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ABSTRACT 

Early detection of diabetic retinopathy (DR) is critical, as prompt treatment can help 

reduce or even prevent visual loss. Most of the current state-of-the-art machine learning 

techniques for DR detection and classification make use of single classification for 

prediction. However this single classification models suffer from high variance, high 

bias, bottleneck in local optima, and the researcher also suffers the risk of choosing the 

wrong classifier. These issues can be solved by combining the predictions from multiple 

classifiers which produces predictions that are less sensitive to the specifics of the 

training data, the choice of training scheme and the serendipity of a single training run. 

Therefore, this research proposes an effective stacking ensemble technique for DR 

classification that will satisfy the drawbacks of using a single model, hence improve 

classification performance. The proposed stacking ensemble classifier was produced 

from a combination of four classifiers namely: Support Vector Machine (SVM), K-

Nearest Neighour (KNN), Decision Tree (DT) and Naïve Bayes (NB). The proposed 

stacking ensemble technique was evaluated using the Messidor dataset. In comparison 

with the performance of the individual constituent models the proposed stacking 

ensemble technique achieved an acuracy of 99.17% which was better than the values 

achieved by the constituent models with accuracies of 98.33%, 96.67%, 93.33%, 

95.00% for SVM, KNN, DT and NB, respectively. The proposed technique also 

produced  better results than previous works based on Messidor dataset. These results 

suggest the robustness of the proposed model to DR detection and classification.  
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CHAPTER ONE 

1.0      INTRODUCTION 

1.1 Background of study 

Diabetes is the most common condition in the human body that causes many 

complications worldwide (Amin et al., 2017). According to estimates from 2014, this 

disease's incidence rose from one hundred million patients in 1980 to four hundred and 

twenty-two million patients, with a global prevalence of 4.7% to 8.5% (Kirange et al., 

2019). Patients with a history of diabetes are more prone to diabetic retinopathy (Amin et 

al., 2017). Diabetes is a condition in which the pancreas does not produce enough insulin 

or the body is unable to adequately process it (Verma et al., 2011).  Type 1 and Type 2 

diabetes are the two forms of diabetes. A person with Type 1 diabetes has a pancreas that 

does not make insulin. Juvenile diabetes, often known as type 1 diabetes, is commonly 

diagnosed in children and teenagers. It can however, happen to adults. This kind of 

diabetes affects about 5% to 10% of diabetics (Wang and Lo, 2018).  

Insulin resistance happens when the body does not create enough insulin or when the 

cells are unable to use it adequately, resulting in type 2 diabetes. Because type 2 diabetes 

is detected later in life, usually beyond the age of 45, it is referred to as "adult-onset 

diabetes." It is responsible for 90% to 95% of diabetics (Gulshan et al., 2016). Type 2 

diabetes has been identified more commonly in young adults, including children, in 

recent times than in the past (Gulshan et al., 2016). 

Diabetes has a negative impact on the kidneys, eyes, nerves, and heart (Tarr et al., 2013). 

Diabetic nephropathy is the medical term for diabetic kidney illness (Selby and Taal, 

2020). High blood glucose levels caused by diabetes can harm the component of the 

kidneys that purifies the blood in the case of diabetic kidney disease. When a filter is 



  

2 

 

broken, it becomes ‘leaky,' allowing protein into the urine (Sulaiman, 2019). Diabetes 

cause diabetic neuropathy, which is a type of nerve injury. High blood sugar levels can 

harm nerves all over the body (Nascimento et al., 2016). The nerves in the legs and feet 

are the most commonly affected by diabetic neuropathy. Diabetic neuropathy symptoms 

can range from discomfort and stiffness in the legs and feet to difficulties with the 

digestive system, blood vessels, urinary tract, and heart, depending on which nerves are 

impacted (Gupta et al., 2021). Diabetics may get Diabetic Foot Ulcers (Netten et al., 

2020). A diabetic foot ulcer is an open sore that affects about 15% of diabetic individuals 

and is usually found on the soles of the feet (Bus et al., 2020). 

Diabetic retinopathy (DR) is a vision-related consequence of diabetes. Diabetic 

retinopathy may cause no symptoms or just minor vision abnormalities at first. DR is a 

disease that tends to worsen and is one of the critical causes of blindness and vision loss 

(Arade and Patil, 2017). DR is a diabetes-related eye condition that arises when the 

retina's blood vessels swell and leak fluid, leading gradually to vision impairment (Khan, 

2013). Anyone with type 1 or type 2 diabetes can have this DR disease. Diabetes causes 

excessive blood sugar levels to collect in blood arteries, obstructing or inhibiting blood 

flow to the vital organs, including the eyes, and affects up to 80% of all people with 

diabetes for 10 years or longer (Li et al., 2019). This assumption facilitates the 

application of automated diagnostic screening methods to larger populations. DR 

symptoms include blurred vision, eyespots, and night vision difficulties (Rajalakshmi et 

al., 2018).Early detection and regular eye exams could avoid vision loss and blindness, 

and they were critical in DR therapy  (Ahmad et al., 2011; Faust et al., 2012; Ganesan et 

al., 2014). Experienced optometrists or highly skilled eye technicians conduct retinal 

screening as a traditional and effective solution for the early detection of DR using 

retinal fundus photos acquired with a mydriatic or nonmydriatic camera (Rahimy, 2018; 
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Sandhu et al., 2018). The modest differences between grades, as well as the availability 

of numerous minor fundamental qualities, make identification extremely challenging 

(Kumaran and Patil, 2018). Traditional manual DR screening, on the other hand, is 

difficult to perform and is subject to significant inter- and intra-observer variation, even 

among experienced ophthalmologists, which can lead to erroneous interpretation, a delay 

in appropriate diagnosis, and a strain on healthcare services (Arcadu et al., 2019; 

ElTanboly et al., 2017; Sarki et al., 2020) 

DR automated detection is required to address the issues of significant inter and intra-

observer variation amongst ophthalmologists, which can lead to inconsistencies in 

interpretation, a delay in appropriate diagnosis, and a strain on health-care resources. 

Early-stage identification of DR, which can prevent blindness with appropriate care, is 

also crucial for diagnosis (Ahmad et al., 2014). The creation of intelligent systems to 

assist ophthalmologists' decision-making has attracted the scientific community's 

attention in various works concerning incorrect diagnosis (Islam et al., 2017; Pak et al., 

2020). 

1.2 Statement of the Research 

Deep learning models has been adapted by many previous works to perform diabetic 

retinopathy detection task (Dutta et al., 2018; Sarki et al., 2020; Zeng et al., 2019). 

Deep learning models provide various advantages, such as features that are 

automatically determined and properly tailored for the desired conclusion. GPUs can 

also execute vast parallel computations and are scalable for big amounts of data 

(Benkaddour and Bounoua, 2017). Deep learning, on the other hand, suffers from the 

necessity for a vast amount of data to perform better than other techniques. There is no 

standard theory to aid one in choosing the correct deep learning architecture, since deep 

learning necessitates knowledge of topology, training method, and other factors. Deep 
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learning is also susceptible to high variance, a sort of error caused by a model's 

sensitivity to small perturbations in the training data. Because of the high variance, an 

algorithm would be forced to represent the noise in the training set (Nannia et al., 

2021).  

Apart from deep learning models shallow learning models such as support vector 

machine, Naïve Bayes, Decision Trees and k-nearest neighbour have been used for DR 

detection and classification. However, each single mode is constrained to learn only 

some part of the structure of the data. Combining the strengths of different models can 

produce superior predictions. Single model prediction is also suffer from high variance 

or high bias (David and Suruliandi, 2019). When a model has a strong bias toward one 

of the outcomes of a problem it is trying to solve, it is said to have high bias. The model 

is most likely not learning enough from the training data when the bias is strong. The 

bagging ensemble method was used by Somasundaram and Alli (2017) for DR 

detection and classification. However the bagging ensemble method may still yield high 

variance estimator because trees are highly correlated, so may still over fit training data 

(Bühlmann, 2012).  

Statistical, training data is mostly small relative to size of space needed to search, using 

stacking ensemble reduces risk of choosing the wrong classifier (Rahman and Tasnim, 

2014). Computational, individual models get stuck in local optima; stacking ensemble 

can lead to better overall prediction. Training many models rather than a single model 

and combining the predictions from these models is an effective strategy to reduce the 

high variance and high bias of deep neural network and shallow learning models 

(Alabdulrahman, 2014).   

In line with the identified problems a stacking ensemble method for DR classification is 

proposed which solves the problem of high variance, high bias, bottleneck in local 
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optima, and risk of choosing the wrong classifier which is identified with using a single 

classifier for prediction. The Alexnet convolutional neural network was utilized for 

feature extraction to take use of the benefits of deep learning models, such as features 

being automatically derived and optimally tailored for the intended conclusion.   

1.3 Aim and Objectives 

The aim of this study is to develop a model which will effectively classify Diabetic 

Retinopathy (DR) using convolutional neural network and stacking ensemble of 

classifiers techniques.  

The Objectives of this study are to: 

1. Extract deep features from diabetic retinopathy fundus images.  

2. Develop an ensemble of classification models. 

3. Evaluate the performance of the model in (ii) using accuracy, precision, recall, 

loss function, and f-score.  

1.4 Scope of the Study 

This research focuses on automatic diabetic retinopathy classification using the stacking 

ensemble. The stacking ensemble model was built using four classifiers namely Support 

Vector Machine (SVM), Naïve Bayes (NB), Decision Tree (DT) and K-Nearest 

Neighbour (KNN). The bagging, boosting, averaging, and majority vote ensemble 

algorithms were not considered. Other single classifiers like discriminate analysis, 

Error-Correcting Output Codes, neural network and logistic regression as constituent 

classifiers for the ensemble were not explored. This thesis is also limited to just the 

Messidor dataset without consideration of other DR Dataset sources like e-ophtha, 

HRIS, DIARETDB1, DIARETDB0 and DRIVE.   
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1.5 Significance of the Study 

This thesis makes contributions to the fields of medical image analysis and optometry. 

This study would be of benefit to clinicians on DR diagnosis and staging. Researchers 

would benefit  

from this study as it gives insight on existing algorithms on DR disease detection and 

classification thus enhancing the decision making process towards selecting the 

appropriate detection and classification technique to implement or to modify towards 

diagnosis of DR. 

1.6 Organization of Thesis 

This thesis is divided into five chapters, beginning with Chapter 1 and ending with 

Chapter 5. The first chapter provides an overview of the research project. It also 

includes problem statements, goals and objectives, the scope of the research, and the 

significance of the research. Chapter 2 describes diabetic retinopathy in depth and 

analyses past studies on the subject undertaken by various researchers. The method 

utilized to analyze the topic is discussed in the third chapter. It supports the method for 

obtaining a solution to the problem. It goes over data collecting methods, feature 

extraction, and classifier ensemble. The details of the actual experimentation and the 

outcomes are presented in Chapter 4. The work was summarized, conclusions were 

reached, and recommendations for future work were offered in chapter five. 
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CHAPTER TWO 

2.0     LITERATURE REVIEW 

2.1 Preamble 

The pathology and screening overview, as well as the strategies employed for DR 

detection in prior studies, are discussed in this chapter. The first portion covers the DR 

pathogen, which includes a fundamental explanation of the retina's structure, followed 

by a discussion of the disease's clinical symptoms. 

2.2 Diabetes Retinopathy Pathology 

Diabetes mellitus is a sugar metabolic illness caused by impaired insulin secretion and 

is characterized by elevated blood glucose levels (Ahmad et al., 2011). Blood arteries 

that feed blood to essential organs can be damaged by hyperglycemia (high blood 

glucose levels). DR is a diabetic condition that affects the retinal vascular system, 

resulting in slow retinal degeneration and visual loss. In the working-age population, 

DR is considered as the primary cause of blindness (Ahmad et al., 2014; Al-Hazaimeh 

et al., 2018). Diabetes has been recognized as a major emerging global public health 

challenge (Banu et al., 2016.); In the United Kingdom, 3 million people are estimated to 

have diabetes, with the number anticipated to double in the next 15-30 years. In the year 

2000, 171 million individuals were predicted to have diabetes worldwide, with that 

number expected to climb to 366 million by 2030 (Dutta et al., 2018) .If DR is caught 

early enough, laser therapy can help to prevent vision loss (Sopharak et al., 2010). 

Interventions such as improved blood glucose control could also help mitigate future 

advancement of the DR when it is in its early stages (Anuradha and Velmurugan, 2015).  

Since there are often no signs or symptoms of DR, screening is critical for diagnosis. 

Patients can be handled appropriately once DR has been detected, with the goal of 

preventing vision loss (Kumudham and Shenbagavalli, 2013). 
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The retina is a light-sensitive tissue that lines the innermost surface of the eye. Millions 

of photo-receptors react to concentrated light and convert it to electrical signals in the 

retina. The optic nerve carries these signals to the brain, where they are converted into 

images. Retinal blood vessels, macula, optic disc, and fovea are all parts of the retina 

(Mangrulkar, 2017). The macula takes up a significant portion of the brain's visual 

capacity because of its large number of cone cells, which are responsible for fine visual 

acuity, colours and centre vision. The fovea, which is located in the centre of the 

macula, contains the greatest number of cone cells (Wang and Lo, 2018). 

 

 

Figure 2.1 Retinal structures: Blood vessels, Optic Disk, and Fovea/Macula (Basit and 

Egerton, 2013) 

Hyperglycemia causes diabetic retinopathy, a microangiopathy that affects the retinal 

vasculature. Blood and fluid escape from damaged retinal blood vessels, forming 

microaneurysms, exudates, haemorrhages, cotton wool patches, and venous loops (Tarr 

et al., 2013). DR is a degenerative disorder, and areas of retinal ischaemia emerge as the 

blockages and damage of blood vessels deteriorate. The formation of new blood vessels 

is ignited in an attempt to revascularize the area. Due to the delicate nature of new 

vessels and the possibility of substantial bleeding, new vessels signify the later phases 
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of DR, posing a great risk of chronic vision loss. In the subsections below, the primary 

aspects of DR are detailed in further detail, with accompanying photos. 

2.2.1 Microaneurysms 

Microaneurysms are balloon-like entities that form on the edges of capillaries as the 

capillary walls deteriorates. Microaneurysms appear as single red dots unattached to any 

blood vessel on conventional fundus images because capillaries are not visible. They are 

frequently the first indicators of DR to be noticed (Somasundaram and Alli, 2017). 

Microaneurysms in the retina are depicted in Figure 2.2. 

   

 

Figure 2.2 Microaneurysms in retina image (Amin et al., 2016) 

2.2.2 Haemorrhages 

Blood leaking comes from the shattering of capillary walls in this disorder, which can 

vary in size and form based on the retinal layer in which the capillaries are situated. Dot, 

blot, and flame haemorrhages are the three types of haemorrhages (Amin et al., 2016). 

Figure 2.3 depicts a retinal picture with haemorrhages. 

Microaneurysms 

Microaneurysms 
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Figure 2.3 Haemorrhages in Retina Image (Amin et al., 2016) 

2.2.3 Exudates 

Oedema leaking is frequently caused by capillary collapse. Retinal thickness is caused 

by the accumulation of oedema. Macular oedema is the most common cause of vision 

loss in diabetics, and if it is medically severe, laser therapy will be required to mitigate 

the likelihood of vision loss (Dutta et al., 2018). Oedema is a transparent fluid that 

cannot be seen with conventional 2D retinal imaging. Exudates are the lipid remnants 

from the oedema. Isolated patches, track lines, macular stars and circinates appear, as 

waxy yellow lesions with a variety of designs. Exudates are divided into two categories: 

hard and soft exudates. 
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Figure 2.4 Exudates in Retina Image (Sariera et al., 2020) 

1. Hard Exudates: These are a common symptom of DR and can range in 

dimension from microscopic dots to big spots with defined boundaries. In 

addition to blood, the eye contains liquid that is high in protein and fat, which 

leaks out to produce exudates. These can make it difficult to see because they 

block light from getting to the retina.  

2. Soft exudates: These are sometimes known as "cotton wool patches," are more 

common in people with severe retinopathy. 

 

 

Figure 2.5 Soft Exudate in Retina Image (Sariera et al., 2020) 
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2.2.4 Neovascularisation 

This is characterized by aberrant blood vessel proliferation in parts of the eye, 

particularly the retina, and is linked to blindness. This happens as a result of ischemia, 

or a lack of blood supply to the ocular tissues. Glaucoma can develop if these aberrant 

blood vessels develop around the pupil, raising the stress within the eye. The walls of 

these new blood arteries are thinner, making them more likely to rupture and 

haemorrhage, or to induce scar tissue to form, pulling the retina away from the back of 

the eye. When the retina peels away from the back of the eye, a retinal detachment 

happens, and if remain unattended, it can cause considerable blindness. Blood leaks can 

obstruct the vitreous and hinder light from reaching the retina through the pupil, 

resulting in distorted and hazy visions. Diabetic fibrous may grow on the retina in more 

advanced proliferate retinopathy (Tarr et al., 2013). 

2.3 Stages of Diabetic retinopathy 

Table 2.1 summaries the stages of DR. Background DR, Proliferative DR, Pre-

proliferative DR, and Maculopathy are the four primary types of DR. Background DR is 

the most mild kind of DR and poses no risk to vision. Pre-proliferative DR is a type of 

progressive retinal ischaemia that comes with an elevated risk of neovascularization. 

Proliferative DR is marked by neovascularization, and it is the most serious phase of the 

illness, with a high chance of vision loss. Table 2.1 demonstrates that proliferative DR 

encompasses characteristics other than new vasculature; however, keep in mind that 

these other characteristics are attributable to the existence of new vessels. Maculopathy 

can develop at any phase of DR, though it is more common as the disease develops. The 

presence of any DR characteristics at the macula is the formal definition of 

maculopathy, however it is typically reserved for vision-threatening macular oedema 

(Oloumi et al., 2014). 
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Table 2. 1 Classification of DR 

Stages of DR Features 

Background Microaneurysms 

Dot and blot haemorrhages 

Exudates 

Pre-proliferative Multiple dot and blot haemorrhages. 

Cotton wool spots (CWS). 

Venous beading and loops. 

Intra-retinal microvascular abnormalities (IRMA). 

Proliferative New vessels elsewhere (NVE). 

New vessels at the disc (NVD). 

Pre-retinal/vitreous haemorrhage. 

Retinal detachment. 

Maculopathy Microaneurysms, haemorrhages, exudates at the macula. 

Macular oedema. 

 

2.4 Diabetic Retinopathy Detection Techniques 

In the last several decades, the topic of retinal photo analysis has sparked a lot of 

attention, with the automated identification of diabetic retinopathy receiving a 

significant portion of it. Landmark identification is another subject that has attracted a 

lot of attention. Optic disc, blood vessels, and the fovea are all landmarks. This section 

will begin with a quick overview of computerized blood vessel segmentation. Most DR 

detection strategies, especially new vessel detection methods, require it as a 

precondition before detecting diseased entities. There will be a brief discussion of the 

main approaches for detecting the key DR characteristics (microaneurysms, 

haemorrhages, and exudates). Following that, there will be a part that provides a 

detailed report of the detection of new vessels (proliferative DR). This chapter will 

conclude with a quick rundown of the machine learning algorithms described 

throughout this literature study. The majority of methods begin by preprocessing the 

photos. The primary preprocessing processes are used to compensate for reduced 
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lighting and contrast. Shade correction is a common method for dealing with poor 

lighting (Niemeijer et al., 2005; Spencer et al., 1996), whereby an image resembling the 

background is deducted from the initial image. The background image is created by 

using a median filter with a size that is much larger than the largest retinal feature. 

Contrast limited adaptive histogram equalization (CLAHE) is a common solution for 

poor contrast (Ramlugun et al., 2012). This is a method for enhancing local contrast that 

is preferable to global contrast improvement. Preprocessing, on the other hand, can only 

repair to a certain extent; consequently, it is the photographer's obligation to ensure that 

an acceptable standard of photos is collected. Youssif et al. (2007) explains the 

preprocessing stages for retinal analysis in detail. 

2.4.1 Vessel Segmentation 

The rich red hue of vessels, their contrast with the background, and their gradient at 

vessel borders are all important characteristics that are used in segmentation algorithms 

(Cree et al., 2005). Their cross section intensity profile resembles a Gaussian function 

and can be approximated as piecewise linear. Different methods have been published in 

the literature, and they can be divided into four categories based on mathematical 

morphology, matched filtering, vessel tracking, and machine learning. Fine, weak, and 

highly convoluted vessels might be difficult to find using vascular segmentation 

algorithms. The profile model can be complicated by vessel crossing and branching. 

Vessels can have high reflections along their midline, complicating the profile model 

even more. Pathologies can potentially reduce precision, resulting in false positives. On 

a pixel-by-pixel basis, vessel segmentation approaches are evaluated (Yin et al., 2012). 
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2.4.2 Matched filtering 

The matched filter was first introduced for vessel segmentation by Chaudhuri et al. 

(1989), and it has since become one of the most used approaches. It took advantage of 

the fact that a Gaussian function can estimate the cross section of the vessels, as well as 

the notion that vessels can be thought of as piecewise linear segments. As a result, a 

two-dimensional Gaussian filter was employed, which varied from a conventional 

isotropic Gaussian filter is that a single Gaussian function transverse profile was 

reproduced an amount of times and packed to make up the filter's length. The filter's 

length was chosen to be close to the distance at which vessel segments were considered 

to be linear. To "match" the blood vessel segments, this filter, which matched the 

geometry of vessel segments, was combined with the retinal picture. In order to identify 

vessels of various orientations, the filter was also rotated. The matching filter response 

(MFR) was created as a result of this, resulting in a significantly improved image. After 

that, a global threshold was used to create a binary vessel map. 

Al-Rawi et al. (2007) increased the matched filter's performance by utilizing an 

optimization algorithm to identify the ideal filter settings automatically. Regrettably, the 

matched filtering approach responds to non-vessel edges as well as vessels. The most 

bothersome are the step borders generated between exudates and the background. A 

single global MFR threshold is insufficient and can lead to several false positives. As a 

result, a slew of modified matched filtering approaches have been presented.  

Using vessel structural information, Hoover et al. (2000) proposed a piecewise 

threshold probing approach. The algorithm explored the MFR and employed a set of 

parameters to establish the threshold for each location in order to segment vessels 

during each probe. The point that the MFR highest point for a vessel is substantially 

superior to its surrounding points on either sides, while the MFR peak point for non-



  

16 

 

vessel edges is not much superior than its neighbours on either sides was utilized by Lei 

Zhang et al. (2009). As a result, a two-sided thresholding method was proposed. 

2.4.3 Mathematical Morphology 

For the extraction of vessel midline, Mendonca and Campilho (2006) used variance of 

offset Gaussian filtering. Going back to the initial preprocessed photo, vessel 

improvement was conducted individually at diverse levels using a tweaked top hat 

operator with an expanding disc structural component to boost vessels of various 

widths. The double threshold operator was used to do morphological rebuilding at each 

scale, resulting in a binary vessel map. The final vessel segmentation was created by 

doing iterative region-growing utilizing the vessel mid-lines and various binary vessel 

maps. Fraz et al. (2012) proposed an improved Mendonca and Campilho model (2006). 

The vessel mid-lines were found using the Gaussian kernel's first order derivative. Bit 

plane slicing was utilized to construct a binary vessel map once the top hat vessel 

enhanced image was acquired; the sum of the higher order bit planes was used to 

generate a binary vessel map. 

2.4.4 Vessel tracking 

Cree et al. (2005) used a two-dimensional Gaussian framework to track vessels. A 

starting vessel point, as well as estimates of its breadth and direction, had to be 

manually picked. A tiny local area was removed around this point, and a Gaussian 

model with the same breadth and alignment was fitted by the non-linear least squares 

optimization approach. The fitted model was used to take precise measurements of 

vessel width and alignment. A tiny step was taken toward the vessel, and earlier 

dimensions were used as approximations to create a new fitting. Additional methods 

include a vessel tracking technique founded on utilizing a probabilistic design (Yin et 
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al., 2012) and a method based on multi-scale line tracking (Vlachos and Dermatas, 

2010). 

2.4.5 Machine Learning 

In machine learning method image pixels are categorized into vessel or non-vessel. 

Supervised and unsupervised learning methods are used for this classification.  

1. Supervised Learning:  Sinthanayothin et al. (1999) used principal component 

analysis (PCA) to limit the photo to simply structural detail. To quantify edge 

strength, the canny edge detector was applied to the first principal component. 

The first principal component values and edge strong point were used as input 

data for a neural network classifier. The method utilized by Staal et al. (2004)  

was to extract ridges, which were then used to create photo primitives in the 

shape of line components. The image was then divided into patches using these 

line elements. A vector of 27 characteristics obtained from qualities of the spots 

and line components were used to categorize pixels using a KNN algorithm. 

Soares et al. (2006) produced a feature vector for each pixel based on the 

intensity of the pixel and the response of a two-dimensional Gabor wavelet 

applied at various measures and alignments. A Bayesian classifier was used to 

classify pixels, with class likelihoods given as a linear combination of Gaussian 

functions. 

2. Unsupervised: For vessel tracking, Tolias and Panas (1998) suggested an 

unsupervised fuzzy method. A fuzzy C-means clustering approach was used to 

find the membership functions of the 2 linguistic values (vessel and non-vessel). 

No hypotheses regarding the shape of the vessels were established, and no edge 

information was necessary, because the suggested solution relied entirely on 

intensity data (usually corrupted by noise). By using matched filtering, Kande et 
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al. (2010) increased the contrast of blood arteries against the backdrop. To 

segment the vessels, a spatially weighted fuzzy C-means clustering technique 

was used to label the improved image. The spatial weighting component took 

into consideration the fact that grey level spatial distributions as photo intensity 

are not autonomous of one another. 

2.5 Related Works 

Computer vision field, the task of detecting DR early is a challenging issue. Diagnostic 

clarity criteria aim to identify clinical characteristics of Diabetic Retinopathy such as 

haemorrhages, microaneurysms, soft exudates, and hard exudates.  It is an essential issue 

for a proper diagnosis to extract these signs as they help to determine the actual condition 

of DR. 

Kirange et al.(2019) suggested a new technique for early-stage identification of DR by 

recognizing all microaneurysms, the first symptoms of DR, and correctly assigning 

labels to retinal fundus images grouped into five classes according to the seriousness of 

lesions. The five grading groups are: No DR, Mild DR, Medium DR, Severe DR, and 

Proliferative DR. Five standard classifiers were used in this proposed system to perform 

the classification task. These classifiers are SVM, KNN, Neural Networks (NN), NB, 

and Decision Tree (DT). The NB classifier was proposed to have surpassed the other 

four classifiers with an accuracy of 77.86%. Both the Gabor and the LBP descriptor were 

used for the extraction of features. However, the components extracted using the Gabor 

descriptor performed much better with an accuracy of 77.86% as compared to the LBP 

features that provided 41.84% accuracy. A drawback of this analysis is that it focused 

more on early-stage DR identification without considering the DR proliferation stage. 

A graph-based approach to classifying retinal images was suggested by Mangrulkar 

(2017). The retinal images were pre-processed to eliminate noise and remove irrelevant 
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information. The Canny edge detector was then utilized to identify the edges of the 

items in the image. Using the kirsch template that defines the presence of an edge, the 

segmentation process was then performed. The Kirsch model is used for the retrieval of 

blood vessels from the retinal image. Together with the graph nodes extracted from the 

image, the Speed-Up Robust Features (SURF) features were extracted by finding the 

intersection points and the terminal ends. Using the graph-based method, classification 

was carried out, and the Artery Vein Ratio (AVR) was measured. The AVR ratio is a 

realistic measure to classify a diabetes-free or diabetes patient. The proposed process 

achieved an accuracy of 88%. Without considering a more advanced DR stage, this 

research only focused on the early phase identification of DR. 

Sarwinda et al.(2017) provided a full model of Local Binary Pattern (LBP) as a texture 

feature descriptor technique for DR detection. In this study, the feature selection method 

was Expectation Maximization-Principal Component Analysis (EM-PCA), and the 

classification technique was KNN. The LBP feature descriptor approach was used to 

extract magnitude, sign, and mean values. The STARE diabetic retinopathy database was 

used in this investigation, which contains 66 DR photos and 44 normal images with a 

resolution of 700 x 600 pixels. A combination of the LBP sign and magnitude value 

showed a better sensitivity of 98.48% than a mixture of LBP mean value and sign, and 

the LBP magnitude and mean values with sensitivity of 97.5% and 97% respectively.  A 

drawback of this study is that the obtained results were not benchmarked with related 

works that used the STARE database. Also, the extracted LBP features were only tested 

on the KNN classifier. More classifier can be used for testing the efficiency of these 

extracted features to improve the model robustness.  

Costa et al.(2018) established a novel Multiple-Instance Learning-based weakly-

supervised DR diagnosis system. The method used inherent local information to generate 
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predictions on new photos based on weak information about the absence or presence of 

the disease. The adoption of a joint-learning approach in which the encoding and 

classification phases are linked is the study's main contribution. SURF (Sped-Up Robust 

Features) were used to locate and define occurrences within retinal pictures in this study. 

The DR detection model was evaluated using the publicly available Messidor dataset. 

The proposed technique achieved an area under the curve of 90% on the Messidor 

dataset and 93% on the DR1 dataset. This study was limited to just the SURF feature; 

however, exploring more features such as texture, deep learning and image degrading 

features could help describe the DR disease more effectively which would in turn 

improve the proposed systems’ performance.  

A new approach to the diagnosis of Age-related Macular Degeneration (AMD) and DR, 

as proposed by Morales et al. (2017). The presentation of a new technique for the 

diagnosis of AMD and DR was the objective of this method. Five experiments were 

developed and tested using the suggested procedure: separating DR from normal, AMD 

from normal, pathological from normal, DR from AMD, and the three different classes 

(AMD, DR, and Normal): The LBP was used as the feature descriptor technique. The 

study's most noteworthy conclusion is that the new approach can distinguish between 

groups based on an analysis of the retina's spatial texture; thereby removing the retinal 

lesion's previous segmentation. The findings suggest that employing LBP as a texture 

descriptor for fundus photos provides useful characteristics for detecting retinal illness. 

This work, however, only investigated the LBP without further searching for 

more texture descriptors.  

A multi-stage transfer learning system and an automated method for detecting the DR 

stages from a single human fundus image were proposed by Tymchenko et al. (2020). 

Three Convolutional Neural Network (CNN) architectures (EfficientNet-B4, 
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EfficientNet-B5, and SE-ResNeXt50) were ensemble. CNN was used as a function 

extractor and as a classifier. The CNNs pre-trained by Imagenet were used for encoder 

activation. The proposed technique was used for the early detection of DR and achieved 

a sensitivity and specificity of 0.99. The Shapley Addictive exPlanations (SHAP) were 

used to explain characteristics that lead to the disease process evaluation—using SHAP 

guarantees that the model learns beneficial features during preparation and uses correct 

characteristics at an inferential time. This approach's main advantage is that it increases 

generalization and eliminates uncertainty using a network ensemble, pre-maintained on a 

large dataset and precisely tuned to the target dataset. This analysis can be extended with 

SHAP calculation for the entire ensemble, not just for a particular network, which can 

provide a more precise optimization of hyper-parameters. 

Al-Hazaimeh et al. (2018) suggested an effective image processing method for detecting 

DR illnesses from retinal fundus pictures. Preprocessing, blood vessel segmentation and 

removal, optic disc detection and removal, fovea elimination, feature selection, feature 

extraction, and classification were all part of the proposed automatic screening method 

for DR. The proposed method was benchmarked using the DIARETDB1 publicly 

available dataset.  The Gray-level co-occurrence matrix (GLCM) was used to extract the 

microaneurysm, retinal hemorrhage and exudate features from the retina fundus images. 

Deep belief network was used to carry out feature selection. SVM model was adopted 

for data classification. The proposed technique was validated using sensitivity, 

specificity and accuracy performance metric. In this study an accuracy of 98.4%, 

sensitivity of 99% and specificity of 96% was achieved. The DIARETDB1 consist of 89 

colour fundus images was used for training and testing the proposed method which 

makes the method limited to a small dataset size. Increasing the dataset size would 

produce a more robust model.  
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Sudha and Karthikeyan (2018) presented an analysis of DR using the Naïve Bayes 

classifier technique. There are 385 instances and 9 features in the collection. This data 

was obtained from the Sakarya University Educational and Research Hospital's Eye 

Clinic.  Hemoglobin, URE, Glycated Hemoglobin, High-Density Lipoprotein, Diabetes 

Duration, Low-Density Lipoprotein, Creatine, Triglyceride, and Glucose are among the 

dataset's attributes. The classification accuracy of the Naïve Bayes classifier was 89%. 

To improve the clarity of the proposed system performance more performance metric 

like precision, loss function, recall, area under the curve and f-score should be used.  

Li et al. (2019) introduced a novel method based on a Deep CNN (DCNN). In this paper, 

the regular DCNN max-pooling layers were replaced by a fractional max-pooling layer. 

Two DCNNs with differing numbers of layers were prepared for classification to achieve 

more discriminatory features. After integrating features from image metadata and 

DCNNs, the SVM classifier was trained to learn the inherent limits of dispersals of each 

category. The proposed DR method classifies DR phases into 5 groups, labeled with a 

number ranging from 0 to 4. The test results indicate that the suggested technique can 

reach a recognition rate of up to 86.17%. The dataset used for training in this study had 

an insufficient number of images of lesions 3 and 4, limiting the proposed method. 

Islam et al. (2017) presented an automated DR detection technique based on bag of word 

approach. This method classifies diabetic retinopathy images into absence or presence 

DR based on five publicly available datasets: Messidor, STARE, DIARETDB1, 

DIARETDB0 and HRF. Speed up Robust Features (SURF) was used as the feature 

extraction technique. Using the K-means clustering algorithm, the extracted SURF 

feature was assigned to several clusters. Visual words are represented by the cluster 

centers, and these words together make up the lexicon, or bag of words. Each individual 

characteristic in the image is quantized to the nearest word, resulting in a histogram in 
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which each bin represents the frequency of a word inside that bag of words. SVM was 

used to classify the data. The proposed technique had a 94.4% accuracy, precision, 

recall, and f-score of 94%. In this study the DR images were just classified in normal or 

abnormal images without consideration of the severity level of the DR.  

Zeng et al. (2019) suggested a binocular Siamese-like CNN for automatic DR detection. 

The suggested method takes as inputs binocular fundus images and discovers their 

correlation to aid in forecasting. The model basically takes two fundus photos belonging 

to the left and right eyes as inputs and sends them to the Siamese-like modules. In the 

fully-connected layer, the data from two eyes are integrated, and the model then 

produces the diagnosis result for each eye independently. In this study, the Kaggle DR 

Image dataset was employed. A total of 35126 high-resolution fundus pictures were 

obtained under a variety of imaging circumstances for the data set. The proposed 

binocular model performed well, with an area under the curve of 0.951, a recall of 82.2% 

and a specificity of 70.7%. The suggested method has the disadvantage that binocular 

models will have difficulty training or validating with datasets that do not feature paired 

fundus images. 

Arade and Patil (2017) conducted a comparative study of DR using the K-NN and 

Bayesian classifier. An automated image processing system that detects DR gradation is 

presented in this paper. Blood vessel segmentation was done using the kirsch process, as 

it was found that retinal photos effectively differentiated the blood vessels. Differentiated 

vessels were extracted using moment invariants, grey level features. The DR severity 

was identified along with K-NN and Bayesian classifier using a feed-forward neural 

network. To validate the results obtained with an ophthalmologist, it was indicated that 

the Bayesian classifier generates results comparable to the expert opinion than the K-NN 

classifier. The accuracy of the Bayesian classifier obtained is 74%, while the precision 
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for K-NN is 66%. It is possible to expand this work and improve classification 

performance by training more classifiers or performing an ensemble. 

2.6 Summary of Review 

Several publications and individuals have published work on numerous machine 

learning models for DR discovery and classification in one form or another. Most of the 

techniques used are single models which suffer from high variance and high biasness 

that could lead to low model performance. To pick the best model for classification 

must of the publications trained several models and performed a comparison of these 

trained models to choose the best model which is time consuming. Some literature made 

use of the begging ensemble to prevent choosing the wrong classifier, however bagging 

ensemble method may still yield high variance estimator because trees are highly 

correlated, and so may still over-fit training data.  
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CHAPTER THREE 

3.0         METHODOLOGY 

3.1 Preamble 

The phases involved in the automatic diagnosis of fundus images are covered in this 

chapter. It begins with a quick review of the steps involved in DR diagnosis as depicted 

in Figure 3.1. This is followed by a thorough examination of each of the processes 

involved in this research. 

 

 

Figure 3. 1 Block Diagram of the Proposed System 
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3.2 Dataset 

In this study the Messidor dataset  (Messidor, 2021) was used for training and testing 

the proposed technique. The data set has 1200 RGB fundus images together with 

comments in an excel file (Kalyani et al., 2021). Three ophthalmology units analyzed 

the photographs. Images with resolutions of 2240 by 1488, 1440 by 960, or 2304 1536 

pixels were captured using 8 bits per color. Out of the 1200 images, 400 photos were 

taken without pupil dilation and 800 photographs were taken with pupil dilation (Zago 

et al., 2020). The dataset is divided into four grades: 0, 1, 2, and 3, with 0 indicating no 

DR and the other three indicating DR. The severity levels are indicated by grades 1, 2, 

and 3, with 1 being the least severe and 3 being the most severe (Saxena et al., 2020). In 

this study the images were categorized into two classes: 0 for normal and grades 1, 2, 3 

were all changed to 1 to indicate diabetics’ retinopathy.  Figure 3.2 and 3.3 are 

examples of the Messidor images.  

 

 

Figure 3. 2 Sample of Messidor normal 

image (Amin et al., 2016) 

 

 

Figure 3. 3 Sample of Messidor diabetics retinopathy 

image (Sariera et al., 2020) 

3.3 Image Preprocessing 

The quality of the input used in model training determines the accuracy or efficiency of 

the categorization model. As a result, the training data in the datasets is preprocessed 

before being used as inputs. The retinal images in the databases come in a variety of 
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sizes (1440 by 960, 2304 by 1536 and 2240 by 1488). All photos are resized and 

reduced to the size 512 by 512 as the first stage in preprocessing. 

3.4 Deep Feature Extraction 

Feature Extraction is a dimensionality reduction method by which the initial raw data 

collection is reduced to more controllable classes. It also deals with creating variables to 

get around issues while describing the data with adequate accuracy. After the face pre-

processing stage, the pre-processed image will be feed into the convolutional neural 

network for feature extraction. In this research the Convolutional Neural Network (CNN) 

Alexnet was used for deep feature extraction.  

In this research 80% of the dataset was used for training the classification models and the 

remaining 20% was used to test the classification models.  

3.4.1 Convolutional neural network (CNN) 

Presently, in image processing and analysis field, convolutional neural network has 

become a vastly proficient method of feature extraction and identification (Benkaddour 

and Bounoua, 2017; Simonyan and Zisserman, 2015). CNN is the most representative 

model of deep learning (LeCun et al., 2015). CNN is a multi-layer neural network; each 

layer consist of multiple 2D surfaces, and each plane consist of multiple independent 

neurons (Liu, 2018). CNNs have a large number of connections, and its design is made 

up of many layers, such as pooling, convolution, and fully-connected layers, that 

achieve some form of regularization (Ferreira and Giraldi, 2017). Deep architecture is 

used by CNN to learn complex features and functions that can be used to represent 

high-level abstractions. Deep architectures are made up of a high number of neurons 

and multi-level latent non-linearity calculations. Each level of CNN architecture 

signifies features at a particular degree of abstraction, which are defined as a set of 

lower-level features.(Albelwi and Mahmood, 2017). The standard model of CNN has a 
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structure composed of the input layer, alternating convolutional layers, pooling layers 

and non-linear layers (Vedaldi and Lenc, 2016). The convolutional layer and the 

pooling layers are responsible for feature extraction while the fully connected layers 

performs the classification on the features extracted by the convolutional and pooling 

layers (Benkaddour and Bounoua, 2017). The convolutional and pooling layers are 

discussed in the sub-sections below. 

3.4.1.1 Convolutional Layers 

CNN's basic building block is its convolutional layers. The main goal of convolution 

(Namatēvs, 2017).  Is to extract different features from the input. Each kernel is used to 

generate a feature map, and these layers are made up of a succession of filters that try to 

extract local features from the input. Low-level significant features such as edges, 

corners, textures, and lines are retrieved in the first convolutional layer. The 

convolutional layer after that extracts higher-order features, but the highest-level 

features are extracted in the final convolution layer (Hossain and Alam Sajib, 2019). 

3.4.1.2 Pooling Layer 

The pooling layer, also known as a sub sampling layer, is used to decrease the 

resolution of prior feature maps by compressing features and lowering the network's 

computation cost (Sultana et al., 2018). It frequently acts as a bridge between multiple 

convolutional layers (Liu, 2018). It fine-tunes the noise and disorder-resistant 

properties. In general, a pooling layer down samples the input map and reduces the 

dimensionality of the feature maps utilized by subsequent layers (Ferreira and Giraldi, 

2017).  Pooling divides the inputs into R x R-sized areas, with each region producing 

one output. The average of a rectangle neighbourhood, max pooling, and pooling via 

down-sampling are among pooling algorithms used by CNN. 
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To produce one output from each zone, pooling splits the inputs into regions of size N x 

N. (Padmanabhan, 2016). If an input of size S x S is fed to the pooling layer, the output 

size O may be calculated using equation 3.1: 

𝑂 = 𝑓𝑙𝑜𝑜𝑟(
𝑆

𝑁
)  (3.1) 

Each output map can mix convolution with numerous input maps (Namatēvs, 2017). 

Which can be expressed as follows in equation 3.2 (Namatēvs, 2017):  

𝑋𝑗
𝐿 = 𝑓(∑ 𝑋𝑗

𝐿−1
𝑖𝜖𝑀𝑗

∗  𝐾𝑖𝑗
𝐿 +  𝑏𝑗

𝐿)                                  (3.2) 

 

Where 

L  – The convolutional layer; 

L−1   – the downsampling layer; 

𝑋𝑗
𝐿−1  – input features of L −1 convolutional layer; 

𝐾𝑖𝑗
𝐿  – Kernel maps of L convolutional layer; 

𝑏𝑗
𝐿 – Additive bias of L convolutional layer; 

Mj  – represents a selection of input maps; 

i-th  – input; 

j-th –output. 

 

In general, feature extraction with CNNs is made up of several similar processes, each 

of which is made up of three cascading layers: the convolution layer, the activation 

layer, and the pooling function (Liu, 2018). 

3.4.2 Alexnet 

The Alexnet was utilized to extract deep features from DR images in this research. In 

2012, Alexnet took first place in the Imagenet large-scale visual recognition competition 

(Krizhevsky et al., 2017). Alexnet is made up of eight layers, five of which are 

convolutional and three of which are completely connected. The first convolutional 

layer conducts convolution and maximum pooling with 11-by-11 filters. Max pooling is 

achieved using 3-by-3 filters with a stride size of 2. The second layer, which has a 5-by-

5 filter layer, performs the same functions as the first. The max pooling procedures are 

carried out using 3-by-3 filters with a stride size of 2 pixels (Alom et al., 2019). In the 

third, fourth, and fifth convolutional layers, the filter size is 3-by-3. At the fifth layer, 
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max pooling operations are done with 3-by-3 filters with a stride size of 2. Each of the 

sixth and seventh fully connected layers contains 4,096 neurons. The numbers of classes 

to be classified by ImageNet dataset consist of 1,000 classes. Therefore the final fully 

connected layer also contains 1,000 neurons (Alom et al., 2019). The ReLU activation 

function is implements to the first seven layers respectively. A dropout ratio of 0.5 is 

applied to the sixth and seventh layer. The eighth layer output is finally supplied to a 

softmax function. Dropout is a regularization technique, being used to overcome the 

over fitting problem that remains a challenge in a deep neural network. Thus, it reduces 

the training time for each epoch (Zulkeflie et al., 2019).  

3.5 Ensemble Classification 

 Classification is a predictive modeling task in machine learning where a class label is 

predicted for a given instance of input data (Sultana et al., 2018). The DR classification 

in this study was done using an ensemble classifier. A machine learning ensemble is a 

model that integrates the predictions of two or more models (Habib et al., 2017). 

A model's bias and variance must be minimized in order for it to attain acceptable 

classification performance. The significant variance of single classifier models can be 

mitigated by training numerous models and combining their predictions. The objective 

is to aggregate forecasts from a number of good but disparate models. When many 

neural networks' predictions are combined, a bias is introduced, which counteracts the 

variance of a single trained classifier model. The ultimate result is forecasts that are less 

sensitive to training data particular, training scheme selection, and the serendipity of a 

single training run. 

The ensemble can produce better forecasts than any single best model, in addition to 

minimizing prediction variation. The suggested stacking model is part of the ensemble 

learning class, which offers methods for combining predictions from many models 
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prepared for the same task. Ensemble learning entails training many models on the same 

data set, then making predictions using each of the learned models before integrating the 

predictions in some fashion to provide a final outcome or prediction. Four classifiers 

were trained and integrated to reduce the high variance of a single classifier and maybe 

increase the accuracy of the final model. The subsections following go over these 

classifier models.  

3.5.1 Support Vector Machine (SVM) 

Statistical learning theory is used to develop the SVM algorithm (Cao et al., 2019). The 

algorithm is based on the structural risk minimization principle, which allows it to 

compress an array of raw data into a support vector set and learn how to achieve a 

classification decision function (Ghosh et al., 2019). The SVM model iterates over a 

collection of labeled training samples to locate a hyper-plane that produces an optimal 

path cap by finding data points. The use of support vectors improves class 

differentiation (Walsh, 2019).  The decision function of a binary SVM in the input 

space is expressed in Equation 3.3. 

𝛾 = ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑢𝑗𝑦𝑗

𝑛

𝑗=1

𝐾(𝑥, 𝑥𝑗) + 𝑣)                                                   (3.3) 

Where x is the feature vector to be classified, j is the training instance index, n is the 

number of training example, and 𝑦𝑗  is the training example label (1 or –1). 𝑢𝑗  and v are 

fitted to the data to optimize the margin, and j, K (,) is the kernel function. Support 

vectors are training variables for which 𝑢𝑗≠ 0  (Sopharak et al., 2010). 
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3.5.2 Naïve Bayes 

This supervised learning method and statistical classification schemes are 

both demonstrated in the NB Model. It is based on an intrinsic probabilistic model and 

aids in measuring the results’ probabilities to obtain principled uncertainty about the 

model (Sopharak et al., 2010). The NB classifier is a probabilistic machine learning 

algorithm based on the Bayes theorem and the assumption of great feature 

independence. Learning involves numerous linear parameters in the number of problem 

functions, and NB classifiers are very scalable (Sudha and Karthikeyan, 2018). The 

Bayes theorem provides a way to compute the posterior probability 𝑃(𝑥|𝑦)from𝑃(𝑥), 

𝑃(𝑦) and 𝑃(𝑦|𝑥) in NB. Equation (3.4) and (3.5) presented the equation for posterior 

probability𝑃(𝑥|𝑦). 

𝑃(𝑥|𝑦) =  
𝑃(𝑦|𝑥) ×𝑃(𝑥)

𝑃(𝑦)
                     (3.4)  

𝑃(𝑥|𝑦) =
𝑃(𝑦1|𝑥)× 𝑃(𝑦2|𝑥) ×… ×𝑃(𝑦𝑛|𝑥) ×𝑃(𝑥)

𝑃(𝑦1,…,𝑦𝑛)
              (3.5) 

3.5.3 K-Nearest Neighbour 

In KNN an item is classified based on its “distance” from its neighbours, and it is 

allocated to the most common class of its k closest neighbours (Bethanneyet al., 2015).  

If k = 1, the algorithm becomes the nearest neighbour algorithm, and the object is 

allocated to the nearest neighbour’s class. This number K indicates how many 

neighbours an object has (Zhang, 2016). 

The Euclidean distance is a linear distance between two points in Euclidean space 

(Cunningham and Delany, 2007; Zhang, 2016). If two vectors yi and yj are given where 

yi= (yi1, yi2, yi3, …, yin ) and yj= (yj1, yj2, yj3, …, yjn), Then the Euclidean distance 

between yi and yj is given in equation (3.6): 



  

33 

 

𝐷(𝑦𝑖, 𝑦𝑗 =  √∑(𝑦𝑖𝑘 − 𝑦𝑗𝑘)
2

𝑛

𝑘=1

                                                             (3.6) 

The following is a description of the K-NN algorithm: 

• Step 1: Assigns a positive integer k to each new sample. 

• Step 2: In the database, select k entries that are closest to the new case. 

• Step 3: The most common category is found for such entries. 

• Step 4: We assign a category to the new sample. 

3.5.4 Decision Tree (DT) 

A Decision Tree (DT) is a simple predictive modeling tool that is widely utilized. DT is 

a type of supervised learning in which data is repeatedly separated based on a specific 

parameter (Patel and Singh, 2015).  The decision tree employs a tree-like model to 

progress from observations about an item (represented by the branches) to inferences 

about the item's target value (defined in the leaves) (David et al., 2015). Regression and 

classification problems can be solved using the DT algorithm. DT is easy to understand 

and view. Therefore, does not necessitate data standardization or preparation, and it 

requires less labour. The decision to do strategic splits has a significant effect on a tree's 

precision (Olaniyi et al., 2017). Entropy, information gain and reduction invariance are 

techniques used in determining which attribute to the position at the root or the different 

levels of the tree. 

The entropy of processed data is a measure of its randomness. The higher the entropy, 

the more difficult it is to make any conclusions from the information. A branch with an 

entropy of zero, for example, is picked as the root node, and a branch with an entropy 

greater than zero requires additional division (Olaniyi et al., 2017). In equation 3.7, 

entropy for a single attribute is expressed. 



  

34 

 

𝐸(𝑆) = ∑ −𝑝𝑖𝑙𝑜𝑔2
𝑛
𝑖=1 𝑝𝑖          (3.7) 

Where S is the current state, 𝑝𝑖 is the probability of an event 𝑖 of state S. 

Information Gain (IG) is a statistical feature that measures how effectively training data 

are classified according to a particular attribute's target classification. Information gain 

is mathematically described in equation 3.8. 

𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑏𝑒𝑓𝑜𝑟𝑒) − ∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑗, 𝑎𝑓𝑡𝑒𝑟)𝑁
𝑗=1   (3.8) 

Where “before” is the dataset before the split, N is the number of subsets generated by 

the division, and (j, after) is subset j after the division. 

Reduction invariance is a technique for solving regression problems. To choose the 

optimal split, this algorithm uses the usual variance formula. The split with the lowest 

variance is selected as the criterion for dividing the population. The usual variance 

formula employed in this technique is stated in equation 3.9. 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∑(𝑋−𝜇)2

𝑛
   (3.9) 

Where 𝜇 the mean of the values and X is the actual value and n is the number of values.  

3.5.5 Stacking Ensemble 

Ensemble modelling is a process in which many separate models are developed to 

predict an outcome, either via the use of many different modelling techniques or 

through the use of numerous training data sets (Nti et al., 2020). Ensemble methods in 

machine learning combine many learning algorithms to achieve greater predicted 

performance than any of the component learning algorithms alone (Somasundaram and 

Alli, 2017). The goal of employing ensemble models is to lower the prediction's 

generalization error. When using the ensemble method, the prediction error lowers as 

long as the basis models are diverse and independent. As a result, the main benefit of 
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ensemble learning is that it reduces classification variance, which enhances prediction 

performance (Nannia et al., 2021). 

Stacking is a machine learning ensemble that combines predictions from numerous 

models to create a new model, which is then used to make predictions on the test data 

set (Lauría et al., 2018). Firstly, all of the other models are trained with the available 

data, and then a combiner model is trained with all of the other algorithms' predictions 

as extra inputs to generate a final prediction (Nti et al., 2020).The basic idea of stacking 

ensemble is to “stack” the predictions of models (𝑚1, 𝑚2, … , 𝑚𝑛) by a linear 

combination of weights (𝑤1, 𝑤2, … 𝑤𝑛)as expressed in equation 3.10.  

𝑓𝑠𝑡𝑎𝑐𝑘(𝑥) = ∑ 𝑤𝑖, 𝑓𝑖 (𝑥)
𝑛
𝑖      (3.10) 

Where the weight vector “w” is learned by a meta-learner. The algorithm in algorithm 

3.1 summarizes the stacking ensemble.  

 

Algorithm 3.1: Stacking Ensemble Algorithm 

1:    Input: Dataset D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}; 
2:    Output: Ensemble Classifier H; 

3:    First-level: learn base-level classifiers  𝐿1, … , 𝐿𝑇; 

4:    For𝑡 = 1 𝑡𝑜 𝑇 do 

5:           Learn ℎ𝑡 based on D (ℎ𝑡 = 𝐿𝑇(𝐷)) 

6:    End 

 7:   Second-level: Construct new dataset of predictions 

8:    For𝑖 = 1 𝑡𝑜 𝑛 do 

9:          𝐷ℎ = {𝑥𝑖
′, 𝑦𝑖},   𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {ℎ1(𝑥𝑖), … , ℎ𝑇(𝑥𝑖)} 

10:   End 

11:   Third level: Learn a meta-classifier 

12:   Learn 𝐻based on 𝐷ℎ 

13:   Return  𝐻 

 

Algorithm 3.1 consists of two classification level: the base-level classification and the 

meta-level classification. From algorithm 3.1 the required input is the dataset and the 

expected output is the stacked ensemble classifier. The first step is to learn and predict 

using the base (single) classifiers after which a new dataset is constructed at the second 
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level. Lastly a meta-classifier is used to learn the constructed new dataset which in turn 

returns the ensemble classifier.  

3.6 Performance Metric 

3.6.1 Accuracy 

The rate of correct classifications is used to define accuracy. This is the number of 

correct guesses divided by the total number of right forecasts. The exact formula is 

given in equation 3.11: 

Accuracy= 
True positive + True negative

True positive + True negative + False positive + False negative 
   (3.11) 

3.6.2 Recall 

Sensitivity is another term for recall. The amount of correct positive predictions that 

could have been made from all positive predictions is calculated by recall. The recall is 

calculated using the formula in equation 3.12. 

Recall = 
True Positives 

True Positives+False Negatives
    (3.12) 

3.6.3 Precision 

Precision is a metric used to calculate how many positive predictions are accurately 

made. The number of true positive elements is derived by dividing the total number of 

true positives by the total number of false positives. The formula in equation 3.13 is 

used to define precision. 

Precision =  
True Positives 

True Positives+False Positives
   (3.13) 

 

3.6.4 F-Score 

The f-score of a model is defined as the harmonic average of precision and recall. F-

Score is represented in equation 3.14.  
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F-score = 2 ∗
precision∗recall

precision +  recall
     (3.14) 

3.6.5 Binary Cross Entropy Loss Function 

Loss functions are utilized to define the error between the output of an algorithms and 

the given target value (Ruby et al., 2020). A loss function maps decisions to their 

associated costs. The lower the loss function the better the classification model. In this 

study the binary cross entropy was used as the loss function. Binary cross entropy is the 

negative average of the log of corrected predicted probabilities (Zhang and Sabuncu, 

2018). The loss function formula is given in equation 3.15.  

Loss Function =
1

N
∑ −(yi ∗ log(Pi) + (1 − yi) ∗  log(1 − Pi))N

i=1   (3.15) 

Where N is the number of rows, 𝑃𝑖 is the probability of class 1 and (1-𝑃𝑖) is the 

probability of class 0.  

MATLAB development environment was used to implement and evaluate the proposed 

technique.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1. Preamble 

This chapter presents the results obtained by applying the stacking ensemble technique 

and the constituent individual classification techniques on the deep diabetic retinopathy 

features extracted using Alexnet CNN. The performance of the suggested technique is 

compared with existing workings using the Messidor dataset. After each presented 

result, a detailed explanation or discussion of each obtained result is given below the 

chart or table depicting the result.  

4.2 Results and Discussion 

In this work using MATLAB environment experiment was conducted on five models: 

SVM, KNN, Decision Tree, Naïve Bayes and the stacking ensemble.  The classification 

data was split into two parts: a train dataset and a test dataset, with an 80:20 split. Out of 

1200 instances, 960 were inputted as train data while 240 were used as test data. The 

results obtained for the single models and the ensemble method after testing is presented 

in Table 4.1.  

Table 4. 1 Diabetic Retinopathy Classification Result 

Algorithm Accuracy 

(%) 

Loss 

Function 

Precision 

(%) 

Recall 

(%) 

F-Score 

(%) 

Support Vector Machine (SVM) 98.33 0.0167 100 96.77 98.36 

K-Nearest Neighbor (KNN) 96.67 0.0333 100 93.75 96.77 

Decision Tree 93.30 0.0667 90.00 96.43 93.10 

Naïve Bayes (NB) 95.00 0.0500 96.67 93.55 95.08 

Stacking Ensemble (Proposed 

method) 

99.17 0.0083 100 98.36 99.17 
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In Table 4.1, the stacking ensemble method achieved accuracy as high as 99.17% which 

is higher than the accuracy of any of the constituent models. Among the individual 

single models Support vector machine obtained the highest accuracy of 98.33% while 

decision tree achieved the least accuracy of 93.30%.  Looking at the loss function 

performance measure the proposed stacking ensemble has the lowest loss function of 

0.0083, followed by SVM with loss of 0.0167, then KNN with loss of 0.0333, Naïve 

Bayes with loss of 0.0500 and final decision tree with the largest loss function of 0.0667. 

This shows that the stacking ensemble method is more suitable for detection of diabetic 

retinopathy disease than the individual models.  Using precision, recall and f-score to 

assess the performance of the stacking ensemble technique and the single constituent 

models, it can be seen from Table 4.1 that the stacking ensemble produced a superior 

recall and f-score than the individual models. However the proposed model achieved 

same precision of 1 with SVM and KNN models.  The accuracy, recall, precision and f-

score of all the five models are visualized in Figure 4.1.  

 

 

Figure 4. 1 Comparison of Accuracy and F-Score for the single classifiers and the ensemble 

Classifier 

84 86 88 90 92 94 96 98 100 102

SVM

K-NN

Decision Tree

Naïve Bayes

Stack Ensemble

Comparison of Accuracy and F-Score for the single 
classifiers and the ensemble Classifier

Recall Precision F-Score Accuracy
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Figure 4.1 gives a clear visualization of the accuracy, recall, precision and f-score for 

both the single models and the ensemble model. For the chart it can be seen that 

decision tree has the least accuracy and f-score while the stack ensemble method has the 

highest accuracy and f-score.  The confusion matrix for SVM, KNN, Decision Tree, NB 

and Stack ensemble is shown in figure 4.2, 4.3, 4.4, 4.5 and 4.6 respectively.  

Actual: 
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(1) 

 

120 

 

 

0 

Actual: 

Negative 

(0) 
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116 

n = 240 Predicted: Positive (1) Predicted: Negative (0) 

 

Figure 4.2 SVM Confusion Matrix 

Figure 4.2 shows the confusion matrix of SVM showing the True positive values, True 

negative values, false positive and false negative values. Out of the 240 examples used 

to test the model, 120 examples were correctly classified as diabetic retinopathy while 4 

were wrongly classified as diabetic retinopathy. 116 examples were correctly classified 

as normal (no diabetic retinopathy) while no example was wrongly classified as normal 

images.  Figure 4.3 is a confusion matrix of the KNN classification.  
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Figure 4.3 KNN Confusion Matrix 

Figure 4.3 displays the confusion matrix of KNN which resulted in an accuracy of 

96.67%. 120 examples were correctly classified as diabetic retinopathy out of the 240 

examples used to test the model, while 8 were wrongly classified as diabetic 

retinopathy. 112 examples were correctly classified as normal (no diabetic retinopathy) 

while no example was wrongly classified as normal images. Figure 4.4 is a confusion 

matrix of the Decision tree classification. 
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Figure 4.4 Decision Tree Confusion Matrix 

Figure 4.4 displays the confusion matrix of Decision Tree which resulted in an accuracy 

of 93.30%. 108 examples were correctly classified as diabetic retinopathy out of the 240 
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examples used to test the model, while 4 were wrongly classified as diabetic 

retinopathy. 116 examples were correctly classified as normal (no diabetic retinopathy) 

while 12 examples were wrongly classified as normal images. Figure 4.5 is a confusion 

matrix of the NB classification. 
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Figure 4.5 NB Confusion Matrix 

Figure 4.5 displays the confusion matrix of NB. After testing the model, 116 examples 

were correctly classified as diabetic retinopathy, while 8 were wrongly classified as 

diabetic retinopathy. 112 examples were correctly classified as normal (no diabetic 

retinopathy) while 4 examples were wrongly classified as normal images. Figure 4.6 is a 

confusion matrix of the Stack ensemble classification. 
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Figure 4.6 Stack Ensemble Confusion Matrix 
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Figure 4.6 displays the confusion matrix of the stack ensemble. Out of the 240 examples 

used to test the model, 120 examples were correctly classified as diabetic retinopathy 

while 2 were wrongly classified as diabetic retinopathy. 118 examples were correctly 

classified as normal (no diabetic retinopathy) while no example was wrongly classified 

as normal images.  Figure 4.7 is a Receiver Operating Characteristics (ROC) curve for 

SVM, KNN, Decision tree, NB and Stack ensemble classification 

 

Figure 4.7 ROC curves showing a comparison of SVM, KNN, Decision tree, NB and 

Stack ensemble 

The values in Table 4.2 represent the performance results of the proposed stack 

ensemble technique in comparison with related works that used the Messidor dataset for 

training and testing.  
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Table 4. 2 Comparison of Proposed Method with Related Works That Used the 

Messidor Dataset 

Algorithm Accuracy (%) Precision (%) Recall (%) F-Score (%) 

Saxena et al. (2020) - - 0.8880 - 

Zhou et al. (2018) - - - - 

Kalyani et al. (2021) 97.98 95.62 96.11 96.31 

Zago et al. (2020) - - 95.00 - 

Stacking ensemble 

(Proposed Method)  

99.17 100 98.36 99.17 

 

Looking at the values of the performance measures in Table 4.2 the proposed technique 

achieved the highest accuracy of 99.17, precision of 100%, recall of 98.36%, and f-

score of 99.17% than the related works. The result of the proposed technique is 

highlighted in bold.  
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

In this research Alexnet CNN was used to extract deep features from the diabetic 

retinopathy fundus images. These extracted deep features were feed as input to five 

classification models. For the classification process four classification techniques: 

SVM, KNN, NB, and Decision Tree predictions were ensemble using the stacking 

ensemble method to classify diabetic retinopathy disease using the Messidor fundus 

images. The single classifiers made predictions at first, which were then utilized to build 

a new model. The new model as employed for making predictions on the test dataset.  

5.2 Conclusion 

In conclusion, a method for diabetic retinopathy classification was proposed based on 

ensemble of classifiers using stacking. In this research work, prediction using the 

stacking ensemble model achieved a better performance than classification using any of 

the single constituent models.  The first objective of identifying the challenges of 

existing diabetic retinopathy images detection and a classification technique was 

accomplished by reviewing several related works. The identified challenges includes: 

high bias and variance of the single classification models and difficulty in choosing the 

best classification model.    

Four classification models were selected and trained using the extracted deep features. 

The predictions from these four classifiers were used to build a new model. This new 

model was built using the stacking ensemble method. This developed stack ensemble 

model is an accomplishment of the second objective. The stacking ensemble model was 

evaluated against the single constituent classification models and against related works 

on diabetic retinopathy classification which completed the third objective. The accuracy 
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precision, recall and f-score performance measure were used to execute this evaluation. 

The proposed stacking ensemble technique obtained an accuracy of 0.9917, precision of 

1, recall of 0.9836, f-score of 0.9917 and loss function of 0.0083. These findings show 

that the proposed stacking ensemble technique is beneficial in improving DR 

categorization.  

5.3 Contribution to Knowledge 

This study contributed to knowledge by developing a stacking ensemble model which 

consists of four classification models for classification of diabetic retinopathy into No 

diabetic retinopathy (0) and Present diabetic retinopathy (1).  

5.4 Recommendation 

This study used the stacking ensemble technique to ensemble the single classifier 

predictions. For future work other ensemble techniques such as bagging, boosting, 

averaging, and major voting can be utilized. Also, in this study the deep classifiers such 

as Googlenet, Vgg19, ResNet and Lesnet were not considered in this ensemble. It is 

recommended that further research should explore deep classifiers techniques for 

ensemble. Only the Messidor dataset was used to train the suggested stacking ensemble 

model, which classifies DR into four stages ranging from 0 to 3. There are different 

datasets in which DR is classified into five categories. The system has not been trained 

for those datasets. The suggested stacking ensemble model will be trained for all 

conceivable classes of diabetic retinopathy as a future development of this research. 
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APPENDIX  

%Load Images into datastore 

imds = 

imageDatastore('DBimages','IncludeSubfolders',true,'LabelSource','foldernames'); 

[imdsTrain,imdsTest] = splitEachLabel(imds,0.8,'randomized'); 

 

%Alexnet 

net = alexnet; 

net.Layers 

inputSize = net.Layers(1).InputSize 

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain); 

augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest); 

 

layer   = 'fc7';   %Alexnet 

featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows'); 

featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows'); 

 

YTrain = imdsTrain.Labels; 

YTest  = imdsTest.Labels; 

 

% SVM with Gaussian kernel 

rng('default') % For reproducibility 

mdls{1} = fitcsvm(featuresTrain,YTrain,'KernelFunction','gaussian', ... 

'Standardize',true,'KernelScale','auto'); 

 

% KNN classifer 

rng('default') 

mdls{2} = fitcknn(featuresTrain,YTrain, 'NumNeighbors',5); 

 

% Decision tree 

rng('default') 

mdls{3} = fitctree(featuresTrain,YTrain); 
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% Naive Bayes 

rng('default') 

mdls{4} = fitcnb(featuresTrain,YTrain); 

 

%Combine Models Using Stacking 

rng('default') % For reproducibility 

N  = numel(mdls); 

Scores = zeros(size(featuresTrain,1),N); 

cv  = cvpartition(YTrain,"KFold",5); 

for ii = 1:N 

    m = crossval(mdls{ii},'cvpartition',cv); 

    [~,s] = kfoldPredict(m); 

    Scores(:,ii) = s(:,m.ClassNames=='0'); 

end 

 

%Fit ensemble 

rng('default') % For reproducibility 

t   = templateTree('Surrogate','on','MaxNumSplits',1); 

stckdMdl = fitcensemble(Scores,YTrain, 'OptimizeHyperparameters','auto', ... 

'Learners',t,…'HyperparameterOptimizationOptions',struct('Verbose',0,'AcquisitionFunc

tionName','expected-improvement-plus')); 

 

%Predict Labels and Scores on Test Data 

label = []; 

score = zeros(size(featuresTest,1),N); 

mdlLoss = zeros(1,numel(mdls)); 

fori = 1:N 

    [lbl,s] = predict(mdls{i},featuresTest); 

    label = [label,lbl]; 

    score(:,i) = s(:,m.ClassNames=='0'); 

mdlLoss(i) = mdls{i}.loss(featuresTest, YTest); 

end 
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[lbl,s] = predict(stckdMdl,score); 

label = [label,lbl]; 

mdlLoss(end+1) = stckdMdl.loss(score,YTest); 

 

score = [score,s(:,1)]; 

 

names = {'SVMGaussian',KNN,'DecisionTree',NB,'StackedEnsemble'}; 

array2table(mdlLoss,'VariableNames',names) 

 

 

%Prediction and Confusion Matrix 

SVM_te = predict(mdls{1},featuresTest);   

accuracy1  = mean(SVM_te == YTest);      

SVM_Con = confusionmat(YTest,SVM_te); 

KNN_te = predict(mdls{2},featuresTest); 

accuracy2 = mean(KNN_te == YTest);    

KNN_Con = confusionmat(YTest,KNN_te); 

tree_te  = predict(mdls{3},featuresTest);  

accuracy3 = mean(tree_te == YTest);   

tree_Con = confusionmat(YTest,tree_te); 

nb_te  = predict(mdls{4},featuresTest);    

accuracy4 = mean(nb_te == YTest);      

nb_Con = confusionmat(YTest,nb_te); 

accuracy5 = mean(lbl == YTest);           

stacked_Con = confusionmat(YTest,lbl); 

 

%Rows and Columns of confusion matrix for Support Vector Machine  

SVM_con1 = SVM_Con(1:1,1:1);  SVM_con2 = SVM_Con(1:1,2:2);   

SVM_con4 = SVM_Con(2:2,1:1);  SVM_con5 = SVM_Con(2:2,2:2);  

 

%Rows and Columns of confusion matrix for Discriminate Analysis  

KNN_con1 = KNN_Con(1:1,1:1);  KNN_con2 = KNN_Con(1:1,2:2);  

KNN_con4 = KNN_Con(2:2,1:1);  KNN_con5 = KNN_Con(2:2,2:2);    
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%Rows and Columns of confusion matrix for Decision Tree 

tree_con1 = tree_Con(1:1,1:1);  tree_con2 = tree_Con(1:1,2:2);  

tree_con4 = tree_Con(2:2,1:1);  tree_con5 = tree_Con(2:2,2:2);   

 

%Rows and Columns of confusion matrix for Naive Bayes  

nb_con1 = nb_Con(1:1,1:1);  nb_con2 = nb_Con(1:1,2:2);   

nb_con4 = nb_Con(2:2,1:1);  nb_con5 = nb_Con(2:2,2:2);    

 

%Rows and Columns of confusion matrix for stacked ensemble 

stacked_con1 = stacked_Con(1:1,1:1);  stacked_con2 = stacked_Con(1:1,2:2);    

stacked_con4 = stacked_Con(2:2,1:1);  stacked_con5 = stacked_Con(2:2,2:2);   

 

%Precision and Recall  

SVM_precision = SVM_con1/(SVM_con1+SVM_con2);                

SVM_recall = SVM_con1/(SVM_con1+SVM_con4); 

KNN_precision = KNN_con1/(KNN_con1+ KNN_con2);       

KNN_recall  = KNN_con1/(KNN_con1+KNN_con4); 

tree_precision = tree_con1/(tree_con1+ tree_con2);           

tree_recall  = tree_con1/(tree_con1+tree_con4); 

nb_precision  = nb_con1/(nb_con1+nb_con2);                   

nb_recall  = nb_con1/(nb_con1+nb_con4); 

stacked_precision = stacked_con1/(stacked_con1+stacked_con2);   

stacked_recall  = stacked_con1/(stacked_con1+stacked_con4); 

 

 

 

%F-Score 

SVM_fscore = 2*((SVM_precision*SVM_recall)/(SVM_precision+SVM_recall));  

discr_fscore  = 

2*((KNN_precision*KNN_recall)/(KNN_precision+KNN_recall)); 

tree_fscore  = 2*((tree_precision*tree_recall)/(tree_precision+tree_recall));  

nb_fscore  = 2*((nb_precision*nb_recall)/(nb_precision+nb_recall));  

stacked_fscore  = 

2*((stacked_precision*stacked_recall)/(stacked_precision+stacked_recall));  
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%ROC Curve to get Area under the curve 

[~,score_SVM]       = resubPredict(mdls{1});     

[A,B,T_SVM,AUC_SVM]          = perfcurve(YTrain,score_SVM(:,2),1); 

[~,score_KNN]     = resubPredict(mdls{2});     

[C,D,T_discr,AUC_KNN]     = perfcurve(YTrain,score_discr(:,2),1); 

[~,score_tree]     = resubPredict(mdls{3});     

[E,F,T_tree,AUC_tree]   = perfcurve(YTrain,score_tree(:,2),1); 

[~,score_nb]      = resubPredict(mdls{4});     

[G,H,T_nb,AUC_nb]            = perfcurve(YTrain,score_nb(:,2),1); 

[~,score_stacked]   = resubPredict(stckdMdl);     

[K,L,T_stacked,AUC_stacked]  = perfcurve(YTrain,score_stacked(:,2),1); 

 

 


