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ABSTRACT 

Distributed Denial of Service (DDoS) attack has continued to grow dynamically and has 

increased significantly to date. This form of attack is usually carried out by draining the 

available resources in the network as well as flooding the package with a significant 

intensity so that the system becomes overloaded and stops. This research proposes a 

classification of DDoS attack using neural network-based genetic algorithm (NNGA). The 

genetic algorithm was used to optimize neural network for the detection of DDoS attacks 

in order to improve the effectiveness and efficiency of classification accuracy and 

performance. To improve the NNGA, a fitness function was introduced in genetic 

algorithm that improved the performance of NNGA. The features of DDoS attacks from 

KDD 99 intrusion detection datasets were obtained to train the NNGA. The results 

obtained from the study indicate that the technique performed optimally in DDoS attack 
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recording the following; 98.58% and 0.351 respectively for accuracy and false positive 

rate. Therefore, revealed that the enhanced genetically optimized neural network algorithm 

has better accuracy and lower false positive rate in comparison with the conventional 

neural networks.  
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CHAPTER ONE  

1.0               INTRODUCTION 

1.1 Background to the Study    

The Internet was primarily designed for openness and scalability without any security 

concern, however, malicious users have exploited this weakness to achieve their purpose 

and recently, the number of network-based threats has been significantly increased (Booth 

and Andersson, 2017).DDoS attacks are one of the major types of these threats and the aim 

of these attacks is to make internet-based services unavailable to its legitimate users. 

Although widely known web sites, such as GitHub, Dyn (DNS Provider), BBC, Spamhaus 

and Bank of America (JP Morgan Chase/US Bancorp/Citigroup/PNS Bank) were well-

equipped in security, reports by Makridis and Smeets (2019)showed that these sites 

suffered DDoS attacks in February 2018, October 2016, December 2015, March 2013 and 

December 2012 respectively. Hackers are incessantly generating new types of DDoS which 

work on the application layer as well as the network layer. The vulnerabilities in the 

aforementioned areas allow hackers to deny access to web services and slow down access 

to network resources. The Intrusion Detection System (IDS) is one of the solutions 

employed to solve the problem of DDoS and preserving the confidentiality, integrity and 

availability of web services and computer network resources (Adebayo and Abdul Aziz, 

2019). Numerous types of DDoS attacks are already known, such as a Smurf attack, which 

sends large numbers of Internet controlled message protocol packets to the intended 

victims. A dissimilar category of DDoS is R-U-Dead-Yet (RUDY), which simply 

consumes all available sessions of a web application which means sessions will never end. 

In the same vein, the web service will be unavailable for any new request from new users. 

Lakshmi and Begum (2017) presented thatone of the most up-to-date DDoS categories is 
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HTTP POST/GET, where attackers send a totally legitimate posted messages at a very slow 

rate, such as (1 byte/240 second), into a web server hosting a web application. The HTTP 

POST/GET will have a harmful effect on a web service and cause it to slow down 

temporarily and interrupting the service. A dissimilar category of modern DDoS attack is 

an SQL Injection Dos (SID DoS) in which attackers insert a malicious SQL statement as a 

string that will pass to a website’s database thereby illegally allowing access to the 

resources or to the stored data on servers(Adebayo al., 2012). 

Kubus, (2020) conveyed thatmost available open access data sets contained duplicated and 

redundant instances, which make the detection and classification of DDoS unrealistic and 

ineffectual.   

Machine learning is usually used to detect and classify network traffic based on some 

features to measure and determine if the network traffic is normal while the amount of 

packets would increase in the attacked packet rather than the normal packet; also, the inter 

arrival time will be too small to allow attackers to consume resources rapidly (Adebayo 

and AbdulAziz 2014). DDoS packets usually have a high bit rate for network layer attack, 

thus, attackers focus on any attributes that help them to consume resources and make the 

service unavailable to end users.  

The aim of this research is to develop an improved genetically optimized Neural Network 

Algorithm for classification of DDoS attacks in order to have high accuracy, high detection 

rate, and low false alarm rate (FAR) using relevant datasets. 
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1.2.  Statement of the Research Problem  

DDoS attacks have remained persistent and reoccurring decimal in the security issues of 

computing applications (Alenezi and Reed 2017). Machine learning classification 

algorithms were proven methods applied for improving DDoS detection and classification. 

Most frequently used techniques are Naive Bayes, neural network, support vector machine, 

decision trees, multilayer perception and random forest.  However, these methods suffers 

from low accuracy in classification of DDoS attacks, completeness and confidence factors 

(high false alarm and high running time) such as experienced in researches conducted by 

Jawale and Bhusari (2014); Nourozian and Merati (2015); Kejie et al., (2017) resulting in 

90.78%, 90.78%, and 94.6% accuracy respectively with undisclosed high FPR respectively.  

This research presents an improved genetically optimized Neural Network Algorithm for 

classification of DDoS attacks using finely tuned objective functions and constraints, to 

augment the setback in DDoS attack detection.  

1.3.  Aim and Objectives  

The aim of this research is to design an improved genetically optimized Neural Network 

Algorithm for classification of DDoS attacks. The objectives are to: 

i. Formulate objective function in order to improve the genetically optimized 

neural network algorithm for DDoS attacks. 

ii. Design an improved model using refined GA. 

iii. Evaluate the performance of the developed model. 

1.4.  Significance of the Study  

 The formulated objective function shall bring about improvement in the GA which shall be 

used to optimize the DDoS data with neural network model. With the implementation of an 



14 

 

improved genetically optimized neural network algorithm, an optimal DDoS classification 

parameters can be obtained for developing the model, thereby providing adequate 

protection against network-based threats. This in turn will improve the level of trust and 

confidence in the cloud service providers by customers, as well as increasing its level of 

adoption for various cloud services. The proposed DDoS classification model shall be 

evaluated to ensure the effectiveness and efficiency in the operation compare to the existing 

system.  

1.5. Scope of the Study 

The research will be restricted to the use of genetically optimized Neural Network 

Algorithm for classification of DDoS attacks using the existing DDoS attacks dataset from 

the well-known KDD ‘99 dataset repository to evaluate the performance of proposed work. 

 

.  
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CHAPTER TWO  

2.0          LITERATURE REVIEW  

2.1    Related Work on Distributed Denial of Service 

Yu and Lee (2010) proposed an incremental learning method which was called incremental 

tree inducer (ITI).  The investigation established the performance of ITI, K-mean+ ITI, 

SMO+ ITI for DDoS detection on KDD’99 as 92.38%, 91.31% and 91.07% respectively.  

 

Poojitha et al., (2011) applied neural network to train samples from KDD’99. The method 

was able to simply feed forward neural networks trained by the back-propagation algorithm 

to classify the abnormal events. The authors reported the power of the algorithm to find 

1500 DDoS attacks in the testing dataset.  

 

Su (2012) collected attack data using one laptop that sent DDoS attacks against the victim 

machine in the LAN. The amount of traffic range was between 0-80 Mbps during the 

simulation. The author initially applied Modified Linde-Buzo-Grayclustering algorithm to 

reduce the amount of sample data. Afterwards, he employed KNN algorithm and reported 

the overall accuracy of 96.25% in the case of 2-flod validation.  

 

Papalexakis et al. (2012) utilized the soft clustering to find different types of attacks in 

KDD’99. The researchers achieved an overall accuracy of 75% and 85% for normal and 

attack respectively.  

 

Gavrilis and Dermatas (2013) conducted research and evaluated a Radial-basis function 

(RFB) Neural Network for DDoS attacks dependent on statistical vectors through short 
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time window analysis. The suggested method was tested and evaluated in a controlled 

environment with an accuracy rate of 98% of DDoS detection.  

Ahmed and Mahmood (2014) applied the X-mean algorithm to detect anomalies in the 

DARPA dataset. The majority of the attack in the selected subset of the DARBA dataset 

was DDoS attacks and the study obtained 94% accuracy to detect anomalies in the dataset.  

 

Jawale and Bhusari (2014) presented research on Artificial Neural Network (ANN) that 

achieved the highest accuracy rate. The research proposed a system that uses multilayer 

perceptions, back propagation and a support vector machine, consisting of multi modules 

such as packet collection and preprocessing data. This system achieved 90.78% detection 

rate.  

Ahmed and Mahmood (2015) proposed a collective anomaly detection method using a 

partitioned clustering technique. The KDD’99 /DARPA datasets were used to train and test 

this method. The research confirmed the ability of the algorithm to find all available DDoS 

attacks in test data.  

 

Hybrid Neural Network technique was used by Li et al., (2019) consisting of a self-

organizing map (SOM) and radial basis functions to detect and classify DDoS attacks. 

This experiment achieved a satisfactory accuracy rate result for detecting and classifying 

DDoS attacks.   

Norouzian and Merati (2015) presented a most effective classification technique for 

detecting and classifying attacks into two groups normal or threat. The study offered a 

new approach to IDS based on a Multilayer Perceptron Neural Network to detect and 
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classify data into 6 groups. The research implemented MLP design with two hidden 

layers of neurons and achieved 90.78% accuracy rate.   

A 2-layered NIDS that uses a feed-forward neural network was proposed by Haddadi et 

al.   (2016) the proposed system classified normal connections and attacks. Diverse kinds 

of attacks were determined, and the research focused on using training function, data 

validation and a preprocess dataset that caused less memory usage, minimum resource 

consumption and faster training. After employing the projected system on a KDD cup 99 

Dataset, the result was very satisfactory, both on accuracy rate and performance.   

Zhang et al., (2017) proposed an anomaly-based DDoS detection approach using an 

analysis of network traffic where a radial-based function (RBF) Neural Network was used 

in this approach, the method was tested UCLA dataset, achieving 93% accuracy rate for a 

DDoS attack.   

Kejie et al., (2017) proposed a framework to detect DDoS attacks and identify attack 

packets efficiently. The purpose of the framework was to exploit spatial and temporal 

correlation of DDoS attack traffic. The method employed accurately detected DDoS 

attacks and identified attack packets without modifying existing IP forwarding 

mechanisms at the routers. This work achieved 94.6% for detection probability using the 

proposed framework.   

A synopsis and comprehensive classification of IDS was presented by Alenezi and Reed 

(2017) where difficulties and characteristics of DDoS attacks were discussed in the 

research.  Three different classifications were chosen. The study focused on general 
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DDoS and flooding attacks. The cumulative sum approach had many advantages over 

statistical techniques which was effectively demonstrated in the research.   

Recent study by Hoque et al. (2017) proposed a new DDoS detection framework which 

was implemented on software as well as hardware using the Field Programmable Gate 

Arrays (FPGA) device. This method merely considered the DDoS attack detection as a 2-

class problem. This model formed the normal traffic profile during the analysis period. 

When a new input traffic instance was added, the attack detection module first computed 

the correlation value by analyzing the three distinct features of the added instance and 

normal profile. If the calculated correlation value surpasses the predefined threshold, the 

system generates an alarm. 

 

2.1.1 Review of related concepts on genetic algorithm 

A Genetic Algorithm (GA) is said to be a programming technique that mimics biological 

evolution as a problem-solving strategy (Bobor, 2006). This method is established on 

Darwinian’s principle of evolution and survival of fittest to optimize a population of 

candidate solutions towards a predefined fitness (Li, 2004).  It is important to state that 

GA uses an evolution and natural selection that uses a chromosome-like data structure as 

well as evolving the chromosomes using selection, recombination and mutation operators 

(Li, 2004). Typically, GA procedure starts with randomly generated population of 

chromosomes, which represent all possible solution of a problem. From each of the 

chromosomes, different positions are encoded as bits, characters or numbers. These 

positions could be referred to as genes. Thereafter, an evaluation function is used to 

calculate the goodness of each chromosome according to the desired solution; this function 
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is known as “Fitness Function”. Through this process of evaluation, “Crossover” is used to 

simulate natural reproduction and “Mutation” is used to mutation of species (Li, 2004).  

Likewise, for survival and combination, the selection of chromosomes is biased towards 

the fittest chromosomes.  

When GA is used for solving various problems, three factors will have vital impact on the 

effectiveness of the algorithm and also of the applications (Goyal and Kamar 2008). These 

are:  

i. The fitness function. 

ii. The representation of individuals. 

iii. The GA parameters.   

The determination of the above-mentioned factors often depends on applications and/or 

implementation.  

2.1.2   Related work on fitness function 

 

Goyal and Kumar (2008) wrotea GA to detect the attack type of connection. The 

Algorithm used different features in network connections to generate a classification 

rule set; the researchers used the fitness function given by the formula: 

 

                                                                                                                             (2.1)   

 

 

Where:  

A = Is the total of attacks, 

a = The number of attack links which the individual correctly classified, 

B = The normal links in the population, 

b =The number of normal connections a network correctly classified. 
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A threshold value of 0.95 was set; the selected individual had a fitness value > 0.95.  

 

Uppalaiah et al. (2012) used GA to detect Denial of Service (DOS) and Probe type of 

attacks, the researchers used a fitness function:   

 

                            (2.2) 

Where f(x) depicts the fitness of entity x, while f(sum) is the total fitness of all entities.  

 

Li (2004) used aGA for Intrusion Detection System, he calculated the fitness function by 

calculate the following four equations:  

  

      (2.3)  

      (2.4) 

      (2.5)                                                                                     

      (2.6) 

 

 

Using equation (2.3) the outcome is calculated based on whether the A field of connection 

matched the pre-classified data set and then multiply the weight of that field, the value of 

matched is 0 or 1. In the equation (2.4), the actual value of suspicious Level reflects 

observations from historical data. In the equation (2.5), ranking indicates whether or not the 

intrusion is easy to identify. Finally the value of fitness computed in equation (2.6) using 

the penalty.    
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2.1.3   Review of theories/empirical work  

There are several researchers that used evolutionary algorithms and especially GAs in 

IDS to detect malicious intrusion from normal use.  Similarly, there are several papers 

related to IDS which has certain level of impact in network security.   

It is important to note that the process of using GAs for intrusion detection can be traced 

back to 1995, when Crosbie and Spafford (2008) applied the multiple agent technology 

and GP to detect network anomalies (1995). The GP was used to determine anomalous 

network behaviours and each agent can monitor one parameter of the network audit data. 

The proposed methodology has the benefit when many small autonomous agents are used 

but it has problem when communicating among the agents. Likewise, if the agents are not 

properly initialized the training process can be time consuming.    

Li (2004) developed a process using GA to detect abnormal network intrusion.  The 

approach used includes both quantitative and categorical features of network data for 

deriving classification rules. Nevertheless, it was observed that the inclusion of 

quantitative feature can increase detection rate but no experimental results were available.   

Goyal and Kumar (2008) described a GA based algorithm to classify all types of smurf 

attack using the training dataset with very low false positive rate (at 0.2%) and detection 

rate at almost 100%.  

Lu and Traore (2014) engaged the use of historical network dataset by using GP to derive 

a set of classification. The researchers used support-confidence framework as the fitness 

function and accurately classified several network intrusions. However, their use of 

genetic programming made the implementation procedure very difficult and also for 

training procedure more data and time was required.  
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Xia et al. (2015) used GA to detect anomalous network behaviours based on information 

theory. Few network features could be identified with network attacks based on mutual 

information between network features and type of intrusions and then using these features 

a linear structure rule and also a GA is derived. The approach of using mutual information 

and resulting linear rule appeared very effective because of the reduced complexity and 

higher detection rate. The only problem was it considered only the discrete features.   

Gong et al. (2015) presented an implementation of GA based approach to Network 

Intrusion Detection using GA and presented software implementation. The approach 

derived a set of classification rules and utilized a support-confidence framework to judge 

fitness function.   

Moorthy and Sathiyabama (2012) offered a novel approach to detect the malicious 

intrusions (hacks) by using a complex artificial intelligence method known as GA applied 

to IDS. This approach applies GA to learn how to detect malicious intrusions and separate 

then from normal use. Using GA result gave them the best fitness value which was very 

closely to the ideal fitness value of 1. The system was able to detect about 97% of attacks 

and 0.69% of normal connections were incorrectly classified as attacks.    

Zhao et al. (2013) presented on IDS using GA that, Misuse detection system and anomaly 

detection system encode an expert’s knowledge of known patterns of attack and system 

vulnerabilities as if-then rules. He also used two methods for cluster analysis, one was 

hierarchical and another one was K-means. It was concluded that only about 0.71% of 

normal connections were classified as attacks; also had a very low false positive rate.   

Diaz-Gomez et al. (2006) used the evolution process set of probable solutions which were 

generated randomly. In that experiment, the researchers evaluated each chromosomes 
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using fitness function. The research also employed the use of single point crossover and 

single point mutation. Accordingly, the system was tested by implementing different 

formulas for fitness function. It was found that there were no false positives and the 

number of false negative decreases dramatically.   

Gong et al. (2004) in 2005 selected the approach to network misuse detection. The result 

of this research indicated that the GA approach was very effective and also had the 

flexibility to detect the intruder and also classify them. In this approach there was good 

detection rate and depending on the selection of fitness function weight values, the 

generated rules could be used to either generally detect network intrusions or precisely 

classify the types of intrusions.   

2.2 Standard Genetic Algorithm Process 

 

The standard GA process is shown in Figure 2.1 In the first instance, a population of 

chromosomes is created. Then, the chromosomes are evaluated by a defined fitness 

function. Thereafter, some of the chromosomes are selected for performing genetic 

operations. Finally, genetic operations of crossover and mutation are performed. The 

created offspring replace their parents in the initial population. In the reproduction method, 

only the selected parents in the third step will be replaced by their corresponding offspring. 

The GA procedure repeats until a user-defined criterion is reached. In this research, the 

standard GA is modified and new genetic operators are introduced to improve its 

performance. 
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Figure 2.1. Procedure of the Standard Genetic Algorithm (Pham and Karaboga, 2000) 

   

2.3 How Distributed Denial of Service Attack Work 

As the name implies, DDoS attack enables an attacker to gain control of a network of 

online machines in order to carry out an attack. Computers and other technologies (such as 

IoT devices) are infected with malware, thereby turning each one into a bot (or zombie). 

The attacker at that moment takes remote control over the group of bots, which is called a 

botnet. Immediately a botnet has been recognized, the attacker is able to direct the 

machines by sending updated instructions to each bot via a method of remote control 

(Adebayo et al., 2018). Each and every time the IP address of a victim is targeted by the 

botnet, each bot will react by sending requests to the target, potentially triggering the 

targeted server or network to overflow capacity thereby resulting in a denial-of-service to 

normal traffic. Taking into cognisance that every bot is a valid Internet device, separating 

the attack traffic from normal traffic can be hard. 

 

https://www.cloudflare.com/learning/ddos/glossary/malware/
https://www.cloudflare.com/learning/bots/what-is-a-bot/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
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2.4 Distributed Denial of Service Attack Strategy  

Jaafar et al. (2019) reviewed DDoS attack components namely: attacker, control masters 

(or handlers), agents (or slaves or zombies), victim (or target machine). The Attacker 

initially scans millions of machines over the Internet for finding vulnerable machines 

whose security can be exploited easily. The machines are referred to as masters or handlers 

and are directly under the control of attacker. Additionally, the method of recruiting 

handlers is completely automated and is done through continuous scanning of remote 

machines looking for any security loopholes. Malicious codes are normally installed by the 

attacker into these compromised machines which then become capable of deploying further 

infected machines.   

The machines which are normally used by handlers are directly under their control and are 

identified as slaves or zombies. Attacker indirectly controls these machines through 

handlers. Both the handlers and zombies, on the signal of attacker are deployed to start a 

coordinated attack on target machine thereby making the target machine incapable of 

communicating or utilizing any of its resources. The attacker frequently uses IP spoofing in 

handlers and zombies to hide the identity of these machines which enables future scope for 

attacker of using the same machines for creating DDoS attack.    

2.5 Common Types of Distributed Denial of Service Attacks  

To understand how different DDoS attacks work, it is vital to know how a network 

connection is established. A network connection on the Internet comprises several different 

components or “layers”. This is similar to building a house from the ground up where every 
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step in the model has a different purpose. The OSI model presented below, is a conceptual 

framework used to describe network connectivity in seven distinct layers. 

 

Figure 2.2Conceptual Framework used to describe Network Connectivity in Seven Distinct   

Layers (Cardieri,2010)  

 

While nearly all DDoS attacks involve overpowering a target device or network using 

traffic, attacks on the other hand can be divided into 3 categories. An attacker may make 

use one or multiple different attack vectors, or cycle attack vectors possibly based on 

counter measures taken by the target. 
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2.6 Application Layer of Distributed Denial of Service Attacks 

 

In reference to the OSI model, the application layer occasionally referred to as a layer 

seven DDoS attack. The goal of this attack is to deplete the resources of the target. The 

attack is aimed at the layer in which web pages are generated on the server and delivered in 

response to HTTP requests. A single HTTP request is economical to execute on the client 

side, and can be expensive for the target server to respond to as the server often must load 

several files and run database queries in order to create a web page. It is pertinent to state 

that the Layer 7 attacks are hard to defend as the traffic can be difficult to flag as malicious. 

 

Figure 2.3An Application Layer DDoS Attack(Cardieri,2010)  

 

2.7 HTTP Flood Attack 

The HTTP flood attack is likened to pressing refresh in a web browser over and over on 

many different computers at once where large numbers of HTTP requests flood the server 

resulting in denial-of-service. The HTTP attack ranges from simple to complex. Also, 

simpler applications may access one URL which has similar range of attacking IP 
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addresses, referrers and user agents. Complex versions may employ the use a large number 

of attacking IP addresses, and target random Universal Resource Locator using random 

referrers and user agents. 

2.8 The Protocol Attack 

The main aim of the protocol attack also referred to as state-exhaustion attack is to cause 

service disruption by consuming entire available state table capacity of web application 

servers or intermediate resources like firewalls and load balancers. Attacks in the protocol 

usually exploit the flaws seen in layer 3 and layer 4 of the protocol stack to render the target 

inaccessible. 

 

Figure 2.4Protocol DDoS Attack (Cardieri, 2010)  

 

2.9 SYN Flood Attack 

A SYN Flood attack could be likened to a worker in a supply room receiving requests from 

the front of the store in which the worker receives a request, collects the package, and then 

waits for confirmation before bringing the package out front. The worker thereafter 

https://www.cloudflare.com/learning/security/what-is-a-firewall/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
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acquires many more package requests without confirmation until the worker cannot carry 

any more packages, become stunned, and requests start going unanswered. The SYN Flood 

attack often exploits the TCP handshake by sending a target an enormous number of TCP 

“Initial Connection Request” SYN packets with spoofed source IP addresses. The target 

machine usually reacts to every connection request and then waits for the final step in the 

handshake, which never occurs, thereby exhausting the target’s resources in the process. 

2.10 Volumetric Attacks 

This category of attacks attempts to make congestion by consuming all available bandwidth 

between the target and the larger Internet through which large amount of data are sent to a 

target by using a form of amplification or another means of creating massive traffic, such as 

requests from a botnet. Figure 2.4 shows an example of amplification.  

 

Figure 2.5 Diagram of Amplification (Cardieri,2010)  

 

https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/
https://www.cloudflare.com/learning/ddos/glossary/ip-spoofing/
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2.11Classification of DDOS Attacks: An Overview of Modern Approaches 

Currently, there are a lot of options for organizing DDoS attacks. These options differ 

in the implementation techniques as well as the characteristics of parasitic traffic generated 

by botnets. There are three main classifications that specialists use nowadays. 

 2.11.1 Classification by protocol 

DDoS attacks are divided into three large groups: Transmission Control Protocol (TCP) 

and User Datagram Protocol (UDP) and other. These are simplified classification based on 

the main protocols used to transfer data across the Internet, whose vulnerabilities are 

exploited by hackers to organize attacks. Both TCP and UDP are used more often than 

others, therefore attacks with their use are allocated in separate groups. Other forms include 

attacks via ICMP, GRE, IPIP, ESP, AH, SCTP, OSPF, SWIPE, TLSP, Compaq_PEE and 

other protocols. However, other school of thoughts divide DDoS attacks in 5 types: TCP, 

HTTP, UDP, ICMP and others. These divisions help us to ascertain tendencies regarding 

which protocols are more affected by parasitic traffic and the ones that are less affected, 

thereby paving way to adjust protection strategies and also helps in working on new 

algorithms for filtering "garbage." 

 2.11.2  OSI classification 

The OSI is a network model of the OSI / ISO network protocol stack, according to how 

modern Internet operates. The OSI model comprises 7 layers: physical, data link, network, 

transport, session, presentation, and application (or application layer). Every protocol of the 
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network through which data (traffic) is transmitted denotes to a certain layer. Accordingly, 

the DDoS attacks classified by the layers of the OSI model. 

 
Figure 2.6Classification of DDoS Attacks by the Layers of the OSI Model(Cardieri,2010)  

 

DDoS attacks are aimed at Layer 2 - data link, Layer 3 – network, Layer 4 – transport and  

Layer 7 - application. 

2.11.3    Classification by mechanism of action 

Going by the numerous types of denial of service attacks, 3 groups by the mechanism of 

action could be distinguished. All attacks aimed at overloading the communication channel, 

that is, various types of flooding falls under the first group. It is important to stress that the 

aim of flooding is to create a powerful flow of requests (data packets) which will take up 

the entire bandwidth which is dedicated to the victim's resource. The aforesaid groups 

comprise DNS amplification, Fragmented UDP flood, ICMP flood, NTP amplification, 

NTP flood, Fragmented ACK flood, Ping flood, UDP flood, Non-Spoofed UDP Flood, 

VoIP flood, Flood by media data, Smurf Attack, Fraggle Attack,  Fragmented ICMP-flood, 

DNS flood and  other attacks with amplification. Next is the group two which has fewer 

https://ddos-guard.net/en/terminology/attack_type/dns-amplification-attack
https://ddos-guard.net/en/terminology/attack_type/fragmented-udp-flood-udp-fragmentation-nuke
https://ddos-guard.net/en/terminology/attack_type/icmp-flood
https://ddos-guard.net/en/terminology/attack_type/ntp-amplification-attack
https://ddos-guard.net/en/terminology/attack_type/ntp-flood
https://ddos-guard.net/en/terminology/attack_type/fragmented-ack-flood
https://ddos-guard.net/en/terminology/attack_type/ping-flood
https://ddos-guard.net/en/terminology/attack_type/udp-flood
https://ddos-guard.net/en/terminology/attack_type/non-spoofed-udp-flood
https://ddos-guard.net/en/terminology/attack_type/voip-flood
https://ddos-guard.net/en/terminology/attack_type/media-data-flood
https://ddos-guard.net/en/terminology?search=smurf
https://ddos-guard.net/en/terminology?search=fraggl
https://ddos-guard.net/en/terminology/attack_type/icmp-fragmentation-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/dns-flood
https://ddos-guard.net/en/terminology/attack_type/amplification-ddos-attacks
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types of denial of service attacks which also comprise of attacks that exploit the network 

protocol stack vulnerabilities comprising SYN flood, IP null attack, Fake TCP session 

attack, TCP null attack and Type of Service (TOS) Flood. Others include sack, RST/FIN 

flood, SYN-ACK flood, TCP null / IP null attack, Multiple SYN-ACK fake session attack, 

Synonymous IP Attack (Same Source/Dest Flood; LAND Attack), Misused Application 

Attack, Ping of Death and Multiple ACK Fake Session Attack (Multiple ACK Spoofed 

Session Flood).  The third group includes the following application level DDoS attacks: 

HTTP flood, Faulty application attack, Single request HTTP flood, Fragmented HTTP 

packets attack, Single session HTTP flood and Session attack. 

2.12 Artificial Neural Network   

The Artificial Neural Network (ANN) is a biologically inspired computing model consist 

of various processing elements (neurons). These neurons are normally connected to 

elements or weights that build the structure of neural networks. The ANN has elements 

for processing information, namely transfer functions, weighted inputs, and output. 

(Rawat, Rana, Kumar and Bagwari 2018). 

2.13    Intrusion Detection: An Overview   

An intrusion detection system (IDS) is one of the solutions which can be used to prevent 

an intruder from launching a DDoS attack in a protected network. A very effective IDS 

can detect a new DDoS in a short time without human intervention. The IDS system can 

be categorized into two types as follows:  

i. Host Intrusion Detection System (HIDS): this type of IDS can be 

implemented in network devices or workstations. HIDS techniques can be 

https://ddos-guard.net/en/terminology/attack_type/syn-flood
https://ddos-guard.net/en/terminology/attack_type/ip-null-attack
https://ddos-guard.net/en/terminology/attack_type/fake-session-attack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/fake-session-attack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://ddos-guard.net/en/terminology/attack_type/type-of-service-tos-flood
https://ddos-guard.net/en/terminology/attack_type/rst-or-fin-flood
https://ddos-guard.net/en/terminology/attack_type/rst-or-fin-flood
https://ddos-guard.net/en/terminology/attack_type/syn-ack-flood
http://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://ddos-guard.net/en/terminology/attack_type/multiple-syn-ack-fake-session-attack-multiple-syn-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/protocols/synonymous-ip-attack-same-source-dest-flood-land-attack
https://ddos-guard.net/en/terminology/attack_type/misused-application-attack
https://ddos-guard.net/en/terminology/attack_type/misused-application-attack
https://ddos-guard.net/en/terminology?search=Death
https://ddos-guard.net/en/terminology/attack_type/multiple-ack-fake-session-attack-multiple-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/multiple-ack-fake-session-attack-multiple-ack-spoofed-session-flood
https://ddos-guard.net/en/terminology/attack_type/http-flood-excessive-verb
https://ddos-guard.net/en/terminology/attack_type/faulty-application-attack
https://ddos-guard.net/en/terminology/attack_type/single-request-http-flood-multiple-verb-single-request
https://ddos-guard.net/en/terminology/attack_type/http-fragmentation-fragmented-http-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/http-fragmentation-fragmented-http-flood-nuke
https://ddos-guard.net/en/terminology/attack_type/single-session-http-flood-excessive-verb-single-session
https://ddos-guard.net/en/terminology/attack_type/session-attack-slowloris
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used to prevent a DDoS attack on a selected device, but it does not support 

monitoring of a whole network. 

ii. Network Intrusion Detection System (NIDS): The NIDS can be 

implemented as a security strategy within a protected network, and can be 

used to detect and classify all network traffic from all devices.   

2.14     Networking Attacks  

Every attack on a network can conveniently be placed into one of these groupings:  

i. DDoS Attack: The DDoS attack as the name suggests attempt to make an 

online service inaccessible by overwhelming it with traffic from multiple 

sources. It is imperative to note that the DDoS attack usually targets a wide 

range of important resources, from banks to news websites, and present a 

major challenge to making sure people can publish and access important 

information.  Some specific and particularly popular and dangerous types 

of DDoS attacks include: User Datagram Protocol (UDP) flood attack: An 

UDP flood attack is initiated by sending a large number of UDP packets to 

arbitrary ports on a remote host thereby on receiving the packets, the target 

system looks at the destination ports to identify the applications waiting on 

the port. However, once there is no application, it generates an ICMP 

packet with a message “destination unreachable”. This process can sap host 

resources thereby ultimately leading to inaccessibility. 

ii. Internet Control Message Protocol (ICMP) flood: Similar in principle to the 

UDP flood attack, an ICMP flood overflows the target resource with ICMP 

Echo Request packets, generally sending packets as fast as possible without 
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waiting for the replies. The ICMP flood has the propensity to consume both 

outgoing and incoming bandwidth, as the target server will attempt to 

respond with ICMP Echo reply packets, resulting a significant overall 

system slowdown. 

iii. SYN flood Attack:  In the SYN flood attack, the attacker sends several 

packets but does not send the ACK back to the server. The connections are 

therefore half opened and consuming server resources. In this regards, a 

legitimate user will try to connect but the server will refuse to open a 

connection thereby resulting in denial of service. 

iv. Remote to User Attacks (R2U): This is a type of attack in which a user 

sends packets to a machine over the internet, in which s/he does not have 

access to. This is in order to expose the machines vulnerabilities and exploit 

privileges which a local user would have on the computer. Examples of 

remote to user attack are: xlock, guest, xnsnoop, phf, sendmail dictionary. 

v. User to Root Attacks (U2R): These type of attacks are exploitations in 

which the hacker starts off on the system with a normal user account and 

attempts to abuse vulnerabilities in the system so that to gain super user 

privileges. Examples include perl, xterm. 

vi. Probing: The Probing is a type of attack where the hacker scans a machine 

or a networking device in order to determine weaknesses or vulnerabilities 

that may later be exploited so as to compromise the system. This technique 

is commonly used in data mining. For instance, saint, port sweep, mscan. 

nmap etc.   
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2.15   Classification of Intrusion Detection  

Intrusions Detection can be categorized into two main groups namely:  

i. Host Based Intrusion Detection: The Host Based Intrusion Detection (HIDSs) 

evaluate information found on a single or multiple host systems. This include 

the contents of operating systems, system and application files (Planquart, 

2013). 

 

ii. Network Based Intrusion Detection: The Network Based Intrusion Detections 

(NBID) evaluate information captured from network communications as well 

as analyzing the stream of packets which travel across the network 

(Planquart, 2013).   

 

2.16     Components of Intrusion Detection System  

An intrusion detection system usually consists of three functional components (Bace 2012). 

The first component of an intrusion detection system, which is also known as the event 

generator, is a data source. Data sources can be classified into four categories namely 

Host-based monitors, Network-based monitors, Application-based monitors and Target-

based monitors.   

The second component of an intrusion detection system is referred to as the analysis 

engine. This analysis engine takes information from the data source and examines the 

data for symptoms of attacks or other policy violations. The analysis engine can embrace 

one or both of the following analysis approaches:  

i. Misuse/Signature-Based Detection: The Misuse/Signature-Based detection 

engine is intended to detect intrusions that follow well-known patterns of 

attacks (or signatures) that can exploit known software vulnerabilities. The 
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main limitation of this approach is that it only looks for the known 

weaknesses and may not care about detecting unknown future intrusions 

(Kumar and Spafford 1995), 

ii. Anomaly/Statistical Detection: An anomaly based detection engine will 

search for something rare or unusual. The engine analyses system event 

streams by using statistical techniques to find patterns of activity that 

appear to be abnormal. The main drawbacks of this system are that engine 

are extremely expensive and can recognize an intrusive behaviour as 

normal behavior because of insufficient data.  The third component of an 

intrusion detection system is referred to as response manager. In basic 

terms, the response manager will only act when inaccuracies (possible 

intrusion attacks) are found on the system, by informing someone or 

something in the form of a response. (Kumar and Spafford 1995).  
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CHAPTER THREE 

3.0                                       RESEARCH METHODOLOGY  

 

3.1 The Proposed Research Design  

The design of the research work follows the processes elaborated in Figure 3.1. The 

design was divided into three phases namely: first, second and third phases. The first 

phase involves the critical, systematic and specific focus review stage. After the review, 

baseline papers were selected and thoroughly studied to formulate the problem. 

Thereafter, objective function was formulated for the GA optimization. The genetically 

optimized neural network classifier was developed. During the performance evaluation, 

comparative analysis of the conventional neural network classification and proposed 

classifier (NN-GA) was done. The work was technically concluded after this.  
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---  

Figure 3.1: Block Diagram of the Research Design 

 

3.2  Problem Formulation Process  

The research problem was formulated by considering the key problems in the statement of 

problem. These issues are poor accuracy, confidence factor and completeness factor in the 

existing classifiers. The accuracy issue was addressed by formulating error in converse 
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relation to accuracy while the formulas for confidence and completeness factors would be 

used for genetic optimization.  

3.3   Improved Genetic Algorithm  

It would be recalled that in Figure 2.1, the standard GA process first created a population of 

chromosomes where the chromosomes were evaluated by a defined fitness function. 

Thereafter, some of the chromosomes were selected for performing genetic operations. 

Finally, genetic operations of crossover and mutation were performed. The produced 

offspring replaced their parents in the initial population. In this reproduction process, only 

the selected parents in the third step was replaced by their corresponding offspring. The GA 

process repeated until a user-defined criterion was reached. In this research, the standard 

GA was modified Figure in 3.2 and new genetic operators are introduced to improve its 

performance.  
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Figure 3.2 Improved Algorithm: Predict data/intrusion type using GA 

 

3.4 Objective Function Formulation Procedure 

Multi-objective function was developed in this research in order to optimize the neural 

genetic classification of the DDoS attacks. The first objective is to minimize error. The 

error is computed from the difference of classier output and ground truth. The 

mathematically expression of the first objective function is given as:  

 FitnessFcn1 = Xco −  Xgt       (3.1)  

Where  
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Xco = Classier Output  

Xgt = Ground truth 

Subject to  

Constraints: 

0 < = Xco(1) < = 0.3 

0 < =  Xgt(2) < = 0.3 

 

The constraints for the two variables are chosen to be bounded between 0 and 0.3. This is 

because small range leads to pre-mature convergence and large range leads to poor 

performance.  

The second objective function is computed from the product of confidence factor and 

completeness measure. Confidence factor measures the predictive accuracy of a rule by 

taking into account true positive (TP) and false positive (FP). Mathematically, confidence 

factor is measured as, 

FPTP

TP
factorConfidence

+
=                         (3.2) 

Where TP is the number of samples that are correctly classified  

  FP is the number of samples that are incorrectly classified  

               Subject to 

               Constraints: TP >= 0 

                                    FP >= 0 

 

               Boundaries: TP = 1 

                                    FP = 1 
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Completeness factor is a measure of the ability of a rule to select instances of a certain 

class. The mathematical expression is given as:  

 
FNTP

TP
ssCompletene

+
=                (3.3) 

  

               Subject to 

 

               Constraints: TP >= 0 

                                    FN <= 0 

 

               Boundaries: TP = 1 

                                    FN = 0 

Where FN is the number of false negative of the considered class 

So, the second objective function is expressed as, 

  FitnessFcn2 = confidence × completeness                      (3.4) 

             Subject to 

               Constraints: TP >= 0 

                                    FP >= 0 

                                    FN <= 1 

 

               Boundaries: TP = 1 

                                    FP = 1 

                                    FN = 0 

 

3.5    Flowchart of Genetic Algorithm 
 

The flowchart in Figure 3.3 shows the operations of the general GA according to which 

GA is implemented into this research.  
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Figure 3.3Operations of a General Genetic Algorithm (Norouzian, 2011) 

 

Figure 3.4 shows the Flowchart for the optimization/classification model. The DDoS data 

was optimized using GA. The optimization is in terms of optimizing the confidence and 

completeness factors and minimizing the error. The classification was done using neural 

network. Based on the set of rules generated during supervised learning, the classification 

was done as either non DDoS attack or Classified DDoS attack.   
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Figure 3.4: Flowchart of the Proposed Optimization/Classification Model  

 

The proposed model starts by optimizing KDD DDOS data using GA. After feature 

optimization, neural network was applied for classification in order to build model for 

attack classification into DDOS attacks and non DDOS attacks. Once the model classify 

data into either benign or malicious, it stop the execution.  

3.6 Implementation Procedure  

 

The pre-calculation phase has 23 groups of chromosomes according to the training data. 

There are 23 (22+1) groups for each of attack and normal types presented in training data. 

The number of chromosomes in each group is variable and depends on the number of data 

Start 

Optimize DDoS Data Using 

Genetic Algorithm 

Objective 1 and Objective 2 
 

Classifying DDoS Using 

Improved Neural Network 

Confidence and Completeness 

Threshold 

Threshold? 

Stop 
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and relationship among data in that group. Hence, total number of chromosomes in all 

groups were tried to keep in reasonable level to optimize time consumption in testing 

phase.  For each test data in the testing/detection phase, an initial population is made 

using the data and occurring mutation in different features. This population is compared 

with each of the chromosomes prepared in training phase. Portion of population, which 

are more loosely related with all training data than others, are removed. Crossover and 

mutation occurs in rest of the population which becomes the population of new 

generation. The process continue to run until the generation size comes down to one.  

Among the extracted features of the datasets and forthe sake of simplification of the 

implementation, only the numerical features (both continuous and discrete)were 

considered. The procedure for the implementation is captured in Figure 3.5. 
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Procedure for Implementation  

Input: Pre-calculated set of chromosomes    

Output: Type of data.   

1 Initialize the population   

2 CrossoverRate, MutationRate   

3 While number of generation is not reached   

4 For each chromosome in the population   

5 For each pre-calculated chromosome   

6 Find fitness   

7 End for   

8 Allot optimal fitness as the fitness of that chromosome,   

9 End for   

10 Remove some chromosomes with worse fitness           

11 Set on crossover to the selected pair of chromosomes of the 

population  

12 Set on mutation to each chromosome of the population.  

13 End while   

Figure 3.5 Implementation Procedure 

 

3.7 Dataset and Data Processing  

A literature review was carried out in order to find the appropriate datasets to be used for 

this research. Most frequently used datasets for intrusion/classification are the KDD cup 

1999, DARPA 1998, CAIDA DDoS attack 2007, ISCX 2012, ADFA 2013, PREDICT 

2014, DEFCON 2014, NSL-KDD 2014, KYOTO 2014, ICS Attack 2014, TUIDS. 

DARPA/KDD datasets are publicly available, but are old fashioned databases which are 

still used in modern studies. This research will leverage on the KDD 99 datasets for the 

implementation of our algorithm.  
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The KDD 99 benchmark consists of different components: kddcup.data 

kddcup.data_10_percent; kddcup.newtestdata_10_percent_unlabeled; kddcup.testdata; 

unlabeled; ddcup.testdata.unlabeled_10_percent; corrected, training data types and typo-

correction. The “kddcup.data_10_percent” was used as training dataset and “corrected” as 

testing dataset. The training set consists of 494,021 records among which 97,280 are 

normal connection records, whereas the test set contains 311,029 records among which 

60,593 are normal connection records. Table 3.5 shows the distribution of each intrusion 

type in the training and the test set.  

 

Table 3.5.  Distribution of Intrusion types in Datasets 

Dataset   Normal   Probe   ddos   u2r   r2l   Total   

Train (“kddcup.data_10_percent”)   97280   4107   391458   52   1124   494021   

Test (“corrected”)   60593   4166   229853   228   16189   311029   

 

In order to further improve the performance of the proposed classifier, the dataset would 

be preprocessed and the necessary features would be encoded into binary digits. This is 

because both neural network and GA operate optimally with binary digits. Encoding 

processing approach would be used to digitize the 23 classes of attacks in the dataset. In 

order to accommodate 23 attack classes, 5 bits would be used to encode the attacks as 

Code1 to Code5. With 5 bits, it can accommodate up to 32 attack classes using the 

formula of 2n, where n is the number of bits.  
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3.8 Performance Evaluation Measures 

In this Research, an accuracy-based measure was used to evaluate the classifier. These 

measures are the metrics that have to do with correction classification rate. The accuracy- 

based measures include:  

 

i. Confusion matrix:  Confusion Matrix as the name implies gives us a matrix 

as output and describes the complete performance of the model. This is an 

essential parameter for measuring machine learning based model. It consists 

of four (4) major components including True Positive, True Negative, False 

Positive, and False Negative. These components are described in table 3.1 

thus: 

Table 3.1: Confusion Matrix 

 Predicted Class 

Normal Malicious 

 

Actual Class 

Normal Web page TN FP 

Malicious Web Page FN TP 

 

Where: 

TP (True positive) implies the total number of malicious network traffic instances 

“correctly” labeled by the classifier. 

TN (True Negative) represents the total number of normal network traffic instances 

“correctly” labeled by the classifier. 

FP (False positive) depicts the total number of normal network traffic instances 

“incorrectly” labeled by the classifier as malicious. 
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FN (False Negative) shows the total number of malicious network traffic instances 

“incorrectly” labeled by the classifier as normal. 

 

ii. Accuracy:  Accuracy measures how accurate a model can detect whether an 

instance of network traffic is normal or malicious (intrusion). It can be 

expressed in equation (14) as follows: 

 Accuracy = TP+TN/ (TP+FP+FN+TN)           (3.5) 
 

iii. True positive rate (sensitivity): True Positive Rate is defined as TP/ 

(FN+TP). True Positive Rate corresponds to the proportion of positive data 

points that are correctly considered as positive, with respect to all positive 

data points. 

 

          (3.6) 

iv. False positive rate (specificity):False positive rate is defined as FP/ 

(FP+TN). False Positive Rate corresponds to the proportion of 

negative data points that are mistakenly considered as positive, with 

respect to all negative data points. 

 

          (3.7) 
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It is important to note that both False Positive Rate and True Positive Rate 

have values in the range [0, 1]. FPR and TPR both are computed at threshold 

values such as (0.00, 0.02, 0.04, …., 1.00) and a graph is drawn.  

v. Mean squared error: Mean squared error(MSE) is quite similar to Mean 

Absolute Error, the only difference being that MSE takes the average of 

the square of the difference between the original values and the predicted 

values. The advantage of MSE being that it is easier to compute the 

gradient, whereas Mean Absolute Error requires complicated linear 

programming tools to compute the gradient. As, we take square of the 

error, the effect of larger errors become more pronounced then smaller 

error, hence the model can now focus more on the larger errors. 

            (3.8) 

vi. Regression:   Regression is a machine learning algorithm that can be 

trained to predict real numbered outputs. Regression is based on a 

hypothesis that can be linear, quadratic, polynomial, non-linear, etc. The 

hypothesis is a function that based on some hidden parameters and the 

input values. In the training phase, the hidden parameters are optimized 

w.r.t. the input values presented in the training. The process that does the 

optimization is the gradient decent algorithm. If you are using neural 

networks, then you also need back-propagation algorithm to compute 

gradient at each layer. Once the hypothesis parameters got trained, the 

result produced least error during the training, then the same hypothesis 
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with the trained parameters are used with new input values to predict 

outcomes that will be again real values. 
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CHAPTER FOUR 

4.0                                   RESULTS AND DISCUSSION  

4.1  Results Presentation  

4.1.1  Preprocessed dataset classes of attacks  

The result of 5-bit encoding of the 23 attack classes in the chosen dataset is presented 

in Table 4.1. These 5-bit encoded values are the output features of the dataset. The 

snippet of the input features of the dataset is in Appendix E.  

Table 4.1: 5-bit Encoded DDoS Attacks  

Attack type  
Code1  Code2  Code3  Code4  Code5  

1  0  0  0  0  0  

2  0  0  0  0  1  

3  0  0  0  1  0  

4  0  0  0  1  1  

5  0  0  1  0  0  

6  0  0  1  0  1  

7  0  0  1  1  0  

8  0  0  1  1  1  

9  0  1  0  0  0  

10  0  1  0  0  1  

11  0  1  0  1  0  

12  0  1  0  1  1  

13  0  1  1  0  0  

14  0  1  1  0  1  

15  0  1  1  1  0  

16  0  1  1  1  1  

17  1  0  0  0  0  

18  1  0  0  0  1  

19  1  0  0  1  0  

20  1  0  0  1  1  

21  1  0  1  0  0  

22  1  0  1  0  1  

23  1  0  1  1  0  
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 4.1.2   Neural genetic algorithm classifier training 

The neural-based classification results are presented in Figure 4.1. The architecture 

consists of 41 inputs, 10 neurons in the hidden layer and five output nodes. The training 

recorded 15 iterations. 

 

Figure 4.1: Neural Genetic Algorithm Classifier Training 
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The Mean Squared Error (MSE) of the neural-based genetic classifier records 0.07985 at 

the 9th epoch within 15 iterations as shown in Figure 4.2.  

 

 

Figure 4.2: Classifier Mean Squared Error 

 

The classifier also regresses between 0 and 1. The better result is obtained when the 

regression is closer to 1. The regression for training, validation and testing are 

respectively achieved as 0.92879 (92.879%), 0.83382 (83.382%) and 0.58577 (58.577%). 

The overall regression achieved by the classifier is 0.85423 (85.423%) as presented in 

Figure 4.3.  
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Figure 4.3: Classifier Regression  

 

 

4.1.3   Genetic algorithm implementation toolbox 

The essence of GA is for optimization. It optimizes the classification of the DDoS attacks. 

The implementation toolbox is presented in Figure 4.4. It consists of a section for 

problem setup and results. It also makes provision for option setting and customization of 
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genes formations, chromosomes mating, individuals, population, crossover operation, 

mutation operation, generation, stop criteria and so on.  

 

Figure 4.4: Genetic Algorithm Implementation Toolbox 

 

The fitness value is asymptotically distributed along the generation. This clearly shows 

that the genetic classifier converges at a definite point as shown in Figure 4.5. The best 

fitness has a value of 1.2656 x 10-6 with mean value of 7.13018 x 10-6.  
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Figure 4.5: Plot of Fitness Value against Generation  

At convergence point, current best individuals were recorded as second and third 

variables which are false positive and false negative as shown in Figure 4.6.  
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Figure 4.6: Current best individuals against Number of variables  

 

The average distance between individual also shows a convergence trends as it 

asymptotically approaches a finishing line across the generations as shown in Figure 4.7.  
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Figure 4.7: Average distance between individuals against Generation  

 

In Figure 4.8, the individual against generation is fairly good, showing individual 

participation across generations.  
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Figure 4.8: Individual against Generation  

 

The best versus worst analysis across generations shows a good performance as presented 

in Figure 4.9. The best performance is shown by the histogram lines while the mean is 

indicated by the underlined shading. The worst case does not surface at all. Generally, 

this indicates a good performance for the genetic classifier.  
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Figure 4.9: Best, Worst and Mean Scores against Generation  

 

In Figure 4.10, the number of individuals with good score range is very high. Over 45 

individuals was recorded at the point of high score range.  
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Figure 4.10: Number of Individuals against Score  

The genetic classifier attains high fitted individuals at the 15th generation as shown in 

Figure  

4.11.  
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Figure 4.11: Fitness of Individuals against Generations  

The classifier also shows good fitness of individual parents in reproducing fitted children. 

Average of five children was reproduced by the individual parent during chromosomes 

mating as shown in Figure 4.12.  
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Figure 4.12: Number of Children against Individual  

 

The stopping criteria were averagely okay. Over 20% stopping criteria was as a result of 

generational constraint while few were stalled as shown in Figure 4.13.  

 

 

 



65 

 

 

Figure 4.13: Percentage Analysis of Stopping Criteria  

 

4.2  Discussion  

The introduction of the GA for optimization-classification of the DDoS has shown that 

better performance is achievable. The performance evaluation of the neural GA classifier 

was done based on accuracy-based measures. In this research, we analyzed five 

classification algorithms and selected NN-GA as it provides better accuracy than 

the other four. The other conventional neural networks recorded lower classification 

accuracy compared to the genetically optimized classifier. The evaluation results show an 

absolute successful classification of all the attacks. Accuracy of 98.58% was achieved 

with detection rate of 96.49% and specificity of 95.97% as against the other conventional 



66 

 

NN results. The performance evaluations of the improved NN-GA with existing 

algorithms are presented in Table 4.2.  

Table 4.2: Performance Evaluation of the Improved NN-GA with Existing Algorithms 

 Accuracy 

      % 

True 

Positive 

Rate(TPR) 

% 

True 

Negative 

Rate 

(TPR) 

% 

False 

Positive 

Rate (FPR) 

% 

False 

Negative 

Rate 

(FNR) % 

MLP-ANN (UDP) (Sofi et al., 2017) 94.32 92.10 91.64 5.12 0.482 

Decision Trees-UDP (Sofi et al., 

2017) 

92.23 90.40 89.2 5.87 0.56 

Naïve Bayes-UDP (Sofi et al., 2017) 96.91 94.34 93.21 5.56 0.52 

SVM using DARPA dataset (UDP 

attack) (Vijayasarathy, 2012) 

88.50  91.42  94.60  5.71  0.558  

NN-GA (Researcher 2021) 98.58  96.49  95.97  4.03  0.351 

 

4.3  Implication of Findings 

 

The results in the table 4.2 shows the new model NN-GA has better accuracy of 98.58% 

with lower false positive rate of 0.351 as against the other existing neural networks. Again, 

the confusion metrics depicted in Table 3.1 shows that, for most of the classes, this 

improved model performs well enough except normal data type which is because of 

ignoring non-numerical features. Comparing with the confusion metrics of the winning 

entry of KDD‟99, better detection rate for DDoS/user-to-root and close detection rate for 

probe & remote-to-local was achieved. The implication of this achievement is that DDoS 

attacks with low rate, low levels and mutating variant nature will be better detected than 

existing approaches. 
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CHAPTER FIVE  

5.0                                 CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion  

In this research, the author designed an improved model using refined genetic neural 

network algorithm to efficiently detect and provide adequate protection against network-

based threats. To implement and measure the performance of the built model, the 

standard KDD99 benchmark dataset was used to obtain reasonable detection rate. 

Furthermore, to measure the fitness of the chromosomes, the standard deviation equations 

with distance were employed. It is envisaged that if better equations or heuristics could be 

employed in the detection process, the detection rate would improve to a great extent, 

especially the false positive rate would surely be much lower. 

5.2 Recommendation 

This study recommends that further experiment be performed using other DDoS datasets 

from different sources as well as other classification methods such as Bayesian, Support 

Vector Machine and K-Means to get an improved accurate result.  

5.3 Contributions to Knowledge  

The contributions of this research are:  

i. An improved multi-step objective function based confidence and completeness 

factors. 

ii. The improved genetically optimized neural network algorithm would improve 

the accuracy of the detector with little overhead. 

iii. The improved technique will lower false detection rate. 
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APPENDIX A 

Overview of Related Studies 

S/N

o 

Reference Technique/ Method Used Strength Weakness 

1. Lu and 

Traore 

(2014) 

It used historical network 

dataset by using GP to 

derive a set of 

classification 

It used support-confidence 

framework as the fitness 

function and accurately 

classified several network 

intrusions 

It made the implementation 

procedure very difficult and 

also for training procedure 

more data and time was 

required. 

 

2. Xia et al. 

(2015) 

It used GA to detect 

anomalous network 

behaviours based on 

information theory 

It was very effective because 

of the reduced complexity 

and higher detection rate 

It considered only the 

discrete features.  

 

3. Gong et al. 

(2015) 

It presented an 

implementation of GA 

based approach to 

Network Intrusion 

Detection using GA and 

presented software 

implementation. 

It worked effectively for the 

selected datasets and has the 

flexibility to be used in 

different ways to meet 

users’ special requirements. 

It requires the whole training 

data to be loaded into 

memory before any 

computation. For large 

training datasets, it is neither 

efficient nor feasible. 

4. Kejie et al. 

(2017) 

It proposed a framework to 

detect DDoS attacks and 

identi--fy attack packets 

efficiently. 

It accurately detected DDoS 

attacks and identify attack 

packets without modifying 

existing IP forwarding 

mechanisms at the routers. It 

achieved 94.6% for 

detection probability using 

the proposed framework.  

 

The simulation of the 

presented technique was 

provided in ‘Weka’.   

5. Wei Pan 

and 

Weihua Li 

(2015) 

It proposed a hybrid 

Neural Network consisting 

of a self-organizing map 

(SOM) and radial basis 

functions to detect and 

classify DDoS attacks 

It achieved a satisfactory 

accuracy rate result for 

detecting and classifying 

DDoS attacks  

 

It did not include modern 

attacks in different OSI 

layers such as transport 

layer in the work. 

6. Norouzian 

et al. 

(2015) 

It proposed a new 

approach to IDS based on 

a MultiLayer Perceptron 

Neural Network to detect 

and classify data into 6 

groups. 

The research implemented 

MLP design with two 

hidden layers of neurons and 

achieved 90.78% accuracy 

rate.  

 

The experimental result 

suggested that there is more 

to do in the IDS based on 

ANN. 

7. Haddadi, 

F, Sara 

Khanchi 

and others 

(2016) 

It Proposed a NIDS using 

a 2-layered, feed-forward 

neural network. 

It implemented the proposed 

system on a KDD cup 99 

dataset, the result was very 

satisfactory, both on 

accuracy rate and 

performance.  

 

 

It achieved equivalent 

performance and reduced 

computational overhead and 

memory usage. 
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8. Reyhaneh 

Karimazad 

and 

Ahmad 

Faraahi 

(2017) 

It proposed an anomaly-

based DDoS detection 

approach using an analysis 

of network traffic. 

It used a radial-based 

function (RBF) Neural 

Network on a UCLA 

dataset, achieving 93% 

accuracy rate for a DDoS 

attack.  

 

large distinct frequencies in 

large space and large 

update/query time 

9.  Jawale 

and  

Bhusari 

(2014) 

It proposed a system that 

uses multilayer 

perceptions, back 

propagation and a support 

vector machine, consisting 

of multi modules such as 

packet collection and 

preprocessing data 

It incorporates three well-

known classification 

techniques: Multilayer 

Perceptron (MLP), Naïve 

Bayes and Random Forest. 

During the transient period 

valid packets can be 

dropped 

10. Dimitris 

Gorillas 

and 

Evangelos 

Dermatas 

(2013) 

It presented and evaluated 

a Radial-basis-function 

(RFB) Neural Network for 

DDoS attacks dependent 

on statistical vectors 

through short-time 

window analysis. 

The proposed method was 

tested and evaluated in a 

controlled environment with 

an accuracy rate of 94% of 

DDoS detection. 

During the transient period 

valid packets can be 

dropped 

 

* 
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APPENDIX B 

Implementation Algorithms 

% Setup the Genetic Algorithm 

fitnessfunction= @ga_test; 

N = 1310;  % number of optimization (decision) variables 

popsize = 8 ; % set population size = number of chromosomes 

max_iteration = 50;  % max number of iterations 

minimum_cost = 120;  % minimum cost 

mutation_rate = 0.01; % mutation rate 

selection_rate = 0.5; % selection rate: fraction of population  

nbits = 1; 

Nt = nbits*N; % total number of bits in a chormosome 

number_mutations = mutation_rate*N*(popsize-1); % number of mutations 

% #population members that survive (Nkeep = Xrate*Npop); Nkeep survive for mating, 

and (Npop - Nkeep) are discarded to make room for the new offspring 

keep = floor(selection_rate*popsize);  

iga=0; % generation counter initialized 

pop=round(rand(popsize,Nt)); % random population of 1s and 0s 

cost=feval(fitnessfunction,pop); % calculates population cost using fitnessfunction 

[cost,ind]=sort(cost); % min cost in element 1 

pop=pop(ind,:); % sorts population with lowest cost first 

minc(1)=min(cost); % minc contains min of population 

while iga < max_iteration  %Iterate through generations 

iga=iga+1; % increments generation counter 

% Pair and mate 

M=ceil((M-keep)/2); % number of matings weights chromosomes based upon position in 

list probability distribution function 

prob=flipud([1:keep]'/sum([1:keep]));  

odds=[0 cumsum(prob(1:keep))];  

pick1=rand(1,popsize); % mate #1 

pick2=rand(1,popsize); % mate #2 

% parents contain the indicies of the chromosomes that will mate 

ic=1; 

while ic<=M 

for id=2:keep+1 

if pick1(ic)<=odds(id) & pick1(ic)>odds(id-1) 

ma(ic)=id-1; 

end % if 

if pick2(ic)<=odds(id) & pick2(ic)>odds(id-1) 

pa(ic)=id-1; 

end % if 

end % id 

ic=ic+1; 

end % while 

%_______________________________________________________ 
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% Performs mating using single point crossover 

ix=1:2:keep; % index of mate #1 

xp=ceil(rand(1,M)*(Nt-1)); % crossover point 

pop(keep+ix,:)=[pop(ma,1:xp) pop(pa,xp+1:Nt)]; 

% first offspring 

pop(keep+ix+1,:)=[pop(pa,1:xp) pop(ma,xp+1:Nt)]; 

% second offspring 

%_______________________________________________________ 

% Mutate the population 

number_mutations=ceil((popsize-1)*Nt*mutation_rate); % total number of mutations 

mrow=ceil(rand(1,number_mutations)*(popsize-1))+1; % row to mutate 

mcol=ceil(rand(1,number_mutations)*Nt); % column to mutate 

for ii=1:number_mutations 

pop(mrow(ii),mcol(ii))=abs(pop(mrow(ii),mcol(ii))-1); 

end  

%_______________________________________________________ 

% The population is re-evaluated for cost decode 

cost(2:popsize)=feval(fitnessfunction,pop(2:popsize,:)); 

%_______________________________________________________ 

% Sort the costs and associated parameters 

[cost,ind]=sort(cost); 

pop=pop(ind,:); 

%_______________________________________________________ 

% Stopping criteria 

if iga>maxit | cost(1)<mincost 

break 

end 

[iga cost(1)] 

end 
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APPENDIX C 

 

Objective Function on Confidence and Completeness   Factor 

 

function [y]=Fitnessfunction(x) 

 

ConfidenceFitness = x(3)/(x(3)+x(4)) 

 

CompletenessFitness = x(3)/(x(3)+x(5)) 

 

%y=1/(1+(1/100)*(x(1)-x(2))^2) 

 

y=ConfidenceFitness * CompletenessFitness 
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APPENDIX D 

Objective Function on Error 

function [ y ] = MinError( x ) 

%UNTITLED2 Summary of this function goes here 

%   Detailed explanation goes here 

y = x(1)-x(2); 

end 
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APPENDIX E 

Neural Genetic Algorithm Codes 

clear all; clc; close all; 

 
%% Data Entry 
% This section is to feed in data from the dataset in Excel Sheet 
MyData=xlsread('NormalizedKDDDataset10PercentEncodedFull3.xlsx'); 

 
% This section is to enter both Input features and Output feature 
Input=MyData(:,1:end-5); 
Output=MyData(:,end-4:end); 

 
%% Data Transpose Section 
% This section is to transpose both the input and output data 
InputTranspose=Input'; 
OutputTranspose=Output'; 

 
%% ANN Section, 
% This section is to carry out computations using Artificial Neural Network 
network=newff(InputTranspose,OutputTranspose,10) 

 
%% ANN Training 
% This section is ..... 
network=train(network,InputTranspose,OutputTranspose); 
Output=network(InputTranspose); 

 
%% Performance Evaluation 
% This section is to evaluate the performance of your model 

 
Error = Output-OutputTranspose; 
[GAx,GAfval,GAexitflag,GAoutput,GApopulation,GAscores]=ga(@MinError,2,[],[],[],[]

,[0;0],[0.3;0.3]) 

 
Performance=perform(network,Output,OutputTranspose); 

 
%% Simulation Section 
% This section is to use the model for simulation 

 
SimResult=sim(network,InputTranspose); 

 
%% Thresholding Section... 
% This section is to ... 

 
ThreshSimResult=SimResult>0.5 

 
%% Performance Evaluation 

 
PerformanceParameters=classperf(OutputTranspose, ThreshSimResult) 

 
[GA2x,GA2fval,GA2exitflag,GA2output,GA2population,GA2scores]=ga(@Fitnessfunction,

3,[],[],[],[],[0.5;0.5;0.5],[1;1;1]) 
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APPENDIX F 

Snippet of the Dataset Input features 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 … L41 

21 tcp telnet SF 135 1290 0 0 0 0 0 1 0 

85 tcp telnet SF 277 693 0 0 0 0 0 0 0 

192 tcp ftp SF 119 426 0 0 0 2 0 1 0 

179 tcp ftp SF 87 319 0 0 0 1 0 1 0 

0 tcp ftp_data SF 866 0 0 0 0 0 0 0 0 

0 tcp ftp_data SF 0 467968 0 0 0 0 0 0 0 

1 tcp ftp_data SF 0 988002 0 0 0 0 0 0 0 

198 tcp telnet SF 562 9139 0 0 0 3 0 1 22 

718 tcp telnet SF 1412 25260 0 0 0 15 0 1 38 

0 tcp telnet S0 0 0 0 0 0 0 0 0 0 

0 tcp telnet S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 

0 tcp private S0 0 0 0 0 0 0 0 0 0 
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APPENDIX G 

Dataset Description and labels 

The 41 Input Features captioned as L1 to L41 are labelled as follows: 

1. duration: continuous. 

2. protocol_type: symbolic. 

3. service: symbolic. 

4. flag: symbolic. 

5. src_bytes: continuous. 

6. dst_bytes: continuous. 

7. land: symbolic. 

8. wrong_fragment: continuous. 

9. urgent: continuous. 

10. hot: continuous. 

11. num_failed_logins: continuous. 

12. logged_in: symbolic. 

13. num_compromised: continuous. 

14. root_shell: continuous. 

15. su_attempted: continuous. 

16. num_root: continuous. 

17. num_file_creations: continuous. 

18. num_shells: continuous. 

19. num_access_files: continuous. 

20. num_outbound_cmds: continuous. 

21. is_host_login: symbolic. 

22. is_guest_login: symbolic. 

23. count: continuous. 

24. srv_count: continuous. 

25. serror_rate: continuous. 

26. srv_serror_rate: continuous. 

27. rerror_rate: continuous. 

28. srv_rerror_rate: continuous. 

29. same_srv_rate: continuous. 

30. diff_srv_rate: continuous. 

31. srv_diff_host_rate: continuous. 

32. dst_host_count: continuous. 

33. dst_host_srv_count: continuous. 
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34. dst_host_same_srv_rate: continuous. 

35. dst_host_diff_srv_rate: continuous. 

36. dst_host_same_src_port_rate: continuous. 

37. dst_host_srv_diff_host_rate: continuous. 

38. dst_host_serror_rate: continuous. 

39. dst_host_srv_serror_rate: continuous. 

40. dst_host_rerror_rate: continuous. 

41. dst_host_srv_rerror_rate: continuous. 

 

The output feature consists of 23 classes of attacks. These are as follows: 

back,buffer_overflow,ftp_write,guess_passwd,imap,ipsweep,land,loadmodule,multihop,ne

ptune,nmap,normal,perl,phf,pod,portsweep,rootkit,satan,smurf,spy,teardrop,warezclient,wa

rezmaster. 

 

 

 

 

 


