50X6	ISA40x40x3	0.947	1.000	0.947	BS-4.9	3	2.340	1.435	5.730	0.
162	1SA50X50X6	ISA45x45x3	0.956	1.000	0.956	BS-4.8.3.3.1	3	2.640	2072	8.252	0.
163	1SA50X50X6	ISA60x50x4	0.805	1.000	0.805	BS-4.8.3.3.1	4	3.880	3.742	14.782	0.
164	1SA50X50X6	ISA45x45x3	0.983	1.000	0.983	BS-4.8.3.3.1	3	2.640	2.072	8.252	0.
165	1SA60X50X6	ISA45x45x3	0.905	1.000	0.905	BS-4.9	3	2.640	2.072	8.252	0.
166	ISA50X50X6	ISA60x50x3	0.949	1.000	0,949	BS-4.8.3.3.1	3	2.950	2,891	11.409	0.
167	ISA50X50X6	ISA60x60x4	0.703	1000	0.703	BS-4.8.3.3.1	4	4.710	6.558	26.074	0.
168	ISA50X50X6	ISA45x45x4	0.937	1000	0.937	BS-4.8.3.3.1	3	3.470	2,681	10.661	0.
169	ISA50X50X6	ISA60x60x4	0.758	1.000	0.758	BS-4.8.3.3.1	4	4.710	6.558	26.074	0.
170	ISA50X50X6	ISA46x45x4	0.989	1.000	0.989	BS-4.8.3.3.1	3	3.470	2,681	10.661	0.
171	ISA50X50X6	ISA60x60x4	0.916	1.000	0.916	BS-4.8.3.3.1	4	4.710	6.558	26.074	0.
172	ISA50X50X6	ISA60x50x4	0.934	1.000	0.934	BS-4.8.3.3.1	3	3.880	3.742	14.782	0.
173	ISA50X50X6	ISA70x45x5	0.974	1.000	0,974	BS-4.8.3.3.1	4	5.520	5.172	31.787	0.
174	ISA50X50X6	ISA60x50x4	0.941	1.000	0.941	BS-4.8.3.3.1	3	3.880	3.742	14.782	0.
175	ISA50X50X6	ISA60x60x5	0.883	1.000	0.883	BS-4.8.3.3.1	4	5.750	7.871	31.944	0.
176	1SA50X50X6	ISA50x50x4	0.985	1.000	0.985	BS-4.8.3.3.1	3	3.880	3.742	14.782	0.
177	ISA50X50X6	ISA60x60x5	0.917	1.000	0.917	BS-4.8.3.3.1	4	5.750	7.871	31.944	0.
178	ISA50X50X6	ISA60x60x4	0.720	1.000	0.720	BS-4.8.3.3.1	3	4.710		26.074	0.
179	1SA50X50X6	ISA75x50x5	0.970	1.000	0.970	BS-4.8.3.3.1	4	6.020	7 022	40.494	0.
18D 181	1SA50X50X6 1SA50X50X6	ISA60x60x4 ISA65x65x5	0.880	1.000	0.880	BS-4.8.3.3.1 BS-4.8.3.3.1	3	4.710 6.250	6.558 10.081	26.074 41.010	0.
182	ISA60X50X6	ISA60x60x4	0.928	1000	0.928	BS-4.8.3.3.1 BS-4.8.3.3.1	4	4.710	6.558	26.074	0.
182	ISA60X50X6	ISA65x65x5	0.928	1.000	0.928	BS-4.8.3.3.1 BS-4.8.3.3.1	4	6.250	10.081	41.010	0.
	ISA60X50X6			1.000			4		6.558	26.074	0
	ISA60X50X6	ISA6000004	0.953 0.938	1.000	0.953 0.938	BS-4.8.3.3.1 BS-4.8.3.3.1	4	4.710	12,893	20.074	0
185	ISA60X50X6	ISA40007000	0.938	1.000	0.938	BS-4.8.3.3.1 BS-4.8.3.3.1	4	4.710	6.558	26.074	0
	ISA60X50X6	ISA60x60x4	0.818	1.000	0.818	BS-4.8.3.3.1 BS-4.9	3	4.710	6.558	26.074	0.
					0.822						
	ISA50X50X6 ISA50X50X6	ISA60x60x4 ISA60x60x4	0.806	1.000	0.806	BS-4.8.3.3.1 BS-4.9	3	4.710 4.710	6.558	26.074 26.074	0.
	ISA60X50X6	ISA60x60x4	0.817	1.000			3	4.710	6.558	26.074	
				1.000	0.832	BS-4.8.3.3.1 BS-4.0	3	4.710	6.558		0.
191	ISA50X50X6 ISA50X50X6	ISA60x60x4 ISA60x60x4	0.855 0.860		0.855	BS-4.9 BS-4.9221	3	4.710	6.558 6.558	26.074	0.
102			0000	1 1 0 0 0	0.860	BS-4.8.3.3.1	1 3	- +t/IU	0.006	26.074	- τ <i>υ</i> ,
192 193	1SA60X50X6	ISA60x60x4	0.887	1.000	0.887	BS-4.9	3	4.710	6.558	26.074	0.

Puni femaliCala .090620211295

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Pini Run 12 ol 18

\geq						Jab No.		Shaal Ne	13	Rev	
	livan korond la					Pal		_			
	ower Modelling.	Analysis				Rei					_
						PY 0.0.1	0	Date 76.	Mary-21 S	™ 0.0.0	_
	3 Project Resea									-Jun-2021 122	20
IVI.EN0	5 hojeta Nesez	an				4011	lower	ivio deniriy a		-3011-2021-1212	19
ltiliz	ation Ra	tio Cont									
					D-F-			0			
Beam	Analysis Proporty	Design Bresorty	Ratio	Niowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm²)	וצ (crn*)	ly (cm*)	x (cm*)
195	Property ISA60X50X6	Property ISA50x50x4	0.993	1000	0.993	BS-4.9	3	3.880	3.742	14.782	0.207
196	1SA50X50X6	ISA60x60x4	0.787	1.000	0.787	BS-4.8.3.3.1	3	4.710	6.558	26.074	0.251
197	1S,A50X50X6	ISA60x50x4	0.999	1.000	0.999	BS-4.9	3	3.880	3.742	14.782	0.207
198	1S,A50X50X6	ISA60x60x4	0.881	1.000	0.881	BS-4.8.3.3.1	3	4.710	6.558	26.074	0.251
199	ISA60X50X6	ISA60x60x4	0.848	1.000	0.848	BS-4.8.3.3.1	3	4.710	6.558	26.074	0.251
200	ISA60X50X6	ISA70x70x5	0.990	1.000	0.990	BS-4.8.3.3.1	4	6.770	12,893	51.426	0.564
201	1S,A50X50X6	ISA35x35x3	0.972	1.000	0.972	BS-4.8.3.3.1	3	2.030	0.939	3.787	0.061
202	1SA80X80X6	ISA25x25x3	0.819	1.000	0.819	BS-4.8.3.3.1	3	1.410	0.317	1.324	0.042
203	1SA80X80X6	ISA60x50x4	0.908	1.000	0.908	BS-4.8.3.3.1	4	3.880	3.742	14.782	0.207
204	1SA80X80X6	ISA20x20x3	0.778	1.000	0.778	BS-4.8.3.3.1	3	1.120	0.159	0.647	0.034
205	1SA80X80X6	ISA50x50x4	0.778	1.000	0.778	BS-4.8.3.3.1	4	3.880	3.742	14.782	0.207
206	1SA80X80X6	ISA20x20x3	0.735	1 000	0.735 0.680	BS-4.9 BS-4.0	4	1.120	0.159	0.647	0.034
208	ISA80X80X6 ISA80X80X6	ISA25x25x3 ISA50x50x3	0.680 0.897	1 000	0.897	BS-4.9 BS-4.8.3.3.1	4	1.410 2.950	2.891	11.409	0.042
209	1576078070 1576078076	ISA60x50x3	0.834	1 000	0.834	BS-4.8.3.3.1 BS-4.8.3.3.1	4	2.950	2.891	11.409	0.089
213	15A70X70X6	ISA60x50x3	0.837	1000	0.837	BS-4.8.3.3.1	5	2.950	2,891	11.409	0.089
214	15A70X70X6	ISA20x20x3	0.822	1.000	0.822	BS-4.9	4	1.120	0.159	0.647	0.034
215	1SA70X70X6	ISA60x50x3	0.864	1.000	0.864	BS-4.8.3.3.1	5	2.950	2,891	11.409	0.089
216	1SA70X70X6	ISA20x20x3	0.577	1.000	0.577	BS-4.9	4	1.120	0.159	0.647	0.034
217	1SA70X70X6	ISA60x50x3	0.879	1.000	0.879	BS-4.8.3.3.1	5	2.950	2.891	11.409	0.089
219	ISA70X70X6	ISA60x50x3	0.911	1.000	0.911	BS-4.8.3.3.1	5	2.950	2.891	11.409	0.089
221	ISA70X70X6	ISA60x50x3	0,948	1 000	0.948	BS-4.8.3.3.1	5	2.950	2.891	11.409	0.089
222	1SA70X70X6	ISA20x20x3	0.485	1.000	0.485	BS-4.8.2.2	5	1.120	0.159	0.647	0.034
223	ISA70X70X6	ISA50x50x3	0.922	1 000	0.922	BS-4.8.3.3.1	5	2.950	2.891	11.409	0.089
224	1SA70X70X6	ISA20x20x3	0.389	1.000	0.389	BS-4.9	4	1.120	0.159	0.647	0.034
225	1SA70X70X6	ISA60x50x3	0.754	1.000	0.754	BS-4.8.3.3.1	5	2.950	2,891	11.409	0.089
227	ISA70X70X6 ISA70X70X6	ISA45x45x3 ISA45x45x3	0.916	1 000	0.916 0.743	BS-4.8.3.3.1 BS-4.8.3.3.1	5	2.640 2.640	2.072	8.252	0.079
230	ISA70X70X6	ISA20x20x3	0.267	1 000	0.745	BS4.8.2.2	5	1.120	0.159	0.232	0.034
230	15A70X70X6	ISA40x40x3	0.963	1000	0.963	BS-4.8.3.3.1	5	2.340	1.435	5.730	0.034
235	15A70X70X6	ISA3513513	0.872	1.000	0.872	BS-4.8.3.3.1	5	2.030	0.939	3.787	0.061
236	1SA70X70X6	ISA20x20x3	0.349	1.000	0.349	BS-4.9	5	1.120	0.159	0.647	0.034
237	ISA70X70X6	ISA3553553	0.845	1.000	0.845	BS-4.8.3.3.1	5	2.030	0.939	3.787	0.061
239	1SA60X60X5	ISA3553553	0.776	1.000	0.776	BS-4.8.3.3.1	5	2.030	0.939	3.787	0.061
243	ISA60X60X5	ISA30x30x3	0.821	1.000	0.821	BS-4.8.3.3.1	5	1.730	0.574	2.342	0.052
244	1SA60X60X5	ISA20x20x3	0.086	1 000	0.D86	BS-4.8.3.3.1	1	1.120	0.159	0.647	0.034
245	1SA60X60X5	ISA2552553	0.550	1 000	0.550	BS-4.8.3.3.1	4	1.410	0.317	1.324	0.042
246	ISA70X70X6	ISA20x20x3	0.082	1.000	0.082	BS-4.8.3.3.1	1	1.120	0.159	0.647	0.034
247	1SA70X70X6	ISA20x20x3	0.124	1.000	0.124	BS-4.8.3.3.1	4	1.120	0.159	0.647	0.034
248	1SA70X70X6	ISA20x20x3	0.091	1.000	0.091	BS-4.8.3.3.1	4	1.120	0.159	0.647	0.034
249	1SA60X60X5	ISA20x20x3	0.384	1.000	0.384	BS-4.8.3.3.1	4	1.120	0.159	0.647	0.034
250 251	ISA60X60X5		0.054	1 000	0.054	BS-4.8.3.3.1 BS-4.8.3.3.1	1	1.120	0.159 0.159	0.647	0.034
251	ISA60X50X6 ISA80X80X6	ISA20x20x3 ISA50x50x3	0.979	1 000		BS-4.8.3.3.1 BS-4.8.3.3.1	4	1.120	2.891	11.409	0.034
253	15A80X80X6	ISA25x25x3	0.714	1000		BS-4.9	4	1.410	0.317	1.324	0.042
254	15A70X70X6	ISA20x20x3	0.963	1000	0.963	BS-4.9	4	1.120	0.159	0.647	0.034
255	15A70X70X6	ISA20x20x3	0.527	1.000	0.527	BS-4.9	4	1.120	0.159	0.647	0.034
256	1SA70X70X6	ISA20x20x3	0.622	1.000	0.622	BS-4.9	4	1.120	0.159	0.647	0.034
257	1SA70X70X6	ISA20x20x3	0.464	1.000	0.464	BS-4.8.2.2	5	1.120	0.159	0.647	0.034
nelCale .05	0820211298		STAA	D.Pro V8i	(SELECTse	ries 6) 20 07.11.	33			Pini Run 19	
300	ISA UX/UX0	IS PODIODX4			_	2 83-4.8.3.3.		0 3.8		4Z 14.78	_
306	ISA70X70X6	ISA60x60x4	0.678	1.00	DI 0.67	8 BS-4.8.3.3.	4 I -	4 4.7	10 6.5	58 26.07	74 1

Puni femaliCale .0906(2021 1296)

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

PiniRun 14 ol 18

2							Jab No		Shaal No	['] 15	Rev	
						ŀ	Pal					
	ivan terrand to ower Modelling/	Analysis					Rel					
	wer tobdening.	o a la lysis				ŀ			Del e 0.0	h	^{Chd} 0.0.0	
							∾ 0.0.0					
M.ENG	3 Project Resea	aarh					••• 46m `	Towerl	Vlodelling a	nd ^{Date form} 0	9-Jun-2021 12	29
Jtiliza	ation Ra	tio Cont	. <u></u>									
Beam	Analysis	Design		Allowable		a	ause	L/C	Ax	Þ	ly	0
	Property	Property	Ratio	Ratio	(Act./Allow.)				(cm²)	(cm*)	(cm*)	(ar
307	ISA70X70X6	ISA50x50x4	0.817	1 000	0.817		8.3.3.1	5	3.880	3.742	14.782	
308	ISA70X70X6	ISA50x50x4	0.997	1 000	0.997		8.3.3.1	4	3.880	3.742	14.782	
309	ISA70X70X6	ISA60x50x4	0.816	1.000	0.816		8.3.3.1	5	3.880	3.742	14.782	
310	ISA70X70X6	ISA60x50x4	0.946	1.000	0.946		8.3.3.1	4	3.880	3.742	14.782	
311	ISA70X70X6	ISA60x50x4	0.839	1.000	0.839		8.3.3.1	5	3.880	3.742	14.782	
312	1SA70X70X6	ISA60x50x4	0.853	1.000	0.853		8.3.3.1	4	3.880	3.742	14.782	
313	1SA70X70X6	ISA60x50x3	0.901	1.000	0.901		8.3.3.1	5	2.950	2.891	11.409	
314	1SA70X70X6	ISA60x50x3	0.930	1.000	0.930		8.3.3.1	4	2.950	2.891	11.409	
315	ISA70X70X6	ISA45x45x3	0.907	1.000	0.907		8.3.3.1	5	2.640	2.072	8.252	
316	ISA70X70X6	ISA50x50x3	0.828	1.000	0.828		8.3.3.1	4	2.950	2.891	11.409	
317	1SA50X50X6	ISA45x45x3	0.830	1.000	0.830	BS-4.		4	2.640	2.072	8.252	
318	ISA50X50X6	ISA60x50x3	0.931	1.000	0.931		8.3.3.1	4	2.950	2.891	11.409	
319	1SA50X50X6	ISA50x50x3	0.960	1.000	0.960	BS-4.		4	2.950	2,891	11.409	
320	ISA50X50X6	ISA50x50x4	0.810	1.000	0.810		8.3.3.1	4	3.880	3.742	14.782	
321	ISA50X50X6	ISA60x50x4	0.801	1.000	0.801	BS-4.		4	3.880	3.742	14.782	
322	ISA70X70X6	ISA45x45x3	0.797	1.000	0.797		8.3.3.1	5	2.640	2.072	8.252	
323 324	ISA70X70X6	ISA45x45x3	0.983	1.000	0.983		8.3.3.1	4	2.640	2.072	8.252	
	ISA60X60X5	ISA45x45x3	0.813	1.000	0.813		8.3.3.1	5	2.640	2.072	8.252	
325	1SA60X60X5	ISA45x45x3	0.811	1.000	0.811		8.3.3.1	4	2.640	2.072	8.252	
326	1SA60X60X5	ISA35x35x3	0.659	1.000	0.659		8.3.3.1	5	2.030	0.939	3.787	
327 328	1SA60X60X5	ISA40x40x3	0.931 0.637	1 000	0.931		8.3.3.1	4	2.340	1.435	5.730 0.647	
328	1S760X60X5	ISA20x20x3					8.3.3.1		1.120	0.159		
329	1S760X60X5	ISA3553553	0.995 0.476	1 000	0.995		8.3.3.1	4	2.030	0.939	3.787	
330	1S760X60X5	ISA20x20x3					8.3.3.1		1.120	0.159	0.647	
	1S760X60X5	ISA30x30x3	0.977	1.000	0.977		8.3.3.1	4	1.730	0.574	2.342	
332 333	1SA60X60X5 1SA60X60X5	ISA25x25x3 ISA20x20x3	0.950 0.057	1 000	0.950		8.3.3.1 8.3.3.1	4	1.410	0.317 0.159	0.647	
334	1SA6DX5DX6	ISA20x20x3	0.662	1.000	0.662		8.3.3.1	3	1.120	D.159	0.647	
335	15,460,000,000,00	ISA50x50x3	0.781	1.000	0.781	BS-4.		4	2.950	2.891	11.409	
336	15,460,080,00	ISA90x90x6	0.947	1000	0.947		8.3.3.1	4	10.500	33,268	131.910	
337	15,460,080,00	ISA80x80x6	0.892	1000	0.892		8.3.3.1	4	9.290	22,899	91.722	
338	15,460,X80,X6	ISA60x50x3	0.782	1.000	0.782		8.3.3.1	5	2.950	22,699	11.409	
339	15,460,080,06	ISA60x50x3	0.824	1000	0.824		8.3.3.1	5	2.950	2,891	11.409	
340	15,460,080,00	ISA80x80x6	0.890	1.000	0.890		8.3.3.1	4	9.290	22,899	91.722	
341	15,480,X80,X6	ISA75x75x6	0.991	1.000	0.991		8.3.3.1	4	8.660	18.713	75.052	
342	1SA60X80X6	ISA60x50x3	0.821	1000	0.821		8.3.3.1	5	2.950	2.891	11.409	
343	ISA80X80X6		0.938	1.000	0.938		8.3.3.1	4	8.660	18.713	75.052	
344	1SA80X80X6		0.861	1.000	0.861		8.3.3.1	5	2.950	2.891	11.409	
345	ISA70X70X6	ISA75x75x6	0.898	1.000	0.898		8.3.3.1	4	8.660	18.713	75.052	
346	1SA70X70X6		0.890	1.000	0.890		8.3.3.1	5	2.950	2.891	11.409	
347	ISA70X70X6		0.986	1.000	0.986		8.3.3.1	4	7.270	15,924	63.732	
348	1SA70X70X6		0.878	1.000	0.878		8.3.3.1	5	2.950	2.891	11.409	
349		ISA75x75x5	0.934	1.000	0.934		8.3.3.1	4	7.270	15,924	63.732	
350	ISA70X70X6		0.904	1.000	0.904		8.3.3.1	5	2.950	2.891	11.409	
351	ISA70X70X6		0.883	1.000	0.883		8.3.3.1	4	7.270	15,924	63.732	
352	ISA70X70X6	ISA60x50x3	0.936	1.000	0.936		8.3.3.1	5	2.950	2.891	11.409	
353	ISA70X70X6	ISA70x70x5	0.964	1.000	0.964		8.3.3.1	4	6.770	12,893	51.426	
354	ISA70X70X6	ISA60x50x3	0.968	1.000	0.968		8.3.3.1	5	2.950	2.891	11.409	
355	ISA70X70X6	ISA70x70x5	0.895	1.000	0.895		8.3.3.1	4	6.770	12,893	51.426	

Puni femalDala .090620211296

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Pini Run 15 ol 18

2					Jab No		Shaal No	16	Rev	
Software incarced in					Pat					
 46m Tower Modelling 	a/Analysis				Re!					
	,				Pr 0.0.	0	Dale26.	Mav-21 9	™ 0.0.0	
M.ENG Project Rese								nd Caleforne Dg		~~
Jtilization R		t								
Beam Analysis	Design		Allowable	e Ratio	Clause	L/C	Ax	Ł	ly	
Property	Property	Ratio	Ratio	(Act./Allow.)			(am²)	(om*)	(om*)	0
356 ISA70X70X6		0.929	1.000	0.929	BS-4.8.3.3.1	5	2.950	2.891	11.409	
357 ISA70X70X6	i ISA65x65x5	0.996	1.000	0.996	BS-4.8.3.3.1	4	6.250	10.081	41.010	
358 ISA70X70X6	i ISA50x50x3	0.823	1.000	0.823	BS-4.8.3.3.1	5	2.950	2.891	11.409	
359 ISA70X70X6	i ISA46x45x3	0.936	1.000	0,936	BS-4.8.3.3.1	5	2.640	2072	8.252	
360 ISA70X70X6	-	0.928	1.000	0.928	BS-4.8.3.3.1	4	6.250	10.081	41.010	
361 ISA70X70X6		0.857	1.000	0.857	BS-4.8.3.3.1	4	6.250	10.081	41.010	
362 ISA70X70X6		0.800	1.000	0.800	BS-4.8.3.3.1	5	2.640	2072	8.252	
363 ISA70X70X6		0.960	1.000	0.960	BS-4.8.3.3.1	4	5.750	7.871	31.944	
364 ISA70X70X6 365 ISA70X70X6		D.786 D.833	1.000	0.786 0.833	BS-4.8.3.3.1 BS-4.8.3.3.1	5	2.640 5.750	2.072	8.252 31.944	
366 ISA7DX7DX6		0.033	1.000	0.033	BS-4.8.3.3.1	5	2.340	1.435	5.730	
367 ISA70X70X6		0.895	1.000	0.895	BS-4.8.3.3.1	4	4.710	6.558	26.074	
368 ISA70X70X6		0.891	1.000	0.891	BS-4.8.3.3.1	5	2.030	0.939	3.787	
369 ISA70X70X6		0.782	1.000	0.782	BS-4.8.3.3.1	4	4.710	6.558	26.074	
370 ISA70X70X6		0.886	1.000	0.886	BS-4.8.3.3.1	5	2.030	0.939	3.787	
371 ISA60X60X5	i ISA3553553	0.921	1.000	0.921	BS-4.8.3.3.1	5	2.030	0.939	3.787	
372 ISA60X60X5	i ISA60x60x4	0.625	1.000	0.625	BS-4.8.3.3.1	4	4.710	6.558	26.074	
373 ISA60X60X5		0.857	1.000	0.857	BS-4.8.3.3.1	4	3.880	3.742	14.782	
374 ISA60X60X5		0.803	1.000	0.803	BS-4.8.3.3.1	5	2.030	0.939	3.787	
375 ISA60X60X5		0.722	1.000	0.722	BS-4.8.3.3.1	5	2.030	0.939	3.787	
376 ISA60X60X5		0.820	1.000	0.820	BS-4.8.3.3.1	4	2.950	2.891	11.409	
377 ISA60X60X5 378 ISA60X60X5		0.327	1.000	0.327	BS-4.8.3.3.1 BS-4.8.3.3.1	5	1.120	0.159	0.647 5.730	
379 ISA60X60X5		0.294		0.294	BS-4.9	3	1.120	0.159	0.647	
		0.558	1.000	0.558		4	1.120		0.647	
382 ISA50X50X6		0.153	1.000	0.153	BS-4.8.3.3.1	3	1.120	0.159	0.647	
383 ISA50X50X6	ISA20x20x3	0.392	1 000	0.392	BS-4.8.3.3.1	4	1.120	0.159	0.647	
381 ISA5DX5DX6 382 ISA5DX5DX6	ISA20x20x3	0.889 0.153	1 DOO 1 DOO	0.889 0.153		4	1.120 1.120		0.647 0.647	

Puni femalOsia.090620211296

STAAD.Pro V8i (SELECTseries 6) 20 07.11.33

Pini Run 18 o' 18

From the report generated, the tower members can be said to be stable as the utilization ratio (actual ratio to allowable ratio) of all the tower members are ≤ 1 (less or equal to one) as presented in Table 4.4. The tower member utilization ratio ranged from 0.081 to 1.00.

Also, the tower members profile (Design property) generated due to the present load exerted on the tower are less than the actual tower member profiles (Analysis property). This shows that the tower members are not overstressed. The result shows that no failed member was identified after the analysis.

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The deductions from the structural monitoring of the lattice tower are presented below. From the study, the following conclusions can be deduced after auditing of the entire lattice tower:

The tower selected is a 3-Legged, 45m high, erected over 9 years and it is presently shared by three telecommunications operators (MTN, Airtel and 9mobile). The physical condition of the tower is satisfactory. No cracks on the foundation,

and no deformed members however, the tower coating (paint) was found to be

worn off, hence would need repainting.

The structural analysis of the tower shows that members are in good standing and within permissible specifications.

In view of paragraphs above, the tower can therefore be considered fit for continuous use.

5.2 Recommendations

To ensure continuous safety of the lattice tower, the following recommendations are proffered:

i. Tower loading and structural analysis must be carried out on the tower whenever new telecommunication antennas are to be installed by network providers to prevent overloading the tower.

- ii. Maintenance on the tower members and accessories should be regular to increase early detection of member deterioration. This would reduce the chances of failure and resultant consequences.
- iii. The tower should be repainted to the International Civil AviationOrganization (ICAO) stipulations on obstruction painting. The paint shall be red/orange and white non-gloss finish (matt).

5.3 Contribution to Knowledge

This research analysed a 3-legged 45 metre communication tower in Federal Capital Territory, Abuja using Effective Projected Area (EPA) model and STAAD pro. V8i software. The result revealed that the tower utilization percentage was at 59% and the members utilization ratio was between 0.081 to $1.00 \leq 1$. The lattice tower can be said to be stable and fit for continuous use. The approach has been used and can be adopted for structural health monitoring and auditing of other lattice towers. Periodic assessment of communication tower is a requirement by concerned authority. However, it is hardly carried out, despite tower sharing and loading by network providers.

REFRENCES

- Abia, I. (2021, March 29). Angry Lawyer calls out Akwa Ibom Govt after mast collapses into office. First Reports. <u>https://firstreportsonline.com/angry-lawyer-calls-out-akwa-ibom-govt-mast-collapses-into-office/.</u>
- Akoni, O. (2014, March 28). *Lagosians live in danger*. *Vanguard*, <u>https://www.vanguardngr.com/2014/03/22m-lagosians-live-danger/.</u>
- Al-jassani, A.A.M., & Al-suraifi I.J.H, (2017). Telecommunication Cell Tower Most Common Alternatives Overview. *American Journal of Civil Engineering*, 5(5), 268-281.
- Albermani, F.G.A., Mahendran, M., & Kitipornchai, S. (2004). Upgrading of Transmission Towers Using a Diaphragm Bracing System, *Engineering Structures*, 26(6), 735-744.
- Azubuike, V. (2017, January 24). *Telecoms mast collapses in Port-Harcourt, kills three*. Daily Post. <u>https://dailypost.ng/2017/01/24/telecoms-mast-collapses-port-harcourt-kills-three/.</u>
- Bello, M. O. (2010). Effects of the Location of GSM Base Stations on Satisfaction of Occupiers and Rental Value of Proximate Residential Property in Akure, Nigeria. *Journal of Computer and Information Science*, 3(4), 159-170.
- British Standard Institute, (1997). BS 6399-2: loading for buildings. Wind loads.
- British Standard Institute, (2000). BS 5950-1: design, fabrication, and erection of structural steelwork.
- Chronicle (2018, May 7). *Globacom mast collapses, kills three in Taraba*. <u>https://www.chronicle.ng/2018/05/globacom-mast-collapses-kills-three-in-taraba/</u>
- Da Silva, J.G.S., Da S. Vellasco, P.C.G., De Andrade, S.A.L. & De Oliveir, M.I.R. (2005). Structural assessment of current steel design models for transmission and telecommunication towers. *Journal of Constructional Steel Research*, 61(8),1108-1134.
- Dada, A. (2022, January 21). *Two killed, five injured as mast collapses in Benue*. Withinnigeria News Pick. <u>https://www.withinnigeria.com/news/2022/01/21/two-killed-five-injured-as-mast-collapses-in-benue/</u>

- Etisalat Tower Specification, (2012). *Technical specifications for the design and manufacture* of telecommunications latticed towers of modular sections and monopoles for use in Nigeria, Issue 1 Version 2.0. May 2012.
- Global System for Mobile Communications Association (GSMA) (2012). *Publication on Mobile Infrastructure sharing*. pp 48. <u>https://www.gsma.com/publicpolicy/wp-</u> <u>content/uploads/2012/09/Mobile-Infrastructure-sharing.pdf</u>.
- Ghassan, H., Bahjat, E.D., Mohamad, M., & Louay, A.C. (2007). Telecom Infrastructure Sharing Regulatory Enablers and Economic Benefits. *Booz Allen Hamilton*, *Perspective Report*. 320-331.
- Husain, M. A. Gwary, M. S., Yusuf, M. I., & Yusuf, I. D (2017). Appraisal of Spatial Distribution of Global System for Mobile Telecommunications (GSM) Infrastructure in Gombe Metropolis, Nigeria. *International Journal of Engineering Science Invention*, 6(8), 45-55.
- Idachaba, F.E. (2010). Telecommunication Cost Reduction in Nigeria through Infrastructure Sharing between Operators. *Pacific Journal of Science and Technology*, 11(1), 272-276.
- Ikeji, L. (2019, July 12) *Aerial mast collapses in Abuja, destroy cars*. Lindaikejiblog. <u>https://www.lindaikejisblog.com/2019/7/aerial-mast-collapses-in-abuja-destroy-cars-</u>2.html.
- Jesumi, A., & Rajendran, M. G. (2013). Optimal Bracing System for Steel Towers. International Journal of Engineering Research and Applications, 3(2), 729-732.
- Kahla, N, (2000), Response of a Guyed Tower to a Guy Rupture under no Wind Pressure. Engineering Structures Journal, 22(6), 699-706.
- Kalu, N.C. (2014, March 20). *Glo mast collapses in Cross River, kills two. The Nation*, <u>https://thenationonlineng.net/cross-river/.</u> *Retrieval date:* October 12, 2021.
- Lahodny, J., & Janata, V. (2014). Full-scale measurements of towers and masts and comparison with theoretical simplified analysis. *Journal of the International Association for Shell and Spatial Structures*, 55(2), 107-116.

- Michael, A. O., Nnaemeka, B. E., & Matthew, T. (2013). Locational Effect of GSM Mast on Neighbouring Residential Properties' Rental Values in Akure, Nigeria. Academic Journal of Interdisciplinary Studies, 2(3), 147-155.
- Nigeria Communication Commission (NCC) (2009), *Guidelines on Technical specifications for the Installation of telecommunications masts and towers*. Issued April 09th, 2009.
- Nosiri, O.C., Agubor, C.K., Akande, A.O., & Ekwueme, E.U. (2015). Telecom Infrastructure Sharing, A Panacea for Sustainability, Cost and Network Performance Optimization in Nigeria Telecom Industry. *International Journal of Scientific and Engineering Research*, 6(8), 621-626.
- Ogbonna, C.G, Okoye, V.U.. & Eleazu, E.I. (2016). Telecommunication Masts/Base Transceiver Stations and Regulatory Standards in Abia State, Nigeria. *Journal of Sustainable development*, 9(6), 46-57.
- Okonji, E. (2013, May 23). THISDAY newspaper online publication. Nigeria: Menace of Indiscriminately Mounted Communication Masts. <u>https://news.bestnaira.com/posts/view/menace-of-indiscriminately-mounted-</u> <u>communication-masts</u>
- Proceq Digi-Schmidt (2000). Proceq digital Schmidt Operating Instructions Manual. Issue 2000.
- Reynolds, C.E., & Steedman, J.C. (1998). *Reinforced concrete designer's handbook* (10th ed.). London, Unite Kingdom. E & FN Span, Taylor & Francis group. 11 New Fetter Lane, London EC4P 4EE.
- Sharma, K.K., Duggal, S.K, Singh, D.K., & Sachan, A.K. (2015), Comparative Analysis of Steel Telecommunication Tower Subjected to Seismic & Wind Loading. *Civil Engineering and Urban Planning: An International Journal*, 2(3), 15-33.
- Siddesha, H. (2010). Wind Analysis of Microwave Antenna Towers. *International Journal of Applied Engineering Research*, 1(3), 574-584.
- Siti, A.K., Fathoni, U., & Intan, N.Z.B. (2017). Review on analysis and design of lattice steel structure of overhead transmission tower. *International Journal of Advanced and Applied Sciences*, 5(1), 73-80
- Soboyejo, A.B.O. (1971) "Distribution of Extreme Winds in Nigeria", *The Nigerian* Engineer, 7(3), 21 – 34

- Sullins, E.J. (2006). Analysis of radio communication towers subjected to wind, ice and seismic loadings. Doctorate dissertation, University of Missouri, Columbia.
- Tom, M. (2021, March 28). *Massive death averted as newly built FM radio mast in Uyo collapses twice in 2 months*. More News. <u>https://www.morenews.ng/fm-radio-mast-collapses-in-uyo/</u>.

APPENDICES

Appendix A: NCC Notification Letter on Tower Collapses

NCC/CMED/ISCS/161/VOL.1/8/2020

July 14, 2020

The Managing Director Emerging Markets Telecommunication Services Plot 19 Zone L Fed. Govt Layout, Foreshore Estate Banana Island, Ikoyi, Lagos.

Dear Sir,

INCREASING CASES OF COLLAPSE OF EMERGING MARKETS TELECOMMUNICATION SERVICES MASTS AND TOWERS ACROSS THE NATION

The Commission has been inundated with reports with respect to concerns regarding the installation of Base Transceiver Station (BTS) sites in its vicinities. These complaints have increased with increasing cases of collapsed Masts and Towers in various states of the Country resulting to loss of lives and properties.

The Commission frowns at and finds this trend very disturbing and hereby directs Emerging Markets Telecommunication Services to take immediate steps to:

- 1. Ensure structural integrity and reinforcement of both new and existing Masts and Towers
- Ensure compliance with the Structural Design stipulated in the Guideline for the Technical Specification of Telecommunication Masts and Towers 2009.

Consequently, you are required to:

- 1. Report to the Commission, within 24 hours, all incidence of BTS towers collapse.
- Make readily available, records of routine maintenance carried out at the BTS sites for the Commission's inspection at all times;
- Submit a status report of all collapsed Masts and Towers within the last five (5) years stating the reason for the collapse, actions taken to clear the debris and compensation to victims where necessary;
- Conduct Structural Integrity Test on all BTS sites especially the ones that are ten (10) years and above.

a. Submit the Structural Integrity Test schedule before commencement.

- b. Submit the Structural Integrity Test report upon completion detailing amongst other parameters, the load bearing capacity of each BTS site.
- Provide a copy of the last Third (3rd) Party Insurance cover for all collapsed Masts and Towers (2016 - 2020) as stipulated in the Guideline for Technical Specification of Telecommunication Masts and Towers.

1000 Page 1 of 2

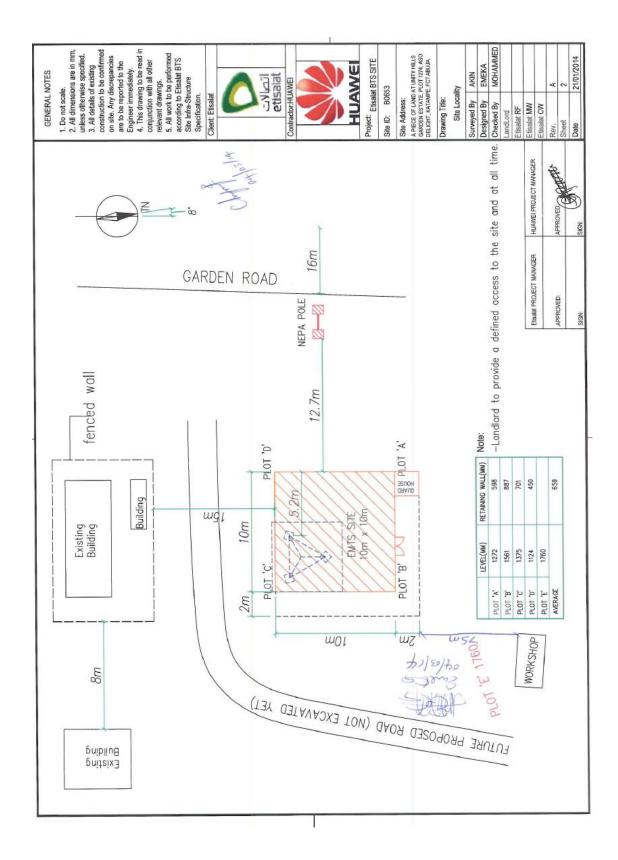
The Commission expects all tasks will be completed before the 1^{st} of October 2020 and all reports must reach the office of the Executive Vice Chairman by the 15^{th} of October 2020.

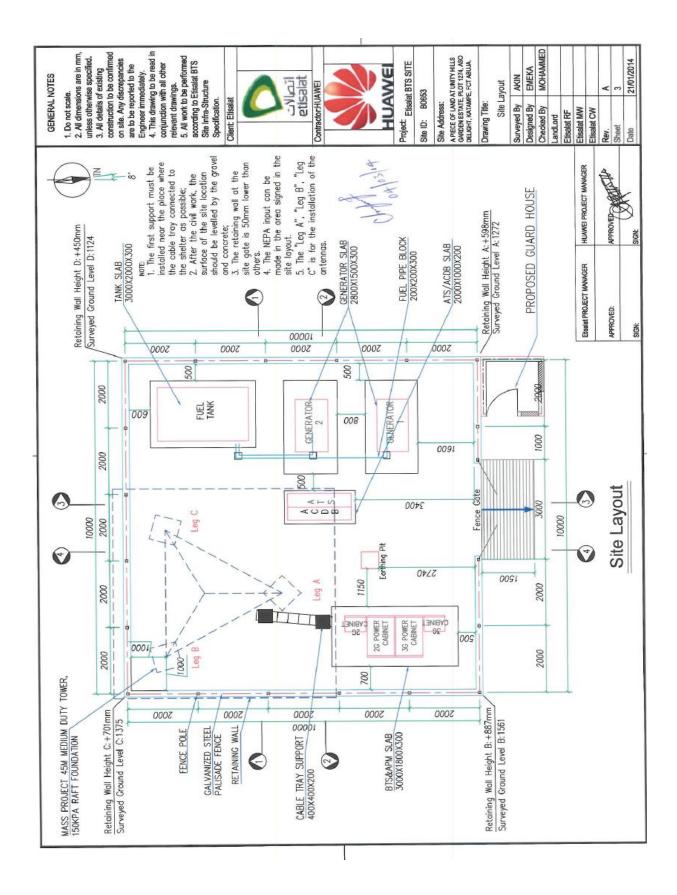
Thank you.

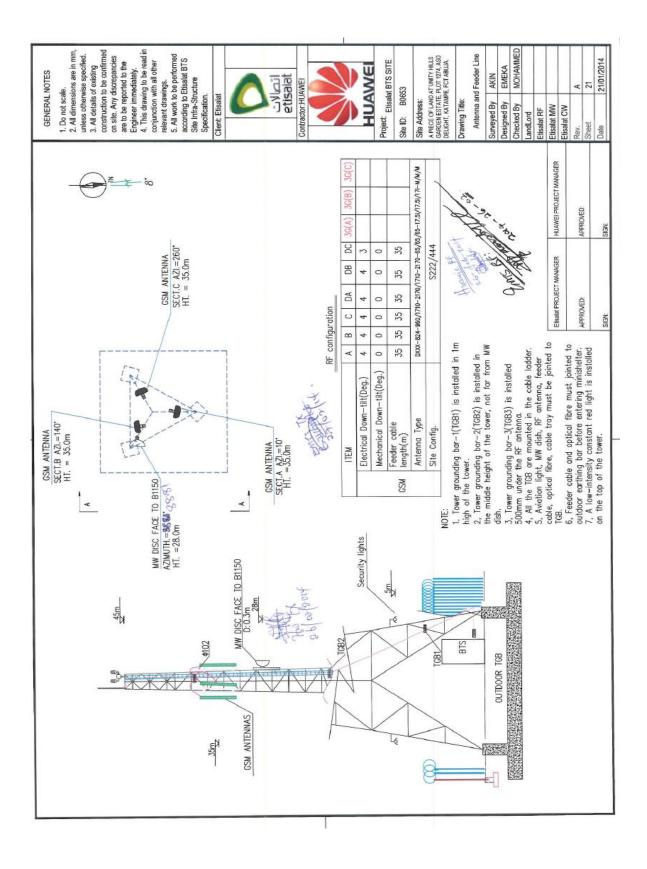
Yours faithfully, PP: Nigerian Communications Commission

into a

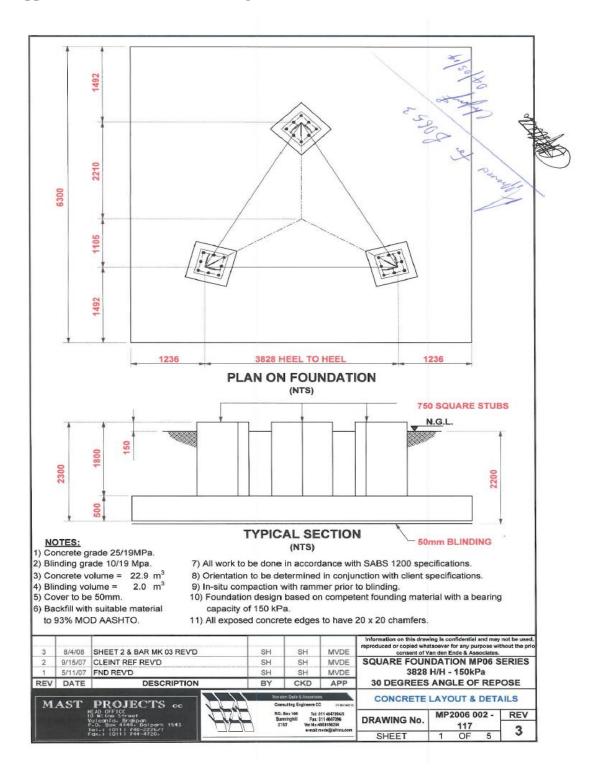
Ephraim Nwokenneya Director, Compliance Monitoring and Enforcement For: Executive Vice Chairman

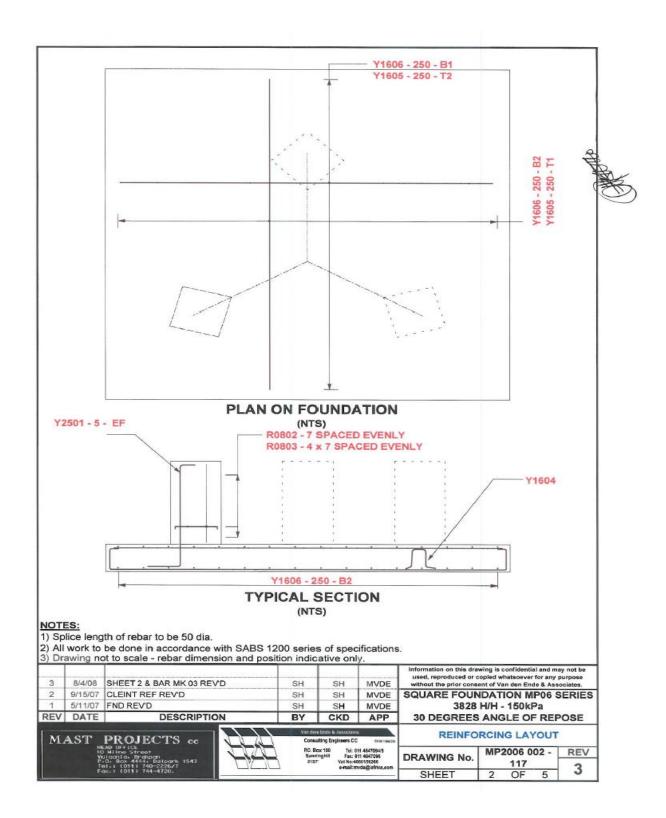

1

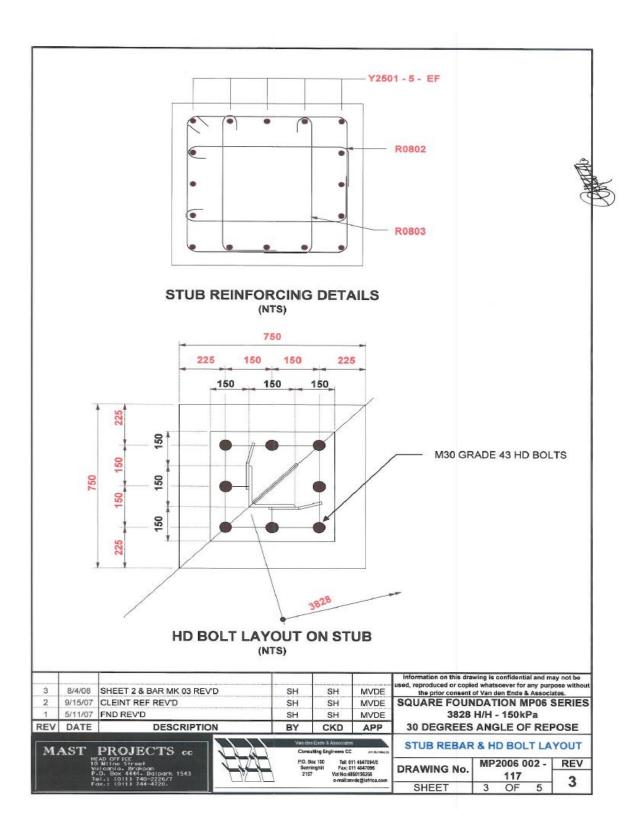

Alkasim Umar Head, Compliance Monitoring

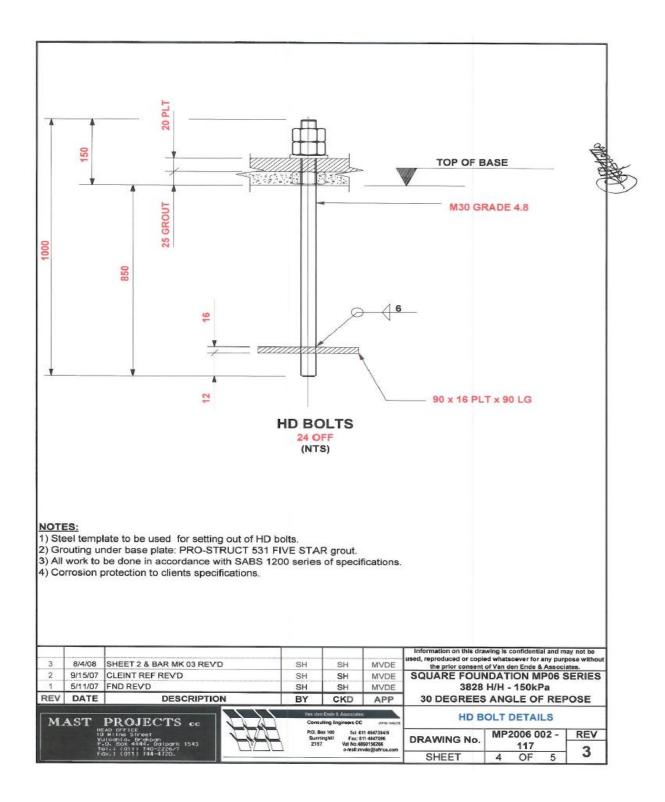

	DATE: 2	DATE: 2014-01-21	topporter to Contract of 1 1 1 1
Et	Etisalat BTS SITE INFRASTRUCTURE DRAWING	RUCTURE DR	AWING
SITE ID:	B0653	SITE NAME:	B0653C
STATE:	ABUJA	CITY/ROAD:	KATAMPE
SITE TYPE:	Greenfield/Outdoor/BTS	SITE SIZE:	10m X 10m
TOWER :	Mast Project/45m/Medium/3-leg	WIND SPEED:	42m/s
FOUNDATION :	150Kpa Raft Foundation	TERRAIN:	URBAN
GENERATOR :	1+1/3phases/13KVA	TANK :	5000L
SITE ADD:	A PIECE OF LAND AT UNITY HILLS G	RDEN ESTATE, PLOT 1274	A PIECE OF LAND AT UNITY HILLS GARDEN ESTATE, PLOT 1274, ASO DELIGHT, KATAMPE, FCT ABUJA.
COORDINATE:	LONGITUDE E: 7.43766457°	.P.I	LATITUDE N: 8.97316°
	etisalat		HUAWEI
	HUAWEI TECHNOLOGIES CO;LTD.	IOLOGIES CO;	LTD.

APPENDIX B


Appendix B1: Site layout







Appendix B2: Foundation drawing

Appendix B3: Soil test report

PROPOSED ETISALAT GSM MAST

SITE LOCATION: A PIECE OF LAND LOCATED AT UNITY HILLS GARDEN ESTATE, PLOT 1274, ASO DELIGHT, KATAMPA, F.C.T. ABUJA.

SITE I.D: B 0653

AND

REPORT OF SUBSOIL INVESTIGATION FOR HUAWEI TECHNOLOGIES COMPANY LTD.

DATE: JANUARY, 2014

PREPARED BY: KDF KONSULT LIMITED 3, BALOGUN STREET OFF AWOLOWO WAY, IKEJA.

EXECUTIVE SUMMARY

ALLOWABLE BEARING PRESSURE KPA VALUES:

Differential Depth (m)	Allowable bearing Capacity (KN/m ²)
0.00 - 0.25	90
0.25 - 0.50	140
0.50 - 0.75	210
0.75 - 1.00	290
1.00 - 1.25	340
1.25 – 1.50	480
1.50 - 1.75	625
1.75 – 2.00	765

RECOMMENDED FOUNDATION:

Shallow foundation

Shallow foundation is recommended for the proposed tower and ancillary facilities on project site.

GROUND WATER

Groundwater was not encountered in the course of the investigation on the project site. Occasionally during raining season water is trapped within the overburden sediment, If water is encountered in the course of excavation, though it was not encountered in the course of the DCP tests, the allowable bearing pressure stated in this report should be halved.

EXCAVATION

Adequate preparation should be put in place to excavate into cohesive soil.

Excavation support would not be required.

Excavation could easily be achieved using conventional excavating equipments / tools.

1.0 INTRODUCTION

The Contractor, (HUAWEI TECHNOLOGIES COMPANY LTD) commissioned Kdf Konsult Limited to proceed with subsoil investigations at the proposed GSM Cell Site located on A PIECE OF LAND LOCATED AT UNITY HILLS GARDEN ESTATE, PLOT 1274, ASO DELIGHT, KATAMPA, F.C.T. ABUJA. This Report is a consequence of the soil investigation and analysis, which is presented in an objective and professional manner.

The purpose of the subsoil investigation and attendant report is as follows:

- Determine the subsoil and surface/groundwater conditions of the designated location.
- Evaluation of the subsoil stratigraphic sequence geotechnical/engineering properties of the soil and the subsequent effects on foundation design and construction.
- Analysis of the data/results of tests carried out on the soil samples obtained and provide recommendations on the fit-for-purpose type of foundation for the proposed structure.

2.0 SITE ACCESSIBILITY

The site is accessible through, Katampe road, Unity Hills Garden Estate, Plot 1274, Aso Delight, Katampa, F.C.T. Abuja to mention but a few.

3.0 DESCRIPTION OF WORK

The soil investigation comprised of and carried out in three parts;

 Field Work: Tests (3DCPTs and Test pit), Laboratory Tests and collation of the test results.

3.1 FIELD WORK

The site works were carried out on January 21st, 2014.

The Scope of Work executed involved the performance of 3Nos. Dutch Cone Penetrometer Tests (DCPTs) to a depth of refusal and 1No. Test Pit.

DUTCH CONE PENETROMETER

The apparatus consists of a cylindrical probe, of 1000mm² cross sectional area, and a conic head of apex angle of 60°. The probe is forced down through the soil at a steady rate of about 20mm/s in the closed position by exerting pressure force on outer sounding tube. If desired the point resistance and the resistance to side friction can be measured separately.

3Nos. static cone penetration test was carried out using a 2.5tons capacity testing equipment (machine). The test involves advancing the cone into the ground slowly at a constant rate and the resistant to penetration measured at predetermined intervals of 0.25m depth. The tests were terminated at depths where the machine anchor legs lifted.

These tests were taken from the existing ground level down to depths of -2.00m in Pen 1, Pen 2 and Pen3 respectively.

The cone penetration test results are presented in a graphical form respectively in the Appendix to this Report.

TEST PIT

1No. Test Pit was done by manual excavation, (dimension - 1.50m x 1.50m x 1.00m).

3.2 ANALYSIS OF TEST RESULTS

3.2.1 Geological Description

Available geological record reveals that the investigated area is within the basement complex of Nigeria; it is characterized by crystalline rocks of Precambrian age. Rocks of granitic origin later intruded these rocks

3.2.2 Subsoil Condition

The subsoil indicated from the cone penetration test and trial pit result reveals a simple and uniform occurrence along the entire area investigated. Details of the subsoil characteristics encountered during the Penetrometer test and the trial pit excavation are shown below:

Subsoil Condition based on Dutch Cone Penetrometer Test (DCPT):

Depth (m)	Description of Stratum		
0.50 to -2.00	Stiff to hard Cohesive Soil.		

Subsoil Condition based on Trial Pit

Depth (m)	Description of Stratum		
0.00 to -1.50	Stiff to hard Sandy CLAY.		

3.2.3 Groundwater Condition.

Groundwater was not encountered in the course of the investigation on the project site. Occasionally during raining season water is trapped within the overburden sediment, if water is encountered in the course of excavation, though it was not encountered in the course of the DCP tests, the allowable bearing pressure stated in this report should be halved.

3.2.4 Site description and Condition.

The proposed site on which subsoil investigation was carried out in an open piece of land located within a residential environment; buildings and fence around show no sign of distress.

3.2.5 Topography.

The project site has an uneven topography.

3.2.6 Vegetation.

Vegetation on the project site as at the time of geotechnical investigations were mainly grasses and weeds.

3.2.7 Erosion and Flooding.

At the time of investigation the site shows no proneness to erosion and / or flooding under heavy down pour, however adequate drainage should be in place on the project site.

4.0 FOUNDATION DISCUSSION AND RECOMMENDATION

4.1 DESIGN DETAILS

Essentially, the Cell Site facilities/infrastructure requiring foundations that exert any significant loads shall comprise the following:

- 1. Self-supporting Tower resting on concrete bases.
- 2. A generator base
- 3. A shelter base
- Cell Site location fence, which shall be in block wall or galvanized steel frame. Depending on the specified design, a concrete retaining wall may be required.

Generally it was advised that a minimum bearing design pressure of 50KN/m² is required beneath the tower if a shallow foundation is to be adopted.

4.2 DISCUSSIONS

Geotechnical Properties based on Dutch Cone Penetrometer Test (DCPT):

Depth (m)	Geotechnical Properties						
0.00 += .0.00	Good to very good geotechnical properties, high shear						
0.00 to -2.00	strength and low compressibility potential.						

Geotechnical Properties based on Trial Pit

Depth (m)	Geotechnical Properties					
0.00 to -1.50	Good to very good geotechnical properties, high shear					
	strength and low compressibility potential.					

GEOTECHNICAL ENGINEERING PARAMETERS

Depth	q _c value for Pen 1	q _c value for Pen 2	q _c value for Pen 3	
(m)	(kg/cm ²)	(kg/cm ²)	(kg/cm ²	
0.00 to -2.00	20 – 171	18 – 168	24 – 175	

4.3 RECOMMENDATION

The foundation type to be chosen for a particular structure depends largely on the followings;

- Loads to be transmitted
- Receiving soil strata
- Factor of safety against shear failure of the supporting soil must be adequate.
- Settlement should neither cause any unacceptable damage nor interfere with the function of the structure.

Foundations can be classified as shallow foundation or as deep foundation.

The choice between shallow foundation and deep foundation can be arrived at after careful consideration of the following elements.

- 1. The magnitude of the transmitted loads from the stratum,
- 2. The soil nature,
- 3. The economic aspects of the elements of the foundation work,
- 4. Problems concerning foundation construction.

4.3.1 Allowable Bearing Pressure between ground surface and -2.00m

Allowable bearing pressure calculated in accordance with theoretical soil mechanics principle for different depths are indicated below:

	Allowable Bearing Pressure
-	90KN/m ²
-	140KN/m ²
3 4 7	210KN/m ²
	290KN/m ²
-	340KN/m ²
-	480KN/m ²
	625KN/m ²
-	765KN/m ²
	-

4.3.2 Recommended Foundation.

The foundation type to be chosen for a particular structure depends largely on the followings;

- Loads to be transmitted
- Receiving soil strata
- Factor of safety against shear failure of the supporting soil must be adequate.
- Settlement should neither cause any unacceptable damage nor interfere with the function of the structure.

Foundations can be classified as shallow foundation or as deep foundation.

The choice between shallow foundation and deep foundation can be arrived at after careful consideration of the following elements.

- 5. The magnitude of the transmitted loads from the stratum,
- 6. The soil nature,
- 7. The economic aspects of the elements of the foundation work,
- 8. Problems concerning foundation construction.

Shallow foundation

Shallow foundation is recommended for the proposed tower and ancillary facilities on project site.

4.3.3 Settlement

For the allowable bearing pressure stated above, anticipated total and differential settlement would not exceed 25mm.

4.3.4 General Comment

- Factor of safety value of 3 was used for our shallow foundation analysis.
- The above recommendation is based on the depth of termination of the test, if water is encountered in the course of excavation, though it was not encountered in the course of the DCP tests, the allowable bearing pressure stated in this report should be halved.

REPORT OF SUBSOIL INVESTIGATION.

 The above recommendation is based on the depth of termination of the test, no geotechnical information of the subsoil beneath -2.00m depth of termination could be determined except borehole/SPT test is carried out.

4.3.5 Excavation.

- Adequate preparation should be put in place to excavate into cohesive soil.
- Excavation support would not be required.
- Excavation could be easily achieved using conventional excavating tools.

4.3.6 General Precaution for Shallow Foundation Construction

It is recommended that the following general guidelines that govern the construction of shallow foundation should be observed when work commences on the site:

- Over excavation beyond the depths stated should not be done.
- Ingress of water into the excavated foundation trench should be prevented if the stated bearing value at the founding depth is to be achieved. A layer of concrete blinding should therefore be provided within a trench once it has been excavated.
- Adequate cover to the concrete should be allowed for the reinforcement bars to protect them from possible effect of corrosion.
- The sides of foundation should be backfilled up to existing ground level as soon as they are cast.
- Pile cap should be deep enough to ensure full transfer of the load from the column to the cap in the punching shear and from the cap of the piles.
- Ground beam should be used to inter-connect the pile or pile cap so as to take care of out-of-balance moment resulting from wind effect at ground level both in normal and punching shear

Note;

- Our recommendation is for guidance purpose only and it is based on the depth of termination of the Dutch Cone Penetrometer tests (DCPT) carried out on the project site. To confirm the recommendations above and for further information beneath depth of termination of the DCPT, we recommend that at least a -25m borehole / SPT test or geophysical investigation for geotechnical purpose be carried out on the project site.
- The recommendations given in this report are based on the assumption that the subsurface materials and conditions do not deviate appreciably from those disclosed.

5.0 CONCLUSION

Shallow foundation is recommended for the proposed tower and ancillary facilities on project site.

Despite an objective soil investigation and reporting, a poorly designed and/or constructed foundation may lead to structural failure if all other environmental conditions remain constant. Kdf Konsult Limited therefore recommends that the design and construction of all foundation and earthwork be carried out by a competent company in accordance with good and strict engineering practice expected of a professional. The construction contractor shall be guided by reference Code of Practices such as; British Institution CP 2004, 1973: Code of Practice for Foundation and BS 6031: Code of Practice for Earth Works.

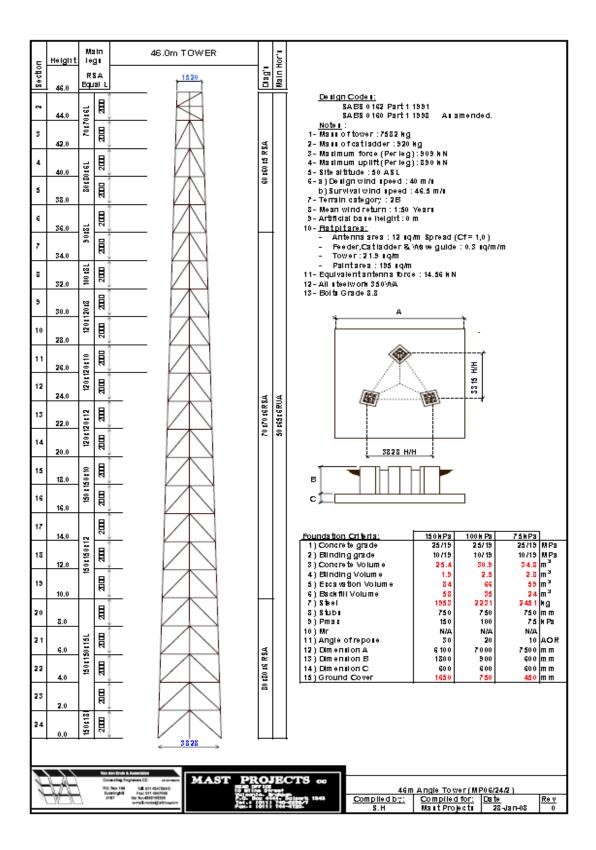
FOR: KAYODE OLAOYE

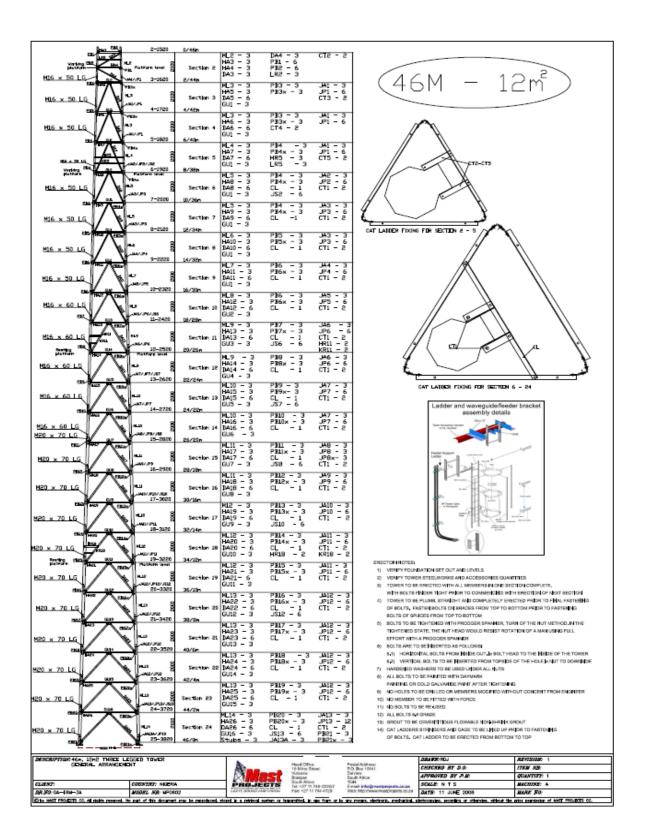
APPENDIX C

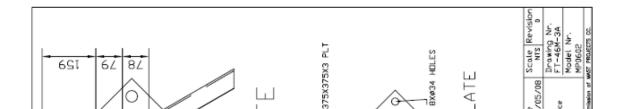
Appendix C: Tower drawing

PACKING LIST

MAST PROJECTS NIGERIA


QUANTITY


46M (42M/S) 3820HH TOWER FOUNDATION TEMPLATES


S/NO. ITEMS/MATERIALS

S/NO.	TT EIVIS/IVIA TERIALS	PER SITE
1	Angle Irons (50 X 50 X 6L X 1810LG)	6Pcs.
2	Angle Irons (50 X 50 X 5L X 1106LG)	3Pcs.
з	Top Plates (375 X 375)	3Pcs.
4	Bottom Plates (375 X 375)	3Pcs.
5	Splice/Connecting Plates (260 X 50 X 5PLT)	6Pcs.
6	M12 X 30 Assembly Bolts & Nuts	54Pcs.
7	M30 Holding Down Bolts	24Pcs.

89

