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ABSTRACT 

 
Since weather forecasts are extensively relied upon in every aspect of human life—from 

agriculture to business, from travel to daily commuting—weather conditions around the world 

change quickly and frequently. Accurate forecasts are therefore crucial. In order to anticipate the 

weather, a variety of techniques are used, including trend forecasting and numerical weather 

prediction. However, these techniques are capital intensive, time-consuming, and have low 

accuracy. As an enhancement over current methods, this study presented a Long Short-Term 

Memory (LSTM) neural network model for forecasting meteorological parameters. This study 

used weather data (including dew point, pressure, relative humidity, temperature, wind speed, and 

rainfall) gathered by the Nigerian Meteorological Agency (NiMet), Abuja, for weather 

stations/four cities in Nigeria: Bauchi, Minna, Calabar, and Ikeja from 1 January 2015 to 30 

December 2019. On the basis of the chosen multivariate weather variables, the model's 

performance was validated for the daily and weekly time-steps. The results show that for Mean 

Square Error, the proposed model performs better for short-range forecasts (values by 20.10% to 

79.90%) than for medium-range forecasts (values by 26.94% to 73.06%). (MSE). Again, due to 

the relative consistency in meteorological variables measured at the station, the suggested model 

performs best for daily forecasts in Bauchi, Calabar, and Ikeja, and poorest in Minna City. Due to 

the relative volatility in the meteorological variables at the station, Ikeja city had the lowest results 

for the weekly forecasts made using the model, whereas Bauchi city had the best results. The study 

discovered that the proposed model's capacity for learning is influenced by the relative stability 

of the weather variable spread across the period. These results can be attributed to the LSTM 

model's memory capacity and feedback computation loop. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

 

1.1 Background to the Study 

 

Weather refers to the state of the atmosphere on earth at a certain location as regards cloudiness, 

dryness, sunshine, wind, rain, soon, etc. it is disorderly, continuous, dynamic, and data-intensive 

(Sokolov et al., 2020). Weather forecasting is the process of estimating the state of the atmosphere 

for a specific location using physics principles and a variety of empirical and statistical approaches 

(Ahmed et al., 2020). Weather prediction has been a fascinating area to people from the beginning 

of time, and it is one of the most scientifically and technologically hard issues in the world today 

(Balsamo et al., 2012). One of the greatest issues facing meteorologists and forecasters around the 

world today is making an accurate and timely prediction. Weather forecasting is typically 

accomplished through a collection of quantitative data related to the current state of the 

atmosphere, which is then used to portray future changes in the atmosphere based on scientific 

understanding of atmospheric processes (Pooja & Balan, 2019). Present conditions of weather 

across a location are realized by employing observation from the ground, aircraft, ships, radio 

sounds, and satellites. 

 

This data is forwarded to meteorological centres, which collect, analyze, and present the data in a 

variety of charts, maps, and graphs. Thousands of observations are transferred onto surface and 

upper-air maps using modern high-speed computers. The meteorological centres receive this 

transmitted information from the point of the data, which are subsequently examined for 

prediction (Pooja & Balan, 2019). 
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Weather forecasting employs a variety of methodologies, ranging from simple sky observation to 

highly complicated computerized mathematical models. Weather forecasts can be made for one 

day, one week, or several months (Tuv et al., 2009). Weather forecasts, on the other hand, lose a 

lot of accuracy after a week (Tuv et al., 2009). 

 

Weather forecasting, as conducted by professionally educated meteorologists, is now a highly 

developed skill based on scientific principles and methods and utilizing advanced technical tools 

(Aremu, 2001). Since 1950, technology advancements, basic and applied research, and the 

application of new knowledge and procedures by weather forecasters have resulted in a significant 

increase in forecast accuracy. High-speed computers, meteorological satellites, and weather radars 

are just a few of the tools that have helped improve weather forecasts (Cross et al., 1995). The 

study of weather patterns has resulted in a variety of rainfall forecasting approaches over the years, 

these entails a mix of computer models, interpretation, and familiarity with weather trends (Hayati 

& Mohebi 2007). 

 

i. Use of barometer 

 

Since the late 1800s, barometric pressure and pressure tendency measurements have been 

employed in forecasting. The greater the shift in pressure, the greater the likelihood of a change 

in weather. If the pressure drops, a low pressure system is approaching, which means rain is more 

likely to occur (Lynch, 2006). 
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ii. Looking at the sky 

 

The condition of the sky together with pressure tendency is one of the most essential 

characteristics used to forecast weather in mountainous terrain (Lynch, 2006). The invasion of a 

higher cloud deck or the thickening of cloud cover are both signs of impending rain (Oliver, 1997). 

At night, high thin clouds can cause halos around the moon, indicating the approach of a warm 

front and the rain that comes with it. Rainy conditions are preceded by wind or clouds, which 

inhibit fog development while morning fog foreshadows fair conditions (Oliver, 1997). 

 

iii. Nowcasting and Analog technique 

 

Nowcasting is a term use to describe weather predictions of the next six hours. Smaller features 

like as individual showers and thunderstorms, as well as other variables too small to be resolved 

by a computer model, can be forecasted with fair accuracy in this time range. Given the most 

recent radar, satellite, and observational data, it is possible to better analyze the small scale 

features present and hence create a more accurate forecast for the next several hours (Pidwirny, 

2008). 

 

The analog technique is also referred to as trend forecasting (Ahmed et al., (2020), it involves 

analyzing weather features such as pressure, temperatures, etc. on use of weather chats and using 

those features to forecast the weather. It is a difficult method to forecast weather since it requires 

the forecaster to recall a former weather occurrence that is expected to be repeated by a future 

event. It's still a good way to observe rain in locations like oceans, as well as projecting 

precipitation levels and dispersion in the future. Teleconnections, a related strategy used in 

medium-range forecasting, uses systems in other regions to assist pin down the location of another 

system within the surrounding regime (Refallack, 1987). 
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iv. Numerical Weather Prediction model 

 

The science of predicting the weather using atmospheric models and computing tools is known as 

numerical weather prediction (NWP). To predict weather, current meteorological conditions are 

fed into mathematical models of the atmosphere (Seinfeld et al., 2006). This model typically offers 

surrounding points with a spatial resolution of a few kilometers around the wind farm. To generate 

a forecast, NWP relies on the computing capability of computers. A forecaster looks at how the 

computer's projected features will combine to create the weather for the day. The NWP technique 

is problematic because the models' equations for simulating the environment are not precise 

(Seinfeld et al., 2006). 

 

Weather forecasting has traditionally relied on huge, complicated models that take into account a 

variety of atmospheric factors over a lengthy period. Because of weather system perturbations, 

these conditions are frequently unstable, causing models to make erroneous forecasts. These 

models typically make use of hundreds of nodes in a huge High-Performance Computing (HPC) 

environment, which uses a lot of energy (Ganai et al., 2021). The issue of model reliability in 

weather prediction is a complicated one, as it is dependent on several variables and the technical 

infrastructure that supports them. Further-more, the reliability of the observations is essential for 

the numerical reasoning and the quality of the simulation, since there are various sources of 

problems such as uncertainties, error measurements, and load forecasts (Coulibaly et al., 2020). 

 

Recently, there is a shift from the use of numerical simulations for weather forecasts because of 

inherent uncertainties. These uncertainties arise from imprecise knowledge of initial and boundary 

conditions for atmospheric models, which are often imperfect. In fact, there are several errors of 

forecasts due to chaotic nature of the atmosphere and non-linear dynamics. Several approaches 

such as ensemble weather prediction systems are highly time-ineffective and available on high- 

performance supercomputers (Astakhova et al., 2021). 
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In truth, weather forecasting is a tricky subject in meteorology, a serious area of study for decades. 

Several works in this direction have been done giving rise to numerous methods not without their 

strengths and weaknesses. There are two main approaches for weather forecasting namely; 

dynamic methods and empirical methods. Short-range weather forecasting has relied on the 

dynamic methods which are analytical and are based on the principles of fluid dynamics. The 

long-range weather forecasting utilises empirical methods which are mathematical and statistical 

approaches. In either approaches, there are significant and distinct flaws and benefits (Prasetya & 

Ridwan, 2019). 

 

Weather conditions around the world change rapidly and continuously, correct forecasts are 

essential in today’s daily life (Sharma & Datta, 2007). From agriculture to industries, from 

traveling to daily commuting, from aviation to road construction we are dependent on weather 

forecasts heavily. As the entire world is suffering from the continuous climate change and its side 

effects, it is very important to predict the weather without any error to ensure easy and seamless 

mobility, as well as safe day to day operations. In particular, the changes in climate and weather 

continue to threaten the humanity and environment directly, which influence the quests to enhance 

numerical methods of predictions (Coulibaly et al., 2020). 

 

The weather forecasts are divided into the following categories (Bazionis & Georgilakis, 2021): 

Nowcasting: in which the details about the current weather and forecasts up to a few hours ahead 

are given. Short range forecasts for the next one to three days that include the weather (mostly 

rainfall) for each succeeding day (Schulz et al., 2021). Up to three days of intervals can be 

predicted. Medium range forecasts (4 to 10 days): Medium range forecasts average weather 

conditions and the weather on each day may be prescribed with progressively lesser details and 

more accuracy than that for short range forecasts. Long range /Extended Range forecasts (more 

than 10 days to a season): There is no rigid definition for Long Range Forecasting, which may 

range from a monthly to a seasonal forecast. 
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In this thesis, a multidimensional time series weather prediction technique that employs a deep 

learning algorithm called the Long Short-Term Memory (LSTM) Neural Network is presented. 

The rationale for this is that the long short term memory recurrent neural network (LSTM-RNN) 

paradigm provides memory capacity and a computation feedback loop. The created model allows 

for far less expensive and resource-intensive operation, resulting in quicker and more precise 

weather forecasting. The datasets that were used to create this thesis are only available in 

numerical form. The numerical categorization and sentiment analysis of gathered secondary data 

form the basis of the weather forecast model. 

 

1.2 Statement of the Research Problem 

 

The major challenge facing meteorologist all over the world is the subject of obtaining accurate 

weather conditions of places at specific intervals. Also, the reliability of many forecasting models 

cannot be measured accurately (Ganai et al., 2021). Numerical Weather Prediction (NWP) are 

weather forecasting tools commonly used today by meteorologist for short-term forecasting (Dhib 

et al., 2021). It uses mathematical models of atmospheric weather data to predict the weather 

based on current weather conditions using the power of computers to make weather forecast (Dhib 

et al., 2021). 

 

The mastery of hazardous phenomena (floods, air pollution, and natural disasters) depends on the 

reliability of the numerical model for predicting weather and climate. But, there is a need for 

advanced works oriented for a better understanding of the weather forecasting models and the 

analysis of the main associated parameters. Again, it is important to look for ways to improve the 

reliability of these numerical prediction models of weather and climate (Coulibaly et al., 2020). 
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The NWP method is flawed in that the equations used by the models to simulate the atmosphere 

are not precise and associated with spatial scales (less than numerical scales), these lead to errors 

in the predictions. In case of artificial intelligence models, if the initial state is not completely 

known, the computer's prediction of how that initial state will evolve will not be entirely accurate. 

Though, several present-day emulation models rely heavily on neural networks and deep neural 

networks approaches due to their great promise in theoretical and memory performances (Chantry 

et al., 2021). In addition, the weather forecasting is concerned with determining how present state 

of atmosphere changes over time. It is a complex task due to the chaotic and unpredictable nature 

in diverse domain of applications such as advisories for aviation, maritime, and severe weather 

notifications. In fact, majority of uncertainty abound in spatial locations utilized by visualization 

scientists and meteorologists for determining weather conditions (Pooja & Balan, 2019). 

 

The synoptic method of forecasting consists of the simultaneous collection of weather 

observations, and the plotting and analysis of these data on geographical maps. An experienced 

analyst, having studied several of these maps in chronological succession, can follow the 

movement and intensification of weather systems and forecast their positions. This forecasting 

technique requires the regular and frequent use of large networks of data. The synoptic forecasts 

are limited because they are almost exclusively based upon surface observations. The stratosphere, 

a layer of air generally located above levels from 9 to 13 km and characterized by temperatures 

remaining constant or increasing with elevation, acts as a cap on much of the world's weather 

(Brenner & Laurie, 2021). 

 

Though numerical forecasts continue to improve, statistical forecast techniques, once used 

exclusively with observational data available at the time of the forecast, are now used in 

conjunction with numerical output to predict the weather. 
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Statistical methods, based upon a historical comparison of actual weather conditions with large 

samples of output from the same numerical model, routinely play a role in the prediction of surface 

temperatures and precipitation probabilities (Brenner & Laurie, 2021). 

 

Trends method of forecasting involves determining the speed and direction of movement for 

fronts-, high- and low-pressure centres, vortexes, isotherms, wind speed and directions, areas of 

clouds and precipitation from weather charts, Weather chats consist of curved lines drawn on a 

geographical map in a way that indicates weather parameters and features. Using this information, 

the forecaster can predict where he or she expects those features to be at some future time. This 

method is flawed in that it is never accurate, time consuming, historical data may not give a true 

picture of an underlying trend, capital consuming in training and retraining forecasters in the ever 

changing weather systems. 

 

Because the equations used by the models to represent the atmosphere are imprecise and linked 

to spatial scales rather than numerical scales, the developed LSTM model is more accurate than 

the NWP model. Labor-intensive forecasting methods include trend forecasting, which is 

problematic because it is never precise, time-consuming, historical data may not accurately depict 

an underlying trend, and capital-consuming because forecasters must be continually retrained in 

the ever-changing weather systems. Additionally, because of the limitations imposed by the data 

available, surface observations are the primary source of information used by synoptic forecasts. 

 

1.3 Aim and Objectives of the Study 

 

The aim of this study is to develop a Multidimensional Time Series Weather Prediction using 

Long Short-Term Memory (LSTM) Neural Network. 

 

The specific objectives are to: 

 

i. Design an improve weather  forecasting model based on Long Short-Term Memory 

(LSTM) Neural Network. 
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ii. Implement the design model in (i) 

 
iii. Evaluate weather forecasting model in (iii) for daily and weekly range weather forecast 

using Mean Square Error (MSE) 

 

iv. Compare the results of the model to other artificial neural network. 

 
1.4 Justification for the Study 

 

Transportation systems, built sector, construction, government and regulatory agencies, 

agriculture, educational sector and markets can take advantage of this thesis due to possibility of 

generating accurate and timely weather predictions about certain places in order to forestall delays 

and adjust policies for the overall growth and development of a nation. 

 

Based on data about the system's past and present status, the proposed model makes it possible to 

predict how the weather will behave in specific locations in the future. This is helpful in 

overcoming a number of real-world issues, including bad weather, network traffic, road 

construction, agriculture, and disruptions in the petroleum (or oil) industry, transportation, and 

other systems. 

 

1.5 Scope of the Study 

 

This thesis performs weather prediction utilizing a number of weather factors, including 

temperature (in degrees Celsius), atmospheric pressure (in hectopascals), relative humidity, wind 

speed (in kilometers per hour), dew point (in degrees Celsius), and rainfall (in Millimetre). The 

Nigerian Meteorological Agency (NiMet) provided the datasets for this thesis, all of which were 

in numerical format. The numerical categorization and sentiment analysis of gathered secondary 

data form the basis of the weather forecast model. 



10  

1.6 Thesis Organization 

 

This thesis titled Multidimensional Time Series Weather Prediction using Long Short Memory 

Neural Network is divided into five chapters. Chapter One considers the introductory aspect 

comprising the background to the study, statement of the problem, aim/objectives of the study, 

significance of the study and scope of the study. Chapter two entails a review of related literature 

on weather forecasting, deep learning approaches, trends in weather forecasting and weather 

forecasting techniques. Chapter three consist of research process and design, model description, 

experimental requirements, and performance evaluation parameters. Chapter four covers results 

and discussion, data training and validation, prediction outcome performance evaluation and 

benchmarking of performances. Chapter five provides the thesis’s conclusion and 

recommendations. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 

2.1 The Concept of Weather Forecasting 

 

Weather prediction is a task of forecasting the state of the atmosphere at a place and period by 

means of temperature, sunshine, wind speed, rain, and pressure. The role of weather condition 

forecasting are important in all of human endeavours because precipitation information are used 

by hydro-power generating companies, agricultural sector, renewable energy, water resources, 

and flood occurrences (Gad & Hosahalli, 2020). 

 

In the construction industry, the concept of climate change is often taken seriously by architects 

and engineers in determining energy efficiency of building, roads, rain ways, airports and 

infrastructure. The meteorological year weather has been used to simulate weather data generated 

but incapable presenting future energy consumption of buildings (Hosseini et al., 2020). A number 

of modelling approaches have been critiqued, objectively compared and categorized into physical, 

statistical, artificial intelligence, ensemble and hybrid techniques (Ahmed et al., 2020). 

 

The quality of images or videos can be affected by bad weather conditions or videos which can 

be corrected through appropriate weather information during the image/video processing 

algorithms for better performance. Selection Based on Accuracy Intuition and Diversity (SAID) 

is a typical ensemble method (Oluwafemi & Zenghui, 2019). 

 

One of the most widespread forecasting techniques is the Artificial Neural Network (ANN) 

despite its simplicity of implementation, there are drawbacks particularly the intricate architecture, 

a huge training dataset, and selection of the optimal number of hidden layers and input nodes, 

poor accuracy of outcomes (Kwon et al., 2019). 
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In terms of capability to extract knowledge from large data sample, K-Nearest Neighbor (K-NN) 

has great potentials with higher accuracy with balanced data distribution over comparable 

techniques such as SVM (Wang et al., 2018). 

 

Traditionally, weather prediction can be performed by means of dynamic and empirical 

approaches. The basic duty of meteorologists is to determine weather situations of places usually 

with principle of fluid known as analytical technique. The second approach is called empirical 

technique by means of mathematical and statistical inferences. In both cases, the research efforts 

are continuing due to deficiencies and potentials (Prasetya & Ridwan, 2019). 

 

At present, efforts are directed towards automated processing and storage of weather station data 

by means of cloud services. This involves the use of sensor or Internet of Things (IoT) devices for 

acquisition of atmospheric parameters and transmitted across wireless networks in more reliable 

manner (Sokolov et al, 2020). 

 

There is a profundity of Long Short-Term Memory (LSTM) classification technique offered by 

Recurrent Neural Networks (RNNs) and Convolution Neural Networks (CNNs). In particular, 

RNNs and LSTMs are most desirable for performing time series data operations including weather 

prediction, and pedestrian trajectory (Nguyen et al, 2020; Zhang et al, 2020). 

 

2.2 Deep Learning Neural Network 

 

Deep learning, also known as deep neural networks (DNNs), is a type of artificial intelligence that 

is inspired by how the brain functions (Sarvepalli et al., 2015; Sze et al., 2017). The ability of 

deep learning architectures to grasp the meaning of data in vast quantities and to automatically 

adapt the derived meaning with fresh data without the requirement for domain expert knowledge 

is their main strength. Deep learning architectures such as convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) are commonly used in real-world applications. 
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CNN architectures are typically used for spatial data, while RNN architectures are typically 

utilized for temporal data (Bermant et al., 2019). For spatial and temporal data processing, a mix 

of CNN and Long Short-Term Memory (LSTM) is used (Bermant et al., 2019; Khan et al., 2020). 

 

2.2.1 Recurrent Neural Network (RNN) 

 

A recurrent neural system (RNS) is a type of Artificial Neural Network (ANN) in which the 

connections between the units form a sequential chart. This allows it to demonstrate dynamic 

temporal behavior for a certain time period (Graves, 2012; Murugan, 2018). It is doubtful that a 

feed forward neural network or a recurrent neural network can process sequences of inputs using 

memory from internal storage. 

 

RNNs can remember important details about the information they received, allowing them to 

predict what will happen next. This is why, when compared to other techniques, they generate a 

more understanding of sequence and its context, which is why they are the preferred methodology 

for sequential data such as time series, speech, text, financial data, audio, video, weather, and 

much more. The data in a recurrent neural network loops back on itself. When it makes a choice, 

it considers the current input as well as what it has learned from previous information (Graves, 

2012; Zinov'ev & Sole, 2004). 

 

2.2.2 Long Short-Term Memory Neural Network 

 

Long short-term memory (LSTM) is a deep learning artificial recurrent neural network (RNN) 

architecture. Since it has feedback connections, it differs from other standard feed-forward neural 

networks in that it can analyse not just single input points but also complete sequences such as 

audio, video, pictures, and numerals. The RNN's vanishing gradient weakness is addressed by the 

Long Short-Term Memory (LSTM) (Staudemeyer & Morris, 2019; Zinov'ev & Sole, 2004). 
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2.2.3 Long Short-Term Memory Architecture 

 

Long Short–Term Memory (LSTM) networks are a type of recurrent neural network that extends 

the memory of the original. In this way, critical encounters with long circumstances lapses in the 

middle are acceptable to profit from. The units of Long-Short Term Memory networks are the 

supporting units to the surface of a recurrent neural network, which is often known as an LSTM 

network. Recurrent neural networks can recall their given information for a long time using Long 

Short–Term Memory (Mikami, 2016). The reason for this is that recurrent neural networks store 

their data in memory that is quite similar to the memory of a computer, given that the LSTM may 

read, write, and erase data from its memory (Staudemeyer & Morris, 2019). 

 

The memory cell is the basic structure of an LSTM, and it is used to remember and propagate unit 

outputs explicitly at different time steps. The memory cell of the LSTM uses cell states to 

remember information from temporal contexts (Murugan, 2018; Poornima, 2019). To manage 

information flow between different time steps, it also features a forget gate, an input gate, and an 

output gate. In this thesis, LSTM-based neural networks are used to forecast background radiation 

from time-series weather data. The problem of vanishing gradient refers to the mathematical 

difficulty of learning long-term dependencies in the structure of recurrent neural networks. It gets 

more difficult to capture the influence of the earlier phases as the input sequence lengthens. The 

gradients between the first few input points disappear and become zero. The activation function 

of the LSTM is viewed as the identity function with a derivative of 1.0 due to its recurrent nature. 

As a result, the back-propagated gradient does not disappear or explode, but rather remains 

constant (Poornima, 2019). 

 

Activation functions that are commonly used in LSTM network are sigmoid and hyperbolic 

tangent (tanh). 
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The actual architecture of LSTM proposed is implemented with the sigmoid function for forget 

gate and input gate and with the tanh function for candidate vector that updates the cell state 

vector(Apaydin et al., 2020; Song et al., 2020). 

 

These activation functions of LSTM are calculated for Input gate It, Output gate Ot, Forget gate 

Ft, Candidate vector C`t, Cell state Ct, and Hidden state ht, using the following formulae, 

 

It = sigmoid(Wi[X(t), ht−1] + bi (2.1) 

 

Ft = sigmoid(Wf[ht-1, X(t)+bf) (2.2) 

 

Ot = sigmoid((Wo[ht-1, X(t)] + bo) (2.3) 

 

C`t = tanh(Wc[ht-1, X(t)] + bc) (2.4) 

 

Ct = Ft*Ct-1 + It * C`t (2.5) 

 

ht = Ot * tanh(Ct) (2.6) 

 

where X(t) is the input vector, ℎt-1 is the previous state hidden vector, W is the weight, b is the 

bias for each gate, Input gate It, Output gate Ot, Forget gate Ft, Candidate vector C`t, Cell state Ct, 

and Hidden state ht,. The basic structural representation of LSTM network is shown in Figure 2.1 

below. 

 
 

 

Figure 2. 1 Schematic representation of LSTM (Song et al., 2020). 
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2.2.4 Intensified Long Short-Term Memory 

 

The real LSTM architecture includes sigmoid and tanh functions, as stated in the preceding 

section, however the activation functions utilized by LSTM raise a number of questions. To 

prevent the vanishing gradient problem, the gradient must be maintained at specified levels of 

back-propagation, allowing learning to continue with active neurons throughout the training 

period (Apaydin et al., 2020). Back-propagation gradient problems are addressed with sigmoid 

weighted linear units which multiply the input value to the sigmoid activation function. The 

memory space, also known as the cell state, is a region designed expressly for the storage of 

previous data. It functions similarly to how the human brain does while making choices. To update 

the prior cell state, the operation is performed. At this point, we remove the previous data and 

replace it with the new data (Apaydin et al., 2020; Szandaa, 2021). 

 

Actual LSTM employs three sigmoid functions (forget gate, input gate, output gate) and two tanh 

functions (candidate vector and output gate) but multiplying the input value with the forget gate 

and output gate is ineffective because the forget gate decides whether to keep the current input or 

not, and the output gate yields the predicted value, which has already been processed using cell 

state information. As a result, the input gate and the candidate vector are clearly important in 

updating the cell state vector, from which the LSTM learns new information and analyses to 

forecast the output value based on the current input (Song et al, 2020; Poornima, 2019). 

 

The input value is then multiplied by the sigmoid function in the input gate and the tanh function 

in the candidate vector (Apaydin et al., 2020; Murugan, 2018; Tomasi, 2012). It is evident that 

the intensified LSTM has a more complicated spatial structure. It works in the same way that the 

human brain does while making decisions. The operation is carried out in order to update the 

previous cell state (Brogärd & Song, 2020). 
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At this moment, we replace the outdated information with the freshest. However, multiplying the 

input value with the forget gate and output gate is ineffective because the forget gate decides 

whether to keep the current input or not, and the output gate yields the predicted value, which has 

already been processed using cell state information (Brogärd & Song, 2020). The actual LSTM 

uses three sigmoid functions (forget gate, input gate, and output gate) and two tanh functions 

(candidate vector and output gate). 

 

To update the cell state vector, from which the LSTM learns new information and conducts 

analyses to predict the output value based on the current input, the input gate and candidate vector 

are therefore obviously crucial. The input value is multiplied with the sigmoid function in the 

input gate and the tanh function in the candidate vector based on this. Figure 2.2 shows the 

structural representation of the proposed Intensified LSTM. To capture the cyclical relationship 

between the input and hidden layer, LSTM has a more complicated structure. The same as with a 

conventional RNN, the output ht can be retrieved. The components of the Intensified LSTM are 

as follows: 

 

• Input Gate “It” (with sigmoid activation function multiplied by the input); 

 

• Forget Gate “Ft” (with sigmoid activation function); 

 

• Candidate vector “Ct’” (with tanh activation function multiplied by the input); 

 

• Output Gate “Ot” (with Softmax activation function); 

 

• Hidden state “ht” (hidden state vector); 

 

• Memory state “Ct” (memory state vector). 
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Figure 2. 2 Schematic representation of Intensified LSTM (Brogärd & Song, 2020). 

 

All the gate inputs and layers inputs are initialized. X(t) (current input) is the input sent into the 

memory cell of LSTM, ℎt (previous hidden state) and 𝐶t (previous memory state). The layers are 

single-layered neural networks with the sigmoid function multiplied by input serving as the 

activation function in the input gate, the tanh function multiplied by input serving as the activation 

function for the candidate layer, the sigmoid function serving as the activation function for the 

forget gate, and the Softmax regression function serving as the activation function for computing 

the hidden state vector. With the help of the forget gate, the influence of current input over the 

previous state is analysed and decides whether the current input needs to be stored in cell state or 

not (data is stored through input and candidate vector). If not needed, then the sigmoid function 

produces 0, which deactivates the forget gate; if needed, it then produces 1 to activate the gate 

(Brogärd & Song, 2020; Poornima, 2019). Based on this decision, all the other gates in LSTM are 

activated or deactivated for certain input. 

 

Ft = {   1 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 
0 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

(2.7) 
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When It is selected to keep the current input, the network compares It to the prior state to learn the 

new information carried over by the current input. The knowledge about all prior inputs and the 

accompanying change in output for various input vectors is stored in the previous state vector ht- 

1. The input gate's sigmoid function is first processed resulting in a value between 0 and 1 that 

represents the range of new information accessible in the current input, and the obtained value is 

multiplied by the input value as follows: Now the range of value produced is [0, ∞] at the input 

gate, which in turn avoids the vanishing gradient for the same range of values in the input vector 

thereby empowering the network to learn from every input as shown in equation (2.8) (Cross et 

al., 1995). 

 

It = X(t) x sigmoid(Wi[X(t), ht-1] + bi) (2.8) 

 

With respect to the candidate gate C`t, tanh function is activated using the current input and 

previous hidden state, which produces a value between -1 and +1 that illustrates the contemporary 

data to be updated in the cell state vector. In order to improve learning to update the new 

information in the cell state vector for an even smaller change in time series, this obtained value 

is multiplied by the current input, producing a candidate vector falling between [-, +]. (Cross et 

al., 1995; Jurafsky & James, 2020). 

 

C`t = X(t) * tanh(Wc[ht-1, X(t) + bc) (2.9) 

 

The aforementioned method has the benefit of self-stabilization, which lowers the rate of 

propagation, and the global minimum, where the derivative is zero, functions as a soft floor on the 

weights, which in turn acts as a regularizer indirectly limiting weight learning for large 

magnitudes. As a result, a gradient network that learns new information while minimizing data 

loss and network error is constantly present (Cross et al., 1995; Jurafsky & James, 2020). 
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Softmax regression computes the probability distribution of one event over n different events. The 

computed probability distribution can be used later for finding the target output for the inputs 

given. Outputs from the memory cell of LSTM are ht (current hidden state) and Ct (current 

memory state). The mathematical formulae for the output gate and hidden state are given. 

 

Ot = softmax(Wo[ht-1, X(t)]+bo) (2.10) 

 

ht = Ot * softmax(Ct) (2.11) 

 

The output layers compute all the processed outputs and the iteration continues until the error 

value of the hidden value results to zero. 

 

2.3 Related Works 

 

In a survey conducted by Jadon et al., (2021), the challenges and techniques of time-series based 

forecasting in data centre telemetry were presented. It identified optimal prediction approaches, 

performance issues and recommendations for improvements while further work on hybrid models 

for telemetry data forecasting is advised. In a separate study by Bazionis & Georgilakis, (2021), 

it understudied the comparative models, methods and future research of wind power forecasting 

were understudied. The various deterministic and probabilistic approaches were comparatively 

analyzed and discussed. The review paper by Camporeale, (2019) underscores the challenges of 

space weather forecasting and nowcasting by means of machine learning. It offered expositions 

on machine and future open issues and prospecting works. 

 

The work in Aftab et al., (2018) carried out a systematic literature review on data mining based 

techniques for predicting rainfall, which is a component of weather forecasting. It underscored the 

benefits of data mining in future works as related to weather forecasting. The issues of extreme 

weather events in field of agriculture were reviewed to identify the challenges in crop production. 



21  

The consequence of uncertain adverse weather can cause low productivity and other chain- 

reactions. A hybrid machine learning model composed of Particle Swarm Optimization and Multi- 

Layer Perceptron-Feed Forward Neural Network was proposed for forecasting rainfall by Abdul- 

Kader et al., (2020). There is need to explore computer-related approaches for predicting 

infectious illnesses using weather data. 

 

The performance of the network increased as well as accuracy of rainfall forecasts against existing 

approaches using Root Mean Square Error (RMSE). The use of machine learning and deep 

learning methods for weather forecasting was investigated by Tekin et al., (2021). A model was 

formulated based on Convolutional LSTM and Convolutional Neural Network unit encoder- 

decoder architecture. The outcomes showed improved performance for spatio-temporal weather 

datasets with minimal errors. There is need to urgently make efforts at improving classification 

models performances. 

 

A NowDeepN model based on a supervised learning-regression method was proposed by Czibula 

et al., (2021). It makes use an ensemble of deep artificial neural networks for predicting the values 

for radar products at specific intervals. The values predicted by NowDeepN are highly accurate 

with Normalized Root Mean Square Error of 4%. This is useful to meteorologists in assessing the 

future development of potential severe phenomena; thereby replacing the time-consuming process 

of extrapolating the radar echoes. There is need to increase speed and accuracy of forecasts by 

means of featuring and preprocessing generations. 

 

An integrated modeling framework for predicting the performance of weather-induced delays of 

different transportation systems such as HSR and aviation was proposed by Chen et al., (2021). 

The authors applied machine-learning methods to real-world transportation performance data in 

order to examine the robustness of the method, variations of data characteristics and the different 

applications of the predictive modeling system. 
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These provide important implications for enhancing transportation system resilience to diverse 

severe weather-related disruptions through the understanding of the impact and its predictability 

of the system performance. There is a need to urgently make efforts at improving classification 

model performances Chen et al., (2021). 

 

Gad & Hosahalli, (2020) proposed K-Nearest Neighours model and Support Vector Machine in 

the study of National Climate Data Centre (NCDC) weather classification accuracy with the study 

limited to identifying forecasting ineffectiveness and suggesting future work in multiplicity of 

weather data to improve weather forecasting accuracy. There is need for the adoption of weather 

forecasting components into the renewable energy forecasting applications or systems. 

 

The study by Bazionis & Georgilakis, (2021) used deterministic forecasting models, probabilistic 

forecasting models and statistical models with Artificial Intelligence in the field of wind power 

forecasting and some limitations of the study include uncertainty in behaviours, instability of 

energy operations, inaccuracy of forecasting models, instability of energy systems performance 

large errors of forecasting models while the suggestion future work to evolve accurate forecasting 

models for energy industry. There is need to urgently make efforts at improving classification 

models performances. 

 

In Hosseini et al., (2020) a random forest regression and K-nearest-neighbour models were used 

in predicting the effect of climate change on building energy efficiency. The study found negative 

impact of climate change on the environment and extreme weather conditions on building energy 

efficiency while suggesting future works to generate future weather data for different scenarios of 

climate change on yearly basis. There is need to emulate parameterization technique with neural 

networks. 
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In the study carried out by Ahmed et al., (2020), convolutional neural networks and an online 

sequential extreme learning machine were used to predict solar energy efficiency with climate 

change some limitations of the study include inclusion of photovoltaics in power grids are 

inefficient due to solar energy, climate change conditions impact on the photovoltaic outputs and 

insufficient utilities planning. There is need to urgently make efforts at improving classification 

models performances. 

 

Coulibaly et al., (2020) used K-nearest-neighbour, Auto-Regression Integrated Moving Average 

(ARIMA) in weather data forecasts. The limitations of the study shows threats from climate 

change, inappropriate forecasts, inappropriate rule-based machine learning knowledge discoveries 

and advices more research to incorporate uncertainty management and improve minimal 

simulation errors. 

 

Back-propagation neural network in temperature weather forecasting in Baboo & Shereef (2010) 

Massive computations, imprecise numerical models, and data links are some of the study's flaws 

and restrictions. The incorporation of weather forecasting elements into applications or systems 

for forecasting renewable energy. 

 

Sokolov et al., (2020) carried out a study using LSTM neural network architecture in cloud-based 

weather data processing and storage. The study lack of precise method of data gathering, lack of 

visualization of processed data, low automation of processes, storage difficulty and inaccurate 

forecasts. They is need to extend subsequent LSTM models for soil parameter acquisition and to 

utilize open-source dataset for training of models. 

 

In a survey by Nkambule et al., (2020) the challenges and techniques of PV System performance 

with varied weather conditions were presented. It identified the Weighted K-nearest neighbour 

(WK-NN) and linear discriminant with difficulties as low performances of models while future 

work was recommended to reduce the training errors of models especially in WK-NN. 
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In a separate study by Salvador, et al. (2020) it understudied synoptic meteorological patterns in 

air quality synoptic classification. The limitations of the study includes instability of atmospheric 

processes and heterogeneous classification models are implausible. There is need for further work 

to explore other forms of analysis of atmospheric sciences such as particle formation or air quality. 

 

Nguyen et al., (2020) used LSTM neural networks in classification of metamodels (or 

environmental modelling) with the model susceptible to errors and tedious classification 

procedures. There is need for further study to explore transfer learning for pre-trained weight for 

performance improvement and also to empower capability of classification algorithms with larger 

datasets. 

 

Zhang et al., (2020) used deep learning models in the study of Structural health monitoring due to 

harsh environmental conditions. The challenge encountered by the study include difficulty to 

identify biased patterns against intact condition, harsh environment factors, large vibrations and 

dependence of time series datasets. They suggest further research on time series classification with 

deep learning models (LSTM-FCN) for real-time warning systems. There is need to increase speed 

and accuracy of forecasts by means of featuring and preprocessing generations. 

 

In another study by Abdul-Kader, et al., (2020) using Particle Swarm Optimization (PSO) and 

Feed-Forward Neural Networks in Rainfall forecasting models. The limitations of the study are 

inaccurate prediction models, slow training procedure, uncertain weights parameters, large errors 

and uncertainty and inter-dependence of weather events. There is need for future work to optimize 

the weights of training networks for ANN. 

 

In addition, Leiva et al., (2020) carried a study on time series modelling for mortality using 

Birnbaum-Saunders Autoregressive Moving Average (BARMA) Model and Auto-Regressive 

Moving Average (ARMA) Time Series Model. Some limitations of the study included non- 

negative and asymmetric data modelling, parameters estimation, 



25  

Real-world data analysis and accuracy of forecasting models while suggesting further works to 

understudy the adequacy of generalized Cox-Snell residual in complex models. 

 

In a survey carried out by Prasad et al., (2014), they used Medium rage weather forecasting model 

in global data assimilation forecasting system weather forecasting. While the study lacked of real- 

time supports, accuracy, over reliance on Numerical Weather Prediction (NWP) centres while 

suggesting future work to develop real-time assimilation of satellite data for weather forecasting. 

The concept of smart weather reporting systems can be investigated. 

 

Similarly, Balsamo et al., (2012) carried out a study on lake surface temperature using global 

weather forecasting model. The study had no considerations of lakes data for weather forecasting 

and the use of NWP schemes encountering various inaccuracy. There is need to empower 

capability of classification algorithms with larger datasets. 

 

Sharma & Datta, (2007) used images and adaptive forecasting model for weather forecasting. The 

constraints of the study include poor accuracy, numerous weather parameters, information 

extraction is complex while suggesting future research to consider more weather parameters for 

improved forecasting. There is need to empower capability of classification algorithms with larger 

datasets. 

 

In a research by Lee & Liu, (2004) using intelligent java agent development environment in 

weather forecasting, some shortfall of the research include unbiased dataset is unsuitable, low 

accuracy. They suggested subsequent research to introduce monograph of the agent-based 

technology for weather prediction. The concept of smart weather reporting systems can be 

investigated. 

 

Uno et al., (2003) carried out a study in Chemical Weather Forecast System using Surface 

observations and multitracers. The study was inflexible, no interpretation, lack of accuracy. 
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Qian, et al., (2020) used ensemble models, full-field version models and Numerical Weather 

Prediction Model in weather forecasting and analysis. Limitations and shortfall of the study are 

diversity of weather events, uncertainty, integration of subsystems, accuracy of outcomes while 

there is need to utilize in real-world full meteorological understanding and interpretation. 

 

Ordinary linear regression and bayesian belief networks was used in a study by Panidhapu, et al., 

(2019) in water quality through water pathogen monitoring best on weather prediction. Some of 

the challenges in the sturdy include delays and time lags, interactions of various variables and 

poor modelling approaches. There is need for further work to include site-specific models and 

land use into predicting models of weather-based water quality. 

 

Similarly, a Non-linear regression methods and support vector regression was employed in 

weather forecasting techniques with lesser prediction accuracy, longer period of time, 

unpredictive and chaotic nature, large computations (Pooja & Balan, 2019). The weather 

classification models of K-Means, Adaptive Boosting and Random Forest can be investigated. 

 

Oluwafemi & Zenghui, (2019) proposed SAID model, Native Bayes, Random Forest in Image 

based weather classification. The limitations of the work are high cost of approach, bad weather, 

low performances, data extraction difficulty, weak classification, low accuracy. Future work was 

recommended to improve forecasts performance using tuning models and also explore computer 

vision in weather forecasts. The concept of smart weather reporting systems can be investigated. 

 

Also, in a related work by Findawati et al., (2019) a Naïve Bayes was used in the work titled 

weather forecasts methods. Shortcoming of the work are classification accuracy and reliance on 

meteorological information with interdependency of other fields and low performance 

effectiveness. To improve the accuracy of forecasts provided by classification algorithms was 

suggested by the authors. There is need to urgently make efforts at improving classification 

models performances. 
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The study by Kwon et al., (2019) in Solar Irradiance forecast with weather variables uses ARIMA, 

Native Bayes as its method. The study had uncertain weather conditions with large forecasts 

errors, low accuracy and low forecast speed which are time inefficient. It recommended to 

improve the time for training and input value learning. 

 

In the work on weather data analytics, a Classification Tree, Naïve Bayes and KNN model was 

used. The work had deficient methods, lacked performance accuracy and inability to ascertain 

association within data attributes. Future work was encouraged to increase the dataset dimensions 

and ranges and also to improve the accuracy of models Prasetya & Ridwan, (2019). 

 

Wang et al., (2018), similarly engaged K-nearest neighbor, support vector machine in power 

forecasting with weather classification. Limitations of the research are classification accuracy, 

large dataset, uncertainty of weather, negative impact on renewable energy supply, high 

dimensional data training difficulty and low performance. There is need to for further work in 

weather classification models of K-means, Adaptive Boosting, and Random Forest and also to 

evaluate other machine learning classification models. 

 

The work in Keswani et al., (2018) made use of Fuzzy logic system, micro controller and neural 

networks in weather conditions for smart irrigation with low accuracy, difficulties in data 

collection, high cost implications and low classification performance. The work suggested further 

work to extend model to include other machine algorithms for weather forecasting applications. 

 

Mukherjee et al., (2018) worked on Weather-induced power outages using Random Forest model 

and support vector machine. The limitations and shortcomings of the study are not limited to 

economic disruptions due adverse weather, infrastructural damages, and lack of reliable 

forecasting models. Future work on the field was recommended to further assess the level of 

weather-related power outages and also to provide decision support models for building resilience 

systems. 
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In Cheng, et al., (2017) a Data assimilation/weather forecasting system model was used in the 

research work tittle wind turbine anemometer measurement assimilation. The problems identified 

in the work are short-term wind forecast, no initial conditions, inaccurate wind prediction, and no 

reliance on NWP approaches. It was suggested future investigation be carried out to increase the 

accuracy of short-term wind forecasts. 

 

A method for design of cloud-based systems for storing and processing of sensor data from 

weather stations using internet of things (IoT) devices to capture data of local atmospheric 

parameters was proposed by (Sokolov et al., 2020). The LSTM model was trained with the 17 

parameters for the purpose of automatic processing, visualization and cloud storage. This enable 

correct features selections for local weather forecasts such as disasters. There is need for flexibility 

and effectiveness of operational forecasting performance using reliable and empirical relations. 

 

2.3.1 Trends in Weather Forecasting 

 

This subsection analyses the distribution of studies reviewed in this thesis in terms of year of 

publication, domain of study, challenges, forecasting techniques, limitations and shortcomings of 

the studies is presented in Table 2.1. 
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Table 2. 1: The distribution of included studies for the Systematic Literature Review (SLR) 

 
S/ 

N 

Author(s) Year 

of 

publi 

catio 
n 

Techniques used Domain of study Problems identified Research gaps 

1. Hochman et 

al., 

2021 -Stepwise Multiple regression 

models. 
-Weather regime approach. 
-Correlation coefficient models. 

Weather related 

seasonal 

diseases. 

-Climate change impacts on diseases 

spread. 
-Low accuracy of prediction models. 
-Traditional data gathering is effective. 

-To explore computer-based 

approaches for forecasting 

infectious disease using weather 
data. 

2. Gupta et al., 2021 -Natural Processing Language. 

-Machine learning classification. 

-K-means. 

-SVM. 

Weather and 

COVID-19 

pandemic 

reduction. 

-Influenza seasonality. 

-Uncertainty in weather dynamics. 

-Impact on disease spread. 

-Inaccuracy of claims and methods of 

estimation. 

-To improve on the accuracy 

effect classifier to recognize more 

nuances languages such as tones 

and sarcasm. 

3. Chen, et al., 2021 -Bayesian network. 

-SVM. 

-Ensemble. 

-Decision Tree. 

-Linear Regression. 

Weather- 

induced delays 

in transportation 

sector. 

-Lack of reliability in schedules. 

-Uncertainty in weather information. 

-Low system performance. 

-Low accuracy and robustness of 

predictive models. 
-Severe weather conditions. 

-To enhance the applicability and 

predictability of model real-world 

environment. 

4. Czibula, et 

al., 

2021 -Deep Neural Networks. 
-CNN model. 

-SVM. 

-MAR-CNN. 

Weather and 

Radar products’ 

values 

forecasting. 

-Slow process. 
-Inaccuracy of forecasting models. 

-Low performance of models/systems. 

-Poor preparation of disasters. 

-To examine CNN models and 

supervised classifiers-based on 

relational association rule mining. 

 

5. 
 

Dutta et al ., 
 

2021 
 

-Fuzzy logic identification. 

-Wind Turbine Clutter (WTC). 

-General Likelihood Ratio Test 

(GLRT). 

 

Weather 

information 

systems. 

 

-Clutter suppression. 

-Signal subspace estimation. 

-Low performance. 
-Low accuracy of models. 

 

-To improve detection of weather 

accuracy. 

6. Ali et al., 2021 -BERT. 

-ANN. 

-Decision Tree. 

-Naïve Bayes Multinominal. 
-K-Nearest Neighour. 

Deep learning 

classification of 

multi-events. 

-Classification accuracy. 

-Non-existent processing resources. 

-Unavailability of datasets/resources. 

-Conversion of text to numeric values. 
-Knowledge extraction from sentences. 

-To ascertain event classification 

performance on balance datasets. 

-To improve accuracy of 

performance in classification 
models. 
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7. Mazzarella et 

al., 

2021 -3D/4D Var- variational 

assimilation methods. 

-Weather Research and 

Forecasting Model. 

-Time series for precipitation. 

Weather Radar 

Reflectivity with 

3D/4D. 

-Precipitation predication difficulty. 

-Severe weather events. 

-Inaccurate numerical weather 

prediction. 

-Huge cost of computation. 

-Low performance. 

-Uncertain sources of datasets. 
-Radar errors. 

-To improve reliability of the 

precipitation prediction. 

8. Chen, 2021 -CNN. 

-Joint Damage Scale. 

-Residue neural network (ResNet). 

-Deep neural networks. 

Building 

damage 

classification. 

-Lack of infrastructure damage models. 

-Inaccurate prediction models. 

-Computational complexity. 

-Training difficulty. 

-To extend work to helping 

increasing humanitarian crisis and 

climate change phenomenon. 
-To experiment gradient class 

activation maps for the models in 

prior and post disaster images. 

9. Chinchawade 

& Lamba 

2021 -Automation with Internet of 

Everything. 

-Smart monitoring system. 

Secure weather 

reporting 

system. 

-Insecurity. 

-Data collection difficulty. 

-Weather conditions and parameters 

monitoring remotely. 
-Interpretation and broadcasts. 

-To explore the concept of smart 

weather reporting systems. 

10. Astakhova et 

al., 

2021 -Ensemble prediction system. 
-Numerical weather prediction. 

Weather 

forecasting 

effectiveness 

with ensemble. 

-Chaotic nature of atmosphere. 
-Poor forecasts outcomes. 

-Large uncertainty. 

-Time ineffective models. 

-Large errors related to instabilities. 
-Unreliability. 

-To expand the scope of spatial 

verification of mesoscale 

ensemble prediction system for 

weather. 

11. Ganai et al., 2021 -T382164 model. 
-Integrated Forecast System. 

-Numerical weather prediction. 

Operational 

weather 

prediction. 

-Low performance. 
-Longer time constraint. 

-Uncertainty. 

-Inaccurate spatial-temporal simulation 

results. 
                                                                                                                                               -Extreme weather conditions.  

-To increase the accuracy of 

heavy rainfalls with additional 

conversion parameters models. 
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12. Javanshiri, et 

al., 

2021 -Numerical weather prediction 

models. 

-Ensemble model output statistics 

(EMOS). 

-Bayesian model averaging 

(BMA). 

-Weather and Research 

Forecasting (WRF) model. 

Precipitation 

forecasting 

effectiveness. 

-Lagging accuracy of numeral 

approaches. 
-Large mathematical procedures. 
-Less accurate data collection devices. 

-Performance of forecasting models are 

still poor. 

-Classification of events and non- 

events. 

-To examine modern post- 

processing techniques such as 

machine learning, neural 

networks for better flexibility and 

effectiveness. 

 

 
13. 

 

 
Dhib et al., 

 

 
2021 

 

 
-Statistical coefficient. 

-Weather and Research 

Forecasting model. 

 

 
Weather-based 

downscaling 

events. 

 

 
-Uncertainty determination. 

-Inaccuracy of models. 

-Existing models rely on startup 

datasets. 

-Output reliability and verification. 
-Performance depreciations. 

 

 
-To adopt ensemble approaches 

for improved outcomes for WRF 

model. 

-To ascertain the sensitivity of 

parameters in WRF modeling. 

14. Nugroho et 

al., 

2021 -Seasonal Autoregressive 

Integrated Moving Average 

(SARIMA). 

-Statistical models. 

Weather 

forecasting for 

precision 

agriculture 

management. 

-Daily environment parameters 

determination. 
-Extreme weather patterns. 

-Large uncertainties in agricultural 

applications and systems. 

-Remote monitoring of parameters. 
-Less accuracy of forecasting models. 

-To minimize errors and increase 

acceptable accuracy of novel 

hourly forecasting models. 

15. Narechania, 
et al., 

2021 -Numerical solution approaches. 
-MHD model. 

Space weather 

forecasting. 

-Adverse impact of weather on well- 

being of humans. 

-Lack of sufficient warning systems. 

-Lack of information concerning 

environmental conditions. 
-Low accuracy. 
-Data collection complexities. 

-To improve the operational 

forecasting performance with 

reliable data and empirical 

relations. 
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16. Jadon, et al., 2021 -State Space Models (SSM): 

ARIMA. 

-Deep learning approaches: 

LSTM, RNN. 

-Exponential Weighted Moving 

Average. 

-Generalized Autoregressive 

Conditonal Heteroskedastic 

Model. 

-Seasonal Trend Decomposition 

Predictor. 

-Probabilistic Models: Hidden 

Markov Models. 

Weather data 

forecasting. 

-Accuracy of telemetry data forecasting. 

-Low performance. 

-Interpretation and analysis of data. 

-High efforts required during 

interpretation. 

-Large datasets. 

-Numerous data dimensions. 

-To experiment hybrid models for 

telemetry data forecasting. 

-To adopt deep neural networks 

for computationally capable 

systems. 

17. Schulz et al., 2021 -Statistical methods. 
-Numerical Weather Prediction. 

-Ensemble forecasting models. 

-Probabilistic prediction models. 

Weather 

prediction based 

on numerical 

data. 

-Systematic biases of outcomes. 
-Uncertainty. 

-Diverse conditions considerations. 

-Inaccuracies are large. 

-Inconsistencies. 
                                                                                                                                               -Extended training periods of models.  

-To build weather forecasting 

component into renewable energy 

forecasting applications or 

systems. 
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From Table 2.1, the rate of publication on the weather forecasting for the selected studies revealed 

upward spike in research works over the period of 2018-2021 as shown in Figure 2.1. The reason 

for this can be strongly associated with relevance of weather to diverse area of endeavours such 

as power supply, agriculture, irrigation, disease controls, building and critical infrastructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. 3: The rate of research works in weather forecasting 

 

Similarly, the research interests of authors for the selected studies are presented in Figure 2.1. This 

shows that majority of studies focus on ways weather forecasting support decisions making 

processes or systems, followed by weather and climate information system with the least interest 

being transportation. In particular, weather forecasting researches are greatly beneficial for 

precipitation estimation, agriculture, transportation, structural resilience, power generation 

systems, weather and climate information systems, decision support systems, and diseases 

controls. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4: Distribution of research interests of selected studies 
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2.4 Weather Forecasting Techniques 

 

The processes of weather forecasting have employed diverse techniques, models and methods as 

identified by selected studies. These techniques, methods and models of weather forecasting can 

be classified into two including traditional and contemporary approaches. 

 

i. Traditional approaches 

 

From Table 2.1, weather forecasting approaches are summarized into Statistical methods such as: 

Linear Regression models, Correlation coefficient models, Stepwise multiple regression models, 

Time Series for Precipitation, Numerical weather prediction, Bayesian Model Averaging, 

Seasonal Autoregressive Integrated Moving Average, Multivariate Linear Regression, Ordinary 

linear regression, Non-linear regression, Linear discriminant analysis. 

 

 

ii. Contemporary approaches: 

 

From Table 2.1, weather forecasting approaches are summarized into Machine learning methods, 

examples are: Convolutional Neural Network (CNN), Support Vector Machine (SVM), Decision 

Tree, Ensemble, Bayesian network, K-Means, K-Nearest Neighbor (K-NN) K-NN, Random 

Forest, Recurrent Neural Network (RNN), Deep Learning Neural Network DNN, Baie Bayes 

Multinominal, Fuzzy Logic Identification, Convolutional Long Short-Term Memory (LSTM), U- 

Net, Artificial Neural Network (ANN), particle Swarm optimization (PSO), Weighted K-Nearest 

Neighbour, Natural processing language, Smart monitoring system and Internet of Things (IoT). 
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CHAPTER THREE 

 

3.0 RESEARCH METHODOLOGY 

 

3.1 Research Design 

 

The research methodology consists of three phases: Preparing time series data, optimizing the 

predictive model, and applying the predictive model (Zain et al., 2021). The first phase 

“Preparing time series data” consists of normalizing time series data, and splitting the time series 

data into training and testing datasets. The second phase “Optimizing the predictive models” 

consists of three steps: Optimize the model, train the model, and evaluate the model. The model 

were optimized to get the best hyperparameters. The total time series data set is 1826 columns 

and 2 rows, of which starts on 1st January 2015 to 30th December, 2019 for a period of 5 years 

for each of the weather parameter. The models were then trained using the best hyperparameters 

on the training dataset. The trained models were then evaluated on the test dataset, the 

forecasting was estimated and compared with the real values. The third stage “Applying the 

predictive models” entails applying the model to historical multivariate weather data (Pidwirny, 

2008). Figure 3.1 shows the research methodology embarked upon in this thesis. 
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s 
 
 

 
 
 
 

Figure 3. 1: Illustration of the Research Methodology. 

 

From Figure 3.1, the different phrases in the research method and their relationship are shown. 

From the collection and preparation of the daily multivariate time series weather data consisting 

of each of temperature, pressure, relative humidity, wind speed, Dew Point, and Rainfall to 

optimization of the predictive model and them the application of the model. 
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Proposed Model 

Training of the dataset 

Split data set into training 

Training dataset Test dataset 

 

 
Stop 

Validation 

Figure 3.2 shows the flowchart for the research process. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 

 

Figure 3. 2: Flowchart for the LSTM Model 

 

From the Figure 3.2, the study procedure begins with data collection, which is then pre-processed 

by partitioning multivariate meteorological data into training and validation/testing sets, and then 

used as input to the Long Short-Term Memory Neural Network (LSTM). With the development 

of prediction output, the model is trained and validated. 

Weather prediction 

Start 

Input data set 

Normalization of Data 
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3.2 LSTM Weather Forecasting Algorithm 

 
The series of steps to be undertaken by this thesis in developing proposed weather model include 

the following algorithm: 

 

Input: Historical daily weather data 

Output: Weather prediction data 

Step 0: Start 

Step 1: Data Preparation 

 

Weather Dataset are collected on daily basis for a specific weather stations, regions/states 

across Nigeria in which weather conditions vary depending upon the regions. The 

parameters collected are Temperature, Pressure, Relative Humidity, Wind Speed, Dew 

point and Rainfall in form of Microsoft Excel file format. 

 

The algorithm for preparation of the multivariate weather data set is shown below 

Step 1.1: Start 

Step 1.2: Convert dataset into time series. 

 

Step 1.3: Normalize time series data: The time-series data from the selected 

weather stations (Bauchi, Minna, Calabar and Ikeja) were normalized using min– 

max normalization within the range [0, 1]. 

 

Step 1.4: Split time series data sequentially, to prepare the time series for model 

development, 1826 columns and 2 rows of the normalized time series data were 

divided into 70 % training and 30% testing 

 

Step 1.5: End. 
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Step 2: Create the Architecture for our LSTM model 

Step 3: Train the Model 

Now that we have defined our model, we can finally move on with training it on our sequence 

data. We can subdivide the training process into smaller steps, namely: 

Step 3.0: Start 

 

Step 3.1 : Check the loss on training data 

Step 3.1.1 : Forward Pass 

Step 3.1.2 : Calculate Error 

 

Step 3.2 : Check the loss on validation data 

Step 3.2.1 : Forward Pass 

Step 3.2.2 : Calculate Error 

Step 3.3 : Start actual training 

Step 3.3.1 : Forward Pass 

Step 3.3.2 : Backpropagate Error 

Step 3.3.3 : Update weights 

Step 3.4: Stop 

 

We need to repeat these steps until convergence. If the model starts to overfit, stop! Or simply 

pre-define the number of epochs. 

 

Step 3.1: Check the loss on training data 

 

To determine the loss value, we will do a forward pass over our LSTM model and 

calculate the squared error for all predictions. 

 

Step 3.2: Check the loss on validation data 

 

The loss on validation data will be calculated in the same way. 
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Step 3.3: Start actual training 

 

We'll now get down to business with the network's actual training. We'll execute a 

forward pass to calculate the errors and then a backward pass to calculate and 

update the gradients. 

 

Step 3.3.1: Forward Pass 

 

We start by multiplying the input by the weights shared by the input and hidden 

layers. Combine this with the weight multiplication in the LSTM - RNN layer. This 

is because we want to keep track of the preceding timestep information. Use a 

sigmoid activation function to activate it. This is multiplied by the weights of the 

hidden and output layers. We have a linear activation of the values at the output 

layer, thus we don't need to transmit the value via an activation layer directly. In a 

dictionary, save the current layer's state as well as the state from the previous 

timestep (Faizan, 2019). 

 

Step 3.3.2: Backpropagate Error 

 

After the forward propagation step, we calculate the gradients at each layer, and 

backpropagate the errors. We will use truncated back propagation through time 

(TBPTT), instead of vanilla backprop. It may sound complex but it is actually 

pretty straight forward. The core difference in BPTT versus backprop is that the 

backpropagation step is done for all the time steps in the RNN layer (Faizan, 2019). 

 

Step 3.3.3: Update weights 

 

Lastly, we update the weights with the gradients of weights calculated. One thing 

we have to keep in mind that the gradients tend to explode if you don’t keep them 

in check. 

https://www.analyticsvidhya.com/blog/author/jalfaizy/
https://www.analyticsvidhya.com/blog/author/jalfaizy/
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This is a fundamental issue in training neural networks, called the exploding 

gradient problem. So we have to clamp them in a range so that they don’t explode 

(Faizan, 2019). 

 

Step 4: Use the output of the last layer as prediction of the next time step. 

Step 5: Repeat steps 4 and 5 until optimal convergence is reached. 

Step 6: Obtain predictions by providing test data as input to the model. 

Step 7: Evaluate accuracy by comparing predictions made with actual data. 

Step 8: End 

 
3.3 The Long Short-Term Memory Weather Forecasting Model 

 

In this thesis, the developed weather forecasting model is trained primarily using the Long Short- 

Term Memory (LSTM) Neural Network. To effectively categorize or predict using LSTM, 

weather data like Dew Point (in Degree Celsius), Pressure (in HectoPascal), Relative Humidity 

(in Percent), Temperature (in Degree Celsius), Wind Speed (in metre per second), and Rainfall 

(in millimeter) are required. The weather dataset is received as input to the LSTM and trained with 

the neuron in the hidden layers of the LSTM network architecture. Weather forecasting is done 

by collecting information related to the present-day weather in regards to the previous and the 

present condition of the weather and utilizing this information to train LSTM model. 

 

The forecasting model used in this study was fine-tuned based on the selected hyperparameters 

under various prediction criteria using the Adam framework to optimize the hyperparameters for 

the model, because selecting the best and most accurate forecasting model for weather forecasting 

is a very complicated process. 

https://www.analyticsvidhya.com/blog/author/jalfaizy/
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Hyperparameter optimization is the study of tweaking or selecting the best collection of 

hyperparameters for a learning system. The output of any deep-learning algorithm is greatly 

impacted by a set of ideal hyperparameters. It is one of the most time-consuming, but also one of 

the most critical, processes in the deep-learning training pipeline. 

 

3.3.1 Training and Forecasting 

 
 

A series of input/output training pairs is required to tune the weights of a neural network. The 

inputs are fed into the network, and a loss function is used to quantify the difference between the 

expected and received outputs (Higham & Higham, 2019). The error is then backpropagated 

through the model, with the weights being updated using a gradient descent algorithm. 

 

LSTM was proposed for language models where the length l and the dimension d of the sequence 

of inputs and outputs is pre-determined (for example, when training on subsequences of l = 5 

consecutive characters of English text with d = 26 letters). By contrast, for time series forecasting, 

the training set is constructed from a single time series T = [t1, t2, . . . , tN] and there are no canonical 

lengths of the input and output sequences (Makridakis, 2019). 

 

3.3.2 Feeding data to the LSTM 

 
 

We want to train a recurrent model on input sequences of length l, say input = (x(1), x(2), . . . , x(l)). 

For simplicity of presentation, suppose that l = 3, and we want an output sequence of length one. 

The model is recurrent and so the function S is applied three times (Schmidhuber et al., 2005). 

We can think of this procedure as a model M such that 

 

 
 



43 
 

Figure 3.3 illustrates how the states and input sequence are fed into the function M with respect to 

the function S. Note that the weights inside S remain fixed when evaluating M. 

 
 

 

 
Figure 3. 3: illustration of the training procedure for LSTM network (Schmidhuber et al., 2005) 

 

From figure 3.3 the training procedure for an LSTM network with sequences of length l = 3. The 

function M takes in the initial states and the input = (x(1), x(2), x(3)). The first two outputs of the 

stacked LSTM are ignored. The blue lines show the path of the hidden state and the green lines 

show the path of the cell state. The red dashed lines show the route taken during the back- 

propagation to update the weights inside S. The weights inside S receive three additive updates 

(Schmidhuber et al., 2005). 

 

During backpropagation, each weight in the hidden layer S of the model receives l additive 

updates, one corresponding to each time element in the input sequence. The length of the input 

sequence l, often referred to as the lag parameter, plays a critical role in defining the function M. 

In time series forecasting, we want the model to have access to as many historical observations as 

possible. Any memory about the time series prior to the input, input i = (ti, ti+1, ti+2, ti+3, ti+4), 

must come from the cell state and the hidden state (Hyndman & Billah, 2003). 

 

3.3.3 Producing Forecast 

 

After the recurrent model, say F, has been trained, we would like to produce out-of-sample multi- 

step time series forecasts. In other words, given the time series T = [t1, t2, . . . , tN], we would like 

to forecast k time points into the future to obtain ˆtN+1, ˆtN+2, . . . , ˆtN+k. to produce the k-step 

forecasts is given as (Makridakis, 2019; Atiya, et al., 1999). 
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Train k ‘many-to-one’ functions F1, . . . ,Fk such that 

 

t i + l ≈ F1 (t i , . . . , t i + l −1) (3.3) 

 

t i + l + 1 ≈ F2(t i , . . . , t i + l −1) (3.4) 
 

. 

. 

. 
 

t i + l + k – 1 ≈ F k (t i , . . . , t i + l −1) (3.5) 

 

for i = 1, 2, . . . ,N − l – k + 1. This also requires a priori choice of the value k. A k-step forecast 

can be made by evaluating F1, . . . ,Fk at (tN – l + 1, . . . , tN − 1, tN) (Atiya et al., 1999). 

 

The architecture for the forecasting model using the Long Short-Term Memory (LSTM) based on 

recurrent neural network-based LSTM is shown in Figure 3.4 

 

 

 
 

 

Figure 3. 4: Neural Network Architecture for LSTM model 
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3.4 Description of Dataset 

 

This thesis primarily relied on secondary data obtained from Nigeria Meteorological Agency 

(NiMet), Abuja and Era Interim. These include: Air Temperature, Pressure (In Hectopascal, HPa 

= 100 Pa), Rainfall (In Millimetres), Wind Speed, Relative Humidity, and Dew point. The data 

comprises of daily weather reports recorded from 1st January, 2015 to 30th December, 2019 for 

the selected parameters. The entire dataset 1826 columns and 2 rows for each of the temperature, 

pressure, dew point, relative humidity, wind speed, and rainfall. Thereafter, the data divided into 

training and testing datasets on the ratio of 70% to 30%, that is, 1278 colums and 2 rows to 548 

columns and 2 rows respectively. These attributes are the given information to the recurrent neural 

network and trained using LSTM algorithm. The Table 3.1 shows a section of the dataset from 

the original source data presented in Appendix. 

 

Table 3.1: Sample data. 

 

Date Dew 

(Oc) 

Pressure 

(hPa) 

Humidity 

(%) 

Temp 

(oC) 

WindSpeed 

(M/S) 

Rainfall 

(mm) 

 
1-Feb-15 

 
24.97 

 
1010 

 
92.36 

 
34.66 

 
4.839 

 
4 

2-Feb-15 25.48 1008 92.09 34.97 4.608 0 

3-Feb-15 25.27 1008 92.01 34.96 5.576 2 

4-Feb-15 25.36 1009 92.4 34.92 4.813 2 

5-Feb-15 25.31 1008 91.65 35.01 5.077 1 

6-Feb-15 25.42 1008 91.3 35.09 5.124 1 

7-Feb-15 25.11 1008 90.41 35.07 4.696 4 

8-Feb-15 25.18 1008 89.74 35.14 5.422 1 
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3.5 LSTM Model Setup 

 

Google Colaboratory, sometimes known as "Google Colab" or just "Colab," is a Google Research 

tool that allows developers to write and run Python code directly in their browser. For deep 

learning tasks, Google Colab is a good tool Ganai et al., (2021). 

 

In only a few lines of code, Colab allows you to import an image dataset, train an image classifier 

on it, and assess the model, as well as use the full power of popular Python packages to analyze 

and visualize data. 

 

Colab notebooks executes code on Google's cloud servers, allowing you to tap into the power of 

Google hardware, such as Graphical Processing Unit (GPUs) and Tensor Processing Units 

(TPUs), regardless of your machine's capabilities. All you need is a browser to get started. Colab 

notebooks let you blend executable code and rich text, as well as graphics, HTML, LaTeX, and 

more, in a single document. Your Colab notebooks are saved in your Google Drive account when 

you create them (Orhan, 2020). 

 

Colab is used extensively in the machine learning community with applications including: 

Getting started with TensorFlow, Developing and training neural networks, experimenting with 

TPUs, disseminating AI research Schulz et al., (2021). 

 

The minimal hardware and software requirements for the experimenting concept of weather 

prediction system-based LSTM model are presented in Table 3.2. 
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Table 3.2: Minimal experimental parameters. 
 

 

System Requirements 

 

Attributes 

 

Hardware 

 

Samsung Computer System 

Solid State Drive 140 GB 

RAM 12.0 GB 

Processor GPU 

Speed HD Graphics 2.40 GHz 

System Type X64-based processor 

Operating system Windows 10 

Operating system 64-bit 

IDE Google Chrome 

Feature Extractor RNN, LSTM 

Data types Numerical 

Simulator Google Colaboratory 

Similarly, hyperparameters training for the LSTM involves choosing hyperparameters as the key 

aspect of the deep learning techniques. This is achieved through a manual or automatic tuning 

whose objective is to reduce the cost and memory of execution. The training algorithm makes use 

of the hyperparameter settings for purpose of training datasets on the LSTM mode as shown in 

Table 3.3. 
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Table 3.3: Minimal parameters for RNN. 

 
 

Hyperparameter 
 

Value 

 

Network model LSTM 

Number of layers 5 

Embedding dimension 100 

Number of hidden units 180 

Max number of Epochs 5 

Gradient Threshold 1 

Initial leaning rate 0.01 

Optimizer Adam 

Input type Numerical 

 

 

 
3.6 Performance Evaluation Parameters 

 

The evaluation parameters used for measuring the proposed weather prediction model’s errors and 

accuracy are given by Equations 3.1, and 3.2 (Z. Chen et al., 2021): 

 

1 n 
̂   2 

 Root Mean Square Errors (RMSE) = √ 
n 
∑ (Xi − Xi) 

i=1 
(3.1) 

 

1 n 
̂   2 

Mean Square Errors = MSE (Xj) = ∑ (Xi − Xi) 
i=1 

(3.2) 

 

where, 

 

Xi is the target of actual value of sample output 

 

̂Xi is the adjusted or predicted value of sample output 

i is the term index from 1 to n of test data sample 

n is total number of the test data sample 

n 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

 

4.1 Data Training and Validation 

 

This subsection provides the graphical representation of various weather datasets for the 

different cities selected for this study. 

 

(a) Bauchi City Weather Data 

 

In the case of the Bauchi city, the distributions of data elements for the dew point, pressure, 

relative humidity, temperature, wind speed, and rainfall are presented in Figure 4.1. 

 

Figure 4.1: The distribution of data elements in weather variables of Bauchi city 

From Figure 4.1, the data representation plot reveals similar trends in the distribution for dew 
 

point and relative humidity. The same trend is observed for pressure and temperature. But, there 

is no correlations in the data elements of the rainfall and wind speed. The features in the datasets 

for the distinct weather variables for the Bauchi City are presented in Figure 4.2. 
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Figure 4.2: The feature correlation heatmap for Bauchi city weather dataset. 

 

From Figure 4.2, there are large correlations between wind speed and pressure, humidity and 

wind speed, and pressure and dew point. However, there no correlation between rainfall and 

other weather variables investigated for Bauchi City. 

 

The training and validation of the proposed weather forecasting model using the multivariate 

datasets of the selected weather variables are presented in Figure 4.3. 

 

 
 

Figure 4.3: Model performance for Bauchi city daily weather forecasts. 
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The Figure 4.3 shows that, the validation curve was relatively lower than the training curve for 

the epoch 1 to 8, which indicates low errors or deviations of the proposed model for Bauchi city 

daily weather forecasts. 

 

(b) Minna City Weather Data 

 

The distribution of the data elements for the city of Minna in terms of the weather variables 

selected including: dew point, pressure, relative humidity, temperature, wind speed, and rainfall 

are presented in Figure 4.4. 

 

 

Figure 4.4: The distribution of data elements in weather variable of Minna City. 

 

From Figure 4.4, the data representation plot shows similar trends in the distribution for dew 

point and relative humidity. The comparable trends are observed for pressure and temperature. 

But, there is no correlations in the data elements of the rainfall and wind speed. The features in 

the datasets for the distinct weather variables for the Bauchi City are presented in Figure 4.4. 
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Figure 4.5: The feature correlation heatmap for Minna City weather dataset. 

 

From Figure 4.5, large correlations between wind speed and pressure, humidity and wind speed, 

and pressure and dew point, dew point and wind speed were observed. However, there no 

correlation between rainfall and other weather variables selected for Minna City. The training 

and validation of the proposed weather forecasting model using the multivariate datasets of the 

selected weather variables are presented in Figure 4.6. 

 

 
 

Figure 4.6: Model performance for Minna city daily weather forecasts. 
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The Figure 4.6 shows that, the validation curve was relatively large than the training curve for 

the epoch 1 to 6, which indicates huge errors or deviations. But, the training and validation 

performance improved after epoch 6 to 10, which indicates increased outcomes of the proposed 

model for Minna city daily weather forecasts. 

 

(c) Ikeja City Weather Data 

 

In the case of the Ikeja city, the distributions of data elements for the dew point, pressure, 

relative humidity, temperature, wind speed, and rainfall are presented in Figure 4.7. 

 

 

Figure 4.7: The distribution of data elements in weather variables of Ikeja City. 

 

In Figure 4.7, the data representation plot reveals similar trends in the distribution for dew point 

and temperature, pressure and wind speed. The reverse trend is observed for relative humidity 

and rainfall. The features in the datasets for the distinct weather variables for the Ikeja City are 

presented in Figure 4.8. 
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Figure 4.8: The feature correlation heatmap for Bauchi city weather dataset. 

 

From Figure 4.8, there are large correlations between dew point and wind speed, and pressure 

and temperature and wind speed, and pressure and dew point. However, there no correlation 

between rainfall and other weather variables investigated for Ikeja City. 

 

The training and validation of the proposed weather forecasting model using the multivariate 

datasets of the selected weather variables are presented in Figure 4.9. 

 

 
 

Figure 4.9: Model performance for Ikeja city daily weather forecasts. 



55 
 

The Figure 4.9 shows that, the validation curve was relatively lower than the training curve to 

converge at after epoch 4. The relative curves for both the training and validation started to 

diverge continuously after epoch4, which indicates high errors or deviations of the proposed 

model for Ikeja city daily weather forecasts. 

 

(d) Calabar City Weather Data 

 

In the case of the Bauchi city, the distributions of data elements for the dew point, pressure, 

relative humidity, temperature, wind speed, and rainfall are presented in Figure 4.10. 

 

 
 

Figure 4.10 : The distribution of data elements in weather variables for Calabar City. 

 

From Figure 4.10, the data representation plot reveals similar trends in the distribution for the 

dew point and relative humidity. The comparable trends were observed for pressure, wind and 

temperature. But, there is no correlations in the data elements of the rainfall. The features in the 

datasets for the distinct weather variables for the Calabar City are presented in Figure 4.11. 
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Figure 4.11: The feature correlation heatmap for Bauchi city weather dataset. 

 

From Figure 4.11, there are high correlations between relative humidity and temperature, 

humidity with pressure and temperature. However, there no correlation between rainfall and 

other weather variables investigated for Calabar City. 

 

The training and validation of the proposed weather forecasting model using the multivariate 

datasets of the selected weather variables are presented in Figure 4.12. 

 

 
 

Figure 4. 12: Model performance for Calabar city daily weather forecasts. 

 

The Figure 4.12 shows that, the validation curve was relatively closer to the training curve for 

the epoch 0 to 2. This trend changed after epoch 2 and diverged continuous until epoch 10 which 

indicates low errors or deviations of the proposed model until epoch 2, while errors increased for 

Calabar city daily weather forecasts. 
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4.2 Prediction Outcomes 

 

The performance of the weather forecasting model for daily and weekly forecast for the 

multivariate weather parameters are presented in this subsection. 

 

(a) Bauchi City 

 

The proposed model performance for daily forecasts of weather parameters were relatively 

accurate at 1 time-step as shown in Figure 4.13. 

 

 
Figure 4. 13: The daily weather forecasts using multivariate dataset for Bauchi city. 

 

Again, the model performance for weekly weather forecasts or a 7-day time-step shows the model 

lagging behind due to unstable pattern of the weather variables collected at Bauchi city as 

illustrated in Figure 4.14. 

 

 
Figure 4.14: Weekly weather forecasts performance with proposed model. 
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(b) Minna City 

 

The proposed weather model performance on daily forecasts of weather parameters large disparity 

between the model prediction and the actual values. The values of forecasts by the proposed model 

are more than the actual values as shown in Figure 4.15. 

 

 
 

Figure 4.15: The daily weather forecasts using multivariate dataset for Minna City. 

 

In the same vein, the weekly performance of the proposed model or a 7-day time-step reveals the 

model lagging behind the expected weather data for Minna city caused by unstable patterns of the 

weather variables data collected as depicted in Figure 4.16. 

 

 
 

Figure 4.16: Weekly weather forecasts performance with proposal model. 
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(c) Ikeja City 

 

The performance of the propose model for the daily forecasts of weather parameters were closely 

related with model values more than the actual values for a 1-day time-step as shown in Figure 

4.17. 

 

 
 

Figure 4.17: The daily weather forecasts using multivariate dataset for Ikeja city. 

 

Similarly, the model performance for weekly forecasts or a 7-day time-step shows the model 

lagging behind due to unstable nature of the weather variables collected at Ikeja city as illustrated 

in Figure 4.18. 

 

 
 

Figure 4.18: Weekly weather forecasts performance with the proposed model. 
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(d) Calabar City 

 

The proposed model performance for daily forecasts of weather parameters were relatively 

accurate at 1 time-step as shown in Figure 4.19. 

 

 
 

Figure 4. 19: The daily weather forecasts using multivariate dataset for Calabar city. 

 

Again, the model performance for weekly weather forecasts or a 7-day time-step shows the model 

lagging behind due to unstable pattern of the weather variables collected at Bauchi city as 

illustrated in Figure 4.20. 

 

 
 

Figure 4.20: Weekly weather forecasts performance with proposed model. 
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4.3 Performance Evaluation 

 

The performance of the LSTM neural network for the daily and weekly weather conditions 

forecasts of the selected cities in the four regions of Nigeria are presented in Table 4.1. 

 

Table 4.1 The proposed weather model forecasting outcomes using MSE. 

 
 

City 
 

Daily 
 

Weekly 

Bauchi 0.0252 0.3977 

 
Minna 

 
0.0167 

 
0.4505 

 
Ikeja 

 
0.0042 

 
1.0784 

 
Calabar 

 
0.0069 

 
0.6804 

 

 

 

 

 
From Table 4.1, the weather model performed best for Bauchi city based on weekly forecasts due 

to the relative defined patterns of multivariate datasets used during training. Whereas, the 

proposed model performed worst for Ikeja city because of unsteady patterns of the multivariate 

datasets used during training. 

 

Similarly, the proposed weather model performed best for Ikeja city based on the daily forecasts 

due to the relatively stable trends of the multivariate datasets used during training. While, the 

proposed model performed worst for Bauchi city due to the large uncertainty and instability of the 

weather data elements. 
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RNN (LSTM) Vs. ANN Weather Forecasting Models Compared 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Proposed model ANN 

Evaluation metrics 

 
MSE RMSE 

4.3.1 Performance Benchmarking 

 

The relative performance of the proposed model and comparable weather forecasting models are 

presented in Table 4.2. 

 

Table 4. 2: Performance benchmarking. 

 
 

Evaluation Metric 
 

Proposed model 
 

ANN 

 

MSE 
 

0.0252 
 

0.4792 

 

RMSE 

 

0.0167 

 

0.6922 

From Table 4.2, the performance of the proposed weather forecasting model based on LSTM 

outclassed the traditional ANN due to increased memory for historical events and feedback 

characteristics of the later (Czibula et al., 2021; Erivaldo et al, 2019), that is, 0.0252 and 0.4792. 

The similar trends are observed for the RMSE, which is 0.0167 and 0.6922 for the LSTM model 

and ANN respectively. These outcomes can be depicted in Figure 4.21. 

 

 

 

 
  

    

   

     

    

    

    

    

 

 

 

 

 

 
Figure 4. 21: The comparisons of performance of the proposed model against ANN 
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CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

People around the world are always interested in knowing about future occurrences, Data is 

abundant nowadays but analyzing the data and inferring the hidden facts is done to a lesser degree. 

Thus, data analytics and improvements in the prediction model can provide insights for better 

decision making regardless of applications. In this study, deep learning approach is carried out for 

weather prediction in selected weather stations in Nigeria. 

 

The Long Short-Term Memory (LSTM) neural network is used to develop the model for 

predicting weather parameters. This approach is compared with other methods, namely, traditional 

Artificial Neural Network, Trend Forecasting in order to demonstrate the improvement of weather 

forecasting in the proposed approach. 

 

This study validated the model using weather variables for four meteorological stations/cities 

across of Nigeria namely Minna, Bauchi, Lagos and Calabar due to their distant climatic attributes. 

The model was evaluated for the daily and weekly time step on the basis of multivariate weather 

variables of dew point, pressure, relative humidity, temperature, wind speed and rainfall. The 

outcomes reveal that the proposed model performed best for short-range forecasts (values by 

20.10% to 79.90%) than medium-range forecasts (values by 26.94% to 73.06%) for Mean Square 

Error (MSE). 

 

Again, the model performed best for Bauchi, Calabar and Ikeja city, and worst for Minna City for 

daily forecasts because of the relative stability in weather variables measured of the former. In the 

case for weekly forecasts performed with the model in which Ikeja city had the worst outcomes, 

while Bauchi city had the best outcomes due to the relative instability in the weather variables of 

the former. 
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5.2 Recommendations 

 

It is recommended that this model be used in the development of better weather forecasting 

systems. Other than the ones included in this study, there is a need to incorporate more weather 

variables. The model must be expanded to handle non-numerical values as input data, such as 

texts, audio, weather chats and video. This model should be used to forecast weather conditions 

in Nigerian cities and throughout Africa. 

 

5.3 Suggestions for Further Research 

 

Future research in the field of weather forecasting models could look into more optimization and 

data mining algorithms to increase the model's performance. This approach should be used in 

other contexts as well, including stock price forecasting, energy forecasting, and retail pump price 

forecasting. 

 

5.4 Contribution to Knowledge 

 

The contributions reached at the end of this work could be summarized as: 

 

i. Design and implementation of an improve weather forecasting model based on Long 

Short-Term Memory (LSTM) Neural Network. 

 

ii. The LSTM model has been successfully applied to produce for daily and weekly forecast. 
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import pandas as pd 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from tensorflow import keras 

from pandas import read_csv 

Appendix A 
 
 

Source Code 1 

 

Timeseries forecasting for weather prediction 

 

Description: This notebook demonstrates how to do timeseries forecasting using a LSTM 

model. 
 

 

Setup 
 

This example requires TensorFlow 2.3 or higher. 
 

 

[ ] 
 

 

 
 

 

Climate Data Time-Series 

 

We will be using daily weather data recorded by Nigerian Meteorological Agency (NiMet). The 

dataset consists of 5 features such as temperature, pressure, humidity etc, 

Location: Nigeria 

Time-frame Considered: Jan 01, 2015 - December 31, 2019 

The table below shows the column names, their value formats, and their description. 
 

 

 

 
Index Features Format Description 

 

 
 

1 

 

 
 

Date Time 

 

 
 

01.012009 0010:00 

 

 
 

Date-time reference 

 

 

 

2 

 

 

 

p (mbar) 

 

 

 

996.52 

 

 
The pascal SI derived unit of pressure used to quantify internal pressure. 
Meteorological reports typically state atmospheric pressure in millibars. 
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from google.colab import drive 

drive.mount('/content/gdrive') 

#from google.colab import files 

#uploaded = files.upload() 

# csv_path = "/content/gdrive/MyDrive/weather_bauchi_csv.csv" 

# csv_path = "/content/gdrive/MyDrive/weather_minna_csv.csv" 

# csv_path = "/content/gdrive/MyDrive/weather_ikeja_csv.csv" 

# csv_path = "/content/gdrive/MyDrive/weather_calabar_csv.csv" 

df = pd.read_csv(csv_path) 

#from google.colab import drive 

drive.mount('/content/drive') 

 

 
Index Features Format Description 

 

 
 

3 

 

 
 

T (degC) 

 

 
 

-8.02 

 

 
 

Temperature in Celsius 

4 Tpot (K) 265.4 Temperature in Kelvin 

 

5 

 

Tdew (degC) 

 

-8.9 
Temperature in Celsius relative to humidity. Dew Point is a measure of the 
absolute amount of water in the air, the DP is the temperature at which the air 
cannot hold all the moisture in it and water condenses. 

 
6 

 
rh (%) 

 
93.3 

Relative Humidity is a measure of how saturated the air is with water vapor, the 
%RH determines the amount of water contained within collection objects. 

 
7 

VPmax 
(mbar) 

 
3.33 

 
Saturation vapor pressure 

8 VPact (mbar) 3.11 Vapor pressure 

9 wv (m/s) 1.03 Wind speed 

 
10 

max. wv 
(m/s) 

 
1.75 

 
Maximum wind speed 

11 wd (deg) 152.3 Wind direction in degrees 

 

[ ] 
 

 

 

[ ] 
 

[ ] 
 

 

 

[ ] 
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Raw Data Visualization 

 

To give us a sense of the data we are working with, each feature has been plotted below. This 

shows the distinct pattern of each feature over the time period from January 2015 to December 

2019. It also shows where anomalies are present, which will be addressed during normalization. 
 

 

[ ] 
 

titles = [ 

"Dew point", 

"Pressure", 

"Relative Humidity", 

"Temperature in Celsius", 

"Wind Speed in Kilometer per Sec.", 

"Rainfall", 

] 

feature_keys = [ 

"Dew(Oc)", 

"Pressure(hPa)", 

"Humidity(KG)", 

"Temp(oC)", 

"WindSpeed(KM/S)", 

"Rainfall(mm)", 

] 

colors = [ 

"blue", 

"orange", 

"green", 

"red", 

"purple", 

"brown", 

] 

date_time_key = "Date" 

def show_raw_visualization(data): 

time_data = data[date_time_key] 

fig, axes = plt.subplots( 

nrows=3, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgeco 

lor="k" 

) 

for i in range(len(feature_keys)): 

key = feature_keys[i] 

c = colors[i % (len(colors))] 

t_data = data[key] 

t_data.index = time_data 

t_data.head() 

ax = t_data.plot( 

ax=axes[i // 2, i % 2], 

color=c, 

title="{} - {}".format(titles[i], key), 

rot=25, 
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def show_heatmap(data): 

plt.matshow(data.corr()) 

plt.xticks(range(data.shape[1]), data.columns, fontsize=14, rotation= 

90) 

plt.gca().xaxis.tick_bottom() 

plt.yticks(range(data.shape[1]), data.columns, fontsize=14) 

cb = plt.colorbar() 

cb.ax.tick_params(labelsize=14) 

plt.title("Feature Correlation Heatmap", fontsize=14) 

plt.show() 

show_heatmap(df) 

 
 

 

 

This heat map shows the correlation between different features. 
 

 

[ ] 
 

 

 

Data Preprocessing 

 

This thesis primarily relied on secondary data obtained from Nigeria Meteorological Agency 

(NiMet), Abuja and Era Interim. These include: Air Temperature, Pressure (In Hectopascal, HPa 

= 100 Pa), Rainfall (In Millimetres), Wind Speed, Relative Humidity, and Dew point. The data 

comprises of daily weather reports recorded from 1st st January, 2015 30th December, 2019 for 

the selected parameters. 

The entire dataset 1826 columns and 2 rows for each of the temperature, pressure, dew point, 

relative humidity, wind speed, and rainfall. Thereafter, the data divided into training and testing 

datasets on the ratio of 70% to 30%, that is, 1278 columns and 2 rows to 548 columns and 2 rowss 

respectively. These attributes are the given information to the recurrent neural network and trained 

using LSTM algorithm. 

We are tracking data from past 720 timestamps (720/6=120 hours). This data will be used to 

predict the temperature after 72 timestamps (72/6=12 hours). 

Since every feature has values with varying ranges, we do normalization to confine feature values 

to a range of [0, 1] before training a neural network. We do this by subtracting the mean and 

dividing by the standard deviation of each feature. 

The model is shown data for first 5 days i.e. 720 observations, that are sampled every hour. The 

temperature after 72 (12 hours * 6 observation per hour) observation will be used as a label. 
 

 

Total dataset = 1826 Colums, divided 1278 columns for training, per daily 

observation... bold text 

 

 

[ ] 

) 

ax.legend([titles[i]]) 

plt.tight_layout() 

show_raw_visualization(df) 
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print( 

"The selected parameters are:", 

", ".join([titles[i] for i in [0, 1, 2, 3, 4, 5]]), 

) 

selected_features = [feature_keys[i] for i in [0, 1, 2, 3, 4, 5]] 

features = df[selected_features] 

features.index = df[date_time_key] 

features.head() 

features = normalize(features.values, train_split) 

features = pd.DataFrame(features) 

features.head() 

train_data = features.loc[0 : train_split - 1] 

val_data = features.loc[train_split:] 

start = past + future 

end = start + train_split 

x_train = train_data[[i for i in range(5)]].values 

y_train = features.iloc[start:end][[1]] 

sequence_length = int(past / step) 

 
 

 

 

We can see from the correlation heatmap, few parameters like Relative Humidity and Specific 

Humidity are redundant. Hence we will be using select features, not all. 
 

 

[ ] 
 

 

 

Training dataset 

 

The training dataset labels starts from the 792nd observation (720 + 72). 
 

 

[ ] 
 

 

 

The timeseries_dataset_from_array function takes in a sequence of data-points gathered 

at equal intervals, along with time series parameters such as length of the sequences/windows, 

split_fraction = 0.70 

train_split = int(split_fraction * int(df.shape[0])) 

step = 1 

past = 120 

future = 24 

learning_rate = 0.001 

batch_size = 256 

epochs = 10 

def normalize(data, train_split): 

data_mean = data[:train_split].mean(axis=0) 

data_std = data[:train_split].std(axis=0) 

return (data - data_mean) / data_std 
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dataset_train = keras.preprocessing.timeseries_dataset_from_array( 

x_train, 

y_train, 

sequence_length=sequence_length, 

sampling_rate=step, 

batch_size=batch_size,) 

x_end = len(val_data) - past - future 

label_start = train_split + past + future 

x_val = val_data.iloc[:x_end][[i for i in range(5)]].values 

y_val = features.iloc[label_start:][[1]] 

dataset_val = keras.preprocessing.timeseries_dataset_from_array( 

x_val, 

y_val, 

sequence_length=sequence_length, 

sampling_rate=step, 

batch_size=batch_size, 

) 

for batch in dataset_train.take(1): 

inputs, targets = batch 

print("Input shape:", inputs.numpy().shape) 

print("Target shape:", targets.numpy().shape) 

inputs = keras.layers.Input(shape=(inputs.shape[1], inputs.shape[2])) 

lstm_out = keras.layers.LSTM(32)(inputs) 

outputs = keras.layers.Dense(1)(lstm_out) 

model = keras.Model(inputs=inputs, outputs=outputs) 

spacing between two sequence/windows, etc., to produce batches of sub-timeseries inputs and 

targets sampled from the main timeseries. 
 

 

[ ] 
 

 

 

Validation dataset 

 

The validation dataset must not contain the last 792 rows as we won't have label data for those 

records, hence 792 must be subtracted from the end of the data. 

The validation label dataset must start from 792 after train_split, hence we must add past + 

future (792) to label_start. 
 

 

[ ] 
 

 

 

Training 
 
 

 

[ ] 
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path_checkpoint = "model_checkpoint.h5" 

es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta 

=0, patience=5) 

modelckpt_callback = keras.callbacks.ModelCheckpoint( 

monitor="val_loss", 

filepath=path_checkpoint, 

verbose=1, 

save_weights_only=True, 

save_best_only=True, 

) 

history = model.fit( 

dataset_train, 

epochs=epochs, 

validation_data=dataset_val, 

callbacks=[es_callback, modelckpt_callback], 

) 

def visualize_loss(history, title): 

loss = history.history["loss"] 

val_loss = history.history["val_loss"] 

epochs = range(len(loss)) 

plt.figure() 

plt.plot(epochs, loss, "b", label="Training loss") 

plt.plot(epochs, val_loss, "r", label="Validation loss") 

plt.title(title) 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.legend() 

plt.show() 

visualize_loss(history, "Training and Validation Loss") 

 
 

 

[ ] 
 
 

 

We'll use the ModelCheckpoint callback to regularly save checkpoints, and 

the EarlyStopping callback to interrupt training when the validation loss is not longer 

improving. 
 

 

[ ] 
 

 

 

We can visualize the loss with the function below. After one point, the loss stops decreasing. 
 

 

[ ] 
 

 

model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate 

), loss="mse") 

model.summary() 
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def show_plot(plot_data, delta, title): 

labels = ["History", "True Future", "Model Prediction"] 

marker = [".-", "rx", "go"] 

time_steps = list(range(-(plot_data[0].shape[0]), 0)) 

if delta: 

future = delta 

else: 

future = 0 

plt.title(title) 

for i, val in enumerate(plot_data): 

if i: 

plt.plot(future, plot_data[i], marker[i], markersize=10, labe 

l=labels[i]) 

else: 

plt.plot(time_steps, plot_data[i].flatten(), marker[i], label 

=labels[i]) 

plt.legend() 

plt.xlim([time_steps[0], (future + 1) * 5]) 

plt.xlabel("Time-Step") 

plt.show() 

return 

for x, y in dataset_val.take(5): 

show_plot( 

[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]], 

12, 

"Single Step Prediction",) 

Prediction 

 

The trained model above is now able to make predictions for 5 sets of values from validation set. 
 

 

[ ] 
 

 
 
 

II. Source Dataset 1 

 

(a) Source Dataset: Calabar dataset: 
 
 

Date Dew(Oc) Pressure(hPa) Humidity(KG) Temp(oC) WindSpeed(KM/S) Rainfall(mm) 

1-Jan-15 24.58 999 95.42 26.51 26.51 0.8 

2-Jan-15 24.28 1000 96.63 25.19 25.19 1.9 

3-Jan-15 24.02 1001 96.33 24.2 24.2 5.5 

4-Jan-15 21.31 1001 81.57 23.7 23.7 0 

5-Jan-15 18.89 1000 75.91 23.77 23.77 0 

6-Jan-15 19.71 1000 78.39 22.32 22.32 0 

7-Jan-15 20.97 1000 84.87 21.89 21.89 0 

8-Jan-15 20.66 1000 82.36 23.25 23.25 0 

9-Jan-15 21.3 1001 89.82 24.67 24.67 0 

10-Jan-15 15.68 1001 62.22 23.99 23.99 0 
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11-Jan-15 19.25 1001 81.29 22.41 22.41 1.8 

12-Jan-15 13.89 1000 52.67 22.17 22.17 0 

13-Jan-15 11.93 999 44.18 20.55 20.55 0 

14-Jan-15 18.17 1000 72.31 21.17 21.17 0 

15-Jan-15 21.06 1000 81.01 23.85 23.85 0 

16-Jan-15 22.77 1000 94.51 23.95 23.95 0 

17-Jan-15 23.73 999 92.42 23.59 23.59 0 

18-Jan-15 24.01 1001 97.44 23.3 23.3 0 

19-Jan-15 23.3 1000 92.61 24.48 24.48 0 

20-Jan-15 24.5 999 93.96 25.1 25.1 0 

21-Jan-15 24.96 999 94.46 27.85 27.85 0.1 

22-Jan-15 24.88 1000 95.03 29.03 29.03 0.6 

23-Jan-15 25.15 999 96.01 28.9 28.9 4 

24-Jan-15 24.56 998 91.55 28.62 28.62 15 

25-Jan-15 24.03 998 90.59 28.65 28.65 22.6 

26-Jan-15 23.78 999 91.47 27.4 27.4 21.5 

27-Jan-15 24.21 999 93.47 29.64 29.64 12.7 

28-Jan-15 24.33 999 95.22 29.52 29.52 8.3 

29-Jan-15 24.49 999 94.05 28.26 28.26 3.8 

30-Jan-15 23.93 999 93.92 25.07 25.07 5.2 

31-Jan-15 24.86 999 95.29 25.89 25.89 0.2 

1-Feb-15 25.05 999 96.82 27.4 27.4 0.8 

2-Feb-15 25.28 998 97.61 29.26 29.26 2.6 

3-Feb-15 24.73 998 93.82 28.24 28.24 17.8 

4-Feb-15 24.72 998 92.8 29.27 29.27 1.3 

5-Feb-15 25.02 997 95.71 29.59 29.59 0.8 

6-Feb-15 24.83 998 94.18 30.23 30.23 0.7 

7-Feb-15 24.65 997 93.57 29.55 29.55 2 

8-Feb-15 24.78 998 93.39 30.47 30.47 18.2 

9-Feb-15 25.16 997 94.44 30.06 30.06 3.2 

10-Feb-15 25.48 998 91.2 29.42 29.42 6 

11-Feb-15 25.93 997 95.94 29.09 29.09 0.1 

12-Feb-15 25.65 998 93.89 31.15 31.15 2.6 

13-Feb-15 23.47 1000 95.5 29.01 29.01 39 

14-Feb-15 24.36 1001 91.99 28.1 28.1 11.1 

15-Feb-15 24.72 1000 93.99 28.56 28.56 0 

16-Feb-15 25.03 1000 91.33 28.76 28.76 6.1 

17-Feb-15 24.92 999 92.4 29.94 29.94 8 

18-Feb-15 24.05 997 92.95 31.45 31.45 161.1 

19-Feb-15 22.67 998 96.22 31.53 31.53 85.7 

20-Feb-15 23.79 997 90.45 30.48 30.48 9.8 

21-Feb-15 24.54 997 90.74 29.9 29.9 60.2 

22-Feb-15 24.4 997 91.34 31.41 31.41 28 

23-Feb-15 24.05 999 94.65 32.03 32.03 6.8 

24-Feb-15 23.66 1000 93.52 32.19 32.19 51.3 

25-Feb-15 24.92 998 94.53 31.58 31.58 8.7 

26-Feb-15 24.88 998 93.63 29.52 29.52 46.4 

27-Feb-15 22.83 998 93.2 31.27 31.27 10 
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28-Feb-15 23.9 999 91.73 29.85 29.85 11.8 

1-Mar-15 24.79 998 93.53 29.6 29.6 21 

2-Mar-15 24.74 997 95.14 30.1 30.1 6.7 

3-Mar-15 24.68 998 94.47 30.21 30.21 7.5 

4-Mar-15 24.79 999 95.69 31.12 31.12 8.9 

5-Mar-15 24.68 999 97.12 31.5 31.5 0.2 

6-Mar-15 25.52 998 96.21 31.3 31.3 0.5 

7-Mar-15 25.28 998 96.86 31.41 31.41 2.4 

8-Mar-15 24.04 998 95.08 32.53 32.53 32.2 

9-Mar-15 24.57 998 91.43 32.66 32.66 19.2 

10-Mar-15 24.22 998 95.23 34.01 34.01 0 

11-Mar-15 24.21 999 95.54 34.28 34.28 2.7 

12-Mar-15 24.86 998 94.77 34.31 34.31 0 

13-Mar-15 25.05 996 92.51 32.07 32.07 9.9 

14-Mar-15 24.08 995 95.11 31.8 31.8 0.2 

15-Mar-15 25.16 995 94.99 32.15 32.15 1.4 

16-Mar-15 24.25 997 90.94 35.47 35.47 103.2 

17-Mar-15 25.22 997 93.56 35.2 35.2 4 

18-Mar-15 24.19 997 93.74 35.93 35.93 1.3 

19-Mar-15 24.76 995 93.12 34.21 34.21 23.2 

20-Mar-15 23.93 996 92.63 32.13 32.13 31.1 

21-Mar-15 25.05 996 94.36 35.25 35.25 7.2 

22-Mar-15 24.02 998 94.27 34.62 34.62 13.9 

23-Mar-15 24.91 997 92.56 36.76 36.76 0.9 

24-Mar-15 24.96 998 93.42 33.95 33.95 9 

25-Mar-15 24.38 997 91.11 35.48 35.48 27.4 

26-Mar-15 23.84 999 94.2 36.26 36.26 12 

27-Mar-15 23.73 1000 95.32 36.63 36.63 159.1 

28-Mar-15 22.99 1001 96.84 36.07 36.07 83.4 

29-Mar-15 23.84 1000 92.54 32.25 32.25 90.6 

30-Mar-15 24.19 999 91.87 32.22 32.22 68.2 

31-Mar-15 23.38 1000 93.55 34.58 34.58 148.2 

1-Apr-15 23.57 998 94.63 34.38 34.38 94.3 

2-Apr-15 24.06 1000 94.27 34.52 34.52 36.6 

3-Apr-15 24.26 998 96.47 35.23 35.23 1.8 

4-Apr-15 24.49 998 95.18 36.15 36.15 0.9 

5-Apr-15 24.73 998 95.82 35.16 35.16 15.6 

6-Apr-15 24.11 998 93.53 35.25 35.25 0.3 

7-Apr-15 24.06 998 93.51 35.08 35.08 1.6 

8-Apr-15 24.09 999 95.41 37.83 37.83 1.8 

9-Apr-15 24.76 999 91.69 38.61 38.61 6.8 

10-Apr-15 24.57 998 92.73 37.61 37.61 1.5 

11-Apr-15 24.02 999 93.16 36.9 36.9 17.1 

12-Apr-15 24.01 999 96.09 34.09 34.09 3.6 

13-Apr-15 24.14 999 97.42 32.71 32.71 71.1 

14-Apr-15 24.48 999 96.9 32.26 32.26 0 

15-Apr-15 25.27 998 96.15 31.26 31.26 2.6 

16-Apr-15 24.51 999 96.08 30.78 30.78 19.1 
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17-Apr-15 25.29 1000 97.12 32.85 32.85 0.3 

18-Apr-15 25.15 999 97.75 32.05 32.05 0.3 

19-Apr-15 25.26 999 95.17 32.34 32.34 2.4 

20-Apr-15 24.95 998 95.08 32.89 32.89 5.2 

21-Apr-15 24.98 997 94.63 32.43 32.43 0.3 

22-Apr-15 25.42 998 97.2 32.42 32.42 1.2 

23-Apr-15 23.81 998 95.83 32.64 32.64 0.5 

24-Apr-15 23.65 999 92.7 33.38 33.38 10.2 

25-Apr-15 24.22 1000 93.57 35.82 35.82 14.5 

26-Apr-15 24.95 1000 94.67 34.36 34.36 6 

27-Apr-15 23.45 999 93.31 34.06 34.06 0.2 

28-Apr-15 25.2 999 94.43 33.01 33.01 0.4 

29-Apr-15 24.06 998 94.97 30.34 30.34 1 

30-Apr-15 24.35 999 94.36 33.42 33.42 20.9 

1-May-15 24.85 997 92.77 33.62 33.62 5.2 

2-May-15 24.86 996 93.72 33.47 33.47 0.3 

3-May-15 23.66 998 93.82 35.2 35.2 4.8 

4-May-15 24.37 998 93.95 36.28 36.28 24.2 

5-May-15 24.51 999 92.85 37.46 37.46 82.6 

6-May-15 23.17 999 96.66 35.12 35.12 13.9 

7-May-15 24.51 999 93.87 32.84 32.84 10.5 

8-May-15 24.22 1000 93.78 36.37 36.37 8 

9-May-15 24.72 1000 91.53 37.34 37.34 9.7 

10-May-15 24.64 999 90.34 36.36 36.36 8.2 

11-May-15 23.73 999 91.38 36.49 36.49 13.6 

12-May-15 24.43 1000 92.57 35.55 35.55 29.6 

13-May-15 23.47 999 93.67 36.35 36.35 20.4 

14-May-15 24.56 998 94.72 34.1 34.1 106.6 

15-May-15 23.92 999 93.29 36.74 36.74 52.9 

16-May-15 23.86 999 93.57 36.49 36.49 0.4 

17-May-15 24.41 1000 92.31 37.41 37.41 19.4 

18-May-15 24.17 1000 95.89 36.17 36.17 183 

19-May-15 23.5 999 93.48 36.82 36.82 24.7 

20-May-15 23.81 1000 94.88 36.7 36.7 10.3 

21-May-15 24.29 1000 92.97 36.95 36.95 15.2 

22-May-15 24.15 1000 96.39 37.49 37.49 2.7 

23-May-15 24.39 1000 91.55 37.2 37.2 82.7 

24-May-15 23.1 1000 94.94 36.03 36.03 172.5 

25-May-15 23.94 1001 94.97 36.5 36.5 17.7 

26-May-15 24.21 999 93.9 35.65 35.65 22.4 

27-May-15 24.13 999 91.88 38.32 38.32 71.3 

28-May-15 24.17 1000 92.85 36.28 36.28 74.8 

29-May-15 23.01 998 93.78 36.29 36.29 52.1 

30-May-15 23.35 999 91.66 37.2 37.2 18 

31-May-15 22.94 1000 93.66 35.91 35.91 123.7 

1-Jun-15 23.78 1000 91.67 37.1 37.1 11.8 

2-Jun-15 22.64 998 94.52 37.13 37.13 122.2 

3-Jun-15 23.74 1000 90.21 34.95 34.95 41.7 
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4-Jun-15 22.99 1001 90.86 34.85 34.85 53.5 

5-Jun-15 23.23 1000 93.83 34.49 34.49 118.1 

6-Jun-15 22.94 1001 93.61 36.21 36.21 16.3 

7-Jun-15 22.98 1001 93.15 33.42 33.42 34.1 

8-Jun-15 22.63 1000 93.95 34.72 34.72 32.2 

9-Jun-15 22.91 1000 92.52 31.72 31.72 16.7 

10-Jun-15 22.73 1000 91.59 34.26 34.26 12.7 

11-Jun-15 23.44 1002 90.56 36.16 36.16 32.3 

12-Jun-15 23.52 1001 91.98 35.94 35.94 26.3 

13-Jun-15 22.55 1001 92.09 35.27 35.27 17.5 

14-Jun-15 22.77 1001 90.7 34.98 34.98 27.6 

15-Jun-15 22.96 1000 93.34 35.97 35.97 3.3 

16-Jun-15 23.07 1001 94.24 35.88 35.88 158.6 

17-Jun-15 23.38 1001 94.69 36.04 36.04 76.7 

18-Jun-15 23 1000 93.17 35.7 35.7 45.4 

19-Jun-15 23.12 1001 91.53 36.17 36.17 83.1 

20-Jun-15 23.28 1001 95.38 35.32 35.32 29.6 

21-Jun-15 22.92 1003 94.77 35.56 35.56 149.3 

22-Jun-15 22.97 1004 95.77 34.83 34.83 20.3 

23-Jun-15 22.77 1004 94.65 34.33 34.33 77.2 

24-Jun-15 22.57 1004 94.52 34.58 34.58 44.4 

25-Jun-15 22.54 1005 93.08 33.26 33.26 63 

26-Jun-15 22.43 1005 91.95 31.75 31.75 49.2 

27-Jun-15 22.26 1003 94.09 30.03 30.03 116.1 

28-Jun-15 23.03 1003 92.14 32.69 32.69 10.3 

29-Jun-15 22.65 1003 91.35 33.63 33.63 24.7 

30-Jun-15 22.49 1002 92.53 32.54 32.54 19.9 

1-Jul-15 22.34 1002 94.52 34.16 34.16 64.8 

2-Jul-15 22.28 1002 96.13 31.17 31.17 88.7 

3-Jul-15 22.89 1003 95.23 32.5 32.5 5.8 

4-Jul-15 22.92 1003 94.95 32.07 32.07 28.9 

5-Jul-15 22.9 1002 94.96 30.84 30.84 110.6 

6-Jul-15 23.3 1000 94.12 32.74 32.74 3.5 

7-Jul-15 23.65 1000 93.29 32.67 32.67 40.6 

8-Jul-15 23.98 999 91.75 33.75 33.75 19.4 

9-Jul-15 23.66 1000 94.74 33.78 33.78 10.5 

10-Jul-15 23.57 1001 93.71 32.03 32.03 139.5 

11-Jul-15 22.99 1002 95.01 32.85 32.85 102.2 

12-Jul-15 22.36 1002 97.08 33.48 33.48 63 

13-Jul-15 22.32 1001 89.75 31.8 31.8 110.2 

14-Jul-15 22.94 1001 96.41 33.48 33.48 0.6 

15-Jul-15 22.87 1000 92.42 32.1 32.1 22.3 

16-Jul-15 22.26 1001 91.22 31.61 31.61 31.1 

17-Jul-15 22.93 1002 92.56 32.25 32.25 8.5 

18-Jul-15 23.18 1001 92.49 33.88 33.88 9.3 

19-Jul-15 22.74 1001 94.87 32.13 32.13 38.8 

20-Jul-15 22.79 1001 95.82 30.88 30.88 389.4 

21-Jul-15 21.57 1002 92.07 31.79 31.79 134.8 
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22-Jul-15 22.69 1003 96.69 31.55 31.55 72.5 

23-Jul-15 22.75 1002 91.89 32.51 32.51 63.2 

24-Jul-15 22.33 1002 95.21 31.3 31.3 213.7 

25-Jul-15 22.28 1002 93.84 30.61 30.61 30.6 

26-Jul-15 22.45 1002 93.39 31.87 31.87 41 

27-Jul-15 22.18 1001 96.2 29.95 29.95 404.7 

28-Jul-15 21.96 1002 92.7 31.2 31.2 39.3 

29-Jul-15 21.75 1003 91.56 31.33 31.33 44.2 

30-Jul-15 22.07 1003 94.27 30.44 30.44 18.9 

31-Jul-15 21.82 1003 92.93 30.9 30.9 42.6 

1-Aug-15 22.3 1002 93.72 31.02 31.02 7 

2-Aug-15 22.24 1002 92.4 31.3 31.3 96 

3-Aug-15 22.58 1001 97.28 31.76 31.76 42.3 

4-Aug-15 23.08 1002 93.33 30.68 30.68 25 

5-Aug-15 22.55 1002 93.62 31.38 31.38 53.8 

6-Aug-15 22.8 1001 93.99 30.85 30.85 13.6 

7-Aug-15 22.61 1000 93.4 29.75 29.75 38.7 

8-Aug-15 22.51 1000 94.95 30.89 30.89 48.7 

9-Aug-15 22.74 1001 93.85 30.2 30.2 8.4 

10-Aug-15 22.78 1000 93.83 30.95 30.95 19.2 

11-Aug-15 22.98 1001 94.65 31.57 31.57 131.2 

12-Aug-15 22.75 1002 94.56 30.96 30.96 216.9 

13-Aug-15 22.61 1003 94.27 31.73 31.73 32.9 

14-Aug-15 22.99 1001 94.52 30.2 30.2 9.4 

15-Aug-15 22.69 1002 94.02 30.93 30.93 25.3 

16-Aug-15 23.44 1003 93.18 31.54 31.54 8.3 

17-Aug-15 22.6 1002 96.8 30.4 30.4 51.1 

18-Aug-15 22.78 1001 98.11 31.19 31.19 46.9 

19-Aug-15 22.42 1001 92.12 30.41 30.41 38.6 

20-Aug-15 22.76 1000 94.87 31.24 31.24 66.2 

21-Aug-15 22.85 1000 98.05 30.42 30.42 119.8 

22-Aug-15 22.41 1000 92.31 31.6 31.6 44.7 

23-Aug-15 22.97 1000 97.01 32.57 32.57 40.2 

24-Aug-15 22.97 1000 96.85 31.53 31.53 67.9 

25-Aug-15 22.61 1001 95.93 30.52 30.52 27.8 

26-Aug-15 22.96 1002 91.55 30.94 30.94 10 

27-Aug-15 23.1 1001 94.32 29.56 29.56 22.8 

28-Aug-15 22.17 1000 94.41 30.72 30.72 258.5 

29-Aug-15 22.54 1002 92.26 30.14 30.14 90.1 

30-Aug-15 22.37 1003 92.84 30.74 30.74 27.5 

31-Aug-15 22.51 1003 94 30.5 30.5 52.5 

1-Sep-15 22.2 1003 95.03 29.99 29.99 221.2 

2-Sep-15 22.2 1002 97.12 30.04 30.04 54.1 

3-Sep-15 22.64 1003 96.78 30.53 30.53 86.3 

4-Sep-15 23.09 1002 98.16 30.84 30.84 68.3 

5-Sep-15 22.73 1001 96.63 29.16 29.16 24 

6-Sep-15 23.29 1002 97.96 31.09 31.09 97.2 

7-Sep-15 22.31 1003 98.49 31.02 31.02 91.9 
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8-Sep-15 21.97 1001 97.14 29.41 29.41 291.7 

9-Sep-15 22.15 1000 88.29 29.71 29.71 24.6 

10-Sep-15 21.87 1000 94.84 31.22 31.22 11.9 

11-Sep-15 22.39 1000 95.68 31.26 31.26 47.6 

12-Sep-15 22.89 1000 98.49 30.62 30.62 3.6 

13-Sep-15 23.14 1000 91.86 32.05 32.05 50.4 

14-Sep-15 23.43 1002 95.64 30.26 30.26 251.7 

15-Sep-15 22.85 1002 95.85 30.79 30.79 215.9 

16-Sep-15 22.52 1001 94.7 30.35 30.35 144.2 

17-Sep-15 22.12 1001 94.99 30.17 30.17 82.7 

18-Sep-15 23.07 1000 96.34 29.73 29.73 21.8 

19-Sep-15 23.16 1001 93.94 31.35 31.35 5.4 

20-Sep-15 23.25 1002 95.01 31.48 31.48 16.7 

21-Sep-15 22.31 1002 94.47 30.22 30.22 8.4 

22-Sep-15 22.49 1000 92.03 29.36 29.36 22.7 

23-Sep-15 22.52 1001 91.19 30.96 30.96 17.3 

24-Sep-15 22.87 1000 92.57 31.08 31.08 47.6 

25-Sep-15 22.39 1001 94.59 30.59 30.59 107.2 

26-Sep-15 22.97 1001 94.26 31.58 31.58 12.6 

27-Sep-15 22.59 999 94.43 31.08 31.08 19.8 

28-Sep-15 23.16 999 94.59 32.34 32.34 45.9 

29-Sep-15 22.78 999 97.46 29.8 29.8 99 

30-Sep-15 22.85 1000 96.63 31.72 31.72 385.7 

1-Oct-15 22.14 1000 94.4 32.39 32.39 31 

2-Oct-15 23.42 999 93.96 33.26 33.26 25.9 

3-Oct-15 22.97 999 94.66 32.31 32.31 23.6 

4-Oct-15 23.38 1000 95.53 30.86 30.86 4.6 

5-Oct-15 23.22 1001 93.67 30.03 30.03 65.1 

6-Oct-15 23.65 1001 92.38 31.28 31.28 52.1 

7-Oct-15 23.36 1000 95.47 32.03 32.03 49.3 

8-Oct-15 22.51 1000 95.77 30.37 30.37 24.2 

9-Oct-15 22.66 1001 95.43 29.99 29.99 52.9 

10-Oct-15 22.53 1000 96.87 30.51 30.51 11.8 

11-Oct-15 23.57 1001 93.51 31.76 31.76 44.3 

12-Oct-15 23.32 1000 98.04 31.13 31.13 5.8 

13-Oct-15 23.45 1001 93.52 31.8 31.8 22.3 

14-Oct-15 23.52 1000 94.89 32.7 32.7 78.1 

15-Oct-15 23.12 1000 94.88 31.74 31.74 123 

16-Oct-15 24.1 999 96.7 31.89 31.89 11.6 

17-Oct-15 23.05 1000 93.13 31.76 31.76 32.7 

18-Oct-15 22.68 1001 94.99 31.51 31.51 19.9 

19-Oct-15 23.66 1000 94.23 33.21 33.21 35.9 

20-Oct-15 22.77 1000 93.25 32.27 32.27 32.3 

21-Oct-15 23.28 1000 97.53 32.2 32.2 52.8 

22-Oct-15 23.22 1000 95.69 30.62 30.62 107.7 

23-Oct-15 23.33 1001 97.9 31.28 31.28 52.3 

24-Oct-15 23.73 1000 94.71 30.99 30.99 63.9 

25-Oct-15 23.12 1000 95.61 31.06 31.06 1.9 
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26-Oct-15 23.51 1000 95.96 31.09 31.09 45 

27-Oct-15 23.3 1000 93.57 31.63 31.63 64.2 

28-Oct-15 24.08 1000 95.88 31.5 31.5 113.5 

29-Oct-15 23.29 1000 95.68 31.84 31.84 150.4 

30-Oct-15 22.72 999 97.29 30.25 30.25 125.3 

31-Oct-15 23.09 999 95.12 30.32 30.32 39.6 

1-Nov-15 23.03 999 96.22 31.48 31.48 176.8 

2-Nov-15 22.58 1000 95.92 30.4 30.4 257.2 

3-Nov-15 22.87 1000 97.9 28.34 28.34 38.6 

4-Nov-15 23.77 1000 95.31 27 27 2.7 

5-Nov-15 22.91 999 96.08 26.84 26.84 208.8 

6-Nov-15 22.97 1000 97.29 26.75 26.75 17.9 

7-Nov-15 23.43 999 94.87 28.29 28.29 14.1 

8-Nov-15 23.12 1000 93.72 27.72 27.72 104.8 

9-Nov-15 22.23 1002 96.33 31.5 31.5 70.6 

10-Nov-15 23.14 1001 94.72 30.7 30.7 331.7 

11-Nov-15 22.68 1000 97.86 29.37 29.37 13.3 

12-Nov-15 23.33 998 97.34 29.15 29.15 0 

13-Nov-15 24 998 97.07 28.87 28.87 0.3 

14-Nov-15 24.45 999 98.28 26.89 26.89 4.1 

15-Nov-15 24.22 1000 94.76 25.97 25.97 40.5 

16-Nov-15 23.64 1000 97.66 27.19 27.19 4.3 

17-Nov-15 23.79 998 96.19 26.51 26.51 18.3 

18-Nov-15 24.04 997 96.52 27.92 27.92 1.3 

19-Nov-15 24.91 997 96.08 28.05 28.05 1.2 

20-Nov-15 24.26 998 95.99 27.74 27.74 2.1 

21-Nov-15 23.93 998 93.41 27.6 27.6 0.5 

22-Nov-15 24.31 997 94.93 26.83 26.83 3 

23-Nov-15 24.47 997 94.33 28.71 28.71 10.8 

24-Nov-15 24.09 999 94.9 27.74 27.74 45.6 

25-Nov-15 22.87 999 96.28 28.53 28.53 0 

26-Nov-15 24.96 998 96.18 27.24 27.24 2.9 

27-Nov-15 24.32 997 94.94 26.92 26.92 7.5 

28-Nov-15 23.36 999 93.7 27.47 27.47 0.1 

29-Nov-15 24.66 1000 95.59 26.96 26.96 10.9 

30-Nov-15 24.98 1001 96.02 26.93 26.93 0.1 

1-Dec-15 24.35 1000 97.02 29.68 29.68 17.3 

2-Dec-15 24.46 1000 95.59 28.69 28.69 4.8 

3-Dec-15 23.84 1000 96.77 27.81 27.81 0 

4-Dec-15 23.52 999 88.57 26.85 26.85 0 

5-Dec-15 23.97 1000 91.32 26.29 26.29 0 

6-Dec-15 24.02 1000 97.61 25.63 25.63 6 

7-Dec-15 20.98 1000 71.85 25.96 25.96 0 

8-Dec-15 19.23 1000 67.64 25.27 25.27 0 

9-Dec-15 24.58 1000 97.53 24.43 24.43 0 

10-Dec-15 24.67 1000 98.59 24.98 24.98 5.3 

11-Dec-15 23.49 1000 90.34 24.81 24.81 0 

12-Dec-15 22.06 1000 85.85 23.61 23.61 0 
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13-Dec-15 20.91 1000 88.62 22.21 22.21 0 

14-Dec-15 23.24 1000 93.79 22.73 22.73 0 

15-Dec-15 21.67 1000 84.5 22.08 22.08 0 

16-Dec-15 18.86 1000 72.2 21.6 21.6 0 

17-Dec-15 20.29 1000 78.57 20.49 20.49 0 

18-Dec-15 21.09 1000 80.53 21.59 21.59 0 

19-Dec-15 20.18 1000 66.72 21.97 21.97 0 

20-Dec-15 21.96 1001 82.54 23.79 23.79 0.2 

21-Dec-15 23.25 1001 94.18 25.57 25.57 0.5 

22-Dec-15 22.29 1000 87.02 25.31 25.31 1.2 

23-Dec-15 20.21 1000 75 24.53 24.53 0 

24-Dec-15 22.25 1000 90.23 23.77 23.77 0 

25-Dec-15 21.71 1001 83.28 24.43 24.43 0.1 

26-Dec-15 20.77 1000 79.79 24.87 24.87 0 

27-Dec-15 22.36 999 89.6 25.34 25.34 0 

28-Dec-15 21.67 999 82.23 24.44 24.44 0 

29-Dec-15 23.63 1000 90.98 24.13 24.13 0 

30-Dec-15 22.71 1001 86.15 23.5 23.5 0.1 

31-Dec-15 24.1 1000 95.28 22.97 22.97 0 

. . . . . . . 

. . . . . . . 

30-Dec-19 22.91 997 94.9 21.92 21.92 0.2 

31-Dec-19 24.3 997 96.04 23.29 23.29 0 

(b) Source Dataset: Ikeja dataset 
 
 

Date Dew(Oc) Pressure(hPa) Humidity(KG) Temp(oC) WindSpeed(KM/S) Rainfall(mm) 

1-Jan-15 24.09 1009 87.03 34.61 3.72 0 

2-Jan-15 24.07 1010 87.99 34.57 4.037 0 

3-Jan-15 24.13 1012 88.11 34.72 4.726 0 

4-Jan-15 24.12 1012 90.19 34.59 1.564 0 

5-Jan-15 21.28 1012 73.14 34.09 0.463 0 

6-Jan-15 19.06 1010 61.72 34.13 1.734 0 

7-Jan-15 19.84 1010 65.31 33.78 2.245 0 

8-Jan-15 21.06 1011 71.62 33.55 1.975 0 

9-Jan-15 21.62 1012 74.87 33.82 1.34 0 

10-Jan-15 21.39 1012 62.28 33.48 1.764 0 

11-Jan-15 19.6 1012 64.7 33.24 0.51 0 

12-Jan-15 19.48 1011 44.72 33.29 1.845 0 

13-Jan-15 20.64 1010 57.48 33.05 2.027 0 

14-Jan-15 19.37 1010 64.64 33.24 1.063 0 

15-Jan-15 20.8 1010 74.56 32.98 3.21 0 

16-Jan-15 22.25 1011 82.21 33.26 2.964 0 

17-Jan-15 22.98 1010 85.27 33.35 3.316 0 

18-Jan-15 23.86 1011 91.37 33.57 4.435 0 

19-Jan-15 23.92 1011 93.52 33.74 4.865 0 

20-Jan-15 24.88 1009 95.53 33.99 4.28 0 

21-Jan-15 24.89 1009 94.37 34.2 4.412 0 

22-Jan-15 24.95 1011 92.56 34.41 4.761 0 
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23-Jan-15 25.22 1010 94.27 34.6 4.392 0 

24-Jan-15 25.26 1008 94.06 34.47 5.712 0 

25-Jan-15 25.05 1008 95.78 34.17 5.14 2 

26-Jan-15 24.59 1009 91.11 34.28 5.556 2 

27-Jan-15 25.09 1010 93.88 34.49 4.812 3 

28-Jan-15 25.23 1009 92.26 34.68 5.956 2 

29-Jan-15 24.77 1009 93.19 34.25 4.635 3 

30-Jan-15 24.9 1009 92.64 34.52 3.7 4 

31-Jan-15 24.65 1010 91.79 34.47 3.539 13 

1-Feb-15 24.97 1010 92.36 34.66 4.839 4 

2-Feb-15 25.48 1008 92.09 34.97 4.608 0 

3-Feb-15 25.27 1008 92.01 34.96 5.576 2 

4-Feb-15 25.36 1009 92.4 34.92 4.813 2 

5-Feb-15 25.31 1008 91.65 35.01 5.077 1 

6-Feb-15 25.42 1008 91.3 35.09 5.124 1 

7-Feb-15 25.11 1008 90.41 35.07 4.696 4 

8-Feb-15 25.18 1008 89.74 35.14 5.422 1 

9-Feb-15 25.5 1008 91.47 35.11 5.637 3 

10-Feb-15 25.47 1008 90.57 35.21 4.925 0 

11-Feb-15 25.79 1007 92.83 35.39 4.706 0 

12-Feb-15 25.55 1009 90.59 35.34 5.753 4 

13-Feb-15 25.33 1010 89.88 35.21 6.097 2 

14-Feb-15 25.13 1011 88.86 35.39 5.637 1 

15-Feb-15 25.18 1010 90.61 35.28 4.161 1 

16-Feb-15 25.18 1010 88.09 35.23 4.941 0 

17-Feb-15 25.31 1009 90.32 35.37 4.832 0 

18-Feb-15 25.26 1008 88.15 35.01 5.497 37 

19-Feb-15 23.67 1008 88.99 34.05 2.745 91 

20-Feb-15 24.1 1008 86.3 34.61 4.811 14 

21-Feb-15 24.81 1008 87.63 34.97 3.599 3 

22-Feb-15 25.14 1008 88.63 34.87 5.203 36 

23-Feb-15 25.4 1009 91.17 35.1 4.093 2 

24-Feb-15 24.75 1009 91.02 34.82 3.178 0 

25-Feb-15 25.7 1008 93.76 35.01 4.845 0 

26-Feb-15 25.71 1007 93.11 35.05 5.203 1 

27-Feb-15 25.11 1007 89.04 34.92 4.289 3 

28-Feb-15 23.74 1010 85.01 34.55 3.549 3 

1-Mar-15 24.74 1009 84.68 35.44 3.672 1 

2-Mar-15 25.3 1008 90.45 35.08 4.402 0 

3-Mar-15 25.44 1008 91.57 35.06 4.443 0 

4-Mar-15 25.2 1009 92.66 34.79 3.553 5 

5-Mar-15 25.05 1009 88.75 35.08 2.911 5 

6-Mar-15 25.67 1008 91.58 35.3 3.96 0 

7-Mar-15 25.63 1008 91.72 35.2 4.629 0 

8-Mar-15 25.36 1008 90.93 34.98 4.944 0 

9-Mar-15 25.37 1008 92.96 34.98 4.023 2 

10-Mar-15 25.52 1008 92.68 35.11 5.097 1 

11-Mar-15 25.57 1009 90.31 35.55 4.018 3 
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12-Mar-15 25.69 1008 90.43 35.51 3.308 1 

13-Mar-15 25.08 1007 88.05 34.95 4.371 105 

14-Mar-15 24.75 1006 86.92 35.12 4.011 4 

15-Mar-15 25.72 1006 88.87 35.58 3.895 0 

16-Mar-15 25.83 1007 90.29 35.52 4.605 1 

17-Mar-15 25.82 1008 93.17 35.11 3.42 3 

18-Mar-15 24.66 1008 90.11 34.53 3.612 26 

19-Mar-15 25.58 1006 90.35 35.13 3.979 0 

20-Mar-15 25.61 1007 89.69 35.45 4.262 1 

21-Mar-15 25.5 1007 87.82 35.33 4.893 60 

22-Mar-15 24.57 1009 88.88 34.88 0.89 105 

23-Mar-15 25.04 1007 83.7 35.86 3.402 2 

24-Mar-15 25.5 1008 89.95 35.55 4.774 0 

25-Mar-15 25.01 1007 88.77 34.95 4.651 140 

26-Mar-15 24.91 1009 89.24 35.18 2.575 79 

27-Mar-15 25.03 1010 85.9 35.3 3.594 39 

28-Mar-15 25.17 1011 85.45 35.63 5.444 33 

29-Mar-15 25.47 1010 89.58 35.36 6.627 1 

30-Mar-15 25.01 1009 88.05 35.38 4.438 10 

31-Mar-15 23.95 1010 90.43 34.02 2.223 219 

1-Apr-15 23.82 1010 88.86 33.94 0.949 143 

2-Apr-15 24.59 1010 87.77 34.94 3.108 0 

3-Apr-15 25.04 1009 89.65 35.17 3.987 0 

4-Apr-15 25.25 1008 91.64 35.13 3.936 0 

5-Apr-15 25.13 1008 91.67 34.76 4.877 8 

6-Apr-15 24.45 1009 88.1 34.72 3.137 20 

7-Apr-15 24.79 1008 88.92 35.09 3.582 2 

8-Apr-15 24.6 1008 88.75 35.18 3.774 4 

9-Apr-15 25.29 1009 88.34 35.38 4.463 6 

10-Apr-15 25.16 1008 88.44 35.34 4.211 3 

11-Apr-15 24.57 1009 86.52 35.45 2.309 1 

12-Apr-15 24.08 1010 89.15 34.69 2.008 103 

13-Apr-15 24.6 1010 88.73 35.24 3.086 2 

14-Apr-15 25.29 1009 91.37 35.54 3.418 0 

15-Apr-15 25.64 1009 92.21 35.35 5.799 1 

16-Apr-15 25.73 1009 91.56 35.47 5.609 1 

17-Apr-15 25.38 1010 88.87 35.86 4.182 0 

18-Apr-15 25.38 1010 87.67 35.79 4.585 1 

19-Apr-15 25.55 1009 88.65 35.84 5.028 1 

20-Apr-15 25.49 1008 85.74 36 5.327 4 

21-Apr-15 25.35 1007 86.14 35.81 5.275 4 

22-Apr-15 25.44 1008 84.76 36.29 4.994 0 

23-Apr-15 25.35 1009 85.6 36.05 4.871 2 

24-Apr-15 25.19 1009 86.91 35.79 4.554 6 

25-Apr-15 24.82 1010 87.94 35.5 6.005 9 

26-Apr-15 25.33 1010 90.09 35.77 4.496 3 

27-Apr-15 24.61 1009 86.92 35.51 1.992 0 

28-Apr-15 25.03 1009 86.02 35.86 4.35 0 
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29-Apr-15 25.27 1009 86.17 35.58 5.682 37 

30-Apr-15 25.02 1008 84.13 36.26 4.171 0 

1-May-15 25.05 1007 83.22 36.19 4.452 13 

2-May-15 25.05 1007 82.61 36.1 2.854 8 

3-May-15 25.29 1008 84.27 36.29 4.607 4 

4-May-15 24.75 1008 85.12 35.6 2.821 34 

5-May-15 24.78 1009 88.39 34.77 3.517 252 

6-May-15 24.6 1009 86.6 35.27 3.985 1 

7-May-15 25.13 1009 86.83 36.1 4.111 0 

8-May-15 25.25 1010 90.41 35.5 4.755 41 

9-May-15 25.22 1010 87.54 36.02 3.45 14 

10-May-15 24.86 1009 84.77 35.91 4.23 31 

11-May-15 24.65 1009 84.76 35.47 4.063 43 

12-May-15 25.06 1009 84.73 36.16 2.825 27 

13-May-15 25.3 1010 86.4 35.78 4.004 28 

14-May-15 25.11 1008 87.8 36.03 3.212 51 

15-May-15 24.21 1009 84.28 35.27 1.46 87 

16-May-15 24.83 1010 82.26 36.34 2.378 4 

17-May-15 25.09 1009 83.46 36.32 3.67 0 

18-May-15 25.23 1010 87.72 35.78 4.492 25 

19-May-15 24.8 1010 86 35.34 2.943 65 

20-May-15 24.85 1010 86.6 35.84 2.982 2 

21-May-15 24.74 1010 81.5 36.16 4.928 5 

22-May-15 24.9 1010 87.44 35.67 3.528 15 

23-May-15 24.29 1010 89.72 34.26 4.006 301 

24-May-15 24.29 1012 88.16 34.31 2.567 133 

25-May-15 24.3 1010 85.25 35.31 2.641 4 

26-May-15 24.62 1010 84.02 35.71 5.432 8 

27-May-15 24.4 1009 88.67 34.36 4.425 85 

28-May-15 24.22 1010 90.17 34.37 3.333 137 

29-May-15 24.08 1009 87.85 34.53 2.775 152 

30-May-15 24.12 1009 85.01 35.18 4.001 3 

31-May-15 24.08 1010 88.83 34.51 4.388 115 

1-Jun-15 24.18 1010 86.43 35.03 3.237 17 

2-Jun-15 24.2 1009 89.12 34.34 4.639 95 

3-Jun-15 23.34 1010 86.07 34.38 4.468 44 

4-Jun-15 23.31 1012 90.12 33.75 3.394 226 

5-Jun-15 23.68 1010 87.8 34.32 4.501 57 

6-Jun-15 23.29 1010 86.7 33.98 1.491 32 

7-Jun-15 23.41 1011 90.22 34 3.402 63 

8-Jun-15 23.48 1010 87.82 33.86 3.107 73 

9-Jun-15 23.31 1010 88.64 34.03 3.838 66 

10-Jun-15 23.34 1011 89.59 33.49 3.71 105 

11-Jun-15 23.57 1012 88.3 34.1 5.073 11 

12-Jun-15 24.16 1011 92.04 34.2 4.944 15 

13-Jun-15 23.78 1011 89.81 34.15 3.31 24 

14-Jun-15 23.38 1011 89.49 33.4 3.278 67 

15-Jun-15 23.11 1011 87.34 33.8 3.343 22 
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16-Jun-15 23.4 1011 86.31 34.14 5.21 15 

17-Jun-15 23.26 1011 87.51 33.96 4.326 64 

18-Jun-15 24.01 1010 89.52 34.14 5.051 13 

19-Jun-15 23.52 1010 89.76 33.74 5.267 57 

20-Jun-15 23.62 1012 90.21 33.95 5.454 35 

21-Jun-15 22.97 1013 89.04 33.21 4.338 206 

22-Jun-15 22.87 1014 90.29 33.09 4.131 66 

23-Jun-15 22.97 1014 85.53 34.03 5.08 22 

24-Jun-15 23.08 1014 87.28 34.06 5.789 3 

25-Jun-15 23.33 1015 86.93 34.19 6.204 12 

26-Jun-15 23.1 1015 88.3 33.76 5.398 34 

27-Jun-15 23.23 1013 86.67 33.84 5.278 32 

28-Jun-15 23.25 1013 89.74 33.51 4.166 86 

29-Jun-15 23.17 1014 89.5 33.22 4.542 220 

30-Jun-15 23.27 1013 89.11 33.43 4.685 30 

1-Jul-15 23.13 1013 88.09 33.49 5.258 28 

2-Jul-15 23.52 1012 89 33.67 5.198 32 

3-Jul-15 23.25 1012 92.67 33.2 3.87 445 

4-Jul-15 23.1 1013 91.05 33.16 3.303 46 

5-Jul-15 23.42 1012 91.15 33.43 4.176 7 

6-Jul-15 23.36 1010 89.61 33.66 3.367 6 

7-Jul-15 23.58 1010 90.57 33.85 2.727 3 

8-Jul-15 23.6 1010 89.49 33.97 2.339 4 

9-Jul-15 24.01 1010 90.94 33.9 3.822 2 

10-Jul-15 24.2 1011 92.65 33.86 4.668 4 

11-Jul-15 23.7 1013 93.12 33.65 2.546 3 

12-Jul-15 24 1012 91.2 33.94 3.8 4 

13-Jul-15 23.52 1011 91.47 33.45 4.781 8 

14-Jul-15 23.62 1011 92.21 33.58 4.532 9 

15-Jul-15 23.44 1011 90.93 33.41 4.485 27 

16-Jul-15 22.9 1012 88.85 32.85 3.886 110 

17-Jul-15 22.72 1013 89.77 33.23 2.72 17 

18-Jul-15 23.6 1012 92 33.43 4.218 2 

19-Jul-15 23.39 1011 91.3 33.37 6.252 21 

20-Jul-15 22.94 1011 87.64 33.1 6.322 79 

21-Jul-15 22.67 1012 90.43 32.96 6.16 18 

22-Jul-15 22.61 1013 89.64 33.06 5.24 8 

23-Jul-15 22.57 1013 89.84 33.1 5.291 0 

24-Jul-15 22.58 1013 87.16 33.17 6.383 7 

25-Jul-15 22.3 1012 86.29 33.1 5.339 15 

26-Jul-15 22.45 1013 87.75 33.03 5.721 10 

27-Jul-15 22.6 1012 89.03 32.99 5.855 1 

28-Jul-15 22.1 1012 85.23 32.91 7.377 42 

29-Jul-15 21.51 1014 85.55 32.52 5.636 5 

30-Jul-15 22.11 1013 89.62 32.71 5.322 1 

31-Jul-15 22.11 1013 89.05 32.7 5.847 13 

1-Aug-15 22.66 1012 89.55 32.88 4.615 2 

2-Aug-15 22.74 1012 91.44 32.76 5.218 3 
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3-Aug-15 22.81 1011 92.07 32.75 4.366 3 

4-Aug-15 22.81 1013 92.3 32.56 4.377 8 

5-Aug-15 22.68 1012 90.6 32.66 4.491 2 

6-Aug-15 22.95 1011 90.83 32.74 4.626 1 

7-Aug-15 23.08 1010 91.97 32.92 4.701 10 

8-Aug-15 22.8 1011 92.31 32.64 3.95 13 

9-Aug-15 22.84 1011 92.22 32.75 3.84 4 

10-Aug-15 22.74 1010 91.79 32.76 4.868 24 

11-Aug-15 22.62 1012 89.58 32.81 4.798 18 

12-Aug-15 22.8 1013 91.23 32.78 5.052 5 

13-Aug-15 22.82 1013 91.77 32.63 4.553 10 

14-Aug-15 22.98 1012 90.45 32.95 4.544 6 

15-Aug-15 22.96 1011 91.94 32.86 6.295 23 

16-Aug-15 22.95 1013 90.35 32.81 4.022 7 

17-Aug-15 23.22 1013 95.36 32.58 5.311 6 

18-Aug-15 22.9 1011 90.17 32.78 5.322 28 

19-Aug-15 22.97 1011 90.81 32.9 4.51 8 

20-Aug-15 22.7 1010 89.05 32.83 4.28 39 

21-Aug-15 22.76 1010 91.94 32.64 5.95 143 

22-Aug-15 22.79 1011 91.74 32.79 4.765 23 

23-Aug-15 22.8 1010 90.3 32.93 5.292 6 

24-Aug-15 23.12 1011 90.78 33.04 3.835 20 

25-Aug-15 22.96 1011 90.61 32.92 4.69 16 

26-Aug-15 22.83 1012 90.3 33.04 4.201 28 

27-Aug-15 23.01 1011 90.2 32.98 4.934 4 

28-Aug-15 22.76 1010 88.5 33.09 5.822 30 

29-Aug-15 22.84 1012 90.01 32.98 4.293 21 

30-Aug-15 22.69 1013 89.23 32.94 3.991 17 

31-Aug-15 22.84 1013 90.22 32.9 5.281 4 

1-Sep-15 22.67 1012 91.45 32.9 5.931 128 

2-Sep-15 22.78 1012 90.85 32.85 5.339 9 

3-Sep-15 22.66 1013 89.47 32.8 4.845 5 

4-Sep-15 22.96 1012 91.68 32.81 3.559 2 

5-Sep-15 23.07 1011 92.75 33.01 4.112 7 

6-Sep-15 23.02 1012 89.75 32.96 4.735 155 

7-Sep-15 22.94 1013 91.07 32.91 4.728 14 

8-Sep-15 22.85 1011 93.14 32.69 4.745 43 

9-Sep-15 22.65 1011 87.53 33.04 4.965 71 

10-Sep-15 22.95 1011 91.47 32.87 3.962 5 

11-Sep-15 23.33 1010 92.85 32.87 4.576 0 

12-Sep-15 23.13 1010 93.1 32.96 3.003 2 

13-Sep-15 23.24 1011 89.99 33.28 4.256 27 

14-Sep-15 23.19 1012 91.31 33.32 4.261 10 

15-Sep-15 23.11 1012 90.07 33.27 4.286 95 

16-Sep-15 22.99 1012 90.29 33.1 5.119 131 

17-Sep-15 23.2 1010 92.26 33.22 4.498 14 

18-Sep-15 23.49 1010 92.56 33.06 3.856 16 

19-Sep-15 23.21 1011 89.55 33.12 4.47 15 
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20-Sep-15 23.19 1012 92.22 33.18 2.646 3 

21-Sep-15 23.05 1012 91.55 33.09 2.607 7 

22-Sep-15 22.88 1011 90.26 33.07 4.569 34 

23-Sep-15 23.16 1011 89.62 33.36 3.701 8 

24-Sep-15 23.74 1011 94.26 33.51 5.057 4 

25-Sep-15 22.98 1011 91.03 33.33 3.573 80 

26-Sep-15 23.47 1011 89.97 33.62 4.921 215 

27-Sep-15 23.73 1009 89.8 33.59 4.411 8 

28-Sep-15 23.63 1009 88.68 33.83 4.941 14 

29-Sep-15 23.39 1010 90.6 33.64 3.645 56 

30-Sep-15 23.31 1010 89.8 33.44 3.432 104 

1-Oct-15 23.37 1010 90.02 33.61 4.287 17 

2-Oct-15 23.44 1009 90.45 33.65 4.765 7 

3-Oct-15 23.25 1009 89.52 33.61 3.992 37 

4-Oct-15 23.09 1011 88.71 33.52 3.367 105 

5-Oct-15 23.61 1012 88.33 33.97 3.316 26 

6-Oct-15 23.68 1011 90.13 34.02 3.838 10 

7-Oct-15 23.57 1011 89.34 33.81 3.188 139 

8-Oct-15 23.5 1011 87.44 33.72 4.12 93 

9-Oct-15 23.48 1012 89 33.7 2.979 45 

10-Oct-15 23.6 1011 91.22 33.79 1.978 25 

11-Oct-15 23.68 1012 89.25 34.12 3.651 26 

12-Oct-15 23.97 1011 88.02 34.43 1.243 1 

13-Oct-15 24.11 1011 89.34 34.62 3.645 2 

14-Oct-15 24.12 1010 88.28 34.28 3.785 83 

15-Oct-15 23.87 1010 86.76 34.4 2.52 16 

16-Oct-15 24.44 1009 88.35 34.64 3.874 12 

17-Oct-15 24.36 1010 88.61 34.51 4.314 56 

18-Oct-15 24.01 1011 89.12 34.3 3.795 67 

19-Oct-15 24.14 1011 88.36 34.78 4.051 7 

20-Oct-15 24.09 1010 89.9 34.09 2.837 55 

21-Oct-15 23.94 1010 89.08 34.08 2.538 156 

22-Oct-15 23.83 1010 86.11 34.54 3.243 8 

23-Oct-15 23.84 1011 87.41 34.6 3.361 12 

24-Oct-15 24.3 1010 87.96 34.82 3.958 23 

25-Oct-15 24.16 1010 88.07 34.75 4.001 14 

26-Oct-15 24.33 1011 90.54 34.53 3.442 29 

27-Oct-15 24.34 1011 87.31 35.1 3.828 15 

28-Oct-15 24.34 1010 89.34 34.67 0.529 32 

29-Oct-15 23.84 1010 87.15 34.56 3.012 11 

30-Oct-15 23.53 1010 86.22 34.24 2.727 27 

31-Oct-15 23.84 1009 85.76 34.63 1.488 20 

1-Nov-15 23.29 1011 92.01 33.7 1.075 256 

2-Nov-15 23.36 1010 90.2 33.58 2.362 239 

3-Nov-15 23.36 1010 87.97 34.41 0.786 11 

4-Nov-15 24.29 1010 85.65 35.18 3.548 1 

5-Nov-15 24.21 1010 84.91 34.83 4.374 18 

6-Nov-15 23.98 1010 88.28 34.38 2.703 32 
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7-Nov-15 23.9 1010 85.5 34.68 3.106 15 

8-Nov-15 24.17 1010 87.22 34.72 2.792 10 

9-Nov-15 23.87 1012 87.49 34.27 2.647 97 

10-Nov-15 23.8 1012 83.82 34.91 3.218 13 

11-Nov-15 23.86 1010 84.66 34.76 2.864 19 

12-Nov-15 24.81 1009 86.13 35.54 3.655 0 

13-Nov-15 25.11 1009 89 35.49 4.371 0 

14-Nov-15 25.62 1010 91.23 35.49 4.456 0 

15-Nov-15 25.12 1010 87.55 35.57 5.652 0 

16-Nov-15 24.99 1009 88.67 35.47 3.586 0 

17-Nov-15 24.34 1009 87.7 34.99 3.472 2 

18-Nov-15 24.29 1008 85.92 34.94 3.241 56 

19-Nov-15 24.84 1007 87.38 35.47 4.305 0 

20-Nov-15 25 1008 88.36 35.39 4.223 0 

21-Nov-15 24.9 1008 87.13 35.41 4.381 0 

22-Nov-15 25.06 1007 86.93 35.52 4.557 0 

23-Nov-15 25.12 1007 87.96 35.45 4.069 0 

24-Nov-15 25.19 1009 88.76 35.49 4.077 1 

25-Nov-15 24.71 1010 86.96 35.37 3.627 3 

26-Nov-15 24.94 1008 85.7 35.55 4.975 0 

27-Nov-15 24.77 1008 84.31 35.64 4.883 0 

28-Nov-15 25 1009 85.51 35.68 4.492 2 

29-Nov-15 25.34 1010 88.09 35.69 4.522 0 

30-Nov-15 25.21 1011 88.57 35.64 3.369 0 

1-Dec-15 25.15 1011 88.98 35.7 4.042 0 

2-Dec-15 25.13 1011 87.13 35.89 3.732 1 

3-Dec-15 24.55 1010 86.87 35.23 2.447 5 

4-Dec-15 23.58 1010 78.7 35.44 0.276 0 

5-Dec-15 22.47 1010 66.93 35.47 0.982 0 

6-Dec-15 23.01 1011 70.66 35.02 2.751 0 

7-Dec-15 23.38 1011 77.81 34.9 1.562 0 

8-Dec-15 23.31 1011 59.29 35.01 0.992 0 

9-Dec-15 22.1 1011 71.21 34.99 1.695 0 

10-Dec-15 23.2 1011 77.27 34.89 2.585 0 

11-Dec-15 23.45 1011 79.51 34.79 2.912 0 

12-Dec-15 23.48 1011 81.98 34.66 2.665 0 

13-Dec-15 23.11 1011 79.7 34.68 2.677 0 

14-Dec-15 22.24 1010 74.38 34.72 3.603 0 

15-Dec-15 22.47 1010 76.53 35.08 1.626 0 

16-Dec-15 21.28 1011 67.84 34.66 0.576 0 

17-Dec-15 19.49 1010 63.45 34.82 2.323 0 

18-Dec-15 20.74 1011 65.04 34.77 2.551 0 

19-Dec-15 20.06 1011 58.7 35.37 1.894 0 

20-Dec-15 21.43 1011 64.22 35.13 2.833 0 

21-Dec-15 21.31 1011 66.57 34.9 2.657 0 

22-Dec-15 22.56 1011 73.75 34.76 1.78 0 

23-Dec-15 21.5 1011 64.8 34.8 0.357 0 

24-Dec-15 21.04 1011 68.71 34.66 1.607 0 
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25-Dec-15 21.11 1012 63.79 34.63 0.533 0 

26-Dec-15 22.02 1011 56.02 34.11 0.681 0 

27-Dec-15 21.17 1010 70.82 34.17 2.017 0 

28-Dec-15 21.98 1009 73.88 34.12 2.697 0 

29-Dec-15 23.59 1011 88.58 33.56 3.091 0 

30-Dec-15 23.5 1011 90.4 33.5 2.537 0 

31-Dec-15 24.39 1011 92.8 33.95 4.503 0 

. . . . . . . 

. . . . . . . 

30-Dec-19 24.41 1007 83.03 35.54 2.104 0 

31-Dec-19 23.73 1007 80.52 35.48 2.47 0 
 

 

(c) Source Dataset: Minna dataset 

 
 

Date 
Dew(Oc 
) 

Pressure(hPa 
) 

Humidity(KG 
) 

Temp(oC 
) 

WindSpeed(KM/S 
) 

Rainfall(mm 
) 

1-Jan-15 5.07 984.1 26.81 32.62 3.005 0 

2-Jan-15 5.86 985.2 31.21 31.77 3.197 0 

3-Jan-15 1.33 987.4 23.02 30.63 3.916 0 

4-Jan-15 -0.84 988.9 20.31 30.4 4.52 0 

5-Jan-15 -1.63 987.9 21.22 29.56 4.512 0 

6-Jan-15 1.86 986.5 25.84 28.8 3.615 0 

7-Jan-15 1.66 986.8 26.52 29.74 3.959 0 

8-Jan-15 -0.76 986.8 22.04 31.04 4.034 0 

9-Jan-15 0.94 988.3 22.68 31.45 4.121 0 

10-Jan-15 -1.56 988.8 19.27 31.07 4.878 0 

11-Jan-15 -2.77 989.3 18.49 29.48 4.591 0 

12-Jan-15 -2.51 987.8 19.52 29.25 4.121 0 

13-Jan-15 -2.56 987.1 19.45 28.35 4.336 0 

14-Jan-15 -3.09 987 19.34 29.01 4.276 0 

15-Jan-15 0.36 986.4 21.54 30.9 4.43 0 

16-Jan-15 1.52 986.6 24.33 31.24 3.76 0 

17-Jan-15 3.86 985.8 25.36 31.18 3.507 0 

18-Jan-15 5.38 986.2 27.94 29.99 1.932 0 

19-Jan-15 5.58 984.7 28.1 30.56 1.332 0 

20-Jan-15 7.42 983 29.43 31.03 1.255 0 

21-Jan-15 10.76 983.2 35.62 32.83 1.5 0 

22-Jan-15 11.74 984.9 37.27 33.18 1.421 0 

23-Jan-15 5.05 984.3 24.49 35.57 2.877 0 

24-Jan-15 3.02 982.6 18.86 33.07 2.271 0 

25-Jan-15 11.3 981.8 31.69 35.6 0.5 0 

26-Jan-15 13.37 982.4 37.37 33.75 0.756 0 

27-Jan-15 14.36 983.2 43.6 33.82 1.147 0 

28-Jan-15 8.07 982.8 30.6 33.32 1.964 0 

29-Jan-15 10.28 982.9 32.8 34.34 2.778 0 

30-Jan-15 15.14 983.6 47.44 33.71 1.572 0 



96 
 

31-Jan-15 19.39 983.9 58.81 34.74 0.882 0 

1-Feb-15 17.48 983.2 50.33 34.96 1.72 0 

2-Feb-15 10.31 982.5 33.45 34.4 1.535 0 

3-Feb-15 12.14 981.8 33.98 33.73 1.242 0 

4-Feb-15 10.8 982.3 33.01 34.79 1.82 0 

5-Feb-15 11.78 981.7 36.29 33.64 1.317 0 

6-Feb-15 10.97 981.8 35.23 34.53 1.584 0 

7-Feb-15 15.11 981.1 40.34 35.07 1.212 0 

8-Feb-15 15.44 981 39.73 37.44 0.822 0 

9-Feb-15 13.51 981 36.36 34.29 1.55 0 

10-Feb-15 16.42 981.4 44.98 36.43 1.21 0 

11-Feb-15 11.3 981.7 34.87 34.92 2.02 0 

12-Feb-15 3.02 982.9 18.22 36.36 3.322 0 

13-Feb-15 0.75 984.3 16.47 35.42 3.381 0 

14-Feb-15 5.45 984.6 23.67 34.91 2.403 0 

15-Feb-15 15.43 983.5 40.14 37.22 0.602 0 

16-Feb-15 15.43 982.7 38.94 36.96 0.774 0 

17-Feb-15 16.59 982.1 41.57 36.35 1.552 0 

18-Feb-15 17.94 980.6 43.3 36.26 0.75 0 

19-Feb-15 21.99 982.7 74.45 34.88 2.389 0 

20-Feb-15 20.2 981.4 59.89 35.55 1.703 0 

21-Feb-15 18.84 981 54.05 36.22 2.593 0 

22-Feb-15 20.5 981.6 56.02 36.8 1.823 0 

23-Feb-15 12.66 983 33.86 37.27 1.593 0 

24-Feb-15 10.13 983.7 29.38 36.59 2.649 0 

25-Feb-15 13.96 982.4 35.71 35.87 0.974 0 

26-Feb-15 15.66 981.1 38.5 37.04 1.553 0 

27-Feb-15 17.05 981.4 44.91 35.65 2.128 0 

28-Feb-15 21.59 984.6 74.07 33.18 1.379 0 

1-Mar-15 13.18 983.6 36.83 34.51 1.71 0 

2-Mar-15 1.54 982.4 16.65 35.79 3.069 0 

3-Mar-15 5.14 982.1 22.19 34.21 2.055 0 

4-Mar-15 7.35 983.8 26.54 34.41 2.53 0 

5-Mar-15 5.93 983.6 23.82 35.53 2.956 0 

6-Mar-15 6.97 982.4 24.59 35.3 2.796 0 

7-Mar-15 12.16 981.3 32.47 35 1.172 0 

8-Mar-15 15.31 980.6 36.35 37.27 1.38 0 

9-Mar-15 12.44 980.9 29.43 36.92 0.987 0 

10-Mar-15 11.71 981.1 29.68 37.64 1.199 0 

11-Mar-15 15.39 982.1 37.28 38.33 2.449 0 

12-Mar-15 19.83 981.9 50.85 37.71 1.979 0 

13-Mar-15 1.74 980.4 15.94 36.63 2.369 0 

14-Mar-15 8 979.7 23.49 36.07 2.095 0 

15-Mar-15 9.77 980 27.73 35.6 1.12 0 

16-Mar-15 5.97 980.6 19.68 39 0.309 0 

17-Mar-15 16.96 981.4 42.77 37.77 1.392 0 

18-Mar-15 17.11 981.1 43.55 37 2.03 0 

19-Mar-15 16.65 979.1 39.69 37.91 1.449 0 
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20-Mar-15 18.69 979.5 43.96 38.74 2.663 0 

21-Mar-15 20.11 979.8 48.94 39.14 2.507 0 

22-Mar-15 23.46 981.7 74.54 36.15 2.37 0 

23-Mar-15 21.49 981 54.25 38.85 3.009 0 

24-Mar-15 20.24 980.7 49.6 37.59 2.79 0 

25-Mar-15 22.45 981.2 73.65 36.66 2.168 0 

26-Mar-15 23.05 984.7 90.29 33.49 0.561 1 

27-Mar-15 22.16 983.3 67.9 34.57 1.584 0 

28-Mar-15 20.36 984.3 62.72 35.15 3.064 0 

29-Mar-15 16.59 982.5 46.19 34.44 0.892 0 

30-Mar-15 18.75 982 51.97 34.85 2.579 0 

31-Mar-15 22.51 985 86.72 33.25 3.093 0 

1-Apr-15 20.13 984 55.13 34.43 1.008 0 

2-Apr-15 9.12 984.7 32.18 34.08 1.471 0 

3-Apr-15 10.93 982.5 28.54 35.19 1.431 0 

4-Apr-15 14.64 981.3 34.41 36.28 2.318 0 

5-Apr-15 17.58 980.4 45.27 36.82 2.603 0 

6-Apr-15 19.75 981.8 54.35 36.73 3.408 0 

7-Apr-15 19.56 981.7 51.72 36.76 2.412 0 

8-Apr-15 21.12 981.9 54.2 37.81 3.354 0 

9-Apr-15 20.85 981.2 54.35 38.74 3.304 0 

10-Apr-15 23.22 981.1 69.74 36.95 3.089 0 

11-Apr-15 21.56 982.6 61.7 36.82 2.224 0 

12-Apr-15 21.09 983.9 60.48 36.2 2.088 0 

13-Apr-15 11.76 984.6 26.02 34.97 1.67 0 

14-Apr-15 3.61 984.1 18.45 35.22 2.637 0 

15-Apr-15 3.02 982.4 16.53 34.59 2.395 0 

16-Apr-15 7.12 982.3 22.73 35.5 0.892 0 

17-Apr-15 10.02 983.8 27.6 34.6 1.943 0 

18-Apr-15 2.33 983.6 17.84 33.47 2.555 0 

19-Apr-15 6.15 982.9 20.53 33.79 1.75 0 

20-Apr-15 7.32 981.8 22.74 34.99 1.687 0 

21-Apr-15 13.8 980.7 34.3 36.36 1.167 0 

22-Apr-15 14.65 981.2 36.28 38.08 1.628 0 

23-Apr-15 14.58 980.8 35.88 38.07 2.409 0 

24-Apr-15 17.92 981.6 39.93 39.44 3.364 0 

25-Apr-15 19.42 983 48.15 39.69 4.014 0 

26-Apr-15 18.43 983.1 44.24 37.41 1.87 0 

27-Apr-15 17.62 982.9 45.37 37.72 2.132 0 

28-Apr-15 15.18 982.1 37.66 38.65 1.795 0 

29-Apr-15 14.58 981.3 38.88 37.26 2.747 0 

30-Apr-15 16.91 981.5 39.14 37.19 2.322 0 

1-May-15 18.01 980.5 41.42 39.05 3.395 0 

2-May-15 18.62 979.8 44.89 39.11 3.001 0 

3-May-15 20.49 981 48.1 40.1 3.823 0 

4-May-15 21.62 981.3 52.96 39.56 3.803 0 

5-May-15 22.78 983.5 86.54 34.52 1.78 0.1 

6-May-15 22.07 983.5 75.54 33.51 1.613 0 



98 
 

7-May-15 20.39 982.3 57.38 35.19 1.794 0 

8-May-15 19.98 983 56.29 36.44 3.999 0 

9-May-15 21.33 984.2 60.19 36.58 2.124 0 

10-May-15 23.42 983.9 77.48 35.14 1.558 0 

11-May-15 21.84 982.8 66.93 36.33 2.838 0 

12-May-15 21.5 983.6 68.08 35.29 1.912 0.7 

13-May-15 23.02 983 65.99 37.06 2.451 0 

14-May-15 23.45 981.2 69.85 36.26 2.1 17.3 

15-May-15 23.28 983.6 86.98 33.68 0.683 0.1 

16-May-15 23.24 983.5 70.02 35.96 1.442 14.9 

17-May-15 23.6 983.8 73.57 36.78 1.317 1.6 

18-May-15 23.13 983.1 72.68 35.97 3.442 0 

19-May-15 22.47 982.8 66.66 36.86 3.195 0 

20-May-15 22.37 984.6 73.47 35.34 2.703 0 

21-May-15 22.69 983.1 63.48 36.45 2.33 0 

22-May-15 22.99 984.8 72.53 36.27 2.323 0 

23-May-15 21.84 983 64.8 37.04 1.753 0 

24-May-15 22.63 984.9 78.16 34.14 2.21 12.8 

25-May-15 22.49 984.4 72.19 35.43 2.664 0.1 

26-May-15 22.46 982.2 63.69 36.79 2.482 0 

27-May-15 22.97 982.6 69.83 36.99 3.486 0 

28-May-15 23.11 983.3 71.11 36.76 3.01 22.6 

29-May-15 23.17 982.6 73.31 36.45 2.888 0 

30-May-15 22.33 982.5 74.28 34.42 3.117 0 

31-May-15 23.26 983.4 75.34 35.29 2.458 0 

1-Jun-15 21.76 984 66.89 35.66 2.695 0 

2-Jun-15 22.34 982.6 71.63 35.17 3.054 0 

3-Jun-15 22.44 984.6 85.72 32.49 1.66 60.6 

4-Jun-15 22.78 985.1 84.69 33.36 1.313 1.1 

5-Jun-15 23 984.4 82.5 34.24 1.92 0 

6-Jun-15 22.91 984.4 83.85 33.9 1.885 0 

7-Jun-15 21.92 984.4 76.95 33.94 2.598 36.4 

8-Jun-15 22.8 984.3 80.96 33.62 1.979 10.7 

9-Jun-15 21.67 983.5 84.41 32.11 1.685 4.8 

10-Jun-15 23.14 984.6 78.2 33.99 1.677 0 

11-Jun-15 23.32 985 77.77 34.64 2.467 0 

12-Jun-15 22.68 985.1 79.18 34.54 2.761 1.5 

13-Jun-15 22.88 984.4 80.4 34.02 2.247 5.6 

14-Jun-15 22.12 984.2 74.51 33.38 2.293 0.4 

15-Jun-15 23.09 984.4 78.19 34.55 1.905 1.2 

16-Jun-15 22.99 984.4 76.46 34.68 2.442 0 

17-Jun-15 22.58 984.4 76.93 34.57 3.315 0 

18-Jun-15 22.24 983.1 73.92 35.58 2.401 0 

19-Jun-15 22.62 983.9 76.45 34.88 2.758 0 

20-Jun-15 22.7 984.9 75.22 34.96 2.629 2.3 

21-Jun-15 22.02 986.3 78.73 33.26 3.234 0 

22-Jun-15 21.56 987.1 74.83 33.61 2.338 0.1 

23-Jun-15 21.16 987.7 73.53 33.38 2.426 1.3 
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24-Jun-15 20.58 986.7 67.77 33.86 2.609 0.1 

25-Jun-15 21.02 988.2 78.26 32.81 2.132 40.3 

26-Jun-15 22.76 988.6 89.83 32.47 2.093 162.7 

27-Jun-15 22.32 987.3 85.11 32.37 1.866 75.4 

28-Jun-15 22.64 986.8 79.61 33.88 1.931 1.8 

29-Jun-15 22.12 987.2 73.83 34.49 2.573 12.8 

30-Jun-15 21.27 986 72.51 33.66 1.906 4.1 

1-Jul-15 21.53 985.8 72.02 33.91 2.31 0 

2-Jul-15 21.16 985.9 76.51 34.33 1.966 216.9 

3-Jul-15 22.44 986.9 87.28 32.42 2.213 18.6 

4-Jul-15 21.55 986.5 80.63 32.85 2.195 0 

5-Jul-15 22.24 985.8 81.9 32.95 1.296 120.4 

6-Jul-15 23.2 985 81.94 32.72 1.082 60 

7-Jul-15 22.81 984.3 75.33 34.03 0.67 32.9 

8-Jul-15 23.56 984 79.8 34.06 0.347 8.8 

9-Jul-15 23.33 984.3 81.76 34.12 0.307 13.3 

10-Jul-15 22.71 985.8 91.7 32.75 0.124 162.7 

11-Jul-15 21.8 986.7 88.19 31.52 0.547 34 

12-Jul-15 23.41 985.6 81.88 34.67 2.446 250 

13-Jul-15 21.84 984.8 80.05 32.74 1.385 25.6 

14-Jul-15 22.82 985.3 85.31 33.05 1.206 20.6 

15-Jul-15 22.72 984.1 88.61 32.66 2.056 6.8 

16-Jul-15 22.15 985.4 81.62 33.32 2 25 

17-Jul-15 22.49 986.1 89.74 31.82 1.667 26.7 

18-Jul-15 23.08 985.5 78.36 34.25 0.192 20.4 

19-Jul-15 22.79 984.5 81.62 34.33 2.662 19.9 

20-Jul-15 22.14 984.8 93.43 31.15 1.646 128.5 

21-Jul-15 22.79 986.9 93.86 32.09 1.492 16.3 

22-Jul-15 22.32 987.2 83.34 32.79 0.767 7.1 

23-Jul-15 22.48 986.2 79.2 33.75 0.964 19.1 

24-Jul-15 22.69 986.4 92.87 31.74 1.093 51.5 

25-Jul-15 21.88 986.1 89.08 31.82 1.713 6 

26-Jul-15 21.43 986.6 82.06 32.05 1.92 28.7 

27-Jul-15 22.15 985.5 96.02 31.07 0.97 480 

28-Jul-15 21.67 986.8 92.45 30.81 1.524 43.3 

29-Jul-15 21.67 987.7 90.33 30.79 1.236 2.9 

30-Jul-15 21.95 986.8 87.54 31.4 0.888 124.6 

31-Jul-15 21.96 986.8 90 31.98 1.597 139.8 

1-Aug-15 22.59 985.5 85.52 32.31 0.943 8.8 

2-Aug-15 22.18 985.7 91.27 31.23 1.261 116.2 

3-Aug-15 22.82 985.6 88.94 32.4 0.558 185.3 

4-Aug-15 22.28 987 94.16 31.3 0.612 133.7 

5-Aug-15 22.34 986.4 87.7 31.93 0.575 29.8 

6-Aug-15 22.6 985.1 86.76 32.14 0.252 154.3 

7-Aug-15 22.04 984.5 90.6 31.72 0.823 274.5 

8-Aug-15 22.05 985.3 92.74 31.44 1.055 137.3 

9-Aug-15 22.86 985.3 93.59 32.18 0.312 20.9 

10-Aug-19 21.93 984.4 92.76 31.04 1.054 1.2 
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11-Aug-19 22.59 985.5 87.87 32.62 1.477 2.1 

12-Aug-19 22.75 986.7 94.5 31.55 0.442 228.5 

13-Aug-19 22.11 987.2 95.46 30.93 0.539 8.4 

14-Aug-19 22.81 985.5 84.22 32.95 1.161 240.1 

15-Aug-19 22.72 986 91.23 31.84 1.311 0.4 

16-Aug-19 23.17 987.2 86.86 33.01 1.376 247.8 

17-Aug-19 22.53 986.6 96.85 31.18 1.098 155.8 

18-Aug-19 22.36 985.6 92.51 31.57 1.003 0.1 

19-Aug-19 23.1 985.4 89.07 32.72 0.854 82.9 

20-Aug-19 22.66 984.7 88.82 32.07 0.868 50.6 

21-Aug-19 22.2 984.6 94.33 31.21 0.903 60.4 

22-Aug-19 22.77 985.6 91.87 32.08 0.727 42.6 

23-Aug-19 22.67 984.3 85.23 33.05 0.547 0.2 

24-Aug-19 23.14 984.1 95.43 32.33 1.345 617.9 

25-Aug-19 22.25 984.5 88.36 31.55 1.111 254.8 

26-Aug-19 22.13 986.7 88.82 31.81 1.103 0 

27-Aug-19 22.25 984.9 86.32 32.05 1.264 51.3 

28-Aug-19 22.37 984.4 92.14 31.79 1.592 285.9 

29-Aug-19 21.93 986.2 93.97 30.88 0.671 111 

30-Aug-19 22.18 987.7 88.78 31.64 0.892 72 

31-Aug-19 21.84 987.3 88.51 31.95 0.487 305.4 

1-Sep-15 21.82 986.8 96.54 30.51 1.486 95 

2-Sep-15 22.33 985.9 90.87 32.03 1.644 68.9 

3-Sep-15 22.34 986.8 89.75 32.28 1.421 85.4 

4-Sep-15 22.31 986.5 91.14 31.46 0.399 60.6 

5-Sep-15 22.33 985.7 94.84 31.38 0.622 0.2 

6-Sep-15 22.74 986.5 86.43 32.9 1.304 0 

7-Sep-15 22.6 987.2 86.19 32.27 1.437 222 

8-Sep-15 20.96 985 90.18 30.82 1.134 54.8 

9-Sep-15 22.09 984.9 92.77 31.47 1.425 0 

10-Sep-15 22.47 985.2 82.51 33.15 1.343 2.8 

11-Sep-15 22.76 984.3 87.49 32.32 0.739 3.1 

12-Sep-15 22.44 984.1 89 31.99 0.555 39.4 

13-Sep-15 23.54 984.4 86.29 33.29 0.842 3.3 

14-Sep-15 22.37 986.3 95.66 31.23 0.953 16.9 

15-Sep-15 22.83 986.2 92.76 32 1.279 71.2 

16-Sep-15 22.06 986.1 94.16 31.16 0.967 52.6 

17-Sep-15 22.79 984.9 94.08 31.95 0.998 87.2 

18-Sep-15 22.38 984.6 94.91 31.4 1.272 0 

19-Sep-15 22.79 986.4 90.23 31.98 0.559 8.3 

20-Sep-15 22.37 987 87.27 32.52 0.539 37.5 

21-Sep-15 22.45 986.9 92.59 31.42 0.815 161.1 

22-Sep-15 22.32 985.1 87.42 31.87 0.072 0 

23-Sep-15 22.94 984.9 86.2 33.03 0.672 19.6 

24-Sep-15 22.98 985.5 92.99 32.14 0.471 77.9 

25-Sep-15 21.96 985.9 95.05 30.76 0.565 0 

26-Sep-15 22.78 986 84.68 32.69 1.56 45.4 

27-Sep-15 22.76 984 83.57 32.67 1.26 10.1 
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28-Sep-15 23.57 984.1 92.25 32.84 1.728 6.5 

29-Sep-15 22.08 983.7 89.2 31.3 0.83 24.8 

30-Sep-15 22.93 984.9 87.98 32.63 1.15 0 

1-Oct-15 22.65 983.8 84.99 32.77 0.78 0 

2-Oct-15 23.97 983.3 87.46 33.24 0.766 0 

3-Oct-15 22.13 983.5 93.28 30.91 1.627 10.3 

4-Oct-15 22.4 985.7 91.74 31.72 1.02 94.8 

5-Oct-15 22.8 986.2 92.54 31.7 0.7 0.1 

6-Oct-15 23.28 985.4 93.01 32.37 1.007 0 

7-Oct-15 23.51 985.3 92.2 32.69 0.735 1.5 

8-Oct-15 22.44 985.1 91.93 31.4 0.747 1.5 

9-Oct-15 22.44 986.2 87.24 31.75 1.105 0 

10-Oct-15 22.53 985.6 91.97 31.51 0.425 0 

11-Oct-15 23 986.3 95.39 31.44 0.649 0 

12-Oct-15 22.37 985.3 89.35 31.83 0.709 0 

13-Oct-15 23.96 985.1 89.32 32.65 1.18 0 

14-Oct-15 25.12 984.5 91.29 33.97 1.913 0 

15-Oct-15 23.09 984 88.67 32.32 1.332 0 

16-Oct-15 23.75 983.3 89.59 33.14 0.679 0 

17-Oct-15 23.22 983.9 88.14 32.91 1.945 0 

18-Oct-15 23.29 985.2 86.9 33 1.642 0 

19-Oct-15 24.57 985.1 85.75 34.11 1.871 0 

20-Oct-15 22.74 984.7 93.4 31.68 1.529 28 

21-Oct-15 23.22 985.1 92.39 32.21 1.171 0 

22-Oct-15 23.68 983.9 90.83 32.85 1.437 0 

23-Oct-15 23.96 985.4 85.06 33.83 1.564 0 

24-Oct-15 23.11 984.4 80.51 33.09 1.381 0 

25-Oct-15 23.12 984.4 81.08 33.51 1.647 0 

26-Oct-15 22.9 984.9 86.06 32.77 1.365 0 

27-Oct-15 23.49 984.5 87.28 32.96 1.135 0 

28-Oct-15 22.73 984.7 87.54 32.3 1.403 0.9 

29-Oct-15 23.04 984 86.52 32.82 1.245 0 

30-Oct-15 21.87 983.9 85.42 31.59 1.522 0 

31-Oct-15 22.49 984 85.55 32.32 0.559 0 

1-Nov-15 22.68 984 83.97 32.51 1.267 0 

2-Nov-15 23.1 984.2 86.27 32.46 1.65 0 

3-Nov-15 22.61 984.8 89.63 31.85 1.28 0 

4-Nov-15 20.96 984.2 76.27 32.63 1.284 0 

5-Nov-15 19.91 984.1 71.92 31.63 0.87 0 

6-Nov-15 21.26 984.9 75.37 33.07 1.214 0 

7-Nov-15 19.71 984.5 67.35 31.92 0.835 0 

8-Nov-15 20.84 984.5 73.27 32.72 1.246 0 

9-Nov-15 21.03 986.3 73.3 32.79 1.407 0 

10-Nov-15 21.14 985.9 75.08 31.97 0.711 0 

11-Nov-15 19.22 985.1 69.08 31.45 1.073 0 

12-Nov-15 13.43 983.3 46.59 32.01 2.291 0 

13-Nov-15 11.3 983.7 39.41 32.65 2.906 0 

14-Nov-15 11.94 985 42.79 31.12 2.818 0 
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15-Nov-15 15.18 985 52.74 30.42 1.763 0 

16-Nov-15 17.24 984.8 61.14 30.55 1.648 0 

17-Nov-15 16.01 983.3 55.53 31.53 1.862 0 

18-Nov-15 13.05 983.1 46.59 31.49 2.513 0 

19-Nov-15 12.14 982.4 42.84 32.44 2.857 0 

20-Nov-15 13.88 983.2 47.75 32.15 1.986 0 

21-Nov-15 13.06 983 44.73 32 2.368 0 

22-Nov-15 13.27 982.1 45.2 32.07 1.912 0 

23-Nov-15 15.16 981.9 48.56 33.07 1.282 0 

24-Nov-15 13.16 983.9 42.52 32.78 2.298 0 

25-Nov-15 13.88 984.1 44.93 32.49 1.944 0 

26-Nov-15 11.5 982.6 40.31 32.06 2.092 0 

27-Nov-15 16.47 982.2 51.3 31.82 1.3 0 

28-Nov-15 17.3 983.7 51.15 33.47 0.832 0 

29-Nov-15 15.18 984.5 48.61 33.02 1.469 0 

30-Nov-15 11.07 985.8 36.72 32.77 2.395 0 

1-Dec-15 6.94 985.6 31.57 31.82 2.705 0 

2-Dec-15 6.11 985.7 27.22 34.15 3.664 0 

3-Dec-15 6.95 986.8 31.11 33.83 3.59 0 

4-Dec-15 6.14 986.3 28.95 31.91 4.083 0 

5-Dec-15 5.73 986.2 28.33 31.84 3.619 0 

6-Dec-15 5.01 986.5 30.73 31.79 3.803 0 

7-Dec-15 7.02 986.9 33.99 31.94 3.852 0 

8-Dec-15 6.93 987.6 31.74 31.46 3.888 0 

9-Dec-15 5.84 986.3 28.94 31.95 3.615 0 

10-Dec-15 4.99 986.6 26.53 32.07 3.966 0 

11-Dec-15 4.46 986.4 26.32 31.73 4.012 0 

12-Dec-15 4.71 987.6 29.23 29.93 3.924 0 

13-Dec-15 4.99 986.6 30.88 29.32 3.521 0 

14-Dec-15 4.69 986.1 29.99 30.3 3.869 0 

15-Dec-15 3.49 986.8 28.06 29.29 4.29 0 

16-Dec-15 2.73 987 26.52 29.27 4.005 0 

17-Dec-15 0.73 986.8 22.69 28.42 3.98 0 

18-Dec-15 2.54 987.3 26.08 28.37 4.017 0 

19-Dec-15 3.7 987.3 26.53 29.42 3.949 0 

20-Dec-15 2.84 987.5 27.15 30.91 3.668 0 

21-Dec-15 4.39 986.8 29.22 31.63 3.496 0 

22-Dec-15 4.11 986.9 26.71 31.74 4.031 0 

23-Dec-15 1.71 986.9 22.38 31.21 4.466 0 

24-Dec-15 1.18 987 22.65 29.76 4.228 0 

25-Dec-15 2.01 987.9 25.48 30.74 4.337 0 

26-Dec-15 4.96 986.6 27.41 30.84 4.27 0 

27-Dec-15 4.04 985.8 27.28 30.84 3.83 0 

28-Dec-15 6.13 985 29.76 31.25 3.47 0 

29-Dec-15 4.54 986.7 26.89 30.63 3.82 0 

30-Dec-15 2.48 987.1 26.03 30.81 3.967 0 

31-Dec-15 3.88 986.2 26.71 30.73 3.528 0 

1-Jan-16 3.89 986.7 27.73 30.99 3.87 0 
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2-Jan-16 3.26 986.5 28.19 29.58 4.348 0 

3-Jan-16 4.2 985.9 27.48 31.63 4.236 0 

4-Jan-16 5.92 985.5 30.27 30.24 3.713 0 

5-Jan-16 6.28 985.1 31.99 31.29 3.193 0 

6-Jan-16 7.59 985.1 32.56 32.64 3.093 0 

7-Jan-16 6.84 985.5 29.86 32.68 2.926 0 

8-Jan-16 0.78 985.6 16.51 31.9 2.73 0 

9-Jan-16 1.01 985.6 17.18 35.19 3.692 0 

10-Jan-16 8.6 985.2 34.06 32.81 1.779 0 

11-Jan-16 4.65 985.1 25.33 33.56 2.81 0 

12-Jan-16 1.16 983.3 17.45 32.74 3.989 0 

13-Jan-16 1.31 983.2 20.42 33.17 3.849 0 

14-Jan-16 4.68 984 25.84 31.31 3.387 0 

15-Jan-16 2.37 983.6 22.21 32.75 3.744 0 

16-Jan-16 3.72 983.9 24.34 32.28 3.109 0 

17-Jan-16 5.15 983.5 25.38 30.61 2.55 0 

18-Jan-16 6.23 983.8 30.32 31.81 2.136 0 

19-Jan-16 6.4 983.6 27.65 33.13 3.625 0 

20-Jan-16 4.03 983.7 25.23 33.3 3.574 0 

21-Jan-16 0.63 984.5 19.86 33.16 3.497 0 

22-Jan-16 0.53 984.7 16.9 31.02 3.466 0 

23-Jan-16 -0.64 985.6 16.72 32.7 3.879 0 

24-Jan-16 -0.99 987.9 13.2 32.35 4.541 0 

25-Jan-16 -0.9 990.2 17.41 29.79 4.499 0 

26-Jan-16 0.1 988.8 20.19 31.07 4.091 0 

27-Jan-16 -1.7 989.5 17.83 30.34 4.49 0 

28-Jan-16 -1.55 987.5 18.75 31.27 4.332 0 

29-Jan-16 0.03 986.9 19.9 31.29 4.49 0 

30-Jan-16 -1.09 986.7 17.38 30.57 4.027 0 

31-Jan-16 -0.52 985.8 21.94 31.33 3.759 0 

1-Feb-16 3.76 985.2 26.14 29.94 2.818 0 

2-Feb-16 6.67 984.3 30.41 30.46 1.801 0 

3-Feb-16 7.53 983.7 30.64 33.07 2.386 0 

4-Feb-16 7.13 984.1 29.03 33.56 2.356 0 

5-Feb-16 3.91 984.3 20.84 34.86 3.678 0 

6-Feb-16 0.49 985.6 19.43 34 3.647 0 

7-Feb-16 2.9 985.8 18.87 33.88 4.057 0 

8-Feb-16 1.57 986.4 19.74 33.97 3.825 0 

9-Feb-16 2.91 987.1 20.79 33.48 4.343 0 

######## -0.89 986.5 15.84 32.74 4.185 0 

######## -1.35 985.1 15.53 32.02 4.174 0 

######## 0.23 983.7 18.23 32.68 3.609 0 

######## 2.69 984.1 20.25 32.41 3.305 0 

######## 4.22 984.6 20.91 32.3 2.305 0 

######## 7.6 982.4 28.12 32.83 0.837 0 

######## 14.63 982.6 37.68 35.71 0.121 0 

######## 13.92 983.6 35.39 35.68 1.282 0 

######## 2.34 982.6 17.11 34.77 2.773 0 
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######## 13.24 981 31.5 36.83 0.634 0 

######## -1.69 980.7 18.66 37.53 2.861 0 

######## -2.05 982.1 12.39 35.91 3.87 0 

######## 1.98 982.3 18.7 36.29 3.009 0 

######## -0.39 982.5 13.05 36.17 4.039 0 

######## 0.54 982 14.06 35.59 3.613 0 

######## 7.76 982.4 26.39 35.55 2.175 0 

######## 9.06 982.4 26.37 35.62 1.301 0 

######## 9.54 980.6 24.39 35.96 1.009 0 

######## 17.34 980.4 36.74 40.02 1.763 0 

######## 18.44 981.5 43.25 38.33 1.644 0 

1-Mar-16 17.82 981.5 39 39.29 0.173 0 

2-Mar-16 16.53 982.3 38.64 38.45 2.596 0 

3-Mar-16 16.69 979.9 36.24 38.12 1.76 0 

4-Mar-16 17.64 979.9 41.39 39.1 1.91 0 

5-Mar-16 19.54 981.5 51.97 38.8 1.26 0 

6-Mar-16 21.64 982.1 59.14 37.16 2.397 0 

7-Mar-16 18.9 982.3 43.88 40.22 2.858 0 

8-Mar-16 21.15 982.1 63.77 37.95 2.354 0 

9-Mar-16 18.78 981.4 45.4 37.65 1.818 0 

######## 16.14 980.3 35.93 38.82 2.077 0 

######## 17.73 980.6 42.75 39.38 3.028 0 

######## 22.25 982.7 60.74 37.94 1.733 0 

######## 22.94 984.1 78.61 35.14 0.505 0 

######## 21.59 983.1 66.01 35.36 1.017 7.6 

######## 21.63 984.7 60.16 36.82 0.388 0 

######## 20.23 983.9 52.15 38.64 1.344 0 

######## 21.34 983.8 54.47 39.1 1.208 0.6 

######## 22.99 984 77 36.38 2.116 0.4 

######## 23.79 982.9 72.48 36.49 1.519 0 

######## 22.01 983.3 66.85 36.65 2.453 0 

######## 22.18 985.1 77.78 35.6 2.928 16.7 

######## 22.92 984 63.94 37.11 1.51 0 

######## 21.33 982.2 52.85 38.53 2.246 0 

######## 22.41 979.8 63.73 37.71 2.525 0 

######## 21.79 984.1 80.89 33.43 1.964 0 

######## 21.99 984.5 59.86 36.56 1.964 0 

######## 19.46 983.2 46.17 36.79 1.242 0 

######## 20.05 981.5 46.98 37.59 1.146 0 

######## 20.28 981.3 48.47 37.68 1.794 0 

######## 21.73 981.7 51.59 38.82 1.122 0 

######## 21.78 982.2 54.88 39.15 2.316 0 

1-Apr-16 21.56 981.7 55.84 38.17 4.027 0 

2-Apr-16 23.7 981.2 63.41 37.22 3.325 0 

3-Apr-16 21.11 981.9 52.92 38.63 2.656 0 

4-Apr-16 21.39 981 46.93 39.81 2.697 0 

5-Apr-16 22.08 980.8 53.87 39.58 4.015 0 

. . . . . . . 
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. . . . . . . 

30-Dec-19 3.89 982.7 25.93 30.27 3.548 0 

31-Dec-19 5.22 983.3 25.53 30.11 3.477 0 
 

(d) Source Dataset: Bauchi dataset 

 
Date Dew 

 

(Oc) 

Pressure 

 

(hPa) 

Humidity 

 

(KG) 

Temp 

 

(oC) 

WindSpeed 

 

(KM/S) 

Rainfall 

 

(mm) 

1-Jan-15 -0.66 954.9 23.06 26.51 3.96 0 

2-Jan-15 -2.21 956.4 22.69 25.19 3.706 0 

3-Jan-15 -1.38 958.6 24.57 24.2 4.357 0 

4-Jan-15 -4.31 960.3 21.41 23.7 3.989 0 

5-Jan-15 -4.7 959 23.13 23.77 3.409 0 

6-Jan-15 -1.05 957.5 30.22 22.32 3.395 0 

7-Jan-15 -2.55 958.2 27.9 21.89 3.393 0 

8-Jan-15 -3.73 958.1 23.62 23.25 3.938 0 

9-Jan-15 0.06 959.6 29.58 24.67 4.505 0 

10-Jan-15 -3.26 960.8 26.44 23.99 4.762 0 

11-Jan-15 -4.15 960.3 23.96 22.41 4.13 0 

12-Jan-15 -3.48 958.9 25.75 22.17 3.99 0 

13-Jan-15 -5.96 958.7 24.26 20.55 3.622 0 

14-Jan-15 -4.7 958.3 24.04 21.17 3.113 0 

15-Jan-15 -2.31 957.9 26.06 23.85 3.577 0 

16-Jan-15 0.23 957.8 30.05 23.95 3.444 0 

17-Jan-15 -0.75 956.6 26.28 23.59 3.074 0 

18-Jan-15 0.08 956.7 27.17 23.3 2.345 0 



106 
 

19-Jan-15 1.55 955.2 28.14 24.48 2.356 0 

20-Jan-15 2.69 953.6 28.74 25.1 2.787 0 

21-Jan-15 5.81 953.4 27.96 27.85 2.363 0 

22-Jan-15 5.36 955.2 27.3 29.03 2.743 0 

23-Jan-15 2.22 954.7 20.84 28.9 2.433 0 

24-Jan-15 1.32 952.9 19.29 28.62 2.28 0 

25-Jan-15 3.14 951.6 22.33 28.65 2.506 0 

26-Jan-15 3.36 952.3 23.93 27.4 3.111 0 

27-Jan-15 3.14 953.5 21.95 29.64 2.961 0 

28-Jan-15 0.75 953.5 19.88 29.52 3.587 0 

29-Jan-15 -1.66 954.3 15.24 28.26 4.003 0 

30-Jan-15 -2.95 955 17.52 25.07 3.192 0 

31-Jan-15 -0.67 955 22.47 25.89 2.664 0 

1-Feb-15 1.15 954.4 21.66 27.4 2.311 0 

2-Feb-15 0.56 953.2 19.38 29.26 2.297 0 

3-Feb-15 -0.41 952.5 15.95 28.24 2.362 0 

4-Feb-15 1.19 952.8 19.9 29.27 2.424 0 

5-Feb-15 1.63 951.7 19.45 29.59 2.75 0 

6-Feb-15 0.78 951.9 17.41 30.23 2.779 0 

7-Feb-15 3.04 951.2 19.49 29.55 2.495 0 

8-Feb-15 4.02 951 21.57 30.47 2.746 0 

9-Feb-15 2.74 951.1 18.94 30.06 2.388 0 

10-Feb-15 2.32 951.5 18.5 29.42 2.527 0 
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11-Feb-15 -2.42 952.8 14.17 29.09 2.807 0 

12-Feb-15 0.06 954 18.24 31.15 4.087 0 

13-Feb-15 -0.99 955.1 17.34 29.01 2.775 0 

14-Feb-15 -0.97 955.3 16.1 28.1 2.38 0 

15-Feb-15 1.05 953.5 18.45 28.56 1.773 0 

16-Feb-15 3.87 952.3 20.72 28.76 1.997 0 

17-Feb-15 7.71 951.4 31.31 29.94 2.467 0 

18-Feb-15 4.77 950.8 22.77 31.45 3.556 0 

19-Feb-15 7.15 951.8 27.13 31.53 2.987 0 

20-Feb-15 1.38 950.9 19.6 30.48 2.999 0 

21-Feb-15 3.1 950.6 23.17 29.9 2.775 0 

22-Feb-15 5.74 950.4 24.67 31.41 2.278 0 

23-Feb-15 2.07 952.3 17.42 32.03 3.721 0 

24-Feb-15 2.76 953.7 22.17 32.19 3.011 0 

25-Feb-15 -0.48 953 16.73 31.58 3.712 0 

26-Feb-15 -0.3 951.6 17.03 29.52 2.683 0 

27-Feb-15 -0.31 951.9 14.24 31.27 2.845 0 

28-Feb-15 -5.68 954.4 11.49 29.85 3.737 0 

1-Mar-15 -4.15 954.3 11.97 29.6 3.209 0 

2-Mar-15 -4.62 953 12.37 30.1 3.052 0 

3-Mar-15 -4.84 952.8 13.16 30.21 3.927 0 

4-Mar-15 -1.6 955 19.36 31.12 3.712 0 

5-Mar-15 3.71 954.2 24.98 31.5 3.89 0 
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6-Mar-15 1.69 953.4 20.41 31.3 2.982 0 

7-Mar-15 2.25 951.7 18.88 31.41 2.508 0 

8-Mar-15 3.94 950.5 20.15 32.53 2.523 0 

9-Mar-15 3.88 950.5 18.84 32.66 3.153 0 

10-Mar-15 4.72 950.7 19.24 34.01 3.184 0 

11-Mar-15 2.3 951.9 16.72 34.28 3.566 0 

12-Mar-15 -3.3 952.5 12.55 34.31 4.786 0 

13-Mar-15 -5.15 951.5 11.62 32.07 3.431 0 

14-Mar-15 -2.93 951 12.8 31.8 3.516 0 

15-Mar-15 0.09 950 15.65 32.15 3.283 0 

16-Mar-15 2.18 950.7 17.34 35.47 2.928 0 

17-Mar-15 0.72 951.3 15.7 35.2 4.448 0 

18-Mar-15 3.41 950.7 18.07 35.93 3.427 0 

19-Mar-15 6.04 948.9 22.21 34.21 3.28 0 

20-Mar-15 5.55 948.7 20.47 32.13 3.073 0 

22-Mar-15 11.84 949.1 31 34.62 3.587 0 

23-Mar-15 9.63 949.6 24.79 36.76 2.459 0 

24-Mar-15 7.11 949.3 19.27 33.95 1.759 0 

25-Mar-15 10.73 948.2 27.85 35.48 1.011 0 

26-Mar-15 18.52 951.4 58.21 36.26 3.846 1 

27-Mar-15 12.26 950.5 32.34 36.63 3.843 0 

28-Mar-15 6.39 951.4 21.58 36.07 3.856 0 

29-Mar-15 -6.73 951.7 9.67 32.25 3.365 0 
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30-Mar-15 -6.98 952.1 8.93 32.22 3.928 0 

31-Mar-15 -0.06 953.2 16.42 34.58 3.291 0 

1-Apr-15 -1.15 953.4 12.37 34.38 3.307 0 

2-Apr-15 -2.49 953.8 14.15 34.52 3.138 0 

3-Apr-15 -0.25 952.5 16.5 35.23 3.27 0 

4-Apr-15 4.63 950.5 19.94 36.15 2.696 0 

5-Apr-15 4.18 949.7 20.48 35.16 2.884 0 

. . . . . . . 

. . . . . . . 

30-Dec-19 2.21 953.4 33.6 21.92 2.713 0 

31-Dec-19 2.98 953.9 32.78 23.29 3.143 0 

 


