
i 
 

MATHEMATICAL MODELLING FOR THE TRANSMISSION DYNAMICS OF 

LYMPHATIC FILARIASIS AND MALARIA CO-INFECTION 

 

 

 

 

 

 

BY 

 

 

 

 

 

UDOM, Collins Francis 

MTech/SPS/2018/8908 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF MATHEMATICS 

FEDERAL UNIVERSITY OF TECHNOLOGY 

MINNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOVEMBER, 2022 
 



ii 
 

ABSTRACT 

In this research, a mathematical model for the transmission dynamics of Lymphatic 

Filariasis and Malaria co-infection in the presence of treatment was formulated, using 

Bed net, insecticide and chemoprevention as control. It was assumed that the susceptible 

individual and vector can get infected with Malaria, lymphatic filariasis and co-infection 

when there is an interaction with any of the five infectious classes: acute stage or chronic 

stage of Lymphatic filariasis, malaria, both Lymphatic filariasis and malaria co-infected 

individuals and the infected vectors. The basic reproductive number was obtained using 

the next generation matrix approach. The Jacobian stability technique and Castillo-

Chavez method were used to establish the Local and global stabilities of the Disease free 

equilibrium state respectively. The stability analysis showed that the Lyphatic filariasis 

and Malaria co-infection can be eradicated from the entire population when Rc ≤ 1 but 

will continue to persevere within the population when Rc > 1. The model was solved 

analytically using Adomian decomposition method, the stability analysis was verified 

with graphs using Maple 15. The result showed that use of bednet and insecticides have 

significant impact on the Susceptible, infected malaria and the vector compartments, but 

treatment have effect on the infected human compartments. It is therefore recommended 

that every susceptible individual get and make use of bednet and insecticide always. 

Those who are acutely and chronically infected with Filariasis should get early medical 

attention. 
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CHAPTER ONE 

1.0           INTRODUCTION 

1.1 Background to the Study 

History has shown that the dream of eradicating some parasitic diseases like filariasis and 

malaria has not been fully realized. Instead, these two old endemic debilitating parasitic 

diseases are totally neglected most especially filariasis in some parts of developing 

countries. Malaria and filariasis are the two vector-borne diseases that account for the 

largest global burdens of mortality and morbidity, respectively. More than half the 

world’s population is at risk of at least one of these diseases (Tersoo and Gweryina, 2014).  

Lymphatic filariasis was derived from the latin word ‘filarial’ it is a vector borne disease 

of Human caused by Wuchereria banerofti, Brugia and skin dwelling Onchocerca 

volvulus (Ottesen, 1984). Among these three species, Wuchereria banerofti is the most 

common and account for 90% infection globally (Anosike et al., 2005). Over 120 million 

people are infected with filariasis, claiming over 40 million people with Africa accounting 

for 40% of all the global cases (Lenhart et al., 2007). The lymph system maintains the 

body fluid balance and carry a clear fluid called lymph (water) towards the heart that 

helps the body get rid of toxins, waste and unwanted materials.  People with long term 

infections with filariasis are clinically asymptomatic and recurrent bacterial infections in 

some lymphedema patients leads to elephantiasis (Dreyer et al., 2000).  

Despite the increase on the literacy level of pathology of lymphatic filariasis and the 

efforts made to treat this disease with diethylcarbamazine and albendazole, filariasis 

continue to pose a major public health threat in tropical and sub-tropical regions. This is 

because the disease is more prevalent in the region with higher incidence of poverty (Tan, 

2003) and making it a disease of the poor and most often serves as an indicator of 
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underdevelopment (WHO, 1993). It is also noted that areas with higher prevalence of 

malaria and filariasis have poor environmental and settlement planning and other 

activities that favour the breeding reservoirs for mosquito vectors (Haddix and Kestler, 

2000). Coincidentally, both malaria and filariasis have feverish symptoms. In rural areas, 

it is often hard to distinguish drug-resistant falciparium malaria and periodic fever due to 

filariasis infection (Ojiako and Onyeze, 2009). 

 Malaria was first discovered centuries ago by the Chinese in 2700 BC (CDC, 2011).  

However it was in the 1800’s when Ross made his ground breaking discoveries that led 

to our understanding of the mechanism behind malaria infections. There are estimated 

300-600 million clinical episodes of malaria and approximately 1-2 million results in 

deaths worldwide of which 90% occur in tropical Sahara (Hay et al., 2004). Vector-borne 

malaria disease like filariasis is transmitted to the humans through a bite from an infected 

female Anopheles mosquito. The female Anopheles mosquito gets infected when it bites 

a person carrying the malaria or filariasis   parasite. Malaria is caused by the protozoan 

parasite called plasmodium. There are four species of the plasmodium parasite namely 

Plasmodium falciparium, Plasmodium vivax, Plasmodium ovale and Plasmodium 

malairae; of the four species, Plasmodium falciparium is the most virulent, lethal and 

responsible for the majority of morbidity and mortality due to malaria (Burke, 2010). 

Apart from the four species mentioned above, simian malaria, Plasmodium inul, 

Plasmodium knowlesi and Plasmodium cynomolgi are also known to cause the disease in 

humans (Balbir et al., 2004). The malaria parasite passes through human blood then into 

the liver where it develops. After completing its development, it goes back to the blood 

stream and a person develops symptoms of malaria. The most clinical symptoms a patient 

may experience after malaria infection include headache, aching muscles, stomachache, 

loss of appetite, nausea, vomiting, back pain and increased sweating (Bupa, 2009).  
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Individuals most vulnerable to malaria are children under the age of 5 years. This is 

attributed to their weaker immunity. Aside from children, pregnant women are also 

heavily affected, with resultant effects on maternal health and birth outcomes. Malaria 

like filariasis has physiological impact to the body ranging from severe anemia, fits, 

spleen enlargement, cerebral malaria, multi-organ failure or death.  There is developing 

geographical distribution of these diseases in large areas of Africa, Asia and the Americas. 

Historically, there is evidence that efforts to control malaria have in adversely resulted in 

the interruption of transmission of lymphatic filariasis in some areas, such as Solomon 

Islands (Webber, 1977).  The dangers of malaria and filariasis can be controlled or treated 

by the effective scaling up coverage of insecticide treated mosquito nets or combination 

of drugs known as artemisinin-based combination therapies as well as implementing 

indoor residual spraying (ACTs) (Whitty et al., 2007). Moreso, the Global Programme to 

Eliminate Lymphatic Filariasis (GPELF) is currently targeting elimination of the disease 

through annual mass drug administration (MDA) of abendazole with either 

diethylcarbamazine (DEC) or invermectin. This has been widely acclaimed to be one of 

the successful public health programmes and is expected to block transmission of 

filariasis in endemic countries by 2020 (WHO, 2005). Whilst there is enormous and 

abundant literature on the mathematical models for communicable diseases, there is 

growing interest in the dynamics of co-infection of HIV and malaria (Chunky, 2012), 

malaria and TB (Expeditho et al., 2009), malaria and meningitis (Lawi et al., 2011), still 

no or very little literature is available on the mathematical models on filariasis and malaria 

co-infection, due to the little work done in modeling of lymphatic filariasis (Bhunu and 

Mushayabasa, 2012) as compared to malaria.  

1.2 Statement of the Research Problem 
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Statistics has showed that the dream of eradicating some parasitic disease like lymphatic 

filariasis and malaria has not been fully achieved; instead this two old disease have been 

neglected or totally ignored especially lymphatic filariasis (also known as elephantiasis). 

Lymphatic filariasis and malaria are two vector borne diseases that account for the largest 

morbidity and mortality rate globally. It is in light of this that the present study sought to 

develop and analyse a mathematical model for the transmission of Lymphatic filariasis 

and malaria co-infection. 

1.3 Motivation of the study 

Nigeria is said to be the most lymphatic filariasis (elephantiasis) endemic country. It also 

accounted for 94% of all malaria cases and death in the world (CDC, 2019). In view of 

the above, the Author is motivated by the need to provide valuable information that will 

help policy makers in the fight against lymphatic filariasis and malaria co infection in 

Nigeria and the world at large. 

 1.4 Justification of the Study 

Lymphatic filariasis and Malaria are two vector born disease that account for the largest 

global burden of morbidity and mortality respectively. Filariasis is a leading cause of 

permanent and long term disability, loss of work, productivity, they cause direct or 

indirect economic loss and functional impairment (CDC, 2010). Government and health 

workers will find the research useful for both short and long term planning in the fight 

against the co infection of lymphatic filariasis and malaria. The Thesis may also help 

mathematicians and research scientists to further develop models to help public health 

professionals to make better strategies for controlling and eradicating the disease. Hence 

this justifies the study. 

1.5 Scope and Limitation of the Study 
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This work covers the formulation and analysis of mathematical model for the 

transmission dynamics of lymphatic filariasis and Malaria co infection through mosquito 

bite. 

1.6 Aim and Objectives 

The aim of this work is to develop and analyse a mathematical model for the transmission 

dynamics of Lymphatic filariasis and malaria co-infection 

The objectives are to: 

i. formulate a mathematical model of Lymphatic and Malaria co-infection; 

ii. investigate the positivity and feasible region of the model’s solution; 

iii. obtain the disease free equilibrium state of the model; 

iv. compute the effective reproduction number of the model; 

v. obtain the conditions for local and global stability of the disease-free equilibrium 

(DFE) state; 

vi. solve the model equations using Adomian Decomposition Method. 

vii. carry out the numerical simulation of the model using Maple 15 software and 

Nigeria demographic data. 

 

 

1.7 Definition of terms 

Mathematical Model: Any description of a system using mathematical concepts and 

languages is called a mathematical model. 

Acute stage infection: An infection that is brief, intense or short term. 
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Chronic stage infection: An infection often low intensity but lasts for a long term. 

Population: A collection of people of similar characteristic in the same region or 

geographical area, in a given time. 

Susceptible Individual: A person who is free from lymphatic filariasis and malaria but 

may be infected if exposed to the disease. 

Epidemiology: the study of the occurrence and distribution of health related states or 

events in specified population, including the study of the determinant influencing such 

state and application of this knowledge to control the health problems.  
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1 Mathematical Model of Lymphatic Filariasis and Malaria Co-Infection 

The earliest mathematical model describing the lymphatic Filariasis (LF) dynamics was 

proposed by S. Subramainian in 1998 where he focused on the prediction and control 

strategies using LYMFASIM simulation program (Subramainian et al., 1998). Since then, 

a few other researchers have contributed to formulate mathematical models to study the 

prevention, control and transmission dynamics of LF. 

Hiroyuki et al. (2002) formulated a mathematical model for the transmission of LF and 

its applications. They constructed a stochastic transmission model for LF caused by 

Wuchereria, analyzed its prevalence using computed simulations, aimed at evaluating the 

effect of vector control in the context of Pondicherry (india). 

Supriatna et al. (2009) formulated a mathematical model to investigate long term effects 

of the LF medical treatment in Indonesia. In formulating their model the population was  

divided into five (5) components, namely: the Susceptible human Sh , Infected carrier A, 

Infected chronic K, Susceptible mosquito Sv, Infected mosquito Iv, they analyzed the model 

to find a condition for the existence and stability of the endemic equilibrium, which shows 

that it exists and stable if the basic reproductive number is greater than one. They also 

showed that if the level of screening is sufficiently large, the current medical treatment 

strategy will be able to reduce the long term level of incidence. 

Bhunu and Mushayabasa (2012) developed a mathematical model for the transmission 

dynamics of Lymphatic filariasis with treatment for those displaying elephantiasis 

symptoms, they determined the reproductive number and equilibria for the model and 

analysis of the reproductive number suggested that treatment will somehow contributes 
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to a reduction in Lymphatic Filariasis (LF) cases but it didn’t show the magnitude of the 

reduction. 

Other researchers such as Swaminathan et al. (2008); Norman (2000), formulated 

mathematical model for Lymphatic filariasis. Oguntolu (2019) developed a mathematical 

model to study the transmission dynamics of LF which improved on other previous 

studies of LF. The model had compartments for those undergoing treatment since the 

treatment would take six years before recovery for chronic cases, class of susceptible 

individuals taking drug, vector control using bed net and insecticides, drugs 

administration to both infected class with symptoms and without symptoms. The 

existence and uniqueness of the model was found, stabilities analyses were also obtained. 

Li-Ming et al. (2013) modeled a deterministic model with variable human population for 

the transmission dynamics of malaria disease, which allows transmission by the recovered 

humans. The model revealed the presence of the phenomenon of backward bifurcation, 

where a stable disease-free equilibrium coexists with one or more stable endemic 

equilibria when the associated reproduction number is less than unity. This phenomenon 

may arise due to the reinfection of host individuals who recovered from the disease. The 

model in an asymptotical constant population is also investigated. This results in a model 

with mass action incidence.  A complete global analysis of the model with mass action 

incidence was given, which revealed that the global dynamics of malaria disease with 

reinfection is completely determined by the associated reproduction number. 

Traore et al. (2017) formulated a mathematical model of non-autonomous ordinary 

differential equations describing the dynamics of malaria transmission with age structure 

for the vector population. The biting rate of mosquitoes was considered as a positive 

periodic function which depends on climatic factors. The basic reproduction ratio of the 

model was obtained and they showed that it was the threshold parameter between the 
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extinction and the persistence of the disease. Thus, by applying the theorem of 

comparison and the theory of uniform persistence, they proved that if the basic 

reproduction ratio is less than 1, then the disease-free equilibrium is globally 

asymptotically stable and if it is greater than 1, then there exists at least one positive 

periodic solution. 

Olumuyiwa and Hammed (2019) formulated a malaria mathematical model by 

incorporating four control strategies: insecticide-treated bednets control, infected humans 

treatment control, sterile mosquitoes technique control and use of control on pregnant 

women and newborn births. It also explains the various stages of the disease jointly in 

humans and mosquitoes as well as the treatment of both asymptomatic and infectious 

humans. Preventive measures were developed to control the spread of disease. Forward-

backward fourth-order Runge-Kutta method (Sweep method) was used to see the spread 

of disease and how to eradicate the disease. This was based on the fact that these measures 

are deployed adequately using control tools and without control tools respectively. 

Hannah et al. (2013) developed a modeling framework incorporating the specifics of 

malaria-LF co-infection to investigate how the transmission of each infection is altered 

for a range of possible interaction scenarios. They found out that a control strategy that 

reduces LF transmission via mass drug administration, for example could potentially 

increase malaria prevalence. Their work illustrated the potential perverse effects of 

targeting just one infection and emphasises the need to take into account co-endemic 

diseases when designing control programmes. The developed modelling framework can 

provide the basis for exploring the mix of options for joint control of these infections. 

Oluwatayo and Valery (2019) formulated a mathematical nonlinear model system of 

equations describing the dynamics of the co-interaction between malaria and filariasis 

epidemic affecting the susceptible host population of pregnant women in the tropics was 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Slater%20HC%5BAuthor%5D&cauthor=true&cauthor_uid=23785271
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formulated. The basic reproduction number R0 of the co-epidemic model was obtained, 

and it was shown that it was the threshold parameter between the extinction and 

persistence of the co-epidemic disease. If R0 < 1, then the disease-free steady state is both 

locally and globally asymptotically stable resulting in the disease dying out of the host. 

Also, if R0 > 1, the disease lingers on. The center manifold theory was used to show that 

the unique endemic equilibrium was locally asymptotically stable. However, variations 

in the parameter values involved in the model build up would bring about appropriate 

control measures to curtail the spread of the co-epidemic disease. 

Gweryina and Tersoo (2014) formulated and analyzed a deterministic model for malaria-

filariasis co-infection with chemoprevention and treatment. They proved that the disease-

free equilibrium was globally asymptotically stable. They also showed that the bifurcation 

analysis of the endemic state was subcritical. Furthermore, results from numerical 

simulation suggests that high chemotherapy and treatment hold great promise for helping 

to stem the tide of new malaria and filariasis infections. The model was divided into eight 

(8) compartment of six (6) Human compartment and two vector compartment. The 

following differential equations were formed. 



xvii 
 

   

 2
1 2

2 1

2

3

 = (1- )  +  +  -( )  

 =  -  -(  +  + )

 = -  -(  +  + )  

 =  +  -(  +  +

          

 

  +

 

)

h
h ma f h h h

h h ma f h h h

m
h f m h m

f

m ma f h f

mf

f m ma f h mf

S
A S S

dt

S
S S S

dt

I
S I I

dt

I
I I I

dt

I
I I I

d

K K µ T

A K K µ

K µ

K µ

K K µ
t

  

   

   

    

  



     

  



1 2 3

T
 =  + (  +  + )-( )

 = A  -  -

  =  - -

  =  -

mf m f mf h

v
v v v

v
v v v v

v
v v v

I I I I T
dt

S
S S

dt

E
S E E

d

µ

K µ

t

I
E

K µ

µ I
dt

 

 



    






















 










    (2.1)

 

Considering all the cited literature above, a new mathematical model and lymphatic 

filariasis and Malaria co infection dynamics incorporating relevant features is formulated 

using a system of ordinary differential equations. It is hoped that the results of this 

research work will be found useful and eventually be added to the existing literature. The 

model is an improvement on the literatures cited above as it considers: 

i. The class undergoing treatment since the treatment will take six years for 

Lymphatic filariasis 

ii. Chemoprevention Class consisting of susceptible individual taking drugs 

iii. Acute and chronic stage of Lymphatic filariasis infected individuals 

iv. Vector control (using bed-net and insecticide) 

v. Drug administration to both the infected class showing symptoms and not showing 

symptoms of Lymphatic filariasis, Malaria infected inviduals and lymphatic and 

Malaria co infection 
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2.2 Effective Reproduction Number (Rc) 

One of the most useful threshold parameters used in the study of stability of equilibria is 

the effective reproduction number Rc. According to Diekmann and Heesterbeek (2000), 

Murray (2002), the basic reproduction number R0 is defined as the average number of 

infected people generated by single infectious person in an entirely susceptible 

population. 

If Rc < 1, then on average, an infected individual produces less than one new infected 

individual during its entire period of infectiousness and the disease can be controlled. 

Thus, the disease free equilibrium is locally asymptotically stable. Conversely, if Rc > 1, 

then each infected individual produces, on average more than one new infection (i.e. 

epidemic occurs). Hence, the disease free equilibrium is unstable and disease invasion is 

possible. Rc = 1 is a threshold below which the generation of secondary cases is 

insufficient to maintain the infection with human community (Diekmann et al.,1990). 

The next generation approach described by Van Den and Watmough (2002) is a widely 

accepted method used to compute the basic reproduction number R0. Other publications 

by Castillo-Chavez et al. (2007) were devoted to the calculation of basic reproduction 

number R0 for different models of various diseases. Using the approach described by Van 

Den and Watmough, we obtained the effective reproduction number Rc which is the 

largest eigenvalue (spectral radius 𝜌) of the next generation matrix 𝐹𝑉−1 i.e. Rc =𝜌(𝐹𝑉−1) 

as follows; 

 iV x
 is the rate of transfer of individuals into compartment i by every means except the 

epidemic. 

 iV x

 is the transfer of individuals out of compartment  i. 
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Given the DFE, Rc is calculated thus:   
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         1 ≤ 𝑖; 𝑗 ≤ 𝑚         (2.3) 

With F being non-negative and V, a non-singular M-matrix. 

Thus Rc = 𝜌(𝐹𝑉−1) 

2.3 Global Stability of Disease Free Equilibrium 

In global stability of equilibrium, the restrictions on initial conditions are removed and 

the global asymptotic stability property requires that for all initial conditions, solutions 

approach the equilibrium. Several techniques including Castillo- Chavez’ global stability 

theorem have been used to determine the global stability of disease free equilibrium. 

2.4 Castillo-Chavez global stability theorem 

Consider a model system written in the form 

 ,
dX

F X Z
dt


         (2.4)

 

 , ;
dX

G X Z
dt


     

 G ,0 0X 

         (2.5) 

Where mX  denotes (its component), the number of uninfected individuals and 

nZ  denotes (its component) the number of infected individuals including those 
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undergoing treatment, etc;  0 0 ,0E N  denotes the disease free equilibrium of the 

system. 

Assume the conditions H1 and H2 below; 

 1H  for   *,0 ,
dX

F X X
dt

  is globally asymptotically stable (GAS)            (2.6) 

       
^ ^

2 , Z , , , 0H G X AZ G X Z G X Z   
 for 

 ,X Z 
                      (2.7) 

Where  *,0
G

A X
Z





 is an M- matrix (the off diagonal elements of A are non-negative) 

and   is the region where the model makes biological sense. If the model equations 

satisfy the two conditions (2.6) and (2.7) then the disease free equilibrium  0 0 ,0E N

is globally asymptotically stable. 

2.5 Adomian Decomposition Method  

At the beginning of the 1980, George Adomian developed a very powerful method called 

Adomian decomposition method for solving linear and nonlinear functional equations. 

The Adomian decomposition (ADM) involves separating the equation under 

consideration into linear and nonlinear parts. The linear operator representing the linear 

part of the equation is inverted and the linear operator is then applied to the equation. Any 

given conditions are taken into consideration. The nonlinear part is decomposed into a 

series of what is known as Adomian Polynomials. The method generates a solution in the 

form of a series whose terms are obtained by a recursive relationship using the Adomian 

Polynomials. A brief outline of the method is given as follows; 

Consider a differential equation in general form 
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 G y g
           (2.8) 

This can be written in operator form as  

Ly Ry Ny g            (2.9) 

Where L is a linear operator acting on y which is easily invertible, R is a linear operator 

for remainder of the linear part, and N is a nonlinear operator representing the nonlinear 

term in G. For convenience, L is usually taken as the highest derivative. 

Applying the inverse operator 1L  on both sides of equation (2.9) gives 

1 1 1 1L Ly L g L Ry L Ny             (2.10) 

1L  is the integration since G is taken as a nonlinear differential operator and L is linear. 

That is, 1L  is an nth integral of y for nth order differential equation, where n Z . 

Equation (2.10) becomes 

    1 1y t f t L Ry L Ny   
             (2.11) 

where  f t is the function obtained by integrating g and applying the initial or boundary 

conditions. 

The unknown function is assumed to be an infinite series of the form  

 
0

n

n

y t y





             (2.12) 

we let  

 0y f t
             (2.13) 
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And the remaining terms are obtained by a recursive relationship. This relationship is 

found by decomposing the nonlinear terms into a series of what is called Adomian 

polynomial, nP  (Biazar and Babalion, 2005). 

The nonlinear term is written as 

 
0

n

n

Ny t P





         (2.14) 

In order to obtain nP , a grouping parameter,   is introduced. The following series are 

established 

 
0

n

n

n

y y 





         (2.15) 

 
0

n

n

n

Ny t P





         (2.16) 

Substituting equation (2.12), (2.13), (2.14) into equation (2.11) gives 

  1 1

0

0 0

n n

n n

y t y L Ry L P
 

 

 

   
       (2.17) 

Where nP  can be obtain from 

 
0

1

!

n

n n

d
P Ny

n d







 
  

          (2.18) 

The recursive relation is obtained to be 

 0y f t
          (2.19) 

1 1

1

0 0

n n n

n n

y L Ry L P
 

 



 

   
        (2.20) 
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The Adomian decomposition method (ADM) produces  series that is absolutely and 

uniformly convergent (El-Kalla, 2008). 
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CHAPTER THREE 

3.0              MATERIAL AND METHODS 

3.1 Development of the Model 

A mathematical model provides a framework within which we can communicate an 

understanding of the spread of disease in human population, both in space and time. In 

this chapter we developed and analyzed a mathematical model to study the transmission 

dynamics of Lymphatic filariasis and malaria co-infection. 

The model incorporates relevant features such as chemoprevention, vector control (using 

bed net and insecticide), the recovery class, and the infected classes of LF with symptoms 

and without symptoms.  

The human population of size  hN t is subdivided based on Lymphatic filariasis and 

malaria status into the following subpopulations: Susceptible human   hS t , 

chemoprevention class   hV t , infected human   halI t  not showing sign of Lymphatic 

filariasis, infected human   hclI t  showing sign of Lymphatic filariasis, infected human 

with malaria symptoms   mI t , infected human with Lymphatic filariasis and malaria 

symptoms   lmI t , Recovered human   hT t from   halI t ,  hclI t ,  mI t ,  lmI t . 

Thus, the total human population is given by: 

             h h hal hcl m lm hN t S t I t I t I t I t T t          (3.1) 

The mosquito population is divided into the following subgroups: non-carrier vector 

(mosquitoes)   vS t and carrier vector (mosquitoes)   vI t , so the total mosquito 

population is given by 
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      v v vN t S t I t           (3.2) 

The mosquitoes and Human beings are recruited into their corresponding susceptible 

populations at rate v  and h  respectively. Mosquito experiences natural death rate v  

and death by insecticide at a rate v  which is proportional to the number in each mosquito 

class. Similarly human beings experience natural death rate at the rate h and death rate 

due to malaria  at rate m ,which is proportional to the number in each human class. 

The mosquito ingests microfilarias or malaria parasite or both when it bites a human who 

is infected with filariasis or malaria or both. This filariasis could be at the acute stage or 

chronic stage in the human at the rate. 

 hal hcl m lm

h h v

h

I I I I

N
  

  


                                     (3.3) 

where, 

h  is the probability that a bite by susceptible mosquito on an infected human will 

transfer infections to the mosquito and v  is the average number of bites given to humans  

by each mosquito per unit time. 

For filariasis infection, upon getting infected, the susceptible mosquitoes entered the 

infected class  vI t . Microfilariae passes through mosquito gut into hemocoel and 

develop into filariform juvenites. filariform juveniles escapes from mosquito’s proboscis 

when the insect is feeding and penetrates wound structure of a human being at rates. 

(1 )l v v

v

I

N

  
 and 

(1 )lm v v

v

I

N

  
        (3.4) 
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Similarly, humans get infected with malaria when there is a bite from infected mosquitoes 

at the rate of 

(1 )lm v v

v

I

N

  
,

(1 )m v v

v

I

N

  
and m v v

v

I

N

 
      (3.5) 

(1 )lm v v

v

I

N

  
 is the rate of co-infection. 

Effective biting interaction between Sh and Iv or Vh and Iv result in the movement of 

individual from Sh to Ihal, Ihal to Ihcl, Sh to Im, Sh to Ilm, or Vh to Im while a similar interaction 

between Ihal, Ihcl, Im, Ilm and Sv leads to the flow of individuals of Sv into Iv. 

The schematic representation of the model is given below in Figure 3.1  
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Figure 3.1 Schematic Diagram of the Model 

 

Based on the model development described in section 3.1 and the schematic diagram in 

Figure 3.1 the following model equations are derived. 

 

Λℎ  

𝜇ℎ  

𝜇ℎ  𝜇ℎ  

𝜇ℎ  
𝜇𝑣  

𝛿𝑣  

Λ𝑣  

𝑉ℎ  

𝐼𝑚  

𝐼𝑙𝑚  

∝1 

𝛿𝑚  

∝2 
𝜏1 

𝛿𝑚  

𝜏2 

𝜏3 

𝜏1 

𝜇𝑣  

𝑆ℎ  

𝐼𝑣  
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    1 1 21h v h
h v m l lm h h h h

v

dS I S
S T V

dt N
                     (3.6) 

 1 2
h v h

h h h m v

v

dV I V
S V

dt N
                                (3.7) 

     11 1hal v h v hal
l v l v h hal

v v

dI I S I I
I

dt N N
                 (3.8) 

   11hcl v hal
l v hal h hcl

v

dI I I
I I

dt N
             (3.9) 

   21m v h v h
m v m h m m v

v v

dI I S I V
I

dt N N
                          (3.10) 

   31lm v h
lm v m h lm

v

dI I S
I

dt N
             (3.11) 

   2 1 3 1 h

h
m hal hcl lm h

dT
I I I I T

dt
             (3.12) 

 
 hal hcl lm m vv

v h v v v v

h

I I I I SdS
S

dt N
   

  
                (3.13) 

 
 hal hcl lm mv

h v v v v v

h

I I I IdI
S I

dt N
   

  
     (3.14) 

and summing (3.6) to (3.12) and (3.13) - (3.14) gives 

h
h h h

dN
N

dt
  

         (3.15) 

7
v

v v

dN
k N

dt
            (3.16) 

Table 3.1 Definition of variable/Parameter of the model 
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Variable Description 

 hS t  A class of susceptible Human 

 

 hV t  A class of susceptible individuals taking drugs (chemoprevention) at time 

(t) 

 

 halI t  
A class of infected acute stage of LF (not showing sign of Lymphatic 

filariasis) at time (t) 

 

 hclI t  A class of infected-chronic stage of LF at time (t) 

 

 mI t  
A class of malaria infected human at time (t) 

 

 lmI t  
A class of Lymphatic filariasis and malaria co-infected humans at time t 

 

 hT t  Recovered human population at time t 

 

 vS t  Susceptible mosquitoes at time t 

 

 vI t  
Infected mosquitoes at time t  

 

h  
The infectivity of an infection malaria, Lymphatic filariasis and co-

infection humans defined as the probability that a bite  by a susceptible 

mosquitoes on an infected human with transfer the infection to the 

mosquito 

 

m  The infectivity of the mosquito, define as the probability that a bite by an 

infected mosquito on a susceptible human will transfer malaria infection 

to the Human 

 

l  
The infectivity of the mosquito, defined as the probability that a bite by 

an infected mosquito on a susceptible human will transfer Lymphatic 

filariasis infection to the Human 

 

lm  
The infectivity of the mosquito, defined as the probability that a bite by 

an infected mosquito on a susceptible human will transfer Lymphatic 

filariasis infection to the Human 

 

v  
The main biting rate of mosquitoes, define as the average number of bites 

given to humans  by each mosquito per unit time 

 

h  
Recruitment rate of the human population  

v  
Recruitment rate of the mosquito population 

  Proportion of the susceptible population using mosquito net and 

insecticide 

h  
Natural death rate for the human population  

v  
Natural death rate for the mosquito population 
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m  
Death rate due to malaria infection 

𝜌 Rate of progression of human from  halI t  to  hclI t  

v  
Mosquitoes death rate due to the use of insecticide 

1  
Treatment rate for Lymphatic filariasis infected individuals 

2  
Treatment rate for malaria infected individuals 

3  
Treatment rate for Lymphatic filariasis and malaria co-infected 

individuals 

1  
Progression rate at which malaria, Lymphatic filariasis and co-infected 

Lymphatic filariasis maleness full recovered human after treatment move 

to susceptible class 

 

2  
Rate at which the treatment immunity wanes off 

 

The assumptions below were considered in constructing the model 

1. Recruitment into the susceptible population is at constant rate. 

2. There is no vertical transmission of the diseases. 

3. Treatment of Lymphatic filariasis is taking to be for 8years. 

Let  

 1 1hk            (3.17) 

 2 2hk            (3.18) 

 3 1hk              (3.19) 

 4 2 m hk              (3.20) 

 5 3 m hk             (3.21) 

 6 1 hk            (3.22) 
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 7 v vk            (3.23) 

Thus, the equation (3.6) – (3.14) becomes  

   1 1 21h v h
h v m l lm h h h

v

dS I S
k S T V

dt N
                (3.24) 

1 2
h v h

h h m v

v

dV I V
S k V

dt N
          (3.25) 

    31 1hal v h v ha
l v l v ha

v v

dI I S I I
k I

dt N N
             (3.26) 

  11hcl v ha
l v hal hc

v

dI I I
I k I

dt N
          (3.27) 

  41m v h v h
m v m m v

v v

dI I S I V
k I

dt N N
           (3.28) 

  51lm v h
lm v lm

v

dI I S
k I

dt N
         (3.29) 

 2 1 3 6 h

h
m ha hc lm

dT
I I I I k T

dt
           (3.30) 

 
7

hal hcl lm mv
v h v v v

h

I I I IdS
S k S

dt N
 

  
      (3.31) 

 
7

hal hcl lm mv
h v v v

h

I I I IdI
S k I

dt N
 

  
      (3.32) 

3.2 Basic Properties of the Model 

3.2.1   Feasible region  
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Theorem 3.1: The system (3.24) – (3.32) has solutions, which are contained in the  

feasible region   

Proof: 

Assuming there is no disease induced death 

Let   7, , , , ,h h hal hcl m lm hS V I I I I T R    and  

  2,v vS I R   be any solution of the system with non-negative initial conditions, 

then adding the equation of the system (3.24) - (3.30) and (3.31) - (3.32) we have 

h h hcl m lm hdS dV dI dI dI dT

dt dt dt dt dt dt
          

 , , , , ,h h h h hal hcl m lm hS V I I I I T        (3.33) 

h
h h h

dN
N

dt
                        (3.34)

h
h h h

dN
N

dt
                     (3.35) 

ht
IF e


          (3.36) 

Multiplying equation (3.35) with its integrating factor, gives 

h h ht t th
h h h

dN
e N e e

dt

    
      (3.37) 

 h ht t

h h

d
N e e

dt

 
 

        (3.38) 

Integrating equation (3.38) 

h ht t

h hN e e dt C
 
          (3.39) 
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Dividing  equation (3.39) by 
ht

e


    

  hth
h

h

N t Ce





 
        (3.40) 

Using the initial condition;  t = 0 ,     0
0h h

N N      (3.41) 

 0 h
h

h

N C



 

        (3.42) 

   0 hth h
h h

h h

N t N e


 
  

   
 

      (3.43) 

Taking the limit as   t          (3.44) 

h
h

h

N



         (3.45) 

This implies that as t  → ∞, the total population of human approaches 
h

h



 

Also  

  v v
v v v v v

dS dI
S I

dt dt
      

      (3.46) 

Recall 
 7 v vk   

 

 7
v v

v v v

dS dI
k S I

dt dt
    

        (3.47) 

7
v

v v

dN
k N

dt
  

        (3.48) 

7
v

v v

dN
k N

dt
  

        (3.49) 

7k t
IF 

        (3.50) 

Multiplying equation (3.49) with its integrating factor, gives  

7 7 7

7

k t k t k tv
v v

dN
e k N e e

dt
  

       (3.51)  
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 7 7k t k t

v v

d
N e e

dt
 

        (3.52) 

Integrating equation (3.52), gives  

7 7k t k t

v vN e e dt C           (3.53) 

Diving equation (3.53) by 
7

k t
e


 

  7

7

k tv
vN t Ce

k


          (3.54) 

Using the initial condition 

0t  ,    0 0v vN N
          

(3.55)
 

 
7

0 v
vN C

k


          (3.56) 

    7

7 7

0
k tv v

v vN t N e
k k

  
   

 

      (3.57) 

Taking the limit as t → ∞        (3.58) 

7

v
vN

k


         (3.59) 

This implies that as t → ∞, the total population of the vector approaches  
7

v

k



 

Therefore, the considered region of the system (3.24) – (3.30) and (3.31) –(3.32) is 

Ω =  =

 

 

 

7

2

7

, , , , , , :

, , , , , ,

0, 0, 0, 0, 0, 0, 0

, : , 0, 0

h h hal hcl m lm h

h
h h hal hcl m lm h

h

h h hal hcl m lm h

v
v v v v v v

S V I I I I T R

S V I I I I T

S V I I I I T

S I R S I S I
k







 
 

 
  
 

       
 
      
  

    (3.60) 

As t  → ∞, the vector field points to the interior of   Ω of the total population of the human 

and vector  hN  and vN approaches 
7

h



 and 
7

v

k

 respectively, where  
7

h



 and 
7

v

k

 are the 
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upper bonds. Hence, the solutions of the model enter the region Γ and ψ at any time t. 

therefore, the solution of equation (3.24) to (3.32) is positively invariant and hence in the 

feasible region Ω, the model remains epidemiologically meaningful and mathematically 

well posed.  It suffices to consider the dynamics of the model (3.24) – (3.32) in Ω 

(Hethcote, 2000). 

3.2.2 Positivity of the solutions 

In this subsection, since the model consist of both human and vector classes we employed 

the technique of Friedman and Lungu (2013) to demonstrate the equation (3.18 – 3.26) is 

positively invariant and well posed. We consider the system (3.18 – 3.26) in matrix form. 

.

.

.

.

.

.

.

.

.

h

h

hal

hcl

m

cm

h

v

v

S

V

I

I

I

I

T

S

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

1 2 1

1 2

3

1

4

5

1 1 2 3 6

7 5

5 7

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

h

k

S k

k

k

k

k

k

k

k

 





   





 
 

 
 
 

 
 
 

 
 
 

  
 

 

.

.

.

.

.

.

.

.

.

h

h

hal

hcl

m

cm

h

v

v

S

V

I

I

I

I

T

S

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

1

2 2

2

3

4

0

0

h v h

m v
v h

v

v h v hal

v hal

m v
v h v h

v

v h

v

I S

I V
N

I S I I

I I

I V I S
N

I S



 

 



 




  
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

  (3.61) 

where  

  
1

1v m l lm

vN

    


  
 ,         

 
2

1l v

vN

  



  

 
3

1m v

vN

  



 ,

 
4

1lm v

vN

  



 ,

 
5

h v hal hcl m lm

h

I I I I

N

 


  
  
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Which in compact form can be written as   

   ,i
i i i

dx
f x t A x H x

dt
          (3.62) 

For   1 2, ,..., nx x x x  where 1 hx S , 
2 hx V , 

3 halx I , 4 hclx I , 5 mx I , 6 lmx I

7 hx T , 8 vx S , 9 vx I and  
'

.  denote transpose. Then the equation (3.18)-(3.26) can 

be written as 

 ,idx
f x t

dt
          (3.63) 

For   
'

1 2, ,..., nx x x x . one can easily show that equation (3.24)-(3.32) satisfies the 

differential inequality 

1

n
i

i i ij i

v

dx
A x C x

dt




          (3.64) 

For  1,2,3,...,i n  with 0ijC   and 0t  if   0ix   

For  1,2,3,...,i n  then  ix t   for all t o  

Proof  

Assuming without loss of generality that  > 0. The case   = 0 is trivial through 

approximation of the equation (3.18)-(3.26)  with a sequence k  , which converges 

to zero as k  goes to infinity. 

Suppose now that  0 0ix   , for 1 i n   does not hold, then there exist 0 0t   

such that   0ix t   for  1 i n  ,  00 t t   and   0 0ix t  for at least one i ,  say

0i i . Then  0x i is a decreasing function such that  0

0 0
idx

t
dt

  
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From the differential 0

0 0

1

n
i

i i ij i

j

dx
A x C x

dt




   which is a contradiction. Thus, if 

 0ix   For  1,2,3,...,i n then    0ix t   for all 0t  . Since this hold hence 

we’ve showed that the Equations are all positive. 

3.3 Equilibrium State of the Model 

At equilibrium, let  

0h h hal hcl m lm h v vdS dV dI dI dI dI dT dS dI

dt dt dt dt dt dt dt dt dt
        

  (3.65) 

And at any arbitrary equilibrium state, let 

*

*

*

*

* *

*

*

*

*

hcl

hh

hh

halhal

hcl

m m

lm lm

h h

v v

v v

SS

VV

II

II

E I I

I I

T T

S S

I I

  
  
  
  
  
  
   
  
  
  
  
  
    

   

      (3.66) 

Then the steady states of (3.24) – (3.32) satisfy the following algebraic system. 

  
* *

* * *

1 1 21 0v h
h v m l lm h h h

v

I S
k S T V

N
                          (3.67) 

* *
* *

1 2 0v h
h h m v

v

I V
S k V

N
                               (3.68) 

   
* * * *

*

31 1 0v h v hal
l v l v hal

v v

I S I I
k I

N N
                      (3.69) 

 
* *

* *

11 0v hal
l v hal hcl

v

I I
I k I

N
            (3.70) 
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 
* * * *

*

41 0v h v h
m v m m v

v v

I S I V
k I

N N
            (3.71) 

 
* *

*

51 0v h
lm v lm

v

I S
k I

N
                                (3.72) 

 * * * * *

2 1 3 6 0m hal hcl lm hI I I I k T             (3.73) 

 * * * *

* *

7 0
hal hcl lm m

v h v v v

h

I I I I
S k S

N
 

  
        (3.74) 

 * * * *

* *

7 0
hal hcl lm m

h v v v

h

I I I I
S k I

N
 

  
       (3.75) 

From equation (3.68) 

* *
* *

1 2 0v h
h h m v

v

I V
S k V

N
             (3.76) 

*
* *

1 2 0v
h m v h

v

I
S k V

N
  

 
   
 

        (3.77) 

*
*

1 2
v

h m v

v

I
S k

N
            (3.78) 

 * * *

1 2 0v h v m v v hN S N k I V           (3.79) 

*
* 1

*

2

v h
h

v m v v

N S
V

N k I



 



        (3.80) 

From equation (3.72) 

 
* *

*

51 0v h
lm v lm

v

I S
k I

N
             (3.81) 

 
* *

*

51 v h
lm v lm

v

I S
k I

N
            (3.82) 

  * *

*

5

1lm v v h

lm

v

I S
I

N k

  
         (3.83) 
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From equation (3.69) 

   
* * * *

*

31 1 0v h v hal
l v l v hal

v v

I S I I
k I

N N
             (3.84) 

 
  ** *

3 *
1

1
l v v vv h

l v hal

v v

I N kI S
I

N N

  
  

  
    

 

    (3.85) 

 

 

* *

*

*

3

1

1

l v v h

hal

l v v v

I S
I

I k N

  

  

 
     

                 (3.86) 
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From equation (3.70) 

 
* *

* *

11 0v hal
l v hal hcl

v

I I
I k I

N
             (3.87) 

  *

* *

1

1
0

l v v v

hal hcl

v

I N
I k I

N

     
   

 

                 (3.88) 

   

 

* * *

*

1*

3

1 1

1

l v v v l v v h

hcl

v l v v v

I N I S
k I

N I k N

      

  

    
       

                         (3.89) 

     
  

* * *

*

*

1 3

1 1

1

l v v v l v v h

hcl

v l v v v

I N I S
I

k N I k N

      

  

   
 
  
 

               (3.90) 

   

  

* * *

*

*

1 3

1 1

1

l v v h l v v h

hcl

v l v v v

I S N S
I

k N I k N

      

  

   
 
  
 

    (3.91) 

From equation (3.71) 

 
* * * *

*

41 0v h v h
m v m m v

v v

I S I V
k I

N N
             (3.92) 

 
* * * *

*

41 v h v h
m v m v m

v v

I S I V
k I

N N
             (3.93) 

  * *

* *

4

1m v h m v h

v m

v

S V
I k I

N

      
  

 

      (3.94) 

  * *

* *

4

1m v h m v h

m v

v

S V
I I

N k

      
   
 

      (3.95) 

Substituting equation (3.83), (3.86), (3.91) and (3. 95) in equation (3.96) 

  *

*

7

, , ,
0

hal hcl m lm v

h v v

h

I I I I S
k I

N
         (3.96) 

 

 

    

  

   

22 * * ** *

*

* *
3 1 3 * *

7
* * *

* *

5 4

1 11

1 1
0

1 1

l v v h l v v hl v v h

v

l v v v v l v v vh v
v v

h
lm v h m v h m v h

v v

v v

I S N SI S
I

I k N k N I k N
S k I

N
S S V

I I
N k N k

        

      

       

     
               
      
         

    

 (3.97) 
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  
 

    

  
   

2* * * *

* *
3 * * *1 3

7
* * *

5 4

1 1 1

1 1
0

1 1

l v h l v v h l v v h

l v v v v l v v vh v
v v v

h
lm v h m v h m v h

v v

S I S N S

I k N k N I k N
I S k I

N S S V

N k N k

         

      

       

    
 
    

  
   
  
 

 (3.98) 

 

 

    

  
   

2 * * **

* *
3 *1 3

7
* * *

5 4

1 11

1 1
0

1 1

l v v h l v v hl v h

l v v v v l v v vh v
v

h
lm v h m v h m v h

v v

I S N SS

I k N k N I k N
k I

N S S V

N k N k

        

      

       

    
  
     

   
    

    
  

 (3.99) 

This implies  

* 0vI                    (3.100) 

Or 

 

 

    

  
   

2 * * **

* **
3 1 3

7
* * *

5 4

1 11

1 1
0

1 1

l v v h l v v hl v h

l v v v v l v v vv h v

h
lm v h m v h m v h

v v

I S N SS

I k N k N I k NS
k

N S S V

N k N k

        

      

       

    
  
     

   
    

    
  

       (3.101) 

Substituting the value of 
* 0vI   in equation (3.83) 

*

5 0lmk I      * 0lmI                   (3.102) 

Substituting equation (3.100) in equation (3.95) 

*

4 0mk I     * 0mI 
                

(3.103) 

Substituting equation (3.100) in equation (3.86)      

*

3 0halk I     * 0halI                  (3.104) 

Substituting equation (3.100) and (3.104) in equation (3.91) we get 

*

1 0hclk I     * 0hclI                  (3.105) 

Substituting equation (3.102), (3.103), (3.104) and (3.105) in equation (3.73) we get 

*

1 0hk T     * 0hT                   (3.106) 

Substituting equation (3.102), (3.103), (3.104) and (3.105) in equation (3.74) we get 
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*

7 0v vk S      *

7v vk S                   (3.107) 

*

7

v
vS

k


                   (3.108) 

Substituting equation (3.100) in equation (3.68) we get 

* *

1 2 0h hS k V                               (3.109) 

* *

1 2h hS k V                              (3.110) 

*
* 1

2

h
h

S
V

k


                  (3.111) 

Substituting equation (3.100), (3.106) and (3.111) in equation (3.67) we get 

*
* 2 1

1

2

0h
h h

S
k S

k

 
                     (3.112) 

*1 2 2 1

2

h h

k k
S

k

  
   

 

                 (3.113) 

* 2

1 2 2 1

h
h

k
S

k k  


 


       

          (3.114)

  

2
1

1 2 2 1*

2

h

h

k

k k
V

k


 

 
 

                   (3.115) 

 

 
1 2*

2 1 2 2 1

h

h

k
V

k k k



 





                 (3.116) 

From (3.99) the disease free equilibrium state exists if  

* 0vI                    (3.117) 

And the endemic equilibrium state exist if 

 

 

    

  
   

2 * * **

* **
3 1 3

7
* * *

5 4

1 11

1 1
0

1 1

l v v h l v v hl v h

l v v v v l v v vv h v

h
lm v h m v h m v h

v v

I S N SS

I k N k N I k NS
k

N S S V

N k N k

        

      

       

    
  
     

   
    

    
  

       (3.118) 
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3.4 Disease Free Equilibrium State DFE (
0E ) 

Disease free equilibrium state are steady state solutions where this is no infection. Thus 

all the infected disease will be zero and their entire population will comprise of 

susceptible individual and susceptible vector. 

At the disease free equilibrium state, let 

0

0

0

0

0

0

0

0

0

hcl

h

h

h

h

hal
hal

hcl

m m

lm
lm

h

h

v

v
v

v

S
S

V
V

I
I
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I I

I
I

T
T

S
S
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I

 
  
  
  
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                                 (3.119)  

Thus, from (3.100), (3.102), (3.103), (3.104), (3.105), (3.106), (3.108), (3.114) and 

(3.116) the disease free equilibrium state is given by 
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3.5 Basic Reproductive Number Rc 

In the model equation (3.2) to (3.10), the infectious compartments includes 

halI ,
hclI ,  mI  ,  lmI , vI  and the expected secondary infections depends on these classes. 

The rate of appearance of new infections in compartments i is given by the matrix. 

The Jacobean matrix of  F evaluated at the disease free equilibrium point is given by 
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 , , , ,j hal hcl m lm vx I I I I I  for 1,2,3,4j   and 0E  is the 

disease free equilibrium. 
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and  
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From (3.125), we calculate the eigenvalues to determine the effective reproduction number Rc by 

taking the spectral radius (dominant eigenvalue) of the matrix FV-1. Computing |A-λI| = 0, we 

have; 



xlvi 
 

7

7 71

7

1 3 1 3 7 4 5

(1 )
0 0 0

0 0 0 0

(1 )
0 0 0

0
(1 )

0 0 0

l v h

v

m v h m v h

v v

lm v h

v

h v v h v v h v v h v v h v v

h h h h

S

k N

S V

k N k N
FV I

S

k N

S S S S S

k k N k k k N k N k N

  




    



  



          










 

  




 

           (3.126) 

This implies 
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Clearly, we can see that 5  is the dominant eigenvalues.  
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Rc is the average number of secondary infectious case that an infectious individual with 

Lymphatic filariasis and Malaria co-infection would produce in a totally susceptible 

population. 

 

 

3.6   Local Stability of Disease Free Equilibrium State 
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The Disease free equilibrium 0E of the model equation (3.61) - (3.69) is locally 

asymptotically stable (LAS) of cR <1. 

Proof: Linearization of the model (3.24) - (3.32) at any arbitrary equilibrium point  

( 0E ) gives the Jacobian 

 

1 2 1 2

1 3 4

5 6 7

8 1 9

*

10 11 4 12

13 5 14

1 1 2 3 6

15 15 15 15 16

15 15 15 15 17 7

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

c c

c c

c c c

c k c

J E c c k c

c k c

k

c c c c c

c c c c c k

 



   

  
 

  
 
 

 
  
 

 
 
 

     
 

 

        (3.131) 

where 
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We evaluate the Jacobian of the system at disease free equilibrium to determine the local 

stability of the system. We obtain  
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Using elementary row transformation (as in Abdulrahman et al., 2013) the Matrix (3.133) 

becomes  

 

  

  

 

 

2 7

1 2 1

1 2 2 1

7 1 1 21 2 2 1 1 1

1 1 1 1 2 2 1

2 7

3

1 2 2 1

2 7

1

3 1 2 2 1

0

1
0 0 0 0 0

( )

( 1 )
0 0 0 0 0 0

( )

1
0 0 0 0 0 0 0

( )

1
0 0 0 0 0 0 0

( )

0 0 0 0

v m l lm h

v

h m v v m l lm

v

l v h

v

l v h

v

k k
k

k k

k k kk k

k k k k k

k k
k

k k

k k
k

k k k

J E

    
 

 

          

 

  

 

  

 

   
 

 

    
 

 

 


 

 


 


 

 

 

 

7 2 1

4

1 2 2 1

2 7

5

1 2 2 1

7 3 1 2 3 4 1 2

1 6

1 3 1 2 2 1 4 5

1 2 3 4 3 4

7

1 2 1 3 4 5

( 1 )
0 0 0

( )

1
0 0 0 0 0 0 0

( )

( 1 )
0 0 0 0 0 0

( )

( 1 )
0 0 0 0 0 0 0

( )

0 0 0 0

h m v v

v

lm v h

v

h lm v

v

v h h lm v

h

k k
k

k k

k k
k

k k

k k k k k z z
k

k k k k k k

k k k k z z
k

k k k k k

    

 

  

 

   


 

    



  


 

 


 

   


 

   
 

 

  1 2 4 3 4 1 3 4 5 7 2 1

1 2 1 3 4 5

( 1 ( ))
0 0 0 0

( )

v h h lm v

h

k k k z z k k k k k k

k k k k k

     



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
    

  (3.134) 

The characteristic equation of the upper triangular Jacobian is 
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k k k k k k

k k k k z z
k



    


 

  


 

   
 

 

    




  
 

 

 
 

 

   
 

 

   
  



 
2 1 3 4 5

1 2 4 3 4 1 3 4 5 7 2 1

1 2 1 3 4 5

)

( 1 ( ))
0 0 0 0 0 0 0 0

( )

v h h lm v

h

k k k k k

k k k z z k k k k k k

k k k k k

     




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
      

      

        

(3.135)

 where 

    

 

   

 

1 2 4 5 1 1 2 4 5 1

2 1 2 3 5 2 1 3 5 1 2

3 2 4 5 1 2 4 5

4 1 2 3 5 1 3 5 1

1 1

1

( 1 1 )

1

v l v l

v m m v

v v l v l

v m m v

z k k k k k k k

z k k k k k k k

z k k k k k k k

z k k k k k k k

       

       

      

     

   


   


    
   

    (3.136) 

Therefore, the eigenvalues are 

1 1 0k            (3.137) 

1 2 2 1
2

1

1 2 2 1

1

2

2 1 2 1 2 1

1

2

2 1

1

( )( )
0

0

0

h h

h h h

h h h

k k

k

k

k

k

 


     

        

    


 

   
   
  

     
     

  


      
  

     (3.138) 

2

2 1
2

1

0h h h

k

    


  
   

    

    (3.139)

 

3 3 0k             (3.140) 



l 
 

4 1 0k             (3.141)  

5 4 0k             (3.142) 

6 5 0k             (3143) 

7 6 0k             (3.144) 

8 7 0k             (3.145) 

  1 2 4 3 4 1 3 4 5 7 2 1

9

1 2 1 3 4 5 7

( 1 ( ))

( )

v h h lm v

h

k k k z z k k k k k k

k k k k k k

     




     


 
  (3.146) 

For 9  to be negative, then 

  1 2 4 3 4 1 3 4 5 7 2 1

1 2 1 3 4 5 7

( 1 ( ))
0

( )

v h lm v k k k z z k k k k k k

k k k k k k

     



    



   (3.147) 

i.e 

  1 2 4 3 4 1 3 4 5 7 2 11 ( )v h lm v v h v h v hk k k z z k k k k k k                  (3.148) 

      1 2 4 2 4 5 1 2 4 5 4

1 3 4 5 7 2 1

1 ( 1 1 )
1

( )

v h lm v v h v v l v l v h

v h

k k k k k k k k k k z

k k k k k k

               

  

     



 

                    

(3.149) 

Rc <1 

This implies that λ9 < 0 if Rc < 1 

Hence, the disease free equilibrium E0 of the equation (3.24) - (3.32) is locally 

asymptotically stable (LAS), if Rc < 1 

  



li 
 

3.7 Global Stability of Disease Free Equilibrium (DFE) 

Theorem: The D.F.E (
0E ) of the model system is globally asymptotically stable (GAS) 

in the feasible region   if 1CR    

Proof: To establish the global stability of the D.F.E, the two conditions for the global 

stability of D.F.E as in (Castillo-Chavez et al, 2007) for 1CR   was used for the model 

system. 

We can write the model system as: 

Let ( , , , )h h h vX S V T S and ( , , , , )hal hcl m lm vZ I I I I I  and writing the model equation 

(3.61) – (3.69) in the form ( , ) ( , )
dX dZ

F X Z and G X Z
dt dt

   

where 0hal hcl m lm vI I I I I      

With F(X, Z) being the RHS of
. . . .

, , ,hh h vS V T S  and G(X,Z) the RHS
. . . . .

, , , ,hal hcl m lm vI I I I I  

Next we consider the reduced system ( , )
dX

F X Z
dt

 given as 

  

 

 

.

1 1 2

.

1 2

.

2 1 3 6

.

7

1

h

v h
h h v m l lm h h h

v

v h
h h h m v

v

h m hal hcl lm

hal hcl lm m
vv h v v v

h

I S
S k S T V

N

I V
V S k V

N

T I I I I k T

I I I I
S S k S

N

      

  

  

 


         




   


    

  
  


  (3.150) 

Let  

* * * * * 2 1

1 2 2 1 1 2 2 1 7

( , , , ) , ,0,
v

h h v
h h h

k
X S V T S

k k k k k



   

   
      

   (3.151)
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be the equilibrium point of the reduced system (3.150), we now show that X* is globally 

stable by solving equation (3.150) and taking limit as t→∞ Solving for Sh(t) gives 

1 2( )h h h hS t k S a V           (3.152)

 

1 2( )h h h hS t k S a V           (3.153) 

Multiplying by its integrating factor 1k te  

1 1 1

1 2( ) ( )
k t k t k t

h h h hS t e k S e a V e          (3.154) 

Integrating and diving by 1k te  gives 

1 1

2( )k t k t

h h
h

d
S e a V e dt

dt
              (3.155) 

1 12

1

k t k th h
h

a V
S e e C

k

  
  
 

       (3.156) 

12

1

( )
k th h

h

a V
S t Ce

k

  
  
 

       (3.157) 

When t = 0, the equation becomes, 

2

1

(0) h h
h

a V
C S

k

  
  

 
       (3.158) 

Substituting equation (3.158) into equation (3.156) 

1 12 2

1 1

( ) (0)
k t k th h h h

h h

a V a V
S t e S e

k k

       
     
   

    (3.159) 

Solving for Vh gives 

1 2( )h h hV t S k V         (3.160) 
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2 1( )h h hV t k V S         (3.161) 

Multiplying by its integrating factor 2k te  

2 2 2

2 1( ) k t k t k t

h h hV t e k V e S e         (3.162) 

Integrating and diving by 2k te  gives 

2 2

1

k t k t

h h

d
V e S e dt

dt
             (3.163) 

2 21

2

k t k th
h

S
V e e C

k

 
  
 

       (3.164) 

21

2

( )
k th

h

S
V t Ce

k

  
  
 

       (3.165) 

When t = 0, the equation becomes, 

1

2

(0) h
h

S
C V

k

 
  

 
       (3.166) 

Substituting equation (3.166) into equation (3.164) 

2 21 1

2 2

( ) (0)k t k th h
h h

S S
V t e V e

k k

            (3.167) 

Solving for Th gives 

6( ) (0)
k t

h hT t T e


        (3.168) 

Solving for Sv gives 

7( )v v vS t k S         (3.169) 

6( )v v vS t k S          (3.170) 
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Multiplying by its integrating factor 7k t
e  

7 7 7

7( )
k t k t k t

v v vS t e k S e e         (3.171) 

Integrating and diving by 7k t
e  gives 

7 7k t k t

v v

d
S e e dt

dt
              (3.172) 

7 7

7

k t k tv
vS e e C

k

 
  
 

       (3.173) 

7

7

( )
k tv

vS t Ce
k

 
  
 

       (3.174) 

When t = 0, the equation becomes, 

7

(0) v
vC S

k

 
  

 
       (3.175) 

Substituting equation (3.175) into equation (3.173) 

7 7

7 7

( ) (0)
k t k tv v

v vS t e S e
k k

  
          (3.176) 

       h h h hS t V t T t N t    as 0t   

and  

   v vS t N t
 
as 0t     

As t   

 
  2*

1

h h

h

N t V
S t

k


  

* 1

1

h
h

s
V

k


  
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* 0hT   

*

7

h
hS




  

The asymptotic dynamics are independent of initial condition. 

Hence, the solution is globally Asymptotically stable. 

Also it is required to show that  ,G X Z satisfied the two stated conditions 

(i)  ,0 0G X  and 

(ii)        , ,0 ,Z , ,Z 0zG X Z D G X Z G X G X      

where 

  2 1

1 2 2 1 1 2 2 1 7

,0 , ,0,0,0,0,0, ,0h h vk
X

k k k k k



   

    
  

  
   (3.177) 

 ,0zD G X  is the Jacobian of  , ZG X  taken with respect to the infected classes 

evaluated at  ,0X 
 

 

   

 

 

 

 

1 1

3

1

1

4

5

7

1 1

1

1
, Z

1

v v h v v hal

hal

v v

v v hal

hal hcl

v

m v v h m v v h
m

v v

lm v v h

lm

v

h v hal hcl m lm v

v

h

I S I I
k I

N N

I I
I k I

N

I S I V
G X k I

N N

I S
k I

N

I I I I S
k I

N

     

  


    

  

 

  
  

 
 
  
 
 


   
 
 

 


 
 

   
 

 

   (3.178) 
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 

3

1

4

5

7

(1 ) I (1 )S (1 ) I
0 0 0

(1 ) I (1 ) I
0 0

(1 )S
0 0 0,0

(1 )S
0 0 0

l v v l v h l v hal

v v v

l v v l v hal

v v

m v h m v h

z

v v

lm v h

v

h v v h v v h v v h v v

h h h h

k
N N N

k
N N

V
kD G X

N N

k
N

S S S S
k

N N N N

        

     


    

  

       



   
   
 
  

  
 
 

   

 






 








   (3.179) 

 

   

 

 

1 1

1

1

1 1
1

1

, Z
0

0

1

h
v

h
v

h
v

h
h

hv v v v hal

v v

v v hal

v

hv

hal hcl m lm

v

N SI S I I

N S N N

I I

N
G X

N SS
I I I I

N S N

     

  

 



 





 

   
   

   
 

 
 
 
 
 
 
  
     

  
  

  (3.180) 

Since we have  

7 7

, 0, 0, Nv v
v v hal vS I I

k k

  
     

1

1 2 2 1

N , N , h
v h h h h h

k
S v N S

k k  

 
   


 

If the human population is at equilibrium, we have 

1 0, 1 0v v

h h

h h

v v

N S N S

S N S N

 

 

   
      

   
   

 

Thus  , Z 0,G X  therefore, the DFE is globally asymptotically stable. 

3.8 Solution of the Model via Adomian Decomposition Method 
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3.8.1 Solution of the model equation using adomian decomposition method 

Consider equation (3.2) through (3.10) with respect to and applying the initial condition 

  00h hS S ,   00h hV V ,   00hal halI I ,   00hcl hclI I ,   00m mI I ,   00lm lmI I , 

  00h hT T ,   00v vS S ,   00v vI I  

Integrating  both sides of  (3.6) to (3.14) with respect to t and applying the initial 

conditions gives 

 
     

0
0 0 0

1 1 1t t t
v m v l v lm

h h h v h v h v h

v v v

S t S t I S dt I S dt I S dt
N N N

          
        

 1 1 2
0 0 0

t t t

h h h hS dt T dt V dt                    (3.181) 

          (3.182) 

 

 
   

 1
0 0 0

1 1t t t
v l v l

hal v h v hal h hal

v v

I t I S dt I I dt I dt
N N

     
  

 
       0halI      (3.183)

  

 
 

 1 0
0 0 0

1 t t t
v l

hcl v hal hal h hcl hcl

v

I t I I dt I dt I dt I
N

  
  


               (3.184) 

 
 

 2 0
0 0 0

1 t t t
v m v m

m v h m h m v h m

v v

I t I S dt I dt I V dt I
N N

    
  


              (3.185) 

 
 

 3 0
0 0

1 t t
v lm

lm v h m h lm lm

v

I t I S dt I dt I
N

  
  


              (3.186) 

 

 

0 2 1 1 3
0 0 0 0

1
0

t t t t

h h m hal hcl lm

t

h h

T t T I dt I dt I dt I dt

T dt

   

 

     



   


  

     (3.187) 

 1 2
0 0 0

t t t
v m

h h h v h

v

S dt V dt I V dt
N

 
      
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  0
0 0 0

t t t
v h v h v h

v v h hal v hcl v m v

h h h

S t S t I S dt I S dt I S dt
N N N

     
       

  
0 0

t t
v h

lm v h v v

h

I S dt S dt
N

 
                   (3.188) 

  0
0 0 0 0

t t t t
v h v h v h v h

v v hal v hcl v m v lm v

h h h h

I t I I S dt I S dt I S dt I S dt
N N N N

       
         

 
0

t

v v vI dt                 (3.189) 

Using Adomian decomposition method, the solution of equation (3.181) through (3.189) 

are given as the series of the form 

0 0 0

0 0 0

0 0

, ,

, ,

,

h hn h hn hal haln

n n n

m mn lm lmn h hn

n n n

v vn v vn

n n

S S V V I I

I I I I T T

S S I I

  

  

  

  

 

 

  

  

 

  

  

 

   (3.190) 

And also, the integrands in equation (3.181) through (3.189) are expressed as 

, , , ,

, , , ,

, , , ,

, , , ,

v h v h v hal hcl v

hcl v m v lm v hal

hcl m lm v

h v h h

A I S B I V C I I D I S

E I S F I S G I S J I

K I L I M I N I

O S P S Q T R V

   

   

   

   

   (3.191) 

The linear and nonlinear operators in equation (3.191) are decomposed in series form as 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, , , ,

, , , ,

, , , ,

, , , ,

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

A A B B C C D D

E E F F G G J J

K K L L M M N N

O O P P Q Q R R

   

   

   

   

   

   

   

   

 
    

 
 

    
 
 

    
 
 

    
 

   

   

   

   

  (3.192) 

Where , , , , , , , , , , , , , ,n n n n n n n n n n n n n n nA B C D E F G J K L M N O P Q  are Adomian 

polynomials. Substituting equation (3.181) through (3.189) into equation (3.191) gives 

     
0

0 0 0
0 0 0 0

1 1 1t t t
v m v l v lm

hn h h n n n

n n n nv v v

S S t A dt A dt A dt
N N N

           

   

  
         

 1 1 2
0 0 0

0 0 0

t t t

h n n n

n n n

O dt Q dt R dt   
  

  

               (3.193) 

 0 1 2
0 0 0

0 0 0 0

t t t
v m

hn h n h n n

n n n nv

V V O dt R dt B dt
N

 
  

   

   

               (3.194) 

   
0

0 0
0 0 0

1 1t t
v l v l

haln hal n n

n n nv v

I I A dt C dt
N N

       

  

 
     

  1
0

0

t

h n

n

J dt  




              (3.195) 

 
 0 1

0 0 0
0 0 0 0

1 t t t
v l

hcln hcl n n h n

n n n nv

I I C dt J dt K dt
N

  
  

   

   


           (3.196) 

 
 0 2

0 0
0 0 0

1 t t
v m

mn m n m h n

n n nv

I I A dt L dt
N

  
  

  

  


       

0
0

t
v m

n

nv

B dt
N

  



              (3.197) 

 
 0 3

0 0
0 0 0

1 t t
v lm

lmn lm n m h n

n n nv

I I A dt M dt
N

  
  

  

  


            (3.198) 
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0 2 1 1 3
0 0 0 0

0 0 0 0 0

t t t t

hn h n n n n

n n n n n

T T L dt J dt K dt M dt   
    

    

           

  1
0

0

t

h n

n

Q d  




           (3.199) 

0
0 0 0

0 0 0 0

t t t
v h v h v h

vn v h n n n

n n n nh h h

S S t D dt E dt F dt
N N N

        

   

         

 
0 0

0 0

t t
v h

n h v n

n nh

G dt P dt
N

 
 

 

 

            (3.200) 

0
0 0 0 0

0 0 0 0 0

t t t t
v h v h v h v h

vn v n n n n

n n n n nh h h h

I I D dt E dt F dt G dt
N N N N

           

    

           

 
0

0

t

v v n

n

N dt 




                     (3.201) 

Equation (3.193) through (3.201) can be written as  

 
   0 1

0 0
0 0 0

1 t t
v

hn h h m l lm n h n

n n nv

S S t A dt O dt
N

 
    

  

  


         

 
1 2

0 0
0 0

t t

n n

n n

Q d R d   
 

 

         (3.202) 

 0 1 2
0 0 0

0 0 0 0

t t t
v m

hn h n h n n

n n n nv

V V O dt R dt B dt
N

 
  

   

   

           (3.203) 

   
0

0 0
0 0 0

1 1t t
v l v l

haln hal n n

n n nv v

I I A dt C dt
N N

       

  

 
     

  1
0

0

t

h n

n

J dt  




          (3.204) 

 
 0 1

0 0 0
0 0 0 0

1 t t t
v l

hcln hcl n n h n

n n n nv

I I C dt J dt K dt
N

  
  

   

   


          (3.205) 
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 
 0 2

0 0
0 0 0

1 t t
v m

mn m n m h n

n n nv

I I A dt L dt
N

  
  

  

  


       

0
0

t
v m

n

nv

B dt
N

  



                     (3.206) 

 
 0 3

0 0
0 0 0

1 t t
v lm

lmn lm n m h n

n n nv

I I A dt M dt
N

  
  

  

  


         (3.207) 

0 2 1 1 3
0 0 0 0

0 0 0 0 0

t t t t

hn h n n n n

n n n n n

T T L dt J dt K dt M dt   
    

    

           

 1
0

0

t

h n

n

Q dt 




          (3.208) 

0
0 0 0

0 0 0 0

t t t
v h v h v h

vn v h n n n

n n n nh h h

S S t D dt E dt F dt
N N N

        

   

         

 
0 0

0 0

t t
v h

n h v n

n nh

G dt P dt
N

 
 

 

 

          (3.209) 

0
0 0 0 0

0 0 0 0 0

t t t t
v h v h v h v h

vn v n n n n

n n n n nh h h h

I I D dt E dt F dt G dt
N N N N

           

    

           

 
0

0

t

v v n

n

N dt 




           (3.210) 
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From equation (3.202) through (3.210) we define the following scheme 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

h h h h h

hal hal v v h

hcl hcl v v

m m h h

lm lm

S S t T T

I I S S t

I I I I

I I V V

I I

    


   


  
 


 

       (3.211) 

 
   1 1 1

0 0 0

2
0

1 t t t
v

hn m l lm n h n n

v

t

n

S A dt O dt Q dt
N

R dt

 
     






      



  


 

   (3.212) 

 1 1 2
0 0 0

t t t
v m

hn n h n n

v

V O dt R dt B dt
N

 
               (3.213) 

   
 1 1

0 0 0

1 1t t t
v l v l

haln n n h n

v v

I A dt C dt J dt
N N

     
  

 
           (3.214) 

 
 1 1

0 0 0

1 t t t
v l

hcln n n h n

v

I C dt J dt K dt
N

  
  


           (3.215) 

 
 1 2

0 0 0

1 t t t
v m v m

mn n m h n n

v v

I A dt L dt B dt
N N

    
  


          (3.216) 

 
 1 3

0 0

1 t t
v lm

lmn n m h n

v

I A dt M dt
N

  
  


            (3.217) 

 1 2 1 1 3 1
0 0 0 0 0

t t t t t

hn n n n n h nT L dt J dt K dt M dt Q dt                    (3.218) 

1
0 0 0 0

t t t t
v h v h v h v h

vn n n n n

h h h h

S D dt E dt F dt G dt
N N N N

       
        

 
0

t

h v nP dt               (3.219) 
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1
0 0 0 0

t t t t
v h v h v h v h

vn n n n n

h h h h

I D dt E dt F dt G dt
N N N N

       
       

 
0

t

v v nN dt               (3.220) 

Using the Algorithm in (3.191), the Adomian polynomials in (3.211) are computed as 

0 0

1 0 1 1 0

2 0 2 1 1 2

v ho

v h v h

v h v h v ho

A I S

A I S I S

A I S I S I S

 


  
   

      (3.221) 

0 0

1 0 1 1

2 0 2 1 1 2

v ho

v h v ho

v h v h v ho

B I V

B I V I V

B I V I V I V

 


  
   

         (3.222) 

0 0

1 0 1 1 0

2 0 2 1 1 2

v halo

v hal v hal

v hal v hal v halo

C I I

C I I I I

C I I I I I I

 


  
   

      (3.223) 

0 0

1 0 1 1

2 0 2 1 1 2

hal vo

hal v hal vo

hal v hal v hal vo

D I S

D I S I S

D I S I S I S

 


  
   

                (3.224) 

0 0

1 0 1 1

2 0 2 1 1 2

hcl vo

hcl v hcl vo

hal v hcl v hcl vo

E I S

E I S I S

E I S I S I S

 


  
   

                 (3.225) 

0 0

1 0 1 1

2 0 2 1 1 2

m vo

m v m vo

m v m v m vo

F I S

F I S I S

F I S I S I S

 


  
   

      (3.226) 
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0 0

1 0 1 1

2 0 2 1 1 2

lm vo

lm v lm vo

lm v lm v lm vo

G I S

G I S I S

G I S I S I S

 


  
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      (3.227) 

0 0

1 1

2 2

hal

hal

hal

J I

J I

J I

 


 
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                   (3.228) 

0 0

1 1

2 2

hcl

hcl

hcl

K I

K I

K I

 


 
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                   (3.229) 

0 0

1 1

2 2

m

m

m

L I

L I

L I

 


 
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                    (3.230) 

0 0

1 1

2 2

lm

lm

lm

M I

M I

M I

 


 
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                   (3.231) 

0 0

1 1

2 2

v

v

v

N I

N I

N I

 


 
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         (3.232) 

0 0

1 1

2 2

h

h

h

O S

O S

O S

 


 
 

                   (3.233)  

0 0

1 1

2 2

v

v

v

P S

P S

P S

 


 
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                   (3.234) 
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0 0

1 1

2 2

h

h

h

Q T

Q T

Q T

 


 
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         (3.235) 

0 0

1 1

2 2

h

h

h

R V

R V

R V

 


 
 

         (3.236) 

For 0n  , equation (3.212) gives  

1 0 1 0 1 0
0 0 0

(1 )
( ) ( )

t t t
v

h m l lm h

v

S A dt O dt Q dt
N

 
     


        

 
2 0

0

t

R dt          (4.237) 

Substituting equation (3.221) through (3.236) into equation (3.237) gives 

1 0 0 1 0 1 0
0 0 0

2 0
0

(1 )
( ) ( )

t t t
v

h m l lm v h h h h

v

t

h

S I S dt S dt T dt
N

V dt

 
     




      



  


(3.238) 

Substituting equation (3.211) into equation (3.237) gives 

1 0 0 1 0 1 0
0 0 0

(1 )
( ) ( ) ( ) ( )

t t t
v

h m l lm h h h h h h

v

S S t I dt S t dt T dt
N



 
     


            

2 0
0

t

hV dt           (3.239) 

1 0 0 0 1 0 1 0
0 0 0

(1 )
( ) ( ) ( ) ( )

t t t
v

h m l lm h h h h h h

v

S S I tI dt S t dt T dt
N

 

 
     


            

 2 0
0

t

hV dt          (3.240) 
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0 0 0 1 0 1 0
0 0 0

(1 )
( ) ( ) ( ) ( )

t t t
v

m l lm h h h h h h

v

S I tI dt S t dt T dt
N

 

 
     


          

 2 0
0

t

hV dt          (3.241) 

Integrating and collecting like terms gives   

1 0 0 1 0 1 0 0

(1 )
( ) ( )v

h m l lm h h h h h

v

S S I S T V t
N



 
     

 
        
 

 

2

1

(1 )
( ) ( )

2

h v
m l lm h

v

t
N

 
    

  
     

 
    (3.242) 

for 0n   in equation (3.213) gives  

1 1 0 2 0 0
0 0 0
0 ( )

t t t
m v

h h

v

V dt R dt dt
N

 
            (3.243) 

1 0 2 0 0 0
0 0 0

( )
t t t

m v
h h h v h

v

S dt V dt I V dt
N

 
           (3.244) 

 1 0 2 0 0 0
0 0 0

( )
t t t

m v
h h h h v h

v

S t dt V dt I V dt
N

 
            (3.245) 

Integrating and collecting like terms gives 

2

1
1 1 0 2 0 0 0( )

2

m v h
h h h h v h

v

t
V S V I V t

N

  
  
  

     
 

              (3.246) 

for 0n   in equation (3.214) gives 

   
 1 0 0 1 0

0 0 0

1 1t t t
l v l v

hal h

v v

I A dt C dt J dt
N N

     
  

 
            (3.247) 
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   
 0 0 0 0 1 0

0 0 0

1 1t t t
l v l v

v h v hal h hal

v v

I S dt I I dt I dt
N N

     
  

 
       (3.248) 

 
 

 
 0 0 0 0 1 0

0 0 0

1 1t t t
l v l v

h h v v hal h hal

v v

S t I dt I I dt I dt
N N

     
  

 
       

   

(3. 249) 

   
 1 0 0 0 0 1 0

1 1l v l v

hal h v v hal h hal

v v

I S I I I I t
N N

     
  

  
     
 

 

 
  20
1

2

l v h v

v

I
t

N

    
  

 
      (3.250) 

for 0n   in equation (3.215) gives 

 
 1 0 0 1 0

0 0 0

1 t t t
l v

hcl h

v

I C dt J dt K dt
N

  
  


        (3.251) 

 
 0 0 0 1 0

0 0 0

1 t t t
l v

v hal hal h hcl

v

I I dt I dt I dt
N

  
  


        (3.252) 

Integrating and collecting like terms gives 

 

 

 

 
0 10

1 0 0

1

1 1

l v hcl v hv hal
hcl v hal

v l v l v

I NN I
I I I t

N

    

     

   
         

 (3.253) 

for 0n   in equation (3.216) gives 

 
 1 0 2 0 0

0 0 0

1 t t t
m v m v

m h m

v v

I A dt L dt B dt
N N

    
  


        (3.254) 

 
 0 0 2 0 0 0

0 0 0

1 t t t
m v m v

h h m m h

v v

I S dt I dt I V dt
N N

 

    
  


        (3.255) 
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 
   0 0 2 0 0 0

0 0 0

1 t t t
m v m v

h h h m m h

v v

S t I dt I dt I V dt
N N

 

    
  


         (3.256) 

Integrating and collecting like terms gives; 

   

   
2 0 0 0

1 0 0

1

1 1

m v h m v m h
m h

v m v

N I I V
I S I t

N




     

   

   
      

 
  20
1

2

m v h

v

I
t

N


    

 
 

      (3.257) 

for 0n   in equation (3.217) gives 

 
 1 0 3 0

0 0

1 t t
lm v

lm h m

v

I A dt M dt
N

  
  


        (3.258) 

 
 0 0 3 0

0 0

1 t t
lm v

h h m lm

v

I S dt I dt
N



  
  


        (3.259) 

 
   0 0 3 0

0 0

1 t t
lm v

h h h m lm

v

S t I dt I dt
N



  
  


        (3.260) 

Integrating and collecting like terms gives 

   

 

  2

3 0

1 0 0

1 1

1 2

lm v h m v lm lm v h

lm h

v lm v v

N I t
I S I t

N N


        

  

     
     

  (3.261) 

for 0n   in equation (3.218) gives 

 1 2 0 1 0 1 0 3 0 1 0
0 0 0 0 0

t t t t t

h hT L dt J dt K dt M dt Q dt              
  
(3.262) 

 2 0 1 0 1 0 3 0 1 0
0 0 0 0 0

t t t t t

m hal hcl lm h hI dt I dt I dt I dt T dt                (3.263) 
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Integrating and collecting like terms gives 

    1 2 0 1 0 0 3 0 1 0h m hal hcl lm h hT I I I I T t            (3.264) 

for 0n   in equation (3.219) gives 

 1 0 0 0 0 0
0 0 0 0 0

t t t t t
h v h v h v h v

v h v

h h h h

S D dt E dt F dt G dt P dt
N N N N

       
             (3.265)

 0 0 0 0 0 0 0 0 0
0 0 0 0 0

t t t t t
h v h v h v h v

hal v hcl v m v lm v h v v

h h h h

I S dt I S dt I S dt I S dt S dt
N N N N

       
             (3.266)

     0 0 0 0 0 0
0 0 0

t t t
h v h v h v

v v hal v v hcl v v m

h h h

S t I dt S t I dt S t I dt
N N N

     
          (3.267) 

     0 0 0
0 0

t t
h v

v v lm v m v v

h

S t I dt S t dt
N

 
           (3.268) 

  1 0 0 0 0 0 0 0 0 0
h v

v v hal v hcl v m v lm v v v

h

S S I S I S I S I S t
N

 
         (3.269) 

  2

0 0 0 0

2

2

v m h vh v
v hal v hcl v m v lm

h h v

N
I I I I t

N

  

 

  
      

 
            (3.270) 

for 0n   in equation (3.220) gives 

 1 0 0 0 0 0
0 0 0 0 0

t t t t t
h v h v h v h v

v v v

h h h h

I D dt E dt F dt G dt N dt
N N N N

       
               (3.271)

 0 0 0 0 0 0 0 0 0
0 0 0 0 0

t t t t t
h v h v h v h v

hal v hcl v m v lm v v m v

h h h h

I S dt I S dt I S dt I S dt I dt
N N N N

       
            (3.272)

     0 0 0 0 0 0
0 0 0

t t t
h v h v h v

v v hal v v hcl v v m

h h h

S t I dt S t I dt S t I dt
N N N

     
              

   0 0 0
0 0

t t
h v

v v lm v m v

h

S t I dt I dt
N

 
                (3.273) 
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  0

1 0 0 0 0 0 0 0 0

v m h vh v
v v hal v hcl v m v lm

h h v

N I
I S I S I S I S I t

N

  

 

 
     

 

  2

0 0 0 0
2

h v
v hal v hcl v m v lm

h

I I I I t
N

 
           (3.274) 

for 1n   in equation (3.212) gives 

 
   2 1 1 1 1 1 2 1

0 0 0 0

1 t t t t
v

h m l lm h

v

S A dt O dt Q dt R dt
N

 
      


           (3.275) 

 
     2 0 1 1 0 1 1

0 0

1 t t
v

h m l lm v h v h h h

v

S I S I S dt S dt
N

 
    


       

1 1 2 1
0 0

t t

h hT dt V dt           (3.276) 
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          (3.277) 

for 1n   in equation (3.213) gives 

2 1 1 2 1 1
0 0 0
0 ( )

t t t
m v

h h

v

V dt R dt B dt
N

 
            (3.278) 
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1 1 2 1 0 1 1
0 0 0

( ) ( )
t t t

m v
h h h v h v ho

v

S dt V dt I V I V dt
N

 
            (3.279) 

 

`          (3.280) 

for 1n   in equation (3.214) gives 

   
 2 1 1 1 1

0 0 0

1 1t t t
l v l v

hal h

v v

I A dt C dt J dt
N N

     
  

 
      

 (3.281)

  

   
0 1 1 0 0 1 1 0

0 0

1 1
( ) ( )

t t
l v l v

v h v h v hal v hal

v v

I S I S dt I I I I dt
N N

      
    

 

 1 1
0

t

h halI dt             (3.282) 
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          (3.283) 
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for 1n   in equation (3.215) gives 

 
 2 1 1 1 1

0 0 0

1 t t t
l v

hcl h

v

I C dt J dt K dt
N

  
  


        (3.284) 

 
 0 1 1 0 1 1 1

0 0 0

1
( )

t t t
l v

v hal v hal hal h hcl

v

I I I I dt I dt I dt
N

  
  


      

(3.285) 

 

          

(3.286)

 

for 1n   in equation (3.216) gives 

 
 2 1 2 1 1

0 0 0

1 t t t
m v m v

m h m

v v

I A dt L dt B dt
N N

    
  


        (3.287) 

 
 0 1 1 0 2 1

0 0

1
( )

t t
m v

v h v h h m m

v

I S I S dt I dt
N

  
  


        

0 1 1
0
( )

t
m v

v h v ho

v

I V I V dt
N

 
          (3.288) 
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          (3.889) 
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for 1n   in equation (3.217) gives 

 
 2 1 3 1

0 0

1 t t
lm v

lm h m

v

I A dt M dt
N

  
  


        (3.290) 

 
 0 1 1 0 3 1

0 0

1
( )

t t
lm v

v h v h h m lm

v

I S I S dt I dt
N

  
  


        (3.291) 

 

 

          (3.292) 

for 1n   in equation (3.218) gives 
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 2 2 1 1 1 1 1 3 1 1 1
0 0 0 0 0

t t t t t

h hT L dt J dt K dt M dt Q dt                 
(3.293) 

 2 1 1 1 1 1 3 1 1 1
0 0 0 0 0

t t t t t

m hal hcl lm h hI dt I dt I dt I dt T dt                 (3.294) 

 

          (3.295) 

for 1n   in equation (3.219) gives 

 2 1 1 1 1 1
0 0 0 0 0

t t t t t
h v h v h v h v

v h v

h h h h

S D dt E dt F dt G dt Pdt
N N N N

       
             (3.296)

0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0
( ) ( ) ( ) ( )

t t t t
h v h v h v h v

hal v hal vo hcl v hcl vo m v m vo lm v lm vo

h h h h

I S I S dt I S I S dt I S I S dt I S I S dt
N N N N

       
             

  1
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CHAPTER FOUR 

4.0             RESULTS AND DISCUSSION 

4.1 Variable and Parameter Values Estimation 

Table 4.1 Values for Population-Dependent Parameter of the Model 

Variables Values Source 

Sh 200 Assumed 

Vh 180 Assumed 

Ihal 120 Assumed 

Ihcl 100 Assumed 

Im 80 Assumed 

Ilm 100 Assumed 

Th 50 Assumed 

Sv 500 Assumed 

Iv 300 Asummed 

Nh 750 Assumed 

Nv 800 Assumed 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Values for Population-Independent Parameter of the Model 

Parameter Values Source 

βh 0.09 (Chunky Choole,2012) 

                              0.071 (Gweryina Reuben, 2014) 

                
              0.3 Assumed 
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                μv               0.05 (Gweryina Reuben, 2014) 

                μh              0.017 (Gweryina Reuben, 2014) 

βlm 0.8333 (Chunky Choole,2012) 

σv 0.125 (Lawi et al, 2011) 

Θ 0.25 Assumed 

 0.00049312 (Lawi et al, 2011) 

 0.25 Assumed 

Ρ 0.00002797 (Bhunu and Mushayabasa, 2012) 

 
0.25 Assumed 

 0.25 Assumed 

 0.25 Assumed 

 0.25 Assumed 

 0.25 Assumed 

 

4.2 Sensitivity Analysis for the Parameter Using Basic Reproductive Number 

Sensitivity Analysis (SA) brings out the importance of the model parameter by exposing 

their relative effects or impact in the model of LF and Malaria co-infection. It provides 

an appropriate signal towards a suitable and timely intervention in curtailing the 

transmission of LF and Malaria co-infection. According to Powell et al (2005), sensitivity 

analysis is commonly used to determine the robustness of the model predictions to 

parameter values.  

Sensitivity indices measures the relative changes in a variable when a parameter changes. 

Arriola and Hyman (2007); Chinis et al. (2008); Mikuchi et al (2012) and Abdurrahman 

et al. (2013) as it was used was what we adopt for the sensitivity analysis of this study. 

the normalized forward sensitivity index of the system is given by  

0 0R

c

R
S x

R










where  , 1 2 3 1 2, , , , , , , , , , , ,h l m lm v m hQ               
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and Rc is the basic reproductive number. The values of the parameter are obtained from 

table 4.2, the sensitivity indices of the parameters of the basic reproductive number are 

calculated using Maple 15 software. 
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Table 4.3 Sensitivity Indices for the Respective Parameter Using the Basic 

Reproductive Number 
( )cR

 

Parameter Sensitivity Index 

 1.000000000 

 -0.8901600321 

 0.5000000000 

 0.4681647939 

 
-0.4290750780 

 
0.2358260585 

 0.2358260585 

 0.1272809744 

 0.03753791419 

 
0.02834788317 

 0.0008876188246 


 0.00005237279077 


 

-0.1666666667 

δv -0.4166666668 

μv -0.0833333334 

 

From table 4.3, sensitivity indices of the parameters either has positive or negative 

values on the basic reproductive number R0.. if any of the parameters with the positive 

sensitivity indices is high then the basic reproductive number will be high, but reduction 

in any any of the parameter will reduce the basic reproductive number. the parameters 

with negative sensitivity indices will decrease the basic reproductive number if it is high 

but increase the basic reproductive number if its low.  
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Figure 4.1 Effect of the rate of the use of bed-net and insecticides on the 

Susceptible population 

Figure 4.1 shows the relationship between the Susceptible population who are using both 

bed-net and insecticides (θ), this means that Sh increases with the increase in the rate at 

with both bed-net and insecticides are used. 
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Figure 4.2 Effect of treatment of LF on the Acute stage LF population 

Figure 4.2 shows the relationship between those infected with LF who are undergoing LF 

treatment (τ1), the results shows that there is a high recovery rate as the treatment rate 

increases since the Acute Stage infected LF population reduces with increase in τ1. 

 

 

 



c 
 

 
Figure 4.3: Effect of treatment of LF on the Chronic stage LF population 

 

Figure 4.3 shows the relationship between those infected with LF who are undergoing LF 

treatment (τ1), the results shows that there is a high recovery rate as the treatment rate 

increases as the Chronic Stage infected LF  population reduces . 
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Figure 4.4 Effect of treatment of Malaria on those who are infected malaria 

 

Figure 4.4 shows the relationship between those infected with malaria who are 

undergoing Malaria treatment (τ2), the results shows that there is a high recovery rate as 

the treatment rate increases as the infected Malaria population reduces. 
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Figure 4.5 The Progression rate at which Malaria, LF and co-infected fully 

recovered Human move to Susceptible  

Figure 4.5 The results shows that as the rate of those who are fully recovered (α1) 

increases, the Susceptible population also increase. 
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Figure 4.6 The Effect of the rate of treatment of LF and malaria co-infection 

Figure 4.6 shows the relationship between those infected with LF and malaria who are 

undergoing treatment (τ3), the results shows that there is a high recovery rate as the 

treatment rate increases as the infected LF and Malaria population reduces.  

 

 

 



civ 
 

 

Figure 4.7 Effect of the use of insecticide on the Susceptible Vector Population  

Figure 4.7 shows the relationship of using insecticide (δv) on the Susceptible vector 

population (Sv ), the results shows that as the use of insecticides increases, there’s 

reduction in the Sv population. 
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Figure 4.8 Effect of Treatment on the Chemoprevention class (Vh) 

Figure 4.8 shows the relationship between the Vh who are taking drugs (τ1), the results 

shows that as Treatment rate increases, there’s increase in the Vh population. 
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Figure 4.9 Effect of the use of insecticide on the Infected Vector Population (Iv) 

Figure 4.9 shows the relationship of using insecticide (δv) on the infected vector 

population (Iv), the results shows that as the use of insecticides increases, there’s reduction 

in the Iv population. 
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Figure 4.10: Effect of probability that a bite by an infected mosquito will transfer 

malaria to the susceptible human population 

Figure 4.10 show the relationship of the infectivity of the mosquito, that define the 

probability that a bite by an infected mosquito on a susceptible human will transfer 

malaria infection to the Human. This implies that the more an infected mosquito bites a 

susceptible human, it transfer malaria thereby causing them to be infected and thus 

reducing the Susceptible Human population Sh  . 
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Figure 4.11: Effect of death rate of mosquito on a on the effective reproductive 

number Rc 

Figure 4.11 shows the relationship between the effective reproduction number and the 

death rate of the mosquito. This means Rc decreases with increasing death rate of 

mosquitoes. 
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Figure 4.12: The rate at which the mosquito ingest microfilariae, malaria or both 

when biting a human on the effective reproductive number Rc 

This shows the relationship between Rc and the rate at which the mosqitoes ingest 

microfilariae, malaria or both on the human who is infected βh . this means the Rc increases 

with increasing in the rate at which the mosquitoes ingest microfilariae, malaria and co 

infection on human who is infected. 
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CHAPTER FIVE 

5.0          CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, the mathematical model of Lymphatic Filariasis and malaria co-infection 

was developed using a system of first order differential equations. The Positivity of the 

solution was obtained Using Lungu method. The Disease-Free Equilibrium state (DFE) 

was obtained. The effective reproduction number cR  of the model was obtained. The 

Disease-Free Equilibrium (DFE) was analyse for local and global stability. The result 

from the analysis of the DFE showed that, the DFE is locally asymptotically stable and 

globally asymptotically stable if 1cR  . Sensitivity analysis was also conducted on the 

effective reproductive number. The model equations were solved using Adomian 

Decomposition Method (ADM). Graphical profiles were obtained from the solution of 

the model using Maple15.  

Variables and parameters were used for analytical solution. The solutions of the model 

were presented graphically in order to have a better understanding of the model. Figures 

4.1 to 4.9 are the different graph of the solution using the populations of Vector and 

human against time with different parameters of the model. Maple 15 software was used 

for the graphical. 

Figure 4.1 shows that the high usage of bed-net and insecticide, the susceptible population 

increases due to the reduction in the contact rate β with Mosquitoes. Figure 4.2-4.5, shows 

a reduction in the population of the infected classes respectively when treated of  either 

Malaria, LF or both LF and malaria co-infection. Figure 4.6 and 4.9 shows the effects of 

using  insecticide (δv), the results shows that as the use of insecticides increases, there’s 

reduction in the vector population both the Susceptible and infected classes respectively. 
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Figure 4.8 shows the relationship between the Iv who are using bed-net and insecticide 

(δv), the results shows that as the use of bed-net and insecticides increases, there’s little 

reduction in the Iv population.  

5.2 Contributions to Knowledge 

i. This work has improved on the existing models of Lymphatic Filariasis and 

Malaria co-infection by incorporating the Acute stage and Chronic stage class 

with the use of both bed-net and insecticide as control measure.  

ii. The system of nine ordinary differential equation was solved and validated 

with Adomian decomposition method in Maple software.  

iii. This work has shown a possibility of a disease free equilibrium which can be 

globally asymptotically stable.  

iv. This work has been able to establish how the infection rate (βh) below which 

LF and malaria co infection can be put under control in the population. 

5.3 Recommendations 

Based on the findings from our study, the following recommendations were made: 

i. Diethylcarbamazine(τ1)  drugs should be made affordable and accessible. 

ii. Bed-net and insecticides should readily available and accessible at little or no cost. 

iii. People should always consult a Doctor and not resolve into Self-medication so as 

to know what treatment should be carried when they see any symptoms of either 

malaria or LF. 
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APPENDIX  

restart; 

S[h0] := 200; 

V[h0] := 180; 

Z[hal0] := 120; 

Z[hcl0] := 100; 

Z[m0] := 80; 

Z[lm0] := 100; 

T[h0] := 50; 

S[v0] := 500; 

Z[v0] := 300; 

beta[h] := 0.9e-1; 

beta[v] := .5; 

beta[m] := .8333; 

beta[l] := .1; 

beta[lm] := .8333; 

N[h] := 145; 

N[v] := 350; 

Lambda[v] := 0.71e-1; 

sigma[v] := .125; 

mu[v] := 0.5e-1; 

mu[h] := 0.17e-1; 

delta[m] := 0.449312e-3; 

Lambda[h] := .5; 

delta[v] := .5; 

k[1] := mu[h]+tau[1]; 

k[2] := mu[h]+alpha[2]; 

k[3] := mu[h]+tau[1]+rho; 

k[4] := tau[2]+delta[m]+mu[h]; 

k[5] := tau[3]+mu[h]+delta[m]; 

k[6] := mu[h]+alpha[1]; 

k[7] := mu[v]+delta[v]; 

Y := beta[m]*sigma[v]/N[v]; 

z[1] := sigma[v]*(1-theta)/N[v]; 

z[2] := beta[h]*sigma[v]/N[h]; 

S[H0] := t*Lambda[h]+S[h0]; 

V[H0] := V[h0]; 

Z[HAL0] := Z[hal0]; 

Z[HCL0] := Z[hcl0]; 

Z[M0] := Z[m0]; 

Z[LM0] := Z[lm0]; 

T[H0] := T[h0]; 

S[V0] := t*Lambda[v]+S[v0]; 

Z[V0] := Z[v0]; 

S[H1] := -z[1]*beta[m]*(int(Z[V0]*S[H0], t = 0 .. t))-z[1]*beta[l]*(int(Z[V0]*S[H0], t = 

0 .. t))-z[1]*beta[lm]*(int(Z[V0]*S[H0], t = 0 .. t))-k[1]*(int(S[H0], t = 0 .. 

t))+alpha[1]*(int(T[H0], t = 0 .. t))+alpha[2]*(int(V[H0], t = 0 .. t)); 

V[H1] := tau[1]*(int(S[H0], t = 0 .. t))-k[2]*(int(V[H0], t = 0 .. t))-Y*(int(Z[V0]*V[H0], 

t = 0 .. t)); 



cxvii 
 

Z[HAL1] := z[1]*beta[l]*(int(Z[V0]*S[H0], t = 0 .. t))-

z[1]*beta[l]*(int(Z[V0]*Z[HAL0], t = 0 .. t))-k[3]*(int(Z[HAL0], t = 0 .. t)); 

Z[HCL1] := z[1]*beta[l]*(int(Z[V0]*Z[HAL0], t = 0 .. t))+rho*(int(Z[HAL0], t = 0 .. t))-

k[1]*(int(Z[HCL0], t = 0 .. t)); 

Z[M1] := z[1]*beta[m]*(int(Z[V0]*S[H0], t = 0 .. t))-k[4]*(int(Z[M0], t = 0 .. 

t))+Y*(int(Z[V0]*V[H0], t = 0 .. t)); 

Z[LM1] := z[1]*beta[lm]*(int(Z[V0]*S[H0], t = 0 .. t))-k[5]*(int(Z[LM0], t = 0 .. t)); 

T[H1] := tau[2]*(int(Z[M0], t = 0 .. t))+tau[1]*(int(Z[HAL0], t = 0 .. 

t))+tau[1]*(int(Z[HCL0], t = 0 .. t))+tau[3]*(int(Z[LM0], t = 0 .. t))-k[6]*(int(T[H0], t = 

0 .. t)); 

S[V1] := -z[2]*(int(Z[HAL0]*S[V0], t = 0 .. t))-z[2]*(int(Z[HCL0]*S[V0], t = 0 .. t))-

z[2]*(int(Z[M0]*S[V0], t = 0 .. t))-z[2]*(int(Z[LM0]*S[V0], t = 0 .. t))-k[7]*(int(S[V0], 

t = 0 .. t)); 

Z[V1] := z[2]*(int(Z[HAL0]*S[V0], t = 0 .. t))+z[2]*(int(Z[HCL0]*S[V0], t = 0 .. 

t))+z[2]*(int(Z[M0]*S[V0], t = 0 .. t))+z[2]*(int(Z[LM0]*S[V0], t = 0 .. t))-

k[7]*(int(Z[V0], t = 0 .. t)); 

S[H2] := collect(-z[1]*beta[m]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-

z[1]*beta[l]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-

z[1]*beta[lm]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-k[1]*(int(S[H1], t = 0 .. 

t))+alpha[1]*(int(T[H1], t = 0 .. t))+alpha[2]*(int(V[H1], t = 0 .. t)), t); 

V[H2] := collect(tau[1]*(int(S[H1], t = 0 .. t))-k[2]*(int(V[H1], t = 0 .. t))-

Y*(int(V[H0]*Z[V1]+V[H1]*Z[V0], t = 0 .. t)), t); 

Z[HAL2] := collect(z[1]*beta[l]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-

z[1]*beta[l]*(int(Z[HAL0]*Z[V1]+Z[HAL1]*Z[V0], t = 0 .. t))-k[3]*(int(Z[HAL1], t = 

0 .. t)), t); 

Z[HCL2] := collect(z[1]*beta[l]*(int(Z[HAL0]*Z[V1]+Z[HAL1]*Z[V0], t = 0 .. 

t))+rho*(int(Z[HAL1], t = 0 .. t))-k[1]*(int(Z[HCL1], t = 0 .. t)), t); 

Z[M2] := collect(z[1]*beta[m]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-

k[4]*(int(Z[M1], t = 0 .. t))+Y*(int(V[H0]*Z[V1]+V[H1]*Z[V0], t = 0 .. t)), t); 

Z[LM2] := collect(z[1]*beta[lm]*(int(S[H0]*Z[V1]+S[H1]*Z[V0], t = 0 .. t))-

k[5]*(int(Z[LM1], t = 0 .. t)), t); 

T[H2] := collect(tau[2]*(int(Z[M1], t = 0 .. t))+tau[1]*(int(Z[HAL1], t = 0 .. 

t))+tau[1]*(int(Z[HCL1], t = 0 .. t))+tau[3]*(int(Z[LM1], t = 0 .. t))-k[6]*(int(T[H1], t = 

0 .. t)), t); 

S[V2] := collect(-z[2]*(int(S[V0]*Z[HAL1]+S[V1]*Z[HAL0], t = 0 .. t))-

z[2]*(int(S[V0]*Z[HCL1]+S[V1]*Z[HCL0], t = 0 .. t))-

z[2]*(int(S[V0]*Z[M1]+S[V1]*Z[M0], t = 0 .. t))-

z[2]*(int(S[V0]*Z[LM1]+S[V1]*Z[LM0], t = 0 .. t))-k[7]*(int(S[V1], t = 0 .. t)), t); 

Z[V2] := collect(z[2]*(int(S[V0]*Z[HAL1]+S[V1]*Z[HAL0], t = 0 .. 

t))+z[2]*(int(S[V0]*Z[HCL1]+S[V1]*Z[HCL0], t = 0 .. 

t))+z[2]*(int(S[V0]*Z[M1]+S[V1]*Z[M0], t = 0 .. 

t))+z[2]*(int(S[V0]*Z[LM1]+S[V1]*Z[LM0], t = 0 .. t))-k[7]*(int(Z[V1], t = 0 .. t)), t); 

S[H] := collect(S[H0]+S[H1]+S[H2], t); 

 200 + (-0.000005213319273 + 0.000005213319273 theta) t  + ( 

-1.7666 (0.0003571428571 - 0.0003571428571 theta) (-1804.171995 

   + 283.9178571 theta - 1500.000000 tau[1]) - 1. (0.017 + tau[1] 

  ) (-1.031392857 + 0.9463928569 theta - 5.000000000 tau[1]) 

   + 2.5 tau[1]) t  + (-30.37687499 + 2.839178571 theta 

   + 35.00000000 tau[1] - 1.7666 (0.0003571428571 

   - 0.0003571428571 theta) (-7636.633010 + 5678.357140 theta 
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   - 30000.00000 tau[1] - 7500.000000 alpha[1]) - 1. (0.017 

   + tau[1]) (24.37214286 + 18.92785714 theta 

   - 100.0000000 tau[1] - 25.00000000 alpha[1]) - 0.5000000000  

  alpha[1] (80. tau[2] + 220. tau[1] + 100. tau[3] - 0.8500000000 

   - 50. alpha[1])) t  

   + (78.74428571 + 37.85571429 theta - 200. tau[1] 

   - 50. alpha[1]) t 

V[H] := collect(V[H0]+V[H1]+V[H2], t); 

180 + (tau[1] (-1.031392857 + 0.9463928569 theta 

   - 5.000000000 tau[1]) - 3.031410714 tau[1] - 0.00001967285837)  

 t  + (-45.62821428 tau[1] + tau[1] (24.37214286 

   + 18.92785714 theta - 100.0000000 tau[1] 

   - 25.00000000 alpha[1]) + 37.08586560) t  

   + (200. tau[1] - 109.1307857) t 

Z[HAL] := collect(Z[HAL0]+Z[HAL1]+Z[HAL2], t); 

      /              -7                 -7      \  4         

120 + \2.951046798 10   - 2.951046798 10   theta/ t  + (0.1  

  (0.0003571428571 - 0.0003571428571 theta) (-1804.171995 

   + 283.9178571 theta - 1500.000000 tau[1]) - 0.1  

  (0.0003571428571 - 0.0003571428571 theta) (16.11549754 

   - 16.07142857 theta) 

   - 1. (0.017 + tau[1] + rho) (0.05357142856 

   - 0.05357142856 theta)) t  + (0.1607142857 

   - 0.1607142857 theta + 0.1 (0.0003571428571 

   - 0.0003571428571 theta) (-7636.633010 + 5678.357140 theta 

   - 30000.00000 tau[1] - 7500.000000 alpha[1]) - 0.1  

  (0.0003571428571 - 0.0003571428571 theta) (-9146.394090 

   - 128.5714286 theta - 18000.00000 tau[1] - 18000.00000 rho) -  

  1. (0.017 + tau[1] + rho) (-0.5914285715 - 0.4285714285 theta 

   - 60.00000000 tau[1] - 60.00000000 rho)) t  

 + (-1.182857143 - 0.857142857 theta - 120. tau[1] - 120. rho) t 

Z[HCL] := collect(Z[HCL0]+Z[HCL1]+Z[HCL2], t); 

100 + (0.1 (0.0003571428571 - 0.0003571428571 theta) (16.11549754 

   - 16.07142857 theta) 

   + rho (0.05357142856 - 0.05357142856 theta)) t  + (0.1  

  (0.0003571428571 - 0.0003571428571 theta) (-9146.394090 

   - 128.5714286 theta - 18000.00000 tau[1] - 18000.00000 rho) +  

  rho (-0.5914285715 - 0.4285714285 theta - 60.00000000 tau[1] 

   - 60.00000000 rho) - 0.5000000000 (0.017 + tau[1]) ( 

-0.4142857144 - 1.285714286 theta + 120. rho - 100. tau[1])) t  

   + (-0.414285714 - 1.285714286 theta + 120. rho - 100. tau[1]) t 

Z[M] := collect(Z[M0]+Z[M1]+Z[M2], t); 

 + (0.000002459107297 - 0.000002459107297 theta) t  + (0.8333  

  (0.0003571428571 - 0.0003571428571 theta) (-1804.171995 

   + 283.9178571 theta - 1500.000000 tau[1]) 

   - 1. (tau[2] + 0.017449312) (0.4464107143 - 0.4464107143 theta 

 + 0.00001967285837 + 0.4464107143 tau[1]) t  + (-7.536325360 

   - 1.339232143 theta + 0.8333 (0.0003571428571 

   - 0.0003571428571 theta) (-7636.633010 + 5678.357140 theta 

   - 30000.00000 tau[1] - 7500.000000 alpha[1]) - 1. (tau[2] 
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   + 0.017449312) (16.26563466 - 8.928214285 theta 

                                                2 

   - 40.00000000 tau[2]) + 8.928214284 tau[1]) t  

   + (32.53126933 - 17.85642857 theta - 80. tau[2]) t 

Z[LM] := collect(Z[LM0]+Z[LM1]+Z[LM2], t); 

                                                     4            

100 + (0.000002459107297 - 0.000002459107297 theta) t  + (0.8333  

  (0.0003571428571 - 0.0003571428571 theta) (-1804.171995 

   + 283.9178571 theta - 1500.000000 tau[1]) 

   - 1. (tau[3] + 0.017449312) (0.4464107143 - 0.4464107143 theta 

      3                               

  )) t  + (1.339232143 - 1.339232143 theta + 0.8333  

  (0.0003571428571 - 0.0003571428571 theta) (-7636.633010 

   + 5678.357140 theta - 30000.00000 tau[1] 

   - 7500.000000 alpha[1]) - 1. (tau[3] + 0.017449312)  

                                                           2 

  (8.055748685 - 8.928214285 theta - 50.00000000 tau[3])) t  

   + (16.11149737 - 17.85642857 theta - 100. tau[3]) t 

T[H] := collect(T[H0]+T[H1]+T[H2], t); 

50 + (tau[2] (0.4464107143 - 0.4464107143 theta) 

   + tau[1] (0.05357142856 - 0.05357142856 theta) 

                                                  3            

   + tau[3] (0.4464107143 - 0.4464107143 theta)) t  + (tau[2]  

  (16.26563466 - 8.928214285 theta - 40.00000000 tau[2]) + tau[1]  

  (-0.5914285715 - 0.4285714285 theta - 60.00000000 tau[1] 

   - 60.00000000 rho) + 0.5000000000 tau[1] (-0.4142857144 

   - 1.285714286 theta + 120. rho - 100. tau[1]) 

   + tau[3] (8.055748685 - 8.928214285 theta - 50.00000000 tau[3] 

  ) - 0.5000000000 (0.017 + alpha[1]) (80. tau[2] + 220. tau[1] 

                                                  2               

   + 100. tau[3] - 0.8500000000 - 50. alpha[1])) t  + (80. tau[2] 

   + 220. tau[1] + 100. tau[3] - 0.850 - 50. alpha[1]) t 

S[V] := collect(S[V0]+S[V1]+S[V2], t); 

                                                      4     

500 + (-0.000003909989454 + 0.000003909989454 theta) t  + ( 

-0.03280495550 + 0.03678302692 theta + 0.0004039655171 tau[1] 

                                                       3    

   + 0.0001468965517 tau[2] + 0.0001836206896 tau[3]) t  +  

  (83.46711789 + 0.7342703202 theta + 4.267241379 tau[1] 

                                               2                 

   + 1.551724138 tau[2] + 1.939655172 tau[3]) t  - 290.4462413 t 

Z[V] := collect(Z[V0]+Z[V1]+Z[V2], t); 

                                                     4    

300 + (0.000003909989454 - 0.000003909989454 theta) t  +  

  (0.03638453883 - 0.03678302692 theta - 0.0004039655171 tau[1] 

                                                       3    

   - 0.0001468965517 tau[2] - 0.0001836206896 tau[3]) t  +  

  (37.51335708 - 0.7342703202 theta - 4.267241379 tau[1] 

                                               2                 

   - 1.551724138 tau[2] - 1.939655172 tau[3]) t  - 149.4827587 
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