RELATIONSHIP BETWEEN MATHEMATICAL COMMUNICATION SKILLS AND MATHEMATICS PERFORMANCE OF SECONDARY SCHOOL STUDENTS IN KUTIGI EDUCATIONAL ZONE, NIGER STATE

BY

IDRIS, Abdullahi
MTech/SSTE/2018/8442

DEPARTMENT OF SCIENCE EDUCATION

SCHOOL OF SCIENCE AND TECHNOLOGY EDUCATION FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGER STATE.

Abstract

This study investigated the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State. Six research questions and hypotheses were used for the study. A correlational research design was adopted for the study. The sample of the study was made up of 269 (179 males and 90 females) students drawn from the target population of 858 students. The research instrument used was Mathematical Communication Skills Test (MCST). The instrument was validated by experts from Department of Science Education, Federal University of Technology Minna and a secondary school Mathematics Teacher. The reliability of instrument five (5) constructs were $0.82,0.74,0.81,0.70$ and 0.71 respectively with the average reliability of 0.76 using PPMC coefficients. Students Promotion Examination Scores of Mathematics was used as their Mathematics Performance. Research questions were answered using Mean and Standard deviation with Scatterplots while hypotheses were tested using PPMC at 0.05 level of significance. The results indicated that Mathematical Communication Skills of the secondary school students were low. Also, the Mathematical Communication Skills studied were contributors to Mathematics performance of secondary school students. Similarly, there was positive relationship between Gender and Mathematical Communication Skills of secondary school students. The study recommended that mathematics teachers should adopt a good measure to strengthen these Mathematical communication skills during teaching and learning process to enhance students' performance in Mathematics.

TABLE OF CONTENTS

Content Page
Cover Page i
Title page ii
Declaration iii
Certification iv
Dedication v
Acknowledgements vi
Abstract viii
Table of Content ix
List of Tables xiii
List of Figures xv
List of Appendices xvi
CHAPTER ONE
1.0 INTRODUCTION 1
1.1 Background to the Study 1
1.2 Statement of the Research Problem 8
1.3 Aim and Objectives of the Study 9
1.4 Research Questions 10
1.5 Research Hypotheses 11
1.6 Significance of the Study 12
1.7 Scope of the Study 13
1.8 Operational Definition of Terms 13
CHAPTER TWO
2.0 LITERATURE REVIEW 15
2.1 Conceptual Framework 15
2.1.1 Concept and nature of mathematics 15
2.1.2 Nature and objectives of senior secondary school mathematics curriculum in Nigeria 16
2.1.3 Concept of mathematics performance 18
2.1.3.1 Concept of gender 19
2.1.4 Concept of mathematics communication skills 19
2.1.5 Mathematical communication skills of senior secondary school students 20
2.1.5.1 Mathematical problem solving skills 22
2.1.5.2 Mathematical proofs and reasoning skills 25
2.1.5.3 Mathematical communication skills 29
2.1.5.4 Mathematical connection/relations skills 31
2.1.5.5 Mathematical representation skills 34
2.2 Theoretical Framework 39
2.2.1 Behaviourism 39
2.2.2 Cognitivism 40
2.2.3 Constructivism 43
2.3 Empirical Studies 46
2.3.1 Empirical studies on the mathematical communication skills and mathematical performance of senior secondary school students 46
2.3.2 Empirical studies on gender and mathematics communication skills 57
2.4 Summary of the Literature Review 59
CHAPTER THREE
3.0 RESEARCH METHODOLOGY 61
3.1 Research Design 61
3.2 Population of the Study 61
3.3 Sample and Sampling Techniques 61
3.4 Research Instrument 62
3.5 Validity of the Research Instruments 62
3.6 Reliability of the Research Instruments 63
3.7 Method of Data Collection 63
3.8 Method of Data Analysis 64
CHAPTER FOUR
4.0 RESULTS AND DISCUSSION 65
4.1 Answer to Research Questions 65
4.2 Testing Null Hypotheses 72
4.3 Data Reduction 76
4.4 Summary of Findings 81
4.5 Discussion of Results 81
CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATIONS 85
5.1 Conclusion 85
5.2 Recommendations 85
5.3 Contributions of the study to Knowledge 86
5.4 Suggestions for Further Studies 86
REFERENCES 87

LIST OF TABLES

Table Page
4.1 Summary of the Mean and Standard Deviation of Mathematical
Communication Skills and Mathematics Performance of Secondary School Students 65
4.2 Summary of the Mean and Standard Deviation of Problem-Solving Skills and Mathematics Performance of Secondary School Students 66
4.3 Summary of the Mean and Standard Deviation of Proofs and Reasoning Skills and Mathematics Performance of Secondary School Students 68
4.4 Summary of the Mean and Standard Deviation of Connection Skills and Mathematics Performance of Secondary School Students 69
4.5 Summary of the Mean and Standard Deviation of Representation Skills and Mathematics Performance of Secondary School Students 70
4.6 Summary of the Mean and Standard Deviation of Gender and Mathematical Communication Skills of Secondary School Students 71
4.7 Summary of Pearson Product Moment Correlation between Mathematical Communication Skills and Mathematics Performance of Secondary School Students 73
4.8 Summary of Pearson Product Moment Correlation between Problem-Solving Skills and Mathematics Performance of Secondary School Students 73
4.9 Summary of Pearson Product Moment Correlation between Proofs and Reasoning Skills and Mathematics Performance of Secondary School Students 74
4.10 Summary of Pearson Product Moment Correlation between Connection Skills and Mathematics Performance of Secondary School Students 74
4.11 Summary of Pearson Product Moment Correlation between Representation Skills and Mathematics Performance of Secondary School Students 75
4.12 Summary of Point-Biserial Correlation between Gender and Mathematical Communication skills of Secondary School Students 76

LIST OF FIGURES

Figure Page
2.1 Showing conceptual framework of relationship between Mathematical Communication skills and Mathematics Performance 15
4.1 Scatterplot of Relationship between Mathematical Communication Skills and Mathematics Performance of Secondary School Students 66
4.2 Scatterplot of Relationship between Problem-Solving Skills and Mathematics Performance of Secondary School Students 67
4.3 Scatterplot of Relationship between Proofs and Reasoning Skills and Mathematics Performance of Secondary School Students 68
4.4 Scatterplot of Relationship between Connection/Relation Skills and Mathematics Performance of Secondary School Students 69
4.5 Scatterplot of Relationship between Representation Skills and MathematicsPerformance of Secondary School Students71
4.6 Scatterplot of Relationship between Gender and Mathematical Communication Skills of Secondary School Students 72

LIST OF APPENDICES

Appendix Page
A: WAEC Head of National Office report, 2015-2020 93
B: Table Showing the Distribution of the Total Population of the Study 94
C: Table Showing the Distribution of the Target Population of the Study 96
D: Table Showing the Distribution of the Sample of the Study 97
E: Mathematical Communication Skills Test (MCST) 98
F: Reliability Index on Mathematical Communication Skills Test (MCST) 107
G: Secondary Schools Mathematics performance 109
H: Research Instrument Validation Form A 146
I: Research Instrument Validation Form B 148
J: Research Instrument Validation Form C 150
K: Research Instrument Validation Form D 152

CHAPTER ONE

1.0

INTRODUCTION

1.1 Background to the study

Mathematics is all around us in everything we do. It is the building block for everything in our daily activities, including mobile devices, computers, software, architecture (ancient and modern), art, money, engineering, social sciences, education, medicine and even sports. Since the beginning of recorded history, Mathematics has been at the front line of every civilized society (Elaine \& Jonathan, 2021).

Mathematics is defined in Wikipedia (2019) as a subject developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects; Mathematics seeks and uses patterns to formulate new conjectures and resolve the truth with falsity conjectures via Mathematical proof. That is, when Mathematical structures are good models of natural phenomena, then mathematical reasoning can provide insight or prediction about nature through abstraction and logic. Awodu and Ojo (2013) defined mathematics as an intrinsic component of science that serves as a universal language and indispensable source of intellectual tools. This language can describe and analyze anything in the universe since it touches every aspect of life.

Mathematics's important role in education is derived from cultural, utilitarian and interdisciplinary values that the subject seeks to teach. Mathematics is so vital to the extent that all the beautiful things that are done by computers today, using computer programmes, are done ultimately using just two symbols that are equivalent to the numerals 1 and 0 of Mathematics. Odual (2013) stated that the Federal Government of Nigeria has made mathematics a core and compulsory subject in the curriculum of primary and secondary schools and a prerequisite to gaining admission into any tertiary
institution in the country due to its importance attached to technological development. Puspa et al. (2019) suggested that Mathematics should be taught to understand students since all fields of study require appropriate Mathematical skills that provide powerful, concise, and clear communication mediums needed to present information in various ways. Moreover, Mathematics improves the ability of logical thinking, precision, spatial awareness and gives satisfaction to the effort to solve challenging problems.

Despite the relevance and usefulness of Mathematics in realizing national development and aspiration, students' performance in secondary schools Mathematics is still unsteady and has caused a lot of concern for many years to parents, other stakeholders and most especially to Mathematics educators (Abdullahi, 2016). The trends of performance of students in Mathematics for 2015 - 2020 show that only 38 to 40% of the candidates who sat for the mathematics examinations in West African Examination Council (WAEC) obtained a credit pass and above (WAEC Head of National Office report, 2015-2020) see Appendix A. This shows that the student's performance in Mathematics is still low, thereby questioning issue of quality education among stakeholders in Mathematics and members of the public in Niger state.

Bhairab (2017) defines mathematics performance as the competence shown by the students in Mathematics over time. Performance is the act of something done successfully, especially with efforts or skills; it is the end product of learning experiences, what students have gained from what they have learnt (Odual, 2013). Hence, performance has to do with results obtained in a subject or subjects in a teacher-made test, examination, or standardised examination over time.

Various researchers have identified numerous factors as being responsible for students' low performance in Mathematics. Such factors are students' attitude toward learning
mathematics, teachers' attitude to teaching mathematics, use of instructional materials, and teaching methods (Abdullahi, 2016). Students' characteristics, instructional/classroom characteristics, teachers' characteristics, societal factors and school factors are findings of (Ajogbeje and Ojo, 2016). Socio-economic status, gender, prior Mathematics achievement, parental support, peer influence, students' perception of good classroom assessment, school and class climate, attitude toward mathematics, and parental support (Henry et al., 2015). School factors, overcrowding and Mathematical abilities (Odual, 2013).

Sutama et al. (2019) stated that the weakness of students in Mathematical communication skills had been linked to students answering questions through the examples given by the teacher. Since, some teachers are more concerned with the correct answers than how students can think logically about Mathematics, communicate ideas orally or in writing, or learn to take responsibility for their opinions. Communication takes place in every aspect of life, both within and outside the school environment. In the school environment, communication is widely used in the teaching and learning process. Septiana et al. (2018) defined communication as a process of transmitting information, idea, emotion and ability through symbols, words, pictures and numbers. Every student needs good communication skill to be able to solve various problems related to Mathematics. According to Lomibao et al. (2016), communication skills are the students' ability to express their ideas, describe, and discuss Mathematical concepts coherently and clearly. Also, the students can explain and justify action in procedure and process both orally and in writing. Strayer and Brown (2012) pointed out that learning can be promoted through good interactions and communication. Likewise, when students are encouraged to interact with others, they can communicate, construct individual understanding, symbolizing and concept formation.

Symbolizing and Communicating in Mathematics classrooms relate to how students attribute meaning to Mathematical symbols and how they become Mathematical symbol users (Puspa et al., 2019). Furthermore, communication in Mathematics involves making use of the process of reading, writing, speaking, listening and thinking as one communicates with one's self, other people, computer, books, and other aids to the storage, retrieval and use of the collected Mathematical knowledge of the world (Sammons 2018). Hence, teachers require good Mathematical communication skills to be able to lead students to solve Mathematics problems. Mathematical communication skills have been defined by Septiana et al. (2018) as the ability of a person to write a Mathematical statement, reason or provide an explanation of each Mathematical argument used to solve the Mathematics problem using terms, tables, diagrams, notations, or Mathematics formula properly and check or evaluate another Mathematical thought.

Febry et al. (2017) list out Mathematical communication skills to include; the use of Mathematical language that is realized in the form of oral, written, or visual; the use of Mathematical representations that are discovered in the form of written or visual; and clarity of presentation, namely interpreting Mathematical ideas, using the Mathematical terms or notations to represent Mathematical ideas, as well as describe the relationships or Mathematical approach. Hence, the skills required to communicate mathematically effectively are problem-solving, reasoning, connecting and representing, among other skills.

Principles and Standards for School Mathematics, published by the National Council of Teachers of Mathematics (NCTM) in 2014, outline the essential skills of a high-quality school Mathematics communication, including problem-solving, reasoning and proof, communication, connections, and representation. Clever (2020) referred to Problemsolving skills as the ability to solve problems effectively and timely without any
impediments. It involves identifying and defining the problem, generating alternative solutions, evaluating and selecting the best alternative, and implementing the selected key. Since we face problems all the time, some of which are more complex than the others, either big problems or small ones, this skill can help solve it effectively.

National Council of Teachers of Mathematics (NCTM) cited in Sammons (2018) stated that, where good problem solvers monitor and reflects on the process of mathematical problem-solving and adjust their use of strategies as needed, such reflective skills are much more likely to develop in a classroom environment that supports them. For example, if $\mathrm{T}=\{$ prime numbers $\}$ and $\mathrm{M}=\{$ odd numbers $\}$ are subsets of $\mu=\{\mathrm{x}: 0<\mathrm{x} \leq$ 10 , and x is an integer\}, find $\left(\mathrm{T}^{\mathrm{I}} \mathrm{n} \mathrm{M}^{\mathrm{I}}\right)$, the student is expected to list out the parameters then solve the given problem as follows; $\mu=\{1,2,3,4,5,6,7,8,9,10\} \mathrm{T}=\{2,3,5,7\} \mathrm{M}=$ $\{1,3,5,7,9\} T^{1}=\{1,4,6,8,9,10\} M^{1}=\{2,4,6,8,10\} T^{1} \cap M^{1}=\{4,6,8,10\}$. The venn diagram can also be used to represent the information to ease the problem-solving as shown in the appendix. This standard requires that teachers to establish a learning environment in which students develop the habit of reflection through conversation, beginning in the early grades.

Another skill considered in this study was reasoning skills. Gulumser (2013) stated that reasoning skills is the ability to understand the logic behind Mathematical rules, generalization and solutions; and the ability to go beyond memorization of Mathematical formulas. According to Gunhan (2014), secondary school students must evaluate conjectures and assertions, reason deductively and inductively by formulating Mathematical assertions, and develop and maintain their reasoning skills. Gurbuz and Erdem (2016) also opined that reasoning includes abilities like following and assessing chains of arguments, knowing what a proof is and how it differs from other kinds of sense, uncovering the basic ideas in a given line of view, and devising formal and informal
discussions. For example, the foot of a ladder is 6 m from the base of an electric pole. The top of the ladder rest against the pole at a point 8 m above the ground. How long is the ladder? To answer this, the Pythagoras theorem can be used to find the length (L) of the ladder. From Pythagoras theorem, hypotenuse ${ }^{2}=$ opposite $^{2}+$ adjacent $^{2} ;$ hypotenuse $=\mathrm{L}$, opposite $=8 \mathrm{~m}$ adjacent $=6 \mathrm{~m}$ therefore, length of the ladder, $\mathrm{L}^{2}=8^{2}+6^{2} \rightarrow \mathrm{~L}=$ $\sqrt{ } 100=10 \mathrm{~m}$. The students are expected to represent the information in a triangle, then proof the length of the ladder using Pythagoras theorem. Also for the student to be able communicate effectively in Mathematics the student must have ability to connect or relate concepts in Mathematics with each other.

Haji et al. (2017) referred to connection skills as the ability to link between components in Mathematics, the Mathematics to other disciplines, and between Mathematics to everyday life. Haji et al further opined that since Mathematics is a science that includes a lot of relations between concepts, there is the need for the links between the concept of relationship with the concept of function, the linking of the addition operations with multiplication operations on numbers, the linking of the concept of the derivative function with the concept of profit and loss in the economic field as well as the linking of the concept of the exponential growth of bacteria. For example, H varies directly as p and inversely as the square of y . If $\mathrm{H}=1, \mathrm{p}=8$ and $\mathrm{y}=2$, find H in terms of p and y ? The student should be able relates the concepts to solve this problem as $\mathrm{H} \propto \frac{p}{y^{2}} ; \mathrm{H}=\frac{k p}{y^{2}}$ (k is the proportionality constant), if $\mathrm{H}=1, \mathrm{P}=8, \mathrm{y}=2$ then $1=\frac{k \times 8}{2^{2}} \rightarrow 1=\frac{8 k}{4} \rightarrow 1=2 \mathrm{k} \rightarrow \mathrm{k}$ $=\frac{1}{2}$ Substituting $\mathrm{k}=\frac{1}{2}$ in $\mathrm{H}=\frac{k p}{y^{2}}$ yield $\mathrm{H}=\frac{p}{2 y^{2}}$.

Ndiung and Fransiskus (2018) opined that to build a coherent curriculum and foster connections, the big ideas from one topic must be built on in others so that students are allowed to use familiar concepts in new settings. Students cannot also escape using tables,
graphs, diagrams and figures in Mathematics for them to be able to achieve better in Mathematics since they are expected to have the skill of representation. Representation skills are the ability to express Mathematical ideas or concepts through the use of multiple tools such as words, tables, drawings or tangible materials (Arman, 2019). Aflich et al. (2018) claimed that the representation in the form of words, graphs, tables, and statements is a learning approach that provides an opportunity to present students' ideas in learning Mathematical concepts without any restrictions.

Arman (2019) pointed out that Mathematical representation makes the concepts and relationships clearer and solid, helps the student to understand the components of knowledge more comprehensively and in detail by identifying the common mathematical elements of the different situations of concepts, in addition to helping them to focus on the basic characteristics of Mathematical concepts and to use them to solve life problems. For example, the following scores are obtained by students in a test: $8,18,10,14,18,11$, $13,14,13,17,15,8,16,13$. Find the mode and mean of the distribution? This can be solved as follows: since mode is the number that appears the most. Therefore, the mode of the dataset is 13. Whereas, Mean $=\frac{\Sigma x}{n}$ $=\frac{8+8+10+11+13+13+13+14+14+15+16+17+18+18}{14}=\frac{288}{14}=13.4$. this can also be answered by representing the information on the table as shown in the appendix. Also, in consideration in this study is the Mathematical communication skills of secondary school students based on gender.

Gender is a moderating variable which is taken into consideration in this study. Some researchers put male and female discrepancy in Mathematics performance in favour of males performing better than their female counterparts to be as a result of the female belief towards Mathematics. Mawaddah et al. (2018) opines that psychologically males and females are different; females are more interested
in real life issues, whereas males are more interested in abstract aspects. They further states that the difference between males and females in learning Mathematics is that males are superior in reasoning, whereas females are superior in accuracy, precision, carefulness, and thoughtfulness.

Moreover, opportunities to communicate play an essential role in Mathematics performance. Based on this background, this study examine the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State.

1.2 Statement of the research problem

There are some abstract concepts in Mathematics that students need to understand to enable them communicate effectively in Mathematics. Despite the effort made by the Niger state government to revamp the quality of education in the state by adopting certain interventions such as seminars, workshops and conferences to boost the teachers' quality of instructional delivery to students and in helping them perform better in their academic pursuit, observations and reports from examining bodies revealed that a high percentage of secondary school students failed Mathematics examinations and the failure often generated much concern especially, to parents, teachers, students and other stakeholders (Abdullahi, 2016).

Several factors such as: teachers' attitude to teaching of Mathematics; students attitude towards Mathematics; methods of teaching Mathematics; use of instructional materials; socio-economic status; gender; prior knowledge in Mathematics; parental support; peer influence; students' perception of good classroom assessment; school and class climate; and overcrowding among others had been identified by various researchers as being responsible for low performance in Mathematics (Odual 2013; Henry et al., 2015 and

Abdullahi, 2016). Little or no attention has been given to Mathematical communication skills of students, whereas communication plays significant role in learning Mathematics.

To the best of researcher's knowledge, no attention has been given to Mathematical Communication Skills in relation to Mathematics performance of secondary school students in Niger State. Because, most of the reviews that related to present study are done based on personality and some outside the geogrphical location of present study. However, this study examines the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State.

1.3 Aim and objectives of the study

The aim of this study was to examine the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State. Specifically, the study sets out to achieve the following objectives:

1. to determine the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State;
2. to find out the relationship between problem-solving skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State;
3. to find out the relationship between proofs and reasoning skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State; 4. to find out the relationship between connection skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State;
4. to determine the relationship between representation skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State; and
5. to determine the relationship between gender and Mathematical communication skills of secondary school students in Kutigi Educational Zone of Niger State.

1.4 Research questions

From the objectives of the study, six research questions were raised to guide the study.

1. What is the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State?
2. What is the relationship between problem-solving skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State?
3. What is the relationship between proofs and reasoning skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State?
4. What is the relationship between connection/relation skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State?
5. What is the relationship between representation skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State?
6. What is the relationship between gender and Mathematical communication skills of secondary school students in Kutigi Educational Zone of Niger State?

1.5 Research hypotheses

Six null hypotheses were also formulated based on the raised research questions and tested at 0.05 significance level.

Ho1: There is no significant relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State
$\mathrm{H}_{\mathrm{O} 2}$: There is no significant relationship between problem-solving skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State
H_{o3} : There is no significant relationship between proofs and reasoning skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State

Ho4: $^{\text {There }}$ is no significant relationship between connection skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State

Hos: There is no significant relationship between representation skills and Mathematics performance of secondary school students in Kutigi Educational Zone of Niger State
H_{06} : There is no significant relationship between Gender and Mathematical communication skills of secondary school students in Kutigi Educational Zone of Niger State

1.6 Significance of the study

The secondary school students and teachers, curriculum planners, future researchers and government would benefit from the result of this study.

Findings of this study would be of benefit to secondary school students by enabling them to organize their Mathematical thinking and communicate with their peers and their teachers effectively in Mathematics. It will arouse their interest and facilitate their performance in Mathematics.

It is important that as an educator one is able to understand the students' knowledge of a Mathematical concept. Findings of the study will help the teachers to check the students' weak areas and adjust in improving the quality of their instruction in line with the planned professional practices expected, so as to make expressing their Mathematics ideas easier.

The outcome of the study will serve as a guide to curriculum planners in planning the curriculum that will suit the abilities, level, characteristics, and needs of the learners and provide future researchers with proper research evidence in researching this area.

The government of Nigeria would also use the findings of this study as a guide in ensuring that the Ministry of Education carries out adequate supervision and evaluation of secondary schools, so that duties delegated to teachers are effectively and efficiently managed as expected. It will also enable the government to organize in-service training programmes for Mathematics teachers through workshops, seminars, and conferences to equip them with more new skills to improve their quality of instructional delivery.

1.7 Scope of the study

The geographical location of this study was Kutigi Educational Zone which comprises of Lavun, Edati and Mokwa local government areas of Niger State. The study was delimited to Senior Secondary School two (SS 2) students who have almost covered the senior
secondary school Mathematics syllabus in Kutigi Educational Zone. The content of the study covers Mathematics syllabus related to number and numeration, algebraic process, geometry, probability and statistics as contained in the Senior Secondary School two (SS 2) Mathematics curriculum. Mathematical Communication Skills is the independent variable; Mathematics performance is the dependent variable while Students Gender was considered moderating variables under study. Test was the instrument used for this study with Students Promotion examination scores also, this study last for the period of six (6) weeks.

1.8 Operational definition of terms

Skills: ability to understand, interpret, and express Mathematical situations in written form.

Problem solving skill: ability of the students to apply mathematics concepts, rules and clarifies mathematics concepts in details

Proof and reasoning skill: ability of the students to go beyond memorization of formulas in solving Mathematics problems

Communication skills: ability of the students to use operatonal signs, symbols, terminology ind solving mathematics problems.

Connection skill: ability of the students to relate Mathematics concepts with each others and real life situation

Representation skill: ability of the students to represent information in the tables, graphs, diagrams among others

Mathematics performance: Mathematics Promotion Examination Scores of secondary school students

CHAPTER TWO

2.1 Conceptual Framework

Figure 2.1: showing conceptual framework of the relationship between Mathematical communication skills and Mathematics performance.

Source: Developed by researcher

2.1.1 Concept and nature of mathematics

The need for Mathematics arose base on the society, that is, the more complex a society, the more the Mathematical needs. According to Nwoke and Nnaji (2011), Mathematics is developed through the use of abstraction and logical reasoning, from counting, calculation, measurement and the study of the shapes and motion of physical objects. Mathematics is described as a language in which every symbol and every combination
has precise meaning which can be determined by application of logical rules; it is the science that deals with the logic of shape, quantity and arrangement and use in even the most primitive of cultures (Abdullahi, 2016). Mathematics is one of the school subjects that any nation needs for industrial and technological advancement, useful for most vocation and higher specialized courses of learning (Charles-Ogan and Otikor, 2016). They further stated that Mathematics is an excellent vehicle for the development and improvement of a person's intellectual competence in logical reasoning, spatial visualization, analysis and abstract thought. Hence, students who study Mathematics develop problem-solving skills, reasoning skills, communication skills, connection skills and representation skills, through the learning and application of Mathematics.

2.1.2 Nature and objectives of senior secondary school mathematics curriculum in

Nigeria

The inclusion of Mathematics as a core subject in the Secondary School curriculum is because of the significant function it has to perform in the achievement of the objectives of the secondary school education, such as promoting science and technology, provision of trained manpower in the applied sciences, technology and commerce, and the acquisition of appropriate skills, abilities and competence both mental and physical, as equipment for the individual to live on and contribute to the development of his society (Federal Republic of Nigeria (FRN), 2014). Abdullahi (2016) defined curriculum as an educational programme of the school with attention on the elements of programme of studies, experiences, services and hidden curriculum. The emphasis on all experience which is likely to influence the overall development of learner should be considered while developing the curriculum. In the Process and Standard for School Mathematics (PSSM's) curriculum section, the National Council of Teachers Mathematics as cite in Daniel et al (2014) promotes a coherent curriculum, in which an orderly and logical progression
increases students' understanding of Mathematics and avoids wasting time with unnecessary repetition as well as acknowledge that the relative importance of some specific topics changes over time. For example, a basic understanding of iteration is important to students who are learning computer programming, and is almost absent from 19th century textbooks. Similarly, older American Mathematics textbooks included lessons that are no longer considered important, such as rules for calculating the number of bushels of hay that could be stored in a bin of stated dimensions, because this skill was useful to farmers at that time. Hence, they proposed that Mathematics taught in modern classrooms should provide the skills that are most important to the students' lives and careers.

As was emphasized by Nigerian Educational Research Development Council (NERDC) in the work of Shittu (2015), the content of the general Mathematics curriculum is grouped into six sections namely, Number and Numeration, Algebraic Processes, Mensuration, Plane Geometry, Trigonometry, and Statistics but recently reviewed to five content areas with each section occurring every year of the three Senior Secondary School programme. He further cited NERDC that, in recent years the Mathematics curriculum from primary to the secondary school in Nigeria has witnessed several changes in terms of contents, performance objectives, activities, methods and materials among others to make it more relevant or adaptable to changes occurring every now and then in the society. One of such recent changes is the shift away from the 6-3-3-4 system of education, that is, six years of primary school, three years of junior secondary school, three years of senior secondary school and four years of university education. This change led to the development of 9-year basic and senior secondary education Mathematics curricular that was published in 2007 by NERDC. Arowolo (2015) stated that the senior secondary Mathematics curriculum takes into consideration the relevance of the subject
to global world. He further mentions that the objectives of its curriculum should enable students to:

- Prepare for further and tertiary education
- Develop skills that enhance capital market skills
- Be proficient in the application of ICT
- Acquire competency in various vocations they may wish to pursue at tertiary level.

2.1.3 Concept of mathematics performance

Performance has been viewed in several ways by different researchers, some of who are Sofyan (2020), that performance is the result, the successfulness, the extent or ability, the progress in learning educational experiences that the individual indicates in relation to his/her educational learning. According to Odual (2013), performance is the end product of learning experience, what students have gained as a result of what they have learnt. He further stated that Mathematics performance deals primarily with the better performance of students in either teachermade test or standardised test administered by examining bodies. Mathematics achievement was described by Bhairab (2017) as the competency shown by the student in Mathematics, the result of acquired knowledge or information, understanding, skills and techniques developed in the subject of Mathematics in a particular stage. Hence, Mathematics performance is the better performance of students in Mathematics in either teacher-made or standardized test administered to them by examining bodies.

2.1.3.1 Concept of gender

Gender is the fact of been a male or female. Abdullahi (2016) refers to gender as the social construct that established and differentiated status and roles between men and
women, particularly in how they contribute to, participate in, and are rewarded by the economy and the prevailing social system. Gender achievement of students in learning Mathematics are not new. In line with the above, Firdiani et al. (2020) opined that male roles are more associated with mental rotation, spatial perception, and spatial visualization and female roles related to the phonological verbal fluently, synonym generation, and grammar. Also, the difference between male and female verbal ability cause the difference in gender Mathematical communication. Mawaddah et al. (2018) state that males are different from females psychologically; while females are more interested in real-life issues, males are more interested in abstract aspects. Also, the difference between males and females in learning Mathematics is that males are superior in reasoning, whereas females are superior in accuracy, precision, carefulness and thoughtfulness.

2.1.4 Concept of mathematics communication skills

A skill is the ability to carry out a task with determined results, often within a given amount of time, energy, or both. This can often be divided into general and specific skills. For example, in work, some general skills would include time management, teamwork and leadership, self-motivation and others, whereas specific skills would be used only for a certain job. Skill usually requires certain environmental stimuli and situations to assess the level of skill being shown and used. People need a broad range of skills to contribute to the modern economy (Merriam-Webstar Dictionary, 2020). Communication is a process of transferring information, ideas, emotions from one entity to another entity or group to another group using signs, words, pictures, videos, graphics, and numbers (Warner \& Kaur, 2017).

Communication skills is the ability of the students to express their ideas, describe and discuss concepts coherently and clearly. It is the students' capability to explain and justify action in procedure and process both orally and in writing (Lomibao et al., 2016). Mailis et al. (2019) stated that Mathematical communication skills include the ability to present Mathematical ideas verbally, in writing, pictures, graphics and other visual forms. Mathematical communication skill is the ability of students to use Mathematics as a tool of communication (language of Mathematics) (Febry et al., 2017). Here, Mathematical communication skills are those skills that the students must possess in order to communicate Mathematics problems effectively. These include using Mathematics symbols, terms, notations, diagrams, graphs, tables and pictures among others. Hence, this research considers the following Mathematics communication skills; problemsolving skills, reasoning skills, communication skills, connection skills and representation skills.

2.1.5 Mathematical communication skills of senior secondary school students

A number of factors had been identified by various researchers and educators as being responsible for low performance in Mathematics. Abdullahi (2016) characterized them as teachers' attitude to teaching of Mathematics, students attitude towards Mathematics, methods of teaching Mathematics, use of instructional materials. Henry et al. (2015) also list socio-economic status, gender, prior Mathematics achievement, parental support, peer influence, students' perception of good classroom assessment, school and class climate, attitude toward Mathematics and parental support. Odual (2013) mention school factors, overcrowding and Mathematical abilities as the factors responsible for low performance in Mathematics. Little or no attention has been given to Mathematical communication skills of students, whereas communication plays significant role in learning Mathematics.

In the work of Sumaji et al. (2019), communication facilitates students' use of vocabulary, phrases, symbols, and Mathematics meanings. Ahmad and Andi (2017) stated that in communicating, a person must be able to provide meaning and language that can be understood by the converser, resulting in good communication. According to them, the meaning of communicative here is that the conversation that occurs between two or more people who interact with each other and understand the contents of the conversation. Cragg et al. (2017) Stated that a good understanding of Mathematics is essential for success in modern society, leading not only to good job prospects but also a better quality of life. Amoncio (2012) believed that when students can fully communicate the way they think, teachers can do an excellent job in intervening at the level of their understanding and can provide better opportunities for them to succeed. Ihdi and Scholastika (2017) stated that; lack of understanding of the problems, lack of knowledge of the strategy and the inability to translate problems into Mathematical model hinder the knowledge of the structure of Mathematics due to more passive learning of Mathematics than the active learning.

Hence, the researcher sought to investigate the following Mathematical communication skills;

Mathematical Problem-solving skills
Mathematical Proofs and Reasoning skills, Mathematical Communication skills, Mathematical Connection/Relations skills and Mathematical Representations skills.

2.1.5.1 Mathematical problem-solving skills

Problem solving skills has long been seen as important skills of teaching and the learning of Mathematics. Clever (2020) opines that a problem is any unpleasant situation which prevents people from achieving what they want to achieve, hence any activity to eliminate a problem is termed problem solving. Sammons (2018) stated that students should be engaged in solving problems posed in Mathematics class as well as those that occur in real-life situations. They should be encouraged to construct new Mathematical meaning from their problem-solving efforts. Being able to communicate mathematically is essential for these tasks. First, students must make sense of problems, make connections to the math they know, and then translate the problems into Mathematical terms. Adi (2014) stated that Mathematics is abstract, it is to simplify and clarify the Mathematical problem-solving. Gulumser (2013) defined Mathematical problem-solving skills as the ability to apply Mathematical concepts and rules effectively in order to solve unordinary problems. This skill cuts across the Mathematics content in the area of number and numeration (numerical process) and algebraic process.

National Council of Teachers of Mathematics (NCTM) (2014) explains that solving problems is not only a goal of learning Mathematics but also a major means of doing so. It is an integral part of Mathematics, not an isolated piece of the Mathematics programme. Students require frequent opportunities to formulate, grapple with, and solve complex problems that involve a significant amount of effort. They are to be encouraged to reflect on their thinking during the problem-solving process so that they can apply and adapt the strategies they develop to other problems and in other contexts. By solving Mathematical problems, students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations that serve them well outside the Mathematics classroom. According to Dendane (2009), Mathematical problem-solving skill is a process that involves a set of factors and tasks to achieve a defined goal. It depends on
many skills and factors which therefore makes it challenging both to learn and to teach. If the instructor's understanding of the process is limited, difficulties in teaching the concept will arise. Hence, there is great need to understand these factors and skills if we want to help our students acquire this important process. Also, if well facilitated, this skill may help students to:

1. develop and improve the generic ability to solve real life problems;
2. develop critical thinking skills and reasoning;
3. gain deep understanding of concepts; and
4. work in groups, interact with and help each other.

Most of the Mathematics textbooks suggest few types of problems as examples with detailed solutions and then suggest similar problems as exercises. Student's learning is limited if only routine problems are solved. The problems used to create genuine learning opportunities should be of the challenging type and not only those similar to ones already solved in the past. Hoyles and Lagrange (2010) explain that problem-solving frameworks and instructional approaches came from analyzing students' problem solving experiences that involve or rely mainly on the use of paper and pencil work. Thus, there is a need to re-examine principles and frameworks to explain what learners develop in learning environments that incorporate systematically the coordinated use of digital technologies. Clever (2020) explains some of the importance of problem-solving skills to include:
i. make the impossible possible: knowledge alone is not the key to solving problems but rather, complimenting it with systematic problem solving approaches makes the difference. This helps individuals and organizations to overcome perilous challenges;
ii. make you to stand out: people are trained to do the usual, they have acquired skills and knowledge in what they do. However, people can hardly solve problems when
they are unexpected or unprecedented ones. If you become a regular problem solver at your workplace, you are easily noticed, recognized, and appreciated;
iii. increased confidence: No matter where you work or what your profession is, having the ability to solve problems will boost your confidence level. Because you are sure of your ability to solve problems, you do not spend time worrying about what you will do if a problem should arise.

According to Jacob and Sheena (2019), a problem in Mathematics is any situation that must be resolved using Mathematical tools but for which there is no immediately obvious strategy. Mathematicians have always understood that problem-solving is central to their discipline because without a problem there is no Mathematics. This practice requires teaching in profoundly different ways as schools moved from a teacher directed to a more dialogic approach to teaching and learning. The challenge for teachers is to teach students not only to solve problems but also to learn about Mathematics through problem-solving. They cited Wu and Zhang that importance of problem-solving in learning Mathematics comes from the belief that Mathematics is primarily about reasoning, not memorization. Problem-solving allows students to develop understanding and explain the processes used to arrive at solutions, rather than remembering and applying a set of procedures. It is through problem-solving that students develop a deeper understanding of Mathematical concepts, become more engaged, and appreciate the relevance and usefulness of Mathematics. They further stated that Problem-solving in Mathematics supports the development of: (i) the ability to think creatively, critically, and logically; (ii) the ability to structure and organize; (iii) the ability to process information; (iv) enjoyment of an intellectual challenge; and (v) the skills to solve problems that help them to investigate and understand the world.

Hence, it is clear that problem-solving skills need to be applied in learning Mathematics in the classroom so that students are able to communicate proficiently, think critically, collaborate and create new ideas in Mathematics

2.1.5.2 Mathematical proofs and reasoning skills

Proofs and Reasoning skills are some of the skills that students are expected to possess in order to communicate successively in Mathematics. Reasoning is defined by MerriamWebster dictionary (2020) as the use of reason; that is, the power of comprehending, inferring, or thinking especially in an orderly rational way. And proof as the process of establishing the validity of a statement especially by derivation from other statement in accordance with principles of reasoning. Agata (2014) defines proof as a sequence of logical statements which gives an explanation of why a given statement is true. Ayal et al. (2016) defines reasoning as an activity or the activity of thinking in order to prepare a new statement, which was based on some statements whose truth is known in advance. Therefore, ability to reason is essential to understanding Mathematics, this prompted Thomas (2020) to define reasoning skills as crucial for being able to generate and maintain viewpoints or beliefs that are coherent with, and justified by relevant knowledge. It also determines how people comprehend, evaluate, and accept claims and arguments. Sumarsih et al. (2018) declare that it is a basic skill of Mathematics that is necessary for a number of purposes: to understand Mathematical concepts, to use Mathematical ideas and procedures flexibility, and to reconstruct Mathematical ideas.

According to Gunhan (2014), Mathematical reasoning refers to the ability to formulate and represent a given Mathematics problem then explain and justify the solution or argument. Agata (2014) submits that Mathematical proof and reasoning are absolute, which means that once a theorem is proved, it is proved forever. He stated that previously
established theorems may be used to deduce the new ones; also one may also refer to it as the rules accepted by everyone. Ayal et al. (2016) argue that the Mathematical reasoning ability is the ability to express the arguments that are essential for understanding Mathematics. They further cited Sumarmo that some of the indicators of the ability of belonging to the Mathematical reasoning are: (1) draw the logical conclusion; (2) provide an explanation of the models, pictures, facts, nature, relationships or patterns exist; (3) estimate the answer and process solutions; (4) use a pattern of relationships to analyze the situation, or make an analogy, generalization, and arrange conjecture; (5) propose opponent example; (6) follow the rules of inference, check the validity of the argument, proving and compose a valid argument; and (7) develop direct evidence, indirect evidence and proof by induction. This skill cuts across the Mathematics content in the area of logical reasoning, geometry and algebraic process.

In the work of Gurbuz and Erdem (2016), it is stated that people who reason and think analytically tend to note patterns, structures, or regularities in both real-world and Mathematical situations, they ask if those patterns are accidental or if they occur for a reason, they make and investigate Mathematical conjectures, they develop and evaluate Mathematical arguments and proofs, which are formal ways of expressing particular kinds of reasoning and justification. Sumarsih et al. (2018) state that Mathematical reasoning is essentially about the development, justification and use of Mathematical generalizations; generalizations create an interconnected web of mathematical knowledge and conceptual understanding, also seeing Mathematics as a web of interrelated ideas is both a result of an emphasis on Mathematical reasoning and a foundation for reasoning further. Carol and Susan (2016) opine that instructional programme from prekindergarten through grade 12 should enable all students to:

1. recognize reasoning and proof as fundamental aspects of mathematics;
2. make and investigate Mathematical conjectures;
3. develop and evaluate Mathematical arguments and proofs; and
4. select and use various types of reasoning and methods of proof.

Mathematical reasoning skills is characterised by activities such as looking for, and exploring, patterns to understand Mathematical structures, and using available resources to solve problems. Mathematical reasoning skills if merged with scientific conduct possesses the capacity of advancing students' inquiry skills beyond memorisation of facts and procedures, and lead the learners to creating new knowledge (Sokolowski, 2018). To develop Mathematical reasoning students will: (1) engage in substantial problem-solving; (2) be able to communicate and interpret their results; (3) learn Mathematics through modeling real-world situations; (4) expand their Mathematical reasoning skills as they develop convincing Mathematical arguments; (5) use appropriate technology to enhance their Mathematical thinking and understanding, to solve Mathematical problems, and to judge the rationality of their results; (6) perform arithmetic operations, as well as reason and draw conclusions from numerical information; (7) use algebra and/or other symbolic representations to translate and solve problems; (8) develop a spatial and measurement sense; (9) demonstrate understanding of the concept of function verbally, numerically, graphically, and/or symbolically; and (10) analyze data and use probability and statistical models to make inference about real-world situations (Thomas, 2020).

Bright (2015) explains three ideas for improving students' Mathematical reasoning skills:

1. help students ask 'why?': the teacher instructs students to justify their answers. If they can verbalize how they arrived at their answer, they can more easily pin point the logical thinking that was involved. For example, say you ask students to solve this equation: $12+\mathrm{X}=73+15$ logically, students could reach the answer in a few
different ways. First, since 12 is only 3 less than 15 , the numbers are relatively easy to compute. So, after that reasoning, students could conclude that the answer must be 73 added to 3 , or 76 . Or, since logically X must be equal to 12 less than the sum of 73 and 15 , students could first add the larger numbers to 88 , then subtract 12 from 76 . As much as possible, have students explain their thought processes in this way, and make sure they show their work on assignments and tests to practice this line of thinking;
2. teach proofs: geometric proofs are a practical application of Mathematical reasoning. They ask students to write down first what they are given in a geometry problem, then what they suspect. Then, in a second column, students must write out why each statement is true. Geometric proofs force students to look at problems in small increments, rather than quickly solving them in their head without thought. In that way, they help students understand the reasoning behind solving the problem; and
3. have students work together: to help students practice reasoning, have them work in pairs or groups. When they work together on a math problem, they will be able to justify to each other how they got an answer, and they will also be able to analyze and critique the other students' reasoning.

According Mailis et al. (2019) students' ability to think and convey ideas is strongly influenced by how their brains work, as students have different levels of intelligence. Therefore, to optimally stimulate the brain during the learning, a teacher must establish a fun learning environment and challenge students' thinking skills to increase students' engagement leading to more meaningful learning. Hence, it is clear that the Mathematical reasoning skills need to be fully incorporated into classrooms, schools, and districts around the country in order to help students to excel in their academic pursuit and to produce citizens and employees adequately prepared to face the challenges ahead.

2.1.5.3 Mathematical communication skills

One of the important skills that is expected of the students to be able to solve Mathematical problems is communication skills. Mathematical communication is the ability to explain Mathematical thinking process by standard mathematical terminology and symbols the way other people would understand it (Gulumser, 2013). Mailis et al. (2019) opine that Mathematical communication skills must be well integrated into the classroom and students should be guided to express and write ideas, questions, and solutions. They concluded that these skills should be a major concern in Mathematics learning to foster students' skills of thinking and conveying ideas. Sutama et al. (2019) portray that Mathematics communication skills have an important role in learning because through Mathematics communication, students can organize and consolidate their Mathematical thinking. Also, students are subjects who have ability to actively seek, process, construct, and apply knowledge in daily life; in this manner, to deeply understand and apply knowledge, students need to be encouraged to work to solve problems, find everything for themselves, and strive to realize their ideas.

Sutama et al (2019) further list out competence of $21^{\text {st }}$ century skills as (a) critical thinking and problem-solving skill (b) communication skill (c) creativity and innovation skill (d) collaboration skill. They cited Hirsch et al that the ability of communication in Mathematics include: (1) the ability to express Mathematical ideas through oral, written, and able to demonstrate it, and visually depicting; (2) the ability to understand, interpret, and evaluate Mathematical ideas through oral, written or other visual forms; and (3) ability to use terms, Mathematical notations, and structures to present ideas, describe relationships, and situational strategies.

According to Puspita (2016) by Mathematical communication skills, the ideas and messages of material should be well taught to the students in order to help build their knowledge resulting in the increase of their learning outcomes. Ahmad and Andi (2017) state that when a student is able to communicate things effectively, then it is a good capital in behaving towards others and able to cooperate with others in doing an innovation. Febry et al. (2017) state that communication is at the heart of learning in Mathematics. Mathematical communication skills include: (1) the use of Mathematical language that is realized in the form of oral, written, or visual; (2) the use of Mathematical representations that is realized in the form of written or visual; and (3) clarity of presentation, namely interpreting Mathematical ideas, use the Mathematics term or notation to represent Mathematical ideas, as well as describe the relationships or Mathematical approach. Wichelt (2009) point out that communication is a key part of students' learning, in which they need to be able to communicate with their teachers and their peers in order to understand knowledge of a Mathematical concept. Teachers can stimulate students’ growth of Mathematical knowledge through the ways they ask and respond to questions.

Students' ability to think and convey ideas is strongly influenced by how their brains work as students have different levels of intelligence. Therefore, to optimally stimulate the brain during the learning, the teacher must establish a fun learning environment and challenge students' thinking skills to increase students' engagement leading to more meaningful learning (Mailis et al., 2019). Sammons (2018) state that, this skill is explicit in emphasizing the importance of students being able to organize and consolidate their thinking through communication, as well as being able to communicate their Mathematical thinking coherently and clearly to their peers, teachers, and others. Correspondingly, must be able to analyze and evaluate the Mathematical thinking and strategies of others and use the language of Mathematics to express Mathematical ideas
precisely. In NCTM (2014) Mathematical communication is seen as a way of sharing ideas and clarifying understanding. Through communication, ideas become objects of reflection, refinement, discussion, and amendment. Similarly, when students are challenged to communicate the results of their thinking to others orally or in writing, they learn to be clear, convincing, and precise in their use of Mathematical language.

Summaji et al (2019) state that Mathematical communication of the students in the class can be realized by using 4 strategies: (1) giving appropriate tasks; (2) creating conducive environment to express their notions; (3) directing them to explain and argue toward the given results; and (4) directing them to actively process various ideas and notions. They further stated that Mathematical communication can be found in three aspects: (1) communicating mathematic ideas by writing texts; (2) communicating Mathematics ideas by drawing pictures, tables, diagrams, graphics; and (3) communicating Mathematics ideas by Mathematical expression (making model/equation then work out them). Based on the above definitions and assertions, Mathematical communication skills need to be well incorporated into the classroom in order to help students learn Mathematics as well as enable them to excel in their academic pursuit.

2.1.5.4 Mathematical connection skills

Connection is one of the must have skill to be able solve Mathematics problem and do well in any other field successfully. Armitage (2019) refers to connections as Mathematically relevant observations that students make about their problem-solving solutions and that connections require students to look at their solutions and reflect. Siregar and Muhammad (2019) describe Mathematical connection skills as an ability that must be built and studied. Also, with good Mathematical connection skills (i) students will be able to understand the relationship of various concepts in Mathematics and apply

Mathematics in everyday life; (ii) students will feel the benefits of learning Mathematics and; and (iii) their understanding of the concepts learned will help them to retain and recall those concepts when the need arises.

According to Ndiung and Fransiskus (2018) the notion of 'connections' in Mathematics relates both to those that exist: (i) within and between different content areas in Mathematics such as within number or between number and measurement; (ii) between Mathematics learning and learning in other areas; and (iii) between Mathematics and the context within which a child lives, works or plays. According to Hotmaria et al. (2018), learning is said to be meaningful if the information learned by learners is prepared in the appropriate cognitive structure so that they have a strong memory and transfer learning is easily achieved, by not often memorizing Mathematical ideas without trying to interpret the idea. Dedi and Jojon (2013) describe some of the indicators in Mathematical connections as:
a. finding the relationship of the various representations of concepts and procedures; b. understanding the relationship between Mathematical topics;
c. using Mathematics in other areas of study or daily life;
d. understanding the representation of equivalent concept or similar procedure;
e. finding the connection between one procedure to another in an equivalent representation;
f. using connections among Mathematical topics and between Mathematics with another subject.

Siregar and Muhammad (2019) proposed that, it is very important that the teacher has knowledge of Mathematical connections and be able to create a rich environment to support the development of Mathematical connection skills among students, considering
the opportunity to discuss their ideas with colleagues and to develop their Mathematical understanding through conversation, students have a greater opportunity to develop Mathematical connection skills. According to NCTM (2014), when students connect Mathematical ideas, their understanding is deeper and more lasting, view Mathematics as a coherent whole and sees Mathematical connections in the rich interplay among Mathematical topics, in contexts that relate Mathematics to other subjects, and in their own interests and experience. Dedi and Jojon (2013) state that the Mathematical concept and procedure newly developed can be applied to solve other problems in Mathematics and other disciplines.

In line with the above, Haji et al. (2017) itemize the importance of Mathematical connection skills in Mathematics as: (1) expanding horizons; (2) clarifying Mathematics as a whole; and (3) clarifying the benefits of Mathematics. Hotmaria et al (2018) affirm that Mathematical connection skills can improve students' cognitive abilities such as recall, understand the application of environmental concepts and so on, without applying the concept of student experience, it would be difficult to remember certain material and remember too many separate concepts whereas Mathematics is rich in principles. Armitage (2019) points out that teachers should help students to develop an understanding of Mathematical connections in the following areas:
(1) develop students' abilities to use multiple strategies to show their Mathematical thinking and support that their answers are correct;
(2) encourage students to continue their representations. Mathematical connections may be made when students continue a representation beyond the correct answer;
(3) explore the rich formal language of mathematics. Mathematical connections may be made as students begin to use the formal language of Mathematics and its connection to their representations, calculations and solutions;
(4) incorporate inquiry into the problem-solving process. Asking students to clarify, explain, support a part of their solution to a math partner, the whole class, or a teacher, this not only helps to develop independent problem solvers but also leads to more Mathematics connections; and
(5) encourage self- and peer-assessment opportunities in your classroom. Encourage students to self-assess their problem-solving solutions either independently, with a Mathematics partner or with the support of their teacher.

In line with the above, the teachers need to play a significant role to improve the Mathematical connection skills of the students through classroom activities such as engaging students in classroom discussion, giving alternative answers, sharing their explanations and ideas, and communicating with each other in order to improve their Mathematical connection skill in solving the problem.

2.1.5.5 Mathematical representation skills

This aspect of Mathematical communication skill is very important for students to be able to solve problems in Mathematics effectively and efficiently. Representation skill is a process in which students communicate ideas or answer problem (Zeny \& Bella, 2017). Novia and Dian (2018) states that representation is an expression of Mathematical thoughts or ideas which are displayed in an attempt to find a solution to the problem being faced. Aflich et al. (2018) see representation to mean how the student re-interprets a problem into a simple form based on his understanding and he communicates a solution obtained through external representations that can be verbal, symbolic, or visual. Aflich et al (2018) further stated that representation skill is the foundation that allows a student to understand and utilize Mathematical ideas appropriately.

Adi (2014) assert that representation plays an important role, namely (1) to transform abstract ideas into tangible concepts, with pictures, symbols, words, graphics and others. (2) provide a broad overview of the concepts in terms of the analogy existing topics. Hence, it is expected that when students have access to the representations and the ideas shown to them, then they have a set of tools that significantly expand their skill to be ready to think Mathematically.

In the work of Novia and Dian (2018), Mathematical representation refers to an expression of Mathematical ideas that are displayed as models and utilized to find solutions being faced and afterwards become the results of thoughts expressed through images, graphics, words, and Mathematical symbols. Ming-Jang et al. (2015) refer to it as the different forms of representations that learners use to interpret a problem. In addition, Adi (2014) describes it as depiction, translation, disclosure, reappointment, figurative skills or even modeling ideas, Mathematical concepts, and the relationship between them that contains a configuration, construction, or certain situations that students appear in various forms on an attempt to achieve clarity of meaning, demonstrate understanding or find a solution to his problems.

Samsuddin and Retnawati (2018) state that Mathematical representation consists of two inseparable parts, namely: (1) external representation, one that physically exists and is observable, such as graphic, pictures, equations and table; (2) internal representation, such as model, scheme or concepts which is mental or cognitive and cannot be directly observable. Meanwhile, the internal representation is how students develop their knowledge to work their mind. Aflich et al. (2018) divide Mathematical representations into five categories: real life experience representation, concrete representation, oral or verbal language representation, pictures or graphs representation and arithmetic symbols
representation. Among these five categories, the last three representations reflect the more abstract and higher level in the representation of Mathematical problem-solving. Thus:

1. language representation skill: the skill of translating observed properties and relationships in Mathematical problems into verbal or vocal representations;
2. picture or graphic representation skill: the skill of translating Mathematical problems into picture or graphic representations; and
3. arithmetic symbol representation skill: the skill of translating Mathematical problems into arithmetic formula representations.

Mathematics representation skill is one component of a standard process in Principles and Standards for School Mathematics in addition to the skills of problem-solving, reasoning, communication and connections, with several reasons. According to Adi (2014), (1) fluency in doing the translation between different representations of different types are the basic skills of the students to develop a concept and Mathematical thinking; (2) mathematical ideas are presented through various representations. The teacher will provide an enormous influence on students in learning Mathematics; and (3) students need practice in building their own representation so that they have the skill, good understanding and flexible concept that can be used in solving problem. Adi (2014) also opine that there are four ideas that are used in understanding the concept of representation skill including:

1. representation can be seen as an internal abstraction of Mathematical ideas or cognitive schemes constructed by students through experience;
2. as a mental reproduction of previous mental state;
3. as the grain structure through image, symbol, or emblem; and
4. as the knowledge of something that represents something else.

Mathematical representation skill is very important in helping students to solve problems effectively. Novia and Dian (2018) enumerate some of the importance to include: (i) help students develop concepts, understand concepts and express Mathematical ideas; (ii) facilitate students to more easily clarify Mathematical conditions or problems; (iii) really helps learners to understand Mathematical concepts in the forms of images, symbols and written words; and (iv) the use of correct representations by students will help them transform abstract ideas into the more concrete ones as well as form an understanding of Mathematical concepts.

In the work of Aflich et al. (2018) five indicators of the Mathematical representation skills were formulated' they include: 1) use visual representation to solve a problem; 2) present data/information from a representation into diagrams, graphs or tables and solve a problem using written words or texts; 3) develop equations or Mathematical models of the provided representations and solve a problem by involving Mathematical expressions; 4) draws geometric patterns, to write down the steps of solving Mathematical problems with word and solve problems with Mathematical expressions; and 5) create a problem situation based on the provided data or representation. The indicators of Mathematical representation skills according to National Council of Teachers of Mathematics (2014) establish that the learning programme from kindergarten through senior secondary school should enable students to:

1. create and use representations to organize, record, and communicate Mathematical ideas;
2. select, apply, and translate Mathematical representations to solve problems; and
3. use representations to model and interpret physical, social, and Mathematical phenomena

Samsuddin and Retnawati (2018) state that teachers also have an important role to play in ensuring that students gain an understanding of the Mathematical representation skills. They further outline recommendations for teachers to facilitate students' Mathematics learning in respect to Mathematical representation, which are:
i. teachers should realize that their belief regarding which representation mode students can do, cannot do, and should be able to do may affect instructional plans;
ii. teachers should recognize which translations are more difficult than others. For instance, students may find translation from symbolic to tabular representation easier than translation from graphical to symbolic translation;
iii. teachers have to assure that students learn all the representations with the translation, particularly those which are more difficult;
iv. teachers need to take everything that support students' translation to consideration in the learning process, for instance, teachers' questioning techniques;
v. teachers can use real world contexts which are familiar to students; and
vi. teachers can use rich-tasks to engage students.

Such representations skills such as drawings (sketch) skills, diagrams skills, graphical skills and symbolical skills need to be inculcated in the classroom to help students communicate their Mathematical ideas effectively and efficiently.

2.2 Theoretical Framework

Despite the fact there are so many educational theorists, this study uses the following theories to back up its review: the behaviourism, cognitivism and constructivism.

2.2.1 Behaviourism

In the work of Paul (2019), Behaviourism is based on the idea that knowledge is independent and on the exterior of the learner. In a behaviourist's mind, the learner is a
blank slate that should be provided with the information to be learnt. Through this interaction, new associations are made and thus learning occurs. Learning is achieved when the provided stimulus changes behaviour. A non-educational example of this is the work done by Pavlov. Through his famous "salivating dog experiment, Pavlov showed that a stimulus (in this case ringing a bell every time he fed the dog) caused the dog to eventually start salivating when he heard a bell ring. The dog associated the bell ring with being provided with food so any time a bell was rung the dog started salivating, it had learnt that the noise was a precursor to being fed. In a similar approach to classroom management, the teacher taught the student that if he stands in a specific place in the classroom with his arms folded, they know that he is getting frustrated with the level of noise and they start to remain silent or if he sits cross-legged on his desk, he is about to say something important, supportive and they should listen because it affects them directly (Paul, 2019).

Thadei (2013), highlighted the implication of the behaviourism learning theories to teaching and learning to include:
i. As environment properly arranged help learning to occur, teachers should prepare the environment that will help learners to learn such as arranging activities that suit environment.
ii. Teachers also need to help learners make practice of what they have learned. This is important as learning is subject to the rate of occurrence of behaviour. This is as well significant for strengthening the responses.
iii. Learning should be reinforced. That is, students should be given rewards. Teachers are to reward any desired behaviour in learning. However, to weaken the undesired behaviour learned, teachers should apply punishment.
iv. In developing the profession of teaching, teachers have to note that developing
professionally has some benefits such as being able to help learners learn. Increasing the knowledge base, being rewarded economically and developing/improving their personal lives.

Hence, behaviourism learning theory involves repeated actions, verbal reinforcement and incentives to take part. It is great for establishing rules, especially for behaviour management. Therefore, this theory relates to this study by emphasizing that students should be engage in practicing and repeating Mathematics activities or exercises so that the pattern of carrying out related Mathematics activities can be mastered by them and increase their Mathematical communication skills.

2.2.2 Cognitivism

Cognitive theories were developed in the early 1900s in Germany from Gestalt psychology by Wolfgang Kohler. In the work of Paul (2019), cognitivism focuses on the idea that students process information they receive rather than just responding to a stimulus, as with behaviourism. There is still a behaviour change evident, but this is in response to thinking and processing information. In cognitivism theory, learning occurs when the student re-organises information, either by finding new explanations or adapting old ones. He further gives the examples of how teachers can include cognitivism in their classroom to include linking concepts together, linking concepts to real-world examples, discussions and problem-solving. Thadei (2013) stated that Cognitivists acknowledge the role of environmental conditions as influences on learning, but teachers' explanations and demonstrations of concepts serve as environmental inputs for students, practice of skills and correct feedback to promote learning. What students do with information, how they attend to, rehearse, transform, code, store, and retrieve is critically important. Hence, cognitivists suggest that learning takes place in the mind as is a result of mental processes on the information received.

According to Paul (2019), there are some basic ideas to get your head around and some stages to understand this learning theory. The basic ideas are:
a) Schemas: The building blocks of knowledge.
b) Adaptation processes: These allow the transition from one stage to another. He called these: Equilibrium, Assimilation and Accommodation.
c) Stages of Cognitive development: Sensorimotor, Preoperational, Concrete Operational and formal Operational.

Children develop Schemas of knowledge about the world which are the clusters of connected ideas about things in the real world that allow the child to respond accordingly. When the child has developed a working Schema that can explain what he perceives in the world, that Schema is in a state of Equilibrium. When the child uses the schema to deal with a new thing or situation, that Schema is in Assimilation and Accommodation happens when the existing Schema is not up to the job of explaining what is going on and needs to be changed. Once its changed, it returns to Equilibrium and life goes on. Hence, Learning is therefore a constant cycle. Cognitive learning theorists stress the acquisition of knowledge and skills, formation of mental structures and processing of information and beliefs (Chunk, 2012).

Implication of the cognitive theories of learning to the development of teaching by Thadei (2013) are:
a) Teachers should organise the teaching materials in a way that the concept in them can easily be acquired and processed by learners' mind.
b) Teachers need to use variety of teaching techniques: This helps them lead students to explore the concepts from different angels.
c) Observational learning by Albert Bandura suggests that students learn by observing: teachers therefore need to be role models to their students.
d) Current learning builds upon the previous one: teachers therefore should seek for students' prior knowledge before they launch new concepts.
e) Teachers need to provide exercises and practices to the learners: this is because students learn best in the course of doing exercises which help them to accommodate the information into the mind.
f) Courses and topics should be divided into subparts which can easily be understood by students, the small parts should be taught in such a way that they reinforce each other.

Hence, this theory's relation to the present study is that students should put more effort by finding more explanations to what the teacher has taught them in the class, they should relate Mathematics concepts together, relate Mathematics concepts with other concepts and relates Mathematics concepts to real life situation in order to build their Mathematical communication skills thereby increasing their chance of achievement in Mathematics.

2.2.3 Constructivism

According to Brau (2020), there are three foundational psychologists of constructivism. They are: Jean Piaget who falls into the radical constructivism aspect, Lev Vygotsky concentrates on the social aspects of learning through experiences and John Dewey straddles the line between the two perspectives and has many ideas that match with each side. He further states that the common ground that united these psychologists under the umbrella of constructivism is that all of them believed that the learning theories (such as behaviourism and humanism) at the time did not adequately represent the actual learning process. Also, their ideas were rooted in experiences in the classroom instead of experiments in a laboratory (compared to behaviourism). Pual (2019) asserts that
constructivism is based on the premise that we construct learning new ideas based on our own prior knowledge and experiences. Thus, students need to have a prior base of knowledge for constructivist approaches to be effective. As students are constructing their own knowledge base, outcomes cannot always be anticipated, consequently, the teacher should check and challenge misconceptions that may have arisen. He further lists examples of constructivism in the classroom to include problem-based learning, research, creative projects and group collaborations.

In another research by Thadei (2013), constructivism is a theory of knowledge with roots in philosophy, and psychology with Vygotsky, Brunner and John Dewey as the founders; they believe that (1) knowledge is not passively received but actively built up by the cognizing subject; (2) the function of cognition is adaptive and serves the organization of the experiential world. He explains that learning involves constructing one's own knowledge from one's own experiences. Also, Constructivist learning is a very personal endeavor, where by internalized concepts, rules, and general principles may consequently be applied in a practical real-world context. Thadei (2013) describes four forms of constructivist relationship between teacher and student as:

1. Power on: this is a traditional approach of instruction where the teacher teaches and then allows students to construct new knowledge, post teaching process.
2. Power of: this is also a traditional approach of instruction where the teacher ignores learning opportunities in the course of teaching but students are told to take note of them to be explored, post learning process.
3. Power for: this is a democratic approach of teaching where the learner is freer to explore physical environment so as to solve some problems and create new knowledge.
4. Power with: this is a democratic approach of teaching where learners have high
opportunity in the course of learning.
Thadei (2013) also mentioned the five phases of constructivist teaching scheme in as:
i. Orientation: focusing learners interest on a particular area for learning
ii. Elicitation: helping children become aware of their prior knowledge so that the teacher can know the student's range of ideas.
iii. Restructuring ideas: helping children become aware of an alternative point of view, this goes together with modifying, replacing or extending views.
iv. Application of new idea: reinforcing the newly constructed idea
v. Review: reflection on how learner`s ideas have changed

Thadei (2013) elaborates the contribution of constructivism theories to teaching and learning to include the following:
a) Constructivism views each learner as a unique individual with unique needs and complex backgrounds, teacher must help these students to attain their goals;
b) Uniqueness and complexity of the learner encourages the teacher to utilize it as an integral part of the learning process. Professional development should consider the importance of using learners experience in teaching and learning process;
c) Learners are challenged within close proximity to their current level of development. By experiencing the successful completion of challenging tasks, learners gain confidence and motivation to embark on more complex challenges, Vygotsky calls it zone of proximal development (ZPD). Teachers should encourage and accept student autonomy and initiative. They should try to use raw data and primary sources, in addition to manipulative, interactive, and physical materials. So that students are put in situations that might challenge their previous conceptions and that will create contradictions that will encourage discussion among them. In our teaching therefore, we need to use some activities which originate from our environment so that learning can be meaningful to students;
d) Constructivist approach insists that instructors/facilitators must help the learner to get to his or her own understanding of the content. That is, the teacher should encourage students critical thinking and inquiry by asking them thoughtful, open-ended questions, and encourage them to ask each other question so that they can construct their own meaning when learning.

The theory's relation with the present study is that students should be encourage to learn new ideas based on their prior knowledge and experiences, they should be encouraged to think critically about concepts, they should be taught from simple to complex concepts and from known to unknown concepts to enable them understand the contents and retain the previous concepts thereby relating them with the new concepts. By so doing students

Mathematical communication skills will improve then increase their performance in Mathematics.

2.3 Empirical Studies

2.3.1 Empirical studies on the mathematical communication skills and mathematics performance of senior secondary school students

Recent evidence derived from a variety of surveys undertaken by different people using different tests in various parts of the world reveal relationship between Mathematical communication skills and Mathematics performance of senior secondary school students. Septiana et al. (2019) carried out a study on 'Mathematics Communication Skills of Students in Senior High School on Introvert personality in Sukoharjo, Indonesia'. The research used descriptive qualitative method with 20 subjects in the eleventh grade of a national senior high school in Sukoharjo and the data was collected through questionnaires, tests and interviews. The study revealed that students who had an introvert personality type were able to analyze and write information obtained by Mathematical symbols with 90% in the high category; these students easily understood what must be said or changed into mathematical symbols.

On the other hand, students' Mathematical communication skills in the ability to express ideas, graphical, Mathematical situations or algebraic forms of writing had a 24.5% in the low category. These students were not able to change Mathematics equivalents into a graphic image, many of them had difficulty determining the area of completion and were not able to read comprehension of a Mathematical equation, resulting in difficulty with drawing graphic. This study used same instruments, variable and subjects but different in all other mechanism with the present study.

According to the study by Rahmy et al. (2019) on 'Mathematics communication skill of students in Junior High School Based on Students' Thinking Style in Indonesia’ using descriptive qualitative research. The data was obtained from 32 students of junior high school in Nganjuk region with heterogeneous abilities by using the research instruments of written test, questionnaire, and interview. The findings revealed that students who were with sequential concrete and sequential abstract thinking styles were capable of arranging similar conjectures, making arguments, exploring ideas, formulating generalization. However, they were having difficulty presenting Mathematics in their own language. Meanwhile, students with random concrete and random abstract thinking styles were able to express ideas and formulate generalizations, they were however having difficulties in establishing conjectures. This study used same instruments, variable and subjects but different design from the present study.

Mailis et al. (2019) on 'Students' Mathematical Communication Ability through the Brain-Based Learning Approach using Autograph’ and descriptive qualitative design. The Mathematical communication skills test and the activity observation were the instruments used to obtain data from Twenty-eight (28) 10th grade students of the high schools in Banda Aceh for the study. The result showed that students' skills in expressing Mathematical ideas in various ways have not met the expectation. This study has Mathematical communication ability and students as the subjects which is same as the present study but different in design and data collection techniques.

Another study by Puspa et al. (2019) on the 'Profile of Mathematical Communication Skills Junior High School Students in Problem-Solving in Indonesia'. This research is a qualitative type that is, a research process that is done naturally in accordance with objective condition in the field without any manipulation, where in this case data retrieval is done through student written test, oral test delivery, and in-depth interview. This
research used triangulation of time in which the written tests, oral tests, and interviews were carried out twice in different times. The results disclosed that there are some differences in each student; while there were students who were more detailed in doing and remembering things that were taught, there were other students who did things briefly and precisely; so it can be said that each student has different Mathematical communication skills in solving problem. This study has Mathematics communication skills and students in common but different in every other mechanism.

The work of Septiana et al. (2018) 'Mathematical Communication Skills of Senior High School Students based on their Personality Types in Indonesia' used descriptive research design. The data of this research was collected using written test and interview from 34 students of senior high school in Sukoharjo region with heterogeneous abilities and gave an overview that Mathematical communication skill of students having introvert personality can arrange conjecture, make an argument, and formulate generalization definition. However, they had difficulty in understanding a Mathematical presentation. Meanwhile, the students having extrovert personality could explore their ideas, but they had difficulty in revealing the idea or Mathematical paragraph in their language. The similarities between this study and the present study is that they both used survey design and written test but other things such as population, sample and sampling techniques are different.

Ahmad and Andi (2017) on the analysis of Mathematical communication skills of junior high school students of coastal Kolaka Indonesia. The subjects of the study were VIII Coastal Junior High School of Kolaka District in the second semester of the academic year 2016/2017 adopted descriptive method. The data collection technique in this study were test and interview techniques. The finding showed that ability of students are still low based on the their answer sheets which appears that students are having difficulty or
are unable to state the situation in Mathematical symbols or difficulty in changing the daily situation in the Mathematical language and that most students are still confused to make an introduction in Mathematical operations as auxiliary variables to facilitate calculation. This study used descriptive survey method, test and students which is the same as the present study but every other thing is different from the present study.

Alamgir et al. (2017) carried out a survey on the 'Communication Skills of a Teacher and their Roles in the Development of the Students' Academic Success in Pakistan' using descriptive survey design. The empirical data regarding the role of a teacher's communication skills in students' academic success was obtained from 418 teachers from a sample of 14 universities in Pakistan. The study found that majority of the students opined that they learn well from teachers who have good communication skills or who adopt good communication skills while dealing inside and outside the institution. Effective teaching not only depends on the knowledge base of the teacher but also relates to the method and style of teacher's communication skills. Also, good communication is not only important for a teacher but students also need to have good communication skills. This study had communication skills and descriptive design as similarities with the present study but other approaches are different.

Lomibao et al. (2016) on the influence of Mathematical communication on students' Mathematics performance and anxiety in Philippines employed a mixed method of quantitative quasi-experimental control group and descriptive qualitative design. This study used 188 fourth year high school students in Bulua National High School, school year 2013-2014, as the participants of the study. Two intact classes with 94 students were randomly assigned as experimental group and the other two groups with 94 students as control group composed of 47 students in each section. Interviews were also done to verify responses for triangulation. The study revealed that content analysis of the
students' answers on the two-tiered test questions showed that students had improved in terms of achievement score and showed a good grasp of the concept as shown in their answers in the second-tier questions. Also, students gave varied justifications of their answers, which evidently showed that they were able to make connections and had applied previous concepts learned. This study had Mathematics communication skills, descriptive design and students as similarities with the present study but other approaches are different.

The study of Puspita (2016) on the analysis of Mathematical communication skills of students in Mathematics education at the University of Muhammadiyah Jember Indonesia used descriptive qualitative design to show that when expressing mathematical ideas through speech, writing, demonstrating, and describing it visually, students express it clearly and completely but often with some errors. Whereas when they understand, interpret, and evaluate Mathematical ideas, either orally or in writing, or in any other visual form, they did it right, clear, and complete. When using the term, notation, Mathematical structures to present ideas and describe relationships with models or other situations, they used it in full, but not in terms of truth and clarity. On the other hand, when expressing Mathematical ideas orally it is not true and clear. Whereas when they understand, interpret, and evaluate Mathematical ideas, either orally in writing, or in any other visual form, they did it right, clear, and complete. Furthermore, when they used the term, notation, Mathematics structures to present ideas and describe relationships with other situation models, they did not do it correctly, clearly and completely. Mathematical communication skills and students are the only similarities in this study and the present study.

Yaako and Okoro (2019) conducted a research on problem-solving strategy on senior secondary school students' performance and attitude toward Mathematics in Khana Local

Government Area of Rivers State. This study used qausi-experiment with pretest-posttest control group design adopted the $2 \times 2 \times 2$ factorial analysis for variable matching. The sample of 116 SSS II students with two instruments namely Mathematics Performance Test (MPT) and Students Mathematics Attitude Questionnaires (SMAQ) then analyzed the data collected using Analysis of Variance (ANOVA) and Kruskal Wallis Statistics. The findings show that there is significant difference among two groups of students when exposed to Problem Solving and Lecture Method, there is no significant difference in performance between male and female student when exposed to problem solving, method also, significant difference exist among the two groups in mean attitude score toward Mathematics when exposed to problem solving, instructional strategy and those taught using lecture methods. This study used different designs and statistical tool of analysis but same instruments, variables and subjects as the present study.

The research of Suharto and Widada ((2018) on the 'Contribution of Mathematical Connection and Mathematical Communication to Problem-Solving Ability of Senior High School Students in Kota Bengkulu, Indonesia'. This was a survey research design conducted in senior high schools throughout the Kota Bengkulu that used sample of 170 students with three research instruments namely problem-solving ability test, Mathematical connection ability test and Mathematical communication test then analyzed the data collected by using Confirmatory Factor Analysis (CFA). The finding showed that there is a positive direct effect of Mathematical communication skills on problem-solving abilities, positive direct effect of Mathematical connection skills on problem-solving abilities. Also, there is a positive direct effect of Mathematical communication skills on Mathematical connection abilities of the students. This study used different statistical tool of analysis but same design, instruments, variables and subjects as the present study.

Ndiung and Fransiskus (2018) on their study about Mathematics connection ability and students' Mathematics learning achievement at elementary school. This was ex-post facto research design conducted in Watu Weri state elementary school that used proportionate stratified random sampling technique to select 35 students with test and documentation as data collection techniques then analyzed the data by using linear regression. The result showed that there is effect between Mathematics connection ability toward students' Mathematics learning achievement because of the Mathematics inter-dependence between concept and material and other subjects as well for man's everyday life such as reasoning, problem-solving and creativity development. This study used the same sampling techniques to select the its sample subjects and instrument however, different in all other mechanism.

The students' ability from schools National Examination in Mathematics with high category was the best followed by medium and low categories. Meanwhile, most students also have difficulty in expressing ideas and developing logical arguments as revealed by Sumarsih et al. (2018) on Profile of Mathematical Reasoning Ability of $8^{\text {th }}$ Grade Students seen from communication ability, basic skills, connection, and logical thinking in Indonesia. This research used mix method of quantitative and qualitative descriptive approaches with a set of multiple choice tests to measure these abilities which involve communication ability, basic skills, connection and logical thinking. A total of 259 respondents were determined by stratified cluster random sampling for collecting data and later analyzed using one-way Analysis of Variance (ANOVA). This research used same sampling technique, constructs and multiple choice tests which is one of the instruments used in the present study but different approach in all other items.

The findings of Mohamad et al., (2017) on 'Improving the Reasoning Skills of Students to overcome Learning Difficulties in Additional Mathematics' in secondary school in

Johor in Malaysia used descriptive qualitative design. The research participants consisted of 30 students who were selected through purposive sampling at a secondary school in Johor. The data was collected using Differentiation Question Reasoning Test (DQRT) based on Marzano's Rubric for Specific Task of Situations (1992) to determine the students' level of reasoning on their achievement in Differentiation, a topic in Additional Mathematics and to analyse the form four students' final year examination results for the same subject at the same school. the findings showed that the proficiency level of students' reasoning skills in the differentiation topic was (40\%) for generally weak, (53.33\%) for moderate and only 6.67% for good. Therefore, students with moderate and weak performance would need a good reasoning level to improve their performance in Additional Mathematics in the topic, Differentiation. This study used the same construct (reasoning skills), instrument and subjects but differ in all other mechanisms from the present study.

Another study on Understanding the Role of Reasoning Ability in Mathematical Achievement in United Kindom by Caren and Victoria (2015). There were two measures of Mathematical ability, the Woodcock Johnson-III Math fluency test and the Wood-cock Johnson-III calculation test and seventy-four students participated in the study. They revealed that while conditional reasoning performance is correlated with Mathematical ability, it does not predict performance on this task when Mathematical fluency is taken into account. They found that the cognitive reflection task however does predict performance on the calculation task. Also, good performance on the unbelievable conditionals requires a person to recognize the conflict between believability and logic before they can recognize the correct inference. The study had a correlational design and all participants completed the same four measures. This study used the same design and instrument (test) but different instruments from the present study.

From the investigation of Zeny and Bella (2017) on the analysis of Mathematical Representation, Communication and Connection in Trigonometry in Indonesia. This research used qualitative description design and 5 students of class X SMA Pangudi Luhur Yogyakarta as respondents using observation, written test and interviews as instruments of data collection. The data was analysed with technique of data analysis from Miles and Huberman (1984) that is, in the form of data reduction, data presentation and conclusion. The results obtained indicate that most of the students still have problems in representing the problem and in building connections with the materials that have been studied. Also, that the students still need guidance in Mathematical representation and connection through the learning process in order to improve their ability in solving the Mathematics problem, particularly on trigonometry. This research used the same descriptive survey design but with different approach, and has the same instrument yet differences in all other mechanisms.

Novia and Dian (2018) carried out a research on the analysis of Mathematical Representation Skills in Solving Problems of Systems of Linear Equations in Two Variables in Indonesia. The descriptive study with qualitative approach was utilized as the method, a total of 22 grade IX F students of junior high school Tapung were selected as the subject and data was collected through the measuring technique in the form of Mathematical representation test with interview. The results indicate several types of Mathematical representations utilized in system of linear equations in two variables, including visual representation of 77%, symbolic representation of 91%, and verbal representation of 27%. This signifies that the representation skills of the students are still in low category and the students' tendency in solving the problems of system of linear equations in the two variables is to use the symbolic representation. This study used the
same construct (Mathematical representation skills), test instrument and subjects but all other mechanisms are different.

The findings of Aflich et al. (2018) on the Mathematical Representation Ability of Senior High School Students titled 'An Evaluation of Students' Mathematical Disposition in Indonesia' used descriptive qualitative design. This study employed a qualitative descriptive method, the subjects of this study were 35 students of $10^{\text {th }}$ grade of public senior high school in Padalarang, West Java Indonesia. Questionnaires and test were used as instruments to collect the data and the test results were analyzed using qualitative analysis in accordance with the indicators of Mathematical representation ability and questionnaires' responses were converted into quantitative data. The study showed that almost all the students were able to use visual representation to solve Mathematical problems, create Mathematical models and solve problems by involving Mathematical expressions. Consequently, most of the students could not fulfill two indicators of the Mathematical representation ability, that is; draw a sketch of the given situation and make the Mathematical model based on the situation and data given. This study used same constructs, instruments (test) and subjects but all other things are different from the present research.

The findings of Ani et al. (2016) on 'Mathematical Understanding and Representation Ability of Public Junior High School in North Sumatra Indonesia'. The study used developmental research design with cluster sampling techniques using two sets of nontest instrument namely interview guidance and observation for data collection. The data obtained was analysed descriptively based on four aspects included in the interview and aspects of observation as well as data of Mathematical understanding and Mathematical representation test result. They found that conventional approach was still used in all the classes by the students in learning activity; most of the students did not attain minimal
mastery achievement, also achievement of the students in Mathematical understanding and representation test is low. This study used the same construct (representation skills) and subjects but all other mechanisms are different from the present study.

Adi (2014) also conducted a research on the, 'Mathematical Representation Ability and Students' Self-Confidence through Realistic Mathematics Approach' in Indonesia. This study used quasi-experimental method with the entire population of the seventh grade students of 50 people using sample saturated/whole of the population of class VII as an experimental class B and class VII A as a control class and analysed the collected data using t-test. They reported that by using realistic Mathematics approach, students were led to a more complex understanding of the learning of Mathematics because they did not always learn Mathematics in the abstract but started from the Mathematical form of concrete that would help to train their Mathematical representation ability. Moreover, in this first realistic Mathematics approach, students were asked to construct their own knowledge about the learning of Mathematics before being guided by the teacher. This is because the realistic Mathematics approach has more advantages than conventional learning which is more teacher-centered. This study used the same construct (representation skills) and subjects but all other mechanisms are different from the present study.

2.3.2 Empirical studies on gender and mathematical communication skills

Studies related to Gender and Mathematics Communication Skills include Firdiani et al. (2020) on the Gender and Mathematical communication ability in Junior High School in Bandung Indonesia. The research method used was the qualitative research method with 6 male and 6 female students of class VIII with age characteristic between 13-14 years old and have the ability of high, medium and low in general mathematics. Data was
collected by using test and interview. Data analysis used includes data reduction, data collection, and conclusions. The results showed that both male and female students with high ability in general mathematics are able to express situations in the form of pictures or mathematical models, analyse and evaluate mathematical ideas in other forms, but male and female students who have medium and low ability in general mathematics still have difficulty in expressing situations in the form of drawings or mathematical models, analysing and evaluating mathematical ideas in other forms. This study used different design, but same variables, instruments and statistical tool of analysis and subjects as the present study.

Adeneye (2017) on 'Assessing Senior Secondary School Students’ Mathematical Proficiency as Related to Gender and Performance in Mathematics in Nigeria' investigated Mathematical proficiency as related to gender and performance in Mathematics among 400 Nigerian senior secondary school students from 10 elitist senior secondary schools in Lagos State using the quantitative research method within the blueprint of descriptive survey design. The data collected was analysed using the descriptive statistics of frequency, percentage, mean, standard deviation and inferential statistics of independent samples t-test, and multiple regression analysis. The result showed that, gender differences in Mathematical proficiency are no longer important and are dissipating even at the subscale level there are subtle gender differences in performance in Mathematics. This study used same descriptive survey design but different approach from the present study.

Mawaddah et al. (2018) studied Gender Differences of Mathematical Critical-Thinking Skills of Secondary School Students in Indonesia. The study employed qualitative descriptive survey aimed to describe Mathematical critical-thinking skills of secondary school students in solving Mathematical problems concerning gender. Four students
selected from 30 students of Year 9 in a junior high school in Banda Aceh using criticalthinking skills test and interview as research instruments. The results showed that the critical thinking skills of female students were slightly better than that of male students, which implies that there is gender difference in Mathematical critical-thinking skills. This study is related to the present study in using students while all other aspects are different. The study of Odual (2013) on the relationship between Mathematical ability and achievement in Mathematics among female secondary school students in Bayelsa state adopts correlational survey design. This study investigated the relationship between female senior secondary school students' Mathematical ability and achievement level in Mathematics in five (5) out of eight (8) local government areas of Bayelsa State Nigeria. This study adopted multi-stage sampling technique, two research instruments titled Student Mathematical Ability Test (SMAT) and Mathematical Achievement Test (MAT) were used to collect data from a sample of 121 female students from rural and 141 female senior secondary school students from urban schools which were randomly selected using the simple random sampling method both at the Local Government and at the school level. The study shows that there is a positive relationship between Mathematical ability and achievement in Mathematics and that Mathematical ability has a significant contribution to achievement in Mathematics. The research used the same correlational survey design and students to gather data and same instrument with the present study but are different in other things.

2.4 Summary of the Literature Reviewed

This study has been reviewed under the following categories; conceptual frame work, theoretical frame work and empirical study for the sake of emphasis. Under conceptual framework, attempt was made to conceptualize the nature of Mathematics as an excellent vehicle for the development and improvement of a person's intellectual competence in logical reasoning, spatial visualization, analysis and abstract thought. Nature and objectives of senior secondary school Mathematics curriculum were also reviewed in
order to guide the conduct of the research. Also, academic performance from different perspectives of numerous authors show performance to be a key component in education.

The study used the following theories to back up its review: the behaviourism theory; which states that learning and behavioural changes are acquired by linking stimuli and response. Cognitivism theory; which believes that learning is internal and a result of a students' processing and organizing new information. Also, the constructivism theory which believes that knowledge is constructed by adapting new information based on previous experience. All these theories were reviewed as they relate to communication skills and students' performance in Mathematics.

The study also reviewed literature on Mathematical Communication skills as those skills that the students must possess in order to communicate Mathematics problems effectively. Such as using Mathematics symbols, terms, notations, diagrams, graphs, tables and pictures, among others. Hence, this research considers the following Mathematical Communication skills; problem-solving skills, reasoning skills, communication skills, connection skills and representation skills in terms of concept of Mathematics performance.

The study reviewed literature that are related to the present study, though most of the studies used different approaches, some used junior secondary schools and even tertiary institutions and were mostly done outside Nigeria and some analysed the Mathematical communication skills of the students based on their personality. To the best of researcher's knowledge, no attention has been given to Mathematics performance of senior secondary school students in relation to Mathematical communication skills in Kutigi Educational Zone of Niger State. Hence, this prompts the present study to investigate the relationship between Mathematical communication skills and

Mathematics performance of senior secondary school students in Kutigi Educational Zone of Niger State, Nigeria.

CHAPTER THREE

3.0

RESEARCH MEHODOLOGY

3.1 Research design

The study is a descriptive survey research and adopts correlational research design. This is because the researcher intends to search for relationships that exist between the variables. Due to the fact that the variables studied are already present in the students, the study will not in any way attempt to manipulate the variables (Odual, 2013).

3.2 Population of the study

The total population of the study comprised all the year two students of 2020/2021 session of the fiftysix (56) senior secondary schools in Kutigi Educational Zone of Niger State with the total population of eight thousand one hundred and forty-eight (8148) students, comprising five thousand two hundred and eight (5208) male students and two thousand and nine hundred and forty (2940) female students. The target population of the study consists of all the senior secondary school two (SS 2) students of all the sampled senior secondary schools in Kutigi Educational Zone of Niger State, totaling eight hundred and fiftyeight (858) students; five hundred and sixty-nine (569) male students and two hundred and eighty-nine (289) female students. Details are attached in Appendices B and C.

3.3 Sample and sampling technique

Multi-stage sampling technique was adopted; cluster sampling techniques was used to classify the schools into three local government areas, namely Lavun, Mokwa and Edati local government areas. Simple random sampling technique was used to select two (2) secondary schools from each local government area to give six (6) schools. Then, proportional stratified random sampling technique was used to select the sample based on Krecjie and Morgan's (1970) table for determining sample size with the total sample of two hundred and sixty-nine (269) students; one hundred and seventy-nine (179) male students and ninety (90) female students. These techniques were adopted since
it allows one to draw more precise conclusions by ensuring that every subgroup is properly represented in the sample (Shona, 2019). See Appendix D.

3.4 Research instrument

The instrument used for this study was titled "Mathematical Communication Skills Test (MCST)". The items of the instrument (MCST) was an adapted West Africa Examination Council (WAEC) 2019/2020 session questions. It contained twenty-five (25) items, with five (5) items for each construct covering all the Mathematical Communication skills of the students under study. The content of the instrument covers Mathematics syllabus related to number and numeration, algebraic process, geometry, probability and statistics as contained in the Senior Secondary School two (SS 2) Mathematics curriculum. The items of MCST are theory questions that students solved on the answer sheet to show their skills in solving Mathematics problems, see Appendix E. On the scoring of the test items, the marks were awarded based on each item magnitude to give each construct one hundred percent (100\%). Mathematics Promotion Examination Scores of students was used as Mathematics performance, since the their questions are set by ministry of Education see Appendix. Also, Mathematical Communication skills of the students were also observed from their answer sheets.

3.5 Validity of the research instrument

The instrument was face validated by experts from Science Education Departments of Federal University of Technology Minna, Mathematics Department of FCT College of Education, Zuba and a secondary school Mathematics teacher from Police Secondary School Minna to ensure that all items and words that will confuse the respondents are completely removed from the instruments and content validated to ensure that the content of the study are represented in the instruments. Also, the necessary corrections were made
based on the comments and suggestions of these experts. This was done in order to ensure the instruments measure what they set to measure.

3.6 Reliability of the research instrument

Test re-test method of reliability was used to determine reliability of instrument (MCST) by administering the test on forty (40) students of the population who were not among the sample students. After one week, the same instrument was re-administered on the same set of students, and $0.82,0.74,0.81,0.70$ and 0.71 coefficient of reliability were obtained for the five constructs respectively for MCST using Pearson Product Moment Correlation (PPMC) formula giving 0.76 as the average reliability. These showed that the instrument was reliable. The computation of the reliability test is attached in Appendix F.

3.7 Method of data collection

To collect the necessary data for the study, the researcher visited the sampled schools with an introduction letter from Science Education Department of Federal University of Technology Minna, seeking for permission to use students’ Promotion Examination Scores of Mathematics and the students of these schools as the subject of the study. After being permitted, Mathematics teachers of the various schools were requested by the researcher to lead and meet with the students as well as assist in administering the research instrument to the students. Then, Mathematical Communication Skills Test (MCST) were distributed to the sampled students of various schools and they were instructed and guided on how to fill them. The answering of MCST were supervised properly and collected immediately after they have answered the test questions in order to avoid damage or missing of the instrument. The data wascollected during the second term of 2020/2021 academic session. Six weeks was used to collect the data from the sampled schools.

3.8 Method of data analysis

The scores of items were coded into Statistical Package for Social Sciences (SPSS) software in order to analyse the data. Mean and Standard Deviation supported by Scatterplots were used to answered the research questions while Pearson Product Moment Correlational Coefficient was used to test the hypotheses at 0.05 level of significant. Also, the Mathematical communication skills of the students was analyse in form of data reduction and presentation.

CHAPTER FOUR

4.0

RESULTS AND DISCUSSION

4.1 Answer to research questions

The research questions raised were answered using mean and standard deviation supported by Scattered plots.

Research question one

What is the relationship between Mathematical communication skills and Mathematics performance of secondary school students in Kutigi Educational zone of Niger state?

Table 4.1: Summary of the mean and standard deviation of mathematical communication skills and mathematics performance of secondary school students

Variables	N	$\overline{\boldsymbol{x}}$	SD	$\overline{\boldsymbol{x}}$ difference
Mathematics communication skills	269	31.11	15.77	
				32.28
Mathematical Performance	269	63.39	12.89	

Table 4.1 shows the Mean score of 31.11 with Standard Deviation of 15.77 for Mathematical communication skills and Mean score of 63.39 with standard deviation of 12.89 for Mathematics performance, this gives the Mean difference of 32.28 between the variables. This therefore, indicates a positive relationship between the variables. The descriptive statistics (Scatterplots) of the two groups is presented in figure 4.1 below.

Figure 4.1: Scatterplot relationship between mathematical communication skills and mathematics performance of secondary school students

Figure 4.1 shows the scatterplot of the relationship between Mathematical communication skills and Mathematics performance of secondary school students, this indicates a positive relationship between the variables. The fitted line shows that as Mathematical communication skills increases, the Mathematics performance of the secondary school students also tends to increases.

Research question two

What is the relationship between problem-solving skills and Mathematics performance of secondary school students in Kutigi Educational zone of Niger state?

Table 4.2: Summary of the mean and standard deviation of problem-solving skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	SD	$\overline{\boldsymbol{x}}$ difference
Problem-Solving skills	269	37.99	23.60	
				25.40
Mathematical Performance	269	63.39	12.89	

Table 4.2 shows the Mean score of 37.99 with Standard Deviation of 23.60 for problemsolving skills and Mean score of 63.39 with standard deviation of 12.89 for Mathematics
performance, this gives the Mean difference of 25.40 between the variables. This indicates a positive relationship between the variables. The descriptive statistics (Scatterplot) of the two groups is presented in Figure 4.2

Figure 4.2: Scatterplot relationship between problem-solving skills and mathematics performance of secondary school students

For the problem-solving skills and Mathematics performance in figure 4.2 above, the scatterplot displays a positive relationship between the constructs. The trend line indicates that secondary school students Mathematics performance increases as their problemsolving skills increased.

Research question three

What is the relationship between proofs and reasoning skills and Mathematics performance of secondary school students in Kutigi Educational zone of Niger state?

Table 4.3: Summary of the mean and standard deviation of proofs and reasoning skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	SD	$\overline{\boldsymbol{x}}$ difference
Proofs and Reasoning skills	269	33.79	26.51	
				29.60
Mathematical Performance	269	63.39	12.89	

Table 4.3 shows the Mean score of 33.79 with Standard Deviation of 26.51 for proofs and reasoning skills and Mean score of 63.39 with standard deviation of 12.89 for Mathematics performance, this gives the Mean difference of 29.60 between the variables. This therefore, indicates a positive relationship between the variables. The descriptive statistics (Scatterplot) of the two groups is presented in figure 4.3

Figure 4.3: Scatterplot relationship between proofs and reasoning skills and mathematics performance of secondary school students

From figure 4.3 above, the scatterplot relationship between proofs and reasoning skills and Mathematics performance of secondary school students, shows a positive relationship between the variables. The fitted line shows that as proofs and reasoning skills increases, the Mathematics performance of the secondary school students also tends to increases.

Research question four

What is the relationship between connection skills and Mathematics performance of secondary school students in Kutigi Educational zone of Niger state?

Table 4.4: Summary of the mean and standard deviation of connection skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	SD	$\overline{\boldsymbol{x}}$ difference
Connection skills	269	20.45	19.86	
				42.94
Mathematical Performance	269	63.39	12.89	

Table 4.4 shows the Mean score of 20.45 with Standard Deviation of 19.86 for connection skills and Mean score of 63.39 with standard deviation of 12.89 for Mathematics performance, this gives the Mean difference of 42.94 between the variables. This therefore, indicates a positive relationship between the variables. The descriptive statistics (Scatterplot) of the two groups is presented in figure 4.4

Figure 4.4: Scatterplot relationship between connection skills and mathematics performance of secondary school students

Figure 4.4 shows the scatterplot of the relationship between connection skills and Mathematics performance of secondary school students, this indicates a positive
relationship between the variables. The fitted line shows that as connection skills increases, the Mathematics performance of the secondary school students also tends to increases.

Research question five

What is the relationship between representation skills and Mathematics performance of secondary school students in Kutigi Educational zone of Niger state?

Table 4.5: Summary of the mean and standard deviation of representation skills and mathematics performance of secondary school students

Variables	N	$\overline{\boldsymbol{x}}$	SD	$\overline{\boldsymbol{x}}$ difference
Representation skills	269	35.76	27.27	
Mathematical Performance	269	63.39	12.89	27.63

Table 4.5 shows the Mean score of 35.76 with Standard Deviation of 27.27 for representation skills and Mean score of 63.39 with standard deviation of 12.89 for Mathematics performance, this gives the Mean difference of 27.63 between the variables. This therefore, indicates a positive relationship between the variables. The descriptive statistics (Scatterplot) of the two groups is presented in figure 4.5

Figure 4.5: Scatterplot relationship between representation skills and mathematics performance of secondary school students

For the representation skills and Mathematics performance in figure 4.5 above, the scatterplot displays a positive relationship between the constructs. The trend line indicates that secondary school students Mathematics performance increases as their representation skills increased.

Research question six

What is the relationship between gender and Mathematical communication skills of secondary school students in Kutigi Educational zone of Niger state?

Table 4.6: Summary of the mean and standard deviation of gender and mathematical communication skills of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\overline{\boldsymbol{x}}$ difference
Gender	269	1.31	0.46	
Mathematics communication skills	269	31.11	15.77	29.80

Table 4.6 shows the Mean score of 1.31 with Standard Deviation of 0.46 for gender and Mean score of 31.11 with standard deviation of 15.77 for Mathematics communication
skills, this gives the Mean difference of 29.80 between the variables. This therefore, indicates a positive relationship between the variables. The descriptive statistics (Scatterplot) of the two groups is presented in figure 4.6

Figure 4.6: Scatterplot relationship between gender and mathematical communication skills of secondary school students

Figure 4.6 above is a scatterplot of relationship between gender and Mathematical communication skills of secondary school students, it shows a positive relationship between the Mathematical communication skills and gender. The fitted line shows that there is an increase once you move from the male to female and increasing the skills.

4.2 Testing null hypotheses

Hypothesis one (Ho1): There is no significant relationship between Mathematical communication skills and Mathematics performance of secondary school students

Table 4.7: Summary of Pearson product moment correlation between mathematical communication skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\text {-cal }}$	$\mathbf{p}_{\text {-value }}$
MCS	269	31.11	15.77		
				0.46	0.00
MP	269	63.39	12.89		

Table 4.7 shows the Mean score of 31.11 with standard deviation of 15.77 for Mathematical communication skills and Mean score of 63.39 with Standard Deviation of 12.89 for Mathematics performance, also r is 0.46 . Therefore, the null hypothesis one $\left(\mathrm{H}_{\mathrm{O}}\right)$ was rejected because p-value of 0.00 is less than 0.05 alpha level. Hence, there was moderately positive relationship between Mathematical communication skills and Mathematics performance of secondary school students.

Hypothesis two (Hoz): There is no significant relationship between problem-solving skills and Mathematics performance of senior secondary school students

Table 4.8: Summary of Pearson product moment correlation between problemsolving skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\text {-cal }}$	\mathbf{p}-value
PSS	269	37.99	23.60		
				0.37	0.00
MP	269	63.39	12.89		

Table 4.8 above shows that the Mean score of Problem-Solving skills is 37.99 with Standard Deviation of 23.60 and Mean score of Mathematics performance was 63.39 with Standard Deviation of 12.89 , also r is 0.37 . Hence, the null hypothesis two $\left(\mathrm{H}_{2}\right)$ rejected since p-value of $0.00<0.05$ alpha level. This shows that, there exists moderately positive
relationship between problem-solving skills and Mathematics performance of senior secondary school students.

Hypothesis three (Hоз): There is no significant the relationship between proofs and reasoning skills and Mathematics performance of senior secondary school students

Table 4.9: Summary of Pearson product moment correlation between proofs and reasoning skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\text {-cal }}$	$\mathbf{p}^{\text {-value }}$
PRS	269	33.79	26.51		
				0.38	0.00
MP	269	63.39	12.89		

From table 4.9 above, the Mean score of proofs and reasoning skills is 33.79 with Standard Deviation of 26.51 and Mean score of Mathematics performance is 63.39 with Standard Deviation of 12.89 , also r is 0.38 . Hence, the null hypothesis three ($\mathrm{Hoz}_{\mathrm{O}}$) rejected since p-value of $0.00<0.05$ alpha level. This indicates that, there was moderately positive relationship between proofs and reasoning skills and Mathematics performance of senior secondary school students.

Hypothesis four (Ho4): There is no significant relationship between connection skills and Mathematics performance of senior secondary school students

Table 4.10: Summary of Pearson product moment correlation between connection skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\text {-cal }}$	\mathbf{p}-value
CS	269	20.45	19.86		
MP	269	63.39	12.89		0.16

Table 4.10 shows the Mean score of 20.45 with standard deviation of 19.86 for connection skills and Mean score of 63.39 with Standard Deviation of 12.89 for Mathematics
performance, also r is 0.16 . Therefore, the null hypothesis four $\left(\mathrm{H}_{04}\right)$ was rejected because p-value of 0.01 is less than 0.05 alpha level. Hence, there exists positive weak relationship between Connection skills and Mathematics performance of secondary school students.

Hypothesis five (Hos): There is no significant relationship between representation skills and Mathematics performance of senior secondary school students

Table 4.11: Summary of Pearson product moment correlation between representation skills and mathematics performance of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\text {-cal }}$	p-value
RS	269	35.76	27.27		
				0.24	0.00
MP	269	63.39	12.89		

From table 4.11, the Mean score of representation skills is 35.76 with Standard Deviation of 27.27 and Mean score of Mathematics performance is 63.39 with Standard Deviation of 12.89 , also r is 0.24 . Hence, the null hypothesis five (HO5) is rejected since p-value of $0.00<0.05$ alpha level. This shows that, there exists positive weak relationship between Representation skills and Mathematics performance of senior secondary school students.

Hypothesis six (Ho6): There is no significant relationship between Gender and Mathematical communication skills of secondary school students.

Table 4.12: Summary of Point-Biserial correlation between gender and mathematical communication skills of secondary school students

Variables	\mathbf{N}	$\overline{\boldsymbol{x}}$	$\mathbf{S D}$	$\mathbf{r}_{\mathrm{pb} \text {-cal }}$	\mathbf{p}-value
Gender	269	1.31	0.46		
				0.30	0.00
MCS	269	31.11	15.77		

Table 4.12 shows the Mean score of 1.31 with standard deviation of 0.46 for Gender and Mean score of 31.11 with Standard Deviation of 15.77 for Mathematical communication skills, also r_{pb} is 0.30 . Therefore, the null hypothesis four (H_{O}) was rejected because p value of 0.00 is less than 0.05 alpha level. This indicates that, there was weak positive relationship between Gender and Mathematical communication skills of secondary school students.

4.3 Data reduction

This displayed shows the answers of the students

This student was able to relate the concepts and expressed Mathematical expressions accurately but unable to solve all the questions.

This student was able to relate concepts, used operational signs correctly and transformed scores to the table but unable to use table to answer questions correctly.

This student had difficulty in answering the given questions.

This student was able to bring out variables but unable to evaluate and simplify the problem.

This student understands the underlying logical rules and can recall formula but not able to solve for correct answer.

This student was not able to transform the test scores into table, also unable to give correct answer.

The highest student with -lovesome socerie

$$
\text { i.e Mode }=13
$$

24) $=$ Median $=14$

25) 81811131415161718

$\frac{-122}{9} \geqslant 736$

$=\frac{16+10+11+39+28+15+16+17+36}{14}=\frac{168}{14}$
Mean $=12 / /$

4.4 Summary of findings

The summary of the major findings from this study were:

1. There was moderately positive relationship between Mathematical communication skills and Mathematics performance of secondary school students;
2. There exists moderately positive relationship between problem-solving skills and Mathematics performance of senior secondary school students;
3. There was moderately positive relationship between proofs and reasoning skills and Mathematics performance of senior secondary school students;
4. There was positive weak relationship between Connection skills and Mathematics performance of secondary school students;
5. There exists positive weak relationship between Representation skills and Mathematics performance of senior secondary school students;
6. There was positive weak relationship between Gender and Mathematical communication skills of secondary school students.

4.5 Discussion of findings

The results of this study were discussed according to the presented findings.

First finding show that there was moderately positive relationship between Mathematical communication skills and Mathematics performance of secondary school students. This is due to the fact that some students were unable to solve the Mathematics problem given to them, unable to use Mathematical operational signs, terms, notations correctly and express Mathematical expressions accurately as shown from their answer sheets. Hence, this indicates clearly that Mathematical communication skills is a major contributor to Mathematics performance of secondary school students. This supports the findings of

Mailis et al. (2019) who showed that students' skills in expressing Mathematical ideas in various ways have not met the expectation. The result is also in line with Septiana et al. (2018) whose study revealed that some students could not express their ideas on graph or reveal a Mathematical sentence in their languages. In contrary to this study, Lomibao et al. (2016) revealed that students had improved in terms of achievement score and showed a good grasp of the concept as shown in their answers in the second-tier questions and that students gave varied justifications of their answers, which evidently showed that they were able to make connections and had applied previous concepts learned.

Second finding revealed that there exists moderately positive relationship between problem-solving skills and Mathematics performance of senior secondary school students. It is revealed from students' answer sheets that some can analyse facts and put them in systematic order, evaluate, simplify and easily solve Mathematics problems while many of them cannot do so. This finding is in agreement with work of Puspa et al. (2019) who disclosed that while there were students who were more detailed in doing and remembering things that were taught, there were other students who did things briefly and precisely; so it can be said that each student has different Mathematical communication skills in solving problem. This study also agreed with the findings of Suharto and Widada (2019) who found that there is a positive direct effect of Mathematical communication skills on problem-solving abilities

Third finding shows that there was moderately positive relationship between proofs and reasoning skills and Mathematics performance of senior secondary school students. From the students' answer sheets, it can be deduced that students do not understand the underlying logical rules, cannot recall formula quickly also not able to overcome generalization and pattern in solving Mathematics problem. This supports the work of Rahmy et al. (2019) who revealed that students who were with sequential concrete and
sequential abstract thinking styles were capable of arranging similar conjectures, making arguments, exploring ideas and formulating generalizations. However, they were having difficulty presenting Mathematics in their own language. Meanwhile, students with random concrete and random abstract thinking styles were able to express ideas and formulate generalizations, they were however having difficulties in establishing conjectures. The finding is in line with the study of Mohamad et al. (2017) which showed that the proficiency level of students' reasoning skills in the differentiation topic was (40%) for generally weak, (53.33%) for moderate and only 6.67% for good. Therefore, students with moderate and weak performance would need a good reasoning level to improve their performance in Mathematics.

From the fourth finding, it shows that there was positive weak relationship between connection skills and Mathematics performance of secondary school students. This is because most of the students were having difficulty in relating Mathematics concept with each other and analyzing real life situation using Mathematical ideas as shown from their answer sheets. This supports the findings of Ndiung and Fransiskus (2018) who found that there is effect between Mathematics connection ability toward students' Mathematics learning achievement because of the Mathematics inter-dependence between concept and material and other subjects as well for man's everyday life such as reasoning, problemsolving and creativity development.

The fifth finding revealed that there exists positive weak relationship between representation skills and Mathematics performance of senior secondary school students. It has shown from the students' answer sheets that while there were students who were able to represent information on tables to give answers, there were others who were not able to use Mathematics diagrams to represent mathematics concepts and transform test scores into table before solving to get correct answer. This is in agreement with the
findings of Novia and Dian (2018) who found that the representation skills of the students are still in low category and the students' tendency in solving the problems of system of linear equations in two variables is to use the symbolic representation. This is also in line with the findings of Zeny and Bella (2017) who discovered that most of the students still have problems of representing the problem and in building connections with the materials that have been studied. Also, that the students still need guidance in Mathematical representation and connection through the learning process in order to improve their ability in solving the Mathematics problem.

The last finding disclosed that there was positive weak relationship between Gender and Mathematical communication skills of secondary school students. It is indicated by the fitted line on the scatterplot that mathematical communications skills of female students is higher than that of male students. This is in line with the study of Mawaddah et al. (2018) which showed that the critical thinking skills of female students were slightly better than that of male students, which implies that there is gender difference in Mathematical critical-thinking skills. This study contradicts the study of Yaako and Okoro (2019) who found that there is no significant difference in performance between gender of student when exposed to problem solving method.

CHAPTER FIVE

5.0

 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions

Based on the findings, the study concludes that;
The five Mathematical Communication skills under studied; problem-solving skills, proofs and reasoning skills, communication skills, connection skills and representation skills have positive relationship on the Mathematics performance of the secondary school students. Hence, as Mathematical Communication Skills increases the mathematics performance of the secondary school students also increases.

Also, there was positive relationship between Gender and Mathematical Communication Skills of secondary school students. However, it shows that Mathematical Communication Skills of the female students was higher than that of the male students.

5.2 Recommendations

This study recommends the following based on its findings of the study

1. Students should develop and maintain more interest and confidence in Mathematics learning in secondary schools
2. Students should be encouraged to be curious when encountering any problem in Mathematics. Also, Individual differences in students' skills and background should be taken into consideration by teachers
3. Mathematics teachers should adopt a good measure to strengthen Mathematical communication skills during teaching and learning process to enhance students’ performance in Mathematics
4. Government should also improve the teachers' welfare so as to motivate and enable them discharge their functions effectively and efficiently
5. There should be constant seminars, workshops and conferences for Mathematics teachers in secondary schools to update them in new skills and innovations and hence, improve their quality of instructional delivery
6. Suitable instructional materials should be designed and developed or improvised to facilitate Mathematics teaching and learning in secondary schools

5.3 Contribution to knowledge

The results of this study have greatly contributed to the body of knowledge in the following ways:

1. The study has provided knowledge on the relationship between the five Mathematical communication skills and Mathematics performance of secondary school students to be positive;
2. It has provided that female secondary school students' Mathematical Communication Skills were higher than that of the male students; and
3. It has also contributed to existing literatures and provided a platform for researchers on relationship between the five Mathematical communication skills and Mathematics performance of secondary school students.

5.4 Suggestions for further studies

Future researchers can also find out:

1. the relationship between Mathematical communication skills, interest, attitude and mathematics performance of secondary school students;
2. related study can be conducted among primary school students;
3. similar study should be conducted in other parts of the country; and
4. similar study should also be conducted in other field of studies.

REFERENCES

Abdullahi, I. (2016). Investigation into the Factors Responsible for the Unsteady and Persistent Poor Performance in May/June West African Senior School Certificate Examination (WASSCE) in General Mathematics in Minna Metropolis, Niger State.

Adeneye, O. A. A. (2017). Assessing Senior Secondary School Student' Mathematical Proficiency as Related to Gender and Performance in Mathematics in Nigeria. International Journal of Research in Education and Science, 3(2), 488-502.

Adeneye, O. A. A., \& Abisola, O. L. (2020). Increasing Mathematics Achievement of Senior Secondary School Students through Differentiated Instruction in Nigeria. Journal of Educational Sciences, 4 (1), 1-19.

Adi, A. (2014). Mathematical Representation Ability and Self Confidence Students Through Realistic Mathematics Approach Yogyakarta State University, Indonesia. International Seminar on Innovation in Mathematics and Mathematics Education, 18, 137-144.

Aflich, Y. F., Sofie, D., Mayasari, T., \& Astri, Y. N. (2018). Mathematical Representation Ability of Senior High School Students: An Evaluation from Students' Mathematical Disposition. Journal of Research and Advances in Mathematics Education, 3(1), 46-56

Agata, S. (2014). Proofs and Mathematical Reasoning. Part of the Academics Skills Center, Mathematics Support Center. University of Birmingham

Ahmad, R., \& Andi, M. R. (2017). Analysis of Mathematical Communication Skills of Junior High School Students of Coastal Kolaka. Journal of Mathematics Education, 2(2), 45-51.

Ajogbeje, O. J., \& Ojo, A. A., (2016). Relationship between Senior Secondary Schools Students' Achievement in Mathematical Problem-Solving and Intellectual Abilities Tests Ekiti State, Nigeria. European Scientific Journal, 8(15), 169-179

Alamgir, K., Salahuddin, K., Syed, Z., \& Manzoor, K. (2017). Communication Skills of a Teacher and Its Role in the Development of the Students' Academic Success in Pakistan. Journal of Education and Practice, 8(1), 18-21

Amoncio, I. R. (2012). Navajo Students' Commognition in High School Geometry. Master's Thesis. Mindanao University of Science and Technology. Cagayan de Oro City.

Ani, M., Napitupulu, E. E., \& Rahmad, H. (2016). Mathematical Understanding and Representation Ability of Public Junior High School in North Sumatra Indonesia. Journal on Mathematics Education, 7(1), 45-58.

Arman, I. M. (2019). Impact of "Formulate, Share, Listen and Create" Strategy on Mathematical Representation Skills. European Journal of Engineering Research and Science, 4(1), 101-105.

Armitage, D. (2019). Understanding Mathematical Connections K-5, Exemplar Blog. Retrieved on November 2020. From https://exemplars.com/blog/understanding-mathematical-connections-k-5

Arowolo, J. G. (2015). The Nigerian Primary/Secondary School Science/Mathematics Curricula. School of Education. National Open University of Nigeria.

Awodu, A. O., \& Ojo, O. A. (2013). Mathematics Skills as Predictor of Physics Students’ Performance in Senior Secondary Schools. International Journal of Science and Research, 2, 391-394.

Ayal, C, S. Yaya, S. K., Jozua, S., \& Jarnawi, A. D. (2016). The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy. Journal of Education and Practice, 7(25), 50-58.

Bhairab, D. P. (2017). A Study of Mathematical Achievement of Secondary School Students in Bageshwar District. International Journal of Advance Research, 5(12), 1951-1954.

Brau, B. (2020). Constructivism: The Students' Guide to Learning Design and Research. Retrieved on March 18, 2021. From https://www.edtechbooks.org/student guide /constructivism

Bright, R. (2015). Three (3) Ways to improve Mathematical Reasoning Skills: Education Services and Testing. Washington, DC: National Academy Press.

Caren, A. F., \& Victoria, S. (2015). Understanding the Role of Reasoning Ability in Mathematical Achievement in United Kindom. Conference Paper, 633-638.

Carol, W. M., \& Susan, K. E. (2016). NCTM's Principles and Standards for School Mathematics: Implications for Administrators. Special Section Math and Science Education, 85(623), 35-42.

Charles-Ogan, G., \& Otikor, S. (2016). Practical Utility of Mathematics Concepts among Senior Secondary School Students in Rivers State Nigeria. European Journal of Mathematics and Computer Science, 3(1), 15-22.

Chunk, D. H. (2012). Learning Theories: An Educational Perspective. Retrieved on March 18, 2021. From http://www.grin.com/document/293498

Clever, S. M. (2020). Problem Solving. Retrieved on February 27, 2020. From https://www.cleverism.com/skills-and tools/problem-solving/

Cragg L., Keeble, S., Richardson, S., Roome, H. E., \& Camilla G. (2017). Direct and Indirect Influences of Executive Functions on Mathematics Achievement. Cognition Journal, 162, 12-26.

Daniel, B., Steve, L., \& Deann, H. (2014). Principles to Actions: Mathematics Programs as the core for Students Learning. Mathematics Teachers, 107(9), 656-658.

Dedi, R., \& Jojon, D. (2013). Connected Mathematics Project (CMP) Model Based on Presentation Media to the Mathematical Connection Ability of Junior High School Student. Journal of Education and Practice, 4(4), 17-22.

Dendane, A. (2009). Skills Needed for Mathematical Problem Solving. $10^{\text {th }}$ Annual Research Conference. United Arabic Emirate University.

Elaine, J. H., \& Jonathan, G. (2021). What is Mathematics. Retrieved on November $1^{\text {st }}$ 2021 from https://www.livescience.com/38936-mathematics.html

Febry, T., Edy S., Asmin P., \& Edi S. (2017). Analysis Mathematical Communication Skills Student at the Grade IX Junior High School. International Journal of Advance Research and Innovative Ideas in Education, 3, 2160-2164.

Federal Republic of Nigeria (FRN) (2014). National policy on education, Lagos: Nigerian Educational Research and Development Council Press.

Firdiani, N. H., Herman, T., \& Hasanah, A. (2020). Gender and Mathematical Communication Ability. International Conference on Mathematics and Science Education, 1521, 1-5.
Gulumser, O. (2013). A Survey of Mathematical Knowledge and Skills in High School Needed for Professions in Social Sciences. Master's Thesis, Bilkent University Ankara, Turkey.

Gunhan, B. C. (2014). A Case Study on the Investigation of Reasoning Skills in Geometry, Dokuz Eylul University. South African Journal of Education, 34(2), 1-19.

Gurbuz, R., \& Erdem, E. (2016). Relationship between mental computation and mathematical reasoning. Cogent Education 1212683, 1-18.

Haji, S., Abdullah, M. I., Maizora, S., \& Yumiati (2017). Developing Students’ Ability of Mathematical Connection Through Using Outdoor Mathematics Learning. Journal of Mathematics Education, 6(1), 11-20.

Henry. N. K., Jan, V. D., Wim, V. D. N., Dickson, N. A., \& Speranza, N. (2015). Factors affecting Mathematics Achievement of First-Year Secondary School Students in Central Uganda. South African Journal of Education, 35(3), 1-16.

Hoyles, B., \& Lagrange, D. (2005). Effects of teachers' mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406.

Hotmaria, M., Bornok, S., \& Hasratuddin (2018). Improve Mathematical Connections Skills with Realistic Mathematics Education Based Learning. Advances in Social Science, Education and Humanities Research, 20(3), 29-35.

Ihdi, A., \& Scholastika, M. (2017). PME Learning Model: The Conceptual Theoretical Study of Metacognition Learning in Mathematics Problem Solving Based on Constructivism. International Electronic Journal of Mathematics Education, 12(4), 333-352.

Krejcie, R., \& Morgan, S. (1970). Sample size determination. Business Research Methods, 4(5), 34-36.

Lomibao, L. S., Luna, C. A., \& Namoco, R. N. (2016). The Influence of Mathematical Communication on Students' Mathematics Performance and Anxiety. American Journal of Educational Research, 4(5), 378-382.

Mailis, T., Cut Morina, Z., \& Bahrun, N. (2019). Students' Mathematical Communication Ability through the Brain-Based Learning Approach using Autograph. Journal of Research and Advances in Mathematics Education, 4(1), 1-10.

Mawaddah, A., Ahmad, A., \& Duskri, M. (2018). Gender Differences of Mathematical Critical Thinking Skills of Secondary School Students. The 6th South East Asia Design Research International Conference 1088, 1-6.

Merriam-Webster dictionary (2020). Definition of Reasoning. Retrieve on August 10, 2020 from https://en.m.merriam-webster-dictionary.org/Reasoning

Miles, R. \& Huberman, E. (1984). Communcation relevances to learning. AMS Publishers. New York.

Ming-Jang, C., Chun-Yi, L., \& Wei-Chih, H. (2015). Influence of Mathematical Representation and Mathematics Self-Efficacy on the Learning Effectiveness of Fifth Graders in Pattern Reasoning. International Journal of Learning, Teaching and Educational Research, 13(1), 1-16.

Mohamad, N. A., Noor, A. A., Mohd, S. A., Abdul, H. A., \& Mahani, M. (2017). Improving the Reasoning Skills of Students to overcome Learning Difficulties in Additional Mathematics. Man in India Serials Publications 97 (17), 41-52.

National Council of Teachers of Mathematics (NCTM) (2014). Principles to Action: Ensuring Success for All. Mathematics Teachers, 107(9), 656-658.

Ndiung, S., \& Fransiskus, N. (2018). Mathematics Connection Ability and Students Mathematics Learning Achievement at Elementary School. Conferences series, 42, 1-5.

Novia, P. B., \& Dian, U. (2018). An Analysis of Mathematical Representation Skills in Solving Problems of Systems of Linear Equations in Two Variables in Indonesia. The $2^{\text {nd }}$ International Conference on Elementary Education, 2(1), 814-823.

Nwoke, B. I., \& Nnaji, L. N. (2011). Effects of Using Mathematics Laboratory in Teaching Mathematics on Students' Achievement in Mathematics. Journal of Issues on Mathematics, 14, 311-329.

Odual, N. N. (2013). Relationship Between Mathematical Ability and Achievement in Mathematics among Female Secondary School Students in Bayelsa State Nigeria. Procedia - Social and Behavioral Sciences, 10 (4), 2230-2240.

Paul, F. (2019). 15 Learning Theories in Education (A Complete Summary). Retrieved on March 18, 2021. From https://www.teacherofsci.com/learning-theories-ineducation/

Peter, L., Manuel, S. T., Uldarico M., \& Regina, B. (2016). Problem Solving in Mathematics Education. International Congress on Mathematics Education, 10(3), 53-71.

Puspa, S., Riyadi, R., \& Subanti, S. (2019). Profile of Mathematical Communication Skills Junior High School Students in Problem Solving, Indonesia. Journal of Physics: Conference Series, 1(7), 1-6.

Puspita F. H. E. (2016). Analysis of Mathematical Communication Skills Students in Mathematics Education at Study Course Junior High School Mathematics University of Muhammadiyah Jember. International Journal of Industrial Electronic and Control Optimization, 13, 344-351.

Rahmy, S. N., Usodo B., \& Slamet I. (2019). Mathematics Communication Skill of Student in Junior High School Based on Students Thinking Style, Indonesia. Journal of Physics, 1118, 1-9.

Sammons, L. (2018). Teaching Students to Communicate Mathematically. Retrieved on September 19, 2019 from http://www.ascd.org/ publications/ books/118005/ chapters/The-Essentials-of-Mathematical-Communication.aspx.

Samsuddin, A. F., \& Retnawati, H. (2018). Mathematical Representation: The Roles, Challenges and Implication on Instruction. Journal of Physics: Conference Series 1097, 1-7.

Septiana, A. C., Kusmayati, T. A., \& Fitriana, L. (2018). Mathematical communication skill of senior high school students based on their personality types in Indonesia. Journal of Physics: Conference Series, 11(8), 1-6.

Septiana, A. C., Kusmayati, T. A., \& Fitriana, L. (2019). Mathematical communication skill of senior high school on Introvert in Indonesia. Journal of Physics: Conference Series, 1211, 1-8.

Shittu, M. S. (2015). Effects of Mathematics Teachers' Basic Content Abilities on the Performance of Senior Secondary School Students Mathematics. M.Ed Thesis, Ahmadu Bello University Zaria, Kaduna State, Nigeria.

Shona, M. (2019). An Introduction to Sampling Methods. Retrieved on April 14, 2021. From https://www.Scribbr.com/Methodology/Sampling-Method.

Siregar, R., \& Muhammad, D. S. (2019). Mathematical Connection Ability: Teacher's Perception and Experience in Learning. Journal of Physics: Conference Series 13(5), 1-9.

Sofyan, I. H. M. (2020). Definition of Achievement. Retrieve from http://hmsofyanisnia nspd.blogspot.com/definition-of-achievement.html?m=1.

Sokolowski, A. (2018). Developing Mathematical Reasoning Using a Science, Technology, Engineering, and Mathematics (STEM) Platform. International Congress on Mathematics Education, 4(4), 93-111.

Strayer, J., \& Brown, E. (2012). Teaching with High-Cognitive Demand Mathematical Tasks Helps Students Learn to Think Mathematically. Notices of the AMS. 59(1),

Suharto, K., \& Widada, W. (2018). The Contribution of Mathematical Connection and Mathematical Communication to Problem Solving Ability of Senior High School Student in Indonesia. International Journal of Science and Research, 8(1), 155159.

Sumaji, H., Sa’dijah, C., Susiswo, T., \& Sisworo, I. (2019). Students' Problem in Communicating Mathematical Problem Solving of Geometry, Negeri Malang. Earth and Environmental Science: Conference Series, 243, 1-10.

Sumarsih, Y., Budiyono, S., \& Indriati, D. (2018). Profile of Mathematical Reasoning Ability of $8^{\text {th }}$ Grade Students seen from Communicational Ability, Basic Skills, Connection, and Logical Thinking. Journal of Physics: Conference Series, 1008, 1-10.

Sutama, S., Suyatmini, T. C., AnamSutopo, B., Harun, J. P., \& Anif, S. (2019). Communication Skill of Junior High School Students in Mathematics Learning based on Double Loop Learning. Universitas Muhammadiyah Surakarta Central Java Indonesia. International Journal of Innovative Science and Research Technology, 4, 332-337.

Thadei, F. (2013). Learning Theories: Their Influence on Teaching Methods. Seminar Paper, retrieved on March 18, 2021. From http://www. grin.com /document /293498

Thomas, D. G. (2020). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press.

WAEC Head of National Office Report (2015-2020). West African Senior School Certificate Examination. Retrieved on June 8, 2021 from https://www.waec nigeria.org/news

Warner, S., \& Kaur, M. (2017). Do your classroom procedures really teach Communication? The English Journal, 47(2), 81- 85.

Wichelt, L. (2009). Communication: A Vital Skill of Mathematics. Action Research Projects. University of Nebraska, Lincoln.

Wikipedia (2019). Definition of mathematics. Retrieve on August 10, 2019 from https://en.m.wikipedia.org/wiki/mathematics.

Wikipedia (2020). Principles and Standards for School Mathematics. Retrieved on February 27, 2020. From https://en.m.wikipedia. org/wiki/Principles_and _Stan dards for_School Mathematics.

Yaako, S. M., \& Okoro, M. (2019). Problem-Solving Strategy on Senior Secondary School Students' Performance and Attitude toward Mathematics in Khana Local Government Area Rivers State. International Journal of Education and Evaluation, 5(3), 68-77.

Zeny, E., \& Bella, W. (2017). Analysis of Mathematical Representation, Communication and Connection in Trigonometry in Indonesia. The International Conference on Research in Education, 5, 45-57.

APPENDIX A

WAEC percentage results of students who obtained credit and above in Mathematics

Year	Percentages (\%)
2015	38.68
2016	52.97
2017	59.22
2018	49.98
2019	64.18
2020	39.82

Source: WAEC Head of National Office report, 2015-2020

APPENDIX B

Table showing the distribution of the Population of the study

	S/No	Name of Schools		
	Number of Students			
Male	Female	Total		
	MOKWA LOCAL GOVERNMENT			
1	Day Secondary School Kudu	138	81	219
2	Government Secondary School Bokani	176	223	399
3	Government Secondary School Kpaki	105	33	138
4	Day Secondary School Kpege-Mokwa	310	114	424
5	Government Secondary School Gbara	324	67	391
6	Hakimi Aliyu Day Secondary School Mokwa	368	190	558
7	Mungo Park Secondary School Jebba North	93	38	131
8	Day Secondary School Wuya-Kede	132	30	162
9	Day Secondary School Rabba	75	50	125
10	Day Secondary School Muwo	34	09	43
11	Government Girls Secondary School Mokwa	-	150	150
12	College of Arts and Islamic Study Mokwa	53	41	94
13	Day Secondary School Takuma	57	38	95
14	Government Day Science College Ja'agi	53	20	73
15	Government Science College Mokwa	177	70	247
16	Day Secondary School Dumi	140	47	187
17	Government Science and Vocational College Jebba North	68	37	105
18	Day Secondary School Muregi	69	38	107
19	Women Day College Mokwa	00	33	33

LAVUN LOCAL GOVERNMENT

20	Government Science College Doko	00	00	00
21	Army Day Secondary School Bida	150	103	253
22	Day Secondary School Gaba	168	26	194
23	Day Secondary School Dabban	180	200	380
24	Day Secondary School Kutigi	301	70	371
25	Government Senior Secondary School Jima	200	55	255
26	Day Secondary School Batati	120	50	170
27	Women Day College Kutigi	00	129	129
28	Day Secondary School Busu	99	86	185
29	Day Secondary School Jipan	68	22	90
30	Day Secondary School Mambe	17	06	23
31	Day Secondary School Sosa	00	00	00
32	Day Secondary School Yeti	00	00	00
33	Day Secondary School Panti	63	32	95

34	Day Secondary School Lanle	23	53	76
35	Day Secondary School Egbako	00	00	00
36	Idris Legbo Science College Kutigi	174	00	174
37	Shaba Mahmud CAIS Shabafu	98	47	145
38	College of Art and Islamic Studies Santali	38	04	42
39	A. A. Kure CAIS Ndaloke	77	27	104
40	Com. Tech. \& Comm. College Vunchi	77	77	154
41	Day Secondary School Charati	00	00	00
42	Day Secondary School Eyagi Sodangi	00	00	00
	EDATI LOCAL GOVERNMENT			
43	Day Secondary School Enagi	79	30	109
44	Day Secondary School Sakpe	37	28	65
45	Day Secondary School Gonagi	260	223	483
46	Day Secondary School Gbodoti	80	53	133
47	Day Secondary School Gbangban	176	32	208
48	Day Secondary School Etsu Tasha	100	60	160
49	Day Secondary School Katamba Bologi	45	55	100
50	Government Day Secondary School Diko-Enagi	34	24	58
51	Day Secondary School Edati Bafo	101	66	167
52	Day Secondary School Rokota	26	07	33
53	College of Art and Islamic Studies Enagi	45	66	111
54	Day Secondary School Emigi Kwale	00	00	00
55	Day Secondary School Lenfa Bororo	00	00	00
56	Day Secondary School Fazhi	00	00	00
Total	$\mathbf{5 2 0 8}$	$\mathbf{2 9 4 0}$	$\mathbf{8 1 4 8}$	

[^0]
APPENDIX C

Table showing the distribution of the target population of the study

S/No	Name of Schools		Number of Students		
		Male	Female	Total	
1	Government Day Secondary School Kudu	131	17	148	
2	Hakimi Aliyu Secondary School Mokwa	140	47	187	
3	College of Art and Islamic Studies Enagi	45	66	111	
4	Day Secondary School Enagi	79	30	109	
5	Idris Legbo Science College Kutigi	174	00	174	
6	Women Day College Kutigi	00	129	129	
	Total	$\mathbf{5 6 9}$	$\mathbf{2 8 9}$	$\mathbf{8 5 8}$	

APPENDIX D

Table showing the distribution of the sample of the study

S/No	Name of Schools	Number of Students		
		Male	Female	Total
1	Government Day Secondary School Kudu	41	05	46
2	Hakimi Aliyu Secondary School Mokwa	44	15	59
3	College of Art and Islamic Studies Enagi	14	21	35
4	Day Secondary School Enagi	25	09	34
5	Idris Legbo Science College Kutigi	55	00	55
6	Women Day College Kutigi	00	40	40
Total		$\mathbf{1 7 9}$	$\mathbf{9 0}$	$\mathbf{2 6 9}$

Source: Ministry of Education Minna, Niger State 2021.

APPENDIX E

MATHEMATICAL COMMUNICATION SKILLS TEST (MCST) FOR SS TWO (2)

Dear Respondent,
This test is designed to find relationship between Mathematical Communication Skills and Mathematics Performance of Senior Secondary School Students. The test is purely for academic research purposes hence, any information supplied will be treated as strictly confidential. Your co-operation is highly appreciated, please complete the following.

SECTION A

Sex: Male [] Female []
School Type: All Boys [] All Girls [] Co-Education []

SECTION B

Please answer all questions.

Problem solving skills

1. Express 0.003597 correct to three significant figures.
2. Evaluate $(0.064)^{-1 / 3}$.
3. If $\mathrm{T}=\{$ prime numbers $\}$ and $\mathrm{M}=\{$ odd numbers $\}$ are subsets of $\mu=\{\mathrm{x}: 0<\mathrm{x} \leq 10$, and x is an integer $\}$, find ($\mathrm{T}^{\mathrm{I}} \mathrm{nM}^{\mathrm{I}}$).
4. Evaluate $\frac{\log _{3} 9-\log _{2} 8}{\log _{3} 9}$
5. The fourth term of an Arithmetic Progression (A. P.) is 37 and the first term is -20 . Find the common difference?

Reasoning and proof skills

6. The total surface area of a solid cylinder is $165 \mathrm{~cm}^{2}$. If the base diameter is 7 cm , calculate the height. [Take $\pi=22 / 7$].
7. The interior angles of a polygon are $3 x^{0}, 2 x^{0}, 4 x^{0}, 3 x^{0}$ and $6 x^{0}$. Find size of the smallest angle of the polygon.
8. The foot of a ladder is 6 m from the base of an electric pole. The top of the ladder rest against the pole at a point 8 m above the ground. How long is the ladder?
9. If $\tan x=\frac{3}{4}, 0<x<90^{\circ}$, evaluate $\frac{\cos x}{2 \sin x}$

10. In $\triangle \mathrm{XYZ}$ above, $|\mathrm{YZ}|=32 \mathrm{~cm},\left\langle\mathrm{YXZ}=52^{\circ}\right.$ and $\mathrm{XYZ}=90^{\circ}$. Find correct to nearest centimetre, $|\mathrm{XZ}|$.

Communication skills

11. Solve $\frac{y+1}{2}-\frac{2 y-1}{3}=4$.
12. Solve $4 x^{2}-16 x+15=0$
13. If $2^{\mathrm{a}}=\sqrt{ } 64$ and $\frac{b}{a}=3$, evaluate $\mathrm{a}^{2}+\mathrm{b}^{2}$.
14. Make b the subject of the relation $l b=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \mathrm{h}$.
15. Simplify: $\frac{X^{2}-5 X-14}{X^{2}-9 X+14}$

Connection skills

16. H varies directly as p and inversely as the square of y . If $\mathrm{H}=1, \mathrm{p}=8$ and $\mathrm{y}=2$, find H in term of p and y.
17. Find the equations of a straight line passing through the point $(1,-5)$ and having gradient of $\frac{3}{4}$.
18. Bala sold an article for \# 6,900.00 and made a profit of 15%. Calculate his percentage profit if he sold it for \# 6,600.00.
19. If $3 p=4 q$ and $9 p=8 q-12$, find the value of $p q$.
20. Eric sold his house through an agent who charged 8% commission on the selling price. If Eric received \$ 117,760.00 after the sale, what was the selling price of the house?

Representation skills

21. A box contains 2 white and 3 blue identical balls. If two balls are picked at random from the box, one after the other with replacement, what is the probability that they are of different colours?
22. calculate the variance of $2,4,7,8$ and 9

The following scores are obtained by students in a test: 8
18 $11 \begin{array}{llllllll}13 & 13 & 10 & 14 \\ 18 & 13 & 17 & 15 & 8 & 16 & 13\end{array}$ Use this to answer questions 23 to 25.
23. Find the mode of the distribution.
24. What is the median score?
25. How many students scored above the mean score?

ANSWERS TO MCST

1. $0.003597=0.00360$ to 3 significant figures
2. $(0.064)^{-1 / 3}=\left(\frac{64}{100}\right)^{-1 / 3}=\frac{1}{\left(\left(\frac{64}{100}\right)^{1 / 3}\right.}$

$$
=\frac{1}{\left(\frac{4^{3}}{10^{3}}\right)^{1 / 3}}=\frac{1}{\left(\frac{4}{10}\right)^{3 / 3}}=\frac{1}{\left(\frac{4}{10}\right)}=\frac{10}{4}=\frac{5}{2}
$$

3.

$$
\mu=\{1,2,3,4,5,6,7,8,9,10\} \quad \mathrm{T}=\{2,3,5,7\} \quad \mathrm{M}=\{1,3,5,7,9\} \quad \mathrm{T}^{\prime}=
$$ \{1,4,6,8,9,10

$$
\mathrm{M}^{\prime}=\{2,4,6,8,10\} \quad \mathrm{T}^{\prime} \cap \mathrm{M}^{\prime}=\{4,6,8,10\}
$$

4. First, simplify $\log _{3} 9=\log _{3} 3^{2}=2 \log _{3} 3$ since, $\log _{a} b=\frac{\log _{10} b}{\log _{10} a}$
similarly, $\log _{a} a=\frac{\log _{10} a}{\log _{10} a}=1 \quad$ Therefore, $\log _{3} 3=\frac{\log _{10} 3}{\log _{10} 3}=1$ then, $2 \log _{3} 3=2(1)$ $=2$

$$
\log _{2} 8=\log _{2} 2^{3}=3 \log _{2} 2=3(1)=3 \quad \text { hence, } \frac{\log _{3} 9-\log _{2} 8}{\log _{3} 9}=\frac{2-3}{2}=\frac{-1}{2}
$$

5. The nth term of an A.P is given by:

$$
\mathrm{Tn}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} ; \mathrm{a}=-20, \mathrm{n}=4(4 \text { th term }), \mathrm{Tn}=37
$$

Therefore, $37=-20+(4-1) \mathrm{d}$

$$
37+20=3 d
$$

$$
3 \mathrm{~d}=57
$$

$$
\mathrm{d}=\frac{57}{3}
$$

$$
\mathrm{d}=19
$$

6. Area of a cylinder $(\mathrm{A})=2 \pi \mathrm{rh}+2 \pi r^{2}$;

$$
\begin{aligned}
& \mathrm{A}=2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})------\mathrm{eqn}(1) \mathrm{But} \\
& \mathrm{~A}=165 \mathrm{~cm}^{2},
\end{aligned}
$$

$$
\mathrm{r}=\text { radius }=\frac{\text { diameter }}{2}=\frac{7}{2}=3.5
$$

$\mathrm{h}=$ height from eqn(1), $\mathrm{h}=\frac{A}{2 \pi r}-\mathrm{r}----\mathrm{eqn}(2)$ Substituting the values into equation(2), $\mathrm{h}=\frac{165}{2\left(\frac{22}{7} \times 3.5\right)}-3.5=4$ then, $\mathrm{h}=4 \mathrm{~cm}$
7. The sum of the nth side of an interior angle of a polygon, p is given by:

$$
P=(n-2) \times 180
$$

For 5-sided figure, the sum of the interior angle $\mathrm{p}=(5-2) \times 180^{\circ}=540^{\circ}$

$$
\begin{aligned}
& 3 x^{\circ}+2 x^{\circ}+4 x^{\circ}+3 x^{\circ}+6 x^{\circ}=540^{\circ} \\
& 18 x^{\circ}=540^{\circ} \\
& x=540 / 18=30
\end{aligned}
$$

But, the smallest angle is $2 \mathrm{x}^{\circ}$
therefore $=2\left(30^{\circ}\right)=60^{\circ}$
8.

The diagram above is a right angle triangle, therefore Pythagoras theorem can be used to find the length, L of the ladder. From Pythagoras theorem, hypotenus ${ }^{2}=$ opposite ${ }^{2}+$ adjacent $^{2} ;$ hypotenuse $=\mathrm{L}$, opposite $=8 \mathrm{~m}$ adjacent $=6 \mathrm{~m}$ therefore, Length of the ladder,

$$
\mathrm{L}^{2}=8^{2}+6^{2} \rightarrow \mathrm{~L}=\sqrt{ } 100=10 \mathrm{~m}
$$

9. $\tan (\mathrm{x})=\frac{3}{4}$, and $\tan (\mathrm{x})=\frac{\sin (\mathrm{x})}{\cos (\mathrm{x})}=\frac{3}{4}$

$$
\begin{aligned}
& \text { then, } \frac{\cos (x)}{\sin (x)}=\frac{4}{3} \\
& \text { therefore } \frac{\cos (x)}{2 \sin (x)}=\frac{4}{2 \times 3}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

10. From trigonometry,
$\tan (\mathrm{x})=$ opposite/adjacent $;$ opposite $=32 \mathrm{~cm}$, adjacent $=|\mathrm{XZ}|$ and $\mathrm{x}=52^{\circ}$.
Then, $\tan (52)=\frac{32}{|\mathrm{XZ}|}$ therefore,

$$
|\mathrm{XZ}|=\frac{32}{\tan (52) \mid}=\frac{32}{1.28}=25 \mathrm{~cm}
$$

11. $\frac{y+1}{2}-\frac{2 y-1}{3}=4$ Find the LCM of the denominator (that is, 2 and 3 which is 6).
$\frac{6(y+1)}{2}-\frac{(2 y-1)}{3}=24$
$3(y+1)-2(2 y-1)=24$
$3 y+3-4 y+2=24$
$3 y-4 y+3+2=24$
$-y+5=24$ Subtract 5 from both sides
$-y=24-5$
$-\mathrm{y}=19$ Multiply both sides by -1 ,
$y=-19$
12. From factorization method of solving quadratic equation:

$$
\begin{aligned}
& 4 x^{2}-16 x+15=0 \\
& 4 x^{2}-10 x-6 x+15=0 \\
& 2 x(2 x-5)-3(2 x-5)=0 \\
& (2 x-3)(2 x-5)=0 \\
& 2 x-3=0 \text { or } 2 x-5=0 \\
& x=\frac{3}{2} \text { or } \frac{5}{2} \\
& x=1 \frac{1}{2} \text { or } 2 \frac{1}{2}
\end{aligned}
$$

13. $2^{a}=\sqrt{ } 64$
$2^{a}=8$ From indices, $8=2^{3}$
Therefore, $2^{\mathrm{a}}=2^{3}$ base are equal, so power is equal. $\mathrm{a}=3$.
From the question $\frac{b}{a}=3 \rightarrow \mathrm{~b}=3 \mathrm{a}$
$b=3(3) \rightarrow b=9$.
Therefore, $a^{2}+b^{2}=3^{2}+9^{2}=9+81=90$
14. $l b=\frac{1}{2}(a+b) h$. multiply both sides by $22 l b=(a+b) h$, open up the bracket on the right hand side with h
$2 \mathrm{lb}=\mathrm{ah}+\mathrm{bh}$, subtract bh from both sides $2 \mathrm{lb}-\mathrm{bh}=\mathrm{ah}$, factorising out b, $b(21-h)=a h$, divide both sides by $(21-h)$
$\mathrm{b}=\frac{a h}{2 l-h}$
15. From the methods of solving quadratic equation (I will be using factorisation method because it is easier and faster but it does not work all the time)

$$
\begin{aligned}
& \frac{X^{2}-5 X-14}{X^{2}-9 X+14} \\
& X^{2}-5 X-14=X^{2}-7 \mathrm{x}+2 \mathrm{x}-14=\mathrm{x}(\mathrm{x}-7)+2(\mathrm{x}-7)=(\mathrm{x}-7)(\mathrm{x}+2) \\
& X^{2}-9 \mathrm{x}+14=X^{2}-7 \mathrm{x}-2 \mathrm{x}+14=\mathrm{x}(\mathrm{x}-7)-2(\mathrm{x}-7)=(\mathrm{x}-7)(\mathrm{x}-2) \\
& \text { Therefore, } \frac{X^{2}-5 X-14}{X^{2}-9 X+14}=\frac{(\mathrm{x}-7)(\mathrm{x}+2)}{(\mathrm{x}-7)(\mathrm{x}-2)}=\frac{(\mathrm{x}+2)}{(\mathrm{x}-2)}
\end{aligned}
$$

16. $\mathrm{H} \propto \frac{p}{y^{2}} ; \mathrm{H}=\frac{k p}{y^{2}}$ (k is the proportionality constant), if $\mathrm{H}=1, \mathrm{P}=8, \mathrm{y}=2$

$$
\text { then } 1=\frac{k \times 8}{2^{2}} \rightarrow 1=\frac{8 k}{4} \rightarrow 1=2 \mathrm{k} \rightarrow \mathrm{k}=\frac{1}{2} \text { Substituting } \mathrm{k}=\frac{1}{2} \text { in } \mathrm{H}=\frac{k p}{y^{2}} \text { yield }
$$ $\mathrm{H}=\frac{p}{2 y^{2}}$

17. From the point-slope form of straight line equation, $\mathrm{y}-y_{1}=\mathrm{m}\left(\mathrm{x}-x_{1}\right), \mathrm{m}=\frac{3}{4}$,

$$
\begin{aligned}
& y_{1}=-5, x_{1}=1 . \text { Then, } y-(-5)=\frac{3}{4}(x-1) \\
& y+5=\frac{3 x}{4}-\frac{3}{4} ; \text { multiply through by } 4 \\
& 4 y+20=3 x-3 \text { rearrange } \\
& 3 x-4 y-3-20=0 \text { hence, } 3 x-4 y-23=0
\end{aligned}
$$

18. To calculate the percentage profit at $\mathrm{N} 6,600$, we need to first calculate the cost price. This can be calculated at N6,900 and 15% profit percentage.

Percentage profit $=\frac{\text { selling price }- \text { cost price }}{\text { cost price }}$; percentage profit at $\mathrm{N} 6,900=15 \%$, selling price $=$ N6,900 cost price $(\mathrm{cp})=$?

Then, $\frac{15}{100}=\frac{6900-C P}{C P}$ Cross multiply $0.15 \mathrm{cp}=6900-\mathrm{cp}$ collecting like terms 0.15 cp $+\mathrm{cp}=6,900 \rightarrow 1.15 \mathrm{cp}=6,900$
$\mathrm{cp}=\frac{6900}{1.15}=6,000$. Therefore, the cost price $=\mathrm{N} 6,000$
Percentage profit at N6,600 $=\frac{6600-6000}{6000}=0.1 \rightarrow 0.1 \times 100$ (we are multiplying by 100 since we want the answer as percentage $)=10 \%$
19. $3 \mathrm{p}=4 \mathrm{q}$--- equation (1),

$$
9 \mathrm{p}=8 \mathrm{q}-12 \text {-----equation (2) from equation(1), } \mathrm{p}=\frac{4 q}{3}------ \text { equation(3) }
$$

Substituting equation(3) into equation(2),

$$
9\left(\frac{4 q}{3}\right)=8 q-12 \rightarrow \frac{36 q}{3}=8 q-12
$$

$12 q=8 q-12$
$12 q-8 q=-12 \rightarrow 4 q=-12 \rightarrow q=-3$
Now, we substitute $\mathrm{q}=-3$ into equation(3) we have $\mathrm{p}=\frac{4(-3)}{3}=-4$ Therefore $\mathrm{pq}=-3 \mathrm{x}-4=12$
20. Selling price $=$ Price received by Eric + Agent's commission

Price received by Eric $=\$ 117,760.00$. Agent's commission $=8 \%$ of selling price
selling price is unknown, so let's call it x
Since we know that the agent collected 8% of the selling price, the agent's commission will simply be $\frac{8}{100} \times X=\frac{8 X}{100}$. Then selling price $(x)=117,760.00+\frac{8 X}{100}$ $\mathrm{x}-\frac{8 X}{100}=117,760.00$. Multiply through by $100: 100 \mathrm{x}-8 \mathrm{x}=11,776,000$
$92 \mathrm{x}=11,776,000 \rightarrow \mathrm{x}=\frac{11,776,000}{92}$
$=128,000$. Therefore, the selling price of the house is $\$ 128,000$
21. Probability of picking a white ball $=\operatorname{Pr}(\mathrm{W})$ and Probability of picking a blue ball $=$ $\operatorname{Pr}(B)$ Probability of picking a white and a blue ball (picking white ball first) $=\operatorname{Pr}(W B)$

Probability of picking a blue and a white ball (picking blue ball first) $=\operatorname{Pr}(\mathrm{BW})$ $\operatorname{Pr}(\mathrm{W})=\frac{2}{5}, \operatorname{Pr}(\mathrm{~B})=\frac{3}{5}$
then $\operatorname{Pr}(\mathrm{WB})=\operatorname{Pr}(\mathrm{W}) \times \operatorname{Pr}(\mathrm{B})=\frac{2}{5} \times \frac{3}{5}=\frac{6}{25}$.
$\operatorname{Pr}(\mathrm{BW})=\operatorname{Pr}(\mathrm{B}) \times \operatorname{Pr}(\mathrm{W})=\frac{3}{5} \mathrm{x} \frac{2}{5}=\frac{6}{25}$. Then, $\operatorname{Pr}(\mathrm{WB})+\operatorname{Pr}(\mathrm{BW})=\frac{6}{25}+\frac{6}{25}=\frac{12}{25}$
22. Variance $\left.=\frac{\Sigma \mid(\mathrm{x}-\mathrm{x}}{\mathrm{x}}\right)\left.\right|^{2}$ where x represent each term, x^{\prime} is the mean, n is the number of terms and $\|$ represent absolute value (ignoring negative sign). Then, $\mathrm{n}=5$
mean, $\mathrm{x}^{\prime}=\frac{\Sigma \mathrm{x}}{n}=\frac{2+4+7+8+9}{5}=\frac{30}{5}=6$
variance
$=\frac{|2-6|^{2}+|4-6|^{2}+|7-6|^{2}+|8-6|^{2}+|9-6|^{2}}{5}=\frac{|-4|^{2}+|-2|^{2}+|1|^{2}+|2|^{2}+|3|^{2}}{5}$
since we are ignoring negative sign,
$=\frac{4^{2}+2^{2}+1^{2}+2^{2}+3^{2}}{5}=\frac{16+4+1+4+9}{5}=\frac{34}{6}=6.8$

Marks	8	10	11	13	14	15	16	17	18
Frequency	2	1	1	3	2	1	1	1	2

The above table can be used to answer questions 23 to 25
23. Mode is simply the number that appears the most. Therefore, the mode of the dataset is 13
24. The median is the middle number in a sorted, ascending or descending, list of numbers.

Arranging in ascending order: $8,8,10,11,13,13,13,14,14,15,16,17,18$, 18

There are two middle numbers (13 and 14). Thus, the median will just simply be the sum of the two numbers divided by 2 . That is, $\frac{13+14}{2}=\frac{27}{2}=13.5$
25. Mean $=\frac{\Sigma x}{n}$

$$
=\frac{8+8+10+11+13+13+13+14+14+15+16+17+18+18}{14}=\frac{288}{14}=13.4
$$

Only scores $14,14,15,16,17,18$ and 18 are above 13.4
Thus, there are 7 students that scored above the mean.

APPENDIX F

Reliability Index on Mathematical Communication Skills Test (MCST)

Correlations

	Problem solving skills	Problem solving skills Retest
Pearson	1	. $816{ }^{* *}$
Correlation		
Problem solving skills Sig. (2-tailed)		. 000
N	40	40
Pearson	.816**	1
Problem solving skills Correlation		
Retest Sig. (2-tailed)	. 000	
N	40	40

Correlations

Correlations

		Communication skills	Communication skills Retest
Communication skills	Pearson Correlation	1	.808***
	Sig. (2-tailed)		. 000
	N	40	40
	Pearson Correlation	. $808{ }^{* *}$	1
Communication skills Retest	Sig. (2-tailed)	. 000	
		40	40
	N		

Correlations

	Connection/Re lation skill	Connection/Relation skill Retest
Pearson Correlation	1	.700**
Connection/Relation skills Sig. (2-tailed)		. 000
N	40	40
Pearson Correlation	.700**	1
Connection/Relation skills Retest	. 000	
Reest	40	40

Correlations

		Representation skill	$\begin{array}{l}\text { Representation } \\ \text { Retest }\end{array}$ skill
Representation skills	Pearson Correlation	1	.706***
	Sig. (2-tailed)		. 000
	N	40	40
Representation skills Retest	Pearson Correlation	.706********	1
	Sig. (2-tailed)	. 000	
	N	40	40

APPENDIX G

Secondary Schools Mathematics Performance

S/N	AD/NO		CAI	CA2	CA3	EXAM	TOTAL	REMARK
431.	7632	SUI EIMANSHERIFDFEN	8	9	(0)	B8	65	Pase
432.	7091	SODIQ NDAKO						
433	72.6	SANI MOHAMMED WACHI						
-43.	7244	SALIHU (IMAR DASSUN						
435.	886	ABDULMOMINU ABDULLAHI	10	5	7	31	53	$p a \leq 5$
436.	8863	UMAR SUIEEMAN						
437	7180	ALIYU KOIO TIKA	O	10	Q	4	66	12SS
138	7181	MOHAMMED KOLO TIKA		5	10	32	57	Pas
439	8870	TUBAIRU ABDULIAHI			9	30	54	plis
440	8871	USMANE ABUBAKAR		10	7	- 6	61	Ba
-46\%	R875	UMAK NASTRU	0	5	(0)	32	57	G
442	5099	MOHAMMED SAIDI ADAMS						
4×3	5055	EllıA! YISA		10	10	35	57	flas
444.	8835	RABII: SAN		5	10	38	63	Pass
44.5	8886	BUHSRIMANASARA	7	8	9	30	54	1 1) ${ }^{\text {c }}$
446.		ALHASSAN ABDULLAHI NAGENU						
44\%.	8×89	ABDUILIAHI USM IN ALIYU						
448	8900	SAIFUTA ISAH						
449.	890]	ABURAKAR MUSA						
436	8403	MOMAMMED B ABUBAKAK						
45	$5{ }^{5} 8$	ADANDIUSMAN		8	10	29	54	i
45\%	6 6 60	MOHAMMED त SAI!						
453	725	TSAE ALHASSAN			-1	35	58	θ A
454.	7338	CATIMA MOHAMMED						
455.	2542	MARYAM MOHAMMED						
456.	6079	SAIDU K. A!MADU						
457	7507	DAv12 A HLZEKH11						
-458.	7869	ABUBAKAR FATMM						,
4\%:	8.301	OYEDEACSAMSON						
40\%\%	346.4	ABKAHAMI MOSES						
461	7477	PROSPER LUCKY						
462	8939	NNAMDFAVOLí						
463	7976	SFGU*DAvtD	16		15	76	50	PCor
46 s	-1250							,

S/N	$A D / N O$	-	C: 1	CA2	CA3	EXAM	TOTAL	REMARK
[398.,	8472	SALIHU ABDUT A AH	7	8	10	28	53	PCrsy
309.	7240	SUNDA Y DAVID ITODE	10	9	O	54	82	Pass.
400	84,57	SAMINU IDRIS	7	0	10	44	71	Pass
401.	6090	SA,ADAT UMAR	10	10	10	50	80	Pas5
402.	6094	SAIDU ALHAJI SAIDU	5	10	10	5	60	Pr
403.	6022	SUKURAT SANI	10		8	60	67	plos
404	6088	SALAMATU BABA MOHAMMED	8	7	10	45	70	PC
405	6083	SARETU MOHAMMED SULEIMANM		9		39	60	745
406.	7067	SADIYA ABDUL LAJI.		t		34	54	17055
-107	$7178{ }^{4}$	SAIDU ASMAU						Pers
40x	7198	R! IKAYAT ALHASSAN			0	36	63	P65s.
409	7229	SARETU IBRAHIM						
416,	7259	MOHAMMED E MOHIAMMED						
$41:$	6084	SADIYA IDRIS	10		7	40	66	PAC
412	8754	SIKIRU ABDULSAMIU						H20
413.	70735	OLUYELEKEMARY	0	8	Q	7	53	1785
414.	7974	OLUWASEGUNDAVID						
415.	7245	OKE GABRIEL	0	10	10	50	80	Pr3e
416.	7214	ROFIA MTIRTALA		-	9	$1+7$	± 5	1 CO
417	6077	RAMATU AEHASSAN	9		10	43		PAS
418.	7989	ROKIBA TMURTAIA					54	1785
419.	7270	RAHFEM JAML			0		55	Plis
420	6076	RUTHPETER	5	10	4	25	44	Pasi
421.	6078	RACHILL MATHEW	0	7	Q	$1+8$	74	Pas5
422.	7:90	ROSELINE JOITNSON		I	10		52	$P \varepsilon$
423.	8415	R⿴MAT USMANIARBA	8	10	9	28	55	Pes-1
424.	8582	RASAQRASEED						
425	7322	RAHINATU MCHAMMED	5	10	9	30	54	P6s5!
820.	7313	STEPHEN YKA						
427	7215	SULEMA \N SALIHU						
438	6017	SODQ ALIYTI						
4.20	8.427	SODIG ABDI? AZEEZ						
431	8546	SODTO YAKİB!	9	10	7	5	71	$P Q \leq 5$

S/N	, AD/NO		CAI	C.A2	CA3	EXAM	TorAL	
3.5	7969	ISAIIKU YAKURL						
'366,	8676	RUKA YA MOHAMMED	8	9	If	17	71	Pass
367.	8335	KHADIJAT ISAH ABUBAKAR	2	10	5	30	47	Pass
368.	8654	MOHAMMED ABUBAKAR	9	7	10	37	63	PAS
369.	7191	SUZANA JOHNSON	(0)	10	10	62	72	少里
370.	7226	GABRIEL OLADAPO						
371.	8379	TOBI JOSEPH	0		10	56	86	1798
372.	6096	TEMITOPE J OLUWAYOMI						
373.	8277	TINANJONATHAN	10		9	5	8	785
374	7290	TUNMISE ADEWALE	8		-	3	5	$6 c^{5}$
375	7335	TOAFEEQISMAIL						
376.	8685	TANKO IDRIS MOHAMMED						
377.	8713	UMAR MOHAMMED	0	10	8	6	80	17
378.	8783	USMAN MOHAMMED						
379.	7261	UMAR MOHAMMED						
330	7221	USMANYAHAYA		0	5	2	1	Pes
381.	8883	USMAN MOHAMMED						
382.	8368	USMANMOHAMMED TYABO				5	78	1
+383.	7589	USMANMOHAMMED SABA						
382.	8677	USMANA NAGYA	Q		C	4	7	fes
385.	7005	USMANBABA	-					
386.	17362	USMAN MOHAMMED						
38\%	8798	UMARALIY]						
388.	8617	USMAN UMAP.						
389	7273	WABII AFOLABI						
390	7013	YALIA Y A MOhAMMED						
301.	7377	SAF!YA MOHAMMEI						10
392.	726	SADKADDULLAIII						- P0¢5
393.	862.4	SARETIIBRAHIM		1				
394.	8703	SADIQ M ABLIBAKARB						
395.	7709	SAMAD FALOIA				\bigcirc		2
356.	8089	SAMIVAT AHMEL		1				$r g$
1397	-7286	SANt 15, AH IDRIS						

		al ${ }^{\text {ar }}$	ar as	Lam	边	T
-	voиmanamy					
2n0						
\% ${ }^{3}$,					
\%	No					
" ${ }^{0}$						
	stumumema	10				
(sinz					858	
136	Nomm	79	910		51	
Nom	(in					
ws	(a)amy					
	Paturnoar					
${ }^{30} 8$			to 10	1034	4	
\% 3 \%	nsum mesw					
\%s. ज7\%						
					30	
138\% ${ }^{\text {310 }}$				0	2	
\%	, vicumat					
\%	पusprinx उMw					
, 717						
${ }^{\text {axis }}$						
(1)				- 40	40 bo	
13, 1384	यूरूस					

S/N	AD/NO	.	CA1	CA2	CA3	EXAM	TOTAL	REMARK
297.	7177	MOHAMMED B MOHAMMED	8	10	9	40	67	PCSS
298	8468	MADINAT MOHAMMED	7	8	10	58	t3	1295
299.	8486	MOHAMMED ZAKARI						
300.	6054	MOHAMMED ALHAJI SALIHU	7	10	0	20		POSS
301.	8607	MOHAMMED MOHAMMED						
302.	7342	MOHAMMED USMAN						
303.	8804	ISAHA MOHAMMED			,			
304	7342	MOHAMMED SAIDU						
305.	8812	MOHAMMED TSAHKA						
306.	7657	MOHAMMED ZALIYAT	9	10	10	41	70	P458
307.	3047	HABIBU MOHAMMED						
308.	8821	UMARU ADAMU						
309.	7231	AISHA ABUBAKAR						
310.	8822	MUSA TUSSAINI						
311.	8826	USMAN MOHAMMED						
*12.	8830	ADAMA NDAGI						
313.	7523	YAHAYA. D. YAHAYA						1
314.	7230	YAHAYA ALHASSAN						
315	7220	GABREIL OLADAPO						
316.	6066	HALIRU LABARAN	10	5	4	32	51	Pass
317.	8737	haFsatu abubakar						
318	7279	Fatima koio						
719.	8842	SADIYA ABUBAKAR	5	7	9	30	51	$\operatorname{las} 5$
;20	7168	SEGUN IDRIS	7	9	(1)	82	58	Pags
321.	8855	ANATU MOHAMMED GORO						
322.	8856	MARY'AM IBRAFIM						
323.	5782	SALIHU ALIYU						
324.	8861	MUSA MOHAMMED						
325.	6077	RAMATUALHASSAN	9	7	10	25	51	Pas
326.	7226	MARYAM MOHAMMED						
327	8846	USMANB ADAMU					,	
328.	7366	MOHAMMED AISHA EMIGI						
329.	8842	ABUBAKARSADIVA						
370	7183	IDRIS MUSA						

S/N	$\mathrm{AD} / \mathrm{NO}$		CA1	CA2	CA3	EXAM	TOTAL	REMARK
263.	8448	MOHAMMED MOHP MMED						
264.	7856	MAHMUD USMAN DUKUN						
265	6053	MOHAMMED ISAHJEBBA	10	0	10	48	78	Pas
265.	8345	MOHAMMED ABDUI KADIR		-	7	45	69	$p<i$
267.	$84 \overline{56}$	MOHAMMED NDAG 51		0	9	46	$\neq 1$	
268.	84685	MOHD IYAL ABDULLLAHI			10		5\%	
269	8549	MOHAMMED ISMAN			9	7	8 hl	$P G 5$
270	7316	MOHAMMED . 2. MOHAMMED				22	50	PaS5
271	7178	MOHAMMED ABDULILAHI		5	3	$3=$	59	$0 \Omega 6$
272	8696	MOHAMMED MOH'D GURO						
273:	7357	MUSA IBRAHIM						
274.	8812	MOHAMMED ISHAK.U						
275	8777	MASAUDIJ ABUBAKAR						
276.	7259	MOHAMMED B MAHMUD						
277.	8712	MOHAMMED IMRANA						
278.	7352	MARIAM DANIUMA			0	5	7	99
279.	7212	MARLAM ABDULLAHI		$(C$		2	56	1705
280.	7243	MUJIDAT ABDULAZEEZ	7		10	2		$p a$
281.	7699	MAIMUNAT ABDULSALAM						
282	7009	MOHAMMED YAHAYA						
283.	8490	$\begin{aligned} & \text { MOHAMMED KUDU } \\ & \text { MOHAMMED } \end{aligned}$						
284	7130	MOHAMMED KUDL KUSOGI		Q	1	i	5	
285.	6058	MADUMOHAMMED	10	t	10		55	$\hat{p}, 5$
286.	7354	MOHAMMED USMAN						
287.	7333	MOHAMMED HARUNA						
288.	8712	MOHAMMED TMRANA						
389.	7341	MOHAMMED ZAKAR!						
290.	8731	MOHAMMED MOHAMMED						
291.	7783	MOHD LIMAN ABUBAKAR						
292		MOHAMWED IBRAFIM						
293.	8721	MOHA MMEDM DAUDA						
294.	7686	MARYAM AHMSD					+	
295.	7331	MOHANIVED IDRIS						
-796	$1 6 \longdiv { 0 6 4 }$	MOHAMMED LTMAN HYA		,		1	1	

	AD/No		${ }^{\text {cal }}$	CA2	ca3	Exam	total	REM
2.	${ }^{8887}$	IAMUK KAMALDEEN	8	9	10	30	57	
230.		Hibrin mahmid						pasis
23.	4888	गbrin matmuc oro						
232	8578	JIVA MARK	7	8	10	30		
23.	${ }^{6023}$	KENECHukw						pas,
234.	7297	${ }_{\text {CHERELUSA }}$ KHADIATMOHAMMED	8	9	$.10$			
235.	7830	KAOSARAT M M Mr fan		5				
236.	6075	KEMITOSEPH		5	10	26		pass
237.	6071	MARYAM. K. AMMED	10	6				pas.
238.	8202	MOHAMMED IDRIS AFMED						
239.		MOFAMMED NDANA		8	9	30		
240	7304	moht harlisatatabu	8	9	10			
24.	6035	MOH'D TSADO IBRAHIM						
$2{ }^{242}$	659	MOHAMMED MOHAMMED						
233.	7022	MOHAMMED MOHAMMED						
24.	6056	MOHAMMEDİBRAHM						
24.	${ }^{7335}$	MUSA IRRAHIM	10	9		28	5 l	
24.	7193	Nathanili usman gan				28	H	pa
24,	877	NAZRUU SANT						
248.	779	NAFISAT TSAH						
24.	8330	NURA MOFAMMED						
235.	6071	NWEKE UBASTNACHE	10	7				
${ }^{251}$	${ }^{6669}$	NWEEKE UZO	10	9	8	57		
252.	7173	MAIMATU ADEWUNI.						
253.	${ }^{2058}$	NCHE NAHD. STEPHEN	8	Q	9	35		
234.	7315	NAFISAT MOHAMMED	10	7	8			
255	8857	OCHE OYEGWA KIIO			7			
236.	${ }^{8371}$	OLADINE AMOS	10	7	10			
235	${ }_{6}^{6172}$	OLAYOLAPEETER		8	9	53		
238.	7340	OHIZAINAT BUSARI		7	10			
235.	7266	KEDEMA M M SABA						
$\frac{2600}{236}$	${ }^{3597}$	Kolotaness		10		53		
	1217	LMMa	7	5	8	35		
262	217	LIMaNalicu						

S／N	$\overline{\mathrm{A}} \overline{\mathrm{D}} / \mathrm{NO}$		CA． 1	VA2	CA 3	EXAM	TOTAL	REMARK
16\％	7305	FATMMA ADAMU						
16？	6027	FATIMA IRN ABASS	10	08	10	24	52	Ct－
110	7250	FABIHI ELIJAH	0	$\overline{4}$	Ft	21	E－1	
164	7315	FATIMA MOHAMMED						
165	6092	FATIMA ABUBAKAR	0	0		C？	53	178
18.6	7345	FATIMA MOHAMMED GORO						
167	6030	GAFARUBALOGUN ，	4	7	0	$C E$	Fh	
1688	8554	GIDEOV YISA	10	1 C	1	4	76	4
169	6031	GANIYAT ABDULRAZAQ						
170	7350	GZNIYAT OWOLABI．	(泣)				61	
171	7358	GODFRY DAVID						
177	8328	HARUNA ABUBAKAR				If		
173	8890	HABIBULAH ABDILYEKEN		7		4		
174	7229	HAUWA MOHAMMED TAYI		10	10	16		
175	8444	HADILA JIBRIN						
176	7556	HADIZA AHMED		10			3	\bigcirc
177	7.87	HAUWA B，MOHAMMED						
178	8671	HUSSAINA SANI						
179	6033	HAFSAT MOHAMMED	，	10	9		5	积安
180.	7205	HAFSAT ADAMU	8	Q		3	6	
181．	7277	11AlVAWUISAH						
182	8307	HADIZA IBRAHIM						
782	8620	HAJARA CHEVA		0			－	
18.	－	HUSSAINI SANI						
105	6033	IAABIRAT IBN ABASS	！ 0	10		20		
88.	7772	HADIZA AWAI．	\cdots	4	15		5	
89	7239	HAlWAWU MOH＇D SAKPE						
7188	7384	HUSSAINI AIHASSAN						
180．	8473	IBKAHMM TSMAN						
1． F	6068	ISAHM1 YNDEEN						
	：7024	ISVAILA S，USMAN						
	18056	TFESFNEAN						
［197	7224	TSREAL VGTOK				H		
424	8424	IRKAHIM Y KUB						

S/N	AD/NO		CA1	CA2	CA3	EXAM	TOTAL	REMARK
93.	7235	ABUBAKAR NURA						
94.	7218	ATSHA MOHAMMED						
95.	7238	AISHA MOHAMMED						
96.	6021	ABDULLAHI HASSAN		10	15	29	5	
97.	7211	AHMED . N. JIBRIN	16		16		53	
98		ABEL ISIAH						
99.	8656	AHMED IBRAHIM						
100.	7236	ABDULJALIL ABDULGANIU	10				57	P
101.	8753	ABUBAKAR USMAN						
102.	8644	ABLBAKAR MOHAMMED	9	C	10	2	51	pas
103.	7336	AMINA ALIYU	10	10	9	2	50	pas
104.	7306	ALFIASSAN ABDULLAHI	16		\square	0	53	80
105.	7306	AMINA UMAR	-				51	
106.	8678	ADAMU USMAN YAHAYA						
107.	8699	AISHA MOHAMMED CHEKA			Ω	90		
108.	8765	AISHA ABDULMAIIK					5	
109.	5094	AISHA SONFADA						
110.	7218	AISHA MOHAMMEE,						
111.	7345	AMINA 15AH						5
112	7309 ,	ABUBAKARHARUNA						
113.	71271	ADAMU ISHAKU						
174	8085	AUDU AITYU						
115.	7545	AMINA ISAH						
116.	7175	ABUBAKAR HARUNA						
117.	8720	ABUBAKAR KOLO						
118.	8663	ALIYU MOHAMMED						
119	7280	AISHA MOHAMMELI NDAKO						
120,	8768	AHMED ISAH						
121.	6016	ABDULATEEF MOHAMMED						
122.	8538	ABUBAKAR AHMED						
123i	8743	ABUBAKAR MOHAMMFI?						
-124.	6005	AEDULIAHI ABUBAKAR						
125.	7338	BULUSDANTEN!						
126	\$019	BOLAKALEKAFIU						

	AD ADO		${ }^{\text {cat }}$	$\mathrm{CA}^{\text {a }}$	саз	Exam	total	Remarli
	1) 6015	ABDILSALAMMASHOOD ${ }^{\text {a }}$	9	10	5	44	68	
27.	2. 6, ${ }^{\text {a }}$	AHMED M. KABITU	8	7	10		62	Pass
28.	6009	AHMED ADAMU	10	5	8	33	56	Pass
29.	8807							
33.	T 5 S52	Abluakar.s. Abolilah	8	0	9	35	62	Pass
आ!	[3114		9	7	10	43	69	pass
32	887	ALHASSAN SAM						pass
33.	8880	ALHAM Sidilisah	9	5	9	3.1	54	pas
34.	8704	AHMADUALIYU	5	7	10	33	55	
${ }^{35}$.	8477							
36	${ }^{2264}$	ADAMU A. LIMAN	9	10	9	42	70	
37.	7230	ADAMU B. MOHAMMEI	10	10	10	30	60	
33.	7043	ADAMUKABIRU						
33.	7005	ADAMLITRIS						
40.	8566	ADAMU I 1 RAHMM						
41.	8417	ABBAS ZAYANU	10	10	10	40	70	
42	3602	AZEEZ JMMIU	9	10	10	39	68	poss
43.	569\%	ABBDILLAFI YAKUEU						
${ }^{44}$	8318	ABDILBASTIT JMOH	10	9	10	49	78	
\square^{4}	7224							
46.	8477	ABDUIKADIR MOHAMM						
47	7231	AIsha abubakar						
48.	5094	AISHA MİRIN	8			C		
49.	8361	ASMAU MOHAMMED	8	10	7	40		
50.	7293	AISTA MAHMUD						
51	6025	AISHA . . Steilill	10	7	8	31		
32	${ }^{523}$	NTSTA A. . . MOTAMMED		10	8	50		
${ }^{33}$.	1225	AISHATAT IBRAHM.						
54.	2200	AIISHA IDR15	9	7	10		68	
35.	7 7\%	$\overline{\text { AMINA ISAH }}$				4		
556	${ }^{2330}$	AKOUADE EIESSSİG	10	7	5		56	
57	7105	naytiodunayo						ass
35	6970	Amina abubakar	10	20	10	20		
53	गT/4	TANAPA	6	8	9			

4. fAKMI ALYYDAY SECONDARY SCHOOL, MOKWA NUGER STATE Promotion Assessment Input Form

Sublect:MÁttemíics
 Teachers: Mt Asdullan' Mok'd

Class:..... II Year: 20:20/202 Signature......fer.......

APPENDIX H

Research Instrument Validation Form A

RESEARCH INSTRUMENT VALIDATION FORM

Sir/Ma,
The candidate IDRLS ABDURLAHII with Admission Number MIECAf/5STE $12018 / 8442$ is a student of the department. You are requested to make amends or inputs that will improve the quality of the instrument. Yourgmenenal expertise is expected to assist the researcher

HOD (Signature, Date \& Official stamp)
True ot he Research nsstrument Mäffericticsl Coramininicition skills".
 SECTION

1. Appropriateness of the Research Instrument title: Approstonto
2. Suggest amendment if not appropriate: \qquad OKay
3. Completeness of Bio-data Information:

4. Suggest inputs if incomplete

5. Suitability of items generated \qquad
6. Structure of the questionnaire/ test items generated

7. Structure of the instrument in line with the objectives of the study.

Normed
8. Items coverage and distribution across constructs and domains measured

Cornered
9. Appropriateness of the instrument in relation to the type of data to be collected
10. What is the general overview and outlook of the instrument?
11. Rate the Instrument between 1-10

SECTION B

Name of isstutuon: police sean drily Schorl, Main
Department/ School:

Telephone No/GSM No:-
 0803055

E-Mail Address: \qquad

Signature (e, Date and stamp (if available)

APPENDIX I

Research Instrument Validation Form B

S. RESEARCH INSTRUMENT VALIDATION FORM.
 $\mathrm{Sir} / \mathrm{Ma}$

The candidate IDRCS ABDDULLAH1 with Admission Number MTECH/S5TE/20K大/8442 is a student of the department. You are, requested, to make amends or inputs that will improve the quality of the instrument. Your professional expertise is expected to assist the researcher towards the award of the degree.

Title of the Research instrument: Mathenatiol Communication skillQuestionnaire (McsQ) and Mathenstial communization skol Achievement Test (MCSMT)
SECTION

1. Appropriateness of the Research instrument title:

\qquad
2. Suggest amendrinent if not appropriate:
H^{2}
3. Completeness of Bio data information: Ques
4. Suggest inputs if incomplete AIL
5. Suitability of items generated CoDe
6. Structure of the questionnaire/ rest items generated Coo of
7. Structure of the instrument in line with the objectives of the study $G<\Omega$
8. Itenis coverage and distribution across constructs and domains measured ok
2). Appropriateness of the instrument in relation to the type of data to be collected Q Le
9. What is the general overview and outlook of the instrument? Suatstatefryered
10. Rate the instrument between 1:10 Soxhr-f-cofving (of)

SECTIONEB
Name of the validator:
\qquad
\qquad
_- Designation/Rank \qquad -ea. TII

Name of institution: \qquad mestümnatics/scesuras
Department/ School
\qquad
\qquad
E-Mail Acdress:
8.mmen $1 / 00602$

Signature, Cate and stamp (if,avàilable)

APPENDIX J

Research Instrument Validation Form C

Sir/Ma;

RESEARCH INSTRUMENT VALIDATION FORM

The candidate $\mid \triangle R$ is AbDULLAFA. with Admission Number MTECH $\mid S S T E / 2$ a 15) 8442
the quality of the instrument. Your professional expertise is expected to assist the researcher
towards th
Thank you

Dr. Rabiu M. Bello
HOD (Signature, Date \& Officialstamp)
Title of the Research instrument Matheneficial :-Cammy nizatim Skills
 nicetiven

SECTITONA

1. Appropriateness of the Research instrument title: Apporophiafe instrument
2. Suggest amendment if not appropriate: \qquad
3. Completeness of Bio-data informiation Nery. Compleded
4. Subeest inputs if in complete NC, L
5. Suitability of items generated fuitable envuop
6. Structure of the questionnaire/test items generated Questhin aire oure well. Ptruchmied.
7. Structure of the instrument in hine with the pojectives of the study

- Items foverage and disyribution across construcus and domains measure

Extant of Civerage is OMC
9. Appropriateness of the instryment in relation to the type of data to be collected Inspruments is quite approyp atte
10. What is the gencral ovegriew ond gutlo ok of the instrument?

1. Rate the instrulmen eatifachury
1.1. Rate the Instrument between 1-10
\& 8

SECTION'B
nameot ite vaidiato Ar Babagona Nohamnid
Designation/Rank: I I..
Name of institution: F.U.T. NWWWion:
Department/School: \qquad Telephone No/GSM No: 08066553470 t-Mail Address mưhd. bgana (3) futimnin a. edu-ng.

Signature, Date and stamp (if available)

APPENDIX K

Research Instrument Validation Form D

RESEARCH INSTRUMENT VALIDATION FORM

Sir/Ma,
The candidate $1 D R 15: A B S u l 4$ nt t with Admission Number MTECH|SSTE $/ 2$ ot 8:/844 2 is a student of the department. You are requested to make amends or inputs that will improve the quality of the instrument. Your professional expertise is expected to assist the researcher towards the award of the

Thank you.

GL JUN 2021

Dr. Rabiu M. Bello
HOD (Signature, Date \& Officiastanion

Title of the Research instrument: Mathematical Communization Skills
Questionnaire (MCSQ) and Mathematical Eommunizain skills Achiperenent Test (MCSAT)

SECTION

1. Appropriateness of the Research instrument title \qquad
Amprpriabe
2. Suggest amendment if not appropriate:

3..- Completeness of Bio-data Information:
3. Suggest inputs if incomplete

4. Suitability of items generated

5. Structure of the questionnaire/ test items generated

6. Structure of the instrument in line with the objectives of the study

7. Appropriateness of the instrument in relation to the typogof data to be collected
8. What is the general overview and outlook of the instrument?

(Syentoren 1. go

SECTIONB
Nome ofthe valdaror Dr. A. U. Bashiv Yainkuzo
Desscorition/rank LII
Nome of instivicion: FU.T NLUNA
oeparment scholl Lereve epucation.
Teeemonene No/ssm No: 080655428.25

Signature, Date and stamp (if available)

[^0]: Source: Ministry of Education Minna, Niger State 2021.

