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ABSTRACT

This present work concerns the numerical solution of linear system of algebraic equation
Ax = b by second refinement of accelerated overrelaxation (AOR) method. This
technique is especially useful in solving linear system arising from discretisation of
ordinary differential equations or partial differential equation where the coefficient matrix
is an irreducibly diagonally dominant L- matrix. A suitable preconditioner is applied to
the linear system before a second refinement algorithm is processed. As in all iterative
methods for linear systems, this is aimed at minimizing the spectral radius in order to
reduce the number of iterations needed for convergence. Hence, the SRPAOR method
converges faster than AOR, PAOR, RAOR and RPAOR by a factor of 5.75, 3, 2.87 and
1.5 respectively. Optimum convergence is attained when r = 1.0, w = 1.1 and whenr =
0.99, w = 1.0. Numerical examples proved the efficiency of second refinement of
preconditioned AOR over the AOR, preconditioned AOR and first refinement of AOR
methods. The techniques of preconditioning and second refinement have been exploited
to introduce a new approach towards improving the rate of convergence of the AOR
iterative method in solving linear system of equations. The implication of the method
indicates an enhancement or modification to the original PAOR method, which led to
improved accuracy in solving linear algebraic systems.
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CHAPTER ONE
1.0 INTRODUCTION
1.1  Background of Study
Iterative methods are a most preferred set of methods for solution of linear systems of
equation

Hx =c (1.1
where H is a nonsingular square matrix of size n X n with nonvanishing diagonal entries,
x and ¢ are unknown and known vectors respectively. A great many iterative methods
abound and, of course, not every linear system can be solved by an iterative method (Adil
etal., 2019). However, the origin of linear systems that are given to iterative methods can
be traced to the discretisation of partial differential equations of elliptic type by finite
difference method, finite element method, or finite volume method. In such systems, the
coefficient matrix is usually sparse and large; these are traits that iterative methods exploit
to full advantage in order to obtain faster convergence than direct methods such as
Gaussian elimination (Eneyew et al., 2020a). Although direct methods accommodate
larger classes of linear systems, they suffer from disadvantage of consuming large amount
of time and storage, as the sparse structure of the system gradually accommodates fill-in

as computation progresses (Adsuara et al., 2016).

An iterative method for solving the linear system (1.1) consists of a process whereby the
system Hx = c is converted not an equivalent system of the form

x=Lx+k (1.2)
Once the system is in the form (1.2), the sequence of solution vectors can be obtained
through the general linear iteration formula

xMD = £ x™ 4 |, (1.3)
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Where L, referred to as the iteration matrix, is a matrix depending upon A4 and x, and k,,
Is a column vector. At each step of the iteration a solution vector, x™ that is more accurate
approximates the solution to the linear system than its predecessor and its procedure.

1.2  Statement of the Research Problem

When large sparse linear systems are to be solved, the method of choice is obviously
iterative methods (Assefa and Teklehaymanot, 2021). However, the number of iterations
needed for such methods to attain convergence could be relatively large, which could
impact negatively on computer storage and computational efficiency (Faruk and
Ndanusa, 2019). When such is the case, the need arises to remodel or redesign the existing
methods so as to obtain approximate solutions that attain faster convergence (Eneyew et
al., 2019; Abdullahi and Ndanusa, 2020). Hence, the present study sought to develop a

preconditioning and second refinement method for the solution of the linear system.

1.3 Aim and Objectives of the Study
The aim of this research is to investigate the successive application of two acceleration
techniques, preconditioning and second refinement, to the solution of linear systems with
a view to reducing the spectral radius of the iteration matrix to the barest minimum so as
to attain convergence in a few number of iterations.
The objectives are to:

1. formulate or identify a suitable preconditioner for the AOR method

2. formulate a second refinement for the preconditioned AOR method

3. ldentify restrictions imposed on coefficient matrix of the resulting linear system

4. establish convergence of the proposed technique

5. Validate the convergence results through numerical experiments

6. Conduct comparative convergence analysis of the various methods studied

7. establish the rates of convergence of the various methods studied

11



8. compare the rates of convergence of the second refinement of AOR method with

those of existing methods.

1.4 Justification for the Study

Considerable amount of storage is required to store intermediate results when solving
very large linear systems by direct methods. However, with iterative solution methods
especially where the coefficient matrix is sparse, the presence of large number of zero
entries can be taken into advantage in order to minimise the time and amount of storage
space used (Mayaki and Ndanusa, 2019). Therefore, iterative methods are more desirable
for solving large and sparse linear systems. Employing the dual techniques of
preconditioning and second refinement will go a long a way in increasing the rates of

convergence of iterative methods.

1.5  Significance of the Study

A great many real-life problems in engineering and social sciences are modelled as partial
differential equations. When a partial differential equation is solved, the corresponding
physical problems it represents is in effect solved as well. The resort to the solution of
many partial differential equations that defy analytical solution is obviously by
discretisation. The discretisation procedure eventually ends up as linear system of
equations, the solution of which is obtained by iteration techniques. This research seeks

to improve the convergence rate of one of such iterative techniques.

1.6 Scope and Limitations of Study
This research work involves the formulation, convergence investigation and the
implementation of a second refinement method to accelerate the convergence of the

preconditioned AOR method for solving linear algebraic systems.’
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The limitations of this study include:
1. The second refinement of AOR method is limited to linear systems whose
coefficient matrix is an irreducibly diagonally dominant L-matrix.
2. The third refinement and subsequently nth (n> 2) refinement of AOR method is

yet to be undertaken.

1.7  Definition of Terms
L-matrix A Z-matrix A = (a;;) € RV witha; >0, i = 1(1Dn
M-matrix An L-matrix A = (a;;) € R™" where A is nonsingular and A™* > 0.
Negative matrix A matrix A = (a;;) where a;; <0, i,j = 1(D)n.
Nonnegative matrix A matrix A = (a;;) where a;; = 0, i,j = 1(1)n.
Nonpositive matrix A matrix A = (a;;) where a;; < 0, i,j = 1(1n.
Positive matrix A matrix A = (a;;) where a;; > 0, i,j = 1(1)n.
Property A A square matrix A = (a;;) is said to have property A if there exists a set W
as the union of two disjoint subsets U and V such that if either a;; # 0 or a; # 0 then
ieUandjeVorieVandjeU.
Spectral norm The spectral norm of an n — square matrix A, denoted by ||4]|,, is the
square root of the maximum eigenvalue of A*A4, i.e.,

lAll, = (maximum eigenvalue of A*A)"/? (1.5)
where A* is the transpose conjugate of A. According to Saad (2000), the spectral norm
of A is equal to the spectral radius of A when the matrix is Hermitian.
Spectral radius The maximum among the absolute values of the eigenvalues of an n —
square matrix A is called the spectral radius of A. It is denoted by

p(A4) = max|4| (1.6)
where 4; (i = 1(1)n) is an eigenvalue of A.
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Splitting  The decomposition of a real matrix A € R™*™ into the form A =M — N,
where M is a nonsingular matrix is called a splitting of A. Such splitting is called

i. RegularifM 1 >0andN >0

ii.  Nonnegative if M~IN > 0

iii. Convergentif p(M™IN) <1

iv. M —splitting if M is a nonsingular M —matrix and N > 0.
Usual splitting For any matrix B, the decomposition B = D — Ly — Ug in which D is
the diagonal of B, —Lj its strict lower part, and —Up its strict upper part, is called the
usual splitting of B. Moreover, with the assumption that B has non-vanishing diagonal
entries, we consider the usual splitting A =1 — L — U, wherel = D™D ,L = D™'Lg and
U=D"1U,.

Z-matrix A matrix A = (a;;) € R™" where a;; < 0 (i # j)
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CHAPTER TWO
2.0 LITERATURE REVIEW
2.1  Basic Iterative Methods
Consider the solution of system of linear equations
Hx =c¢, H € R™", c € span (A) (2.1)
We also consider a usual splitting of H into its diagonal, strictly lower and strictly upper
parts thus,

H=D—-E-F (2.2)
where D is a diagonal matrix, —E and —F are the strictly lower and strictly upper parts
of H respectively. Iterative methods are methods that employ successive approximations
in order to arrive at more accurate solutions to a system of linear equations at each step
(Naumov, 2011). A basic iterative method is a one — step method of the form x™+1 =
Lx™ + k where for some nonsingular matrix Q we have £ =1 — Q~'H and k = Q.
The Jacobi, Gauss-Seidel and successive overrelaxation (SOR) are some of the basic

iterative methods.

2.2 Jacobi Method

The Jacobi method is based on solving for every variable locally with respect to the other
variables. One iteration of the method corresponds to solving for every variable once. The
resulting method is easy to understand and implement, but convergence is slow (Barrett
et al., 1994). It is constructed from the linear system Hx = ¢ based on the splitting H =
D — E — F. Saad (2000) stated that the basic single step of the iteration consists in
replacing the current value, x™*1 by the improved value, x(™, obtained from the matrix
operations,

xD) = p=1(E + F)x™ + D¢ (2.3)

15



which characterizes the Jacobi method. The matrix equation (2.1) is now in the general
iterative form

xMD) = £xM 4k, n=0,12," (2.4)
where £; = D"Y(E + F), k; = D7'c,
In equation (2.4), the subscripts on £ and k are just to emphasize the Jacobi method.
According to Ames (1977) the algebraic form of (2.3) is expressed as

e )

x ™D = | p, —Zaijxj(") | i=1,.. .k (2.5)
Qij .
Jj=1
\ Jj#i
where the a;; denote the elements of the coefficient matrix H = (a;;), the x; the elements

of x and the b; the elements of b. The order in which one solves for the components xi(n)
is irrelevant, since the Jacobi method treats them independently. It is for this reason that
the Jacobi method is known as the method of simultaneous displacements, since the
updates could in principle be done simultaneously.
Numerical Algorithm of Jacobi Method
Input: H == (a;;), cb, X0 = x©, tolerance TOL, maximum number of iterations N.
Stepl Setk =1
Step 2 while (k < N) do Steps 3-6

Step3fori=1,2,---,n

Z;Ll(—aUXO]) + bi

J#i

_ 1
xi—; )

Step 4 If ||x — XO0|| < TOL, then OUTPUT (x1, x5, X3,**,Xp);
STOP.
Step5 Setk =k + 1.

Step6 Fori=12,--,n
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Set XOl = Xi.
Step 7 OUTPUT (xq, x3, X3,°**,Xn);

STOP.

The matrix £; = D~(E + F) is known as the Jacobi iteration matrix and its spectral
radius is defined by

o)) =i (26)
2.3  Gauss-Seidel Method
The Gauss-Seidel method is like the Jacobi method, except that it uses updated values as
soon as they are available. In general, if the Jacobi method converges, the Gauss-Seidel
method will converge faster than the Jacobi method, though still relatively slowly (Barrett
et al., 1994). The order in which one solves for the components of the nth approximation
x™ must be established beforehand. Such a sequential arrangement is called an ordering
of the mesh points. For an arbitrary but fixed ordering, which we designate by x; (i =
1,2, ..., k), where k is the number of mesh points. The algebraic form of the Gauss-Seidel

method is given by

i-1 k
1
Xl-(n+1) = a— bi - z aijx]-(n+1) - Z aijxj(-n) i=1,.., k (27)
. j=1 j=i+1

The matrix form of the Gauss-Seidel iteration derived from the decomposition of the
linear system Hx = c is as follows.
xM™ = (D —E)'Fx™ VY + (D —-E)"'b (2.8)
Equation (2.8) is now in the general iterative form
xMD = £x™ 4 k. n=0,1.2,-- (2.9)

where L; = (D — E)™F, kg = (D — E)71b,
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Numerical Algorithm of Gauss-Seidel Method
Input: H := (a;;), c, X0 = x9, tolerance TOL, maximum number of iterations N.
Stepl Setk =1
Step 2 while (k < N) do Steps 3-6

Step3fori=1,2,---,n

X = ai |- Xi=1(ay%) — Ejziva(aiX0;) + by,
Step 4 If ||x — X0|| < TOL, then OUTPUT (x1, x5, X3,**,Xp);
STOP.

Step5 Setk =k + 1.

Step6 Fori=12,--,n

Set XOl = Xi.
Step 7 OUTPUT (xq, X3, X3,°**,Xn);
STOP.

For the Gauss-Seidel iteration matrix £L; = (D — E)~'F, its spectral radius is found to be
the square of spectral radius of Jacobi iteration matrix, that is,

p(Lg) = i (2.10)
2.4 Successive Overrelaxation (SOR) Method
Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel method by
introducing an extrapolation parameter w. For the optimal choice of w, SOR may
converge faster than Gauss-Seidel by an order of magnitude. The SOR, seeks to
substantially reduce the number of iterations needed to reduce the error of an initial
estimate of the solution by a predetermined factor by applying extrapolation to the Gauss-
Seidel method. This extrapolation takes the form of a weighted average between the

previous iterate and the computed Gauss-Seidel iterate successively for each component.
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Letting X, ™Y be the components of the nth Gauss-Seidel iteration, the SOR iteration is

defined by means of the relation

xi(nﬂ) = wx, "V + (1 - a))xi(n) (2.11)
where the quantity 0 < w < 2 is the relaxation factor. That is, the accepted value at step
n + 1 is extrapolated from the Gauss-Seidel value and the previous accepted value. The
idea is to choose a value for w that will accelerate the rate of convergence of the iterates

to the solution. If w = 1 the SOR method reduces to that of Gauss-Seidel.

The algebraic form of SOR iteration takes the form

i—-1 k
1
1 = od =[5 = a0 = Y ap® |+ - (212)
u ]:1 j=i+1

While the matrix form of the SOR is

x™D = (D — wE) (1 — w)D + wF}x™ + (D — wE) *wb (2.13)
That is,

xD = £ x™ 4k, n=012-- (2.14)

where £, = (D — wE)™Y{(1 — w)D + wF}, k, = (D — wE) twh, for0 < w < 2.
Numerical Algorithm of SOR Method
Input: the number of equations and unknown n; the entries a;;, 1 < i,j < n, of the matrix
H; the entries ¢;, 1 <i <mn, of c; the entries XOi 1<i<n, of X0 = x©; the
parameter w, tolerance TOL; maximum number of iterations N.
Output: the approximate solution x4, x,, -, x,, Or a message that the number of iterations
was exceeded.
Stepl Setk =1
Step 2 while (k < N) do Steps 3-6

Step 3 Forfori=1,2,-:-,n
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x; = (1—w)X0; + ai” [w(— Z;'-;ll(aijxj) — Z}Liﬂ(ainOj) + b)),
Step 4 If [|[x — XO|| < TOL, then OUTPUT (x4, x5, x3,***,Xp);
STOP.
Step5 Setk =k + 1.
Step6 Fori=1,2--,n
Set X0, = x;.
Step 7 OUTPUT (‘Maximum number of iterations exceeded);

(The procedure was successful)

STOP.

For matrices with certain properties, an optimum value for the relaxation parameter w
that appears in the SOR iteration matrix £, = (I — wE)"{(1 — w)I + wF} is governed

by the relation

2
0= (2.15)

And for this choice of w the spectral radius of the SOR iteration matrix is obtained as

1-J1- 22
1+.1- 2

p(Ly) =w—1= (2.16)

2.5 AOR Method
The accelerated overrelaxation (AOR) method introduced by Hadjidimos (1978) is a two-
parameter generalization of the SOR method. Judicious exploitation of the two
parameters involved leads to methods that will converge in minimal number of iterations
than other methods of the same type. It has the representation

xD = x™ +k, n=0,12,-- (2.17)
where £, , = (I —rE) "' [(1 — w)] + (w = T)E + wF], ky o, = (I —TE) *wb, for 0 <

r<w<l.
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The matrix defined by £, = —rE)"'[(1 — w)] + (w — 7)E + wF] is the AOR
iteration matrix whose spectral radius can be computed from the formula

N s
p(Lro) = (2.18)

1-@2(1+4/1-2)

provided
O<u<pandl—p? <+1-—j? (2.19)

for the optimum values of w and r

w—; and r = (1_E2)_ L

1412 (1_E2)(1+‘/1_—/12)

respectively; where u = min|y;|, = i = max|y;| and y;|i = 1(1)n define the
bl L l

(2.20)

eigenvalues of Jacobi iteration matrix £; = D™'(E + F).

2.6 Fundamental Theorem of Iterative Methods

An iterative method is said to converge if, for any given iteration count n, each component
of the successive iterants x ™ tends to the corresponding component of the solution vector
x for all initial vectors x(®. A necessary condition for all stationary methods to attain
convergence is contained in the following theorems.

Theorem 2.1 (Byrne (2008))

The stationary linear iteration x(™*1 = Lx™ + k converges if and only if the spectral
radius of L is less than 1.

The spectral radius of an iterative matrix £, denoted by p (L), is defined as

p(L) = Hrgtg()é)lul (2.21)

where o(£), known as the spectrum of L, is the set of all the eigenvalues of L. The

computational effectiveness of a convergent iterative method is directly related to the
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magnitude of the spectral radius of the matrix L of the iterative method. The rate of
convergence is best when the spectral radius is near zero and poorest when it is near 1.
Sufficient conditions for convergence of specific iterative methods could also be derived.
Theorem 2.2 (Byrne (2008))

If the matrix H, of the linear system Hx = c, is diagonally dominant (or irreducibly
diagonally dominant), then the spectral radii of the Jacobi and Gauss-Seidel matrices are
less than 1, and the Jacobi and Gauss-Seidel methods converge.

Theorem 2.3 (Saad (2000))

If the system Hx = c has a symmetric positive definite matrix A, the spectral radius of
the Gauss-Seidel iteration matrix is less than 1, and the Gauss-Seidel method always
converges, without further restrictions on H.

Theorem 2.4 (Noor et al. (2012))

If H is symmetric with positive diagonal elements, then p(£,) < 1 if and only if H is

positive definite and 0 < w < 2.

2.7 Preconditioned Iterative Methods

The rate at which an iterative method converges depends greatly on the spectrum of the
coefficient matrix. Hence, iterative methods usually involve a second matrix that
transforms the coefficient matrix into one with a more favourable spectrum. The
transformation matrix is called a preconditioner. A good preconditioner improves the
convergence of the iterative method sufficiently to overcome the extra cost of
constructing and applying the preconditioner. Indeed, without a preconditioner the
iterative method may even fail to converge. Thus, preconditioning aims at reducing the
spectral radius of the corresponding iterative matrix so as to accelerate the convergence

of the classical iterative methods.
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In 1987, the preconditioner P introduced by Milaszewicz (1987) assumes the form P =
I + S, where

(o _ [T fori=2,---,n
5= (s”) - { 0, otherwise (2.22)

with the condition that the coefficient matrix A is an L —matrix with a; ;41a;41; >
0and 0 < aq;a;; < 1fori =2,3,--,n. Gunawardena et al. (1991) proposed the

preconditioned Gauss-Seidel method with P = I + S, where

(o ) _ i fori=1,2,--,n—1, j=i+1
= (S”) N {O, otherwise (2.23)

Similar preconditioners were proposed by Kotakemori et al. (1996), Kohno et al. (1997),
Kotakemori et al. (2002), Morimoto et al. (2003) and Byrne (2008). The preconditioned
effect of these preconditioners is seldom observed on the last row of A, because they are
formed from a part of upper triangular part of A. The preconditioner of Morimoto et al.
(2003) was an attempt at providing the preconditioned effect on the last row of A. It takes

the form P;, = I + R, where R is defined as

—Qyi, 1<j<n-1
R = (1) ={ 6” (2.24)

The preconditioned matrix PA, denoted by Ag_, is defined by
aj, 1<si<n-11<j<n,
Ap, = +R)A=(a}), a= - Zn_lankakj' L<jn @29
Then, a splitting of the preconditioned matrix Ag_is obtained thus
A, =My —Ng, =(I—L+R—-RL—RU)—U=(I—-L—Dgr+R—RL—Eg)-
U, where Dy, ER are the diagonal and strictly lower triangular parts of RU, respectively.

if YR2] aneag; # 1, then M,;ll exists, and the Gauss-Seidel iterative matrix T, is defined
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by Tz, = (I — Dg — L + R — RL — Eg)~'U. Niki et al. (2004) built on Morimoto et al.
(2003) to propose the preconditioner P =1+ S+ R, arising from which the
preconditioned matrix Ap assumes the structure

aij — Qjj+1qi+1j) 1<i<n,

Ap =+ S+ R)A = (ak), R = n-1 2.26
I T S D

with the corresponding splitting
In a quest to address the shortcomings of the preconditioner (3), Dehghan and Hajarian

(2009) introduced two new preconditioners P = I + Sand P = I + S, with

=_(—(an+y) fori=2--n

5= { 0, otherwise 0 (2.28)
c_(—(am+6), fori=1,,n-1
5= { 0, otherwise 0 (2.29)

where y,,v3,+, ¥, and 8, 65, -+, 8,1 are real parameters. These preconditioners were
applied to accelerate the convergence of the successive overrelaxation (SOR) iterative
method under mild conditions on the coefficient matrix A. In furtherance of the search
for fast converging iterative methods, Ndanusa and Adeboye (2012) attempted an
improvement on the SOR method by proposing a preconditioner P = [ + S, with S having
the structure

—aiq, i=2,-,n

S = {—auﬂ, i=1,-,n-1 (2.30)

0, otherwise

For Mayaki and Ndanusa (2019), the S of the preconditioner P = I + S takes the form

0, otherwise

Faruk and Ndanusa (2019) proposed the preconditioner P = [ + S where,
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o {_aij , GH=012,21),m-1n),Mmn-1) (2.32)

0, otherwise

Similarly, the preconditioner of Abdullahi and Ndanusa (2020) is defined by P =1+ S

where,
—A1in vn>0
s & A i=2,-,n
S=S+8"=V g, = leme1’ (2.33)
0, otherwise
—aiq, i=2,-,n
S = (sij) =1 @irv i=1-,n-1 (2.34)
0, otherwise
and
§' = (sy) = { 0 otherwise (2.35)

Other preconditioned iterative techniques include those of Ndanusa (2020) and Ndanusa

et al. (2020).

2.8  Refinement of Iterative Methods

The rate of convergence of an iterative technique depends on the spectral radius of the
matrix associated with the method. One way to select a procedure to accelerate
convergence is to choose a method whose associated matrix has minimal spectral radius.
Thus, there is the need to introduce a new means of measuring the amount by which an
approximation to the solution to a linear system differs from the true solution to the

system (Faruk and Ndanusa, 2019).

Suppose X € R™ is an approximation to the solution of the linear system defined by Ax =
b. The residual vector for x with respect to this system isr = b — Ax. In procedures such
as the Jacobi, Gauss-Seidel or SOR methods, a residual vector is associated with each
calculation of an approximate component to the solution vector. The true objective is to

generate a sequence of approximations that will cause the residual vectors to converge
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rapidly to zero. Consider the linear system
Ay =r (2.36)
The approximate solution y of the above system satisfies
yAlr=41b-Ax)=A"bh—-AMAx=x—*%x (2.37)
and
x~X+7y (2.38)
So y is an estimate of the error produced when X approximates the solution x to the
original system. In general, X + y is a more accurate approximation to the solution of the
linear system Ax = b than the original approximation X. The method using this
assumption is called iterative refinement, or iterative improvement, and consists of
performing iterations on the system whose right-hand side is the residual vector for

successive approximations until satisfactory accuracy results.

Refinement of iterative methods entail performing iterations on the linear system whose
right-hand side is the residual vector for successive approximations until satisfactory
accuracy results. Refinement of AOR method, introduced by Vatti et al. (2018) is
described by the relation

xM+D) = £ 2 4 g (2.39)
where £, =[0I —-rE)"H{(1 - )+ (w—7)E+wF}?, d=w[l+L,]U-
rE)~tc. This research discusses a refinement of refined accelerated overrelaxation
method for solving the linear system (1.1), which is named second refinement of
accelerated overrelaxation method. some pioneering studies in this field include the works
of Kebede (2017), who proposed a new method for solving the linear system Ax = b that
often arise in engineering and scientific applications; this method, which is known as
second-degree refinement of Jacobi iterative method, is based on the second-degree

Jacobi stationary iterative method. The relationships between the spectral radius of
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second-degree refinement of Jacobi method and spectral radii of first-degree Jacobi, first-
degree refinement of Jacobi and second-degree Jacobi methods were established.
Numerical results demonstrated that for a coefficient matrix that is strictly diagonally
dominant and positive definite, the second-degree refinement of Jacobi iterative method
proved to be very effective and efficient as it converges faster than the existing first-

degree Jacobi, first-degree refinement of Jacobi and second-degree Jacobi methods.

Eneyew et al. (2019) focused on a second refinement of Jacobi (SRJ) method for the
solution of system of linear equations obtained from ordinary differential equation and
partial differential equation problems, where the coefficient matrix is strictly diagonally
dominant or symmetric positive definite or M — matrix. In such cases, there occurs a
significant reduction in spectral radius of iteration matrix of the proposed method, with
attendant reduction in number of iterations, which translates to increased convergence.
Some numerical examples were presented to validate the theoretical analysis which
further established the superiority of the second refinement of Jacobi method over Jacobi
and refinement of Jacobi methods. Eneyew et al. (2020a) modified the Gauss-Seidel
method to obtain a second-refinement of Gauss-Seidel method for solution of system of
linear equations, in order to enhance convergence rate, minimize the spectral radius, and
by implication, reduce the number of iterations needed for convergence. This method is
equally applicable to solution of differential equations that are transformed into linear
systems by application of finite differences. Such systems are characterized by coefficient
matrices that are strictly diagonally dominant, symmetric positive definite, or M-matrices.
Theoretical analysis established that the method converges for these types of matrices.
Results of numerical experiments further demonstrated the efficiency of second-
refinement of Gauss-Seidel method over the Gauss-Seidel and refinement of Gauss-

Seidel methods. In Assefa and Teklehaymanot (2021), a second refinement of accelerated
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over relaxation method was introduced; which is just a refinement of first-degree
refinement of accelerated over relaxation method, whereby the spectral radius of iteration
matrix of the method was observed to be significantly reduced in comparison to the
spectral radii of accelerated over relaxation (AOR) method and first-degree refinement of
accelerated over relaxation methods. In addition, the optimal value of each parameter
involved in the method was derived. Derivation of the third-degree, fourth-degree and in
general the kth — degree refinement of accelerated methods were also obtained. The
spectral radius of the iteration matrix and convergence criteria of the second refinement
of accelerated over relaxation (SRAOR) are discussed. Finally, a numerical experiment
was undertaken to demonstrate the efficiency of the proposed method over other existing
methods. Eneyew et al. (2020b) proposed a second refinement of generalized Jacobi
method for solution of linear systems. This method proved to be the fastest method to
converge to the exact solution when compared to Jacobi, refinement of Jacobi,
generalized Jacobi and refinement of generalized Jacobi methods for strictly diagonally
dominant, symmetric positive definite and M-matrices.
2.9 Rate of Convergence
It is not just sufficient to know that an iterative method converges. Of equal importance
is the desirability of knowing how fast it converges. Thus Young (1954) introduced the
number

R(G) = —logp(G)
as the rate of convergence of the linear iteration x ™+ = Gx(™ + k, where p(G) is the

spectral radius for that iterative method.
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CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1  Derivation of the Preconditioned AOR iterative method
Consider a linear system of the form

Ax=b (3.1)
where A = (a;;) is an irreducibly diagonally dominant L — matrix of order n, b is a given
n — dimensional vector and x is an n — dimensional vector to be determined. Consider
the usual splitting of A as,

A=D,—E,—F, (3.1b)
where D4, —E, and — F, are the diagonal, strictly lower and strictly upper triangular
parts of A respectively. Transformation of diagonal entries of (3.1) is achieved by
expressing (3.1b) in the form

D, *Ax=D,"'b

DA_l(DA —Eyp—Fpx = DA_lb
(I-Dy,'Es— Dy 'Fp)x =D, 'b

Thus, we have obtained the equivalent system

Bx=f (3.2)
with the corresponding splitting

(I-Eg—Fp)x=f
Where I is the identity matrix of order n, —E and —Fg being the strictly lower and strictly
upper triangular parts of B respectively.
A transformation matrix P = (I + S) is then applied to system (3.2) as

PBx = Pf
which results in the preconditioned system
Tx =k (3.3)
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where

where T = (I + S)Band k = (I + S)f with

O _alz 0 oo 0 O

_a21 0 _a23 ces O 0

g = _5:131 —5:132 0 _a’o‘:,n—l 0
_an—l,l 0 O P O _an—l,n
| —0Qpj 0 0 ""—apn-1 0 d

A usual splitting of the preconditioned coefficient matrix T of (3.3) into its diagonal (D),
strictly lower (—L) and strictly upper (—U) components is obtained thus
T = DT - ET - FT (3.4‘)

with the following resultant representations:
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_1 - a12a21 0 0 0 T
0 1—aya1; —ajzzas; - 0 0
DT =
0 0 " 1- Apn-111n-1 — Ap—2n-1An-1,n-2 — An-1,nAnn-1 0
L 0 0 o 0 1—apa1y — Ap—1n0nn-1 4
- 0 0 .. 0 01
—Q30a3q 0 Co o 0 0
—01032 — A3404q —012031 — A3404 Tt 0 0
0 .
0 0
| —Apn-10n-1,1 —A120p1 — Ap-120pn-1 T Az © ° ° —0up1a1-10.
(00—aq12053 * © —Q1200-1 T Q11 — Q1 —Q120yn, + —Qqpy 7
00—as2a43 - - 0 0
00 0 .o 0 0
and—Fp =1 - - 0 . .
' 0 —A1n-10n-2,1 — An—23 ~A1nQp-21 — A3nAn—23 — Ap_2n0n-1n + An—2n
. : ) 0 —QA1nQn-11 — An—2nAn-1,n-2
L00 0 T 0 0 .

From (3.4) it is observed that the effect of the preconditioner P on B is elimination of just one entry, specifically a,,, and scaling of the remaining

entries. It is further observed that:
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1. Dy =1+D,,
2. Er=E+Es+E,
3. Fr=F+F+E,
4. S =—E;—Fs, and
5. —SE—-SF=D,—E,—F,;
where D,, —E, and — E, are the diagonal, strictly lower and strictly upper parts of
—SE — SF respectively; and —Eg and —F; are the strictly lower and strictly upper parts
of S respectively. Application of the AOR method to the preconditioned linear system
(3.3) results in the corresponding preconditioned AOR method whose iterative matrix is
defined by
Ly wy = (Dr —TEr) "' [(1 — w)Dr + (w — r)Er + wFr] (3.5)
3.2  Convergence of Preconditioned AOR Method
Some lemmas that will be used in the succeeding sections are briefly explained.
Lemma3.1 (Varga (1962)). Let A > 0 be an irreducible n X n matrix. Then,
i. A has a positive real eigenvalue equal to its spectral radius.
ii.  To p(A) there corresponds an eigenvector x > 0.
iii.  p(A) increases when any entry of A increases.
iv.  p(A) isasimple eigenvalue of A.
Lemma 3.2 (Gunawardenaetal. (1991)). Let A be a nonnegative matrix. Then
i. If ax < Ax for some nonnegative vector x, x # 0, then a < p(A4).
ii. If Ax < fBx for some positive vector x, then p(A) < B. Moreover, if A is
irreducible and if 0 # ax < Ax < Bx for some nonnegative vector x, then a <
p(A) < B and x is a positive vector.
Lemma 3.3 (Varga (1962)). Suppose A =M — N is an M — splitting of A. Then the

splitting is convergent iff A is a nonsingular M — matrix.
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Lemma 3.4 (Varga (1962)). Let A= M; — N, = M, — N, be two regular splittings
of A,where A= > 0. If N, = N; = 0, then

1> p(M,"'Ny) = p(M,7'Ny) = 0.
If moreover, A~ > 0 and if N, > N; = 0, equality excluded (meaning that neither N;
nor N, — Ny is the null matrix), then

1> p(My,"*N;) > p(M;7'N,) > 0.
Theorem3.1 Let £, , = (I —7Eg) ' [(1 - w)] + (w—1)Ep + wFz] and L, ,. =
(Dy — TEr)"[(1 — w)Dy + (w — 1)Er + wF7] be the AOR and preconditioned AOR
iterative matrices corresponding to systems (3.2) and (3.3) respectively. Suppose A is an
irreducibly diagonally dominant L — matrix with 0 < aq,a,; <1, 0<a;,a,; +
Az3a32 <1, 0 <@y +ai-1;Q-1+ Ai418i41,; <1 (@ =3(1)n—-1) and 0<
A1nQny + Ap_1pGnn-1 < 1. Then L., and L, ,  are nonnegative and irreducible
matrices.
PROOF: Since B is an L — matrix, Eg = 0and Fg > 0. Thus (I —rEg) 1 =1+
rEg + r2Eg? + -+ " 1EZ™ 1 > 0. And, from definition, we have

Lo =U—-71Ep) ' [(1 —w)] + (w—1)Ez + wFg] (3.6)
=[I +7Eg + r2Eg* + -+ " TEz" 1[(1 — w)] + (w — 1)Ep + wFp]
=1 —-w)+ (w—-—1r)Eg+ wFg +7Exg(1 — w)l + rEg[(w — r)Eg + wFg]
+(r2Eg® 4+ -+ E"H[(1 = w)] + (w — 1)Ep + wF]
=1 —-w)l+[(w—1)Eg+rEg(1 —w)I] + wFg + rEg[(w — 1r)Eg + wFg]
+(r2Eg® 4+ -+ E"H[(1 = w)] + (w — 1)Ep + wF]

=(1-w)l+w(d-7r)Eg+wFg+T

where

T =rEg[(w —1)Eg + wFg]
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+(r2Eg* + -+ 1 ER" ) X [(1 — w) + (w — 1)Eg + wFz] = 0.

It is clear that (1 — w)I + w(1 —r)Ep + wFp = 0. Consequently, £, , = (1 — w)I +
w(1—71)Eg + wFg + T = 0. Hence, L, ,, is a nonnegative matrix. Since B = [ — Ep —
Fg is irreducible, so also is (1 — w)I + w(1 —r)Eg + wFg since the coefficients of
1, Eg, and Fp are different from zero and less than 1 in absolute value. Hence, £, ,, is an
irreducible matrix.

Now, consider the preconditioned AOR iterative matrix

Ly = (Dr —TEp) ' [(1 = 0)Dr + (w — r)Er + wFy]

Equation (3.3) ensures that the L — matrix structure of A is preserved in T. Since T is an
L — matrix, itis evident that E; > 0 and F = 0. Also, by the conditions of Theorem 3.1,

it is easy to get that D; > 0. Thus,
Ly, = [Dr( =D Ep)] [(1 = @)Dy + (@ — ) Ey + wFy]
= —rD; *Ex)"'D; (1 — w)Dy + (w — 1)Er + wFy]
= (I —rDr "Er) 7 [(1 — w)I + (0 — 7)D;'Ep + wD;~ Fy |
= [1 + 7D Er +72(Dy Er)” 4+ + r”‘l(DT_lET)n_l]
X [(1 = w)I + (w—71)D; " Er + wDy ™ Fr
=(1-—w)l+w(l—-r)D; *Er+ 0D *Fr + G
where
G =rD; 'Er[(w —1)D;'Er + wDy T Fy
+[r2(Dr 7 Er)" e+ (D B
X [(1 =)+ (w—=71)Dy Er + wDy " 'Fp] = 0
Using similar arguments, it is conclusive that £,. ... is also nonnegative and irreducible.
Theorem3.2 Let £, , = (I —7Ep) ' [(1 - w)+ (w—1)Ep + wFz] and L, ,. =

(Dy — Er)"(1 — w)Dy + (w — r)Er + wF7] be the AOR and preconditioned AOR
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iterative matrices corresponding to systems (3.2) and (3.3) respectively. Suppose A is an
irreducibly diagonally dominant L — matrix with 0 < aq,a,; <1, 0<a;,a,; +
Ay3a3; <1, 0 <@y +ai-1;Qi-1+ Ai418i41,; <1 (E=3(1)n—-1) and 0<
A1n0n1 + Qp1npn-1 < 1. Then

) p(Lrwr) <pLrw) ifp(Lre) <1

(i) p(Lrw) = PLrw) ifp(Lry) = 1;

(i)  p(Lrwy) > pLrw), ifp(Lr,) > 1.
PROOF: It is established, from Theorem 3.1, that £, , and £, .. are nonnegative
and irreducible matrices. Therefore, suppose n = p(£,,,), then by Lemma 3.1 there
exists a positive vector y, such that

Lroy =1y
Equivalently,
(I —rEg) ' [(1 — w)I + (w — 1)Ep + wFgly = ny
[((1—w)+ (w—1)Eg + wFg| =n( —rEg)
wFg=m+w—-DI+ @ —w-—nr)Eg (3.7)
Therefore, for this y > 0,
Lrwry —my = (Dr —rEp) 7' [(1 — w)Dr + (w — 1)Er + wFrly —ny
= (Dr —7Er) ' [(1 = w)Dr + (w — )Ep + wFrly —n(Dy — rEr)~'(Dy — rEr)y
= (D —7Er)"'[(1 = w)Dr + (w — r)Er + wFp — n(Dy — vE7)]y
From the identity,
n(Dr —rEr) =n(1 —r)Dr + nr(Dy — E7),

it implies
Ly oy —NY = (Dr — rET)_l[(l —w)Dr + (w —1)Er + wFr —n(1 —1)Dr —nr(Dr

—Ep)]y
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= (Dy —rE;r) Y [Dy — wDy + wEr — rE; + wFy — 0Dy + nrDy — nrDy + nrEr]y
= (Dy —rE;) Y [Dy — rDy — Dy + nrDy — wDy + vDy — nrDy + wEr — TEr
+nrEr + wFrly
= (D —rEr) (A =) =)Dy — (w =7 + nr)(Dr — Er) + wFrly
=Dy —rEp) A -mA-=r)U+ D) — (0 —r+nr)I +D,) + (w—71+nr)(Eg
+Es+E)+w(Fg+F+E)]y
=D —71Er) ' [A—w—-n)U+D,)+ (w—1r+nr)(Eg + Es + E,) + w(Fg + Fs
+E)]y
=Dy —7rEr) M (1—w—-—mI+wFg—(r—w-—nr)Eg+ (1 —w—1n)D,
+ (w—1r+nr)(Es+E)+w(Fr +E)]y
From (3.7),
= (Dr —rEr) "' [ =)D, — w(D, — L, — U,) + w(Es + Fs) —r(1 —n)(Es + E)]y
= (Dr —7Er) 7 [(n = D(=D.) + (n — D(rEs + rL.) — w(=SEg — SFp) + w(=S)]y
= (Dy —rEr) Y [(n — 1)(—D, + rEs + 7E,) + wSEg + wSFz — wS]y
= Dy —rEr) Y [(n—1)(-D, + rEg + 7E,) + (1 — 0)S + wSFz — S(I — wEg)]y
=Dy —rEr) ' [(n=1)(-D, +1Es+T1E)+ (1 — w)S + wSEg — rSEg + wSFg
—SI +1rSEg)]y
=Dy —7Er) Y [(n—1(-D, +rEg+7E,) + (1 — w)S + (w — 7)SEg + wSFz — S(I
—rEp)]y
= Dy —rEr) Y [(n—1(-D, +rEg + 7E,) + S{(1 — w) + (w — 1)Eg + wFg} — S
—rEp)]y
And from (3.7),
(1-w)l+ (w-—71)Eg+wFg =n(I—1)Eg (3.8)
Ly wyy —ny = Dr —rEr)" (= D(=D. + rEs + E.) + nSU — rEp) — SU
—rEp)]y
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=Dy —rEx) Y [(n—-1)(-D, +rEs +T7E.) + (n — 1)SU — TER)]y
By employing (3.8),
=Mm—-1)D; —rE;) Y[-D, +rEs + E, + [(1 — w)S + (w — r)SE5 + wSF]/n]y
= [ — D/n](Dr —rEr) " [-nD. + Es + mE. + (1 — @)S + (w — 1)SEp
+ wSFgly
It is obvious that —nD, + rnEs + 1L, = 0, provided agq4104+11+aq1 =0 (q =
2,,n—1) and nra,; —(1—-w)a,; 20, 1-w)§=>0, (w—7r)SEz >0 and
wSFg = 0. Suppose Dy — rEy is a splitting of some matrix X. From observation, Dy is
an M — matrix and rE; = 0. Consequently, D — rE is an M — splitting of X. Also,
rD; YE;, being a strictly lower triangular matrix, has its eigenvalues lying on its main
diagonal, and they are all zeros. Therefore, p(rDy 'E;) = 0 < 1. And by Lemma 3, X
is a nonsingular M — matrix. consequently, X~ = (D; —rE;)~1 > 0. We are now
ready to deduce (i) — (iii), by employing Lemma 2 thus.
(1) Ifn<1,then L, .y —ny <0 butnotequal to 0. Therefore, L, ...y < ny. By
Lemma 2, we obtain p(£,,,.) <71 = p(L4).
(2 fn=1, then L, , v —ny = 0. Therefore, L, ,. y =ny. By Lemma 2, we
obtain p(£,.,.) =1 = p(Lr0)-
Ifn > 1, then £, .y — ny = 0 but not equal to 0. Therefore, £, ,,.y = ny. By Lemma
2, we obtain p(L,,.) > 1 = p(Lr0)-
Theorem 3.3 Let0 <71, <7, <w < 1and A~ > 0. Under the hypothesis of Theorem
3.2, then 1> p(Ly, 4,) > p(Lryw,) >0,if0 <7 < 1.

PROOF: Let

T Mr,w - Nr,w
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where M, , = (1/w)(Dr —rE7) and N, ,, = (1/w)[(1 — w)Dr + (w — r)Er + wFr].

Suppose also that T = M, ., — Ny, and T = M, , — N,.

2

o are two regular splittings of
T, where M, , = (1/w)(Dr—1Er), Np o= 1/w)[(A—-w)Dr+ (w—1)Er +
wFr], My, = 1/w)(Dr —rEr) and N, = (1/w)[(1 - w)Dr + (w —1)Er +
wFr].Since0 <r <7n, <w < 1,thenN, , = N,,, = 0, equality excluded, then in the
light of Lemma 4, we have that
1> p(Lrywr) > p(Lrywp) >0

Corollary 3.1 Let £, = (I — wL)[(1 — w)] + wU] and £, = (D; — wEr) "' [(1 -
w)Dy + wFr] be the SOR and preconditioned SOR iterative matrices respectively.
Suppose A is an irreducibly diagonally dominant L — matrix with 0 < a,,a,; < 1,0 <
Q12071 + Az3a3; < 1, 0 < ay;a5 + @101 + Qyi41341, < 1 (@ = 3(1n— 1) and
0 < a1pap1 + Qo1 nAnn-1 < 1. Then

() pLwy) <p(Ly), ifp(Ly,) <1,

(i)  p(Luy) =pLy), ifp(Ly) =1,

(i) p(Lwy) > p(Ly), ifp(Ly) > 1.

Corollary 3.2 Let 0 < w; < w, < 1 and A™1 > 0. Under the hypothesis of Corollary
31, then1>p(Ly,, ) >p(Lo,,)>0if0<n<1.

3.3 Formulation of Second Refinement of Preconditioned AOR (SRPAOR) Method
The matrix T of (3.3) has the splitting T = D — E; — Fr. This is further transformed into
Dy~ (Dr — Er — Fr)x = Dr 'k

That is,
Hx =c (3.9
which has the splitting

H=I-E-F
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where I is the identity matrix of order n, —E and —F being the strictly lower and strictly
upper triangular parts of H respectively.

Following Assefa and Teklehaymanot (2021), a reformulation of second refinement of
preconditioned AOR method is derived from (3.9) thus,

(I-E-F)x=c
Ix—rEx+w(I—E—F)x=Ix—1Ex + wc
(I—rE)x=U—-rE)x —w(—E—-F)x+ wc

(I—=rE)x=({—-71E)x+ w(c— Hx)
x=x+w(l —rE) 1(c — Hx)
Consequently, the second refinement of AOR is defined as
xD = x4 (I — rE) (¢ — Hx(*D) (3.10)
where x™*+1) that appeared on the right-hand side is the (n + 1)th approximation of
refinement of AOR of Vatti et al. (2018) defined by
x ) = £, 2™ +d (3.11)
where £, =[I—-rE)"H{(1 - )+ (w—7)E+wF}?, d=wl[l+L,]U-
rE)1c.
Substituting (3.11) in (3.10),
xD = 2™ +w[l+ L, |U—1E) e+ w( —7E) Y (c—(I—-E
— F){Ly.,°x™ + o[l + £, , ] = 7E)tc})
xD =L 2™ o[l + L., ]JU—TE) e+ w( —7E) e —w( —TE) (I —E
— F){£y.0°x™ + o[l + £,., | —7E)"1c}
x*D = £ 2x®W — (I = rE) (0l — 0E — wF) Ly ,*x™ + o + L, )T —

rE)"'c+w(l —rE)'c— (I —rE) Y (wl — wE — wF)w( + L, ,)(I —TE)"'c
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xMD = £ 21— —1E) Y wl — wE — wF)]x™ + o[l + L., +1
— (U —-rE) Y (wl — wE —wF)(I + L. ,)]U—-T1E)"c
xHD = £ 2= (I —1E) Yl — wE — wF))x™ + o[l + (I + L. ,)(
— (I —-rE) Y wl — wE — wF)(I + £, ,))]U —TE)"c
Note that,
I —(—-71E)y"Y(wl — wE — wF)
=(U-rEYU—-7E)'=(U—-7E)*wl+( —-7E)"lwE
+ I —-7E) wF
=(U-rE) {01 - )+ (w—T7)E+wF}=L,,
xD =L 2L 0]x™ + o[l + (I + £.0)Lr0]UI —TE)tc
xD = SxW o[l + L., +L,,°|U—TE)" ¢ (3.12)
Or more compactly,
xD = 3™ 4 d (3.13)

Where,
Ly, =[U-7E)"Y{1 - )l + (0 —7)E + wF}]?

and

d=ow[l+L,+L, |I-7E)"c.

3.4  Convergence of SRPAOR Method

Theorem 3.4 Let A be an irreducibly diagonally dominant L — matrix with 0 <
a12021 <1, 0< @031 +azasz <1, 0<ayap+a;-1,0-1 + 0101, <
1(=31)n—-1) and 0 < a1,an1 + Ap-11ann-1 <1. Then SRPAOR method

converges for any arbitrary choice of the initial approximation.
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PROOF: Denote the exact solution of system (3.1) by xz. Let x™*D pe the
(n + 1)th approximate solution of (3.1) by the SRPAOR method (3.10). Then,
20D — xp|| = [[x™* + w( = 7E) Y (c — Hx™D) — x|
< [l — g |[|(c ~ Hx* D)ot — rEY
By Vatti et al. (2018), x™*1, which is the Refinement of AOR method, is convergent.
And by implication,
|x®™*D — xg|| - 0and ||(c — Hx®™*D)]|| - 0.
Thus we have,
0 — x| > 0.
Hence, the Second Refinement of Preconditioned AOR (SRPAOR) converges to the
solution of the linear system (3.1).
Theorem 3.5 Let A be an irreducibly diagonally dominant L — matrix with 0 <
a12021 <1, 0<agpa31 +azasz <1, 0<aya;p+a;-1;051 + 041041, <

1(i=3(n—1) and 0 < aypln; + dngnlnn < 1. Then ||, =20 <

1.
PROOF: Consider ||£;.,,°||_; then we have,
[1£r0° [l = U = rE) {1 — @) + (@ = 1)E + 0F}]?|le
= Il —rE)"{(1 — )] + (0 = )E + oF}II3,
= ”Lr'wlli <1 byTheorem 3.4
Theorem 3.6 Let A be an irreducibly diagonally dominant L — matrix with 0 <
A12021 <1,  0<apay +azaz <1, 0<apuap+ai-1;0-1+ Qiiv1Qivai <
1(i=3(1)n—1)and 0 < aypan1 + Apognlnn-1 < 1. Then [[£:0° | < [|1£10]l..

PROOF: By Theorem 3.5, we have,
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3
1£r0°ll., = I£roll,, < 1£roll..

(0]

Theorem 3.7 The Second Refinement of Preconditioned AOR method converges faster
than the Refinement of AOR method if Refinement of AOR method is convergent.

PROOF: Let x be the solution of linear system (3.1) obtained by the Second Refinement
of Preconditioned AOR method (3.13) and X be the solution of (3.1) obtained by the

Preconditioned AOR method (3.5).

From (3.13), we get
X=1L.,’%+d
XD — g =1, 3x™W +d—X
=L, (x™-2)+d-X+L,,°%
=L, (x™ —2) =X+ (£,.,°2 + d)
=L, (x™-%)-Xx+X
= Lr’w3(x(n) — 9?)
Now,

[0 =%, = [[£r0* (™ = 2],
< [[£ro” [l G = ]I,

3 -
< [[Lroll NG = 2],
Therefore, by Theorems 3.4 and 3.5 the Second Refinement of Preconditioned AOR

method converges faster than the Preconditioned AOR method.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1  Numerical Experiments
In order to validate the results of the Theorems advanced in the preceding chapter, the
following problems are considered. In all the problems considered we seek convergence
for the linear system Ax = b of (3.1).
411 Problem1
Let the coefficient matrix of the linear system (3.1) be given by
4 -1 0 -1 0 0
/—1 4 -1 0 -1 0 \

a=|70 -1 4 0 0 -1
k—1 0 0 4 -1 0

—0—10—14—1/
-0 0 -1 0 -1 4

and

considered by Youssef and Taha (2013).
4.1.2 Problem 2
Consider the case which gives the following coefficient matrix and constant vector for

the linear system (3.1).
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This problem can be found in Vatti et al. (2020).

4.1.3 Problem3

Consider the 4 x 4 matrix
43/9 —-4/3 -10/9 O
—-5/3 49/9 0 —10/9

~13/9 0  49/9 —4/3
0 —13/9 —5/3 55/9

where,

5/9
8/27
22/9

62/27

Source: (Ndanusa and Adeboye, 2012).

Maplel9 software package was deployed to compute the results of several experiments
on problems 1, 2 and 3. The results are presented in Table 4.1 to 4.30. The following
notations are engaged in what follows.

AOR = Accelerated Overrelaxation method

PAOR = Preconditioned Accelerated Overrelaxation method

RAOR = Refinement of Accelerated Overrelaxation method

RPAOR = Refinement of Preconditioned Accelerated Overrelaxation method

SRPAOR = Second Refinement of Preconditioned Accelerated Overrelaxation method
p(AOR) = Spectral radius of AOR method

p(PAOR) = Spectral radius of PAOR method
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p(RAOR) = Spectral radius of RAOR method
p(RPAOR) = Spectral radius of RPAOR method
p(SRPAOR) = Spectral radius of SRPAOR method
R(AOR) = Rate of convergence of AOR

R(PAOR) = Rate of convergence of PAOR
R(RAOR) = Rate of convergence of RAOR
R(RPAOR) = Rate of convergence of RPAOR
R(SRPAOR) = Rate of convergence of SRPAOR

w = Relaxation parameter

r = Acceleration parameter
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4.2  Comparison of Spectral Radii of Various Iteration Matrices

Table 4.1 Comparison of spectral radii of AOR and SRPAOR iteration matrices

for Problem 1

r w p(AOR) p(SRPAOR)

2.0 2.01 1.009893293 1.848680312
1.99 2.0 0.9998927604 1.793573334
1.82 1.83 0.8298817777 1.020442454
1.79 1.80 0.7998793515 0.9133893344
1.69 1.7 0.6998697756 0.6120230179
1.59 1.6 0.5998570051 0.3866851466
1.49 1.5 0.4998391242 0.2255727860
1.39 1.4 0.3998122984 0.1173133886
1.29 1.3 0.2997675715 0.05096283204
1.19 1.2 0.1996780414 0.01599836683

1.0 1.1 0.3007043648 0.001000000000
0.99 1.0 0.3704668386 0.004251211905
0.89 0.9 0.4777155236 0.02506663540
0.79 0.8 0.5645296200 0.06344736088
0.69 0.7 0.6391159035 0.1197686057
0.59 0.6 0.7051521109 0.1940640691
0.49 0.5 0.7647069984 0.2861536937
0.39 0.4 0.8190985010 0.3957219909
0.29 0.3 0.8692356623 0.5223661540
0.19 0.2 0.9157811211 0.6656271037
0.09 0.1 0.9592379015 0.8250102598
-0.01 0 1 1
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Table 4.2 Comparison of spectral radii of PAOR and SRPAOR iteration matrices

for Problem 1

r w p(PAOR) p(SRPAOR)

2.0 2.01 1.227309065 1.848680312
1.99 2.0 1.214990959 1.793573334
1.82 1.83 1.006768247 1.020442454
1.79 1.80 0.9702537133 0.9133893344
1.69 1.7 0.8490291154 0.6120230179
1.59 1.6 0.7285384808 0.3866851466
1.49 1.5 0.6087358825 0.2255727860
1.39 1.4 0.4895336224 0.1173133886
1.29 1.3 0.3707528664 0.05096283204
1.19 1.2 0.2519756369 0.01599836683

1.0 1.1 0.1000000000 0.001000000000
0.99 1.0 0.1619959862 0.004251211905
0.89 0.9 0.2926613339 0.02506663540
0.79 0.8 0.3988453386 0.06344736088
0.69 0.7 0.4929251742 0.1197686057
0.59 0.6 0.5789597599 0.1940640691
0.49 0.5 0.6589712262 0.2861536937
0.39 0.4 0.7341701598 0.3957219909
0.29 0.3 0.8053630090 0.5223661540
0.19 0.2 0.8731261580 0.6656271037
0.09 0.1 0.9378926198 0.8250102598
-0.01 0 1 1
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Table 4.3 Comparison of spectral radii of RAOR and SRPAOR iteration matrices

for Problem 1

r w p(RAOR) p(SRPAOR)

2.0 2.01 1.019884463 1.848680312
1.99 2.0 0.9997855336 1.793573334
1.82 1.83 0.6887037657 1.020442454
1.79 1.80 0.6398069818 0.9133893344
1.69 1.7 0.4898177034 0.6120230179
1.59 1.6 0.3598284264 0.3866851466
1.49 1.5 0.2498391500 0.2255727860
1.39 1.4 0.1598498739 0.1173133886
1.29 1.3 0.08986059746 0.05096283204
1.19 1.2 0.03987132039 0.01599836683

1.0 1.1 0.09042311477 0.001000000000
0.99 1.0 0.1372456785 0.004251211905
0.89 0.9 0.2282121220 0.02506663540
0.79 0.8 0.3186936911 0.06344736088
0.69 0.7 0.4084691386 0.1197686057
0.59 0.6 0.4972394992 0.1940640691
0.49 0.5 0.5847767892 0.2861536937
0.39 0.4 0.6709223525 0.3957219909
0.29 0.3 0.7555706408 0.5223661540
0.19 0.2 0.8386550511 0.6656271037
0.09 0.1 0.9201373491 0.8250102598
-0.01 0 1 1
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Table 4.4 Comparison of spectral radiiof RPAOR and SRPAOR iteration matrices

for Problem 1

r w p(RPAOR) p(SRPAOR)
2.0 2.01 1506287517 1848680312
1.99 2.0 1476203029 1793573334
1.82 1.83 1.013582288 1.020442454
1.79 1.80 0.9413922592 0.9133893344
1.69 1.7 0.7208504418 0.6120230179
1.59 1.6 0.5307683201 0.3866851466
1.49 15 0.3705593737 0.2255727860
1.39 1.4 0.2396431707 0.1173133886
1.29 1.3 0.1374576881 0.05096283204
1.19 1.2 0.06349172135 0.01599836683
1.0 1.1 0.01000000000 0.001000000000
0.99 1.0 0.02624269922 0.004251211905
0.89 0.9 0.08565065659 0.02506663540
0.79 0.8 0.1590776049 0.06344736088
0.69 0.7 0.2429752275 0.1197686057
0.59 0.6 0.3351944015 0.1940640691
0.49 05 0.4342430792 0.2861536937
0.39 0.4 0.5390058215 0.3957219909
0.29 0.3 0.6486095719 0.5223661540
0.19 0.2 0.7623492840 0.6656271037
0.09 0.1 0.8796425683 0.8250102598

-0.01 0 1 1
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Table 4.5 Comparison of spectral radii of AOR and SRPAOR iteration matrices

for Problem 2

r w p(AOR) p(SRPAOR)
2.0 2.01 1.086141240 1.302639086
1.99 2.0 1.076145681 1.264861418
1.82 1.83 0.9052579404 0.7295606329
1.79 1.80 0.8749168765 0.6545129583
1.69 1.7 0.7733956238 0.4416465038
1.59 1.6 0.6713025117 0.2805291441
1.49 1.5 0.5686635325 0.1638171188
1.39 1.4 0.4655027235 0.08425053731
1.29 1.3 0.3618356085 0.04156210740
1.19 1.2 0.2576567294 0.01476825437
1.0 1.1 0.2551097687 0.002855762565
0.99 1.0 0.3274088010 0.01069930790
0.89 0.9 0.4292694335 0.03831926478
0.79 0.8 0.5167206131 0.08268898026
0.69 0.7 0.5946811896 0.1437009750
0.59 0.6 0.6655917159 0.2210473853
0.49 0.5 0.7309134208 0.3142943979
0.39 0.4 0.7916211275 0.4229316603
0.29 0.3 0.8484127557 0.5464040117
0.19 0.2 0.9018133690 0.6841323274
0.09 0.1 0.9522327900 0.8355275037
-0.01 0 1 1.000000001
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Table 4.6  Comparison of spectral radii of PAOR and SRPAOR iteration matrices

for Problem 2

r w p(PAOR) p(SRPAOR)
2.0 2.01 1.092130916 1.302639086
1.99 2.0 1.081469598 1.264861418
1.82 1.83 0.9002306549 0.7295606329
1.79 1.80 0.8682392547 0.6545129583
1.69 1.7 0.7615380329 0.4416465038
1.59 1.6 0.6546251133 0.2805291441
1.49 1.5 0.5471668321 0.1638171188
1.39 1.4 0.4383868916 0.08425053731
1.29 1.3 0.3463904017 0.04156210740
1.19 1.2 0.2453445324 0.01476825437
1.0 1.1 0.1418754876 0.002855762565
0.99 1.0 0.2203527947 0.01069930790
0.89 0.9 0.3371364609 0.03831926478
0.79 0.8 0.4356615288 0.08268898026
0.69 0.7 0.5237852166 0.1437009750
0.59 0.6 0.6046375703 0.2210473853
0.49 0.5 0.6799007918 0.3142943979
0.39 0.4 0.7506256447 0.4229316603
0.29 0.3 0.8175317490 0.5464040117
0.19 0.2 0.8811436306 0.6841323274
0.09 0.1 0.9418612254 0.8355275037
-0.01 0 1 1.000000001
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Table 4.7 Comparison of spectral radii of RAOR and SRPAOR iteration matrices

for Problem 2

r w p(RAOR) p(SRPAOR)
2.0 2.01 1.179702788 1.302639086
1.99 2.0 1.158089536 1.264861418
1.82 1.83 0.8194919381 0.7295606329
1.79 1.80 0.7654795405 0.6545129583
1.69 1.7 0.5981407923 0.4416465038
1.59 1.6 0.4506470575 0.2805291441
1.49 1.5 0.3233782157 0.1638171188
1.39 1.4 0.2166927859 0.08425053731
1.29 1.3 0.1309250064 0.04156210740
1.19 1.2 0.06638699001 0.01476825437
1.0 1.1 0.06508099396 0.002855762565
0.99 1.0 0.1071965225 0.01069930790
0.89 0.9 0.1842722465 0.03831926478
0.79 0.8 0.2670001934 0.08268898026
0.69 0.7 0.3536457184 0.1437009750
0.59 0.6 0.4430123315 0.2210473853
0.49 0.5 0.5342344253 0.3142943979
0.39 0.4 0.6266640101 0.4229316603
0.29 0.3 0.7198042025 0.5464040117
0.19 0.2 0.8132673489 0.6841323274
0.09 0.1 0.9067472857 0.8355275037
-0.01 0 1 1.000000001
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Table 4.8 Comparison of spectral radii of RPAOR and SRPAOR iteration matrices

for Problem 2

r w p(RPAOR) p(SRPAOR)
2.0 2.01 1192749937 1302639086
1.99 2.0 1169576493 1.264861418
1.82 1.83 0.8104152289 0.7295606329
1.79 1.80 0.7538394015 0.6545129583
1.69 1.7 0.5799401768 0.4416465038
1.59 1.6 0.4285340382 0.2805291441
1.49 15 0.2993915393 0.1638171188
1.39 1.4 0.1921830669 0.08425053731
1.29 1.3 0.1199863119 0.04156210740
1.19 1.2 0.06019394063 0.01476825437
1.0 1.1 0.02012865380 0.002855762565
0.99 1.0 0.04855535384 0.01069930790
0.89 0.9 0.1136609927 0.03831926478
0.79 0.8 0.1898009693 0.08268898026
0.69 0.7 0.2743509539 0.1437009750
0.59 0.6 0.3655865880 0.2210473853
0.49 05 0.4622650879 0.3142943979
0.39 0.4 0.5634388655 0.4229316603
0.29 0.3 0.6683581566 0.5464040117
0.19 0.2 0.7764140895 0.6841323274
0.09 0.1 0.8871025619 0.8355275037

-0.01 0 1 1.000000001
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Table 4.9 Comparison of spectral radii of AOR and SRPAOR iteration matrices

for Problem 3

r w p(AOR) p(SRPAOR)

2.0 2.01 1.009983181 1.730048988
1.99 2.0 0.9999830975 1.679119523
1.82 1.83 0.8299813659 0.961804435
1.79 1.80 0.7999809844 0.8619876784
1.69 1.7 0.6999794757 0.5801306648
1.59 1.6 0.5999774624 0.3683177789
1.49 1.5 0.4999746450 0.2160610214
1.39 1.4 0.3999704175 0.1131444290
1.29 1.3 0.2999633744 0.04962725472
1.19 1.2 0.1999492841 0.01584281244

1.0 1.1 0.1865127564 0.001270386970
0.99 1.0 0.2675950738 0.0007036148046
0.89 0.9 0.3889501242 0.01109632675
0.79 0.8 0.4867116564 0.03682664372
0.69 0.7 0.5715207421 0.08055908117
0.59 0.6 0.6475230708 0.1441541876
0.49 0.5 0.7169138494 0.2289808309
0.39 0.4 0.7810467239 0.3360689052
0.29 0.3 0.8408376562 0.4661987189
0.19 0.2 0.8969466513 0.6199590652
0.09 0.1 0.9498713341 0.7977875647
-0.01 0 1 1
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Table 4.10 Comparison of spectral radii of PAOR and SRPAOR iteration matrices

for Problem 3

r w p(PAOR) p(SRPAOR)

2.0 2.01 1.200474117 1.730048988
1.99 2.0 1.188576678 1.679119523
1.82 1.83 0.9871025140 0.961804435
1.79 1.80 0.9517006211 0.8619876784
1.69 1.7 0.8340177116 0.5801306648
1.59 1.6 0.7168157878 0.3683177789
1.49 1.5 0.6000564957 0.2160610214
1.39 1.4 0.4836646991 0.1131444290
1.29 1.3 0.3674853941 0.04962725472
1.19 1.2 0.2511563106 0.01584281244

1.0 1.1 0.1083042112 0.001270386970
0.99 1.0 0.08894297642 0.0007036148046
0.89 0.9 0.2230453018 0.01109632675
0.79 0.8 0.3327009542 0.03682664372
0.69 0.7 0.4318883616 0.08055908117
0.59 0.6 0.5243352888 0.1441541876
0.49 0.5 0.6117862466 0.2289808309
0.39 0.4 0.6952528490 0.3360689052
0.29 0.3 0.7753962411 0.4661987189
0.19 0.2 0.8526831330 0.6199590652
0.09 0.1 0.9274612064 0.7977875647
-0.01 0 1 1
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Table 4.11 Comparison of spectral radii of RAOR and SRPAOR iteration matrices
for Problem 3

r w p(RAOR) p(SRPAOR)

2.0 2.01 1.020066025 1.730048988
1.99 2.0 0.9999661949 1.679119523
1.82 1.83 0.6888690663 0.961804435
1.79 1.80 0.6399695755 0.8619876784
1.69 1.7 0.4899712647 0.5801306648
1.59 1.6 0.3599729551 0.3683177789
1.49 1.5 0.2499746454 0.2160610214
1.39 1.4 0.1599763359 0.1131444290
1.29 1.3 0.08997802600 0.04962725472
1.19 1.2 0.03997971631 0.01584281244

1.0 1.1 0.03478700819 0.001270386970
0.99 1.0 0.07160712315 0.0007036148046
0.89 0.9 0.1512821990 0.01109632675
0.79 0.8 0.2368882390 0.03682664372
0.69 0.7 0.3266359600 0.08055908117
0.59 0.6 0.4192861275 0.1441541876
0.49 0.5 0.5139654660 0.2289808309
0.39 0.4 0.6100339841 0.3360689052
0.29 0.3 0.7070079673 0.4661987189
0.19 0.2 0.8045132960 0.6199590652
0.09 0.1 0.9022555517 0.7977875647
-0.01 0 1 1
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Table 4.12 Comparison of spectral radii of RPAOR and SRPAOR iteration

matrices for Problem 3

r w p(RPAOR) p(SRPAOR)
2.0 2.01 1506287517 1730048988
1.99 2.0 1476203029 1.679119523
1.82 1.83 1013582288 0.961804435
1.79 1.80 0.9413922592 0.8619876784
1.69 1.7 0.7208504418 0.5801306648
1.59 1.6 0.5307683201 0.3683177789
1.49 15 0.3705593737 0.2160610214
1.39 1.4 0.2396431707 0.1131444290
1.29 1.3 0.1374576881 0.04962725472
1.19 1.2 0.06349172135 0.01584281244
1.0 1.1 0.01000000000 0.001270386970
0.99 1.0 0.02624269922 0.0007036148046
0.89 0.9 0.08565065659 0.01109632675
0.79 0.8 0.1590776049 0.03682664372
0.69 0.7 0.2429752275 0.08055908117
0.59 0.6 0.3351944015 0.1441541876
0.49 05 0.4342430792 0.2289808309
0.39 0.4 0.5390058215 0.3360689052
0.29 0.3 0.6486095719 0.4661987189
0.19 0.2 0.7623492840 0.6199590652
0.09 0.1 0.8796425683 0.7977875647

-0.01 0 1 1
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4.3

Comparison of Rates of Convergence

Table 4.13 Convergence rates of AOR and SRPAOR for Problem 1

r ® R(AOR) R(SRPAOR) Ratio

2.0 2.01 -0.009844674 -0.6144720397 Divergence
1.99 2.0 0.0001072453 -0.5842099059 Divergence
1.82 1.83 0.1864720248 -0.0202363117 Divergence
1.79 1.80 0.2232943733 0.0905930551  0.4057113208
1.69 1.7 0.3568609961 0.4909853862 1.3758449132
1.59 1.6 0.5110639770 0.9501444918 1.8591498023
1.49 1.5 0.6934689839 1.4891123960 2.1473381371
1.39 1.4 0.9167600960 2.1429063900 2.3374778193
1.29 1.3 1.204747866 2.9766586950 2.4707731626
1.19 1.2 1.611049003 4.1352686350 2.5668174136
1.0 11 1.201627674 6.9077552790 5.7486652717
0.99 1.0 0.9929913427 5.4605511830 5.4990924374
0.89 0.9 0.7387398626 3.6862175840 4.9898723091
0.79 0.8 0.5717624256 2.7575446790 4.8228854425
0.69 0.7 0.4476694584 2.1221936840 4.7405371177
0.59 0.6 0.3493417393 1.6395669210 4.6933038242
0.49 0.5 0.2682625271 1.2512262220 4.6641856227
0.39 0.4 0.1995509325 0.9270433575 4.6456478348
0.29 0.3 0.1401410026 0.6493864926 4.6338079545
0.19 0.2 0.08797789363  0.4070256696 4.6264539057
0.09 0.1 0.04161616239  0.1923594566 4.6222295751
-0.01 0 -0. -0 Divergence
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Table 4.14 Convergence rates of PAOR and SRPAOR for Problem 1

r w R(PAOR) R(SRPAOR) Ratio

2.0 2.01 -0.2048240207 -0.6144720397 Divergence
1.99 2.0 -0.1947366356 -0.5842099059 Divergence
1.82 1.83 -0.006745445244 -0.0202363117 Divergence
1.79 1.80 0.03019768158  0.0905930551  3.0000003434
1.69 1.7 0.1636617995 0.4909853862 2.9999999248
1.59 1.6 0.3167148328 0.9501444918 2.9999999792
1.49 1.5 0.4963707958 1.4891123960 3.0000000173
1.39 1.4 0.7143021321 2.1429063900 2.9999999912
1.29 1.3 0.9922195666 2.9766586950 2.9999999952
1.19 1.2 1.378422875 4.1352686350 3.0000000073
1.0 1.1 2.302585093 6.9077552790  3.0000000000
0.99 1.0 1.820183721 5.4605511830 3.0000000110
0.89 0.9 1.228739195 3.6862175840 2.9999999992
0.79 0.8 0.9191815598 2.7575446790  2.9999999996
0.69 0.7 0.7073978929 2.1221936840 3.0000000075
0.59 0.6 0.5465223031 1.6395669210 3.0000000214
0.49 0.5 0.4170754083 1.2512262220 2.9999999930
0.39 0.4 0.3090144519 0.9270433575 3.0000000058
0.29 0.3 0.2164621604 0.6493864926  3.0000000527
0.19 0.2 0.1356752227 0.4070256696 3.0000000111
0.09 0.1 0.06411981435  0.1923594566 3.0000002113
-0.01 0 -0. -0 Divergence
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Table 4.15 Convergence rates of RAOR and SRPAOR for Problem 1

r w R(RAOR) R(SRPAOR) Ratio

2.0 2.01 -0.0196893493 -0.6144720397 Divergence
1.99 2.0 0.00021448940 -0.5842099059 Divergence
1.82 1.83 0.3729440486 -0.0202363117 Divergence
1.79 1.80 0.4465887391 0.0905930551  0.2028556638
1.69 1.7 0.7137219910 0.4909853862 0.6879224578
1.59 1.6 1.022127954 0.9501444918 0.9295749011
1.49 1.5 1.386937968 1.4891123960 1.0736690684
1.39 1.4 1.833520192 2.1429063900 1.1687389096
1.29 1.3 2.409495727 2.9766586950 1.2353865839
1.19 1.2 3.222098001 4.1352686350 1.2834087088
1.0 11 2.403255350 6.9077552790 2.8743326334
0.99 1.0 1.985982685 5.4605511830 2.7495462192
0.89 0.9 1.477479723 3.6862175840 2.4949361583
0.79 0.8 1.143524853 2.7575446790 2.4114427175
0.69 0.7 0.8953389156 2.1221936840 2.3702685620
0.59 0.6 0.6986834792 1.6395669210 2.3466519101
0.49 0.5 0.5365250615 1.2512262220 2.3320927796
0.39 0.4 0.3991018678 0.9270433575 2.3228239011
0.29 0.3 0.2802819996 0.6493864926 2.3169040235
0.19 0.2 0.1759558000 0.4070256696 2.3132267854
0.09 0.1 0.08323232758  0.1923594566 2.3111147098
-0.01 0 -0. -0. Divergence
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Table 4.16 Convergence rates of RPAOR and SRPAOR for Problem 1

r w R(RPAOR) R(SRPAOR) Ratio

2.0 2.01 -0.4096480255 -0.6144720397 1.5000000035
1.99 2.0 -0.3894732702 -0.5842099059 1.5000000015
1.82 1.83 -0.01349087552  -0.0202363117 1.4999998807
1.79 1.80 0.06039537270  0.0905930551  1.4999999348
1.69 1.7 0.3273235948 0.4909853862  1.4999999817
1.59 1.6 0.6334296616 0.9501444918  1.4999999991
1.49 1.5 0.9927415942 1.4891123960 1.5000000047
1.39 1.4 1.428604251 2.1429063900 1.5000000094
1.29 1.3 1.984439132 2.9766586950 1.4999999985
1.19 1.2 2.756845754 4.1352686350 1.5000000015
1.0 1.1 4.605170186 6.9077552790  1.5000000000
0.99 1.0 3.640367454 5.4605511830 1.5000000005
0.89 0.9 2.457478388 3.6862175840 1.5000000008
0.79 0.8 1.838363115 2.7575446790 1.5000000035
0.69 0.7 1.414795785 2.1221936840 1.5000000046
0.59 0.6 1.093044612 1.6395669210 1.5000000027
0.49 0.5 0.8341508114 1.2512262220 1.5000000059
0.39 0.4 0.6180289076 0.9270433575  1.4999999937
0.29 0.3 0.4329243274 0.6493864926  1.5000000035
0.19 0.2 0.2713504504 0.4070256696  1.4999999779
0.09 0.1 0.1282396264 0.1923594566 1.5000001326
-0.01 0 -0. -0. Divergence
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Table 4.17 Convergence rates of AOR and SRPAOR for Problem 2

r w R(AOR) R(SRPAOR) Ratio

2.0 2.01 -0.08263126830  -0.2643922728  Divergence
1.99 2.0 -0.07338584384  -0.2349625652  Divergence
1.82 1.83 0.09953535888  0.3153127988  3.1678471083
1.79 1.80 0.1336263954  0.4238638951  3.1720072507
1.69 1.7 0.2569645582 0.8172454820  3.1803821030
1.59 1.6 0.3985354065 1.271077659 3.1893719812
1.49 15 0.5644663510 1.809004603 3.2048050336
1.39 1.4 0.7646373316 2.473960332 3.2354689338
1.29 1.3 1016565290 3.180566407 3.1287379554
1.19 1.2 1.356127086 4.215275377 3.1083188445
1.0 1.1 1.366061361 5.858416373 4.2885455517
0.99 1.0 1.116545733 4537576222 4.0639412143
0.89 0.9 0.8456705071  3.261802512 3.8570607401
0.79 0.8 0.6602529507 2.492668935 3.7753241880
0.69 0.7 0.5197298328 1.940020701 3.7327483984
0.59 0.6 0.4070788356 1.509378187 3.7078277105
0.49 05 0.3134602656 1.157425159 3.6924142739
0.39 0.4 0.2336723760  0.8605446726  3.6826974901
0.29 0.3 0.1643880214 0.6043966287  3.6766464098
0.19 0.2 0.1033476883  0.3796039190  3.6730760527
0.09 0.1 0.04894574677  0.1796920126  3.6712487695
-0.01 0 -0. -0.00000000009  Divergence
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Table 4.18 Convergence rates of PAOR and SRPAOR for Problem 2

r ® R(PAOR) R(SRPAOR) Ratio

2.0 2.01 -0.08813075658  -0.2643922728 Divergence
1.99 2.0 -0.07832085506  -0.2349625652  Divergence
1.82 1.83 0.1051042653 0.3153127988 3.0000000276
1.79 1.80 0.1412879632 0.4238638951 3.0000000389
1.69 1.7 0.2724151632 0.8172454820 2.9999999721
1.59 1.6 0.4236925533 1.271077659 2.9999999979
1.49 1.5 0.6030015284 1.809004603 3.0000000295
1.39 1.4 0.8246534443 2.473960332 2.9999999989
1.29 1.3 1.060188811 3.180566407 2.9999999755
1.19 1.2 1.405091802 4.215275377 2.9999999794
1.0 1.1 1.952805454 5.858416373 3.0000000056
0.99 1.0 1.512525405 4.537576222 3.0000000046
0.89 0.9 1.087267502 3.261802512 3.0000000055
0.79 0.8 0.8308896472 2.492668935 2.9999999921
0.69 0.7 0.6466735707 1.940020701 2.9999999828
0.59 0.6 0.5031260578 1.509378187 3.0000000270
0.49 0.5 0.3858083859 1.157425159 3.0000000034
0.39 0.4 0.2868482273 0.8605446726 2.9999999676
0.29 0.3 0.2014655403 0.6043966287 3.0000000387
0.19 0.2 0.1265346350 0.3796039190 3.0000001106
0.09 0.1 0.05989733437  0.1796920126 3.0000001584
-0.01 0 -0. -0.00000000009  Divergence
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Table 4.19 Convergence rates of RAOR and SRPAOR for Problem 2

r ® R(RAOR) R(SRPAOR) Ratio

2.0 2.01 -0.1652625322 -0.2643922728 Divergence
1.99 2.0 -0.1467716957 -0.2349625652 Divergence
1.82 1.83 0.1990707184 0.3153127988 1.5839235490
1.79 1.80 0.2672527912 0.4238638951 1.5860036230
1.69 1.7 0.5139291141 0.8172454820 1.5901910586
1.59 1.6 0.7970708235 1.271077659 1.5946859696
1.49 1.5 1.128932694 1.809004603 1.6024025282
1.39 14 1.529274662 2.473960332 1.6177344682
1.29 1.3 2.033130590 3.180566407 1.5643689700
1.19 1.2 2.712254175 4.215275377 1.5541594205
1.0 11 2.732122724 5.858416373 2.1442727743
0.99 1.0 2.233091470 4.537576222 2.0319706035
0.89 0.9 1.691341014 3.261802512 1.9285303703
0.79 0.8 1.320505896 2.492668935 1.8876621017
0.69 0.7 1.039459662 1.940020701 1.8663742057
0.59 0.6 0.8141576730 1.509378187 1.8539138512
0.49 0.5 0.6269205377 1.157425159 1.8462071178
0.39 0.4 0.4673447510 0.8605446726 1.8413487490
0.29 0.3 0.3287760449 0.6043966287 1.8383231932
0.19 0.2 0.2066953811 0.3796039190 1.8365379864
0.09 0.1 0.09789149426 0.1796920126 1.8356243712
-0.01 0 -0. -0.00000000009  Divergence

64



Table 4.20 Convergence rates of RPAOR and SRPAOR for Problem 2

r w R(RPAOR) R(SRPAOR) Ratio

2.0 2.01 -0.1762615126  -0.2643922728  Divergence
1.99 2.0 -0.1566417115  -0.2349625652  Divergence
1.82 1.83 0.2102085344  0.3153127988  1.4999999867
1.79 1.80 0.2825759290  0.4238638951  1.5000000057
1.69 1.7 0.5448303242 0.8172454820  1.4999999921
1.59 1.6 0.8473851084 1.271077659 14999999958
1.49 15 1206003066 1.809004603 1.5000000033
1.39 1.4 1649306888 2.473960332 1.5000000000
1.29 1.3 2.120377610 3.180566407 14999999962
1.19 1.2 2.810183586 4.215275377 14999999993
1.0 1.1 3.905610917 5.858416373 14999999994
0.99 1.0 3.025050816 4537576222 14999999993
0.89 0.9 2.174535009 3.261802512 14999999993
0.79 0.8 1.661779286 2.492668935 1.5000000036
0.69 0.7 1.293347139 1.940020701 14999999942
0.59 0.6 1.006252125 1.509378187 14999999995
0.49 0.5 0.7716167691 1157425159 1.5000000069
0.39 0.4 05736964421  0.8605446726  1.5000000165
0.29 0.3 0.4029310866  0.6043966287  1.4999999970
0.19 0.2 0.2530692806  0.3796039190  1.4999999925
0.09 0.1 01197946755  0.1796920126  1.4999999946
-0.01 0 -0. -0.00000000009  Divergence
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Table 4.21 Convergence rates of AOR and SRPAOR for Problem 3

r w R(AOR) R(SRPAOR) Ratio

2.0 2.01 -0.0099336782 -0.5481497249 Divergence
1.99 2.0 0.0000169026 -0.5182695626  Divergence
1.82 1.83 0.1863520292 0.03894413900  0.2089815666
1.79 1.80 0.2231673211 0.1485143026 0.6654840945
1.69 1.7 0.3567042648 0.5445019167 1.5264799736
1.59 1.6 0.5108631871 0.9988091838 1.9551402587
1.49 1.5 0.6931978918 1.532194405 2.2103275603
1.39 14 0.9163646909 2.179090144 2.3779726190
1.29 1.3 1.204094897 3.003215106 2.4941681204
1.19 1.2 1.609691524 4.145039355 2.5750519856
1.0 1.1 1.679255643 6.668433724 3.9710652466
0.99 1.0 1.318280360 7.259279504 5.5066279710
0.89 0.9 0.9443041590 4.501141149 4.7666221800
0.79 0.8 0.7200834126 3.301533682 4.5849322790
0.69 0.7 0.5594545023 2.518764436 45021792222
0.59 0.6 0.4346008555 1.936871805 4.4566681830
0.49 0.5 0.3327995999 1.474116987 4.4294433871
0.39 0.4 0.2471203052 1.090439065 4.4125838389
0.29 0.3 0.1733566743 0.7631433003 4.4021570175
0.19 0.2 0.1087588933 0.4781018270 4.3959791470
0.09 0.1 0.05142874135  0.2259129266 4.3927368368
-0.01 0 -0. -0. Divergence
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Table 4.22 Convergence rates of PAOR and SRPAOR for Problem 3

r w R(PAOR) R(SRPAOR) Ratio

2.0 2.01 -0.1827165763 -0.5481497249 Divergence
1.99 2.0 -0.1727565224 -0.5182695626 Divergence
1.82 1.83 0.01298138071  0.03894413900  2.9999997589
1.79 1.80 0.04950476728  0.1485143026 3.0000000154
1.69 1.7 0.1815006399 0.5445019167 2.9999999835
1.59 1.6 0.3329363922 0.9988091838 3.0000000216
1.49 1.5 0.5107314687 1.532194405 2.9999999978
1.39 1.4 0.7263633828 2.179090144 2.9999999939
1.29 1.3 1.001071705 3.003215106 2.9999999910
1.19 1.2 1.381679782 4.145039355 3.0000000065
1.0 1.1 2.222811241 6.668433724 3.0000000004
0.99 1.0 2.419759829 7.259279504 3.0000000070
0.89 0.9 1.500380381 4501141149 3.0000000040
0.79 0.8 1.100511228 3.301533682 2.9999999982
0.69 0.7 0.8395881464 2.518764436 2.9999999962
0.59 0.6 0.6456239352 1.936871805 2.9999999991
0.49 0.5 0.4913723277 1.474116987 3.0000000079
0.39 0.4 0.3634796881 1.090439065 3.0000000019
0.29 0.3 0.2543811014 0.7631433003 2.9999999847
0.19 0.2 0.1593672741 0.4781018270 3.0000000295
0.09 0.1 0.07530431136  0.2259129266 2.9999999007
-0.01 0 -0. -0. Divergence
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Table 4.23 Convergence rates of RAOR and SRPAOR for Problem 3

r w R(RAOR) R(SRPAOR) Ratio

2.0 2.01 -0.01986735559  -0.5481497249 Divergence
1.99 2.0 0.000033805671 -0.5182695626  Divergence
1.82 1.83 0.3727040604 0.03894413900  0.1044907827
1.79 1.80 0.4463346420 0.1485143026 0.3327420474
1.69 1.7 0.7134085331 0.5445019167 0.7632399830
1.59 1.6 1.021726375 0.9988091838 0.9775701286
1.49 1.5 1.386395785 1.532194405 1.1051637790
1.39 14 1.832729375 2.179090144 1.1889863139
1.29 1.3 2.408189794 3.003215106 1.2470840602
1.19 1.2 3.219383046 4.145039355 1.2875259936
1.0 1.1 3.358511290 6.668433724 1.9855326209
0.99 1.0 2.636560725 7.259279504 2.7533139803
0.89 0.9 1.888608319 4501141149 2.3833110888
0.79 0.8 1.440166814 3.301533682 2.2924661573
0.69 0.7 1.118909000 2.518764436 2.2510896203
0.59 0.6 0.8692017103 1.936871805 2.2283340933
0.49 0.5 0.6655992026 1.474116987 2.2147216842
0.39 0.4 0.4942406117 1.090439065 2.2062919137
0.29 0.3 0.3467133440 0.7631433003 2.2010785380
0.19 0.2 0.2175177857 0.4781018270 2.1979895826
0.09 0.1 0.1028574823 0.2259129266 2.1963684270
-0.01 0 -0. -0. Divergence
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Table 4.24 Convergence rates of RPAOR and SRPAOR for Problem 3

r w R(RPAOR) R(SRPAOR) Ratio

2.0 2.01 -0.4096480255 -0.5481497249 Divergence
1.99 2.0 -0.3894732702 -0.5182695626 Divergence
1.82 1.83 -0.0134908755 0.03894413900  Divergence
1.79 1.80 0.06039537270  0.1485143026 2.4590344584
1.69 1.7 0.3273235948 0.5445019167 1.6634973016
1.59 1.6 0.6334296616 0.9988091838 1.5768273012
1.49 1.5 0.9927415942 1.532194405 1.5433970068
1.39 14 1.428604251 2.179090144 1.5253280553
1.29 1.3 1.984439132 3.003215106 1.5133823243
1.19 1.2 2.756845754 4.145039355 1.5035441678
1.0 11 4.605170186 6.668433724 1.4480319846
0.99 1.0 3.640367454 7.259279504 1.9941062532
0.89 0.9 2.457478388 4.501141149 1.8316096577
0.79 0.8 1.838363115 3.301533682 1.7959094452
0.69 0.7 1.414795785 2.518764436 1.7803024738
0.59 0.6 1.093044612 1.936871805 1.7719970290
0.49 0.5 0.8341508114 1.474116987 1.7672068010
0.39 0.4 0.6180289076 1.090439065 1.7643819756
0.29 0.3 0.4329243274 0.7631433003 1.7627637257
0.19 0.2 0.2713504504 0.4781018270 1.7619348938
0.09 0.1 0.1282396264 0.2259129266 1.7616467931
-0.01 0 -0. -0. Divergence
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Table 4.25 Comparison of spectral radii of various methods for Problem 1

r w p(AOR) p(PAOR) p(RAOR) p(RPAOR) p(SRPAOR)
2.0 2.01 1.009893293 1.227309065 1.019884463 1.506287517 1.848680312
1.99 2.0 0.9998927604 1.214990959 0.9997855336 1.476203029 1.793573334
1.82 1.83 0.8298817777 1.006768247 0.6887037657 1.013582288 1.020442454
1.79 1.80 0.7998793515 0.9702537133 0.6398069818 0.9413922592 0.9133893344
1.69 1.7 0.6998697756 0.8490291154 0.4898177034 0.7208504418 0.6120230179
1.59 16 0.5998570051 0.7285384808 0.3598284264 0.5307683201 0.3866851466
1.49 15 0.4998391242 0.6087358825 0.2498391500 0.3705593737 0.2255727860
1.39 1.4 0.3998122984 0.4895336224 0.1598498739 0.2396431707 0.1173133886
1.29 1.3 0.2997675715 0.3707528664 0.08986059746 0.1374576881 0.05096283204
1.19 1.2 0.1996780414 0.2519756369 0.03987132039 0.06349172135 0.01599836683
1.0 1.1 0.3007043648 0.1000000000 0.09042311477 0.01000000000 0.001000000000
0.99 1.0 0.3704668386 0.1619959862 0.1372456785 0.02624269922 0.004251211905
0.89 0.9 0.4777155236 0.2926613339 0.2282121220 0.08565065659 0.02506663540
0.79 0.8 0.5645296200 0.3988453386 0.3186936911 0.1590776049 0.06344736088
0.69 0.7 0.6391159035 0.4929251742 0.4084691386 0.2429752275 0.1197686057
0.59 0.6 0.7051521109 0.5789597599 0.4972394992 0.3351944015 0.1940640691
0.49 05 0.7647069984 0.6589712262 0.5847767892 0.4342430792 0.2861536937
0.39 0.4 0.8190985010 0.7341701598 0.6709223525 0.5390058215 0.3957219909
0.29 0.3 0.8692356623 0.8053630090 0.7555706408 0.6486095719 0.5223661540
0.19 0.2 0.9157811211 0.8731261580 0.8386550511 0.7623492840 0.6656271037
0.09 0.1 0.9592379015 0.9378926198 0.9201373491 0.8796425683 0.8250102598
-0.01 0 1 1 1 1 1
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Table 4.26 Comparison of spectral radii of various methods for Problem 2

r w p(AOR) p(PAOR) p(RAOR) p(RPAOR) p(SRPAOR)
2.0 2.01 1.086141240 1.092130916 1.179702788 1.192749937 1.302639086
1.99 2.0 1.076145681 1.081469598 1.158089536 1.169576493 1.264861418
1.82 1.83 0.9052579404 0.9002306549 0.8194919381 0.8104152289 0.7295606329
1.79 1.80 0.8749168765 0.8682392547 0.7654795405 0.7538394015 0.6545129583
1.69 1.7 0.7733956238 0.7615380329 0.5981407923 0.5799401768 0.4416465038
1.59 1.6 0.6713025117 0.6546251133 0.4506470575 0.4285340382 0.2805291441
1.49 1.5 0.5686635325 0.5471668321 0.3233782157 0.2993915393 0.1638171188
1.39 14 0.4655027235 0.4383868916 0.2166927859 0.1921830669 0.08425053731
1.29 1.3 0.3618356085 0.3463904017 0.1309250064 0.1199863119 0.04156210740
1.19 1.2 0.2576567294 0.2453445324 0.06638699001 0.06019394063 0.01476825437
1.0 1.1 0.2551097687 0.1418754876 0.06508099396 0.02012865380 0.002855762565
0.99 1.0 0.3274088010 0.2203527947 0.1071965225 0.04855535384 0.01069930790
0.89 0.9 0.4292694335 0.3371364609 0.1842722465 0.1136609927 0.03831926478
0.79 0.8 0.5167206131 0.4356615288 0.2670001934 0.1898009693 0.08268898026
0.69 0.7 0.5946811896 0.5237852166 0.3536457184 0.2743509539 0.1437009750
0.59 0.6 0.6655917159 0.6046375703 0.4430123315 0.3655865880 0.2210473853
0.49 0.5 0.7309134208 0.6799007918 0.5342344253 0.4622650879 0.3142943979
0.39 0.4 0.7916211275 0.7506256447 0.6266640101 0.5634388655 0.4229316603
0.29 0.3 0.8484127557 0.8175317490 0.7198042025 0.6683581566 0.5464040117
0.19 0.2 0.9018133690 0.8811436306 0.8132673489 0.7764140895 0.6841323274
0.09 0.1 0.9522327900 0.9418612254 0.9067472857 0.8871025619 0.8355275037
-0.01 0 1 1 1 1 1.000000001
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Table 4.27 Comparison of spectral radii of various methods for Problem 3

r w p(AOR) p(PAOR) p(RAOR) p(RPAOR) p(SRPAOR)
2.0 2.01 1.009983181 1.200474117 1.020066025 1.506287517 1.730048988
1.99 2.0 0.9999830975 1.188576678 0.9999661949 1.476203029 1.679119523
1.82 1.83 0.8299813659 0.9871025140 0.6888690663 1.013582288 0.961804435
1.79 1.80 0.7999809844 0.9517006211 0.6399695755 0.9413922592 0.8619876784
1.69 1.7 0.6999794757 0.8340177116 0.4899712647 0.7208504418 0.5801306648
1.59 1.6 0.5999774624 0.7168157878 0.3599729551 0.5307683201 0.3683177789
1.49 1.5 0.4999746450 0.6000564957 0.2499746454 0.3705593737 0.2160610214
1.39 14 0.3999704175 0.4836646991 0.1599763359 0.2396431707 0.1131444290
1.29 13 0.2999633744 0.3674853941 0.08997802600 0.1374576881 0.04962725472
1.19 1.2 0.1999492841 0.2511563106 0.03997971631 0.06349172135 0.01584281244
1.0 1.1 0.1865127564 0.1083042112 0.03478700819 0.01000000000 0.00127038697
0.99 1.0 0.2675950738 0.08894297642 0.07160712315 0.02624269922 0.00070361480
0.89 0.9 0.3889501242 0.2230453018 0.1512821990 0.08565065659 0.01109632675
0.79 0.8 0.4867116564 0.3327009542 0.2368882390 0.1590776049 0.03682664372
0.69 0.7 0.5715207421 0.4318883616 0.3266359600 0.2429752275 0.08055908117
0.59 0.6 0.6475230708 0.5243352888 0.4192861275 0.3351944015 0.1441541876
0.49 0.5 0.7169138494 0.6117862466 0.5139654660 0.4342430792 0.2289808309
0.39 0.4 0.7810467239 0.6952528490 0.6100339841 0.5390058215 0.3360689052
0.29 0.3 0.8408376562 0.7753962411 0.7070079673 0.6486095719 0.4661987189
0.19 0.2 0.8969466513 0.8526831330 0.8045132960 0.7623492840 0.6199590652
0.09 0.1 0.9498713341 0.9274612064 0.9022555517 0.8796425683 0.7977875647
-0.01 0 1 1 1 1 1
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Table 4.28 Convergence rates of various methods for Problem 1

r w R(AOR) R(PAOR) R(RAOR) R(RPAOR) R(SRPAOR)
2.0 2.01 -0.009844674 -0.2048240207 -0.0196893493 -0.4096480255 -0.6144720397
1.99 2.0 0.0001072453 -0.1947366356 0.00021448940 -0.3894732702 -0.5842099059
1.82 1.83 0.1864720248 -0.0067454452 0.3729440486 -0.0134908755 -0.0202363117
1.79 1.80 0.2232943733 0.03019768158 0.4465887391 0.06039537270 0.0905930551
1.69 1.7 0.3568609961 0.1636617995 0.7137219910 0.3273235948 0.4909853862
1.59 1.6 0.5110639770 0.3167148328 1.022127954 0.6334296616 0.9501444918
1.49 1.5 0.6934689839 0.4963707958 1.386937968 0.9927415942 1.4891123960
1.39 14 0.9167600960 0.7143021321 1.833520192 1.428604251 2.1429063900
1.29 13 1.204747866 0.9922195666 2.409495727 1.984439132 2.9766586950
1.19 1.2 1.611049003 1.378422875 3.222098001 2.756845754 4.1352686350
1.0 1.1 1.201627674 2.302585093 2.403255350 4.605170186 6.9077552790
0.99 1.0 0.9929913427 1.820183721 1.985982685 3.640367454 5.4605511830
0.89 0.9 0.7387398626 1.228739195 1.477479723 2.457478388 3.6862175840
0.79 0.8 0.5717624256 0.9191815598 1.143524853 1.838363115 2.7575446790
0.69 0.7 0.4476694584 0.7073978929 0.8953389156 1.414795785 2.1221936840
0.59 0.6 0.3493417393 0.5465223031 0.6986834792 1.093044612 1.6395669210
0.49 0.5 0.2682625271 0.4170754083 0.5365250615 0.8341508114 1.2512262220
0.39 0.4 0.1995509325 0.3090144519 0.3991018678 0.6180289076 0.9270433575
0.29 0.3 0.1401410026 0.2164621604 0.2802819996 0.4329243274 0.6493864926
0.19 0.2 0.08797789363 0.1356752227 0.1759558000 0.2713504504 0.4070256696
0.09 0.1 0.04161616239 0.06411981435 0.08323232758 0.1282396264 0.1923594566
-0.01 0 -0. -0. -0. -0. -0
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Table 4.29 Convergence rates of various methods for Problem 2

r w R(AOR) R(PAOR) R(RAOR) R(RPAOR) R(SRPAOR)
2.0 2.01 -0.08263126830 -0.0881307565 -0.1652625322 -0.1762615126 -0.2643922728
1.99 2.0 -0.07338584384 -0.0783208550 -0.1467716957 -0.1566417115 -0.2349625652
1.82 1.83 0.09953535888 0.1051042653 0.1990707184 0.2102085344 0.3153127988
1.79 1.80 0.1336263954 0.1412879632 0.2672527912 0.2825759290 0.4238638951
1.69 1.7 0.2569645582 0.2724151632 0.5139291141 0.5448303242 0.8172454820
1.59 1.6 0.3985354065 0.4236925533 0.7970708235 0.8473851084 1.271077659
1.49 1.5 0.5644663510 0.6030015284 1.128932694 1.206003066 1.809004603
1.39 14 0.7646373316 0.8246534443 1.529274662 1.649306888 2.473960332
1.29 1.3 1.016565290 1.060188811 2.033130590 2.120377610 3.180566407
1.19 1.2 1.356127086 1.405091802 2.712254175 2.810183586 4.215275377
1.0 1.1 1.366061361 1.952805454 2.732122724 3.905610917 5.858416373
0.99 1.0 1.116545733 1.512525405 2.233091470 3.025050816 4537576222
0.89 0.9 0.8456705071 1.087267502 1.691341014 2.174535009 3.261802512
0.79 0.8 0.6602529507 0.8308896472 1.320505896 1.661779286 2.492668935
0.69 0.7 0.5197298328 0.6466735707 1.039459662 1.293347139 1.940020701
0.59 0.6 0.4070788356 0.5031260578 0.8141576730 1.006252125 1.509378187
0.49 0.5 0.3134602656 0.3858083859 0.6269205377 0.7716167691 1.157425159
0.39 0.4 0.2336723760 0.2868482273 0.4673447510 0.5736964421 0.8605446726
0.29 0.3 0.1643880214 0.2014655403 0.3287760449 0.4029310866 0.6043966287
0.19 0.2 0.1033476883 0.1265346350 0.2066953811 0.2530692806 0.3796039190
0.09 0.1 0.04894574677 0.05989733437 0.09789149426 0.1197946755 0.1796920126
-0.01 0 -0. -0. -0. -0. -0.00000000009
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Table 4.30 Convergence rates of various methods for Problem 3

r w R(AOR) R(PAOR) R(RAOR) R(RPAOR) R(SRPAOR)
2.0 201  -0.0099336782 -0.1827165763 -0.0198673555 -0.4096480255 -0.5481497249
1.99 2.0 0.0000169026 -0.1727565224 0.00003380567 -0.3894732702 -0.5182695626
1.82 1.83  0.1863520292 0.01298138071 0.3727040604 -0.0134908755 0.03894413900
1.79 1.80  0.2231673211 0.04950476728 0.4463346420 0.06039537270 0.1485143026
1.69 1.7 0.3567042648 0.1815006399 0.7134085331 0.3273235948 0.5445019167
1.59 1.6 0.5108631871 0.3329363922 1.021726375 0.6334296616 0.9988091838
1.49 1.5 0.6931978918 0.5107314687 1.386395785 0.9927415942 1.532194405
1.39 14 0.9163646909 0.7263633828 1.832729375 1.428604251 2.179090144
1.29 13 1.204094897 1.001071705 2.408189794 1.984439132 3.003215106
1.19 1.2 1.609691524 1.381679782 3.219383046 2.756845754 4.145039355
1.0 1.1 1.679255643 2.222811241 3.358511290 4.605170186 6.668433724
0.99 1.0 1.318280360 2.419759829 2.636560725 3.640367454 7.259279504
0.89 0.9 0.9443041590 1.500380381 1.888608319 2.457478388 4501141149
0.79 0.8 0.7200834126 1.100511228 1.440166814 1.838363115 3.301533682
0.69 0.7 0.5594545023 0.8395881464 1.118909000 1.414795785 2.518764436
0.59 0.6 0.4346008555 0.6456239352 0.8692017103 1.093044612 1.936871805
0.49 0.5 0.3327995999 0.4913723277 0.6655992026 0.8341508114 1.474116987
0.39 0.4 0.2471203052 0.3634796881 0.4942406117 0.6180289076 1.090439065
0.29 0.3 0.1733566743 0.2543811014 0.3467133440 0.4329243274 0.7631433003
0.19 0.2 0.1087588933 0.1593672741 0.2175177857 0.2713504504 0.4781018270
0.09 0.1 0.05142874135 0.07530431136 0.1028574823 0.1282396264 0.2259129266
-0.01 0 -0. -0. -0. -0. -0.
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4.4 Discussion of Results

A basic requirement for convergence of any iterative method demands that the spectral
radius of its iteration matrix be less than 1. More so, it is not just sufficient for a method
to converge, it has to converge effectively. The computational effectiveness of a
convergent iterative method is directly related to the magnitude of the spectral radius of
the iterative method. The rate of convergence is best when the spectral radius is near zero

and poorest when it is near 1.

Table 4.1 through Table 4.12 are the results of comparing the spectral radii of SRPAOR
against its preceding methods, AOR, PAOR, RAOR and RPAOR, which it seeks to
improve.

Table 4.1 displays the spectral radii of AOR against those of SRPAOR for various values
of relaxation and acceleration parameters w and r respectively applied to Problem 1.
These values are carefully chosen between 2.01 and -0.01. The SRPAOR is shown to
exhibit faster convergence than the AOR whenever it converges. Its range of convergence
extends between 0 < r < w < 1.83 wherein it attains optimum convergence when r and
w are 1.0 and 1.1 respectively. For the AOR, the range of convergenceis 0 <r < w <
2.0 with optimum values at r = 1.19 and w = 1.2. In Table 4.2 the results of the spectral
radii of PAOR alongside those of SRPAOR for various values of the parameters
(relaxation w and acceleration r) applied to Problem 1 are exhibited. Again, the SRPAOR
converges more rapidly than the AOR. The range of convergence extends between 0 <
r < w < 1.80 and the optimum convergence is attained at when r = 1.0 and w = 1.1
for the two methods. Table 4.3 is the results of comparing the spectral radii of RAOR
with those of SRPAOR using various values of relaxation w and acceleration r between
2.01 and -0.01 for Problem 1. As expected, values of p(SRPAOR) are in smaller
magnitudes than those of p(RAOR), implying faster convergence provided the parameters
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fall within the range 0 < r < w < 1.83, whose optimum values are obtained at r = 1.0
and w = 1.1. The AOR however, converges provided the parameter fall within the range
0 <r<w< 2.0withoptimum valuesatr = 1.19 and w = 1.2. In Table 4.4 the spectral
radii of RPAOR are compared with those of SRPAOR in solving Problem 1. Faster
convergence is shown to be attained by the SRPAOR method due to its smaller spectral
radii across values of the parameters. This convergence is attained for the range of values
0 < r < w < 1.83 in both methods. An optimum convergence is reached when r and w

are 1.0 and 1.1 respectively.

Table 4.5 shows the spectral radii of AOR against those of SRPAOR for various values
of relaxation and acceleration parameters w and r respectively applied to Problem 2. The
SRPAOR is shown to exhibit faster convergence than the AOR. Both methods have
convergence range extending between 0 < r < w < 2 wherein they attains optimum
convergence when r and w are 1.0 and 1.1 respectively. In Table 4.6 the results of the
spectral radii of PAOR alongside those of SRPAOR for various values of the parameters
(relaxation w and acceleration r) applied to Problem 2 are exhibited. Again, the SRPAOR
converges more rapidly than the AOR. The range of convergence extends between 0 <
r < w < 2 and the optimum convergence is attained at when r = 1.0 and w = 1.1 for
the two methods.

Table 4.7 is the results of comparing the spectral radii of RAOR with those of SRPAOR
using various values of relaxation w and acceleration r between 2.01 and -0.01 for
Problem 2. As expected, values of p(SRPAOR) are in smaller magnitudes than those of
p(RAOR), implying faster convergence provided the parameters fall within the range 0 <
r < w < 2, whose optimum values are obtained at r = 1.0 and w = 1.1. In Table 4.8 the
spectral radii of RPAOR are compared with those of SRPAOR in solving Problem 2.

Faster convergence is shown to be attained by the SRPAOR method due to its smaller
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spectral radii across values of the parameters. This convergence is attained for the range
of values 0 < r < w < 2 in both methods. An optimum convergence is reached when r

and w are 1.0 and 1.1 respectively.

Table 4.9 displays the spectral radii of AOR against those of SRPAOR for various values
of relaxation and acceleration parameters w and r respectively applied to Problem 3. The
SRPAOR is shown to exhibit faster convergence than the AOR. Its range of convergence
extends between 0 < r < w < 2 wherein it attains optimum convergence when r and w
are 0.99 and 1 respectively. For the AOR, the range of convergenceis 0 <r < w <2
with optimum values atr = 1 and w = 1.1.

In Table 4.10 the results of the spectral radii of PAOR alongside those of SRPAOR for
various values of the parameters (relaxation w and acceleration r) applied to Problem 3
are exhibited. Again, the SRPAOR converges more rapidly than the AOR. The range of
convergence extends between 0 < r < w < 2 and the optimum convergence is attained
atwhen r = 0.99 and w = 1 for the two methods. Table 4.11 is the results of comparing
the spectral radii of RAOR with those of SRPAOR for Problem 3. Values of p(SRPAOR)
are in smaller magnitudes than those of p(RAOR), implying faster convergence provided
the parameters fall within the range 0 < r < w < 2, whose optimum values are obtained
atr = 0.99 and w = 1. The AOR however, converges provided the parameter fall within
the range 0 < r < w < 2 with optimum values at r = 1 and w = 1.1. In Table 4.12 the
spectral radii of RPAOR are compared with those of SRPAOR in solving Problem 3.
Faster convergence is shown to be attained by the SRPAOR method due to its smaller
spectral radii across values of the parameters. This convergence is attained for the range
of values 0 < r < w < 2 with optimum convergence attained when r and w are 0.99

and 1 respectively in the case of SRPAOR. For AOR however, convergence is attained
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in the range of values 0 < r < w < 1.83 with optimum convergence attained when r and

w are 1 and 1.1 respectively.

The rate of convergence of an iterative method is the number R(G) = —log p(G), and is
a measure of how rapidly a method is convergent, depending on the choice of the
parameters r and w. Using Maple software, the rates of convergence of the AOR, PAOR,
RAOR RPAOR and SRPAOR are computed and compared. The results are presented in
Table 4.13 through Table 4.24. Table 4.13 compares the rate of convergence of SRPAOR
with AOR for various values of the parameters when applied to Problem 1. It reveals that
the SRPAOR converges five and a half times faster than the AOR. Table 4.14 compares
the rate of convergence of SRPAOR with PAOR for Problem 1. Results show that
SRPAOR is faster than PAOR by a factor of three. In Table 4.15 a comparison of
convergence rates of SRPAOR and RAOR for Problem 1 is undertaken. It shows that
SRPAOR converges almost three times more rapidly than RAOR. Table 4.16 is the result
of comparing the convergence rates of SRPAOR and RPAOR for Problem 1, where it is

seen than SRPAOR is one a half times as fast as RPAOR.

Table 4.17 compares the rate of convergence of SRPAOR with AOR for various values
of the parameters when applied to Problem 2. It reveals that the SRPAOR converges four
times faster than the AOR. Table 4.18 compares the rate of convergence of SRPAOR
with PAOR for Problem 2. Results show that SRPAOR is faster than PAOR by a factor
of three. In Table 4.19 a comparison of convergence rates of SRPAOR and RAOR for
Problem 2 is undertaken. It shows that SRPAOR converges two times more rapidly than
RAOR. Table 4.20 is the result of comparing the convergence rates of SRPAOR and
RPAOR for Problem 2, where it is seen than SRPAOR is one a half time as fast as

RPAOR.

79



Table 4.21 compares the rate of convergence of SRPAOR with AOR for various values
of the parameters when applied to Problem 3. It reveals that the SRPAOR converges five
and a half times faster than the AOR. Table 4.22 compares the rate of convergence of
SRPAOR with PAOR for Problem 3. Results show that SRPAOR is faster than PAOR by
a factor of three. In Table 4.23 a comparison of convergence rates of SRPAOR and RAOR
for Problem 3 is undertaken. It shows that SRPAOR converges two and a half times more
rapidly than RAOR. Table 4.24 is the result of comparing the convergence rates of
SRPAOR and RPAOR for Problem 3, where it is seen than SRPAOR is two times as fast

as RPAOR.

Table 4.25, Table 4.26 and Table 4.27 compare the spectral radii of all the five methods
in solving Problem 1, Problem 2 and Problem 3 respectively. A common trend in the
results reveal that p(SRPAOR) < p(RPAOR) < p(RAOR) < p(PAOR) < p(AOR),

indicating that the proposed SRPAOR iterative converges faster than all the methods.

Table 4.28, Table 4.29 and Table 4.30 compare the rates of convergence of all the five
methods in solving Problem 1, Problem 2 and Problem 3 respectively. At optimal solution
of Problem 1, SRPAOR method is shown to converge faster than AOR, PAOR, RAOR
and RPAOR by a factor of 5.75, 3, 2.87 and 1.5 respectively. While for Problem 2,
SRPAOR method converges more rapidly than AOR, PAOR, RAOR and RPAOR by a
factor of 4.3, 3, 2.14 and 1.5 respectively. And in Problem 3, SRPAOR method converges

faster than AOR, PAOR, RAOR and RPAOR by a factor of 5.5, 3, 2.75 and 2 respectively.
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CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATIONS
51  Conclusion
A second refinement of preconditioned Accelerated Overrelaxation (AOR) iterative
method has been proposed. This method christened Second Refinement of Preconditioned
Accelerated Overrelaxation (SRPAOR) method involves the successive application of
preconditioning and second refinement techniques in improving the convergence rates of

iterative methods towards the solution of linear algebraic systems.

A new preconditioner was derived and applied to the AOR method resulting in a
preconditioned linear system. Convergence theorems were advanced and the resulting
preconditioned AOR method was found to be convergent. A second refinement
formulation of the preconditioned AOR method was further introduced and proven to be

convergent as well.

In order to validate the results of theoretical convergence several numerical experiments
were conducted and results compared with other methods. It was established that the

SRPAOR converges almost 6 times faster than the classical AOR.

52  Recommendations
The following recommendations for further research are proposed:
1. A formula for obtaining the optimum relaxation and acceleration parameters for
SRPAOR could be derived.
2. More general class of matrices, and not just irreducibly diagonally dominant L —

matrices could be accommodated.
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5.3

Contribution to Knowledge

The following contributions have been made:

1. The techniques of preconditioning and second refinement have been exploited to

introduce a new approach towards improving the rate of convergence of the AOR

iterative method in solving linear system of equations.

. The new method can be applied to solve irreducibly diagonally dominant L —

matrix linear systems provided 0 < a;,a,; < 1,0 < a1,a51 + ay3a3, < 1,0 <
a1i@ip + ai1iQi-1 + Q41041 < 1(E=3(n—-1) and 0<aan +

an—l,n an,n—l <1

. The SRPAOR method converges faster than AOR, PAOR, RAOR and RPAOR

by a factor of 5.75, 3, 2.87 and 1.5 respectively.
Optimum convergence is attained when r =1.0,w = 1.1 and when r =

0.99,w =1.0
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