
1

IMPROVED GENETICALLY OPTIMIZED NEURAL NETWORK ALGORITHM

FOR CLASSIFICATION OF DISTRIBUTED DENIAL OF SERVICE ATTACKS

BY

 GADZAMA, Emmanuel Hamman

MTech/SICT/2017/6760

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE

DEGREE OF MASTER OF TECHNOLOGY IN CYBER SECURITY SCIENCE

SEPTEMBER, 2021

ABSTRACT

Distributed Denial of Service (DDoS) attack has continued to grow dynamically and has

increased significantly to date. This form of attack is usually carried out by draining the

available resources in the network as well as flooding the package with a significant

intensity so that the system becomes overloaded and stops. This research proposes a

classification of DDoS attack using neural network-based genetic algorithm (NNGA). The

genetic algorithm was used to optimize neural network for the detection of DDoS attacks

in order to improve the effectiveness and efficiency of classification accuracy and

performance. To improve the NNGA, a fitness function was introduced in genetic

algorithm that improved the performance of NNGA. The features of DDoS attacks from

KDD 99 intrusion detection datasets were obtained to train the NNGA. The results

obtained from the study indicate that the technique performed optimally in DDoS attack

2

recording the following; 98.58% and 0.351 respectively for accuracy and false positive

rate. Therefore, revealed that the enhanced genetically optimized neural network algorithm

has better accuracy and lower false positive rate in comparison with the conventional

neural networks.

TABLE OF CONTENTS

Content Page

 Title page i

Declaration ii

Certification iii

Acknowledgment iv

Abstract v

Table of Contents vi

List of Tables x

List of Figures xi

3

List of Appendices xiii

CHAPTER

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 2

1.3 Aim and Objectives of the Study 3

1.4 Significance of the Study 3

1.5 Scope of the Study 4

CHAPTER TWO

2.0 LITERATURE REVIEW 5

2.1 Related Works on Distributed Denial of Service 5

2.1.1 Review of Related Concepts on Genetic Algorithm 8

2.1.2 Related Work on Fitness Function 9

 Flowchart of Genetic Algorithm

2.1.3 Review of Theory and Empirical Work 10

2.2 Standard Genetic Algorithm Process 13

2.3 How DDoS Attack Work 14

2.4 Distributed Denial of Service Attack Strategy 15

2.5 Common Types of Distributed Denial of Service Attacks 15

2.6 Application Layer of Distributed Denial of Service Attacks 16

2.7 HTTP Flood Attack 17

4

2.8 The Protocol Attack 18

2.9 SYN Flood Attack 18

2.10 Volumetric Attacks 19

2.11 Classification of DDOS Attacks: An Overview of Modern Approaches

 19

2.11.1 Classification by protocol 20

2.11.2 OSI Classification 20

2.11.3 Classification by Mechanism of Action 21

2.12 Artificial Neural Network 22

2.13 Intrusion Detection: An Overview 22

2.14 Networking Attacks 23

2.15 Classification of Intrusion Detection 25

2.16 Components of Intrusion Detection System 25

5

CHAPTER THREE

3.0 RESEARCH METHODOLOGY 27

3.1 The Proposed Research Design 27

3.2 Problem Formulation Process 28

3.3 Improved Genetic Algorithm 29

 3.4 Objective Function Formulation Procedure 30

3.5 Flowchart of Genetic Algorithm 32

3.6 Implementation Procedure 34

3.7 Dataset and Data Processing 36

3.8 Performance Evaluation Measures 38

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION 42

4.1 Results Presentation 42

4.1.1 Preprocessed Dataset Classes of Attacks 42

4.1.2 Neural Genetic Algorithm Classifier Training 43

4.1.3 Genetic Algorithm Implementation Toolbox 45

4.2 Discussion 55

4.3 Implication of Findings 56

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS 57

5.1 Conclusion 57

5.2 Recommendation 57

6

5.3 Contributions to Knowledge 57

REFERENCES 58

APPENDIX 63

7

LIST OF TABLES

Table Page

3.1 Distribution of Intrusion Types in Datasets 37

3.2 Confusion Matrix 38

4.1 5-bit Encoded DDoS Attacks 42

4.2 Performance Evaluation of the Enhanced NN-GA with Existing

Algorithms 56

8

LIST OF FIGURES

Figure Page

2.1 Procedure of the Standard Genetic Algorithm 14

2.2 Conceptual Framework used to describe Network Connectivity

 in Seven Distinct Layers 16

2.3 An Application Layer in DDoS Attack 17

2.4 Protocol DDoS Attack 18

2.5 Diagram of Amplification 19

2.6 Classification of DDoS Attack by the Layers of the OSI Model 21

3.1 Block Diagram of the Research Design 28

3.2 Improved Algorithm: Predict Data/Intrusion Type using GA 30

3.3 Operation of Genetic Algorithm 33

3.4 Flow of the Proposed Optimization/Classification Model 34

3.5 Implementation Procedure 36

4.1 Neural Genetic Algorithm Classifier Training 43

4.2 Classifier Mean Squared Error 44

4.3 Classifier Regression 45

4.4 Genetic Algorithm Implementation Toolbox 46

4.5 Plot of Fitness Value against Generation 47

4.6 Current Best Individuals against Numbers Variables 48

4.7 Average Distance between Individuals against Generation 49

4.8 Individual against Generation 50

4.9 Worst and Mean Scores against Generation 51

4.10 Number of Individuals against Score 52

9

4.11 Fitness of Individuals against Generations 53

4.12 Number of Children against Individual 54

10

LIST OF APPEDICES

Appendix Page

A Overview of Related Studies 58

B Implementation Algorithms 60

C Objective Function on Confidence and Completeness Factor 62

D Objective Function on Error 63

E Neural Genetic Algorithm Codes 64

F Snippet of the Dataset Input Features 65

G Dataset Description and Labels 66

11

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

The Internet was primarily designed for openness and scalability without any security

concern, however, malicious users have exploited this weakness to achieve their purpose

and recently, the number of network-based threats has been significantly increased (Booth

and Andersson, 2017).DDoS attacks are one of the major types of these threats and the aim

of these attacks is to make internet-based services unavailable to its legitimate users.

Although widely known web sites, such as GitHub, Dyn (DNS Provider), BBC, Spamhaus

and Bank of America (JP Morgan Chase/US Bancorp/Citigroup/PNS Bank) were well-

equipped in security, reports by Makridis and Smeets (2019)showed that these sites

suffered DDoS attacks in February 2018, October 2016, December 2015, March 2013 and

December 2012 respectively. Hackers are incessantly generating new types of DDoS which

work on the application layer as well as the network layer. The vulnerabilities in the

aforementioned areas allow hackers to deny access to web services and slow down access

to network resources. The Intrusion Detection System (IDS) is one of the solutions

employed to solve the problem of DDoS and preserving the confidentiality, integrity and

availability of web services and computer network resources (Adebayo and Abdul Aziz,

2019). Numerous types of DDoS attacks are already known, such as a Smurf attack, which

sends large numbers of Internet controlled message protocol packets to the intended

victims. A dissimilar category of DDoS is R-U-Dead-Yet (RUDY), which simply

consumes all available sessions of a web application which means sessions will never end.

In the same vein, the web service will be unavailable for any new request from new users.

Lakshmi and Begum (2017) presented thatone of the most up-to-date DDoS categories is

12

HTTP POST/GET, where attackers send a totally legitimate posted messages at a very slow

rate, such as (1 byte/240 second), into a web server hosting a web application. The HTTP

POST/GET will have a harmful effect on a web service and cause it to slow down

temporarily and interrupting the service. A dissimilar category of modern DDoS attack is

an SQL Injection Dos (SID DoS) in which attackers insert a malicious SQL statement as a

string that will pass to a website’s database thereby illegally allowing access to the

resources or to the stored data on servers(Adebayo al., 2012).

Kubus, (2020) conveyed thatmost available open access data sets contained duplicated and

redundant instances, which make the detection and classification of DDoS unrealistic and

ineffectual.

Machine learning is usually used to detect and classify network traffic based on some

features to measure and determine if the network traffic is normal while the amount of

packets would increase in the attacked packet rather than the normal packet; also, the inter

arrival time will be too small to allow attackers to consume resources rapidly (Adebayo

and AbdulAziz 2014). DDoS packets usually have a high bit rate for network layer attack,

thus, attackers focus on any attributes that help them to consume resources and make the

service unavailable to end users.

The aim of this research is to develop an improved genetically optimized Neural Network

Algorithm for classification of DDoS attacks in order to have high accuracy, high detection

rate, and low false alarm rate (FAR) using relevant datasets.

13

1.2. Statement of the Research Problem

DDoS attacks have remained persistent and reoccurring decimal in the security issues of

computing applications (Alenezi and Reed 2017). Machine learning classification

algorithms were proven methods applied for improving DDoS detection and classification.

Most frequently used techniques are Naive Bayes, neural network, support vector machine,

decision trees, multilayer perception and random forest. However, these methods suffers

from low accuracy in classification of DDoS attacks, completeness and confidence factors

(high false alarm and high running time) such as experienced in researches conducted by

Jawale and Bhusari (2014); Nourozian and Merati (2015); Kejie et al., (2017) resulting in

90.78%, 90.78%, and 94.6% accuracy respectively with undisclosed high FPR respectively.

This research presents an improved genetically optimized Neural Network Algorithm for

classification of DDoS attacks using finely tuned objective functions and constraints, to

augment the setback in DDoS attack detection.

1.3. Aim and Objectives

The aim of this research is to design an improved genetically optimized Neural Network

Algorithm for classification of DDoS attacks. The objectives are to:

i. Formulate objective function in order to improve the genetically optimized

neural network algorithm for DDoS attacks.

ii. Design an improved model using refined GA.

iii. Evaluate the performance of the developed model.

1.4. Significance of the Study

 The formulated objective function shall bring about improvement in the GA which shall be

used to optimize the DDoS data with neural network model. With the implementation of an

14

improved genetically optimized neural network algorithm, an optimal DDoS classification

parameters can be obtained for developing the model, thereby providing adequate

protection against network-based threats. This in turn will improve the level of trust and

confidence in the cloud service providers by customers, as well as increasing its level of

adoption for various cloud services. The proposed DDoS classification model shall be

evaluated to ensure the effectiveness and efficiency in the operation compare to the existing

system.

1.5. Scope of the Study

The research will be restricted to the use of genetically optimized Neural Network

Algorithm for classification of DDoS attacks using the existing DDoS attacks dataset from

the well-known KDD ‘99 dataset repository to evaluate the performance of proposed work.

.

15

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Related Work on Distributed Denial of Service

Yu and Lee (2010) proposed an incremental learning method which was called incremental

tree inducer (ITI). The investigation established the performance of ITI, K-mean+ ITI,

SMO+ ITI for DDoS detection on KDD’99 as 92.38%, 91.31% and 91.07% respectively.

Poojitha et al., (2011) applied neural network to train samples from KDD’99. The method

was able to simply feed forward neural networks trained by the back-propagation algorithm

to classify the abnormal events. The authors reported the power of the algorithm to find

1500 DDoS attacks in the testing dataset.

Su (2012) collected attack data using one laptop that sent DDoS attacks against the victim

machine in the LAN. The amount of traffic range was between 0-80 Mbps during the

simulation. The author initially applied Modified Linde-Buzo-Grayclustering algorithm to

reduce the amount of sample data. Afterwards, he employed KNN algorithm and reported

the overall accuracy of 96.25% in the case of 2-flod validation.

Papalexakis et al. (2012) utilized the soft clustering to find different types of attacks in

KDD’99. The researchers achieved an overall accuracy of 75% and 85% for normal and

attack respectively.

Gavrilis and Dermatas (2013) conducted research and evaluated a Radial-basis function

(RFB) Neural Network for DDoS attacks dependent on statistical vectors through short

16

time window analysis. The suggested method was tested and evaluated in a controlled

environment with an accuracy rate of 98% of DDoS detection.

Ahmed and Mahmood (2014) applied the X-mean algorithm to detect anomalies in the

DARPA dataset. The majority of the attack in the selected subset of the DARBA dataset

was DDoS attacks and the study obtained 94% accuracy to detect anomalies in the dataset.

Jawale and Bhusari (2014) presented research on Artificial Neural Network (ANN) that

achieved the highest accuracy rate. The research proposed a system that uses multilayer

perceptions, back propagation and a support vector machine, consisting of multi modules

such as packet collection and preprocessing data. This system achieved 90.78% detection

rate.

Ahmed and Mahmood (2015) proposed a collective anomaly detection method using a

partitioned clustering technique. The KDD’99 /DARPA datasets were used to train and test

this method. The research confirmed the ability of the algorithm to find all available DDoS

attacks in test data.

Hybrid Neural Network technique was used by Li et al., (2019) consisting of a self-

organizing map (SOM) and radial basis functions to detect and classify DDoS attacks.

This experiment achieved a satisfactory accuracy rate result for detecting and classifying

DDoS attacks.

Norouzian and Merati (2015) presented a most effective classification technique for

detecting and classifying attacks into two groups normal or threat. The study offered a

new approach to IDS based on a Multilayer Perceptron Neural Network to detect and

17

classify data into 6 groups. The research implemented MLP design with two hidden

layers of neurons and achieved 90.78% accuracy rate.

A 2-layered NIDS that uses a feed-forward neural network was proposed by Haddadi et

al. (2016) the proposed system classified normal connections and attacks. Diverse kinds

of attacks were determined, and the research focused on using training function, data

validation and a preprocess dataset that caused less memory usage, minimum resource

consumption and faster training. After employing the projected system on a KDD cup 99

Dataset, the result was very satisfactory, both on accuracy rate and performance.

Zhang et al., (2017) proposed an anomaly-based DDoS detection approach using an

analysis of network traffic where a radial-based function (RBF) Neural Network was used

in this approach, the method was tested UCLA dataset, achieving 93% accuracy rate for a

DDoS attack.

Kejie et al., (2017) proposed a framework to detect DDoS attacks and identify attack

packets efficiently. The purpose of the framework was to exploit spatial and temporal

correlation of DDoS attack traffic. The method employed accurately detected DDoS

attacks and identified attack packets without modifying existing IP forwarding

mechanisms at the routers. This work achieved 94.6% for detection probability using the

proposed framework.

A synopsis and comprehensive classification of IDS was presented by Alenezi and Reed

(2017) where difficulties and characteristics of DDoS attacks were discussed in the

research. Three different classifications were chosen. The study focused on general

18

DDoS and flooding attacks. The cumulative sum approach had many advantages over

statistical techniques which was effectively demonstrated in the research.

Recent study by Hoque et al. (2017) proposed a new DDoS detection framework which

was implemented on software as well as hardware using the Field Programmable Gate

Arrays (FPGA) device. This method merely considered the DDoS attack detection as a 2-

class problem. This model formed the normal traffic profile during the analysis period.

When a new input traffic instance was added, the attack detection module first computed

the correlation value by analyzing the three distinct features of the added instance and

normal profile. If the calculated correlation value surpasses the predefined threshold, the

system generates an alarm.

2.1.1 Review of related concepts on genetic algorithm

A Genetic Algorithm (GA) is said to be a programming technique that mimics biological

evolution as a problem-solving strategy (Bobor, 2006). This method is established on

Darwinian’s principle of evolution and survival of fittest to optimize a population of

candidate solutions towards a predefined fitness (Li, 2004). It is important to state that

GA uses an evolution and natural selection that uses a chromosome-like data structure as

well as evolving the chromosomes using selection, recombination and mutation operators

(Li, 2004). Typically, GA procedure starts with randomly generated population of

chromosomes, which represent all possible solution of a problem. From each of the

chromosomes, different positions are encoded as bits, characters or numbers. These

positions could be referred to as genes. Thereafter, an evaluation function is used to

calculate the goodness of each chromosome according to the desired solution; this function

19

is known as “Fitness Function”. Through this process of evaluation, “Crossover” is used to

simulate natural reproduction and “Mutation” is used to mutation of species (Li, 2004).

Likewise, for survival and combination, the selection of chromosomes is biased towards

the fittest chromosomes.

When GA is used for solving various problems, three factors will have vital impact on the

effectiveness of the algorithm and also of the applications (Goyal and Kamar 2008). These

are:

i. The fitness function.

ii. The representation of individuals.

iii. The GA parameters.

The determination of the above-mentioned factors often depends on applications and/or

implementation.

2.1.2 Related work on fitness function

Goyal and Kumar (2008) wrotea GA to detect the attack type of connection. The

Algorithm used different features in network connections to generate a classification

rule set; the researchers used the fitness function given by the formula:

 (2.1)

Where:

A = Is the total of attacks,

a = The number of attack links which the individual correctly classified,

B = The normal links in the population,

b =The number of normal connections a network correctly classified.

20

A threshold value of 0.95 was set; the selected individual had a fitness value > 0.95.

Uppalaiah et al. (2012) used GA to detect Denial of Service (DOS) and Probe type of

attacks, the researchers used a fitness function:

 (2.2)

Where f(x) depicts the fitness of entity x, while f(sum) is the total fitness of all entities.

Li (2004) used aGA for Intrusion Detection System, he calculated the fitness function by

calculate the following four equations:

 (2.3)

 (2.4)

 (2.5)

 (2.6)

Using equation (2.3) the outcome is calculated based on whether the A field of connection

matched the pre-classified data set and then multiply the weight of that field, the value of

matched is 0 or 1. In the equation (2.4), the actual value of suspicious Level reflects

observations from historical data. In the equation (2.5), ranking indicates whether or not the

intrusion is easy to identify. Finally the value of fitness computed in equation (2.6) using

the penalty.

21

2.1.3 Review of theories/empirical work

There are several researchers that used evolutionary algorithms and especially GAs in

IDS to detect malicious intrusion from normal use. Similarly, there are several papers

related to IDS which has certain level of impact in network security.

It is important to note that the process of using GAs for intrusion detection can be traced

back to 1995, when Crosbie and Spafford (2008) applied the multiple agent technology

and GP to detect network anomalies (1995). The GP was used to determine anomalous

network behaviours and each agent can monitor one parameter of the network audit data.

The proposed methodology has the benefit when many small autonomous agents are used

but it has problem when communicating among the agents. Likewise, if the agents are not

properly initialized the training process can be time consuming.

Li (2004) developed a process using GA to detect abnormal network intrusion. The

approach used includes both quantitative and categorical features of network data for

deriving classification rules. Nevertheless, it was observed that the inclusion of

quantitative feature can increase detection rate but no experimental results were available.

Goyal and Kumar (2008) described a GA based algorithm to classify all types of smurf

attack using the training dataset with very low false positive rate (at 0.2%) and detection

rate at almost 100%.

Lu and Traore (2014) engaged the use of historical network dataset by using GP to derive

a set of classification. The researchers used support-confidence framework as the fitness

function and accurately classified several network intrusions. However, their use of

genetic programming made the implementation procedure very difficult and also for

training procedure more data and time was required.

22

Xia et al. (2015) used GA to detect anomalous network behaviours based on information

theory. Few network features could be identified with network attacks based on mutual

information between network features and type of intrusions and then using these features

a linear structure rule and also a GA is derived. The approach of using mutual information

and resulting linear rule appeared very effective because of the reduced complexity and

higher detection rate. The only problem was it considered only the discrete features.

Gong et al. (2015) presented an implementation of GA based approach to Network

Intrusion Detection using GA and presented software implementation. The approach

derived a set of classification rules and utilized a support-confidence framework to judge

fitness function.

Moorthy and Sathiyabama (2012) offered a novel approach to detect the malicious

intrusions (hacks) by using a complex artificial intelligence method known as GA applied

to IDS. This approach applies GA to learn how to detect malicious intrusions and separate

then from normal use. Using GA result gave them the best fitness value which was very

closely to the ideal fitness value of 1. The system was able to detect about 97% of attacks

and 0.69% of normal connections were incorrectly classified as attacks.

Zhao et al. (2013) presented on IDS using GA that, Misuse detection system and anomaly

detection system encode an expert’s knowledge of known patterns of attack and system

vulnerabilities as if-then rules. He also used two methods for cluster analysis, one was

hierarchical and another one was K-means. It was concluded that only about 0.71% of

normal connections were classified as attacks; also had a very low false positive rate.

Diaz-Gomez et al. (2006) used the evolution process set of probable solutions which were

generated randomly. In that experiment, the researchers evaluated each chromosomes

23

using fitness function. The research also employed the use of single point crossover and

single point mutation. Accordingly, the system was tested by implementing different

formulas for fitness function. It was found that there were no false positives and the

number of false negative decreases dramatically.

Gong et al. (2004) in 2005 selected the approach to network misuse detection. The result

of this research indicated that the GA approach was very effective and also had the

flexibility to detect the intruder and also classify them. In this approach there was good

detection rate and depending on the selection of fitness function weight values, the

generated rules could be used to either generally detect network intrusions or precisely

classify the types of intrusions.

2.2 Standard Genetic Algorithm Process

The standard GA process is shown in Figure 2.1 In the first instance, a population of

chromosomes is created. Then, the chromosomes are evaluated by a defined fitness

function. Thereafter, some of the chromosomes are selected for performing genetic

operations. Finally, genetic operations of crossover and mutation are performed. The

created offspring replace their parents in the initial population. In the reproduction method,

only the selected parents in the third step will be replaced by their corresponding offspring.

The GA procedure repeats until a user-defined criterion is reached. In this research, the

standard GA is modified and new genetic operators are introduced to improve its

performance.

24

Figure 2.1. Procedure of the Standard Genetic Algorithm (Pham and Karaboga, 2000)

2.3 How Distributed Denial of Service Attack Work

As the name implies, DDoS attack enables an attacker to gain control of a network of

online machines in order to carry out an attack. Computers and other technologies (such as

IoT devices) are infected with malware, thereby turning each one into a bot (or zombie).

The attacker at that moment takes remote control over the group of bots, which is called a

botnet. Immediately a botnet has been recognized, the attacker is able to direct the

machines by sending updated instructions to each bot via a method of remote control

(Adebayo et al., 2018). Each and every time the IP address of a victim is targeted by the

botnet, each bot will react by sending requests to the target, potentially triggering the

targeted server or network to overflow capacity thereby resulting in a denial-of-service to

normal traffic. Taking into cognisance that every bot is a valid Internet device, separating

the attack traffic from normal traffic can be hard.

https://www.cloudflare.com/learning/ddos/glossary/malware/
https://www.cloudflare.com/learning/bots/what-is-a-bot/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/

25

2.4 Distributed Denial of Service Attack Strategy

Jaafar et al. (2019) reviewed DDoS attack components namely: attacker, control masters

(or handlers), agents (or slaves or zombies), victim (or target machine). The Attacker

initially scans millions of machines over the Internet for finding vulnerable machines

whose security can be exploited easily. The machines are referred to as masters or handlers

and are directly under the control of attacker. Additionally, the method of recruiting

handlers is completely automated and is done through continuous scanning of remote

machines looking for any security loopholes. Malicious codes are normally installed by the

attacker into these compromised machines which then become capable of deploying further

infected machines.

The machines which are normally used by handlers are directly under their control and are

identified as slaves or zombies. Attacker indirectly controls these machines through

handlers. Both the handlers and zombies, on the signal of attacker are deployed to start a

coordinated attack on target machine thereby making the target machine incapable of

communicating or utilizing any of its resources. The attacker frequently uses IP spoofing in

handlers and zombies to hide the identity of these machines which enables future scope for

attacker of using the same machines for creating DDoS attack.

2.5 Common Types of Distributed Denial of Service Attacks

To understand how different DDoS attacks work, it is vital to know how a network

connection is established. A network connection on the Internet comprises several different

components or “layers”. This is similar to building a house from the ground up where every

26

step in the model has a different purpose. The OSI model presented below, is a conceptual

framework used to describe network connectivity in seven distinct layers.

Figure 2.2Conceptual Framework used to describe Network Connectivity in Seven Distinct

Layers (Cardieri,2010)

While nearly all DDoS attacks involve overpowering a target device or network using

traffic, attacks on the other hand can be divided into 3 categories. An attacker may make

use one or multiple different attack vectors, or cycle attack vectors possibly based on

counter measures taken by the target.

27

2.6 Application Layer of Distributed Denial of Service Attacks

In reference to the OSI model, the application layer occasionally referred to as a layer

seven DDoS attack. The goal of this attack is to deplete the resources of the target. The

attack is aimed at the layer in which web pages are generated on the server and delivered in

response to HTTP requests. A single HTTP request is economical to execute on the client

side, and can be expensive for the target server to respond to as the server often must load

several files and run database queries in order to create a web page. It is pertinent to state

that the Layer 7 attacks are hard to defend as the traffic can be difficult to flag as malicious.

Figure 2.3An Application Layer DDoS Attack(Cardieri,2010)

2.7 HTTP Flood Attack

The HTTP flood attack is likened to pressing refresh in a web browser over and over on

many different computers at once where large numbers of HTTP requests flood the server

resulting in denial-of-service. The HTTP attack ranges from simple to complex. Also,

simpler applications may access one URL which has similar range of attacking IP

28

addresses, referrers and user agents. Complex versions may employ the use a large number

of attacking IP addresses, and target random Universal Resource Locator using random

referrers and user agents.

2.8 The Protocol Attack

The main aim of the protocol attack also referred to as state-exhaustion attack is to cause

service disruption by consuming entire available state table capacity of web application

servers or intermediate resources like firewalls and load balancers. Attacks in the protocol

usually exploit the flaws seen in layer 3 and layer 4 of the protocol stack to render the target

inaccessible.

Figure 2.4Protocol DDoS Attack (Cardieri, 2010)

2.9 SYN Flood Attack

A SYN Flood attack could be likened to a worker in a supply room receiving requests from

the front of the store in which the worker receives a request, collects the package, and then

waits for confirmation before bringing the package out front. The worker thereafter

https://www.cloudflare.com/learning/security/what-is-a-firewall/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

29

acquires many more package requests without confirmation until the worker cannot carry

any more packages, become stunned, and requests start going unanswered. The SYN Flood

attack often exploits the TCP handshake by sending a target an enormous number of TCP

“Initial Connection Request” SYN packets with spoofed source IP addresses. The target

machine usually reacts to every connection request and then waits for the final step in the

handshake, which never occurs, thereby exhausting the target’s resources in the process.

2.10 Volumetric Attacks

This category of attacks attempts to make congestion by consuming all available bandwidth

between the target and the larger Internet through which large amount of data are sent to a

target by using a form of amplification or another means of creating massive traffic, such as

requests from a botnet. Figure 2.4 shows an example of amplification.

Figure 2.5 Diagram of Amplification (Cardieri,2010)

https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/
https://www.cloudflare.com/learning/ddos/glossary/ip-spoofing/

30

2.11Classification of DDOS Attacks: An Overview of Modern Approaches

Currently, there are a lot of options for organizing DDoS attacks. These options differ

in the implementation techniques as well as the characteristics of parasitic traffic generated

by botnets. There are three main classifications that specialists use nowadays.

 2.11.1 Classification by protocol

DDoS attacks are divided into three large groups: Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP) and other. These are simplified classification based on

the main protocols used to transfer data across the Internet, whose vulnerabilities are

exploited by hackers to organize attacks. Both TCP and UDP are used more often than

others, therefore attacks with their use are allocated in separate groups. Other forms include

attacks via ICMP, GRE, IPIP, ESP, AH, SCTP, OSPF, SWIPE, TLSP, Compaq_PEE and

other protocols. However, other school of thoughts divide DDoS attacks in 5 types: TCP,

HTTP, UDP, ICMP and others. These divisions help us to ascertain tendencies regarding

which protocols are more affected by parasitic traffic and the ones that are less affected,

thereby paving way to adjust protection strategies and also helps in working on new

algorithms for filtering "garbage."

 2.11.2 OSI classification

The OSI is a network model of the OSI / ISO network protocol stack, according to how

modern Internet operates. The OSI model comprises 7 layers: physical, data link, network,

transport, session, presentation, and application (or application layer). Every protocol of the

31

network through which data (traffic) is transmitted denotes to a certain layer. Accordingly,

the DDoS attacks classified by the layers of the OSI model.

Figure 2.6Classification of DDoS Attacks by the Layers of the OSI Model(Cardieri,2010)

DDoS attacks are aimed at Layer 2 - data link, Layer 3 – network, Layer 4 – transport and

Layer 7 - application.

2.11.3 Classification by mechanism of action

Going by the numerous types of denial of service attacks, 3 groups by the mechanism of

action could be distinguished. All attacks aimed at overloading the communication channel,

that is, various types of flooding falls under the first group. It is important to stress that the

aim of flooding is to create a powerful flow of requests (data packets) which will take up

the entire bandwidth which is dedicated to the victim's resource. The aforesaid groups

comprise DNS amplification, Fragmented UDP flood, ICMP flood, NTP amplification,

NTP flood, Fragmented ACK flood, Ping flood, UDP flood, Non-Spoofed UDP Flood,

VoIP flood, Flood by media data, Smurf Attack, Fraggle Attack, Fragmented ICMP-flood,

DNS flood and other attacks with amplification. Next is the group two which has fewer

https://ddos-guard.net/en/terminology/attack_type/dns-amplification-attack
https://ddos-guard.net/en/terminology/attack_type/fragmented-udp-flood-udp-fragmentation-nuke
https://ddos-guard.net/en/terminology/attack_type/icmp-flood
https://ddos-guard.net/en/terminology/attack_type/ntp-amplification-attack
https://ddos-guard.net/en/terminology/attack_type/ntp-flood
https://ddos-guard.net/en/terminology/attack_type/fragmented-ack-flood
https://ddos-guard.net/en/terminology/attack_type/ping-flood
https://ddos-guard.net/en/terminology/attack_type/udp-flood
https://ddos-guard.net/en/terminology/attack_type/non-spoofed-udp-flood
https://ddos-guard.net/en/terminology/attack_type/voip-flood
https://ddos-guard.net/en/terminology/attack_type/media-data-flood
https://ddos-guard.net/en/terminology?search=smurf
https://ddos-guard.net/en/terminology?search=fraggl
https://ddos-guard.net/en/terminology/attack_type/icmp-fragmentation-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/dns-flood
https://ddos-guard.net/en/terminology/attack_type/amplification-ddos-attacks

32

types of denial of service attacks which also comprise of attacks that exploit the network

protocol stack vulnerabilities comprising SYN flood, IP null attack, Fake TCP session

attack, TCP null attack and Type of Service (TOS) Flood. Others include sack, RST/FIN

flood, SYN-ACK flood, TCP null / IP null attack, Multiple SYN-ACK fake session attack,

Synonymous IP Attack (Same Source/Dest Flood; LAND Attack), Misused Application

Attack, Ping of Death and Multiple ACK Fake Session Attack (Multiple ACK Spoofed

Session Flood). The third group includes the following application level DDoS attacks:

HTTP flood, Faulty application attack, Single request HTTP flood, Fragmented HTTP

packets attack, Single session HTTP flood and Session attack.

2.12 Artificial Neural Network

The Artificial Neural Network (ANN) is a biologically inspired computing model consist

of various processing elements (neurons). These neurons are normally connected to

elements or weights that build the structure of neural networks. The ANN has elements

for processing information, namely transfer functions, weighted inputs, and output.

(Rawat, Rana, Kumar and Bagwari 2018).

2.13 Intrusion Detection: An Overview

An intrusion detection system (IDS) is one of the solutions which can be used to prevent

an intruder from launching a DDoS attack in a protected network. A very effective IDS

can detect a new DDoS in a short time without human intervention. The IDS system can

be categorized into two types as follows:

i. Host Intrusion Detection System (HIDS): this type of IDS can be

implemented in network devices or workstations. HIDS techniques can be

https://ddos-guard.net/en/terminology/attack_type/syn-flood
https://ddos-guard.net/en/terminology/attack_type/ip-null-attack
https://ddos-guard.net/en/terminology/attack_type/fake-session-attack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/fake-session-attack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://ddos-guard.net/en/terminology/attack_type/type-of-service-tos-flood
https://ddos-guard.net/en/terminology/attack_type/rst-or-fin-flood
https://ddos-guard.net/en/terminology/attack_type/rst-or-fin-flood
https://ddos-guard.net/en/terminology/attack_type/syn-ack-flood
http://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://ddos-guard.net/en/terminology/attack_type/multiple-syn-ack-fake-session-attack-multiple-syn-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/protocols/synonymous-ip-attack-same-source-dest-flood-land-attack
https://ddos-guard.net/en/terminology/attack_type/misused-application-attack
https://ddos-guard.net/en/terminology/attack_type/misused-application-attack
https://ddos-guard.net/en/terminology?search=Death
https://ddos-guard.net/en/terminology/attack_type/multiple-ack-fake-session-attack-multiple-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/multiple-ack-fake-session-attack-multiple-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/http-flood-excessive-verb
https://ddos-guard.net/en/terminology/attack_type/faulty-application-attack
https://ddos-guard.net/en/terminology/attack_type/single-request-http-flood-multiple-verb-single-request
https://ddos-guard.net/en/terminology/attack_type/http-fragmentation-fragmented-http-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/http-fragmentation-fragmented-http-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/single-session-http-flood-excessive-verb-single-session
https://ddos-guard.net/en/terminology/attack_type/session-attack-slowloris

33

used to prevent a DDoS attack on a selected device, but it does not support

monitoring of a whole network.

ii. Network Intrusion Detection System (NIDS): The NIDS can be

implemented as a security strategy within a protected network, and can be

used to detect and classify all network traffic from all devices.

2.14 Networking Attacks

Every attack on a network can conveniently be placed into one of these groupings:

i. DDoS Attack: The DDoS attack as the name suggests attempt to make an

online service inaccessible by overwhelming it with traffic from multiple

sources. It is imperative to note that the DDoS attack usually targets a wide

range of important resources, from banks to news websites, and present a

major challenge to making sure people can publish and access important

information. Some specific and particularly popular and dangerous types

of DDoS attacks include: User Datagram Protocol (UDP) flood attack: An

UDP flood attack is initiated by sending a large number of UDP packets to

arbitrary ports on a remote host thereby on receiving the packets, the target

system looks at the destination ports to identify the applications waiting on

the port. However, once there is no application, it generates an ICMP

packet with a message “destination unreachable”. This process can sap host

resources thereby ultimately leading to inaccessibility.

ii. Internet Control Message Protocol (ICMP) flood: Similar in principle to the

UDP flood attack, an ICMP flood overflows the target resource with ICMP

Echo Request packets, generally sending packets as fast as possible without

34

waiting for the replies. The ICMP flood has the propensity to consume both

outgoing and incoming bandwidth, as the target server will attempt to

respond with ICMP Echo reply packets, resulting a significant overall

system slowdown.

iii. SYN flood Attack: In the SYN flood attack, the attacker sends several

packets but does not send the ACK back to the server. The connections are

therefore half opened and consuming server resources. In this regards, a

legitimate user will try to connect but the server will refuse to open a

connection thereby resulting in denial of service.

iv. Remote to User Attacks (R2U): This is a type of attack in which a user

sends packets to a machine over the internet, in which s/he does not have

access to. This is in order to expose the machines vulnerabilities and exploit

privileges which a local user would have on the computer. Examples of

remote to user attack are: xlock, guest, xnsnoop, phf, sendmail dictionary.

v. User to Root Attacks (U2R): These type of attacks are exploitations in

which the hacker starts off on the system with a normal user account and

attempts to abuse vulnerabilities in the system so that to gain super user

privileges. Examples include perl, xterm.

vi. Probing: The Probing is a type of attack where the hacker scans a machine

or a networking device in order to determine weaknesses or vulnerabilities

that may later be exploited so as to compromise the system. This technique

is commonly used in data mining. For instance, saint, port sweep, mscan.

nmap etc.

35

2.15 Classification of Intrusion Detection

Intrusions Detection can be categorized into two main groups namely:

i. Host Based Intrusion Detection: The Host Based Intrusion Detection (HIDSs)

evaluate information found on a single or multiple host systems. This include

the contents of operating systems, system and application files (Planquart,

2013).

ii. Network Based Intrusion Detection: The Network Based Intrusion Detections

(NBID) evaluate information captured from network communications as well

as analyzing the stream of packets which travel across the network

(Planquart, 2013).

2.16 Components of Intrusion Detection System

An intrusion detection system usually consists of three functional components (Bace 2012).

The first component of an intrusion detection system, which is also known as the event

generator, is a data source. Data sources can be classified into four categories namely

Host-based monitors, Network-based monitors, Application-based monitors and Target-

based monitors.

The second component of an intrusion detection system is referred to as the analysis

engine. This analysis engine takes information from the data source and examines the

data for symptoms of attacks or other policy violations. The analysis engine can embrace

one or both of the following analysis approaches:

i. Misuse/Signature-Based Detection: The Misuse/Signature-Based detection

engine is intended to detect intrusions that follow well-known patterns of

attacks (or signatures) that can exploit known software vulnerabilities. The

36

main limitation of this approach is that it only looks for the known

weaknesses and may not care about detecting unknown future intrusions

(Kumar and Spafford 1995),

ii. Anomaly/Statistical Detection: An anomaly based detection engine will

search for something rare or unusual. The engine analyses system event

streams by using statistical techniques to find patterns of activity that

appear to be abnormal. The main drawbacks of this system are that engine

are extremely expensive and can recognize an intrusive behaviour as

normal behavior because of insufficient data. The third component of an

intrusion detection system is referred to as response manager. In basic

terms, the response manager will only act when inaccuracies (possible

intrusion attacks) are found on the system, by informing someone or

something in the form of a response. (Kumar and Spafford 1995).

37

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1 The Proposed Research Design

The design of the research work follows the processes elaborated in Figure 3.1. The

design was divided into three phases namely: first, second and third phases. The first

phase involves the critical, systematic and specific focus review stage. After the review,

baseline papers were selected and thoroughly studied to formulate the problem.

Thereafter, objective function was formulated for the GA optimization. The genetically

optimized neural network classifier was developed. During the performance evaluation,

comparative analysis of the conventional neural network classification and proposed

classifier (NN-GA) was done. The work was technically concluded after this.

38

Figure 3.1: Block Diagram of the Research Design

3.2 Problem Formulation Process

The research problem was formulated by considering the key problems in the statement of

problem. These issues are poor accuracy, confidence factor and completeness factor in the

existing classifiers. The accuracy issue was addressed by formulating error in converse

39

relation to accuracy while the formulas for confidence and completeness factors would be

used for genetic optimization.

3.3 Improved Genetic Algorithm

It would be recalled that in Figure 2.1, the standard GA process first created a population of

chromosomes where the chromosomes were evaluated by a defined fitness function.

Thereafter, some of the chromosomes were selected for performing genetic operations.

Finally, genetic operations of crossover and mutation were performed. The produced

offspring replaced their parents in the initial population. In this reproduction process, only

the selected parents in the third step was replaced by their corresponding offspring. The GA

process repeated until a user-defined criterion was reached. In this research, the standard

GA was modified Figure in 3.2 and new genetic operators are introduced to improve its

performance.

40

Figure 3.2 Improved Algorithm: Predict data/intrusion type using GA

3.4 Objective Function Formulation Procedure

Multi-objective function was developed in this research in order to optimize the neural

genetic classification of the DDoS attacks. The first objective is to minimize error. The

error is computed from the difference of classier output and ground truth. The

mathematically expression of the first objective function is given as:

 FitnessFcn1 = Xco − Xgt (3.1)

Where

41

Xco = Classier Output

Xgt = Ground truth

Subject to

Constraints:

0 < = Xco(1) < = 0.3

0 < = Xgt(2) < = 0.3

The constraints for the two variables are chosen to be bounded between 0 and 0.3. This is

because small range leads to pre-mature convergence and large range leads to poor

performance.

The second objective function is computed from the product of confidence factor and

completeness measure. Confidence factor measures the predictive accuracy of a rule by

taking into account true positive (TP) and false positive (FP). Mathematically, confidence

factor is measured as,

FPTP

TP
factorConfidence

+
= (3.2)

Where TP is the number of samples that are correctly classified

 FP is the number of samples that are incorrectly classified

 Subject to

 Constraints: TP >= 0

 FP >= 0

 Boundaries: TP = 1

 FP = 1

42

Completeness factor is a measure of the ability of a rule to select instances of a certain

class. The mathematical expression is given as:

FNTP

TP
ssCompletene

+
= (3.3)

 Subject to

 Constraints: TP >= 0

 FN <= 0

 Boundaries: TP = 1

 FN = 0

Where FN is the number of false negative of the considered class

So, the second objective function is expressed as,

 FitnessFcn2 = confidence × completeness (3.4)

 Subject to

 Constraints: TP >= 0

 FP >= 0

 FN <= 1

 Boundaries: TP = 1

 FP = 1

 FN = 0

3.5 Flowchart of Genetic Algorithm

The flowchart in Figure 3.3 shows the operations of the general GA according to which

GA is implemented into this research.

43

Figure 3.3Operations of a General Genetic Algorithm (Norouzian, 2011)

Figure 3.4 shows the Flowchart for the optimization/classification model. The DDoS data

was optimized using GA. The optimization is in terms of optimizing the confidence and

completeness factors and minimizing the error. The classification was done using neural

network. Based on the set of rules generated during supervised learning, the classification

was done as either non DDoS attack or Classified DDoS attack.

44

 No

 Yes

Figure 3.4: Flowchart of the Proposed Optimization/Classification Model

The proposed model starts by optimizing KDD DDOS data using GA. After feature

optimization, neural network was applied for classification in order to build model for

attack classification into DDOS attacks and non DDOS attacks. Once the model classify

data into either benign or malicious, it stop the execution.

3.6 Implementation Procedure

The pre-calculation phase has 23 groups of chromosomes according to the training data.

There are 23 (22+1) groups for each of attack and normal types presented in training data.

The number of chromosomes in each group is variable and depends on the number of data

Start

Optimize DDoS Data Using

Genetic Algorithm

Objective 1 and Objective 2

Classifying DDoS Using

Improved Neural Network

Confidence and Completeness

Threshold

Threshold?

Stop

45

and relationship among data in that group. Hence, total number of chromosomes in all

groups were tried to keep in reasonable level to optimize time consumption in testing

phase. For each test data in the testing/detection phase, an initial population is made

using the data and occurring mutation in different features. This population is compared

with each of the chromosomes prepared in training phase. Portion of population, which

are more loosely related with all training data than others, are removed. Crossover and

mutation occurs in rest of the population which becomes the population of new

generation. The process continue to run until the generation size comes down to one.

Among the extracted features of the datasets and forthe sake of simplification of the

implementation, only the numerical features (both continuous and discrete)were

considered. The procedure for the implementation is captured in Figure 3.5.

46

Procedure for Implementation

Input: Pre-calculated set of chromosomes

Output: Type of data.

1 Initialize the population

2 CrossoverRate, MutationRate

3 While number of generation is not reached

4 For each chromosome in the population

5 For each pre-calculated chromosome

6 Find fitness

7 End for

8 Allot optimal fitness as the fitness of that chromosome,

9 End for

10 Remove some chromosomes with worse fitness

11 Set on crossover to the selected pair of chromosomes of the

population

12 Set on mutation to each chromosome of the population.

13 End while

Figure 3.5 Implementation Procedure

3.7 Dataset and Data Processing

A literature review was carried out in order to find the appropriate datasets to be used for

this research. Most frequently used datasets for intrusion/classification are the KDD cup

1999, DARPA 1998, CAIDA DDoS attack 2007, ISCX 2012, ADFA 2013, PREDICT

2014, DEFCON 2014, NSL-KDD 2014, KYOTO 2014, ICS Attack 2014, TUIDS.

DARPA/KDD datasets are publicly available, but are old fashioned databases which are

still used in modern studies. This research will leverage on the KDD 99 datasets for the

implementation of our algorithm.

47

The KDD 99 benchmark consists of different components: kddcup.data

kddcup.data_10_percent; kddcup.newtestdata_10_percent_unlabeled; kddcup.testdata;

unlabeled; ddcup.testdata.unlabeled_10_percent; corrected, training data types and typo-

correction. The “kddcup.data_10_percent” was used as training dataset and “corrected” as

testing dataset. The training set consists of 494,021 records among which 97,280 are

normal connection records, whereas the test set contains 311,029 records among which

60,593 are normal connection records. Table 3.5 shows the distribution of each intrusion

type in the training and the test set.

Table 3.5. Distribution of Intrusion types in Datasets

Dataset Normal Probe ddos u2r r2l Total

Train (“kddcup.data_10_percent”) 97280 4107 391458 52 1124 494021

Test (“corrected”) 60593 4166 229853 228 16189 311029

In order to further improve the performance of the proposed classifier, the dataset would

be preprocessed and the necessary features would be encoded into binary digits. This is

because both neural network and GA operate optimally with binary digits. Encoding

processing approach would be used to digitize the 23 classes of attacks in the dataset. In

order to accommodate 23 attack classes, 5 bits would be used to encode the attacks as

Code1 to Code5. With 5 bits, it can accommodate up to 32 attack classes using the

formula of 2n, where n is the number of bits.

48

3.8 Performance Evaluation Measures

In this Research, an accuracy-based measure was used to evaluate the classifier. These

measures are the metrics that have to do with correction classification rate. The accuracy-

based measures include:

i. Confusion matrix: Confusion Matrix as the name implies gives us a matrix

as output and describes the complete performance of the model. This is an

essential parameter for measuring machine learning based model. It consists

of four (4) major components including True Positive, True Negative, False

Positive, and False Negative. These components are described in table 3.1

thus:

Table 3.1: Confusion Matrix

 Predicted Class

Normal Malicious

Actual Class

Normal Web page TN FP

Malicious Web Page FN TP

Where:

TP (True positive) implies the total number of malicious network traffic instances

“correctly” labeled by the classifier.

TN (True Negative) represents the total number of normal network traffic instances

“correctly” labeled by the classifier.

FP (False positive) depicts the total number of normal network traffic instances

“incorrectly” labeled by the classifier as malicious.

49

FN (False Negative) shows the total number of malicious network traffic instances

“incorrectly” labeled by the classifier as normal.

ii. Accuracy: Accuracy measures how accurate a model can detect whether an

instance of network traffic is normal or malicious (intrusion). It can be

expressed in equation (14) as follows:

 Accuracy = TP+TN/ (TP+FP+FN+TN) (3.5)

iii. True positive rate (sensitivity): True Positive Rate is defined as TP/

(FN+TP). True Positive Rate corresponds to the proportion of positive data

points that are correctly considered as positive, with respect to all positive

data points.

 (3.6)

iv. False positive rate (specificity):False positive rate is defined as FP/

(FP+TN). False Positive Rate corresponds to the proportion of

negative data points that are mistakenly considered as positive, with

respect to all negative data points.

 (3.7)

50

It is important to note that both False Positive Rate and True Positive Rate

have values in the range [0, 1]. FPR and TPR both are computed at threshold

values such as (0.00, 0.02, 0.04, …., 1.00) and a graph is drawn.

v. Mean squared error: Mean squared error(MSE) is quite similar to Mean

Absolute Error, the only difference being that MSE takes the average of

the square of the difference between the original values and the predicted

values. The advantage of MSE being that it is easier to compute the

gradient, whereas Mean Absolute Error requires complicated linear

programming tools to compute the gradient. As, we take square of the

error, the effect of larger errors become more pronounced then smaller

error, hence the model can now focus more on the larger errors.

 (3.8)

vi. Regression: Regression is a machine learning algorithm that can be

trained to predict real numbered outputs. Regression is based on a

hypothesis that can be linear, quadratic, polynomial, non-linear, etc. The

hypothesis is a function that based on some hidden parameters and the

input values. In the training phase, the hidden parameters are optimized

w.r.t. the input values presented in the training. The process that does the

optimization is the gradient decent algorithm. If you are using neural

networks, then you also need back-propagation algorithm to compute

gradient at each layer. Once the hypothesis parameters got trained, the

result produced least error during the training, then the same hypothesis

51

with the trained parameters are used with new input values to predict

outcomes that will be again real values.

52

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Results Presentation

4.1.1 Preprocessed dataset classes of attacks

The result of 5-bit encoding of the 23 attack classes in the chosen dataset is presented

in Table 4.1. These 5-bit encoded values are the output features of the dataset. The

snippet of the input features of the dataset is in Appendix E.

Table 4.1: 5-bit Encoded DDoS Attacks

Attack type
Code1 Code2 Code3 Code4 Code5

1 0 0 0 0 0

2 0 0 0 0 1

3 0 0 0 1 0

4 0 0 0 1 1

5 0 0 1 0 0

6 0 0 1 0 1

7 0 0 1 1 0

8 0 0 1 1 1

9 0 1 0 0 0

10 0 1 0 0 1

11 0 1 0 1 0

12 0 1 0 1 1

13 0 1 1 0 0

14 0 1 1 0 1

15 0 1 1 1 0

16 0 1 1 1 1

17 1 0 0 0 0

18 1 0 0 0 1

19 1 0 0 1 0

20 1 0 0 1 1

21 1 0 1 0 0

22 1 0 1 0 1

23 1 0 1 1 0

53

 4.1.2 Neural genetic algorithm classifier training

The neural-based classification results are presented in Figure 4.1. The architecture

consists of 41 inputs, 10 neurons in the hidden layer and five output nodes. The training

recorded 15 iterations.

Figure 4.1: Neural Genetic Algorithm Classifier Training

54

The Mean Squared Error (MSE) of the neural-based genetic classifier records 0.07985 at

the 9th epoch within 15 iterations as shown in Figure 4.2.

Figure 4.2: Classifier Mean Squared Error

The classifier also regresses between 0 and 1. The better result is obtained when the

regression is closer to 1. The regression for training, validation and testing are

respectively achieved as 0.92879 (92.879%), 0.83382 (83.382%) and 0.58577 (58.577%).

The overall regression achieved by the classifier is 0.85423 (85.423%) as presented in

Figure 4.3.

55

Figure 4.3: Classifier Regression

4.1.3 Genetic algorithm implementation toolbox

The essence of GA is for optimization. It optimizes the classification of the DDoS attacks.

The implementation toolbox is presented in Figure 4.4. It consists of a section for

problem setup and results. It also makes provision for option setting and customization of

56

genes formations, chromosomes mating, individuals, population, crossover operation,

mutation operation, generation, stop criteria and so on.

Figure 4.4: Genetic Algorithm Implementation Toolbox

The fitness value is asymptotically distributed along the generation. This clearly shows

that the genetic classifier converges at a definite point as shown in Figure 4.5. The best

fitness has a value of 1.2656 x 10-6 with mean value of 7.13018 x 10-6.

57

Figure 4.5: Plot of Fitness Value against Generation

At convergence point, current best individuals were recorded as second and third

variables which are false positive and false negative as shown in Figure 4.6.

58

Figure 4.6: Current best individuals against Number of variables

The average distance between individual also shows a convergence trends as it

asymptotically approaches a finishing line across the generations as shown in Figure 4.7.

59

Figure 4.7: Average distance between individuals against Generation

In Figure 4.8, the individual against generation is fairly good, showing individual

participation across generations.

60

Figure 4.8: Individual against Generation

The best versus worst analysis across generations shows a good performance as presented

in Figure 4.9. The best performance is shown by the histogram lines while the mean is

indicated by the underlined shading. The worst case does not surface at all. Generally,

this indicates a good performance for the genetic classifier.

61

Figure 4.9: Best, Worst and Mean Scores against Generation

In Figure 4.10, the number of individuals with good score range is very high. Over 45

individuals was recorded at the point of high score range.

62

Figure 4.10: Number of Individuals against Score

The genetic classifier attains high fitted individuals at the 15th generation as shown in

Figure

4.11.

63

Figure 4.11: Fitness of Individuals against Generations

The classifier also shows good fitness of individual parents in reproducing fitted children.

Average of five children was reproduced by the individual parent during chromosomes

mating as shown in Figure 4.12.

64

Figure 4.12: Number of Children against Individual

The stopping criteria were averagely okay. Over 20% stopping criteria was as a result of

generational constraint while few were stalled as shown in Figure 4.13.

65

Figure 4.13: Percentage Analysis of Stopping Criteria

4.2 Discussion

The introduction of the GA for optimization-classification of the DDoS has shown that

better performance is achievable. The performance evaluation of the neural GA classifier

was done based on accuracy-based measures. In this research, we analyzed five

classification algorithms and selected NN-GA as it provides better accuracy than

the other four. The other conventional neural networks recorded lower classification

accuracy compared to the genetically optimized classifier. The evaluation results show an

absolute successful classification of all the attacks. Accuracy of 98.58% was achieved

with detection rate of 96.49% and specificity of 95.97% as against the other conventional

66

NN results. The performance evaluations of the improved NN-GA with existing

algorithms are presented in Table 4.2.

Table 4.2: Performance Evaluation of the Improved NN-GA with Existing Algorithms

 Accuracy

 %

True

Positive

Rate(TPR)

%

True

Negative

Rate

(TPR)

%

False

Positive

Rate (FPR)

%

False

Negative

Rate

(FNR) %

MLP-ANN (UDP) (Sofi et al., 2017) 94.32 92.10 91.64 5.12 0.482

Decision Trees-UDP (Sofi et al.,

2017)

92.23 90.40 89.2 5.87 0.56

Naïve Bayes-UDP (Sofi et al., 2017) 96.91 94.34 93.21 5.56 0.52

SVM using DARPA dataset (UDP

attack) (Vijayasarathy, 2012)

88.50 91.42 94.60 5.71 0.558

NN-GA (Researcher 2021) 98.58 96.49 95.97 4.03 0.351

4.3 Implication of Findings

The results in the table 4.2 shows the new model NN-GA has better accuracy of 98.58%

with lower false positive rate of 0.351 as against the other existing neural networks. Again,

the confusion metrics depicted in Table 3.1 shows that, for most of the classes, this

improved model performs well enough except normal data type which is because of

ignoring non-numerical features. Comparing with the confusion metrics of the winning

entry of KDD‟99, better detection rate for DDoS/user-to-root and close detection rate for

probe & remote-to-local was achieved. The implication of this achievement is that DDoS

attacks with low rate, low levels and mutating variant nature will be better detected than

existing approaches.

67

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research, the author designed an improved model using refined genetic neural

network algorithm to efficiently detect and provide adequate protection against network-

based threats. To implement and measure the performance of the built model, the

standard KDD99 benchmark dataset was used to obtain reasonable detection rate.

Furthermore, to measure the fitness of the chromosomes, the standard deviation equations

with distance were employed. It is envisaged that if better equations or heuristics could be

employed in the detection process, the detection rate would improve to a great extent,

especially the false positive rate would surely be much lower.

5.2 Recommendation

This study recommends that further experiment be performed using other DDoS datasets

from different sources as well as other classification methods such as Bayesian, Support

Vector Machine and K-Means to get an improved accurate result.

5.3 Contributions to Knowledge

The contributions of this research are:

i. An improved multi-step objective function based confidence and completeness

factors.

ii. The improved genetically optimized neural network algorithm would improve

the accuracy of the detector with little overhead.

iii. The improved technique will lower false detection rate.

68

REFERENCES

Aamir, M., & Arif, M. (2013). Study and performance evaluation on recent distributed

denial of service trends of attack & defense. International Journal of Information

Technology and Computer Science, 5(8), 54-65.

Adebayo, O. S., & AbdulAziz, N. (2014). An intelligence based model for the prevention of

advanced cyber-attacks. In the 5th International Conference on Information and

Communication Technology for the Muslim World (pp. 1-5). Minna, Nigeria : IEEE

Adebayo, O. S., & Abdul Aziz, N. (2019). Improved malware detection model with apriori

association rule and particle swarm optimization. Security and Communication

Networks, 2019. doi: 10.1155/2019/2850932

Adebayo, O. S., Mabayoje, M. A., Mishra, A., & Osho, O. (2012). Malware detection,

supportive software agents and its classification schemes.International Journal of

Network Security & Its Applications (IJNSA), 4(6), 58-65. Retrieved from

http://repository.futminna.edu.ng:8080/jspui/handle/123456789/1960

Adebayo, O. S., Noel, M. D., Abdulmutalab, M., Baba, M., Abdulhamid, S. Í. M., &

Suleiman, A. (2018). Performance analysis of classification algorithms for

distributed denial of service attack detection in a distributed network environment.

International Conference on Information Technology on Education and

Development (ITED), 3(12), 67-75. Abuja, Nigeria: Base

Ahmed, M., & Mahmood, A. N. (2014). Network traffic analysis based on collective

anomaly detection. In 9th Conference on Industrial Electronics and

Applications (pp. 1141-1146). Hangzhou, China: IEEE.

Ahmed, M., & Mahmood, A. N. (2015). Novel approach for network traffic pattern analysis

using clustering-based collective anomaly detection. Annals of Data Science, 2(1),

111-130.

Alenezi, M., & Reed, M. J. (2017). Methodologies for detecting denial of service distributed

denial of service attacks against network servers. In Seventh International

Conference on System and Networks Communications (ICSNC). (pp. 92-98). Lisbo,

Portugal

Bace, R. G. (2012). Intrusion detection and intrusion prevention devices. Computer Security

Handbook, 27 (1-27). doi: https://doi.org/10.1002/9781118851678.ch27

Bobor, V. (2006). Efficient intrusion detection system architecture based on neural networks

and genetic algorithms. Department of Computer and Systems Sciences, Stockholm

University/Royal Institute of Technology, 1(3), 88-94. doi:10.5120/89-188

https://doi.org/10.1155/2019/2850932
http://repository.futminna.edu.ng:8080/jspui/handle/123456789/1960
https://doi.org/10.1002/9781118851678.ch27

69

Booth, T., & Andersson, K. (2017). Critical infrastructure network distributed denial of

service defense, via cognitive learning. In 4th IEEE Annual Consumer

Communications & Networking Conference (CCNC) (pp. 1-6). Las Vegas, NV,

USA: IEEE.

Cardieri, P. (2010). Modeling interference in wireless ad hoc networks. Communications

Surveys & Tutorials, 12(4), 551-572.

Crosbie, M., & Spafford, G. (2008). Applying genetic programming to intrusion detection.

In Working Notes for the Association for the Advancement of Artificial Intelligence

(AAAI) Symposium on Genetic Programming (pp. 1-8). Cambridge, MA: MIT

Press.

Diaz-Gomez, P. A., & Hougen, D. F. (2006). A genetic algorithm approach for doing misuse

detection in audit trail files. In 15th International Conference on Computing (pp.

329-338). Mexico City, Mexico: IEEE.

Elavarasi, M. (2016). Network forensics and its investigation methodology. An International

Journal Emergency. Trends Science. Technology, 3(05), 852-859.

Gavrilis, D., & Dermatas, E. (2013). Detection of web denial-of-service attacks using decoy

hyperlinks. In 5th International Symposium on Communication Systems, Networks

and Digital Signal Processing (CSNDSP), Patras.

doi:10.1.1.127.3245&rep=rep1&type=pdf

Gong, R. H., Zulkernine, M., & Abolmaesumi, P. (2015). A software implementation of a

genetic algorithm based approach to network intrusion detection. In Sixth

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing and First ACIS International

Workshop on Self-Assembling Wireless Network (pp. 246-253). Towson, USA:

IEEE.

Goyal, A., & Kumar, C. (2008). Genetic algorithm-network intrusion detection system: a

genetic algorithm based network intrusion detection system. Northwestern

university, 178(15), 3024-3042.

Haddadi, F., Khanchi, S., Shetabi, M., & Derhami, V. (2016). Intrusion detection and attack

classification using feed-forward neural network. In 2010 Second International

Conference on Computer and Network Technology (pp. 262-266). Bangkok,

Thailand: IEEE.

Hoque, N., Kashyap, H., & Bhattacharyya, D. K. (2017). Real-time distributed denial of

service attack detection using field programmable gate array. Computer

Communications, 110, 48-58. Amsterdam: Elsevier

70

Ilgun, K., Kemmerer, R. A., & Porras, P. A. (1995). State transition analysis: A rule-based

intrusion detection approach. IEEE Transactions on Software Engineering, 21(3),

181-199, doi: 10.1109/32.372146

Jaafar, G. A., Abdullah, S. M., & Ismail, S. (2019). Review of recent detection methods for

hyper text transfer protocol distributed denial of service attack. Journal of

Computer Networks and Communications. doi:10.1155/2019/1283472

Jawale, M. D. R., & Bhusari, V. (2014). Technique to detect and classify attacks in network

intrusion detection system using artificial neural network. International Journal

Emerging Research in Management Technology, 3(10), 75-81.

Karimazad, R., & Faraahi, A. (2017). An anomaly-based method for distributed denial of

service attacks detection using radial basis function neural networks. In Proceedings

of the International Conference on Network and Electronics Engineering, 1(15),

208-214. doi:10.1.1.735.1761&rep=rep1&type=pdf

Kayacik, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2005). Selecting features for

intrusion detection: A feature relevance analysis on KDD 99 intrusion detection

datasets. In Proceedings of the Third Annual Conference on Privacy, Security and

Trust, (94), 1723-1722. doi: 10.1.1.66.7574&rep=rep1&type=pdf

Kejie, Lu., Wu, D., Fan, J., Todorovic, S., & Nucci, A. (2017). Robust and efficient

detection of distributed denial of service attacks for large-scale internet. Computer

Networks, 51(18), 5036-5056. doi: 10.1016/j.comnet.2007.08.008

Kubus, M. (2020). Evaluation of resampling methods in the class unbalance

problem. Ekonometria, 24(1), 39-50. Retrieved from

http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-002cb3e1-70f4-

4321-a489-f4ced00e9d3b

Kumar, S., & Spafford, E. H. (1995). A software architecture to support misuse intrusion

detection. In Proceedings of the 18th National Information Security

Conference. 194-204. doi:10.1.1.159.2516

Lakshmi, V. N., & Begum, S. (2017). Distributed denial of service defense: Enhanced

flooding detection and confidence-based filtering method. Advances in

Computational Sciences and Technology, 10(8), 2257-2272. Retrieved from

http://www.ripublication.com/acst17/acstv10n8_07.pdf

Li, W. (2004). Using genetic algorithm for network intrusion detection. Proceedings of the

United States Department of Energy Cyber Security Group, 1, 1-8. Retrieved from

http://bit.csc.lsu.edu/~jianhua/krish-1.pdf

https://doi.org/10.1109/32.372146
https://doi.org/10.1155/2019/1283472
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.735.1761&rep=rep1&type=pdf
https://doi.org/10.1016/j.comnet.2007.08.008
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-002cb3e1-70f4-4321-a489-f4ced00e9d3b
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-002cb3e1-70f4-4321-a489-f4ced00e9d3b
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.2516
http://www.ripublication.com/acst17/acstv10n8_07.pdf
http://bit.csc.lsu.edu/~jianhua/krish-1.pdf

71

Li, Z., Wei, L., Li, W., Wei, L., Chen, M., Lv, M.,& Gao, N. (2019). Research on distributed

denial of service attack detection based on extreme learning machine in internet of

things environment. In the 10th International Conference on Software Engineering

and Service Science, 144-148. Beijing, China: IEEE.

Lu, K., Wu, D., Fan, J., Todorovic, S., & Nucci, A. (2017). Robust and efficient detection of

distributed denial of service attacks for large-scale internet. Computer

Networks, 51(18), 5036-5056. doi: 10.1016/j.comnet.2007.08.008

Lu, W., & Traore, I. (2014). Detecting new forms of network intrusion using genetic

programming. Computational intelligence, 20(3), 475-494. doi: 10.1111/j.0824-

7935.2004.00247.x

Makridis, C. A., & Smeets, M. (2019). Determinants of cyber readiness. Journal of Cyber

Policy, 4(1), 72-89. doi:10.1080/23738871.1604781

Moorthy, M., & Sathiyabama, S. (2012). A study of intrusion detection using data mining.

In International Conference on Advances in Engineering, Science and Management,

8-15. Nagapattinam, India: IEEE.

Mualfah, D., & Riadi, I. (2017). Network forensics for detecting flooding attack on web

server. International Journal of Computer Science and Information Security, 15(2),

326-331. Retrieved from https://sites.google.com/site/ijcsis/

Norouzian, M. R., & Merati, S. (2015). Classifying attacks in a network intrusion detection

system based on artificial neural networks. In 13th International Conference on

Advanced Communication Technology, 868-873. Gangwon, Korea (South): IEEE.

Pan, W., & Li, W. (2015). A hybrid neural network approach to the classification of novel

attacks for intrusion detection. In International Symposium on Parallel and

Distributed Processing and Applications, 564-575. Berlin, Heidelberg: Springer

Papalexakis, E. E., Beutel, A., & Steenkiste, P. (2012). Network anomaly detection using

co-clustering. In 2012 International Conference on Advances in Social Networks

Analysis and Mining, 403-410. Istanbul, Turkey: IEEE.

Pham, D. T., & Karaboga, D. (2000). Tabu Search. In Intelligent Optimization Techniques,

149-186. London: Springer

Poojitha, G., Kumar, K. N., & Reddy, P. J. (2011). Intrusion detection using artificial neural

network. In 2010 Second International Conference on Computing, Communication

and Networking Technologies, pp. 1-7. Karur, India: IEEE.

Rawat, A. S., Rana, A., Kumar, A., & Bagwari, A. (2018). Application of multilayer

artificial neural network in the diagnosis system: a systematic review. International

Journal of Artificial Intelligence, 7(3), 138-142. doi: 10.11591/ijai.v7.i3.pp138-142

https://doi.org/10.1016/j.comnet.2007.08.008
https://doi.org/10.1111/j.0824-7935.2004.00247.x
https://doi.org/10.1111/j.0824-7935.2004.00247.x
https://sites.google.com/site/ijcsis/

72

Rodrigues, B., Bocek, T., Lareida, A., Hausheer, D., Rafati, S., & Stiller, B. (2017). A

blockchain-based architecture for collaborative distributed denial of service

mitigation with smart contracts. In International Conference on Autonomous

Infrastructure, Management and Security,16-29. Retrieved from

https://link.springer.com/chapter/10.1007/978-3-319-60774-0_2

Sofi, I., Mahajan, A., & Mansotra, V. (2017). Machine learning techniques used for the

detection and analysis of modern types of distributed denial of service

attacks. Learning, 4(06). Retrieved from

https://www.irjet.net/archives/V4/i6/IRJET-V4I6200.pdf

Su, M. Y. (2012). Using clustering to improve the k-nearest neighbor based classifiers for

online anomaly network traffic identification. Journal of Network and Computer

Applications, 34(2), 722-730. doi: 10.1016/j.jnca.2010.10.009

Uppalaiah, B., Anand, K., Narsimha, B., Swaraj, S., & Bharat, T. (2012). Genetic algorithm

approach to intrusion detection system. International Journal of Computer Science

and Technology, 3(1), 156-160. Retrieved from

http://www.ijcst.com/vol31/1/uppaliah.pdf

Xia, T., Qu, G., Hariri, S., & Yousif, M. (2015). An efficient network intrusion detection

method based on information theory and genetic algorithm. In 24th IEEE

International Performance, Computing, and Communications Conference, 2015,

11-17. Phoenix, USA: IEEE.

Xiao-ming L., Gong Cheng., Qi, L. I., & Miano Z. (2012). A comparative study on flood

denial of service and low-rate dos attacks. The Journal of China Universities of

Posts and Telecommunications, 19, 116-121. doi: 10.1016/S1005-8885(11)60458-5

Yu, W. Y., & Lee, H. M. (2009). An incremental-learning method for supervised anomaly

detection by cascading service classifier and incremental tree inducer decision tree

methods. In Pacific-Asia Workshop on Intelligence and Security Informatics, 155-

160. Berlin, Heidelberg: Springer.

Zhang Chao-yang (2011). Denial of service attack analysis and study of new measures to

prevent. In 2011 International Conference on Intelligence Science and Information

Engineering, 426-429. Wuhan, China: IEEE.

Zhang, L. Y., Ming, Q. I. A. N., & CHI, Y. B. (2017). Distributed denial of service attack

detection using sliding window method. Destech Transactions on Computer Science

and Engineering, 531-535. doi: 10.12783/dtcse/wcne2017/19818

Zhao, Y., Zhou, F., Fan, X., Liang, X., & Liu, Y. (2013). Intrusion detection systems radar:

a real-time visualization framework for intrusion detection system alerts. Science

China Information Sciences, 56(8), 1-12. doi: 10.1007/s11432-0-13-4891-9

https://link.springer.com/chapter/10.1007/978-3-319-60774-0_2
https://www.irjet.net/archives/V4/i6/IRJET-V4I6200.pdf
https://doi.org/10.1016/j.jnca.2010.10.009
https://doi.org/10.1016/S1005-8885(11)60458-5

73

APPENDIX A

Overview of Related Studies

S/N

o

Reference Technique/ Method Used Strength Weakness

1. Lu and

Traore

(2014)

It used historical network

dataset by using GP to

derive a set of

classification

It used support-confidence

framework as the fitness

function and accurately

classified several network

intrusions

It made the implementation

procedure very difficult and

also for training procedure

more data and time was

required.

2. Xia et al.

(2015)

It used GA to detect

anomalous network

behaviours based on

information theory

It was very effective because

of the reduced complexity

and higher detection rate

It considered only the

discrete features.

3. Gong et al.

(2015)

It presented an

implementation of GA

based approach to

Network Intrusion

Detection using GA and

presented software

implementation.

It worked effectively for the

selected datasets and has the

flexibility to be used in

different ways to meet

users’ special requirements.

It requires the whole training

data to be loaded into

memory before any

computation. For large

training datasets, it is neither

efficient nor feasible.

4. Kejie et al.

(2017)

It proposed a framework to

detect DDoS attacks and

identi--fy attack packets

efficiently.

It accurately detected DDoS

attacks and identify attack

packets without modifying

existing IP forwarding

mechanisms at the routers. It

achieved 94.6% for

detection probability using

the proposed framework.

The simulation of the

presented technique was

provided in ‘Weka’.

5. Wei Pan

and

Weihua Li

(2015)

It proposed a hybrid

Neural Network consisting

of a self-organizing map

(SOM) and radial basis

functions to detect and

classify DDoS attacks

It achieved a satisfactory

accuracy rate result for

detecting and classifying

DDoS attacks

It did not include modern

attacks in different OSI

layers such as transport

layer in the work.

6. Norouzian

et al.

(2015)

It proposed a new

approach to IDS based on

a MultiLayer Perceptron

Neural Network to detect

and classify data into 6

groups.

The research implemented

MLP design with two

hidden layers of neurons and

achieved 90.78% accuracy

rate.

The experimental result

suggested that there is more

to do in the IDS based on

ANN.

7. Haddadi,

F, Sara

Khanchi

and others

(2016)

It Proposed a NIDS using

a 2-layered, feed-forward

neural network.

It implemented the proposed

system on a KDD cup 99

dataset, the result was very

satisfactory, both on

accuracy rate and

performance.

It achieved equivalent

performance and reduced

computational overhead and

memory usage.

74

8. Reyhaneh

Karimazad

and

Ahmad

Faraahi

(2017)

It proposed an anomaly-

based DDoS detection

approach using an analysis

of network traffic.

It used a radial-based

function (RBF) Neural

Network on a UCLA

dataset, achieving 93%

accuracy rate for a DDoS

attack.

large distinct frequencies in

large space and large

update/query time

9. Jawale

and

Bhusari

(2014)

It proposed a system that

uses multilayer

perceptions, back

propagation and a support

vector machine, consisting

of multi modules such as

packet collection and

preprocessing data

It incorporates three well-

known classification

techniques: Multilayer

Perceptron (MLP), Naïve

Bayes and Random Forest.

During the transient period

valid packets can be

dropped

10. Dimitris

Gorillas

and

Evangelos

Dermatas

(2013)

It presented and evaluated

a Radial-basis-function

(RFB) Neural Network for

DDoS attacks dependent

on statistical vectors

through short-time

window analysis.

The proposed method was

tested and evaluated in a

controlled environment with

an accuracy rate of 94% of

DDoS detection.

During the transient period

valid packets can be

dropped

*

75

APPENDIX B

Implementation Algorithms

% Setup the Genetic Algorithm

fitnessfunction= @ga_test;

N = 1310; % number of optimization (decision) variables

popsize = 8 ; % set population size = number of chromosomes

max_iteration = 50; % max number of iterations

minimum_cost = 120; % minimum cost

mutation_rate = 0.01; % mutation rate

selection_rate = 0.5; % selection rate: fraction of population

nbits = 1;

Nt = nbits*N; % total number of bits in a chormosome

number_mutations = mutation_rate*N*(popsize-1); % number of mutations

% #population members that survive (Nkeep = Xrate*Npop); Nkeep survive for mating,

and (Npop - Nkeep) are discarded to make room for the new offspring

keep = floor(selection_rate*popsize);

iga=0; % generation counter initialized

pop=round(rand(popsize,Nt)); % random population of 1s and 0s

cost=feval(fitnessfunction,pop); % calculates population cost using fitnessfunction

[cost,ind]=sort(cost); % min cost in element 1

pop=pop(ind,:); % sorts population with lowest cost first

minc(1)=min(cost); % minc contains min of population

while iga < max_iteration %Iterate through generations

iga=iga+1; % increments generation counter

% Pair and mate

M=ceil((M-keep)/2); % number of matings weights chromosomes based upon position in

list probability distribution function

prob=flipud([1:keep]'/sum([1:keep]));

odds=[0 cumsum(prob(1:keep))];

pick1=rand(1,popsize); % mate #1

pick2=rand(1,popsize); % mate #2

% parents contain the indicies of the chromosomes that will mate

ic=1;

while ic<=M

for id=2:keep+1

if pick1(ic)<=odds(id) & pick1(ic)>odds(id-1)

ma(ic)=id-1;

end % if

if pick2(ic)<=odds(id) & pick2(ic)>odds(id-1)

pa(ic)=id-1;

end % if

end % id

ic=ic+1;

end % while

%___

76

% Performs mating using single point crossover

ix=1:2:keep; % index of mate #1

xp=ceil(rand(1,M)*(Nt-1)); % crossover point

pop(keep+ix,:)=[pop(ma,1:xp) pop(pa,xp+1:Nt)];

% first offspring

pop(keep+ix+1,:)=[pop(pa,1:xp) pop(ma,xp+1:Nt)];

% second offspring

%___

% Mutate the population

number_mutations=ceil((popsize-1)*Nt*mutation_rate); % total number of mutations

mrow=ceil(rand(1,number_mutations)*(popsize-1))+1; % row to mutate

mcol=ceil(rand(1,number_mutations)*Nt); % column to mutate

for ii=1:number_mutations

pop(mrow(ii),mcol(ii))=abs(pop(mrow(ii),mcol(ii))-1);

end

%___

% The population is re-evaluated for cost decode

cost(2:popsize)=feval(fitnessfunction,pop(2:popsize,:));

%___

% Sort the costs and associated parameters

[cost,ind]=sort(cost);

pop=pop(ind,:);

%___

% Stopping criteria

if iga>maxit | cost(1)<mincost

break

end

[iga cost(1)]

end

77

APPENDIX C

Objective Function on Confidence and Completeness Factor

function [y]=Fitnessfunction(x)

ConfidenceFitness = x(3)/(x(3)+x(4))

CompletenessFitness = x(3)/(x(3)+x(5))

%y=1/(1+(1/100)*(x(1)-x(2))^2)

y=ConfidenceFitness * CompletenessFitness

78

APPENDIX D

Objective Function on Error

function [y] = MinError(x)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

y = x(1)-x(2);

end

79

APPENDIX E

Neural Genetic Algorithm Codes

clear all; clc; close all;

%% Data Entry
% This section is to feed in data from the dataset in Excel Sheet
MyData=xlsread('NormalizedKDDDataset10PercentEncodedFull3.xlsx');

% This section is to enter both Input features and Output feature
Input=MyData(:,1:end-5);
Output=MyData(:,end-4:end);

%% Data Transpose Section
% This section is to transpose both the input and output data
InputTranspose=Input';
OutputTranspose=Output';

%% ANN Section,
% This section is to carry out computations using Artificial Neural Network
network=newff(InputTranspose,OutputTranspose,10)

%% ANN Training
% This section is
network=train(network,InputTranspose,OutputTranspose);
Output=network(InputTranspose);

%% Performance Evaluation
% This section is to evaluate the performance of your model

Error = Output-OutputTranspose;
[GAx,GAfval,GAexitflag,GAoutput,GApopulation,GAscores]=ga(@MinError,2,[],[],[],[]

,[0;0],[0.3;0.3])

Performance=perform(network,Output,OutputTranspose);

%% Simulation Section
% This section is to use the model for simulation

SimResult=sim(network,InputTranspose);

%% Thresholding Section...
% This section is to ...

ThreshSimResult=SimResult>0.5

%% Performance Evaluation

PerformanceParameters=classperf(OutputTranspose, ThreshSimResult)

[GA2x,GA2fval,GA2exitflag,GA2output,GA2population,GA2scores]=ga(@Fitnessfunction,

3,[],[],[],[],[0.5;0.5;0.5],[1;1;1])

80

APPENDIX F

Snippet of the Dataset Input features

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 … L41

21 tcp telnet SF 135 1290 0 0 0 0 0 1 0

85 tcp telnet SF 277 693 0 0 0 0 0 0 0

192 tcp ftp SF 119 426 0 0 0 2 0 1 0

179 tcp ftp SF 87 319 0 0 0 1 0 1 0

0 tcp ftp_data SF 866 0 0 0 0 0 0 0 0

0 tcp ftp_data SF 0 467968 0 0 0 0 0 0 0

1 tcp ftp_data SF 0 988002 0 0 0 0 0 0 0

198 tcp telnet SF 562 9139 0 0 0 3 0 1 22

718 tcp telnet SF 1412 25260 0 0 0 15 0 1 38

0 tcp telnet S0 0 0 0 0 0 0 0 0 0

0 tcp telnet S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

0 tcp private S0 0 0 0 0 0 0 0 0 0

81

APPENDIX G

Dataset Description and labels

The 41 Input Features captioned as L1 to L41 are labelled as follows:

1. duration: continuous.

2. protocol_type: symbolic.

3. service: symbolic.

4. flag: symbolic.

5. src_bytes: continuous.

6. dst_bytes: continuous.

7. land: symbolic.

8. wrong_fragment: continuous.

9. urgent: continuous.

10. hot: continuous.

11. num_failed_logins: continuous.

12. logged_in: symbolic.

13. num_compromised: continuous.

14. root_shell: continuous.

15. su_attempted: continuous.

16. num_root: continuous.

17. num_file_creations: continuous.

18. num_shells: continuous.

19. num_access_files: continuous.

20. num_outbound_cmds: continuous.

21. is_host_login: symbolic.

22. is_guest_login: symbolic.

23. count: continuous.

24. srv_count: continuous.

25. serror_rate: continuous.

26. srv_serror_rate: continuous.

27. rerror_rate: continuous.

28. srv_rerror_rate: continuous.

29. same_srv_rate: continuous.

30. diff_srv_rate: continuous.

31. srv_diff_host_rate: continuous.

32. dst_host_count: continuous.

33. dst_host_srv_count: continuous.

82

34. dst_host_same_srv_rate: continuous.

35. dst_host_diff_srv_rate: continuous.

36. dst_host_same_src_port_rate: continuous.

37. dst_host_srv_diff_host_rate: continuous.

38. dst_host_serror_rate: continuous.

39. dst_host_srv_serror_rate: continuous.

40. dst_host_rerror_rate: continuous.

41. dst_host_srv_rerror_rate: continuous.

The output feature consists of 23 classes of attacks. These are as follows:

back,buffer_overflow,ftp_write,guess_passwd,imap,ipsweep,land,loadmodule,multihop,ne

ptune,nmap,normal,perl,phf,pod,portsweep,rootkit,satan,smurf,spy,teardrop,warezclient,wa

rezmaster.

