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ABSTRACT 

This present work concerns the numerical solution of linear system of algebraic equation 

𝐴𝑥 =  𝑏 by second refinement of accelerated overrelaxation (AOR) method. This 

technique is especially useful in solving linear system arising from discretisation of 

ordinary differential equations or partial differential equation where the coefficient matrix 

is an irreducibly diagonally dominant 𝐿- matrix. A suitable preconditioner is applied to 

the linear system before a second refinement algorithm is processed. As in all iterative 

methods for linear systems, this is aimed at minimizing the spectral radius in order to 

reduce the number of iterations needed for convergence. Hence, the SRPAOR method 

converges faster than AOR, PAOR, RAOR and RPAOR by a factor of 5.75, 3, 2.87 and 

1.5 respectively. Optimum convergence is attained when 𝑟 = 1.0, 𝜔 = 1.1 and when 𝑟 =
0.99, 𝜔 = 1.0. Numerical examples proved the efficiency of second refinement of 

preconditioned AOR over the AOR, preconditioned AOR and first refinement of AOR 

methods. The techniques of preconditioning and second refinement have been exploited 

to introduce a new approach towards improving the rate of convergence of the AOR 

iterative method in solving linear system of equations. The implication of the method 

indicates an enhancement or modification to the original PAOR method, which led to 

improved accuracy in solving linear algebraic systems. 
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CHAPTER ONE 

1.0            INTRODUCTION 

1.1 Background of Study 

Iterative methods are a most preferred set of methods for solution of linear systems of 

equation 

𝐻𝑥 = 𝑐                                                                         (1.1) 

where 𝐻 is a nonsingular square matrix of size 𝑛 × 𝑛 with nonvanishing diagonal entries, 

𝑥 and 𝑐 are unknown and known vectors respectively. A great many iterative methods 

abound and, of course, not every linear system can be solved by an iterative method (Adil 

et al., 2019). However, the origin of linear systems that are given to iterative methods can 

be traced to the discretisation of partial differential equations of elliptic type by finite 

difference method, finite element method, or finite volume method. In such systems, the 

coefficient matrix is usually sparse and large; these are traits that iterative methods exploit 

to full advantage in order to obtain faster convergence than direct methods such as 

Gaussian elimination (Eneyew et al., 2020a). Although direct methods accommodate 

larger classes of linear systems, they suffer from disadvantage of consuming large amount 

of time and storage, as the sparse structure of the system gradually accommodates fill-in 

as computation progresses (Adsuara et al., 2016). 

An iterative method for solving the linear system (1.1) consists of a process whereby the 

system 𝐻𝑥 = 𝑐 is converted not an equivalent system of the form   

𝑥 = ℒ𝑥 + 𝑘                                                                  (1.2) 

Once the system is in the form (1.2), the sequence of solution vectors can be obtained 

through the general linear iteration formula 

𝑥(𝑛+1) = ℒ𝑛𝑥(𝑛) + 𝑘𝑛                                                  (1.3) 



11 

 

Where ℒ𝑛 referred to as the iteration matrix, is a matrix depending upon 𝐴 and 𝑥, and 𝑘𝑛 

is a column vector. At each step of the iteration a solution vector, 𝑥𝑛 that is more accurate 

approximates the solution to the linear system than its predecessor and its procedure. 

1.2 Statement of the Research Problem 

When large sparse linear systems are to be solved, the method of choice is obviously 

iterative methods (Assefa and Teklehaymanot, 2021). However, the number of iterations 

needed for such methods to attain convergence could be relatively large, which could 

impact negatively on computer storage and computational efficiency (Faruk and 

Ndanusa, 2019). When such is the case, the need arises to remodel or redesign the existing 

methods so as to obtain approximate solutions that attain faster convergence (Eneyew et 

al., 2019; Abdullahi and Ndanusa, 2020). Hence, the present study sought to develop a 

preconditioning and second refinement method for the solution of the linear system. 

1.3 Aim and Objectives of the Study 

The aim of this research is to investigate the successive application of two acceleration 

techniques, preconditioning and second refinement, to the solution of linear systems with 

a view to reducing the spectral radius of the iteration matrix to the barest minimum so as 

to attain convergence in a few number of iterations. 

The objectives are to: 

1. formulate or identify a suitable preconditioner for the AOR method  

2. formulate a second refinement for the preconditioned AOR method 

3. Identify restrictions imposed on coefficient matrix of the resulting linear system  

4. establish convergence of the proposed technique 

5. Validate the convergence results through numerical experiments 

6. Conduct comparative convergence analysis of the various methods studied  

7. establish the rates of convergence of the various methods studied 



12 

 

8. compare the rates of convergence of the second refinement of AOR method with 

those of existing methods.    

1.4 Justification for the Study 

Considerable amount of storage is required to store intermediate results when solving 

very large linear systems by direct methods. However, with iterative solution methods 

especially where the coefficient matrix is sparse, the presence of large number of zero 

entries can be taken into advantage in order to minimise the time and amount of storage 

space used (Mayaki and Ndanusa, 2019). Therefore, iterative methods are more desirable 

for solving large and sparse linear systems. Employing the dual techniques of 

preconditioning and second refinement will go a long a way in increasing the rates of 

convergence of iterative methods.  

1.5 Significance of the Study 

A great many real-life problems in engineering and social sciences are modelled as partial 

differential equations. When a partial differential equation is solved, the corresponding 

physical problems it represents is in effect solved as well. The resort to the solution of 

many partial differential equations that defy analytical solution is obviously by 

discretisation. The discretisation procedure eventually ends up as linear system of 

equations, the solution of which is obtained by iteration techniques. This research seeks 

to improve the convergence rate of one of such iterative techniques. 

1.6 Scope and Limitations of Study 

This research work involves the formulation, convergence investigation and the 

implementation of a second refinement method to accelerate the convergence of the 

preconditioned AOR method for solving linear algebraic systems.’ 
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The limitations of this study include: 

1. The second refinement of AOR method is limited to linear systems whose 

coefficient matrix is an irreducibly diagonally dominant L-matrix. 

2. The third refinement and subsequently nth (n> 2) refinement of AOR method is 

yet to be undertaken. 

1.7 Definition of Terms 

L-matrix   A Z-matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑅𝑛×𝑛 with 𝑎𝑖𝑖 > 0, 𝑖 = 1(1)𝑛  

M-matrix   An  L-matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑅𝑛×𝑛 where 𝐴 is nonsingular and 𝐴−1 ≥ 0. 

Negative matrix  A matrix 𝐴 = (𝑎𝑖𝑗) where 𝑎𝑖𝑗 < 0, 𝑖, 𝑗 = 1(1)𝑛. 

Nonnegative matrix  A matrix 𝐴 = (𝑎𝑖𝑗) where 𝑎𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1(1)𝑛. 

Nonpositive matrix  A matrix 𝐴 = (𝑎𝑖𝑗) where 𝑎𝑖𝑗 ≤ 0, 𝑖, 𝑗 = 1(1)𝑛. 

Positive matrix   A matrix 𝐴 = (𝑎𝑖𝑗) where 𝑎𝑖𝑗 > 0, 𝑖, 𝑗 = 1(1)𝑛. 

Property A   A square matrix 𝐴 = (𝑎𝑖𝑗) is said to have property A if there exists a set 𝑊 

as the union of two disjoint subsets 𝑈 and 𝑉 such that if either 𝑎𝑖𝑗 ≠ 0 or 𝑎𝑗𝑖 ≠ 0 then 

𝑖 ∈ 𝑈 and 𝑗 ∈ 𝑉 or 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑈. 

Spectral norm  The spectral norm of an 𝑛 − square matrix 𝐴, denoted by ‖𝐴‖2, is the 

square root of the maximum eigenvalue of 𝐴∗𝐴, i.e., 

‖𝐴‖2 = (maximum eigenvalue of 𝐴∗𝐴)1 2⁄                            (1.5) 

where 𝐴∗ is the transpose conjugate of  𝐴. According to Saad (2000), the spectral norm 

of 𝐴 is equal to the spectral radius of  𝐴 when the matrix is Hermitian. 

Spectral radius  The maximum among the absolute values of the eigenvalues of an 𝑛 −

square matrix 𝐴 is called the spectral radius of 𝐴. It is denoted by 

𝜌(𝐴) = max
𝑖

|𝜆𝑖|                                                         (1.6) 

where 𝜆𝑖 (𝑖 = 1(1)𝑛) is an eigenvalue of 𝐴. 
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Splitting    The decomposition of a real matrix 𝐴 ∈ 𝑅𝑛×𝑛 into the form 𝐴 = 𝑀 − 𝑁, 

where 𝑀 is a nonsingular matrix is called a splitting of 𝐴. Such splitting is called  

i. Regular if 𝑀−1 ≥ 0 and 𝑁 ≥ 0 

ii. Nonnegative if 𝑀−1𝑁 ≥ 0 

iii. Convergent if 𝜌(𝑀−1𝑁) < 1 

iv. 𝑀 −splitting if 𝑀 is a nonsingular 𝑀 −matrix and 𝑁 ≥ 0. 

Usual splitting  For any matrix 𝐵, the decomposition 𝐵 = 𝐷 − 𝐿𝐵 − 𝑈𝐵 in which 𝐷 is 

the diagonal of 𝐵, −𝐿𝐵 its strict lower part, and −𝑈𝐵  its strict upper part, is called the 

usual splitting of 𝐵. Moreover, with the assumption that 𝐵 has non-vanishing diagonal 

entries, we consider the usual splitting 𝐴 = 𝐼 − 𝐿 − 𝑈, where 𝐼 = 𝐷−1𝐷 , 𝐿 = 𝐷−1𝐿𝐵 and 

𝑈 = 𝐷−1𝑈𝐵.  

Z-matrix   A matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑅𝑛×𝑛 where 𝑎𝑖𝑗 ≤ 0 (𝑖 ≠ 𝑗) 
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CHAPTER TWO 

2.0        LITERATURE REVIEW 

2.1 Basic Iterative Methods 

Consider the solution of system of linear equations 

𝐻𝑥 = 𝑐,     𝐻 ∈ 𝑅𝑛×𝑛, 𝑐 ∈ span (A)                      (2.1) 

We also consider a usual splitting of 𝐻 into its diagonal, strictly lower and strictly upper 

parts thus, 

𝐻 = 𝐷 − 𝐸 − 𝐹                                                                        (2.2) 

where 𝐷 is a diagonal matrix, −𝐸 and −𝐹 are the strictly lower and strictly upper parts 

of 𝐻 respectively. Iterative methods are methods that employ successive approximations 

in order to arrive at more accurate solutions to a system of linear equations at each step 

(Naumov, 2011). A basic iterative method is a one – step method of the form 𝑥(𝑛+1) =

ℒ𝑥(𝑛) + 𝑘 where for some nonsingular matrix 𝑄 we have ℒ = 𝐼 − 𝑄−1𝐻 and 𝑘 = 𝑄−1𝑐. 

The Jacobi, Gauss-Seidel and successive overrelaxation (SOR) are some of the basic 

iterative methods.  

2.2 Jacobi Method 

The Jacobi method is based on solving for every variable locally with respect to the other 

variables. One iteration of the method corresponds to solving for every variable once. The 

resulting method is easy to understand and implement, but convergence is slow (Barrett 

et al., 1994). It is constructed from the linear system 𝐻𝑥 = 𝑐 based on the splitting 𝐻 =

𝐷 − 𝐸 − 𝐹. Saad (2000) stated that the basic single step of the iteration consists in 

replacing the current value, 𝑥(𝑛+1), by the improved value, 𝑥(𝑛), obtained from the matrix 

operations,  

𝑥(𝑛+1) = 𝐷−1(𝐸 + 𝐹)𝑥(𝑛) + 𝐷−1𝑐                                   (2.3) 
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which characterizes the Jacobi method. The matrix equation (2.1) is now in the general 

iterative form  

𝑥(𝑛+1) = ℒ𝐽𝑥
(𝑛) + 𝑘𝐽                𝑛 = 0,1,2,⋯                                  (2.4) 

where ℒ𝐽 = 𝐷−1(𝐸 + 𝐹), 𝑘𝐽 = 𝐷−1𝑐, 

In equation (2.4), the subscripts on ℒ and 𝑘 are just to emphasize the Jacobi method. 

According to Ames (1977) the algebraic form of (2.3) is expressed as  

𝑥𝑖
(𝑛+1)

=
1

𝑎𝑖𝑖

(

 
 

𝑏𝑖 − ∑𝑎𝑖𝑗𝑥𝑗
(𝑛)

𝑘

𝑗=1
𝑗≠𝑖 )

 
 

  𝑖 = 1,… , 𝑘                              (2.5) 

where the 𝑎𝑖𝑗 denote the elements of the coefficient matrix 𝐻 = (𝑎𝑖𝑗), the 𝑥𝑖 the elements 

of 𝑥 and the 𝑏𝑖 the elements of 𝑏. The order in which one solves for the components 𝑥𝑖
(𝑛)

 

is irrelevant, since the Jacobi method treats them independently. It is for this reason that 

the Jacobi method is known as the method of simultaneous displacements, since the 

updates could in principle be done simultaneously. 

Numerical Algorithm of Jacobi Method 

Input: 𝐻 ≔ (𝑎𝑖𝑗), 𝑐𝑏, 𝑋𝑂 = 𝑥(0), tolerance 𝑇𝑂𝐿, maximum number of iterations 𝑁. 

Step 1 Set 𝑘 = 1 

Step 2 while (𝑘 ≤ 𝑁) do Steps 3-6 

 Step 3 for 𝑖 = 1,2,⋯ , 𝑛 

  𝑥𝑖 =
1

𝑎𝑖𝑖
[∑ (−𝑎𝑖𝑗𝑿𝑶𝑗)

𝑛
𝑗=1
𝑗≠𝑖

+ 𝑏𝑖], 

 Step 4 If ‖𝒙 − 𝑿𝑶‖ < 𝑇𝑂𝐿, then OUTPUT (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛); 

STOP. 

 Step 5 Set 𝑘 = 𝑘 + 1. 

 Step 6 For 𝑖 = 1,2,⋯ , 𝑛 
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  Set 𝑿𝑶𝑖 = 𝑥𝑖. 

Step 7  OUTPUT (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛); 

  STOP. 

The matrix ℒ𝐽 = 𝐷−1(𝐸 + 𝐹) is known as the Jacobi iteration matrix and its spectral 

radius is defined by  

𝜌(ℒ𝐽) = 𝜇̅                                                                                    (2.6) 

2.3 Gauss-Seidel Method 

The Gauss-Seidel method is like the Jacobi method, except that it uses updated values as 

soon as they are available. In general, if the Jacobi method converges, the Gauss-Seidel 

method will converge faster than the Jacobi method, though still relatively slowly (Barrett 

et al., 1994). The order in which one solves for the components of the 𝑛th approximation 

𝑥(𝑛) must be established beforehand. Such a sequential arrangement is called an ordering 

of the mesh points. For an arbitrary but fixed ordering, which we designate by 𝑥𝑖  (𝑖 =

1,2, … , 𝑘), where k is the number of mesh points. The algebraic form of the Gauss-Seidel 

method is given by 

𝑥𝑖
(𝑛+1)

=
1

𝑎𝑖𝑖
(𝑏𝑖 − ∑𝑎𝑖𝑗𝑥𝑗

(𝑛+1)

𝑖−1

𝑗=1

− ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑛)

𝑘

𝑗=𝑖+1

)     𝑖 = 1, … , 𝑘                 (2.7) 

The matrix form of the Gauss-Seidel iteration derived from the decomposition of the 

linear system 𝐻𝑥 = 𝑐 is as follows. 

𝑥(𝑛) = (𝐷 − 𝐸)−1𝐹𝑥(𝑛−1) + (𝐷 − 𝐸)−1𝑏                                 (2.8) 

Equation (2.8) is now in the general iterative form  

𝑥(𝑛+1) = ℒ𝐺𝑥(𝑛) + 𝑘𝐺                 𝑛 = 0,1,2,⋯                                      (2.9) 

where ℒ𝐺 = (𝐷 − 𝐸)−1𝐹, 𝑘𝐺 = (𝐷 − 𝐸)−1𝑏, 
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Numerical Algorithm of Gauss-Seidel Method 

Input: 𝐻 ≔ (𝑎𝑖𝑗), 𝑐, 𝑋𝑂 = 𝑥(0), tolerance 𝑇𝑂𝐿, maximum number of iterations 𝑁. 

Step 1 Set 𝑘 = 1 

Step 2 while (𝑘 ≤ 𝑁) do Steps 3-6 

 Step 3 for 𝑖 = 1,2,⋯ , 𝑛 

  𝑥𝑖 =
1

𝑎𝑖𝑖
[−∑ (𝑎𝑖𝑗𝑥𝑗)

𝑖−1
𝑗=1 − ∑ (𝑎𝑖𝑗𝑿𝑶𝑗)

𝑛
𝑗=𝑖+1 + 𝑏𝑖], 

 Step 4 If ‖𝒙 − 𝑿𝑶‖ < 𝑇𝑂𝐿, then OUTPUT (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛); 

 STOP. 

Step 5 Set 𝑘 = 𝑘 + 1. 

 Step 6 For 𝑖 = 1,2,⋯ , 𝑛 

  Set 𝑿𝑶𝑖 = 𝑥𝑖. 

Step 7  OUTPUT (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛); 

  STOP. 

For the Gauss-Seidel iteration matrix ℒ𝐺 = (𝐷 − 𝐸)−1𝐹, its spectral radius is found to be 

the square of spectral radius of Jacobi iteration matrix, that is, 

𝜌(ℒ𝐺) = 𝜇̅2                                                                                  (2.10) 

2.4 Successive Overrelaxation (SOR) Method 

Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel method by 

introducing an extrapolation parameter 𝜔. For the optimal choice of 𝜔, SOR may 

converge faster than Gauss-Seidel by an order of magnitude. The SOR, seeks to 

substantially reduce the number of iterations needed to reduce the error of an initial 

estimate of the solution by a predetermined factor by applying extrapolation to the Gauss-

Seidel method. This extrapolation takes the form of a weighted average between the 

previous iterate and the computed Gauss-Seidel iterate successively for each component. 
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Letting 𝑥𝑖̅
(𝑛+1) be the components of the 𝑛th Gauss-Seidel iteration, the SOR iteration is 

defined by means of the relation 

𝑥𝑖
(𝑛+1)

= 𝜔𝑥𝑖̅
(𝑛+1) + (1 − 𝜔)𝑥𝑖

(𝑛)
                                    (2.11) 

where the quantity 0 < 𝜔 < 2 is the relaxation factor. That is, the accepted value at step 

𝑛 + 1 is extrapolated from the Gauss-Seidel value and the previous accepted value. The 

idea is to choose a value for 𝜔 that will accelerate the rate of convergence of the iterates 

to the solution. If 𝜔 = 1 the SOR method reduces to that of Gauss-Seidel.  

The algebraic form of SOR iteration takes the form 

𝑥𝑖
(𝑛+1)

= 𝜔 {
1

𝑎𝑖𝑖
(𝑏𝑖 − ∑𝑎𝑖𝑗𝑥𝑗

(𝑛+1)

𝑖−1

𝑗=1

− ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑛)

𝑘

𝑗=𝑖+1

)} + (1 − 𝜔)𝑥𝑖
(𝑛)

         (2.12) 

While the matrix form of the SOR is 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐸)−1{(1 − 𝜔)𝐷 + 𝜔𝐹}𝑥(𝑛) + (𝐷 − 𝜔𝐸)−1𝜔𝑏            (2.13) 

That is, 

𝑥(𝑛+1) = ℒ𝜔𝑥(𝑛) + 𝑘𝜔                𝑛 = 0,1,2,⋯                                      (2.14) 

where ℒ𝜔 = (𝐷 − 𝜔𝐸)−1{(1 − 𝜔)𝐷 + 𝜔𝐹}, 𝑘𝜔 = (𝐷 − 𝜔𝐸)−1𝜔𝑏, for 0 < 𝜔 < 2.  

Numerical Algorithm of SOR Method 

Input: the number of equations and unknown n; the entries 𝑎𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛,  of the matrix 

H; the entries 𝑐𝑖,  1 ≤ 𝑖 ≤ 𝑛, of c; the entries XOi  1 ≤ 𝑖 ≤ 𝑛, of   𝑿𝑶 = 𝒙(𝟎); the 

parameter 𝜔, tolerance 𝑇𝑂𝐿; maximum number of iterations 𝑁. 

Output: the approximate solution 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 or a message that the number of iterations 

was exceeded. 

Step 1 Set 𝑘 = 1 

Step 2 while (𝑘 ≤ 𝑁) do Steps 3-6 

 Step 3 For for 𝑖 = 1,2,⋯ , 𝑛 
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  𝑥𝑖 = (1 − 𝜔)𝑿𝑶𝑖 +
1

𝑎𝑖𝑖
[𝜔(−∑ (𝑎𝑖𝑗𝑥𝑗)

𝑖−1
𝑗=1 − ∑ (𝑎𝑖𝑗𝑿𝑶𝑗)

𝑛
𝑗=𝑖+1 + 𝑏𝑖)], 

 Step 4 If ‖𝒙 − 𝑿𝑶‖ < 𝑇𝑂𝐿, then OUTPUT (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛); 

  STOP. 

Step 5 Set 𝑘 = 𝑘 + 1. 

 Step 6 For 𝑖 = 1,2,⋯ , 𝑛  

  Set 𝑿𝑶𝑖 = 𝑥𝑖. 

Step 7  OUTPUT (′Maximum number of iterations exceeded); 

  (The procedure was successful) 

STOP. 

For matrices with certain properties, an optimum value for the relaxation parameter  𝜔 

that appears in the SOR iteration matrix ℒ𝜔 = (𝐼 − 𝜔𝐸)−1{(1 − 𝜔)𝐼 + 𝜔𝐹} is governed 

by the relation  

𝜔 =
2

1+√1−𝜇̅2
                                                                            (2.15)  

And for this choice of 𝜔 the spectral radius of the SOR iteration matrix is obtained as  

𝜌(ℒ𝜔) = 𝜔 − 1 =
1 − √1 − 𝜇̅2

1 + √1 − 𝜇̅2
                                                   (2.16) 

2.5 AOR Method 

The accelerated overrelaxation (AOR) method introduced by Hadjidimos (1978) is a two-

parameter generalization of the SOR method. Judicious exploitation of the two 

parameters involved leads to methods that will converge in minimal number of iterations 

than other methods of the same type. It has the representation 

𝑥(𝑛+1) = ℒ𝑟,𝜔𝑥(𝑛) + 𝑘𝑟,𝜔                𝑛 = 0,1,2,⋯                                      (2.17) 

where ℒ𝑟,𝜔 = (𝐼 − 𝑟𝐸)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹], 𝑘𝑟,𝜔 = (𝐼 − 𝑟𝐸)−1𝜔𝑏, for 0 ≤

𝑟 ≤ 𝜔 < 1. 
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The matrix defined by ℒ𝑟,𝜔 = (𝐼 − 𝑟𝐸)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹] is the AOR 

iteration matrix whose spectral radius can be computed from the formula  

𝜌(ℒ𝑟,𝜔) =

𝜇√𝜇̅2 − 𝜇2

√1 − 𝜇2(1 + √1 − 𝜇̅2)
                                             (2.18) 

provided  

0 < 𝜇 < 𝜇̅ and 1 − 𝜇2 < √1 − 𝜇̅2                                        (2.19) 

for the optimum values of 𝜔 and 𝑟 

𝜔 =
2

1 + √1 − 𝜇̅2
  and  𝑟 =

(1 − 𝜇2) − √1 − 𝜇̅2

(1 − 𝜇2) (1 + √1 − 𝜇̅2)
                       (2.20) 

respectively; where 𝜇 = min
𝑖

|𝜇𝑖| , = 𝜇̅ = max
𝑖

|𝜇𝑖| and 𝜇𝑖|𝑖 = 1(1)𝑛 define the 

eigenvalues of Jacobi iteration matrix ℒ𝐽 = 𝐷−1(𝐸 + 𝐹). 

2.6 Fundamental Theorem of Iterative Methods 

An iterative method is said to converge if, for any given iteration count 𝑛, each component 

of the successive iterants 𝑥(𝑛) tends to the corresponding component of the solution vector 

𝑥 for all initial vectors 𝑥(0). A necessary condition for all stationary methods to attain 

convergence is contained in the following theorems. 

Theorem 2.1 (Byrne (2008)) 

The stationary linear iteration 𝑥(𝑛+1) = ℒ𝑥(𝑛) + 𝑘 converges if and only if the spectral 

radius of ℒ is less than 1.  

The spectral radius of an iterative matrix ℒ, denoted by 𝜌(ℒ), is defined as 

𝜌(ℒ) = max
𝜇∈σ(ℒ)

|𝜇|                                                       (2.21) 

where σ(ℒ), known as the spectrum of ℒ, is the set of all the eigenvalues of ℒ. The 

computational effectiveness of a convergent iterative method is directly related to the 
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magnitude of the spectral radius of the matrix  ℒ of the iterative method. The rate of 

convergence is best when the spectral radius is near zero and poorest when it is near 1. 

Sufficient conditions for convergence of specific iterative methods could also be derived. 

Theorem 2.2 (Byrne (2008)) 

If the matrix 𝐻, of the linear system 𝐻𝑥 = 𝑐, is diagonally dominant (or irreducibly 

diagonally dominant), then the spectral radii of the Jacobi and Gauss-Seidel matrices are 

less than 1, and the Jacobi and Gauss-Seidel methods converge. 

Theorem 2.3 (Saad (2000)) 

If the system 𝐻𝑥 = 𝑐 has a symmetric positive definite matrix 𝐴, the spectral radius of 

the Gauss-Seidel iteration matrix is less than 1, and the Gauss-Seidel method always 

converges, without further restrictions on 𝐻. 

Theorem 2.4 (Noor et al. (2012)) 

If 𝐻 is symmetric with positive diagonal elements, then 𝜌(ℒ𝜔) < 1 if and only if  𝐻 is 

positive definite and 0 < 𝜔 < 2. 

2.7 Preconditioned Iterative Methods 

The rate at which an iterative method converges depends greatly on the spectrum of the 

coefficient matrix. Hence, iterative methods usually involve a second matrix that 

transforms the coefficient matrix into one with a more favourable spectrum. The 

transformation matrix is called a preconditioner. A good preconditioner improves the 

convergence of the iterative method sufficiently to overcome the extra cost of 

constructing and applying the preconditioner. Indeed, without a preconditioner the 

iterative method may even fail to converge.  Thus, preconditioning aims at reducing the 

spectral radius of the corresponding iterative matrix so as to accelerate the convergence 

of the classical iterative methods. 
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In 1987, the preconditioner 𝑃 introduced by Milaszewicz (1987) assumes the form 𝑃 =

𝐼 + 𝑆, where  

𝑆 = (𝑠𝑖𝑗) = {
−𝑎𝑖1,          for  𝑖 = 2,⋯ , 𝑛
0,              otherwise 00

                       (2.22)  

with the condition that the coefficient matrix 𝐴 is an 𝐿 −matrix with 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 >

0 and 0 < 𝑎1𝑖𝑎𝑖1 < 1 for 𝑖 = 2,3,⋯ , 𝑛. Gunawardena et al. (1991) proposed the 

preconditioned Gauss-Seidel method with 𝑃 = 𝐼 + 𝑆, where  

𝑆 = (𝑠𝑖𝑗) = {
−𝑎𝑖𝑖+1,          for  𝑖 = 1,2,⋯ , 𝑛 − 1, 𝑗 = 𝑖 + 1
0,              otherwise 0  0000000000000000000

     (2.23) 

Similar preconditioners were proposed by Kotakemori et al. (1996), Kohno et al. (1997), 

Kotakemori et al. (2002), Morimoto et al. (2003) and Byrne (2008). The preconditioned 

effect of these preconditioners is seldom observed on the last row of 𝐴, because they are 

formed from a part of upper triangular part of 𝐴. The preconditioner of Morimoto et al. 

(2003) was an attempt at providing the preconditioned effect on the last row of 𝐴. It takes 

the form 𝑃𝑅1
= 𝐼 + 𝑅, where 𝑅 is defined as  

𝑅 = (𝑟𝑛𝑗) = {
−𝑎𝑛𝑗 , 1 ≤ 𝑗 ≤ 𝑛 − 1      

0,              otherwise 00
              (2.24) 

The preconditioned matrix 𝑃𝐴, denoted by 𝐴𝑅1
, is defined by 

𝐴𝑅1
= (𝐼 + 𝑅)𝐴 = (𝑎𝑖𝑗

𝑅1), 𝑎𝑖𝑗
𝑅1 = {

𝑎𝑖𝑗 ,       1 ≤ 𝑖 < 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛,

𝑎𝑛𝑗 − ∑ 𝑎𝑛𝑘𝑎𝑘𝑗

𝑛−1

𝑘=1
,   1 ≤ 𝑗 ≤ 𝑛.

     (2.25) 

Then, a splitting of the preconditioned matrix 𝐴𝑅1
is obtained thus 

𝐴𝑅1
= 𝑀𝑅1

− 𝑁𝑅1
= (𝐼 − 𝐿 + 𝑅 − 𝑅𝐿 − 𝑅𝑈) − 𝑈 = (𝐼 − 𝐿 − 𝐷𝑅 + 𝑅 − 𝑅𝐿 − 𝐸𝑅) −

𝑈, where 𝐷𝑅, 𝐸𝑅 are the diagonal and strictly lower triangular parts of 𝑅𝑈, respectively. 

if ∑ 𝑎𝑛𝑘𝑎𝑘𝑖
𝑛−1
𝑘=1 ≠ 1, then 𝑀𝑅1

−1 exists, and the Gauss-Seidel iterative matrix 𝑇𝑅1
 is defined 
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by 𝑇𝑅1
= (𝐼 − 𝐷𝑅 − 𝐿 + 𝑅 − 𝑅𝐿 − 𝐸𝑅)−1𝑈. Niki et al. (2004) built on Morimoto et al. 

(2003) to propose the preconditioner 𝑃𝑅 = 𝐼 + 𝑆 + 𝑅, arising from which the 

preconditioned matrix 𝐴𝑅 assumes the structure 

𝐴𝑅 = (𝐼 + 𝑆 + 𝑅)𝐴 = (𝑎𝑖𝑗
𝑅 ), 𝑎𝑖𝑗

𝑅 = {

𝑎𝑖𝑗 − 𝑎𝑖𝑖+1𝑎𝑖+1𝑗,           1 ≤ 𝑖 < 𝑛,

𝑎𝑛𝑗 − ∑ 𝑎𝑛𝑘𝑎𝑘𝑗

𝑛−1

𝑘=1
,   1 ≤ 𝑗 ≤ 𝑛.

 (2.26) 

with the corresponding splitting  

𝐴𝑅 = 𝑀𝑅 − 𝑁𝑅 = (𝐼 − 𝐷 − 𝐷𝑅) − (𝐿 − 𝑅 + 𝑅𝐿 + 𝐸 + 𝐸𝑅) − (𝑈 − 𝑆 + 𝑆𝑈).    (2.27) 

In a quest to address the shortcomings of the preconditioner (3), Dehghan and Hajarian 

(2009) introduced two new preconditioners 𝑃̅ = 𝐼 + 𝑆̅ and 𝑃̃ = 𝐼 + 𝑆̃, with     

𝑆̅ = {
−(𝑎𝑖1 + 𝛾𝑖),        for  𝑖 = 2,⋯ , 𝑛

0,                        otherwise 0
                                         (2.28) 

𝑆̃ = {
−(𝑎𝑖𝑛 + 𝛿𝑖),        for  𝑖 = 1,⋯ , 𝑛 − 1

0,                        otherwise 0
                                  (2.29) 

where 𝛾2, 𝛾3,⋯ , 𝛾𝑛 and 𝛿1, 𝛿2, ⋯ , 𝛿𝑛−1 are real parameters. These preconditioners were 

applied to accelerate the convergence of the successive overrelaxation (SOR) iterative 

method under mild conditions on the coefficient matrix 𝐴. In furtherance of the search 

for fast converging iterative methods, Ndanusa and Adeboye (2012) attempted an 

improvement on the SOR method by proposing a preconditioner 𝑃 = 𝐼 + 𝑆, with 𝑆 having 

the structure  

𝑆 = {

−𝑎𝑖1,                          𝑖 = 2,⋯ , 𝑛
−𝑎𝑖,𝑖+1,              𝑖 = 1,⋯ , 𝑛 − 1

0,                        otherwise 00
                         (2.30) 

For Mayaki and Ndanusa (2019), the 𝑆 of the preconditioner 𝑃 = 𝐼 + 𝑆 takes the form 

𝑆 = {
−𝑎𝑖𝑗,   𝑗 = 𝑖 + 1,   for  𝑖 < 2 and 𝑗 = 𝑖 − 1 for 𝑖 > 𝑗

0,              otherwise 0  0000000000000000000
          (2.31) 

Faruk and Ndanusa (2019) proposed the preconditioner 𝑃 = 𝐼 + 𝑆 where, 
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𝑆 = {
−𝑎𝑖𝑗 , (𝑖, 𝑗) = (1,2), (2,1), (𝑛 − 1, 𝑛), (𝑛, 𝑛 − 1)

0 ,          otherwise 00000000000000000000
        (2.32) 

Similarly, the preconditioner of Abdullahi and Ndanusa (2020) is defined by 𝑃 = 𝐼 + 𝑆̂ 

where, 

𝑆̂ = 𝑆̅ + 𝑆′ = {

−𝑎1𝑛

−𝑎𝑖1 ,
−𝑎𝑖,𝑖+1 ,

0 ,

       

∀ 𝑛 > 0
𝑖 = 2,⋯ , 𝑛

𝑖 = 1,⋯ , 𝑛 − 1
otherwise

 ,                          (2.33) 

𝑆̅ = (𝑠𝑖𝑗) = {

−𝑎𝑖1,                          𝑖 = 2,⋯ , 𝑛
−𝑎𝑖,𝑖+1,              𝑖 = 1,⋯ , 𝑛 − 1

0,                        otherwise 00
                           (2.34) 

and  

𝑆′ = (𝑠𝑖𝑗) = {
−𝑎1𝑛

0
     

∀ 𝑛 > 0
otherwise

                                      (2.35) 

Other preconditioned iterative techniques include those of Ndanusa (2020) and Ndanusa 

et al. (2020). 

2.8 Refinement of Iterative Methods 

The rate of convergence of an iterative technique depends on the spectral radius of the 

matrix associated with the method. One way to select a procedure to accelerate 

convergence is to choose a method whose associated matrix has minimal spectral radius. 

Thus, there is the need to introduce a new means of measuring the amount by which an 

approximation to the solution to a linear system differs from the true solution to the 

system (Faruk and Ndanusa, 2019). 

Suppose 𝑥̅ ∈ 𝑅𝑛 is an approximation to the solution of the linear system defined by 𝐴𝑥 =

𝑏. The residual vector for 𝑥̅ with respect to this system is 𝑟 = 𝑏 − 𝐴𝑥̅. In procedures such 

as the Jacobi, Gauss-Seidel or SOR methods, a residual vector is associated with each 

calculation of an approximate component to the solution vector. The true objective is to 

generate a sequence of approximations that will cause the residual vectors to converge 
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rapidly to zero. Consider the linear system 

𝐴𝑦 = 𝑟                                                                          (2.36) 

The approximate solution 𝑦̅ of the above system satisfies  

𝑦̅ ≈ 𝐴−1𝑟 = 𝐴−1(𝑏 − 𝐴𝑥̅) = 𝐴−1𝑏 − 𝐴−1𝐴𝑥̅ = 𝑥 − 𝑥̅                        (2.37) 

and 

𝑥 ≈ 𝑥̅ + 𝑦̅                                                                  (2.38) 

So 𝑦̅ is an estimate of the error produced when 𝑥̅ approximates the solution 𝑥 to the 

original system. In general, 𝑥̅ + 𝑦̅ is a more accurate approximation to the solution of the 

linear system 𝐴𝑥 = 𝑏 than the original approximation 𝑥̅. The method using this 

assumption is called iterative refinement, or iterative improvement, and consists of 

performing iterations on the system whose right-hand side is the residual vector for 

successive approximations until satisfactory accuracy results. 

Refinement of iterative methods entail performing iterations on the linear system whose 

right-hand side is the residual vector for successive approximations until satisfactory 

accuracy results. Refinement of AOR method, introduced by Vatti et al. (2018) is 

described by the relation  

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) + 𝑑                                                         (2.39) 

where ℒ𝑟,𝜔
2 = [(𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹}]2, 𝑑 = 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 −

𝑟𝐸)−1𝑐.  This research discusses a refinement of refined accelerated overrelaxation 

method for solving the linear system (1.1), which is named second refinement of 

accelerated overrelaxation method. some pioneering studies in this field include the works 

of Kebede (2017), who proposed a new method for solving the linear system 𝐴𝑥 = 𝑏 that 

often arise in engineering and scientific applications; this method, which is known as 

second-degree refinement of Jacobi iterative method, is based on the second-degree 

Jacobi stationary iterative method. The relationships between the spectral radius of 
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second-degree refinement of Jacobi method and spectral radii of first-degree Jacobi, first-

degree refinement of Jacobi and second-degree Jacobi methods were established. 

Numerical results demonstrated that for a coefficient matrix that is strictly diagonally 

dominant and positive definite, the second-degree refinement of Jacobi iterative method 

proved to be very effective and efficient as it converges faster than the existing first-

degree Jacobi, first-degree refinement of Jacobi and second-degree Jacobi methods. 

Eneyew et al. (2019) focused on a second refinement of Jacobi (SRJ) method for the 

solution of system of linear equations obtained from ordinary differential equation and 

partial differential equation problems, where the coefficient matrix is strictly diagonally 

dominant or symmetric positive definite or 𝑀 − matrix. In such cases, there occurs a 

significant reduction in spectral radius of iteration matrix of the proposed method, with 

attendant reduction in number of iterations, which translates to increased convergence. 

Some numerical examples were presented to validate the theoretical analysis which 

further established the superiority of the second refinement of Jacobi method over Jacobi 

and refinement of Jacobi methods. Eneyew et al. (2020a) modified the Gauss-Seidel 

method to obtain a second-refinement of Gauss-Seidel method for solution of system of 

linear equations, in order to enhance convergence rate, minimize the spectral radius, and 

by implication, reduce the number of iterations needed for convergence. This method is 

equally applicable to solution of differential equations that are transformed into linear 

systems by application of finite differences. Such systems are characterized by coefficient 

matrices that are strictly diagonally dominant, symmetric positive definite, or M-matrices. 

Theoretical analysis established that the method converges for these types of matrices. 

Results of numerical experiments further demonstrated the efficiency of second-

refinement of Gauss-Seidel method over the Gauss-Seidel and refinement of Gauss-

Seidel methods. In Assefa and Teklehaymanot (2021), a second refinement of accelerated 
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over relaxation method was introduced; which is just a refinement of first-degree 

refinement of accelerated over relaxation method, whereby the spectral radius of iteration 

matrix of the method was observed to be significantly reduced in comparison to the 

spectral radii of accelerated over relaxation (AOR) method and first-degree refinement of 

accelerated over relaxation methods. In addition, the optimal value of each parameter 

involved in the method was derived. Derivation of the third-degree, fourth-degree and in 

general the 𝑘𝑡ℎ − degree refinement of accelerated methods were also obtained. The 

spectral radius of the iteration matrix and convergence criteria of the second refinement 

of accelerated over relaxation (SRAOR) are discussed. Finally, a numerical experiment 

was undertaken to demonstrate the efficiency of the proposed method over other existing 

methods. Eneyew et al. (2020b) proposed a second refinement of generalized Jacobi 

method for solution of linear systems. This method proved to be the fastest method to 

converge to the exact solution when compared to Jacobi, refinement of Jacobi, 

generalized Jacobi and refinement of generalized Jacobi methods for strictly diagonally 

dominant, symmetric positive definite and M-matrices. 

2.9 Rate of Convergence 

It is not just sufficient to know that an iterative method converges. Of equal importance 

is the desirability of knowing how fast it converges. Thus Young (1954) introduced the 

number 

𝑅(𝐺) = − log 𝜌(𝐺) 

as the rate of convergence of the linear iteration 𝑥(𝑛+1) = 𝐺𝑥(𝑛) + 𝑘, where 𝜌(𝐺) is the 

spectral radius for that iterative method. 
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CHAPTER THREE 

3.0                       MATERIALS AND METHODS 

3.1 Derivation of the Preconditioned AOR iterative method  

Consider a linear system of the form  

𝐴𝑥 = 𝑏                                                                        (3.1)  

where 𝐴 = (𝑎𝑖𝑖) is an irreducibly diagonally dominant 𝐿 − matrix of order 𝑛, 𝑏 is a given 

𝑛 − dimensional vector and 𝑥 is an 𝑛 − dimensional vector to be determined. Consider 

the usual splitting of 𝐴 as, 

                                                     𝐴 = 𝐷𝐴 − 𝐸𝐴 − 𝐹𝐴                                                 (3.1b) 

where 𝐷𝐴, −𝐸𝐴 and − 𝐹𝐴 are the diagonal, strictly lower and strictly upper triangular 

parts of 𝐴 respectively. Transformation of diagonal entries of (3.1) is achieved by 

expressing (3.1b) in the form 

𝐷𝐴
−1𝐴𝑥 = 𝐷𝐴

−1𝑏 

𝐷𝐴
−1(𝐷𝐴 − 𝐸𝐴 − 𝐹𝐴)𝑥 = 𝐷𝐴

−1𝑏 

(𝐼 − 𝐷𝐴
−1𝐸𝐴 − 𝐷𝐴

−1𝐹𝐴)𝑥 = 𝐷𝐴
−1𝑏  

Thus, we have obtained the equivalent system 

𝐵𝑥 = 𝑓                                                                           (3.2) 

with the corresponding splitting  

(𝐼 − 𝐸𝐵 − 𝐹𝐵)𝑥 = 𝑓 

Where 𝐼 is the identity matrix of order 𝑛, −𝐸𝐵 and −𝐹𝐵 being the strictly lower and strictly 

upper triangular parts of 𝐵 respectively.  

A transformation matrix 𝑃 = (𝐼 + 𝑆) is then applied to system (3.2) as  

𝑃𝐵𝑥 = 𝑃𝑓 

which results in the preconditioned system  

𝑇𝑥 = 𝑘                                                                               (3.3) 
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where 

where 𝑇 = (𝐼 + 𝑆)𝐵 and 𝑘 = (𝐼 + 𝑆)𝑓 with  

𝑆 =

[
 
 
 
 
 

0 
−𝑎21 
−𝑎31 

⋮ 
−𝑎𝑛−1,1 
−𝑎𝑛,1

−𝑎12

0
−𝑎32

⋮
0
0

0 
−𝑎23

0
⋮
0
0

⋯ 
⋯
⋯ 
⋯
⋯
⋯

0 
0

−𝑎3,𝑛−1

⋮
0

−𝑎𝑛,𝑛−1

0
0
0
⋮

−𝑎𝑛−1,𝑛

0 ]
 
 
 
 
 

 

A usual splitting of the preconditioned coefficient matrix 𝑇 of (3.3) into its diagonal (𝐷), 

strictly lower (−𝐿) and strictly upper (−𝑈) components is obtained thus 

𝑇 = 𝐷𝑇 − 𝐸𝑇 − 𝐹𝑇                                                           (3.4) 

with the following resultant representations:
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𝐷𝑇 =

[
 
 
 
 
 
 
1 − 𝑎12𝑎21

0
∙
∙
∙
0
0

0
1 − 𝑎21𝑎12 − 𝑎23𝑎32

∙
∙
∙
0
0

∙
∙
∙

∙
∙

∙
∙

∙

∙
∙

∙
∙

∙
∙
∙

0
0
∙
∙
∙

1 − 𝑎𝑛−1,1𝑎1,𝑛−1 − 𝑎𝑛−2,𝑛−1𝑎𝑛−1,𝑛−2 − 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 

0

0
0
∙
∙
∙
0

1 − 𝑎𝑛1𝑎1𝑛 − 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 ]
 
 
 
 
 
 

 

−𝐸𝑇 =

[
 
 
 
 
 
 

0
−𝑎23𝑎31

−𝑎21𝑎32 − 𝑎34𝑎41

∙
∙
∙

−𝑎𝑛,𝑛−1𝑎𝑛−1,1

0
0

−𝑎12𝑎31 − 𝑎34𝑎42

∙
∙
∙

−𝑎12𝑎𝑛1 − 𝑎𝑛−1,2𝑎𝑛,𝑛−1 + 𝑎𝑛2

∙
∙
∙

∙
∙

∙
∙
∙
0

∙
∙

∙
∙
∙

0
∙
∙

0
0
0
∙
∙
0

−𝑎𝑛1𝑎1,𝑛−1

0
0
0
∙
∙
0
0]
 
 
 
 
 
 

 

and−𝐹𝑇 =

[
 
 
 
 
 
 
0
0
0
∙
∙
∙
0

0
0
0
∙
∙
∙
0

−𝑎12𝑎23

−𝑎12𝑎13

0

∙
0

∙
∙
∙
0

∙
∙

∙
∙
∙

0
∙
∙

−𝑎12𝑎2,𝑛−1 + 𝑎1,𝑛−1 − 𝑎1𝑛

0
0
∙

−𝑎1,𝑛−1𝑎𝑛−2,1 − 𝑎𝑛−2,3

0
0

−𝑎12𝑎2𝑛 + −𝑎1𝑛

0
0
∙

−𝑎1𝑛𝑎𝑛−2,1 − 𝑎3,𝑛𝑎𝑛−2,3 − 𝑎𝑛−2,𝑛𝑎𝑛−1,𝑛 + 𝑎𝑛−2,𝑛

−𝑎1𝑛𝑎𝑛−1,1 − 𝑎𝑛−2,𝑛𝑎𝑛−1,𝑛−2

0 ]
 
 
 
 
 
 

 

From (3.4) it is observed that the effect of the preconditioner 𝑃 on 𝐵 is elimination of just one entry, specifically 𝑎12, and scaling of the remaining 

entries. It is further observed that: 
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1. 𝐷𝑇 = 𝐼 + 𝐷∗, 

2.  𝐸𝑇 = 𝐸 + 𝐸𝑆 + 𝐸∗, 

3. 𝐹𝑇 = 𝐹 + 𝐹𝑆 + 𝐹∗, 

4.  𝑆 = −𝐸𝑆 − 𝐹𝑆, and  

5.  −𝑆𝐸 − 𝑆𝐹 = 𝐷∗ − 𝐸∗ − 𝐹∗;  

where 𝐷∗, −𝐸∗  and − 𝐹∗ are the diagonal, strictly lower and strictly upper parts of 

−𝑆𝐸 − 𝑆𝐹 respectively; and −𝐸𝑆 and −𝐹𝑆 are the strictly lower and strictly upper parts 

of 𝑆 respectively. Application of the AOR method to the preconditioned linear system 

(3.3) results in the corresponding preconditioned AOR method whose iterative matrix is 

defined by  

ℒ𝑟,𝜔𝑇
= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇]                    (3.5) 

3.2 Convergence of Preconditioned AOR Method 

Some lemmas that will be used in the succeeding sections are briefly explained. 

Lemma 3.1 (Varga (1962)).   Let 𝐴 ≥ 0 be an irreducible 𝑛 × 𝑛 matrix. Then, 

i. 𝐴 has a positive real eigenvalue equal to its spectral radius. 

ii. To 𝜌(𝐴) there corresponds an eigenvector 𝑥 > 0. 

iii. 𝜌(𝐴) increases when any entry of 𝐴 increases. 

iv. 𝜌(𝐴) is a simple eigenvalue of 𝐴. 

Lemma 3.2 (Gunawardena et al. (1991)).   Let 𝐴 be a nonnegative matrix. Then 

i. If 𝛼𝑥 ≤ 𝐴𝑥 for some nonnegative vector 𝑥, 𝑥 ≠ 0, then 𝛼 ≤ 𝜌(𝐴). 

ii. If 𝐴𝑥 ≤ 𝛽𝑥 for some positive vector 𝑥, then 𝜌(𝐴) ≤ 𝛽. Moreover, if 𝐴 is 

irreducible and if 0 ≠ 𝛼𝑥 ≤ 𝐴𝑥 ≤ 𝛽𝑥 for some nonnegative vector 𝑥, then 𝛼 ≤

𝜌(𝐴) ≤ 𝛽 and 𝑥 is a positive vector. 

Lemma 3.3 (Varga (1962)).   Suppose 𝐴 = 𝑀 − 𝑁 is an 𝑀 − splitting of A. Then the 

splitting is convergent iff 𝐴 is a nonsingular 𝑀 − matrix. 
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Lemma 3.4 (Varga (1962)).   Let 𝐴 = 𝑀1 − 𝑁1 = 𝑀2 − 𝑁2 be two regular splittings 

of 𝐴, where 𝐴−1 ≥ 𝑂. If 𝑁2 ≥ 𝑁1 ≥ 𝑂, then  

1 > 𝜌(𝑀2
−1𝑁2) ≥ 𝜌(𝑀1

−1𝑁1) ≥ 𝑂. 

 If moreover, 𝐴−1 > 𝑂 and if 𝑁2 ≥ 𝑁1 ≥ 𝑂, equality excluded (meaning that neither 𝑁1 

nor 𝑁2 − 𝑁1 is the null matrix), then 

1 > 𝜌(𝑀2
−1𝑁2) > 𝜌(𝑀1

−1𝑁1) > 𝑂. 

Theorem 3.1 Let ℒ𝑟,𝜔 = (𝐼 − 𝑟𝐸𝐵)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] and ℒ𝑟,𝜔𝑇
=

(𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇] be the AOR and preconditioned AOR 

iterative matrices corresponding to systems (3.2) and (3.3) respectively. Suppose 𝐴 is an 

irreducibly diagonally dominant 𝐿 − matrix with 0 < 𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 +

𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1 (𝑖 = 3(1)𝑛 − 1) and 0 <

𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then ℒ𝑟,𝜔 and ℒ𝑟,𝜔𝑇
 are nonnegative and irreducible 

matrices. 

PROOF: Since 𝐵 is an 𝐿 − matrix, 𝐸𝐵 ≥ 0 and 𝐹𝐵 ≥ 0. Thus (𝐼 − 𝑟𝐸𝐵)−1 = 𝐼 +

𝑟𝐸𝐵 + 𝑟2𝐸𝐵
2 + ⋯+ 𝑟𝑛−1𝐸𝐵

𝑛−1 ≥ 0. And, from definition, we have 

ℒ𝑟,𝜔 = (𝐼 − 𝑟𝐸𝐵)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵]                       (3.6) 

= [𝐼 + 𝑟𝐸𝐵 + 𝑟2𝐸𝐵
2 + ⋯+ 𝑟𝑛−1𝐸𝐵

𝑛−1][(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 

= (1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 + 𝑟𝐸𝐵(1 − 𝜔)𝐼 + 𝑟𝐸𝐵[(𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 

+(𝑟2𝐸𝐵
2 + ⋯+ 𝑟𝑛−1𝐸𝐵

𝑛−1)[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 

= (1 − 𝜔)𝐼 + [(𝜔 − 𝑟)𝐸𝐵 + 𝑟𝐸𝐵(1 − 𝜔)𝐼] + 𝜔𝐹𝐵 + 𝑟𝐸𝐵[(𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 

+(𝑟2𝐸𝐵
2 + ⋯+ 𝑟𝑛−1𝐸𝐵

𝑛−1)[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 

= (1 − 𝜔)𝐼 + 𝜔(1 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 + 𝑇 

where 

𝑇 = 𝑟𝐸𝐵[(𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] 



34 

 

+(𝑟2𝐸𝐵
2 + ⋯+ 𝑟𝑛−1𝐸𝐵

𝑛−1) × [(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] ≥ 0. 

It is clear that (1 − 𝜔)𝐼 + 𝜔(1 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 ≥ 0. Consequently, ℒ𝑟,𝜔 = (1 − 𝜔)𝐼 +

𝜔(1 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 + 𝑇 ≥ 0. Hence, ℒ𝑟,𝜔 is a nonnegative matrix. Since 𝐵 = 𝐼 − 𝐸𝐵 −

𝐹𝐵 is irreducible, so also is (1 − 𝜔)𝐼 + 𝜔(1 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 since the coefficients of 

𝐼, 𝐸𝐵, and 𝐹𝐵 are different from zero and less than 1 in absolute value. Hence, ℒ𝑟,𝜔 is an 

irreducible matrix. 

Now, consider the preconditioned AOR iterative matrix 

ℒ𝑟,𝜔𝑇
= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇] 

Equation (3.3) ensures that the 𝐿 − matrix  structure of 𝐴 is preserved in 𝑇. Since 𝑇 is an 

𝐿 − matrix, it is evident that 𝐸𝑇 ≥ 0 and 𝐹𝑇 ≥ 0. Also, by the conditions of Theorem 3.1, 

it is easy to get that 𝐷𝑇 ≥ 0. Thus,  

ℒ𝑟,𝜔𝑇
= [𝐷𝑇(𝐼 − 𝑟𝐷𝑇

−1𝐸𝑇)]
−1

[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇] 

= (𝐼 − 𝑟𝐷𝑇
−1𝐸𝑇)−1𝐷𝑇

−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇] 

= (𝐼 − 𝑟𝐷𝑇
−1𝐸𝑇)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐷𝑇

−1𝐸𝑇 + 𝜔𝐷𝑇
−1𝐹𝑇] 

= [𝐼 + 𝑟𝐷𝑇
−1𝐸𝑇 + 𝑟2(𝐷𝑇

−1𝐸𝑇)
2
+ ⋯+ 𝑟𝑛−1(𝐷𝑇

−1𝐸𝑇)
𝑛−1

] 

× [(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐷𝑇
−1𝐸𝑇 + 𝜔𝐷𝑇

−1𝐹𝑇] 

= (1 − 𝜔)𝐼 + 𝜔(1 − 𝑟)𝐷𝑇
−1𝐸𝑇 + 𝜔𝐷𝑇

−1𝐹𝑇 + 𝐺 

where 

𝐺 = 𝑟𝐷𝑇
−1𝐸𝑇[(𝜔 − 𝑟)𝐷𝑇

−1𝐸𝑇 + 𝜔𝐷𝑇
−1𝐹𝑇]

+ [𝑟2(𝐷𝑇
−1𝐸𝑇)

2
+ ⋯+ 𝑟𝑛−1(𝐷𝑇

−1𝐸𝑇)
𝑛−1

] 

× [(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐷𝑇
−1𝐸𝑇 + 𝜔𝐷𝑇

−1𝐹𝑇] ≥ 0 

Using similar arguments, it is conclusive that ℒ𝑟,𝜔𝑇
 is also nonnegative and irreducible.  

Theorem 3.2 Let ℒ𝑟,𝜔 = (𝐼 − 𝑟𝐸𝐵)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] and ℒ𝑟,𝜔𝑇
=

(𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇] be the AOR and preconditioned AOR 



35 

 

iterative matrices corresponding to systems (3.2) and (3.3) respectively. Suppose 𝐴 is an 

irreducibly diagonally dominant 𝐿 − matrix with 0 < 𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 +

𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1 (𝑖 = 3(1)𝑛 − 1) and 0 <

𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then 

(i) 𝜌(ℒ𝑟,𝜔𝑇
) < 𝜌(ℒ𝑟,𝜔), if 𝜌(ℒ𝑟,𝜔) < 1; 

(ii) 𝜌(ℒ𝑟,𝜔𝑇
) = 𝜌(ℒ𝑟,𝜔), if 𝜌(ℒ𝑟,𝜔) = 1; 

(iii) 𝜌(ℒ𝑟,𝜔𝑇
) > 𝜌(ℒ𝑟,𝜔), if 𝜌(ℒ𝑟,𝜔) > 1. 

PROOF: It is established, from Theorem 3.1, that ℒ𝑟,𝜔 and ℒ𝑟,𝜔𝑇
 are nonnegative 

and irreducible matrices. Therefore, suppose 𝜂 = 𝜌(ℒ𝑟,𝜔), then by Lemma 3.1 there 

exists a positive vector 𝑦, such that   

ℒ𝑟,𝜔𝑦 = 𝜂𝑦 

Equivalently, 

(𝐼 − 𝑟𝐸𝐵)−1[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵]𝑦 = 𝜂𝑦 

[(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵] = 𝜂(𝐼 − 𝑟𝐸𝐵) 

𝜔𝐹𝐵 = (𝜂 + 𝜔 − 1)𝐼 + (𝑟 − 𝜔 − 𝜂𝑟)𝐸𝐵                                        (3.7) 

Therefore, for this 𝑦 > 0, 

ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 = (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇]𝑦 − 𝜂𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇]𝑦 − 𝜂(𝐷𝑇 − 𝑟𝐸𝑇)−1(𝐷𝑇 − 𝑟𝐸𝑇)𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇 − 𝜂(𝐷𝑇 − 𝑟𝐸𝑇)]𝑦 

From the identity, 

𝜂(𝐷𝑇 − 𝑟𝐸𝑇) = 𝜂(1 − 𝑟)𝐷𝑇 + 𝜂𝑟(𝐷𝑇 − 𝐸𝑇), 

it implies 

ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 = (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇 − 𝜂(1 − 𝑟)𝐷𝑇 − 𝜂𝑟(𝐷𝑇

− 𝐸𝑇)]𝑦 
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= (𝐷𝑇 − 𝑟𝐸𝑇)−1[𝐷𝑇 − 𝜔𝐷𝑇 + 𝜔𝐸𝑇 − 𝑟𝐸𝑇 + 𝜔𝐹𝑇 − 𝜂𝐷𝑇 + 𝜂𝑟𝐷𝑇 − 𝜂𝑟𝐷𝑇 + 𝜂𝑟𝐸𝑇]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[𝐷𝑇 − 𝑟𝐷𝑇 − 𝜂𝐷𝑇 + 𝜂𝑟𝐷𝑇 − 𝜔𝐷𝑇 + 𝑟𝐷𝑇 − 𝜂𝑟𝐷𝑇 + 𝜔𝐸𝑇 − 𝑟𝐸𝑇

+ 𝜂𝑟𝐸𝑇 + 𝜔𝐹𝑇]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜂)(1 − 𝑟)𝐷𝑇 − (𝜔 − 𝑟 + 𝜂𝑟)(𝐷𝑇 − 𝐸𝑇) + 𝜔𝐹𝑇]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜂)(1 − 𝑟)(𝐼 + 𝐷∗) − (𝜔 − 𝑟 + 𝜂𝑟)(𝐼 + 𝐷∗) + (𝜔 − 𝑟 + 𝜂𝑟)(𝐸𝐵

+ 𝐸𝑆 + 𝐸∗) + 𝜔(𝐹𝐵 + 𝐹𝑆 + 𝐹∗)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔 − 𝜂)(𝐼 + 𝐷∗) + (𝜔 − 𝑟 + 𝜂𝑟)(𝐸𝐵 + 𝐸𝑆 + 𝐸∗) + 𝜔(𝐹𝐵 + 𝐹𝑆

+ 𝐹∗)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜔 − 𝜂)𝐼 + 𝜔𝐹𝐵 − (𝑟 − 𝜔 − 𝜂𝑟)𝐸𝐵 + (1 − 𝜔 − 𝜂)𝐷∗

+ (𝜔 − 𝑟 + 𝜂𝑟)(𝐸𝑆 + 𝐸∗) + 𝜔(𝐹𝐹 + 𝐹∗)]𝑦 

From (3.7), 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(1 − 𝜂)𝐷∗ − 𝜔(𝐷∗ − 𝐿∗ − 𝑈∗) + 𝜔(𝐸𝑆 + 𝐹𝑆) − 𝑟(1 − 𝜂)(𝐸𝑆 + 𝐸∗)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗) + (𝜂 − 1)(𝑟𝐸𝑆 + 𝑟𝐿∗) − 𝜔(−𝑆𝐸𝐵 − 𝑆𝐹𝐵) + 𝜔(−𝑆)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + 𝜔𝑆𝐸𝐵 + 𝜔𝑆𝐹𝐵 − 𝜔𝑆]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + (1 − 𝜔)𝑆 + 𝜔𝑆𝐹𝐵 − 𝑆(𝐼 − 𝜔𝐸𝐵)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + (1 − 𝜔)𝑆 + 𝜔𝑆𝐸𝐵 − 𝑟𝑆𝐸𝐵 + 𝜔𝑆𝐹𝐵

− 𝑆𝐼 + 𝑟𝑆𝐸𝐵)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + (1 − 𝜔)𝑆 + (𝜔 − 𝑟)𝑆𝐸𝐵 + 𝜔𝑆𝐹𝐵 − 𝑆(𝐼

− 𝑟𝐸𝐵)]𝑦 

= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + 𝑆{(1 − 𝜔) + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵} − 𝑆(𝐼

− 𝑟𝐸𝐵)]𝑦 

And from (3.7),  

(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸𝐵 + 𝜔𝐹𝐵 = 𝜂(𝐼 − 𝑟)𝐸𝐵                                  (3.8) 

ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 = (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + 𝜂𝑆(𝐼 − 𝑟𝐸𝐵) − 𝑆(𝐼

− 𝑟𝐸𝐵)]𝑦 
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= (𝐷𝑇 − 𝑟𝐸𝑇)−1[(𝜂 − 1)(−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗) + (𝜂 − 1)𝑆(𝐼 − 𝑟𝐸𝐵)]𝑦 

By employing (3.8), 

= (𝜂 − 1)(𝐷𝑇 − 𝑟𝐸𝑇)−1[−𝐷∗ + 𝑟𝐸𝑆 + 𝑟𝐸∗ + [(1 − 𝜔)𝑆 + (𝜔 − 𝑟)𝑆𝐸𝐵 + 𝜔𝑆𝐹𝐵] 𝜂⁄ ]𝑦 

= [(𝜂 − 1) 𝜂⁄ ](𝐷𝑇 − 𝑟𝐸𝑇)−1[−𝜂𝐷∗ + 𝑟𝜂𝐸𝑆 + 𝑟𝜂𝐸∗ + (1 − 𝜔)𝑆 + (𝜔 − 𝑟)𝑆𝐸𝐵

+ 𝜔𝑆𝐹𝐵]𝑦 

It is obvious that −𝜂𝐷∗ + 𝑟𝜂𝐸𝑆 + 𝑟𝜂𝐿∗ ≥ 0, provided 𝑎𝑞,𝑞+1𝑎𝑞+1,1 + 𝑎𝑞1 ≥ 0 (𝑞 =

2,⋯ , 𝑛 − 1) and 𝜂𝑟𝑎𝑛1 − (1 − 𝜔)𝑎𝑛1 ≥ 0, (1 − 𝜔)𝑆 ≥ 0, (𝜔 − 𝑟)𝑆𝐸𝐵 ≥ 0 and 

𝜔𝑆𝐹𝐵 ≥ 0. Suppose 𝐷𝑇 − 𝑟𝐸𝑇 is a splitting of some matrix 𝑋. From observation, 𝐷𝑇 is 

an 𝑀 − matrix and 𝑟𝐸𝑇 ≥ 0. Consequently, 𝐷𝑇 − 𝑟𝐸𝑇 is an 𝑀 − splitting of 𝑋. Also, 

𝑟𝐷𝑇
−1𝐸𝑇, being a strictly lower triangular matrix, has its eigenvalues lying on its main 

diagonal, and they are all zeros. Therefore, 𝜌(𝑟𝐷𝑇
−1𝐸𝑇) = 0 < 1. And by Lemma 3, 𝑋 

is a nonsingular 𝑀 − matrix. consequently, 𝑋−1 = (𝐷𝑇 − 𝑟𝐸𝑇)−1 ≥ 0. We are now 

ready to deduce (𝑖) − (𝑖𝑖𝑖), by employing Lemma 2 thus. 

(1) If 𝜂 < 1, then ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 ≤ 0 but not equal to 0. Therefore, ℒ𝑟,𝜔𝑇

𝑦 ≤ 𝜂𝑦. By 

Lemma 2, we obtain 𝜌(ℒ𝑟,𝜔𝑇
) < 𝜂 = 𝜌(ℒ𝑟,𝜔). 

(2) If 𝜂 = 1, then ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 = 0. Therefore, ℒ𝑟,𝜔𝑇

𝑦 = 𝜂𝑦. By Lemma 2, we 

obtain 𝜌(ℒ𝑟,𝜔𝑇
) = 𝜂 = 𝜌(ℒ𝑟,𝜔). 

If 𝜂 > 1, then ℒ𝑟,𝜔𝑇
𝑦 − 𝜂𝑦 ≥ 0 but not equal to 0. Therefore, ℒ𝑟,𝜔𝑇

𝑦 ≥ 𝜂𝑦. By Lemma 

2, we obtain 𝜌(ℒ𝑟,𝜔𝑇
) > 𝜂 = 𝜌(ℒ𝑟,𝜔). 

Theorem 3.3 Let 0 < 𝑟1 < 𝑟2 ≤ 𝜔 ≤ 1 and 𝐴−1 ≥ 0. Under the hypothesis of Theorem 

3.2, then 1 > 𝜌(ℒ𝑟1,𝜔𝑇
) > 𝜌(ℒ𝑟2,𝜔𝑇

) > 0, if 0 < 𝜂 < 1. 

PROOF:   Let  

𝑇 = 𝑀𝑟,𝜔 − 𝑁𝑟,𝜔 
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where 𝑀𝑟,𝜔 = (1 𝜔⁄ )(𝐷𝑇 − 𝑟𝐸𝑇) and 𝑁𝑟,𝜔 = (1 𝜔⁄ )[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟)𝐸𝑇 + 𝜔𝐹𝑇]. 

Suppose also that 𝑇 = 𝑀𝑟1,𝜔 − 𝑁𝑟1,𝜔 and 𝑇 = 𝑀𝑟2,𝜔 − 𝑁𝑟2,𝜔 are two regular splittings of 

𝑇, where 𝑀𝑟1,𝜔 = (1 𝜔⁄ )(𝐷𝑇 − 𝑟1𝐸𝑇), 𝑁𝑟1,𝜔 = (1 𝜔⁄ )[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟1)𝐸𝑇 +

𝜔𝐹𝑇], 𝑀𝑟2,𝜔 = (1 𝜔⁄ )(𝐷𝑇 − 𝑟2𝐸𝑇) and 𝑁𝑟2,𝜔 = (1 𝜔⁄ )[(1 − 𝜔)𝐷𝑇 + (𝜔 − 𝑟2)𝐸𝑇 +

𝜔𝐹𝑇]. Since 0 < 𝑟1 < 𝑟2 ≤ 𝜔 ≤ 1, then 𝑁𝑟1,𝜔 ≥ 𝑁𝑟2,𝜔 ≥ 0, equality excluded, then in the 

light of Lemma 4, we have that  

1 > 𝜌(ℒ𝑟1,𝜔𝑇
) > 𝜌(ℒ𝑟2,𝜔𝑇

) > 0 

Corollary 3.1 Let ℒ𝜔 = (𝐼 − 𝜔𝐿)−1[(1 − 𝜔)𝐼 + 𝜔𝑈] and ℒ𝜔𝑇
= (𝐷𝑇 − 𝜔𝐸𝑇)−1[(1 −

𝜔)𝐷𝑇 + 𝜔𝐹𝑇] be the SOR and preconditioned SOR iterative matrices respectively. 

Suppose  𝐴 is an irreducibly diagonally dominant 𝐿 − matrix with 0 < 𝑎12𝑎21 < 1, 0 <

𝑎12𝑎21 + 𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1 (𝑖 = 3(1)𝑛 − 1) and 

0 < 𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then 

(i) 𝜌(ℒ𝜔𝑇
) < 𝜌(ℒ𝜔), if 𝜌(ℒ𝜔) < 1; 

(ii) 𝜌(ℒ𝜔𝑇
) = 𝜌(ℒ𝜔), if 𝜌(ℒ𝜔) = 1; 

(iii) 𝜌(ℒ𝜔𝑇
) > 𝜌(ℒ𝜔), if 𝜌(ℒ𝜔) > 1. 

Corollary 3.2 Let 0 < 𝜔1 < 𝜔2 ≤ 1 and 𝐴−1 ≥ 0. Under the hypothesis of Corollary 

3.1, then 1 > 𝜌 (ℒ𝜔1𝑇
) > 𝜌 (ℒ𝜔2𝑇

) > 0, if 0 < 𝜂 < 1. 

3.3    Formulation of Second Refinement of Preconditioned AOR (SRPAOR) Method 

The matrix 𝑇 of (3.3) has the splitting 𝑇 = 𝐷𝑇 − 𝐸𝑇 − 𝐹𝑇. This is further transformed into  

𝐷𝑇
−1(𝐷𝑇 − 𝐸𝑇 − 𝐹𝑇)𝑥 = 𝐷𝑇

−1𝑘 

That is, 

𝐻𝑥 = 𝑐                                                                       (3.9) 

which has the splitting 

𝐻 = 𝐼 − 𝐸 − 𝐹 
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where 𝐼 is the identity matrix of order 𝑛, −𝐸 and −𝐹 being the strictly lower and strictly 

upper triangular parts of 𝐻 respectively.  

Following Assefa and Teklehaymanot (2021), a reformulation of second refinement of 

preconditioned AOR method is derived from (3.9) thus, 

(𝐼 − 𝐸 − 𝐹)𝑥 = 𝑐 

𝐼𝑥 − 𝑟𝐸𝑥 + 𝜔(𝐼 − 𝐸 − 𝐹)𝑥 = 𝐼𝑥 − 𝑟𝐸𝑥 + 𝜔𝑐 

(𝐼 − 𝑟𝐸)𝑥 = (𝐼 − 𝑟𝐸)𝑥 − 𝜔(𝐼 − 𝐸 − 𝐹)𝑥 + 𝜔𝑐 

(𝐼 − 𝑟𝐸)𝑥 = (𝐼 − 𝑟𝐸)𝑥 + 𝜔(𝑐 − 𝐻𝑥) 

𝑥 = 𝑥 + 𝜔(𝐼 − 𝑟𝐸)−1(𝑐 − 𝐻𝑥) 

Consequently, the second refinement of AOR is defined as  

𝑥(𝑛+1) = 𝑥(𝑛+1) + 𝜔(𝐼 − 𝑟𝐸)−1(𝑐 − 𝐻𝑥(𝑛+1))                                 (3.10) 

where 𝑥(𝑛+1) that appeared on the right-hand side is the (n + 1)𝑡ℎ approximation of 

refinement of AOR of Vatti et al. (2018) defined by  

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) + 𝑑                                              (3.11) 

where ℒ𝑟,𝜔
2 = [(𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹}]2, 𝑑 = 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 −

𝑟𝐸)−1𝑐.   

Substituting (3.11) in (3.10), 

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝑟𝐸)−1𝑐 + 𝜔(𝐼 − 𝑟𝐸)−1(𝑐 − (𝐼 − 𝐸

− 𝐹){ℒ𝑟,𝜔
2𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝑟𝐸)−1𝑐}) 

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝑟𝐸)−1𝑐 + 𝜔(𝐼 − 𝑟𝐸)−1𝑐 − 𝜔(𝐼 − 𝑟𝐸)−1(𝐼 − 𝐸

− 𝐹){ℒ𝑟,𝜔
2𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝑟𝐸)−1𝑐} 

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) − (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)ℒ𝑟,𝜔

2𝑥(𝑛) + 𝜔(𝐼 + ℒ𝑟,𝜔)(𝐼 −

𝑟𝐸)−1𝑐 + 𝜔(𝐼 − 𝑟𝐸)−1𝑐 − (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)𝜔(𝐼 + ℒ𝑟,𝜔)(𝐼 − 𝑟𝐸)−1𝑐  
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𝑥(𝑛+1) = ℒ𝑟,𝜔
2[𝐼 − (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)]𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔 + 𝐼

− (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)(𝐼 + ℒ𝑟,𝜔)](𝐼 − 𝑟𝐸)−1𝑐 

𝑥(𝑛+1) = ℒ𝑟,𝜔
2[𝐼 − (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)]𝑥(𝑛) + 𝜔[𝐼 + (𝐼 + ℒ𝑟,𝜔)(𝐼

− (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)(𝐼 + ℒ𝑟,𝜔))](𝐼 − 𝑟𝐸)−1𝑐 

Note that, 

𝐼 − (𝐼 − 𝑟𝐸)−1(𝜔𝐼 − 𝜔𝐸 − 𝜔𝐹)

= (𝐼 − 𝑟𝐸)(𝐼 − 𝑟𝐸)−1 − (𝐼 − 𝑟𝐸)−1𝜔𝐼 + (𝐼 − 𝑟𝐸)−1𝜔𝐸

+ (𝐼 − 𝑟𝐸)−1𝜔𝐹 

= (𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹} = ℒ𝑟,𝜔 

𝑥(𝑛+1) = ℒ𝑟,𝜔
2[ℒ𝑟,𝜔]𝑥(𝑛) + 𝜔[𝐼 + (𝐼 + ℒ𝑟,𝜔)ℒ𝑟,𝜔](𝐼 − 𝑟𝐸)−1𝑐 

𝑥(𝑛+1) = ℒ𝑟,𝜔
3𝑥(𝑛) + 𝜔[𝐼 + ℒ𝑟,𝜔 + ℒ𝑟,𝜔

2](𝐼 − 𝑟𝐸)−1𝑐          (3.12) 

Or more compactly, 

𝑥(𝑛+1) = ℒ𝑟,𝜔
3𝑥(𝑛) + 𝑑                                         (3.13) 

Where, 

ℒ𝑟,𝜔
3 = [(𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹}]3 

and 

𝑑 = 𝜔[𝐼 + ℒ𝑟,𝜔 + ℒ𝑟,𝜔
2](𝐼 − 𝑟𝐸)−1𝑐. 

3.4 Convergence of SRPAOR Method 

Theorem 3.4 Let 𝐴 be an irreducibly diagonally dominant 𝐿 − matrix with 0 <

𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 + 𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 <

1 (𝑖 = 3(1)𝑛 − 1) and 0 < 𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then SRPAOR method 

converges for any arbitrary choice of the initial approximation. 
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PROOF: Denote the exact solution of system (3.1) by 𝑥𝐸. Let 𝑥̅(𝑛+1) be the 

(n + 1)𝑡ℎ  approximate solution of (3.1) by the SRPAOR method (3.10). Then, 

‖𝑥̅(𝑛+1) − 𝑥𝐸‖ = ‖𝑥(𝑛+1) + 𝜔(𝐼 − 𝑟𝐸)−1(𝑐 − 𝐻𝑥(𝑛+1)) − 𝑥𝐸‖ 

≤ ‖𝑥(𝑛+1) − 𝑥𝐸‖‖(𝑐 − 𝐻𝑥(𝑛+1))‖‖𝜔(𝐼 − 𝑟𝐸)−1‖ 

By Vatti et al. (2018), 𝑥(𝑛+1), which is the Refinement of AOR method, is convergent. 

And by implication,  

‖𝑥(𝑛+1) − 𝑥𝐸‖ → 0 and ‖(𝑐 − 𝐻𝑥(𝑛+1))‖ → 0. 

Thus we have, 

‖𝑥̅(𝑛+1) − 𝑥𝐸‖ → 0. 

Hence, the Second Refinement of Preconditioned AOR (SRPAOR) converges to the 

solution of the linear system (3.1). 

Theorem 3.5 Let 𝐴 be an irreducibly diagonally dominant 𝐿 − matrix with 0 <

𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 + 𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 <

1 (𝑖 = 3(1)𝑛 − 1) and 0 < 𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then ‖ℒ𝑟,𝜔
3‖

∞
= ‖ℒ𝑟,𝜔‖

∞

3
<

1. 

PROOF: Consider ‖ℒ𝑟,𝜔
3‖

∞
; then we have, 

‖ℒ𝑟,𝜔
3‖

∞
= ‖[(𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹}]3‖∞ 

= ‖[(𝐼 − 𝑟𝐸)−1{(1 − 𝜔)𝐼 + (𝜔 − 𝑟)𝐸 + 𝜔𝐹}]‖∞
3  

= ‖ℒ𝑟,𝜔‖
∞

3
< 1    by Theorem 3.4 

Theorem 3.6 Let 𝐴 be an irreducibly diagonally dominant 𝐿 − matrix with 0 <

𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 + 𝑎23𝑎32 < 1, 0 < 𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 <

1 (𝑖 = 3(1)𝑛 − 1) and 0 < 𝑎1𝑛𝑎𝑛1 + 𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1. Then ‖ℒ𝑟,𝜔
3‖

∞
< ‖ℒ𝑟,𝜔‖

∞
. 

PROOF: By Theorem 3.5, we have, 
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‖ℒ𝑟,𝜔
3‖

∞
= ‖ℒ𝑟,𝜔‖

∞

3
< ‖ℒ𝑟,𝜔‖

∞
. 

Theorem 3.7 The Second Refinement of Preconditioned AOR method converges faster 

than the Refinement of AOR method if Refinement of AOR method is convergent. 

PROOF:  Let 𝑥̿ be the solution of linear system (3.1) obtained by the Second Refinement 

of Preconditioned AOR method (3.13) and 𝑥̂ be the solution of (3.1) obtained by the 

Preconditioned AOR method (3.5). 

From (3.13), we get  

𝑥̿ = ℒ𝑟,𝜔
3𝑥̂ + 𝑑 

𝑥̿(𝑛+1) − 𝑥̿ = ℒ𝑟,𝜔
3𝑥(𝑛) + 𝑑 − 𝑥̿ 

= ℒ𝑟,𝜔
3(𝑥(𝑛) − 𝑥̂) + 𝑑 − 𝑥̿ + ℒ𝑟,𝜔

3𝑥̂ 

= ℒ𝑟,𝜔
3(𝑥(𝑛) − 𝑥̂) − 𝑥̿ + (ℒ𝑟,𝜔

3𝑥̂ + 𝑑) 

= ℒ𝑟,𝜔
3(𝑥(𝑛) − 𝑥̂) − 𝑥̿ + 𝑥̿ 

= ℒ𝑟,𝜔
3(𝑥(𝑛) − 𝑥̂) 

Now, 

‖𝑥̿(𝑛+1) − 𝑥̿‖
∞

= ‖ℒ𝑟,𝜔
3(𝑥(𝑛) − 𝑥̂)‖

∞
 

≤ ‖ℒ𝑟,𝜔
3‖

∞
‖(𝑥(𝑛) − 𝑥̂)‖

∞
 

≤ ‖ℒ𝑟,𝜔‖
∞

3
‖(𝑥(𝑛) − 𝑥̂)‖

∞
 

Therefore, by Theorems 3.4 and 3.5 the Second Refinement of Preconditioned AOR 

method converges faster than the Preconditioned AOR method. 
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CHAPTER FOUR 

4.0                       RESULTS AND DISCUSSION 

4.1 Numerical Experiments  

In order to validate the results of the Theorems advanced in the preceding chapter, the 

following problems are considered. In all the problems considered we seek convergence 

for the linear system 𝐴𝑥 = 𝑏 of (3.1).  

4.1.1 Problem 1 

Let the coefficient matrix of the linear system (3.1) be given by  

𝐴 =

(

  
 

4 −1 0
−1 4 −1
−0 −1 4

   

−1 0 0
−0 −1 0
−0 0 −1

   

 
−1 0 0
0 −1 0
0 0 −1

 
4 −1 0

−1 4 −1
0 −1 4 )

  
 

 

and  

𝑏 =

(

  
 

2
2
2
3
1
2)

  
 

 

considered by Youssef and Taha (2013). 

4.1.2 Problem 2 

Consider the case which gives the following coefficient matrix and constant vector for 

the linear system (3.1). 

𝐴 =

(

 
 
 
 
 

35
−5
−7
−1
−2
0

−3
−4

     

−2
27
−4
−1
−2
−2
−2
−3

     

−3
−3
71
−2
−3
−5
−1
−2

     

−1
−4
−9
20
0

−4
−3
−5

     

0
−4
−2
−4
71
−3
−5
−1

     

−2
−1
−6
−3
−2
53
−4
−2

     

−3
−2
0

−2
−1
−5
32
−7

     

−1
0

−3
−4
−1
−4
−3
31)
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𝑏 =

(

 
 
 
 
 

23
8
40
3
60
30
11
7 )

 
 
 
 
 

 

This problem can be found in Vatti et al. (2020). 

4.1.3 Problem 3 

Consider the 4 × 4 matrix  

𝐴 = (

43 9⁄

−5 3⁄

−13 9⁄
0

 

−4 3⁄

49 9⁄
0

−13 9⁄

 

−10 9⁄
0

49 9⁄

−5 3⁄

 

0
−10 9⁄

−4 3⁄

55 9⁄

) 

where, 

𝑏 = (

5 9⁄

8 27⁄

22 9⁄

62 27⁄

) 

Source: (Ndanusa and Adeboye, 2012). 

Maple19 software package was deployed to compute the results of several experiments 

on problems 1, 2 and 3. The results are presented in Table 4.1 to 4.30. The following 

notations are engaged in what follows. 

AOR = Accelerated Overrelaxation method 

PAOR = Preconditioned Accelerated Overrelaxation method 

RAOR = Refinement of Accelerated Overrelaxation method 

RPAOR = Refinement of Preconditioned Accelerated Overrelaxation method 

SRPAOR = Second Refinement of Preconditioned Accelerated Overrelaxation method 

𝜌(AOR) = Spectral radius of AOR method 

𝜌(PAOR) = Spectral radius of PAOR method 
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𝜌(RAOR) = Spectral radius of RAOR method 

𝜌(RPAOR) = Spectral radius of RPAOR method 

𝜌(SRPAOR) = Spectral radius of SRPAOR method 

R(AOR) = Rate of convergence of AOR 

R(PAOR) = Rate of convergence of PAOR 

R(RAOR) = Rate of convergence of RAOR 

R(RPAOR) = Rate of convergence of RPAOR 

R(SRPAOR) = Rate of convergence of SRPAOR 

𝜔 = Relaxation parameter 

𝑟 = Acceleration parameter 
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4.2 Comparison of Spectral Radii of Various Iteration Matrices 

Table 4.1   Comparison of spectral radii of AOR and SRPAOR iteration matrices 

for Problem 1 

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.009893293 1.848680312 

1.99 2.0 0.9998927604 1.793573334 

1.82 1.83 0.8298817777 1.020442454 

1.79 1.80 0.7998793515 0.9133893344 

1.69 1.7 0.6998697756 0.6120230179 

1.59 1.6 0.5998570051 0.3866851466 

1.49 1.5 0.4998391242 0.2255727860 

1.39 1.4 0.3998122984 0.1173133886 

1.29 1.3 0.2997675715 0.05096283204 

1.19 1.2 0.1996780414 0.01599836683 

1.0 1.1 0.3007043648 0.001000000000 

0.99 1.0 0.3704668386 0.004251211905 

0.89 0.9 0.4777155236 0.02506663540 

0.79 0.8 0.5645296200 0.06344736088 

0.69 0.7 0.6391159035 0.1197686057 

0.59 0.6 0.7051521109 0.1940640691 

0.49 0.5 0.7647069984 0.2861536937 

0.39 0.4 0.8190985010 0.3957219909 

0.29 0.3 0.8692356623 0.5223661540 

0.19 0.2 0.9157811211 0.6656271037 

0.09 0.1 0.9592379015 0.8250102598 

-0.01 0 1 1 
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Table 4.2   Comparison of spectral radii  of PAOR and SRPAOR iteration matrices  

for Problem 1 

𝒓 𝝎 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.227309065 1.848680312 

1.99 2.0 1.214990959 1.793573334 

1.82 1.83 1.006768247 1.020442454 

1.79 1.80 0.9702537133 0.9133893344 

1.69 1.7 0.8490291154 0.6120230179 

1.59 1.6 0.7285384808 0.3866851466 

1.49 1.5 0.6087358825 0.2255727860 

1.39 1.4 0.4895336224 0.1173133886 

1.29 1.3 0.3707528664 0.05096283204 

1.19 1.2 0.2519756369 0.01599836683 

1.0 1.1 0.1000000000 0.001000000000 

0.99 1.0 0.1619959862 0.004251211905 

0.89 0.9 0.2926613339 0.02506663540 

0.79 0.8 0.3988453386 0.06344736088 

0.69 0.7 0.4929251742 0.1197686057 

0.59 0.6 0.5789597599 0.1940640691 

0.49 0.5 0.6589712262 0.2861536937 

0.39 0.4 0.7341701598 0.3957219909 

0.29 0.3 0.8053630090 0.5223661540 

0.19 0.2 0.8731261580 0.6656271037 

0.09 0.1 0.9378926198 0.8250102598 

-0.01 0 1 1 
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Table 4.3   Comparison of spectral radii of RAOR and SRPAOR iteration matrices 

for Problem 1 

𝒓 𝝎 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.019884463 1.848680312 

1.99 2.0 0.9997855336 1.793573334 

1.82 1.83 0.6887037657 1.020442454 

1.79 1.80 0.6398069818 0.9133893344 

1.69 1.7 0.4898177034 0.6120230179 

1.59 1.6 0.3598284264 0.3866851466 

1.49 1.5 0.2498391500 0.2255727860 

1.39 1.4 0.1598498739 0.1173133886 

1.29 1.3 0.08986059746 0.05096283204 

1.19 1.2 0.03987132039 0.01599836683 

1.0 1.1 0.09042311477 0.001000000000 

0.99 1.0 0.1372456785 0.004251211905 

0.89 0.9 0.2282121220 0.02506663540 

0.79 0.8 0.3186936911 0.06344736088 

0.69 0.7 0.4084691386 0.1197686057 

0.59 0.6 0.4972394992 0.1940640691 

0.49 0.5 0.5847767892 0.2861536937 

0.39 0.4 0.6709223525 0.3957219909 

0.29 0.3 0.7555706408 0.5223661540 

0.19 0.2 0.8386550511 0.6656271037 

0.09 0.1 0.9201373491 0.8250102598 

-0.01 0 1 1 
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Table 4.4   Comparison of spectral radiiof RPAOR and SRPAOR iteration matrices  

for Problem 1 

𝒓 𝝎 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.506287517 1.848680312 

1.99 2.0 1.476203029 1.793573334 

1.82 1.83 1.013582288 1.020442454 

1.79 1.80 0.9413922592 0.9133893344 

1.69 1.7 0.7208504418 0.6120230179 

1.59 1.6 0.5307683201 0.3866851466 

1.49 1.5 0.3705593737 0.2255727860 

1.39 1.4 0.2396431707 0.1173133886 

1.29 1.3 0.1374576881 0.05096283204 

1.19 1.2 0.06349172135 0.01599836683 

1.0 1.1 0.01000000000 0.001000000000 

0.99 1.0 0.02624269922 0.004251211905 

0.89 0.9 0.08565065659 0.02506663540 

0.79 0.8 0.1590776049 0.06344736088 

0.69 0.7 0.2429752275 0.1197686057 

0.59 0.6 0.3351944015 0.1940640691 

0.49 0.5 0.4342430792 0.2861536937 

0.39 0.4 0.5390058215 0.3957219909 

0.29 0.3 0.6486095719 0.5223661540 

0.19 0.2 0.7623492840 0.6656271037 

0.09 0.1 0.8796425683 0.8250102598 

-0.01 0 1 1 
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Table 4.5   Comparison of spectral radii of AOR and SRPAOR iteration matrices 

for Problem 2 

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.086141240 1.302639086 

1.99 2.0 1.076145681 1.264861418 

1.82 1.83 0.9052579404 0.7295606329 

1.79 1.80 0.8749168765 0.6545129583 

1.69 1.7 0.7733956238 0.4416465038 

1.59 1.6 0.6713025117 0.2805291441 

1.49 1.5 0.5686635325 0.1638171188 

1.39 1.4 0.4655027235 0.08425053731 

1.29 1.3 0.3618356085 0.04156210740 

1.19 1.2 0.2576567294 0.01476825437 

1.0 1.1 0.2551097687 0.002855762565 

0.99 1.0 0.3274088010 0.01069930790 

0.89 0.9 0.4292694335 0.03831926478 

0.79 0.8 0.5167206131 0.08268898026 

0.69 0.7 0.5946811896 0.1437009750 

0.59 0.6 0.6655917159 0.2210473853 

0.49 0.5 0.7309134208 0.3142943979 

0.39 0.4 0.7916211275 0.4229316603 

0.29 0.3 0.8484127557 0.5464040117 

0.19 0.2 0.9018133690 0.6841323274 

0.09 0.1 0.9522327900 0.8355275037 

-0.01 0 1 1.000000001 
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Table 4.6   Comparison of spectral radii of PAOR and SRPAOR iteration matrices 

for Problem 2 

𝒓 𝝎 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.092130916 1.302639086 

1.99 2.0 1.081469598 1.264861418 

1.82 1.83 0.9002306549 0.7295606329 

1.79 1.80 0.8682392547 0.6545129583 

1.69 1.7 0.7615380329 0.4416465038 

1.59 1.6 0.6546251133 0.2805291441 

1.49 1.5 0.5471668321 0.1638171188 

1.39 1.4 0.4383868916 0.08425053731 

1.29 1.3 0.3463904017 0.04156210740 

1.19 1.2 0.2453445324 0.01476825437 

1.0 1.1 0.1418754876 0.002855762565 

0.99 1.0 0.2203527947 0.01069930790 

0.89 0.9 0.3371364609 0.03831926478 

0.79 0.8 0.4356615288 0.08268898026 

0.69 0.7 0.5237852166 0.1437009750 

0.59 0.6 0.6046375703 0.2210473853 

0.49 0.5 0.6799007918 0.3142943979 

0.39 0.4 0.7506256447 0.4229316603 

0.29 0.3 0.8175317490 0.5464040117 

0.19 0.2 0.8811436306 0.6841323274 

0.09 0.1 0.9418612254 0.8355275037 

-0.01 0 1 1.000000001 
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Table 4.7   Comparison of spectral radii of RAOR and SRPAOR iteration matrices 

for Problem 2 

𝒓 𝝎 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.179702788 1.302639086 

1.99 2.0 1.158089536 1.264861418 

1.82 1.83 0.8194919381 0.7295606329 

1.79 1.80 0.7654795405 0.6545129583 

1.69 1.7 0.5981407923 0.4416465038 

1.59 1.6 0.4506470575 0.2805291441 

1.49 1.5 0.3233782157 0.1638171188 

1.39 1.4 0.2166927859 0.08425053731 

1.29 1.3 0.1309250064 0.04156210740 

1.19 1.2 0.06638699001 0.01476825437 

1.0 1.1 0.06508099396 0.002855762565 

0.99 1.0 0.1071965225 0.01069930790 

0.89 0.9 0.1842722465 0.03831926478 

0.79 0.8 0.2670001934 0.08268898026 

0.69 0.7 0.3536457184 0.1437009750 

0.59 0.6 0.4430123315 0.2210473853 

0.49 0.5 0.5342344253 0.3142943979 

0.39 0.4 0.6266640101 0.4229316603 

0.29 0.3 0.7198042025 0.5464040117 

0.19 0.2 0.8132673489 0.6841323274 

0.09 0.1 0.9067472857 0.8355275037 

-0.01 0 1 1.000000001 
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Table 4.8   Comparison of spectral radii of RPAOR and SRPAOR iteration matrices 

for Problem 2 

𝒓 𝝎 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.192749937 1.302639086 

1.99 2.0 1.169576493 1.264861418 

1.82 1.83 0.8104152289 0.7295606329 

1.79 1.80 0.7538394015 0.6545129583 

1.69 1.7 0.5799401768 0.4416465038 

1.59 1.6 0.4285340382 0.2805291441 

1.49 1.5 0.2993915393 0.1638171188 

1.39 1.4 0.1921830669 0.08425053731 

1.29 1.3 0.1199863119 0.04156210740 

1.19 1.2 0.06019394063 0.01476825437 

1.0 1.1 0.02012865380 0.002855762565 

0.99 1.0 0.04855535384 0.01069930790 

0.89 0.9 0.1136609927 0.03831926478 

0.79 0.8 0.1898009693 0.08268898026 

0.69 0.7 0.2743509539 0.1437009750 

0.59 0.6 0.3655865880 0.2210473853 

0.49 0.5 0.4622650879 0.3142943979 

0.39 0.4 0.5634388655 0.4229316603 

0.29 0.3 0.6683581566 0.5464040117 

0.19 0.2 0.7764140895 0.6841323274 

0.09 0.1 0.8871025619 0.8355275037 

-0.01 0 1 1.000000001 
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Table 4.9   Comparison of spectral radii of AOR and SRPAOR iteration matrices 

for Problem 3 

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.009983181 1.730048988 

1.99 2.0 0.9999830975 1.679119523 

1.82 1.83 0.8299813659 0.961804435 

1.79 1.80 0.7999809844 0.8619876784 

1.69 1.7 0.6999794757 0.5801306648 

1.59 1.6 0.5999774624 0.3683177789 

1.49 1.5 0.4999746450 0.2160610214 

1.39 1.4 0.3999704175 0.1131444290 

1.29 1.3 0.2999633744 0.04962725472 

1.19 1.2 0.1999492841 0.01584281244 

1.0 1.1 0.1865127564 0.001270386970 

0.99 1.0 0.2675950738 0.0007036148046 

0.89 0.9 0.3889501242 0.01109632675 

0.79 0.8 0.4867116564 0.03682664372 

0.69 0.7 0.5715207421 0.08055908117 

0.59 0.6 0.6475230708 0.1441541876 

0.49 0.5 0.7169138494 0.2289808309 

0.39 0.4 0.7810467239 0.3360689052 

0.29 0.3 0.8408376562 0.4661987189 

0.19 0.2 0.8969466513 0.6199590652 

0.09 0.1 0.9498713341 0.7977875647 

-0.01 0 1 1 
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Table 4.10   Comparison of spectral radii of PAOR and SRPAOR iteration matrices 

for Problem 3 

𝒓 𝝎 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.200474117 1.730048988 

1.99 2.0 1.188576678 1.679119523 

1.82 1.83 0.9871025140 0.961804435 

1.79 1.80 0.9517006211 0.8619876784 

1.69 1.7 0.8340177116 0.5801306648 

1.59 1.6 0.7168157878 0.3683177789 

1.49 1.5 0.6000564957 0.2160610214 

1.39 1.4 0.4836646991 0.1131444290 

1.29 1.3 0.3674853941 0.04962725472 

1.19 1.2 0.2511563106 0.01584281244 

1.0 1.1 0.1083042112 0.001270386970 

0.99 1.0 0.08894297642 0.0007036148046 

0.89 0.9 0.2230453018 0.01109632675 

0.79 0.8 0.3327009542 0.03682664372 

0.69 0.7 0.4318883616 0.08055908117 

0.59 0.6 0.5243352888 0.1441541876 

0.49 0.5 0.6117862466 0.2289808309 

0.39 0.4 0.6952528490 0.3360689052 

0.29 0.3 0.7753962411 0.4661987189 

0.19 0.2 0.8526831330 0.6199590652 

0.09 0.1 0.9274612064 0.7977875647 

-0.01 0 1 1 
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Table 4.11   Comparison of spectral radii of RAOR and SRPAOR iteration matrices 

for Problem 3 

𝒓 𝝎 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.020066025 1.730048988 

1.99 2.0 0.9999661949 1.679119523 

1.82 1.83 0.6888690663 0.961804435 

1.79 1.80 0.6399695755 0.8619876784 

1.69 1.7 0.4899712647 0.5801306648 

1.59 1.6 0.3599729551 0.3683177789 

1.49 1.5 0.2499746454 0.2160610214 

1.39 1.4 0.1599763359 0.1131444290 

1.29 1.3 0.08997802600 0.04962725472 

1.19 1.2 0.03997971631 0.01584281244 

1.0 1.1 0.03478700819 0.001270386970 

0.99 1.0 0.07160712315 0.0007036148046 

0.89 0.9 0.1512821990 0.01109632675 

0.79 0.8 0.2368882390 0.03682664372 

0.69 0.7 0.3266359600 0.08055908117 

0.59 0.6 0.4192861275 0.1441541876 

0.49 0.5 0.5139654660 0.2289808309 

0.39 0.4 0.6100339841 0.3360689052 

0.29 0.3 0.7070079673 0.4661987189 

0.19 0.2 0.8045132960 0.6199590652 

0.09 0.1 0.9022555517 0.7977875647 

-0.01 0 1 1 

 



57 

 

Table 4.12   Comparison of spectral radii of RPAOR and SRPAOR iteration 

matrices for Problem 3 

𝒓 𝝎 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.506287517 1.730048988 

1.99 2.0 1.476203029 1.679119523 

1.82 1.83 1.013582288 0.961804435 

1.79 1.80 0.9413922592 0.8619876784 

1.69 1.7 0.7208504418 0.5801306648 

1.59 1.6 0.5307683201 0.3683177789 

1.49 1.5 0.3705593737 0.2160610214 

1.39 1.4 0.2396431707 0.1131444290 

1.29 1.3 0.1374576881 0.04962725472 

1.19 1.2 0.06349172135 0.01584281244 

1.0 1.1 0.01000000000 0.001270386970 

0.99 1.0 0.02624269922 0.0007036148046 

0.89 0.9 0.08565065659 0.01109632675 

0.79 0.8 0.1590776049 0.03682664372 

0.69 0.7 0.2429752275 0.08055908117 

0.59 0.6 0.3351944015 0.1441541876 

0.49 0.5 0.4342430792 0.2289808309 

0.39 0.4 0.5390058215 0.3360689052 

0.29 0.3 0.6486095719 0.4661987189 

0.19 0.2 0.7623492840 0.6199590652 

0.09 0.1 0.8796425683 0.7977875647 

-0.01 0 1 1 
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4.3 Comparison of Rates of Convergence 

Table 4.13   Convergence rates of AOR and SRPAOR for Problem 1 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.009844674 -0.6144720397 Divergence 

1.99 2.0 0.0001072453 -0.5842099059 Divergence 

1.82 1.83 0.1864720248 -0.0202363117 Divergence 

1.79 1.80 0.2232943733 0.0905930551 0.4057113208 

1.69 1.7 0.3568609961 0.4909853862 1.3758449132 

1.59 1.6 0.5110639770 0.9501444918 1.8591498023 

1.49 1.5 0.6934689839 1.4891123960 2.1473381371 

1.39 1.4 0.9167600960 2.1429063900 2.3374778193 

1.29 1.3 1.204747866 2.9766586950 2.4707731626 

1.19 1.2 1.611049003 4.1352686350 2.5668174136 

1.0 1.1 1.201627674 6.9077552790 5.7486652717 

0.99 1.0 0.9929913427 5.4605511830 5.4990924374 

0.89 0.9 0.7387398626 3.6862175840 4.9898723091 

0.79 0.8 0.5717624256 2.7575446790 4.8228854425 

0.69 0.7 0.4476694584 2.1221936840 4.7405371177 

0.59 0.6 0.3493417393 1.6395669210 4.6933038242 

0.49 0.5 0.2682625271 1.2512262220 4.6641856227 

0.39 0.4 0.1995509325 0.9270433575 4.6456478348 

0.29 0.3 0.1401410026 0.6493864926 4.6338079545 

0.19 0.2 0.08797789363 0.4070256696 4.6264539057 

0.09 0.1 0.04161616239 0.1923594566 4.6222295751 

-0.01 0 -0. -0 Divergence 
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Table 4.14   Convergence rates of PAOR and SRPAOR for Problem 1 

𝒓 𝝎 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.2048240207 -0.6144720397 Divergence 

1.99 2.0 -0.1947366356 -0.5842099059 Divergence 

1.82 1.83 -0.006745445244 -0.0202363117 Divergence 

1.79 1.80 0.03019768158 0.0905930551 3.0000003434 

1.69 1.7 0.1636617995 0.4909853862 2.9999999248 

1.59 1.6 0.3167148328 0.9501444918 2.9999999792 

1.49 1.5 0.4963707958 1.4891123960 3.0000000173 

1.39 1.4 0.7143021321 2.1429063900 2.9999999912 

1.29 1.3 0.9922195666 2.9766586950 2.9999999952 

1.19 1.2 1.378422875 4.1352686350 3.0000000073 

1.0 1.1 2.302585093 6.9077552790 3.0000000000 

0.99 1.0 1.820183721 5.4605511830 3.0000000110 

0.89 0.9 1.228739195 3.6862175840 2.9999999992 

0.79 0.8 0.9191815598 2.7575446790 2.9999999996 

0.69 0.7 0.7073978929 2.1221936840 3.0000000075 

0.59 0.6 0.5465223031 1.6395669210 3.0000000214 

0.49 0.5 0.4170754083 1.2512262220 2.9999999930 

0.39 0.4 0.3090144519 0.9270433575 3.0000000058 

0.29 0.3 0.2164621604 0.6493864926 3.0000000527 

0.19 0.2 0.1356752227 0.4070256696 3.0000000111 

0.09 0.1 0.06411981435 0.1923594566 3.0000002113 

-0.01 0 -0. -0 Divergence 
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Table 4.15 Convergence rates of RAOR and SRPAOR for Problem 1 

𝒓 𝝎 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.0196893493 -0.6144720397 Divergence 

1.99 2.0 0.00021448940 -0.5842099059 Divergence 

1.82 1.83 0.3729440486 -0.0202363117 Divergence 

1.79 1.80 0.4465887391 0.0905930551 0.2028556638 

1.69 1.7 0.7137219910 0.4909853862 0.6879224578 

1.59 1.6 1.022127954 0.9501444918 0.9295749011 

1.49 1.5 1.386937968 1.4891123960 1.0736690684 

1.39 1.4 1.833520192 2.1429063900 1.1687389096 

1.29 1.3 2.409495727 2.9766586950 1.2353865839 

1.19 1.2 3.222098001 4.1352686350 1.2834087088 

1.0 1.1 2.403255350 6.9077552790 2.8743326334 

0.99 1.0 1.985982685 5.4605511830 2.7495462192 

0.89 0.9 1.477479723 3.6862175840 2.4949361583 

0.79 0.8 1.143524853 2.7575446790 2.4114427175 

0.69 0.7 0.8953389156 2.1221936840 2.3702685620 

0.59 0.6 0.6986834792 1.6395669210 2.3466519101 

0.49 0.5 0.5365250615 1.2512262220 2.3320927796 

0.39 0.4 0.3991018678 0.9270433575 2.3228239011 

0.29 0.3 0.2802819996 0.6493864926 2.3169040235 

0.19 0.2 0.1759558000 0.4070256696 2.3132267854 

0.09 0.1 0.08323232758 0.1923594566 2.3111147098 

-0.01 0 -0. -0. Divergence 
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Table 4.16 Convergence rates of RPAOR and SRPAOR for Problem 1 

𝒓 𝝎 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.4096480255 -0.6144720397 1.5000000035 

1.99 2.0 -0.3894732702 -0.5842099059 1.5000000015 

1.82 1.83 -0.01349087552 -0.0202363117 1.4999998807 

1.79 1.80 0.06039537270 0.0905930551 1.4999999348 

1.69 1.7 0.3273235948 0.4909853862 1.4999999817 

1.59 1.6 0.6334296616 0.9501444918 1.4999999991 

1.49 1.5 0.9927415942 1.4891123960 1.5000000047 

1.39 1.4 1.428604251 2.1429063900 1.5000000094 

1.29 1.3 1.984439132 2.9766586950 1.4999999985 

1.19 1.2 2.756845754 4.1352686350 1.5000000015 

1.0 1.1 4.605170186 6.9077552790 1.5000000000 

0.99 1.0 3.640367454 5.4605511830 1.5000000005 

0.89 0.9 2.457478388 3.6862175840 1.5000000008 

0.79 0.8 1.838363115 2.7575446790 1.5000000035 

0.69 0.7 1.414795785 2.1221936840 1.5000000046 

0.59 0.6 1.093044612 1.6395669210 1.5000000027 

0.49 0.5 0.8341508114 1.2512262220 1.5000000059 

0.39 0.4 0.6180289076 0.9270433575 1.4999999937 

0.29 0.3 0.4329243274 0.6493864926 1.5000000035 

0.19 0.2 0.2713504504 0.4070256696 1.4999999779 

0.09 0.1 0.1282396264 0.1923594566 1.5000001326 

-0.01 0 -0. -0. Divergence 

 

 



62 

 

Table 4.17   Convergence rates of AOR and SRPAOR for Problem 2 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.08263126830 -0.2643922728 Divergence 

1.99 2.0 -0.07338584384 -0.2349625652 Divergence 

1.82 1.83 0.09953535888 0.3153127988 3.1678471083 

1.79 1.80 0.1336263954 0.4238638951 3.1720072507 

1.69 1.7 0.2569645582 0.8172454820 3.1803821030 

1.59 1.6 0.3985354065 1.271077659 3.1893719812 

1.49 1.5 0.5644663510 1.809004603 3.2048050336 

1.39 1.4 0.7646373316 2.473960332 3.2354689338 

1.29 1.3 1.016565290 3.180566407 3.1287379554 

1.19 1.2 1.356127086 4.215275377 3.1083188445 

1.0 1.1 1.366061361 5.858416373 4.2885455517 

0.99 1.0 1.116545733 4.537576222 4.0639412143 

0.89 0.9 0.8456705071 3.261802512 3.8570607401 

0.79 0.8 0.6602529507 2.492668935 3.7753241880 

0.69 0.7 0.5197298328 1.940020701 3.7327483984 

0.59 0.6 0.4070788356 1.509378187 3.7078277105 

0.49 0.5 0.3134602656 1.157425159 3.6924142739 

0.39 0.4 0.2336723760 0.8605446726 3.6826974901 

0.29 0.3 0.1643880214 0.6043966287 3.6766464098 

0.19 0.2 0.1033476883 0.3796039190 3.6730760527 

0.09 0.1 0.04894574677 0.1796920126 3.6712487695 

-0.01 0 -0. -0.00000000009 Divergence 
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Table 4.18   Convergence rates of PAOR and SRPAOR for Problem 2 

𝒓 𝝎 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.08813075658 -0.2643922728 Divergence 

1.99 2.0 -0.07832085506 -0.2349625652 Divergence 

1.82 1.83 0.1051042653 0.3153127988 3.0000000276 

1.79 1.80 0.1412879632 0.4238638951 3.0000000389 

1.69 1.7 0.2724151632 0.8172454820 2.9999999721 

1.59 1.6 0.4236925533 1.271077659 2.9999999979 

1.49 1.5 0.6030015284 1.809004603 3.0000000295 

1.39 1.4 0.8246534443 2.473960332 2.9999999989 

1.29 1.3 1.060188811 3.180566407 2.9999999755 

1.19 1.2 1.405091802 4.215275377 2.9999999794 

1.0 1.1 1.952805454 5.858416373 3.0000000056 

0.99 1.0 1.512525405 4.537576222 3.0000000046 

0.89 0.9 1.087267502 3.261802512 3.0000000055 

0.79 0.8 0.8308896472 2.492668935 2.9999999921 

0.69 0.7 0.6466735707 1.940020701 2.9999999828 

0.59 0.6 0.5031260578 1.509378187 3.0000000270 

0.49 0.5 0.3858083859 1.157425159 3.0000000034 

0.39 0.4 0.2868482273 0.8605446726 2.9999999676 

0.29 0.3 0.2014655403 0.6043966287 3.0000000387 

0.19 0.2 0.1265346350 0.3796039190 3.0000001106 

0.09 0.1 0.05989733437 0.1796920126 3.0000001584 

-0.01 0 -0. -0.00000000009 Divergence 
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Table 4.19   Convergence rates of RAOR and SRPAOR for Problem 2 

𝒓 𝝎 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.1652625322 -0.2643922728 Divergence 

1.99 2.0 -0.1467716957 -0.2349625652 Divergence 

1.82 1.83 0.1990707184 0.3153127988 1.5839235490 

1.79 1.80 0.2672527912 0.4238638951 1.5860036230 

1.69 1.7 0.5139291141 0.8172454820 1.5901910586 

1.59 1.6 0.7970708235 1.271077659 1.5946859696 

1.49 1.5 1.128932694 1.809004603 1.6024025282 

1.39 1.4 1.529274662 2.473960332 1.6177344682 

1.29 1.3 2.033130590 3.180566407 1.5643689700 

1.19 1.2 2.712254175 4.215275377 1.5541594205 

1.0 1.1 2.732122724 5.858416373 2.1442727743 

0.99 1.0 2.233091470 4.537576222 2.0319706035 

0.89 0.9 1.691341014 3.261802512 1.9285303703 

0.79 0.8 1.320505896 2.492668935 1.8876621017 

0.69 0.7 1.039459662 1.940020701 1.8663742057 

0.59 0.6 0.8141576730 1.509378187 1.8539138512 

0.49 0.5 0.6269205377 1.157425159 1.8462071178 

0.39 0.4 0.4673447510 0.8605446726 1.8413487490 

0.29 0.3 0.3287760449 0.6043966287 1.8383231932 

0.19 0.2 0.2066953811 0.3796039190 1.8365379864 

0.09 0.1 0.09789149426 0.1796920126 1.8356243712 

-0.01 0 -0. -0.00000000009 Divergence 
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Table 4.20 Convergence rates of RPAOR and SRPAOR for Problem 2 

𝒓 𝝎 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.1762615126 -0.2643922728 Divergence 

1.99 2.0 -0.1566417115 -0.2349625652 Divergence 

1.82 1.83 0.2102085344 0.3153127988 1.4999999867 

1.79 1.80 0.2825759290 0.4238638951 1.5000000057 

1.69 1.7 0.5448303242 0.8172454820 1.4999999921 

1.59 1.6 0.8473851084 1.271077659 1.4999999958 

1.49 1.5 1.206003066 1.809004603 1.5000000033 

1.39 1.4 1.649306888 2.473960332 1.5000000000 

1.29 1.3 2.120377610 3.180566407 1.4999999962 

1.19 1.2 2.810183586 4.215275377 1.4999999993 

1.0 1.1 3.905610917 5.858416373 1.4999999994 

0.99 1.0 3.025050816 4.537576222 1.4999999993 

0.89 0.9 2.174535009 3.261802512 1.4999999993 

0.79 0.8 1.661779286 2.492668935 1.5000000036 

0.69 0.7 1.293347139 1.940020701 1.4999999942 

0.59 0.6 1.006252125 1.509378187 1.4999999995 

0.49 0.5 0.7716167691 1.157425159 1.5000000069 

0.39 0.4 0.5736964421 0.8605446726 1.5000000165 

0.29 0.3 0.4029310866 0.6043966287 1.4999999970 

0.19 0.2 0.2530692806 0.3796039190 1.4999999925 

0.09 0.1 0.1197946755 0.1796920126 1.4999999946 

-0.01 0 -0. -0.00000000009 Divergence 
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Table 4.21   Convergence rates of AOR and SRPAOR for Problem 3 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.0099336782 -0.5481497249 Divergence 

1.99 2.0 0.0000169026 -0.5182695626 Divergence 

1.82 1.83 0.1863520292 0.03894413900 0.2089815666 

1.79 1.80 0.2231673211 0.1485143026 0.6654840945 

1.69 1.7 0.3567042648 0.5445019167 1.5264799736 

1.59 1.6 0.5108631871 0.9988091838 1.9551402587 

1.49 1.5 0.6931978918 1.532194405 2.2103275603 

1.39 1.4 0.9163646909 2.179090144 2.3779726190 

1.29 1.3 1.204094897 3.003215106 2.4941681204 

1.19 1.2 1.609691524 4.145039355 2.5750519856 

1.0 1.1 1.679255643 6.668433724 3.9710652466 

0.99 1.0 1.318280360 7.259279504 5.5066279710 

0.89 0.9 0.9443041590 4.501141149 4.7666221800 

0.79 0.8 0.7200834126 3.301533682 4.5849322790 

0.69 0.7 0.5594545023 2.518764436 4.5021792222 

0.59 0.6 0.4346008555 1.936871805 4.4566681830 

0.49 0.5 0.3327995999 1.474116987 4.4294433871 

0.39 0.4 0.2471203052 1.090439065 4.4125838389 

0.29 0.3 0.1733566743 0.7631433003 4.4021570175 

0.19 0.2 0.1087588933 0.4781018270 4.3959791470 

0.09 0.1 0.05142874135 0.2259129266 4.3927368368 

-0.01 0 -0. -0. Divergence 
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Table 4.22   Convergence rates of PAOR and SRPAOR for Problem 3 

𝒓 𝝎 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.1827165763 -0.5481497249 Divergence 

1.99 2.0 -0.1727565224 -0.5182695626 Divergence 

1.82 1.83 0.01298138071 0.03894413900 2.9999997589 

1.79 1.80 0.04950476728 0.1485143026 3.0000000154 

1.69 1.7 0.1815006399 0.5445019167 2.9999999835 

1.59 1.6 0.3329363922 0.9988091838 3.0000000216 

1.49 1.5 0.5107314687 1.532194405 2.9999999978 

1.39 1.4 0.7263633828 2.179090144 2.9999999939 

1.29 1.3 1.001071705 3.003215106 2.9999999910 

1.19 1.2 1.381679782 4.145039355 3.0000000065 

1.0 1.1 2.222811241 6.668433724 3.0000000004 

0.99 1.0 2.419759829 7.259279504 3.0000000070 

0.89 0.9 1.500380381 4.501141149 3.0000000040 

0.79 0.8 1.100511228 3.301533682 2.9999999982 

0.69 0.7 0.8395881464 2.518764436 2.9999999962 

0.59 0.6 0.6456239352 1.936871805 2.9999999991 

0.49 0.5 0.4913723277 1.474116987 3.0000000079 

0.39 0.4 0.3634796881 1.090439065 3.0000000019 

0.29 0.3 0.2543811014 0.7631433003 2.9999999847 

0.19 0.2 0.1593672741 0.4781018270 3.0000000295 

0.09 0.1 0.07530431136 0.2259129266 2.9999999007 

-0.01 0 -0. -0. Divergence 
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Table 4.23 Convergence rates of RAOR and SRPAOR for Problem 3 

𝒓 𝝎 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.01986735559 -0.5481497249 Divergence 

1.99 2.0 0.000033805671 -0.5182695626 Divergence 

1.82 1.83 0.3727040604 0.03894413900 0.1044907827 

1.79 1.80 0.4463346420 0.1485143026 0.3327420474 

1.69 1.7 0.7134085331 0.5445019167 0.7632399830 

1.59 1.6 1.021726375 0.9988091838 0.9775701286 

1.49 1.5 1.386395785 1.532194405 1.1051637790 

1.39 1.4 1.832729375 2.179090144 1.1889863139 

1.29 1.3 2.408189794 3.003215106 1.2470840602 

1.19 1.2 3.219383046 4.145039355 1.2875259936 

1.0 1.1 3.358511290 6.668433724 1.9855326209 

0.99 1.0 2.636560725 7.259279504 2.7533139803 

0.89 0.9 1.888608319 4.501141149 2.3833110888 

0.79 0.8 1.440166814 3.301533682 2.2924661573 

0.69 0.7 1.118909000 2.518764436 2.2510896203 

0.59 0.6 0.8692017103 1.936871805 2.2283340933 

0.49 0.5 0.6655992026 1.474116987 2.2147216842 

0.39 0.4 0.4942406117 1.090439065 2.2062919137 

0.29 0.3 0.3467133440 0.7631433003 2.2010785380 

0.19 0.2 0.2175177857 0.4781018270 2.1979895826 

0.09 0.1 0.1028574823 0.2259129266 2.1963684270 

-0.01 0 -0. -0. Divergence 
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Table 4.24  Convergence rates of RPAOR and SRPAOR for Problem 3 

𝒓 𝝎 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) Ratio 

2.0 2.01 -0.4096480255 -0.5481497249 Divergence 

1.99 2.0 -0.3894732702 -0.5182695626 Divergence 

1.82 1.83 -0.0134908755 0.03894413900 Divergence 

1.79 1.80 0.06039537270 0.1485143026 2.4590344584 

1.69 1.7 0.3273235948 0.5445019167 1.6634973016 

1.59 1.6 0.6334296616 0.9988091838 1.5768273012 

1.49 1.5 0.9927415942 1.532194405 1.5433970068 

1.39 1.4 1.428604251 2.179090144 1.5253280553 

1.29 1.3 1.984439132 3.003215106 1.5133823243 

1.19 1.2 2.756845754 4.145039355 1.5035441678 

1.0 1.1 4.605170186 6.668433724 1.4480319846 

0.99 1.0 3.640367454 7.259279504 1.9941062532 

0.89 0.9 2.457478388 4.501141149 1.8316096577 

0.79 0.8 1.838363115 3.301533682 1.7959094452 

0.69 0.7 1.414795785 2.518764436 1.7803024738 

0.59 0.6 1.093044612 1.936871805 1.7719970290 

0.49 0.5 0.8341508114 1.474116987 1.7672068010 

0.39 0.4 0.6180289076 1.090439065 1.7643819756 

0.29 0.3 0.4329243274 0.7631433003 1.7627637257 

0.19 0.2 0.2713504504 0.4781018270 1.7619348938 

0.09 0.1 0.1282396264 0.2259129266 1.7616467931 

-0.01 0 -0. -0. Divergence 
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Table 4.25   Comparison of spectral radii of various methods for Problem 1 

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.009893293 1.227309065 1.019884463 1.506287517 1.848680312 

1.99 2.0 0.9998927604 1.214990959 0.9997855336 1.476203029 1.793573334 

1.82 1.83 0.8298817777 1.006768247 0.6887037657 1.013582288 1.020442454 

1.79 1.80 0.7998793515 0.9702537133 0.6398069818 0.9413922592 0.9133893344 

1.69 1.7 0.6998697756 0.8490291154 0.4898177034 0.7208504418 0.6120230179 

1.59 1.6 0.5998570051 0.7285384808 0.3598284264 0.5307683201 0.3866851466 

1.49 1.5 0.4998391242 0.6087358825 0.2498391500 0.3705593737 0.2255727860 

1.39 1.4 0.3998122984 0.4895336224 0.1598498739 0.2396431707 0.1173133886 

1.29 1.3 0.2997675715 0.3707528664 0.08986059746 0.1374576881 0.05096283204 

1.19 1.2 0.1996780414 0.2519756369 0.03987132039 0.06349172135 0.01599836683 

1.0 1.1 0.3007043648 0.1000000000 0.09042311477 0.01000000000 0.001000000000 

0.99 1.0 0.3704668386 0.1619959862 0.1372456785 0.02624269922 0.004251211905 

0.89 0.9 0.4777155236 0.2926613339 0.2282121220 0.08565065659 0.02506663540 

0.79 0.8 0.5645296200 0.3988453386 0.3186936911 0.1590776049 0.06344736088 

0.69 0.7 0.6391159035 0.4929251742 0.4084691386 0.2429752275 0.1197686057 

0.59 0.6 0.7051521109 0.5789597599 0.4972394992 0.3351944015 0.1940640691 

0.49 0.5 0.7647069984 0.6589712262 0.5847767892 0.4342430792 0.2861536937 

0.39 0.4 0.8190985010 0.7341701598 0.6709223525 0.5390058215 0.3957219909 

0.29 0.3 0.8692356623 0.8053630090 0.7555706408 0.6486095719 0.5223661540 

0.19 0.2 0.9157811211 0.8731261580 0.8386550511 0.7623492840 0.6656271037 

0.09 0.1 0.9592379015 0.9378926198 0.9201373491 0.8796425683 0.8250102598 

-0.01 0 1 1 1 1 1 
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Table 4.26   Comparison of spectral radii of various methods for Problem 2  

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.086141240 1.092130916 1.179702788 1.192749937 1.302639086 

1.99 2.0 1.076145681 1.081469598 1.158089536 1.169576493 1.264861418 

1.82 1.83 0.9052579404 0.9002306549 0.8194919381 0.8104152289 0.7295606329 

1.79 1.80 0.8749168765 0.8682392547 0.7654795405 0.7538394015 0.6545129583 

1.69 1.7 0.7733956238 0.7615380329 0.5981407923 0.5799401768 0.4416465038 

1.59 1.6 0.6713025117 0.6546251133 0.4506470575 0.4285340382 0.2805291441 

1.49 1.5 0.5686635325 0.5471668321 0.3233782157 0.2993915393 0.1638171188 

1.39 1.4 0.4655027235 0.4383868916 0.2166927859 0.1921830669 0.08425053731 

1.29 1.3 0.3618356085 0.3463904017 0.1309250064 0.1199863119 0.04156210740 

1.19 1.2 0.2576567294 0.2453445324 0.06638699001 0.06019394063 0.01476825437 

1.0 1.1 0.2551097687 0.1418754876 0.06508099396 0.02012865380 0.002855762565 

0.99 1.0 0.3274088010 0.2203527947 0.1071965225 0.04855535384 0.01069930790 

0.89 0.9 0.4292694335 0.3371364609 0.1842722465 0.1136609927 0.03831926478 

0.79 0.8 0.5167206131 0.4356615288 0.2670001934 0.1898009693 0.08268898026 

0.69 0.7 0.5946811896 0.5237852166 0.3536457184 0.2743509539 0.1437009750 

0.59 0.6 0.6655917159 0.6046375703 0.4430123315 0.3655865880 0.2210473853 

0.49 0.5 0.7309134208 0.6799007918 0.5342344253 0.4622650879 0.3142943979 

0.39 0.4 0.7916211275 0.7506256447 0.6266640101 0.5634388655 0.4229316603 

0.29 0.3 0.8484127557 0.8175317490 0.7198042025 0.6683581566 0.5464040117 

0.19 0.2 0.9018133690 0.8811436306 0.8132673489 0.7764140895 0.6841323274 

0.09 0.1 0.9522327900 0.9418612254 0.9067472857 0.8871025619 0.8355275037 

-0.01 0 1 1 1 1 1.000000001 
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Table 4.27   Comparison of spectral radii of various methods for Problem 3 

𝒓 𝝎 𝝆(𝐀𝐎𝐑) 𝝆(𝐏𝐀𝐎𝐑) 𝝆(𝐑𝐀𝐎𝐑) 𝝆(𝐑𝐏𝐀𝐎𝐑) 𝝆(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 1.009983181 1.200474117 1.020066025 1.506287517 1.730048988 

1.99 2.0 0.9999830975 1.188576678 0.9999661949 1.476203029 1.679119523 

1.82 1.83 0.8299813659 0.9871025140 0.6888690663 1.013582288 0.961804435 

1.79 1.80 0.7999809844 0.9517006211 0.6399695755 0.9413922592 0.8619876784 

1.69 1.7 0.6999794757 0.8340177116 0.4899712647 0.7208504418 0.5801306648 

1.59 1.6 0.5999774624 0.7168157878 0.3599729551 0.5307683201 0.3683177789 

1.49 1.5 0.4999746450 0.6000564957 0.2499746454 0.3705593737 0.2160610214 

1.39 1.4 0.3999704175 0.4836646991 0.1599763359 0.2396431707 0.1131444290 

1.29 1.3 0.2999633744 0.3674853941 0.08997802600 0.1374576881 0.04962725472 

1.19 1.2 0.1999492841 0.2511563106 0.03997971631 0.06349172135 0.01584281244 

1.0 1.1 0.1865127564 0.1083042112 0.03478700819 0.01000000000 0.00127038697 

0.99 1.0 0.2675950738 0.08894297642 0.07160712315 0.02624269922 0.00070361480 

0.89 0.9 0.3889501242 0.2230453018 0.1512821990 0.08565065659 0.01109632675 

0.79 0.8 0.4867116564 0.3327009542 0.2368882390 0.1590776049 0.03682664372 

0.69 0.7 0.5715207421 0.4318883616 0.3266359600 0.2429752275 0.08055908117 

0.59 0.6 0.6475230708 0.5243352888 0.4192861275 0.3351944015 0.1441541876 

0.49 0.5 0.7169138494 0.6117862466 0.5139654660 0.4342430792 0.2289808309 

0.39 0.4 0.7810467239 0.6952528490 0.6100339841 0.5390058215 0.3360689052 

0.29 0.3 0.8408376562 0.7753962411 0.7070079673 0.6486095719 0.4661987189 

0.19 0.2 0.8969466513 0.8526831330 0.8045132960 0.7623492840 0.6199590652 

0.09 0.1 0.9498713341 0.9274612064 0.9022555517 0.8796425683 0.7977875647 

-0.01 0 1 1 1 1 1 
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Table 4.28   Convergence rates of various methods for Problem 1 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 -0.009844674 -0.2048240207 -0.0196893493 -0.4096480255 -0.6144720397 

1.99 2.0 0.0001072453 -0.1947366356 0.00021448940 -0.3894732702 -0.5842099059 

1.82 1.83 0.1864720248 -0.0067454452 0.3729440486 -0.0134908755 -0.0202363117 

1.79 1.80 0.2232943733 0.03019768158 0.4465887391 0.06039537270 0.0905930551 

1.69 1.7 0.3568609961 0.1636617995 0.7137219910 0.3273235948 0.4909853862 

1.59 1.6 0.5110639770 0.3167148328 1.022127954 0.6334296616 0.9501444918 

1.49 1.5 0.6934689839 0.4963707958 1.386937968 0.9927415942 1.4891123960 

1.39 1.4 0.9167600960 0.7143021321 1.833520192 1.428604251 2.1429063900 

1.29 1.3 1.204747866 0.9922195666 2.409495727 1.984439132 2.9766586950 

1.19 1.2 1.611049003 1.378422875 3.222098001 2.756845754 4.1352686350 

1.0 1.1 1.201627674 2.302585093 2.403255350 4.605170186 6.9077552790 

0.99 1.0 0.9929913427 1.820183721 1.985982685 3.640367454 5.4605511830 

0.89 0.9 0.7387398626 1.228739195 1.477479723 2.457478388 3.6862175840 

0.79 0.8 0.5717624256 0.9191815598 1.143524853 1.838363115 2.7575446790 

0.69 0.7 0.4476694584 0.7073978929 0.8953389156 1.414795785 2.1221936840 

0.59 0.6 0.3493417393 0.5465223031 0.6986834792 1.093044612 1.6395669210 

0.49 0.5 0.2682625271 0.4170754083 0.5365250615 0.8341508114 1.2512262220 

0.39 0.4 0.1995509325 0.3090144519 0.3991018678 0.6180289076 0.9270433575 

0.29 0.3 0.1401410026 0.2164621604 0.2802819996 0.4329243274 0.6493864926 

0.19 0.2 0.08797789363 0.1356752227 0.1759558000 0.2713504504 0.4070256696 

0.09 0.1 0.04161616239 0.06411981435 0.08323232758 0.1282396264 0.1923594566 

-0.01 0 -0. -0. -0. -0. -0 
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Table 4.29   Convergence rates of various methods for Problem 2 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 -0.08263126830 -0.0881307565 -0.1652625322 -0.1762615126 -0.2643922728 

1.99 2.0 -0.07338584384 -0.0783208550 -0.1467716957 -0.1566417115 -0.2349625652 

1.82 1.83 0.09953535888 0.1051042653 0.1990707184 0.2102085344 0.3153127988 

1.79 1.80 0.1336263954 0.1412879632 0.2672527912 0.2825759290 0.4238638951 

1.69 1.7 0.2569645582 0.2724151632 0.5139291141 0.5448303242 0.8172454820 

1.59 1.6 0.3985354065 0.4236925533 0.7970708235 0.8473851084 1.271077659 

1.49 1.5 0.5644663510 0.6030015284 1.128932694 1.206003066 1.809004603 

1.39 1.4 0.7646373316 0.8246534443 1.529274662 1.649306888 2.473960332 

1.29 1.3 1.016565290 1.060188811 2.033130590 2.120377610 3.180566407 

1.19 1.2 1.356127086 1.405091802 2.712254175 2.810183586 4.215275377 

1.0 1.1 1.366061361 1.952805454 2.732122724 3.905610917 5.858416373 

0.99 1.0 1.116545733 1.512525405 2.233091470 3.025050816 4.537576222 

0.89 0.9 0.8456705071 1.087267502 1.691341014 2.174535009 3.261802512 

0.79 0.8 0.6602529507 0.8308896472 1.320505896 1.661779286 2.492668935 

0.69 0.7 0.5197298328 0.6466735707 1.039459662 1.293347139 1.940020701 

0.59 0.6 0.4070788356 0.5031260578 0.8141576730 1.006252125 1.509378187 

0.49 0.5 0.3134602656 0.3858083859 0.6269205377 0.7716167691 1.157425159 

0.39 0.4 0.2336723760 0.2868482273 0.4673447510 0.5736964421 0.8605446726 

0.29 0.3 0.1643880214 0.2014655403 0.3287760449 0.4029310866 0.6043966287 

0.19 0.2 0.1033476883 0.1265346350 0.2066953811 0.2530692806 0.3796039190 

0.09 0.1 0.04894574677 0.05989733437 0.09789149426 0.1197946755 0.1796920126 

-0.01 0 -0. -0. -0. -0. -0.00000000009 
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Table 4.30  Convergence rates of various methods for Problem 3 

𝒓 𝝎 𝑹(𝐀𝐎𝐑) 𝑹(𝐏𝐀𝐎𝐑) 𝑹(𝐑𝐀𝐎𝐑) 𝑹(𝐑𝐏𝐀𝐎𝐑) 𝑹(𝐒𝐑𝐏𝐀𝐎𝐑) 

2.0 2.01 -0.0099336782 -0.1827165763 -0.0198673555 -0.4096480255 -0.5481497249 

1.99 2.0 0.0000169026 -0.1727565224 0.00003380567 -0.3894732702 -0.5182695626 

1.82 1.83 0.1863520292 0.01298138071 0.3727040604 -0.0134908755 0.03894413900 

1.79 1.80 0.2231673211 0.04950476728 0.4463346420 0.06039537270 0.1485143026 

1.69 1.7 0.3567042648 0.1815006399 0.7134085331 0.3273235948 0.5445019167 

1.59 1.6 0.5108631871 0.3329363922 1.021726375 0.6334296616 0.9988091838 

1.49 1.5 0.6931978918 0.5107314687 1.386395785 0.9927415942 1.532194405 

1.39 1.4 0.9163646909 0.7263633828 1.832729375 1.428604251 2.179090144 

1.29 1.3 1.204094897 1.001071705 2.408189794 1.984439132 3.003215106 

1.19 1.2 1.609691524 1.381679782 3.219383046 2.756845754 4.145039355 

1.0 1.1 1.679255643 2.222811241 3.358511290 4.605170186 6.668433724 

0.99 1.0 1.318280360 2.419759829 2.636560725 3.640367454 7.259279504 

0.89 0.9 0.9443041590 1.500380381 1.888608319 2.457478388 4.501141149 

0.79 0.8 0.7200834126 1.100511228 1.440166814 1.838363115 3.301533682 

0.69 0.7 0.5594545023 0.8395881464 1.118909000 1.414795785 2.518764436 

0.59 0.6 0.4346008555 0.6456239352 0.8692017103 1.093044612 1.936871805 

0.49 0.5 0.3327995999 0.4913723277 0.6655992026 0.8341508114 1.474116987 

0.39 0.4 0.2471203052 0.3634796881 0.4942406117 0.6180289076 1.090439065 

0.29 0.3 0.1733566743 0.2543811014 0.3467133440 0.4329243274 0.7631433003 

0.19 0.2 0.1087588933 0.1593672741 0.2175177857 0.2713504504 0.4781018270 

0.09 0.1 0.05142874135 0.07530431136 0.1028574823 0.1282396264 0.2259129266 

-0.01 0 -0. -0. -0. -0. -0. 
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4.4 Discussion of Results 

A basic requirement for convergence of any iterative method demands that the spectral 

radius of its iteration matrix be less than 1. More so, it is not just sufficient for a method 

to converge, it has to converge effectively. The computational effectiveness of a 

convergent iterative method is directly related to the magnitude of the spectral radius of 

the iterative method. The rate of convergence is best when the spectral radius is near zero 

and poorest when it is near 1.  

Table 4.1 through Table 4.12 are the results of comparing the spectral radii of SRPAOR 

against its preceding methods, AOR, PAOR, RAOR and RPAOR, which it seeks to 

improve.  

Table 4.1 displays the spectral radii of AOR against those of SRPAOR for various values 

of relaxation and acceleration parameters 𝜔 and 𝑟 respectively applied to Problem 1. 

These values are carefully chosen between 2.01 and -0.01. The SRPAOR is shown to 

exhibit faster convergence than the AOR whenever it converges. Its range of convergence 

extends between 0 < 𝑟 < 𝜔 < 1.83 wherein it attains optimum convergence when  𝑟 and 

𝜔 are 1.0 and 1.1 respectively. For the AOR, the range of convergence is  0 < 𝑟 < 𝜔 ≤

2.0 with optimum values at 𝑟 = 1.19 and 𝜔 = 1.2. In Table 4.2 the results of the spectral 

radii of PAOR alongside those of SRPAOR for various values of the parameters 

(relaxation 𝜔 and acceleration 𝑟) applied to Problem 1 are exhibited. Again, the SRPAOR 

converges more rapidly than the AOR. The range of convergence extends between 0 <

𝑟 < 𝜔 ≤ 1.80 and the optimum convergence is attained at when  𝑟 = 1.0 and 𝜔 = 1.1 

for the two methods. Table 4.3 is the results of comparing the spectral radii of RAOR 

with those of SRPAOR using various values of relaxation 𝜔 and acceleration 𝑟 between 

2.01 and -0.01 for Problem 1. As expected, values of 𝜌(SRPAOR) are in smaller 

magnitudes than those of 𝜌(RAOR), implying faster convergence provided the parameters 
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fall within the range 0 < 𝑟 < 𝜔 < 1.83, whose optimum values are obtained at 𝑟 = 1.0 

and 𝜔 = 1.1. The AOR however, converges provided the parameter fall within the range 

0 < 𝑟 < 𝜔 ≤ 2.0 with optimum values at 𝑟 = 1.19 and 𝜔 = 1.2. In Table 4.4 the spectral 

radii of RPAOR are compared with those of SRPAOR in solving Problem 1. Faster 

convergence is shown to be attained by the SRPAOR method due to its smaller spectral 

radii across values of the parameters. This convergence is attained for the range of values 

0 < 𝑟 < 𝜔 < 1.83  in both methods. An optimum convergence is reached when 𝑟 and 𝜔 

are 1.0 and 1.1 respectively.  

Table 4.5 shows the spectral radii of AOR against those of SRPAOR for various values 

of relaxation and acceleration parameters 𝜔 and 𝑟 respectively applied to Problem 2. The 

SRPAOR is shown to exhibit faster convergence than the AOR. Both methods have 

convergence range extending between 0 < 𝑟 < 𝜔 < 2 wherein they attains optimum 

convergence when  𝑟 and 𝜔 are 1.0 and 1.1 respectively.  In Table 4.6 the results of the 

spectral radii of PAOR alongside those of SRPAOR for various values of the parameters 

(relaxation 𝜔 and acceleration 𝑟) applied to Problem 2 are exhibited. Again, the SRPAOR 

converges more rapidly than the AOR. The range of convergence extends between 0 <

𝑟 < 𝜔 ≤ 2 and the optimum convergence is attained at when  𝑟 = 1.0 and 𝜔 = 1.1 for 

the two methods. 

 Table 4.7 is the results of comparing the spectral radii of RAOR with those of SRPAOR 

using various values of relaxation 𝜔 and acceleration 𝑟 between 2.01 and -0.01 for 

Problem 2. As expected, values of 𝜌(SRPAOR) are in smaller magnitudes than those of 

𝜌(RAOR), implying faster convergence provided the parameters fall within the range 0 <

𝑟 < 𝜔 < 2, whose optimum values are obtained at 𝑟 = 1.0 and 𝜔 = 1.1. In Table 4.8 the 

spectral radii of RPAOR are compared with those of SRPAOR in solving Problem 2. 

Faster convergence is shown to be attained by the SRPAOR method due to its smaller 
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spectral radii across values of the parameters. This convergence is attained for the range 

of values 0 < 𝑟 < 𝜔 < 2  in both methods. An optimum convergence is reached when 𝑟 

and 𝜔 are 1.0 and 1.1 respectively.  

Table 4.9 displays the spectral radii of AOR against those of SRPAOR for various values 

of relaxation and acceleration parameters 𝜔 and 𝑟 respectively applied to Problem 3. The 

SRPAOR is shown to exhibit faster convergence than the AOR. Its range of convergence 

extends between 0 < 𝑟 < 𝜔 < 2 wherein it attains optimum convergence when  𝑟 and 𝜔 

are 0.99 and 1 respectively. For the AOR, the range of convergence is  0 < 𝑟 < 𝜔 ≤ 2 

with optimum values at 𝑟 = 1 and 𝜔 = 1.1.  

In Table 4.10 the results of the spectral radii of PAOR alongside those of SRPAOR for 

various values of the parameters (relaxation 𝜔 and acceleration 𝑟) applied to Problem 3 

are exhibited. Again, the SRPAOR converges more rapidly than the AOR. The range of 

convergence extends between 0 < 𝑟 < 𝜔 < 2 and the optimum convergence is attained 

at when  𝑟 = 0.99 and 𝜔 = 1 for the two methods. Table 4.11 is the results of comparing 

the spectral radii of RAOR with those of SRPAOR for Problem 3. Values of 𝜌(SRPAOR) 

are in smaller magnitudes than those of 𝜌(RAOR), implying faster convergence provided 

the parameters fall within the range 0 < 𝑟 < 𝜔 < 2, whose optimum values are obtained 

at 𝑟 = 0.99 and 𝜔 = 1. The AOR however, converges provided the parameter fall within 

the range 0 < 𝑟 < 𝜔 ≤ 2 with optimum values at 𝑟 = 1 and 𝜔 = 1.1. In Table 4.12 the 

spectral radii of RPAOR are compared with those of SRPAOR in solving Problem 3. 

Faster convergence is shown to be attained by the SRPAOR method due to its smaller 

spectral radii across values of the parameters. This convergence is attained for the range 

of values 0 < 𝑟 < 𝜔 < 2  with optimum convergence attained when 𝑟 and 𝜔 are 0.99 

and 1 respectively in the case of SRPAOR. For AOR however, convergence is attained 
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in the range of values 0 < 𝑟 < 𝜔 < 1.83 with optimum convergence attained when 𝑟 and 

𝜔 are 1 and 1.1 respectively. 

The rate of convergence of an iterative method is the number 𝑅(𝐺) = −log 𝜌(𝐺), and is 

a measure of how rapidly a method is convergent, depending on the choice of the 

parameters 𝑟 and 𝜔. Using Maple software, the rates of convergence of the AOR, PAOR, 

RAOR RPAOR and SRPAOR are computed and compared. The results are presented in 

Table 4.13 through Table 4.24. Table 4.13 compares the rate of convergence of SRPAOR 

with AOR for various values of the parameters when applied to Problem 1. It reveals that 

the SRPAOR converges five and a half times faster than the AOR. Table 4.14 compares 

the rate of convergence of SRPAOR with PAOR for Problem 1. Results show that 

SRPAOR is faster than PAOR by a factor of three. In Table 4.15 a comparison of 

convergence rates of SRPAOR and RAOR for Problem 1 is undertaken. It shows that 

SRPAOR converges almost three times more rapidly than RAOR. Table 4.16 is the result 

of comparing the convergence rates of SRPAOR and RPAOR for Problem 1, where it is 

seen than SRPAOR is one a half times as fast as RPAOR.  

Table 4.17 compares the rate of convergence of SRPAOR with AOR for various values 

of the parameters when applied to Problem 2. It reveals that the SRPAOR converges four 

times faster than the AOR. Table 4.18 compares the rate of convergence of SRPAOR 

with PAOR for Problem 2. Results show that SRPAOR is faster than PAOR by a factor 

of three. In Table 4.19 a comparison of convergence rates of SRPAOR and RAOR for 

Problem 2 is undertaken. It shows that SRPAOR converges two times more rapidly than 

RAOR. Table 4.20 is the result of comparing the convergence rates of SRPAOR and 

RPAOR for Problem 2, where it is seen than SRPAOR is one a half time as fast as 

RPAOR.  
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Table 4.21 compares the rate of convergence of SRPAOR with AOR for various values 

of the parameters when applied to Problem 3. It reveals that the SRPAOR converges five 

and a half times faster than the AOR. Table 4.22 compares the rate of convergence of 

SRPAOR with PAOR for Problem 3. Results show that SRPAOR is faster than PAOR by 

a factor of three. In Table 4.23 a comparison of convergence rates of SRPAOR and RAOR 

for Problem 3 is undertaken. It shows that SRPAOR converges two and a half times more 

rapidly than RAOR. Table 4.24 is the result of comparing the convergence rates of 

SRPAOR and RPAOR for Problem 3, where it is seen than SRPAOR is two times as fast 

as RPAOR.  

Table 4.25, Table 4.26 and Table 4.27 compare the spectral radii of all the five methods 

in solving Problem 1, Problem 2 and Problem 3 respectively. A common trend in the 

results reveal that 𝜌(SRPAOR) < 𝜌(RPAOR) < 𝜌(RAOR) < 𝜌(PAOR) < 𝜌(AOR), 

indicating that the proposed SRPAOR iterative converges faster than all the methods. 

Table 4.28, Table 4.29 and Table 4.30 compare the rates of convergence of all the five 

methods in solving Problem 1, Problem 2 and Problem 3 respectively. At optimal solution 

of Problem 1, SRPAOR method is shown to converge faster than AOR, PAOR, RAOR 

and RPAOR by a factor of 5.75, 3, 2.87 and 1.5 respectively. While for Problem 2, 

SRPAOR method converges more rapidly than AOR, PAOR, RAOR and RPAOR by a 

factor of 4.3, 3, 2.14 and 1.5 respectively. And in Problem 3, SRPAOR method converges 

faster than AOR, PAOR, RAOR and RPAOR by a factor of 5.5, 3, 2.75 and 2 respectively.     
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CHAPTER FIVE 

5.0     CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

A second refinement of preconditioned Accelerated Overrelaxation (AOR) iterative 

method has been proposed. This method christened Second Refinement of Preconditioned 

Accelerated Overrelaxation (SRPAOR) method involves the successive application of 

preconditioning and second refinement techniques in improving the convergence rates of 

iterative methods towards the solution of linear algebraic systems. 

A new preconditioner was derived and applied to the AOR method resulting in a 

preconditioned linear system. Convergence theorems were advanced and the resulting 

preconditioned AOR method was found to be convergent. A second refinement 

formulation of the preconditioned AOR method was further introduced and proven to be 

convergent as well.  

In order to validate the results of theoretical convergence several numerical experiments 

were conducted and results compared with other methods. It was established that the 

SRPAOR converges almost 6 times faster than the classical AOR.       

5.2 Recommendations 

The following recommendations for further research are proposed: 

1. A formula for obtaining the optimum relaxation and acceleration parameters for 

SRPAOR could be derived. 

2. More general class of matrices, and not just irreducibly diagonally dominant 𝐿 −

matrices could be accommodated. 
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5.3 Contribution to Knowledge 

The following contributions have been made: 

1. The techniques of preconditioning and second refinement have been exploited to 

introduce a new approach towards improving the rate of convergence of the AOR 

iterative method in solving linear system of equations. 

2. The new method can be applied to solve irreducibly diagonally dominant 𝐿 −

matrix linear systems  provided 0 < 𝑎12𝑎21 < 1, 0 < 𝑎12𝑎21 + 𝑎23𝑎32 < 1, 0 <

𝑎1𝑖𝑎𝑖1 + 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1 (𝑖 = 3(1)𝑛 − 1) and 0 < 𝑎1𝑛𝑎𝑛1 +

𝑎𝑛−1,𝑛𝑎𝑛,𝑛−1 < 1.  

3. The SRPAOR method converges faster than AOR, PAOR, RAOR and RPAOR 

by a factor of 5.75, 3, 2.87 and 1.5 respectively. 

4. Optimum convergence is attained when 𝑟 = 1.0, 𝜔 = 1.1 and when 𝑟 =

0.99, 𝜔 = 1.0 
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