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ABSTRACT 

This thesis presents mathematical model for steady and unsteady Couette flow of an 

electrically conducting viscous incompressible fluid bounded by two parallel non-

conducting porous plates incorporating species equation, temperature-dependent 

viscosity and thermal radiation. The partial differential equations governing the 

phenomenon were non-dimensionalized, using some dimensionless quantities. The 

conditions for the existence and uniqueness of solution of the model were established 

using Lipschitz continuity approach. The properties of solution were examined using 

upper and lower solution method and Kolodner and Pederson lemma. The 

dimensionless equations were transformed and considered in three forms: Transient 

state with time dependent pressure gradient; transient state with constant pressure 

gradient and steady state with constant pressure gradient. The equations for each case 

considered were solved using perturbation method and eigenfunction expansion 

technique and direct integration. The results obtained were presented graphically and 

discussed. From the results obtained, it was observed that the fluid concentration is at 

maximum value ( , ) 2.5y t   when 0.5y    while the secondary velocity is at 

maximum value ( , ) 8.0w y t  when 0.5y   . It was also observed that increase in 

Reynolds number and pressure gradient leads to enhancement in the velocity profiles 

while suction parameter, Hartman number and porosity parameter reduced velocity 

profiles. Also, radiation parameter enhanced the temperature profile while Reynolds 

number, suction parameter and Prandtl number reduced the temperature profile. Fluid 

flow is observed to attain maximum velocity ( ) 55u y  when 0y  . Reynolds number, 

suction parameter, constant pressure gradient chemical reaction parameter and thermo 

diffusion parameter enhanced the concentration profile while radiation parameter and 

Eckert number reduced the concentration profile. The result from this research work is 

of importance to industries that produce domestic consumables like toothpaste and food 

industries in production of tomato paste and fruit juice. 

 

 

 

 

 

 

 



4 
 

TABLE OF CONTENTS 

Content                                                                                                                    

Page 

Cover Page i                                           

Title Page                                                                                                                

 ii 

Declaration                     

iii 

Certification                      

iv 

Dedication                      

v 

Acknowledgements         

 vi 

Abstract                     

vii 

Table of Contents                 

viii 

List of Figures                      

ix 

CHAPTER ONE 

1.0 INTRODUCTION        

 1 

1.1 Background of the Study       

 1 



5 
 

1.2 Statement of the Problem       

 3 

1.3 Aim and Objectives of the study      

 4 

1.4 Justification of the Study       

 5 

1.5 Scope and Limitations of the Study      

 5 

1.6 Significance of the Study       

 5 

1.7 Definition of Terms        

 5 

CHAPTER TWO 

2.0 LITERATURE REVIEW                  

11 

2.1       Review of Related Works                  

11 

2.2  Eigenfunction Expansion Method                 

19 

2.3 Summary of Review and Gaps to Fill                 

20 

CHAPTER THREE  

3.0 MATERIALS AND METHODS                 

21 



6 
 

3.1 Mathematical Formulation                  

21 

3.2 Methods of Solutions                   

26 

3.2.1 Non-Dimensonalization                  

26 

3.2.2 Transformation                   

34 

3.2.3 Existence and Uniqueness of Solution of Transient State              

38 

3.2.4 Properties of Solutions of Transient State Reaction               

42 

3.2.5 Case 1: When Pressure Gradient is a Function of Time              

48 

3.2.5.1 Solution to Case 1                   

49 

3.2.6 Case 2: When Pressure Gradient is a Constant               

79 

3.2.7 Case 3: Steady State Reaction                 

80 

3.2.7.1 Properties of Solution of Steady State Reaction               

81 

3.2.7.2 Solution of Case 3                              

85 

CHAPTER FOUR 



7 
 

4.0 RESULTS AND DISCUSSION               

116 

4.1  Analysis of Results                 

116 

4.1.1 Graphs of Case 1                 

117 

4.1.1.1 Discussion of Results for Case 1                          

125 

4.1.2 Graphs of Case 2                            

128 

4.1.2.1 Discussion of Results for Case 2                          

133 

4.1.3 Graphs of Case 3                            

135 

4.1.3.1  Discussion of Results for Case 3                          

145 

CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS             

149 

5.1      Conclusion                   

149 

5.2 Contributions to Knowledge                 

150 

5.3      Recommendation                 

150 



8 
 

REFERENCES                  

151 

APPENDIX                  

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

Figure                  

Page 

3.1  Schematic diagram of the flow               

14 

4.1 Effect of radiation parameter  Ra  on temperature profile  ,y t  along 



9 
 

Distance                  

117 

4.2 Effect of suction parameter  s  on temperature profile  ,y t  along distance     

118 

4.3 Effect of suction parameter  s  on concentration profile  ,y t            

118 

4.4 Effect of suction parameter  s  on concentration profile  ,y t  along distance 

y and time t. s=0.2(red), s=0.4(green) and s=0.6(blue)   

          119 

4.5 Effect of Prandtl number  Pr  on temperature profile  ,y t            

119 

4.6 Effect of Hartman number  Ha  on temperature profile  ,y t  along distance   

120 

4.7 Effect of Schimdt number  Sc  on concentration profile  ,y t            

120 

4.8 Effect of Hall parameter  Bi  on secondary velocity profile  ,w y t           

121 

4.9 Effect of Hall parameter  Bi  on secondary velocity profile  ,u y t  along 

distance y and time t. Bi=1(red), Bi=2(green) and Bi=3(blue)  

           121 

4.10 Effect of pressure gradient    on primary velocity profile  ,u y t            

122 

4.11 Effect of pressure gradient    on temperature profile  ,y t            

122 

4.12 Effect of Reynolds number  Re  on primary velocity profile  ,u y t           

123 

4.13 Effect of viscosity parameter    on primary velocity profile  ,u y t             

123 



10 
 

4.14 Effect of temperature dependent viscosity    on primary velocity profile

 ,u y t  along distance y and time t.   =0.0(red),   =0.1(green) and   =0.3(blue)

          124 

4.15 Effect of viscosity parameter    on secondary velocity profile  ,w y t
          

124 

4.16 Effect of temperature dependent viscosity    on temperature profile  ,y t
     

125 

4.17 Effect of radiation parameter  Ra  on temperature profile  ,y t            

128 

4.18 Effect of suction parameter  S  on primary velocity profile  ,u y t           

129 

4.19 Effect of suction parameter  S  on concentration profile  ,y t  along distance 

y and time t. s=0.2(red), s=0.4(green) and s=0.6(blue)   

          129 

4.20 Effect of Prandtl number  Pr  on temperature profile  ,y t            

130 

4.21 Effect of Hall parameter  Bi  on secondary velocity profile  ,w y t           

130 

4.22 Effect of Hall parameter  Bi  on secondary velocity profile  ,w y t  along 

distance y and time t. Bi=1(red), Bi=2(green) and Bi=3(blue)  

           131 

4.23 Effect of Casson coefficient  c  on primary velocity profile  ,u y t           

132 

4.24 Effect of Casson coefficient  c  on temperature profile  ,y t            

133 

4.25 Effect of pressure gradient    on primary velocity profile  ,u y t            

133 



11 
 

4.26 Effect of Hartman number  2Ha  on temperature profile  ,y t            

136 

4.27 Effect of Reynolds number  Re  on primary velocity profile  ,u y t           

136 

4.28 Effect of Reynolds number  Re  on secondary velocity profile  ,w y t           

137 

4.29 Effect of Reynolds number  Re  on temperature profile  ,y t            

137 

4.30 Effect of radiation parameter  R a  on temperature profile  ,y t            

137 

4.31 Effect of radiation parameter  R a  on concentration profile  ,y t           

138 

4.32 Effect of suction parameter  S  on primary velocity profile  ,u y t           

138 

4.33 Effect of suction parameter  S  on secondary velocity profile  ,w y t           

139 

4.34 Effect of suction parameter  S  on temperature profile  ,y t            

139 

4.35 Effect of suction parameter  S  on concentration profile  ,y t            

140 

4.36 Effect of Prandtl number  Pr  on temperature profile  ,y t            

140 

4.37 Effect of Hartman number  Ha  on primary velocity profile  ,u y t           

141 

4.38 Effect of Hartman number  Ha  on secondary velocity profile  ,w y t           

141 

4.39 Effect of Schimdt number  Sc  on concentration profile  ,y t            

142 

4.40 Effect of ion slip Parameter  Bi  on primary velocity profile  ,u y t           

142 



12 
 

4.41 Effect of ion slip Parameter  Bi  on secondary velocity profile  ,w y t           

143 

4.42 Effect of Hall parameter  Be  on primary velocity profile  ,u y t            

143 

4.43 Effect of viscosity parameter    on primary velocity profile  ,u y t           

144 

4.44 Effect of temperature dependent viscosity    on temperature profile  ,y t
    

144 

4.45 Effect of porosity parameter  P  on primary velocity profile  ,u y t           

145 

 

 

 

 

 

 

 

 

LIST OF TABLES 

Table           Page 

4.1 Comparison between analytical and numerical results                                      135 

 



13 
 

 

CHAPTER ONE 

1.0                INTRODUCTION 

1.1 Background to the Study 

Mathematical Models are used to examine different phenomena with each model 

representing a definite schematization of the phenomenon taken into consideration. In 

modeling, the researcher is always restricted by a finite number of parameters called the 

governing factors within the limits of which the investigation is being carried out. In 

fluid dynamics, Couette flow is the laminar flow of a viscous fluid in the space between 

two parallel plates one of which is moving at a velocity relative to the other. The flow is 

driven by the virtue of viscous drag force acting on the fluid and the applied pressure 

gradient parallel to the plates. The study of magnetohydrodynamic (MHD) Couette flow 

with heat transfer of an electrically conducting fluid through two parallel plates known 

as Hartman flow is a classical problem that has many applications in MHD power 

generators, MHD pumps, aerodynamic heating, nuclear reactors and geothermal energy 

extractions. Fluid flow through porous media has several engineering and geophysical 

applications such as in the field of chemical engineering for filtration and purification 

processes, in agricultural engineering to study the underground water resources, in 

petroleum industry to study the movement of natural gas, oil and water through the oil 

channels and reservoirs while in astrophysics it is applied to study the stellar and solar 

structures (Makinde & Mhone, 2005) 

Hartman et al. (1973) studied the influence of a transverse uniform magnetic field on 

the flow of a conducting fluid between two infinite, parallel, stationary and insulated 

plates. Afterwards, a lot of research work concerning the Hartman flow has been carried 

out under different physical conditions and flow geometries. In most cases, the Hall and 
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ion slip terms were ignored in applying Ohm’s law as they have negligible effects for 

small and moderate values of the magnetic field. In recent research works, the trend for 

the application of magnetohydrodynamics is towards a strong magnetic field resulting to 

a significant effect of electromagnetic force. Under these conditions, the Hall and ion 

slip are important and they also have a marked effect on the magnitude and direction of 

the current density and consequently on the magnetic force term. 

Over the years, considerable interest has been observed on the effect of MHD in 

viscous, incompressible, non-Newtonian fluid flow with heat transfer. These interests 

on non-Newtonian fluids are owed to its important applications in various branches of 

science, engineering and technology, particularly in chemical and nuclear industries, 

material processing, geophysics and bio-engineering. In view of these applications, an 

extensive range of mathematical models have been developed to simulate the diverse 

hydrodynamic behavior of these non-Newtonian fluids. However, different non-

Newtonian fluid models have been presented by researchers and solved using various 

types of analytical and computational schemes. The most important non-Newtonian 

fluid possessing a yield value is the Casson fluid, which has significant applications in 

polymer processing industries and biomechanics. Casson fluid is shear thinning liquid 

which has an infinite velocity at a zero rate of strain. Cassons constitute equation 

represents a nonlinear relationship between the rates of stress and strain and has been 

noticed to be accurately applicable in silicon suspensions and lithographic varnishes 

used for printing inks. Casson fluid when acted upon by pressure gradient and is 

subjected to a uniform magnetic field is a good approximation of some practical 

situations such as heat exchangers and flow meters and pipes (Muchin et al., 2012). The 

basic set of equations that governs the flow of fluids are; the continuity equation (mass 
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conservation), equation of motion (momentum), and energy equation. They are all based 

on the assumption that fluid flow is continuous. 

i. Continuity equation: This equation is derived on the assumption that matter can 

neither be created nor destroyed but can be transformed from one form to another. It 

is expressed as: 

     . 0v                       (1.1) 

ii. Equation of motion (momentum): This is derived from applying Newton’s second 

law of motion to the fluid motion together with the assumption that the fluid stress is 

the sum of a diffusing viscous term which is proportional to the velocity gradient 

plus a pressure term. It is expressed as: 

  2q
q q F P q

t
   


     


       (1.2) 

where �⃗� = (𝐽 ̅ × �̅�) for electrically conducting fluids in addition to other body forces. 

iii. Energy equation: This is derived based on the assumption that the energy of the 

fluid is conserved during its motion and it is expressed as: 

   
2

2
2

p

T J
C v T v k T

t
 



 
       

 
      (1.3) 

where S, V, �⃗�, n, 𝜌, 𝜇, �⃗�, k, 𝐶𝑝, �̅�, 𝑇,𝐽,̅ �̅� are closed surface, fluid volume, fluid 

velocity, unit normal vector, fluid density, fluid viscosity, body force, thermal 

conductivity, specific heat capacity, velocity, temperature, current density and magnetic 

flux respectively and  is the Laplacian operator. 
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1.2 Statement of the Research Problem 

Fluids in which the shear stresses are not linearly proportional to the velocity gradient 

are characterized as non-Newtonian fluids and are of much interest among researchers. 

Among the non-Newtonian fluids, Casson fluid has attracted more attention of 

researchers due to its application in the field of metallurgy, food processing, drilling 

operations and bioengineering operations. Some more applications of Casson fluid can 

be seen in manufacturing of pharmaceutical products, paints, synthetic lubricants and 

biological fluids such as sewage jelly, tomato sauce, honey, soup and blood due to its 

contents such as plasma, fibrinogen and protein. Hence, there is need to see the effect of 

parameters involved on the concentration, temperature, primary and secondary 

velocities. 

1.3 Aim and Objectives of the Study 

The aim of this research is to carry out a study on mathematical model of transient 

Couette flow of an electrically conducting fluid bounded by two parallel porous plates. 

The objectives of the present research work are to: 

i. Formulate the mathematical model describing transient Couette flow of an 

electrically conducting fluid.  

ii. Establish the criteria for the existence and uniqueness of solution of the model 

formulated using Lipschitz continuity approach. 

iii. Examine the properties of the solutions of the modelusing method of upper and 

lower solution. 

iv. Solve the model equations using perturbation method and eigenfunction 

expansion technique. 
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v. Provide the graphical representation of the system responses. 

 

 

1.4 Justification of the Study 

The importance of MHD Couette flow of Casson fluid through channels cannot be over 

emphasized, hence the need for this study to conduct research considering thermal 

radiation and chemical reaction in the presence of uniform suction and injection. 

1.5 Scope and Limitations of the Study 

This research work focuses on the formulation of the mathematical model and the 

analytic simulation of the MHD Casson fluid model. This research is therefore limited 

to the mathematical analysis of the problem. 

1.6 Significance of the Study 

The study of unsteady magnetohydrodynamics (MHD) Couette flow in the presence of 

transverse magnetic field has wide range of applications in many areas of science and 

engineering such as MHD pumps, MHD generators, MHD accelerators and MHD flow 

meters. Therefore, this study is of great significance for proper understanding of the 

working processes of these machines. 

1.7 Definition of Terms 

This section presents definition of terms used in the thesis 

Brinkman Number(𝑩𝒓): This is the ratio of heat generated by viscous dissipation to 

heat transported by molecular conduction (external heating). It is denoted by  
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2

0w

u
Br

k T T





         (1.4) 

where 𝜇 is the dynamic viscosity, u is the flow velocity, k is the thermal conductivity, 

𝑇0 is the bulk temperature, 𝑇𝑤 is the wall temperature. 

Casson Fluid: This is a shear thinning fluid which is assumed to have an infinite 

viscosity at zero rates of shear, a yield stress below which no flow occurs and a zero 

viscosity at an infinite rate of shear.  

Couette flow: This is defined as the laminar flow of a viscous fluid in the area between 

two boundaries one of which is moving relative to the other.  

Definitions: 

Definition 1: A smooth function u  is said to be a lower solution of the problem 

 , ,Lu f x t u  

where 

     
2

2
, , ,L a x t b x t c x t

t x x

  
   
    

If u satisfies 

 , ,Lu f x t u  

           1 2,0 , 0, t , L, tu x f x u h t u h t  
           

(Olayiwola and Ayeni, 2011) 

Definition 2: A smooth function u  is said to be an upper solution of the problem 

 , ,Lu f x t u  



19 
 

Where 

 

 

     
2

2
, , ,L a x t b x t c x t

t x x

  
   
  

 

If u satisfies 

 , ,Lu f x t u  

           1 2,0 , 0, t , L, tu x f x u h t u h t  
            

(Olayiwola and Ayeni, 

2011) 

Definition 3: A smooth function u  is said to be a lower solution of the problem 

 ,Lu f x u  

where 

     
2

2

d d
L a x b x c x

dx dx
    

If u satisfies 

 ,Lu f x u  

   1 20 , Lu h u h 
                          

(Olayiwola and Ayeni 2011)
 

Definition 4: A smooth function u  is said to be an upper solution of the problem 

 ,Lu f x u  
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Where 

 

 

     
2

2

d d
L a x b x c x

dx dx
    

If u satisfies 

 ,Lu f x u  

   1 20 , Lu h u h 
               

(Olayiwola and Ayeni, 

2011) 

Eckert Number (Ec): This provides a measure of the kinetic energy of the flow relative 

to the enthalpy difference across the thermal boundary layer. It is also used to 

characterize heat dissipation in high speed flows for which viscous dissipation is 

significant.  

2

p

u
Ec

c T



            (1.5) 

Grashof Number (Gr): This is a dimensionless number which approximates the ratio 

of the buoyancy to viscous force acting on a fluid. It is given by  

3

2

( )s
L

g T T L
Gr

v

 
            (1.6) 

Hartmann Number (Ha): This is the ratio of electromagnetic force to the viscous 

force, defined by 
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Ha BL



             (1.7) 

where B is the magnetic field, L the characteristic length, 𝜎 the electrical conductivity 

and 𝜇 dynamic viscosity. 

Incompressible fluids: These are fluids that do not change the volume of its container 

due to external pressure.  

Joule dissipation: This is the process by which the passage of an electric current 

through a conductor releases heat. The amount of heat released is proportional to the 

square of the current.  

Laminar flow: Laminar flow occurs when fluid flows at low velocity, in parallel layers 

with no disruption between the layers. 

Lipschitz condition:  A real valued function :f R R  is called Lipschitz continuous 

if there exist a real constant  0K   such that for all 1 2x and x in X , 

   1 2 1 2 .f x f x K x x             (1.8) 

Any such K is referred to as a Lipschitz constant for the function .f  

Magnetohydrodynamics (MHD): This is a branch of science which deals with the 

dynamics of conducting fluids moving in an electromagnetic field. 

Prandtl Number (Pr): this is a ratio of momentum diffusivity to thermal diffusivity. 

Poiseuille Flow: This is defined as the laminar fluid flow of a viscous fluid in the area 

bounded by two stationary boundaries where the flow is induced by pressure gradient. 
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Reynold Number (Re): This is the ratio of inertial forces to viscous forces and it is a 

convenient parameter for predicting if a flow condition will be laminar or turbulent. 

When the viscous forces are dominant, then the flow is laminar while when the inertia 

forces dominate then the flow is turbulent.  

Schmidt Number (Sc): This is a dimensionless number defined as the ratio of the shear 

component of diffusivity viscosity/density to the diffusivity for mass transfer. It 

physically relates the relative thickness of the hydrodynamic layer and mass transfer 

boundary layer. 

Viscosity: This is the measure of a fluid’s resistance to gradual deformation by shear or 

tensile stress. 

Viscous dissipation: This is defined as an irreversible process where kinetic energy of 

the moving fluid is converted into thermal energy.  
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CHAPTER TWO 

2.0                                                 LITERATURE REVIEW 

2.1 Review of Previous Works 

The study of unsteady magnetohydrodynamic (MHD) Couette flow in the presence of 

transverse magnetic field has various and wide applications in many areas of science 

and engineering such as MHD pumps, MHD generators, MHD accelerators and MHD 

flow meters. Katagiri (1962) studied unsteady MHD Couette flow of a viscous, 

incompressible and electrically conducting fluid in the presence of uniform transverse 

magnetic field. The fluid flow through the channel was assumed to be induced by the 

impulsive movement of one of the plates of the channel. He deduced that increase in 

magnetic field brings about increase in skin friction while it retards the velocity of the 

fluid. In recent years, the study of Couette flow in rotating systems enhances the interest 

in researchers due to its applications in secular variation of earth’s magnetic field, the 

internal rotation rate of the sun, the structure of rotating magnetic stars, rotating 

hydromagnetic generators, vortex type MHD power generators and other centrifugal 

machines. Taking these facts into cognizance, Hazem (2009) studied the ion slip effect 

on unsteady Couette flow with heat transfer under exponential decaying pressure 

gradient. Taiwo and Jha (2018) studied the transient pressure driven flow in an annulus 

partially filled with porous material. They obtained the exact solution of the governing 

equations using Laplace transform technique and deduced that as Darcy number 
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increases the permeability of the porous region increases. Ajibade and Bichi (2019) 

investigated the variable fluid properties and thermal radiation effects on natural 

convection Couette flow through a vertical porous channel using the Adomian 

decomposition method (ADM) and maintained that both fluid velocity and its 

temperature within the channel were observed to increase with growing thermal 

radiation and decreases with increase in thermal conduction of the fluid.Yusuf et 

al.(2018) examined the boundary layer flow of a nanofluid in an inclined wavy wall 

with convective boundary condition. They observed fluid flow back at the wavy wall. 

Alsabery et al. (2017) studied using finite difference method, the natural convection 

flow of a nanofluid in an inclined square enclosure partially filled with a porous 

medium and they deduced that heat transfer is considerably affected by the porous layer 

increment. Aiyesimi et al. (2015) analytically investigated the convective boundary 

layer flow of a nanofluid past a stretching sheet with radiation. They solved the 

governing equations using the Adomain decomposition method (ADM). They observed 

that both thermal and concentration Grashof numbers enhance the velocity, temperature 

and concentration profiles of the fluid. Laila and Marwat (2021) examined the nanofliud 

flow in a converging and diverging channel of rectangular heated walls. They dedeuced 

that both the temperature and concentration profiles are enhanced with increase in 

thermophoretic forces. Recently, Jiya et al. (2015) studied using the Adomain 

decomposition method the solutions of a boundary layer flow past a stretching plate 

with heat transfer, viscous dissipation and Grashof number. They observed that ADM 

provides highly precise numerical solution for non-linear differential equations. 

Chutia et al. (2017) numerically studied the solution of unsteady hydromagnetic 

Couette flow in a rotating system bounded by two porous plates with Hall effects. The 

governing equations were solved using the finite difference method. Jana et al. (2012) 
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investigated Couette flow through a porous medium in a rotating system and observed 

that a thin boundary layer which increases in thickness as porosity parameter increases 

is formed near the moving plate. In another related work, Seth et al. (2011) studied 

using Laplace transform technique, the effects of rotation and magnetic field on 

unsteady Couette flow in a porous channel. They observed that magnetic field retards 

the fluid flow in both primary and secondary flow directions. Seth et al. (2010) studied 

the unsteady hydromagnetic Couette flow within porous plates in a rotating system. 

They observed that suction has a retarding influence on both the primary and secondary 

flow where as injection and time have accelerating influence on the flow velocities. 

Casson fluid as an example of non-Newtonian fluid is a shear thinning liquid with an 

infinite viscosity at a zero rate of strain. It is an important fluid in mechanics due to its 

practical applications such as in silicon suspension and suspensions of bentonic in 

water. Pramanik (2014) focused on Casson fluid flow and heat transfer past an 

exponentially porous stretching surface in the presence of thermal radiation. 

Afikuzzaman et al. (2015) have investigated an unsteady MHD Casson fluid flow 

through a parallel plate with hall current using an explicit finite difference technique. In 

another related research, hydrodynamic impulsive lid driven flow and heat transfer of a 

Casson fluid was studied by Attia & Sayed-Ahmed (2006).  

Sayed-Ahmed et al. (2011) considered the time dependent pressure gradient effect on 

unsteady MHD Couette flow and heat transfer of Casson fluid. The two components of 

the momentum equation are given by: 

 
2

0
0 21

Bu u p u
u mw

t y x y y m


  

     
      

      
      (2.1) 

 
2

0
0 21

Bw w w
w mu

t y y y m


  

    
    

     
       (2.2) 
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The energy equation in dimensional form is given as 

2 2 22
2 20

0 2 21
p

BT T T u w
c c k u w

t y y y y m


   

        
                      

    (2.3) 

Subject to 

0

1 1 2

( ,0) 0, ( , ) 0, ( , )

( ,0) 0, ( , ) 0, ( , ) 0

( ,0) , ( , ) , ( , )

u y u h t u h t U

w y w h t w h t

T y T T h t T T h t T

    


    
    

        (2.4) 

where apparent viscosity is given by 

2
1 2

0

2 2
cK

u w

y y




  
  
  
    
      
     

                 (2.5)

 

where  

  is fluid density, 

  is apparent of viscosity of the fluid, 

2

cK  is Casson’s coefficient of viscosity, 

0  is yield stress, 

  is electric conductivity, 

 is Hall factor,  

iB is ion slip parameter,  
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0m B  is Hall parameter,  

pc is specific heat capacity of the fluid, 

k  is thermal conductivity of the fluid, 

u  is primary velocity, 

w  is secondary velocity, 

T  fluid temperature. 

Bhattacharyya et al. (2013) studied analytically the solution for magnetohydrodynamic 

boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass 

transfer. The unsteady boundary layer flow of a Casson fluid due to an impulsively 

started moving plate was considered by Mustafa et al. (2011). Recently, Mukhopadhyay 

et al. (2011) investigated the steady boundary layer flow and heat transfer over a porous 

moving plate in the presence of thermal radiation. Makinde and Mhone (2005) studied 

the heat transfer to MHD flow in a channel filled with porous medium.  

Sharada and Shankar (2016) investigated steady three-dimensional Casson fluid over an 

exponentially stretching surface in the presence of Lorentz force. They consider the 

effect of heat generation and mixed convection. Their model equations were 

transformed from partial differential equations to set of ordinary differential equations 

using similarity transformations and the transformed equations were solved by applying 

Keller Box method. The effects of magnetic parameter, mixed convection parameter, 

heat source/sink, casson parameter and ratio parameter were investigated on the velocity 

and temperature profiles graphically. 
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Pushapalata et al. (2016) investigated the unsteady free convective flow of a casson 

fluid bounded by a moving vertical plane in a rotating system. The governing equations 

of the flow were solved analytically using perturbation technique. The effects of various 

parameters such as casson, magnetic field, thermal diffusion, chemical reaction and 

thermal radiations on velocity, temperature and concentration profiles were discussed. 

Kushpala et al. (2017) analyzed the effects of cross diffusion on casson fluid over an 

unsteady stretching surface with boundary effects. The governing equations were solved 

numerically using Runge-Kutta fourth order along with shooting technique. 

Maleque (2016) investigated an exothermic/endothermic binarychemical reaction on 

unsteady MHD non-Newtonian casson fluid flow with heat and mass transfer past a flat 

porous plate. Considering the effects of casson parameter on velocity profile for cooling 

and heating plate, the exothermic/endothermic chemical reaction rate and Arrhenius 

energy on the concentration, the governing equations were solved numerically by 

adopting implicit Runge-Kutta and shooting method using the Nachtsheim-Swigert 

iteration technique. 

Vedavathi et al. (2016) examined the chemical reaction, radiation and dufour effects on 

casson MHD flow over a vertical plate with heat source/sink and the problem was 

solved numerically using perturbation technique.  

Gireesha et al. (2016) examined similarity solution to the problem of two-dimensional 

boundary layer flow, heat and mass transfer of non-newtonian Casson fluid over a 

porous stretching surface. The governing equations were transformed into self-similar 

nonlinear ordinary differential equations and solved numerically by an efficient Runge-

Kutta fourth-fifth order method. 
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Kirughashankar et al. (2016) investigated Casson fliud flow and heat transfer over an 

unsteady porous stretching surface and obtain analytical expression for axial velocity 

and temperature field of the fluid. 

Hussanan et al. (2016) examined the effects of Newtonian heating and inclined 

magnetic field on two-dimensional flow of a casson fluid over a stretching sheet. The 

governing partial differential equations were transformed into nonlinear ordinary 

differential equation by using similarity transformation and the solution of the coupled 

nonlinear equations obtained using analytical technique. 

In most of these investigations, it was observed that the effects of Hall current are not 

taken into account. Hall effects results in a development of an individual potential 

difference between opposite surfaces of conductors for which a current is induced 

perpendicular to both the electric and magnetic field. Hall current has many applications 

such as in MHD power generators, nuclear power reactors, underground energy systems 

and in several areas of astrophysical and geophysical interests. Keeping these facts in 

view, Balamurugan et al. (2015) considered an unsteady MHD free convective flow 

past a moving vertical plate with time dependent suction and chemical reaction in a slip 

flow regime. The slip flow conditions for the velocity, jump in temperature and jump in 

concentration are taken into account in the boundary conditions. 

Murthy (2020) made numerical assessment on magnetohydrodynamic flow of Casson 

fluid over a deformable porous layer with slip conditions. They observed that the liquid 

velocity and solid displacements are found are rotted for higher estimations of magnetic 

parameter and contrary nature was observed for the impact of Casson Parameter. 

Nagaraju et al. (2020) investigated the radiation and chemical reaction effects on MHD 

Casson fluid flow of a porous medium with suction and injection. They found that 
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velocity decreases while temperature and concentration increases when magnetic field 

and permeability parameter increases. 

Gireesha and Roja (2020) made a second law analysis of MHD natural convection slip 

flow of Casson fluid through an inclined microchannel. They observed an increasing 

behaviour of heat transfer rate for enhancement values of Eckert number and heat 

source ratio parameter. Also, drag force are retarded with higher estimation of Reynolds 

number. 

Samrat et al. (2021) studied the buoyancy effect on magnetohydodynamics flow of 

Casson fluid with Brownian movement and thermophoresis. They observed that the 

magnetic field signifies additional conflicting force to fluid motion and dissipation 

impacts to accelerate the temperature. 

Opanuga et al. (2020) examined the impact of Hall current on entropy generation of 

radiative  MHD mixed convection Casson fluid. Muhammed et al. (2021) examined the 

Couette flow of viscoelastic dusty fluid in a rotating frame along with heat transfer. 

Goud and Malga (2020) investigated the effect of heat source on an unsteady MHD free 

convection flow of a Casson fluid past a vertical Oscillating plate in porous medium 

using finite element analysis. Mohammed et al. (2015) investigated the simulation of 

heat and mass transfer in the flow of incompressible viscous fluid past an infinite 

vertical plate 

In another related work, Ghosh and Pop (2004) investigated Hall effects on MHD 

plasma Couette flow in a rotating environment. Hayat et al. (2004) studied the Hall 

effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid. 

Recently, Das et al. (2017) analyzed Hall Effects on Unsteady MHD Reactive Flow 

Through a Porous Channel with Convective Heating at the Arrhenius Reaction Rate. 

The Hall effects on MHD Couette flow in a rotating system with arbitrary magnetic 
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field was considered by (Ghosh 2002). Research on Hall effects on MHD couette flow 

in a channel partially filled with porous medium in a rotating system was carried out by 

(Chauhan & Agrawal 2012). Seth et al. (2009; 2012) studied the Hall effects on 

oscillatory hydromagnetic Couette flow in a rotating system and Hall current and 

rotation effects on unsteady hydromagnetic Couette flow within a porous channel 

respectively. The effect of porosity on unsteady Couette flow with heat transfer in the 

presence of uniform suction and injection was numerically analyzed by Hazem (2009).  

Venkateswarlu and Padma (2015) analyzed unsteady MHD free convective heat and 

mass transfer in a boundary layer flow past a vertical peameable plate with thermal 

radiation and chemical reaction. Chamkha and Ahmed (2012) examined unsteady MHD 

heat and mass transfer by mixed convection flow in the forward stagnation region of a 

rotating sphere at different wall conditions. The effects of thermal radiation and 

magnetic field on unsteady mixed convection flow and heat transfer over a stretching in 

the presence of internal heat generation/absorption was studied by Elbashbeshy and 

Aldawody (2011). Dulal and Bulal(2010) investigated the buoyancy and chemical 

reaction effects on MHD mixed convection heat and mass transfer in a porous medium 

with thermal radiation and ohmic heating. Mohammed et al. (2015) analyzed radiation 

and mass transfer effects on MHD oscillatory flow in a channel filled with porous 

medium in the presence of chemical reaction. 

2.2 Eigenfunction Expansion Method 

The approach of eigenfunction is closely associated to the Fourier’s method, which is 

commonly known as the method of separation of variables that is intended in sorting out 

a specific solution to differential equations. In using this approach, our primary 

preoccupation is geared towards the peculiar function being solutions of an eigenvalue 

problem. The technique of separation of variables was put forth by d’Alembert (1749). 
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However, in the 18th century, the same approach was engaged by Euler, Bernolli and 

Lagrange in tackling the question of oscillation of string. This method requires that both 

partial differential equation (PDE) and boundary conditions be homogenous. We also 

transform non-homogenous boundary conditions into homogenous one before using the 

general formulation. The eigenfunction expansion method is easiest to apply to 

diffusion problemsin space dimension. Eigenfunction expansion approach was used by 

Ibrahimet al. (2017). 

2.3 Summary of the Literature Review and Gap to Fill 

In reviewing the above literature, several works have been carried out on transient and 

steady Couette flow. Some authors considered time dependent pressure gradient without 

considering thermal radiation. Others concentrated on heat source and ignored chemical 

reaction. Most authors simulated their models numerically due to the complexity of the 

equations. 

However, this research work seeks to consider an analytical solution of transient and 

steady Couette flow of an electrically conducting incompressible fluid bounded by two 

parallel non-conducting porous plates incorporating the following: 

(i) Thermal radiation 

(ii) Chemical reaction 

(iii) Constant and time dependent pressure gradient 

(iv) Temperature dependent viscosity. 

 

 

 

 



33 
 

 

 

 

 

 

 

 

CHAPTER THREE 

3.0                                              MATERIALS AND METHODS 

3.1 Mathematical Formulation 

Following Sayed-Ahmed et al. (2011), we consider the unsteady flow of a viscous, 

incompressible, non-conducting fluid through a channel with chemical reaction, thermal 

radiation constant and variable pressure gradient in the presence of magnetic field. The 

flow is assumed to be laminar, incompressible and flows between two infinite 

horizontal plates located at y h  which extends from x    to  and from z    

to   as shown in Figure 1.  
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Figure 3.1: Schematic diagram of the problem 

It is also assumed that: 

(i) Axial conduction in the fluid through the surfaces are negligible. 

(ii) The fluid is optically thin with relatively low density. 

(iii) There is small electrical conductivity and electromagnetic force in the region of 

flow. 

(iv) No heat generation and constant thermo-physical properties. 

The upper plate is suddenly set into motion and moves with a uniform velocity 0U  

while the lower plate is kept stationary. The upper and lower plates are kept at two 

constant temperatures 2T  and 1T  respectively with 2 1T T . The fluid flows between the 

two plates under the influence of an exponential decaying with time dependent pressure 

gradient in the x-direction which is a generalization of a constant pressure gradient. A 

uniform suction from above and injection from below with constant velocity 0 which 

are all applied at 0t  . The system is subjected to a uniform magnetic field 0B in the 

positive y-direction and is assumed undisturbed as the induced magnetic field is 

neglected by assuming a small magnetic Reynolds number. The Hall effect is taken into 

consideration and consequently a z-component of the velocity is expected to arise. Thus 

the fluid velocity vector is given by: 

wkjvuiv  0            (3.1) 

The fluid motion starts from rest at 0t  , and the no-slip condition of the plates implies 

that the fluid velocity has no z-component at y h  . The initial temperature of the 

fluid is assumed to be equal to 1T . The flow of the fluid is governed by the momentum 

equation- 
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  0BJpv
Dt

Dv
           (3.2) 

where   is the density of the fluid and   is the apparent viscosity of the model which 

is assumed to be a function of temperature only i.e,  T  . 

Introducing a Chapman-Rubesin viscosity law, with 1w as shown in Olayiwola (2016) 

and using the condition at the lower plate, gives 

1

1

T

Tc
              (3.3) 

where 1  is the Casson coefficient of viscosity, c is a constant. If the Hall term is 

retained, the current density J  is given by 

0 0 0 0

0

( ) ( )
Bi

J v B J B J B B
B


 
 

       
 

       (3.4) 

where   is the electric conductivity of the fluid, Bi  is the ion slip parameter and   is 

the Hall factor (Sutton and Sherman (1965)). Equation (3.4) above may be solved in J  

to yield  

 
    

2

0
0 2 2

(1 ) (1 )
(1 )

B
J B BiBe u Bew i BiBe w Beu k

BiBe Be


       

 
 (3.5) 

where 0Be B  is the Hall parameter. 

Following Sayed-Ahmed et al. (2011), the governing momentum equations in terms of 

equation (3.5), in dimensional form are as follows: 
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   (3.6) 
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   (3.7) 

 

The energy equation from Sayed-Ahmed et al. (2011) in dimensional form is given by 
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     (3.8) 

The concentration equation in dimensional form is given as:  

 
2
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1C C C T
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      (3.9) 

Subject to the initial and boundary conditions; 
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     (3.10) 

where apparent viscosity  is represented by equation (3.3) as: 

1

1

c T

T
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where 

 is the density, 

  apparent viscosity of the fluid, 

y is distance,  

  is electrical conductivity,  

 is Hall factor,  

Bi is ion slip parameter,  

p  is pressure 

0v is constant suction/injection velocity,  

0U is upper plate velocity,  

0Be B  is Hall parameter, 

k is porous media permeability coefficient, 

pc is specific heat capacity, 

u is primary velocity in x direction, 

w  is secondary velocity in y direction, 

h is distance between the plates, 

  is dimensionless fluid temperature, 

cGr  is solutal Grashof number, 
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Gr  is thermal Grashof number, 

T is the coefficient of volume expansion due to temperature,  

C is the coefficient of volumetric expansion due to concentration,  

T  is fluid temperature,  

1T  is lower plate temperature, 

2T  is upper plate temperature, 

C is fluid concentration,  

1C is lower plate concentration,  

2C is upper plate concentration,  

D is thermal diffusivity,  

 is chemical reaction constant, 

t is time,  

q  is radiative heat flux, 

0B is uniform magnetic field, 

*  is coefficient of mean radiation absorption. 

3.2 Methods of Solution 

3.2.1 Non-dimensionlization  
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To write the governing dimensional equations (3.6)-(3.9) with their corresponding 

boundary conditions (3.10) in non-dimensional form, we use the following 

dimensionless variables:  

0 1 1

2

0 0 2 1 2 1 0

, , , , , , ,
tU T T C Cu w y x p

u w y x t p
U U h h h T T C C U

 


 
        

  
 (3.11) 

Then, 

2 2
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0

, ,
u

u u U u u U u u U u
U

              (3.12) 

2 2

0 0 0

0

, ,
w

w w U w w U w w U w
U

              (3.13) 
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   (3.15) 

2 2

0 02
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             (3.16) 

x
x x hx x h x

h
               (3.17) 

Substituting the above transformations into (3.6) and multiplying through by 
2

0

h

U
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Dropping bar, we have 
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(3.20) 

where  

0

0

v
S

U
 =Suction parameter, 
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 =Reynold’s Number, 
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 =Hartman Number, 
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 2 1

1

T T

T



 =Coefficient of viscosity, 

*

* 2

1
,

k
P P

P h
  =Porosity parameter, 

 2 1

2
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Thg T T
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U







 =Thermal Grashof number, 

 2 1

2

0

chg C C
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U







 =Solutal Grashof number. 

To write the second momentum equation (3.7) in its dimensionless form, we multiply 

equation (3.7) by 
2

0

h

U
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          (3.21) 

Simplifying, we obtain,
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(3.22) 

Dropping bar, we have 
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(3.23) 

To write the energy equation (3.8) in its dimensionless form, we introduce the 

Rosseland approximation radiative heat flux vector by 

 2

14
q

T T
y




 


(Venkateswarlu and Padma 2015).               (3.24) 

 

We rewrite equation (3.8) as 
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           (3.25) 

Where  

*  is the mean radiation absorption parameter 

Multiplying the above equation (3.25) by 
 2 1 0p

h

c T T U 
, we get 
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Simplifying, we obtain 

 

   

0 1 2 1

0 0 1

2 2

1 0 2 1

2 1 1

2 2
2 2

0 0 *

2 22 2
2 1 0

1
Pr

1

4

(1 )

p

p

p

p p

cv c T T

U c U h Tt y y y

c U T T u w

c T T h T y y

hU B h
u w

c T T c UBiBe Be

  









 


 

     
      

      


        
       

          

   

     


    (3.27) 

Dropping bar for convenience yields  
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where 
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2
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=Eckert number. 

To write the species equation in its dimensionless form, we rewrite equation (3.9) as 

   
  

 

 
  

2 1 0 0 2 1 2 11
2 1 1

1

2
2 1

2 122

1C C U v C C C Cc
T T T

h t h Sch T hy y y

T T
D C C

h y

    



 

      
     

     


   
            

(3.29) 

Multiplying through by 
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(3.30)  

Simplfying, 
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Dropping bar and simplifying further, we get 
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where 

0U h
Sc

D
  = Schimidt Number, 
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  = Chemical reaction parameter. 

Next is to write the initial and boundary conditions in dimensionless form. To do this, 

we substitute the dimensionless variables into equation (3.10) and we have 
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The corresponding initial and boundary conditions in dimensionless form become 
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Therefore, the dimensionless equations together with their initial and boundary 

conditions are given by 
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Subject to the initial and boundary conditions 
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3.2.2 Transformation 

Since the boundary conditions are from -1 to 1, we transform the problem into a half-

plane problem for singularity.  

Let  
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      (3.36) 

Using equation (3.36), the dimensionless equations together with their initial and 

boundary conditions are transformed as follows:  

First momentum equation (3.20) is transformed thus; 
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i.e 
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Simplifying gives 

 
  

  

 

2

2 2
1 1

2 4Re Re 1

1
Re

u S u p c u Ha
BiBe u Bew

t z x z z BiBe Be

cP
u Gr Gr 



  

     
          

        



   


    (3.39) 

Second momentum equation (3.23) is transformed to 
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Simplifying using equation (3.36) gives 
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Energy equation (3.28) is transformed as 
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Simplifying using equation (3.36) yields 
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i.e 
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Concentration equation (3.32) can be transformed as: 
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Simplifying using equation (3.36), we get 
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This gives   
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Next, we transform the boundary conditions using (3.36) and obtain 
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Therefore the transformed equations together with their initial and boundary conditions 

are given as 
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Next, we shall establish the conditions for the existence of unique solution of the 

transient state. 

3.2.3 Existence and uniqueness of solution of transient state 
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Here, we consider equations (3.50) – (3.53) when   is constant i.e when 0  and 

1 ei BB . Then equations (3.50) – (3.53) reduce to 
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To scientists and engineers, the question of existence and uniqueness of solution remain 

to be a pivot in models and designs. When a problem is formulated, we need to examine 

the solution(s) so as to predict the behaviour of such solution(s). We are interested in 

the existence and uniqueness of solution of system of equation (3.55) – (3.58) satisfying 

(3.54) in order to be able to predict the behavior of the solution. 

This question of existence and uniqueness of solutions to these equations has been 

addressed by Ayeni (1978) who considered a similar set of equations and showed 

among other results that existence and uniqueness are somewhat well known. In his 

work, he studied the following system of parabolic equations 
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(S.1)    xgxf 00  ,  and  xh0  are bounded for
nRx . Each has at most a countable 

number of discontinuities. 

(S.2) hgf ,, satisfies the uniform Lipschitz condition 

        GtxvvuuMvutxvutx  ,,,,,,,,,, 212121222111  (3.61) 

where 

   tRxtxG n 0,:, . 

Our proof of existence of unique solution of the system of parabolic equations (3.55) – 

(3.58) will be analogous to his proof. 

Theorem 3.1: There exists a unique solution        tztztzwtzu ,,,,,,,   of equation 

(3.55) – (3.58) which satisfies (3.54). 

In the proof we shall need the following Lemma: 

Lemma 3.1 (Ayeni (1978)): 

Let  000 ,, hgf and  hgf ,,  satisfy (S.1) and (S.2) respectively, then there exists a 

solution of problem (3.59). 

Proof of Theorem 3.1: We rewrite the equation (3.55) – (3.58) as; 
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where 
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Ignoring the second term at the right hand side, the fundamental solutions of equation 

(3.62) – (3.65) (Toki and Tokis (2007)) are: 
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Clearly,   ,,,,, wutzf ,   ,,,,, wutzg ,   ,,,,, wutzh ,   ,,,,, wutzk  are 

Lipschitz continuous. Hence by Lemma 3.1, the result follows. This completes the 

proof. 

Next, we shall examine the properties of solution of the transient state. 

3.2.4 Properties of solution of transient state reaction 

Here, we show that        , , , , , ,u z t w z t z t and z t  are bounded and increasing 

functions of time. 

Theorem 3.2:  

Let
2 20, 0, 0, 0, 0, Re 0, 0, Pr 0, 0,

p
Ec Ha S c P Ra

x


        



0,0,0,0,0  Dr TkScGrGr  . Then, the equations (3.50) – (3.53) have a 

solution for all 0t . 

Proof: Equations (3.50) – (3.53) can be written respectively as: 

        ,,,,,,,,,,, tzfLtzfLwtzfLwutzfLu  ,                (3.74) 

where 
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We shall show that (3.79) are the lower solutions to equation (3.74) 
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These imply 

0,0,0,0   LLwLuL                  (3.89) 
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        ,,,,,,,,,,, tzfLtzfLwtzfwLutzfuL  (3.91) 

By definition 1,         0,,0,,0,,0,  tztztzwtzu   are lower 

solutions of equation (3.74). 
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We shall show that (3.92) are the upper solutions to equation (3.74). Here 
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Hence 

       , , , , , , , , , , ,Lu f z t u Lw f z t w L f z t L f z t       (3.100) 

By definition 2, 

           1 2, 1 , , 1 , , 1 , , 1
Re Re

cP cP
u z t Gr Gr t w z t z z t z t d t z t d t              

are the upper solutions of equation (3.74). 

Hence, there exists a solution of problem (3.50) – (3.54). This completes the proof.  

Theorem 3.3:  
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2 0, 0, 0, 0, 0, 0r DRa Gr Gr Sc k T        in (3.50) – (3.54). Then    0, 0,
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t t

  
 

 
. 

In the proof, we shall make use of the following lemma of Kolodner and Pederson 

(1966). 

Lemma (Kolodner and Pederson (1966)): 

Let    
2

, 0
x

v x t e


 be a solution on  tRn ,0  of the differential inequality 

  0, 



vtxKv

t

v
 where K is bounded from below. If   00, xv , then   0, txv

for all    0,0, tRtx n  . 

Proof of theorem 3.3: 
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Differentiating (3.101) – (3.104) with respect to t , we obtain 
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Clearly, 1 2 3, , ,K K K K are bounded from below. Hence by Kolodner and Pederson 

lemma        , 0, , 0, , 0, , 0h z t m z t r z t s z t    i.e,  
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This completes the proof. 

Equations (3.50) - (3.53) satisfying (3.54) will be considered in three forms: 

Case 1: When the pressure gradient is a function of time.
 

Case 2:When pressure gradient is a constant. 

Case 3: When the reaction is in steady state. 

3.2.5 Case 1: When the pressure gradient is a function of time: tp dp
e

x dx
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In this case, equations (3.50) - (3.53) reduce to; 
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3.2.5.1 Solution of Case 1 

Here, we solve equations (3.113) – (3.116) satisfying (3.54) using perturbation method 

and eigenfunction expansion technique. 

Let 0 1  such that , , , ,Ec b S e Be f Gr g Gr l           and suppose the 

solutions of equations (3.113) – (3.116) satisfying (3.54) can be expressed as 
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Using (3.117) in (3.118) – (3.121) satisfying (3.54) and processing, we have 
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Expanding, we have 
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Collecting like powers of , we obtain for 
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From equation (3.114) using equation (3.117), the second momentum equation becomes 
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Expanding, we obtain, 
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Collecting like powers of   we obtain for: 
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From equation (3.115) using equation (3.117), the energy equation becomes 
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Expanding we obtain, 
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Collecting like powers of  we obtain for: 
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From equation (3.116) using equation (3.117), the concentration equation becomes 
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Expanding, we obtain 
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Collecting like powers of  we obtain
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Therefore, the equations for 0 0 0 0 1 1 1 1, , , , , ,u w u w and     together with their initial and 

boundary conditions are given by
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Consider equation (3.134) given by 
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This is a non homogenous boundary condition problem. We first find a function, 

1( , )z t  which satisfies the boundary conditions. We let 
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We make the change of variables 
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So, equation (3.134) reduce to 

2
2 21 1

12

1 1 1 1

4Re Pr

( ,0) , (0, ) 0 (1, ) 0

v vc
Ra v Ra z

t z

v z d z v t v t

 
   

  
    

              (3.150)

      

Now, consider the problem (Myint-U and Debnath, (1987)) 
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For the solution of problem (3.151), we assume a solution of the form 
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Comparing equation (3.150) with equation (3.151) gives 

2 2

1 1, , , ( , ) , , ( ) , 1
4Re Pr

c
u v k Ra F z t Ra z x z f z d z L         

. 

Then, 

 
1

1
0

2 sinnb d z n zdz                   (3.156) 

1 1

1

0 0

2 sin 2 sind n zdz z n zdz     

  1

1

2 1 1
2

n
d

d
n

  
  
 
 

 

2

0

1 11

2 2

2 2

0 00

( ) 2 .sin

cos cos cos sin
2 2

L

nF t Ra z n zdz

z n z n z n n
Ra dz Ra

n n n n



   

   

 

     
                





         (3.157) 



69 
 

2
2 cos 2 ( 1)

(t) 2
n

n

n Ra
F Ra

n n



 

  
   

 
               (3.158) 

Then  

     
2 22 22

4RePr 4RePr

1

0

2 ( 1)
( )

c ct nRa n t Ra n

n n

Ra
v t e d b e

n

  




   
       
   


               (3.159) 

Let  
22

0 4RePr

c
q Ra n

 
  
 

 

Then  

0 01

2

1

0

2 ( 1)
( )

tn
q q tq t

n n

Ra
v t e e d b e

n

 



       (3.160) 
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Therefore, from equation (3.152) 
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Thus, 
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Consider equation (3.135) given by 
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Substituting equations (3.166) and (3.167) into equation (3.135) gives 
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This is a non homogenous boundary condition problem. We first find a function, 

2 ( , )z t  which satisfies the boundary conditions. We let
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We make the change of variables 



71 
 

0 2 2( , ) ( , ) ( , )z t v z t z t    

Then 

0 2 2 2 20
v v v

t t t t t

     
    

    
                (3.170) 

0 2 2 2 1
v v

z z z z

    
   

   
                 (3.171) 

2 2 2 2

0 2 2 2

2 2 2 2

v v

z z z z

    
  

   
                 (3.172) 

         0 2 2 2 2 2 2,0 ,0 ,0 ,0 ,0z v z z v z z d v z d z               (3.173) 

         0 2 2 2 20, 0, 0, 0, 0 0 0, 0t v t t v t v t                   (3.174) 

         0 2 2 2 21, 1, 1, 1, 1 1 1, 0t v t t v t v t                   (3.175)
 

Substituting equations (3.173) – (3.175), equation (3.135) reduces to 

   

     

0

2
22 2

2 1 12
1

2 2 2 2

sin
4Re 4

,0 , 0, 0, 1, 0

q tD
r r n

n

v v Tc
K v K z q b q e n n z

t Sc z

v z d z v t v t

 






 
      

  
    


      (3.176) 

Comparing equations (3.176) with (3.151), we have 
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That is 
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Therefore, from equation (3.152)
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Consider equation (3.136) given as 
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This is a homogenous boundary condition problem. Compare (3.136) with (3.151), 

gives
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Similarly,   
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Consider equation (3.137) given as 
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This is a non-homogenous boundary condition problem. We first find a function, 

3( , )z t  which satisfies the boundary conditions. We let 
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Then equation (3.137) reduces to
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Comparing equations (3.195) and (3.151), we have 
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Therefore from equation (3.152), we obtain 
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Consider the equation (3.138) given below as 
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This is a homogenous boundary condition problem. Rearranging the above equation, we 

have
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Therefore, from equation (3.152) 
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Rearranging the above equation gives 
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Hence from equation (3.152) we obtain 
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Therefore the solutions to the governing equations for case 1 are given as: 

    0

1 1 6

1 1

(z, t) z sin
q t

n n

n n

q b q e n z a v t Sinn z  
 



 

        (3.233)

 

   

 

02 2 2

3 4 5 6 2

1 1

8

1

(z, t) 1 in
q tq t q t q t

n

n n

n

n

z q e q q e q e b e s n z

a v t sinn z

 



 
  

 





 
        

 
 



 (3.234)
 

 8

3 7

1 1

(z, )
q t

n n

n n

w t b e Sinn z a v t Sinn z 
 



 

                 (3.235)

 

     8

9 10 11 5

1 1

,
q t t

n

n n

u z t z q q e q e Sinn z a v t Sinn z  
 

 

 

        (3.236) 

3.2.6Case 2: When the pressure gradient is a constant:
p dp

x dx



 


 

Since we are taking pressure gradient to be a constant, then solutions to the governing 

equations of case 2 are obtained by setting 0  in case 1. 
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In this case, equations (3.50) - (3.53) reduce to 
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3.2.7 Case 3: Steady State Reaction:  
*

0, , , ,u w
t

 


  


 

In this case, equations (3.50) - (3.53) reduce to; 
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Next, we shall examine the properties of solution of the steady state. 

3.2.7.1 Properties of solution of steady state reaction 

Here, we consider equations (3.241) – (3.244) when   is constant i.e when 0   and 

1 ei BB . Then equations (3.241) – (3.244) reduce to 
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2 2
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D
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Tc d S d d
K

Sc dz dz dz

  
         (3.248) 

Theorem 3.4: Let 
20, 0, 0, 0, 0, Re 0Ec Ha S c     

20, Pr 0, 0P Ra   0,0,0,0,0  Dr TkScGrGr  . Then the equations 

(3.245) – (3.248) have a solution. 
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Proof of Theorem 3.4: 

Equations (3.245) – (3.248) can be written respectively as: 

        ,,,,,,, zfLzfLwzfLwuzfLu   

where 
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        0,0,0,0  zzzwzu    (3.253) 

We shall show that (3.253) are the lower solutions of equations (3.249 – 2.252) 

respectively. 
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Clearly, 
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This imply 

0,0,0,0   LLwLuL      (3.259) 
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(3.260) 

Hence 

        ,,,,,,, zfLzfLwzfwLuzfuL 
  

(3.261) 

By definition 3,        0, 0, 0, 0u z w z z z      are the lower solutions of 

equations (3.249 – 3.252) respectively. 
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Also consider 

         1 , 1 , 1 , 1
Re Re

cP cP
u z Gr Gr z w z z z z z z            (3.262) 

We shall show that (3.262) are the upper solutions of equations (3.249 – 3.252) 

respectively. 
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Hence 

       , , , , , , ,Lu f z u Lw f z w L f z L f z          (3.270) 

By definition 4, 

         1 , 1 , 1 , 1
Re Re

cP cP
u z Gr Gr z w z z z z z z             are the upper 

solutions to equations (3.249 – 3.252) respectively. 

Hence, there exists a solution of problem (3.241) – (3.244). This completes the proof. 

3.2.7.2 Solution of Case 3 

Here, we solve equations (3.241) – (3.244) satisfies (3.54) using perturbation method. 

Let 0 1   such that 2 2

1 1 1, , , , ,rK g Ra b Ha d P e Gr g Gr l             and 

suppose the solution of equations (3.241) – (3.244) satisfies (3.54) can be expressed as  
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Processing and collecting like powers of   we have for: 
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   0 1zu z A e Bz          (3.286) 
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Therefore, 
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That is 

 1
7

d
q z

dz


  

Integrating  7q z  with respect to z  we obtain 

 



123 
 

     

         

         

     

238 50 51
1 2 3

2 2 2

38 39 40 43 4542 44

2 2 2

2 2 1 2 2 21 2 2

46 47 48 49 50

2

2 2 2 1 2 1 2 2

51 52 53 54 55

3 3

22 2

21
( )

2 2 2 2

2

1

4 3 2 2

2 2

2

zz e   


      

     

          

    

            

    

     

 
    
    

      
    

    
      

   
     

           

 

2

1

2 2

56 57 58
152

1 2 11 2

39 53 40 43 5644

2 3 2 3

2 1 1 22 2 1 2 1 2

45 4342
41 2 2

2 2 2 2 1 2

2

2 2

2 21 1

2

z

zz

z z

e

c

e e

ze e
z





 

  

    

    

            

 


     

 
 
 
 
  
 
 
 

       

   
        
          

   
       

     

       

 

  

 

      

1 1

1 1

56

2 2

1 11 2

2 4 353 45 46 4744

2 2

1 2 2 2 21 2

2 2

48 49 50 51

2

1 2 1 1 2 2 2

2

4 4 3 3

2

2 2 2 22

z z

z z
z z

z z z

ze e

ze e
z e e

e e ze

 

 
 

    



  

   

           

   

             

 

  
        

  
             

 
   
         

 

 

   

     

 

 

2

21 1 1 1

2

2

2 2 2 2 2

51 52 53

2 3 2 3

2 2 2

22 2

54 55 56 57 5

2 3

2 1 1 2 1 2 1 1 1 2

4

2 2 2 2

2 2 4 8

2 2

2 2 2 2

z

zz z z z z z

zzz z z z

e

ez e ze e z e ze e

e e ez e ze e



      

    



  

            

    

             





 
  

 

   
         

     

 
      

    

 

 

2

2 2 2

8

1 1 2

2

59
162 3

2 2 2

2 2

2

z

z z z

e

z e ze e
c

 

  

  



  






 
   

 

          (3.331) 



124 
 

     

         

         

     

38 50 51
1 16 2 3

2 2 2

38 39 40 43 4542 44

2 2 2

2 2 1 2 2 21 2 2

46 47 48 49 50

2

2 2 2 1 2 1 2 2

51 52 53 54

3 3

22 2

21
(0) 0

2 2 2 2

2

1

4 3 2 2

2 2

2

c
  


      

     

          

    

            

   

     

 
       
    

      
    

    
      

   
     

           

       

55 56 57 58
152

1 2 11 2

39 53 40 43 5644

2 3 2 3

2 1 1 22 2 1 2 1 2

43 56 5341 44

2 22 2 2

2 1 1 2 1 21 2 1 2

2

2 2

2 21 1

2 21 1

c
   

    

    

            

   

         

 
 
 
 
  
 
 
 

       

   
        
          

  
    
         

           

             

46 47

2 2

48 49 50 51 51

22 3

1 2 1 1 2 2 22

52 53 54 55 56 57 58 59

3 3 3

2 2 2 1 1 2 1 1 2 2 1 1 2 2

4 4 3 3

2 21

2 2 4 2 8 22

2 2

2 2 2 2

 

     

    

                

       

                     


    
   



 
     
         

      
      

          (3.332) 



125 
 

         

         

         

1 15

2

38 39 40 43 4542 44

2 2 2

2 2 1 2 2 21 2 2

46 47 48 49 50

2

2 2 2 1 2 1 2 2

51 52 53 54 55 56 57 58

3 3 2

2 1 2 12 2 1 2

1
(1) 0

2

1

4 3 2 2

2 2 2

2 22

c


     

          

    

            

       

           

  


       

    

     
       

      
   

 

     
 

     
 

     
   

   

2

1 2

1

238 50 51

2 3

2 2 2

39 5344

2 3

2 2 2

40 43 56 41

2 3 2

1 1 2 21 2 1 2

43 56

22

1 1 2 1 2

1

21
1

2 2 2 2

21
1

21
1 1

21

e

e

e

e e

e







 



  

      

 

      

   

      

 

    





  


 
 
 



 
     
    

 
    
    

 
      
    

 
  
   

 

   
 

 
 

 
 

  
  

  
      

 
 

 

  
 

 
 

1

1

2

24 3
4846 475344

22

1 2 2 2 1 21 2

2
49 51250 51

22

1 1 2 2 22

52 53 5

3

2 2

1

11 121
1

4 4 3 3 2 2

1 2 121
1

4 2 22

1 2 1

ee e
e

e e
e

e e

  



  



  

 

              

  

          

  

     









   
      
       

   
     
      

 
 

 

 
 

 
 

 
 

  
 

  
 

 

       

21 1

1 2 2

2

22
574 55 56

3

2 1 1 2 1 1 2 2

58 59 59 59 45 4541 42

3 2 2

1 1 2 2 2 2 2 2 2 2

43 56 56 56

2

1 1 2 1 2 1 1 21 2

11 1 2 1

2 2 2 2

1 1

2 2

2 21

ee e e

e e
e

  

  



 

           

      

         

   

        





  
   

   

     
          

    


   

  

       

       

 

1

2

53 53 5344

2

1 2 1 2 1 1 21 2

250 51 51 51

2

2 2 22

2 21

2 21

2 2 2 2 22

1

e

e

e

e









  

        

   

        


 

 


 
    
    

 
   
    



                    (3.333) 



126 
 

 
   

 

   

2 1 2 1

1 1

2 1 1

2 1 2

2

1 42 43 44 45 46 47 48

22 4 3 2

49 50 51 52 53 54 55

22 2 2 2

56 57 58 59 60 61

2

62 63 64

z z z zz z

z zz z z z

z z zz z z

z z

z A e A e A e A e A ze A z A ze

A ze A z A e A e A e A e A ze

A z e A e A z e A e A e A z e

A e A e A z

    

      

     

   



 

 

 

       

      

     

  22

16

ze c 

 (3.334) 

  where 

         

 

         

     

38 50 51 50 51

2 3 22

2 22 2 2
42

51

3

2

38 39 40 43 4542 44

2 2 2

2 2 1 2 2 21 2 2

46 47 48 4

2 2 1 2

43

2

2 21 1

2 2 4 22 2 2
,

4 2

2

4 3 21

A

A

    

          



  

     

          

   

      



    
        

            
 
  

      
    

  
   


   

         

           

9 50

2

1 2 2

51 52 53 54 55 56 57 58

3 3 2

2 1 2 12 2 1 2

5941

2

2 2

39 53 53 5344 44
44 2 3 2 2

2 1 2 1 22 2 1 2

2

2 2 2

2 22

2 2 21 1
A



    

       

           



 

    

             

 
 
 
 

  
   

 
        
    
 
 

 
 

  
      
      

           

     

40 43 56 43 56 56
45 2 3 2 2

1 1 2 1 1 2 1 1 21 2 1 2 1 2

59 45 43 56 5641 42
46 47 48 22 2

2 2 2 2 1 1 2 1 1 21 2

44
49

1

,

2 2 21 1
,

2 21
, , ,

1

A

A A A

A

     

             

     

          



 


 
 



  
       

        

    
                  


       

       

         

 

53 53 45 46
50 512

2 1 2 2 21 2

47 48 49
52 53 54

2 1 1 2 1 1 2

50 51 51 51 52
55 56 572 2

2 2 2 22

53
58

2

2 2
, , ,

2 4 4

, , ,
3 3 2 2

2
, , ,

2 2 2 2 22

,

A A

A A A

A A A

A

   

        

  

            

    

           



  

 
    
    

  
      

 
     
     


        

 

54 55 56 57
59 60 61 62

2 1 1 2 1 1 2 2

58 59
63 64

1 1 2 2

, , , ,
2 2 2 2

,
2

A A A A

A A

   

           

 

   

   
   

 


 

 



127 
 

Therefore the solutions to case 3 are: 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Analysis of Results 

In this analysis, we established the criteria for existence of unique solutions of the 

model. This is to show the solution of the model formulated depends continuously on 

the initial and boundary conditions; that is the model is well posed. Also, we examined 

the properties of solution of the model formulated, this is to show the behaviour of the 

solution when values are assigned to some key parameters of the model. We solved the 

equations analytically using parameter expanding method and eigenfunction expansion 

technique. This is to see the effect of parameters involved on the concentration, 

temperature, primary and secondary velocities. 

Finally, we examined the effect of the Reynolds number  Re , Radiation parameter

 Ra , suction parameter  S , porosity parameter  P , thermal diffusion parameter  

 DT , constant pressure gradient   , coefficient of viscosity   , time dependent 

pressure gradient   , Prandtl number  Pr , Hartman number  Ha , chemical reaction 

parameter  rK , Eckert number  Ec  , ion slip parameter  Bi  and Hall parameter 

 Be  on the steady and unsteady state problems. Analytical solutions of the model 

equations were computed using computer symbolic algebraic package MAPLE 17. The 

results obtained are shown in Figures 4.1 to 4.16 for case 1, Figures 4.17 to 4.27 for 

case 2 and Figures 4.27 to 4.45 for case 3. 

The relationships between primary velocity along distance and with time for different 

values of radiation parameter and suction are displayed in Figures 4.1 to 4.3. 

Relationship between secondary velocity with time and distance for different values of 



129 
 

Reynolds number are displayed in Figures 4.4 to 4.5. The relationship of other 

controlling parameters with the concentration, temperature, primary and secondary 

velocities is depicted in Figures 4.6 to 4.45. 

4.1.1 Graphs of case 1 

In this section, the results of case 1 problem are presented as shown below 

 

Figure 4.1: Effect of radiation parameter  Ra  on temperature profile  ,y t along 

distance 
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Figure 4.2: Effect of suction parameter  S  on temperature profile  ,y t  along 

distance 

 

Figure 4.3: Effect of suction parameter  S  on concentration profile  ,y t  
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Figure 4.4: Effect of suction parameter  S  on concentration profile  ,y t  along 

distance y and time t. S=0.2(red), S=0.4(green) and S=0.6(blue) 

 

Figure 4.5: Effect of Prandtl number  Pr  on temperature profile  ,y t  
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Figure 4.6: Effect of Hartman number  Ha  on temperature profile  ,y t  along 

distance 

 

Figure 4.7: Effect of Schimdt number  Sc  on concentration profile  ,y t  
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Figure 4.8: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  

 

Figure 4.9: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  

along distance y and time t. Bi=1(red), Bi=2(green) and Bi=3(blue) 
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Figure 4.10: Effect of pressure gradient    on primary velocity profile  ,u y t  

 

Figure 4.11: Effect of pressure gradient    on temperature profile  ,y t  
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Figure 4.12: Effect of Reynolds number  Re  on primary velocity profile  ,u y t
 

 

Figure 4.13: Effect of temperature dependent viscosity    on primary velocity 

profile  ,u y t
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Figure 4.14: Effect of temperature dependent viscosity    on primary velocity 

profile  ,u y t  along distance y and time t.   =0.0(red),   =0.1(green) and  

=0.3(blue) 

 

Figure 4.15: Effect of temperature dependent viscosity    on secondary velocity 

profile  ,w y t
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Figure 4.16: Effect of temperature dependent viscosity    on temperature profile

 ,y t
 

4.1.1.1 Discussion of results for case 1 

Figure 4.1 displays the graph of temperature profile  ,y t  for different values of 

radiation parameter  Ra . It is observed that temperature decreases as radiation 

parameter increases. Also, the temperature profile is observed to increase along distance

y . 

Figure 4.2 shows the graph of temperature  ,y t  for different values of suction 

parameter  S . It is evident that increase in suction parameter leads to decrease in 

temperature. It is also seen that temperature increases along distance y. 
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Figure 4.3 presents the graph of concentration  ,y t  for different values of suction 

parameter  S . It is observed that concentration oscillates along y while increase in 

suction parameter leads to increase in concentration. 

Figure 4.4 presents the graph of concentration  ,y t  for different values of suction 

parameter  S along distance y and with time t. It is observed that concentration 

oscillates along y and decreases with time while increase in suction parameter leads to 

increase in concentration. 

Figure 4.5 depicts the graph of temperature  ,y t  for different values of Prandtl 

number. It is observed that temperature increases along distance while increase in 

Prandtl number leads to decrease in temperature. 

Figure 4.6 depicts the graph of temperature  ,y t  for different values of Hartman 

number ( )Ha . It is observed that temperature increases along distance while increase in 

Hartman number leads to decrease in temperature. 

Figure 4.7 illustrates the effect of Schmidt number  Sc  on concentration  ,y t . It is 

observed that concentration oscillates along distance. Also, increase in Schmidt number 

leads to increase in fluid concentration. 

Figure 4.8 presents the graph of secondary velocity  ,w y t  for different values of ion 

slip parameter  Bi . It is observed that secondary velocity oscillates along distance y 

while increase in ion slip parameter leads to increase in secondary velocity. 

Figure 4.9 presents the graph of secondary velocity  ,w y t  for different values of ion 

slip parameter  Bi  along distance and with time t. It is observed that secondary velocity 
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oscillates along distance y and increases with time while increase in ion slip parameter 

leads to increase in secondary velocity. 

Figure 4.10 shows the graph of primary velocity  ,u y t  for different values of pressure 

gradient ( ) . It is observed that primary velocity oscillates along distance y. Also, 

increase in pressure gradient leads to increase in primary velocity. 

Figure 4.11 displays the graph of temperature  ,y t  for different values of pressure 

gradient ( ) . It is observed that fluid temperature increases along distance y. Also, 

increase in pressure gradient leads to increase in temperature. 

Figure 4.12 depicts the graph of primary velocity  ,u y t  for different values of 

Reynolds number (Re) . It is observed that primary velocity oscillates along distance y. 

Also, increase in Reynolds number leads to decrease in primary velocity 

Figure 4.13 depicts the graph of primary velocity  ,u y t  for different values of 

temperature dependent viscosity ( ) . It is observed that primary velocity is maximum 

when viscosity is temperature dependent as compared to when it is independent on 

temperature. Also, increase in temperature dependent viscosity leads to oscillation in 

primary velocity along distance y. 

Figure 4.14 presents the graph of primary velocity  ,u y t  for different values of 

temperature viscosity parameter    along distance and with time t. It is observed that 

primary velocity oscillates along distance y and increases with time. 

Figure 4.15 depicts the graph of secondary velocity  ,w y t  for different values of 

temperature dependent viscosity ( ) . It is observed that primary velocity is maximum 
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when viscosity is temperature dependent as compared to when it is independent on 

temperature. Also, increase in temperature dependent viscosity leads to oscillation in 

secondary velocity along distance y. 

Figure 4.16 depicts the graph of temperature profile  ,y t  for different values of 

temperature dependent viscosity ( ) . It is observed that temperature increases with 

increase in viscosity. Also, increase in temperature dependent viscosity leads to increase 

in temperature along distance y. 

4.1.2 Graphs of case 2 

In this section the results of case 2 problem are presented as shown below 

 

Figure 4.17: Effect of radiation parameter  Ra  on temperature profile  ,y t  
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Figure 4.18: Effect of suction parameter  S  on primary velocity profile  ,u y t  

 

Figure 4.19: Effect of suction parameter  S  on concentration profile  ,y t  along 

distance y and time t. S=0.2(red), S=0.4(green) and S=0.6(blue) 
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Figure 4.20: Effect of Prandtl number  Pr  on temperature profile  ,y t  

 

Figure 4.21: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  
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Figure 4.22: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  

along distance y and time t. Bi=1(red), Bi=2(green) and Bi=3(blue) 

 

Figure 4.23: Effect of temperature dependent viscosity    on primary velocity 

profile  ,u y t  
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Figure 4.24: Effect of temperature dependent viscosity    on temperature profile

 ,y t  

 

Figure 4.25: Effect of pressure gradient    on primary velocity profile  ,u y t
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Figure 4.26: Effect of Hartman number  2Ha  on temperature profile  ,y t  

4.1.2.1 Discussion of results of case 2 

Figure 4.17 displays the graph of temperature profile  ,y t  for different values of 

radiation parameter  Ra . It is observed that temperature decreases as radiation 

parameter increases. Also, the temperature profile is observed to increase along 

distance. 

Figure 4.18 shows the graph of primary velocity  ,u y t  for different values of suction 

parameter  S . It is evident that increase in suction parameter leads to decrease in 

primary velocity. It is also seen that primary velocity increases along distance y. 

Figure 4.19 illustrates the effect of suction parameter  S  on the concentration profile

 ,y t  of the flow along distance and with time t. It is observed that concentration 
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increases with time while increase in suction parameter leads to decrease in the fluid 

concentration. 

Figure 4.20 presents the graph of temperature  ,y t  for different values of Prandtl 

number  Pr . It is observed temperature increases along distance y and increase in 

Prandtl number leads to decrease in temperature. 

Figure 4.21 depicts the effect of ion slip parameter  Bi  on secondary velocity  ,w y t  

along y. it is seen that the secondary velocity oscillates along distance y and increase in 

ion slip parameter leads to increase in secondary velocity. 

Figure 4.22 displays the graph of secondary velocity  ,w y t  along distance and time 

for different values of ion slip parameter  Bi . It is observed that secondary velocity 

increases with time and oscillates along distance while increase in ion slip parameter 

leads to increase in secondary velocity. 

Figure 4.23 depicts the graph of primary velocity  ,u y t  for different values of 

temperature dependent viscosity ( ) . It is observed that primary velocity is maximum 

when viscosity is temperature dependent as compared to when it is independent on 

temperature. Also, increase in temperature dependent viscosity leads to oscillation in 

primary velocity along distance y. 

Figure 4.24 depicts the graph of temperature profile  ,y t  for different values of 

temperature dependent viscosity ( ) . It is observed that temperature increases with 

increase in viscosity. Also, increase in temperature dependent viscosity leads to increase 

in temperature along distance y. 



147 
 

Figure 4.25 illustrates the effects pressure gradient    on primary velocity profile

 ,u y t . It is observed that primary velocity oscillates along distance y while increase in 

pressure gradient leads to decrease in primary velocity. 

Figure 4.26 shows the effect of Hartman number  2Ha  on temperature profile  ,y t  

along distance. It is observed that the temperature profile increases along distance y 

while increase in Hartman number leads to decrease in fluid temperature. 

4.1.3 Graphs of Case 3 

In this section, the result of case 3 problem are presented as shown below 

Table 4.1: Comparison between analytical and numerical results 
y   y Perturbation Results  y NumericalResults 

numer pertu   

-1.0 0 0 0 

-0.9 0.0422823619 0.0532818991 1.100 x10-2 

-0.8 0.0858952491 0.1065003323 2.061 x10-2 

-0.7 0.1307244697 0.1596163670 2.889 x10-2 

-0.6 0.1767410393 0.2125895971 3.585 x10-2 

-0.5 0.2239020289  0.2653779698 4.148 x10-2 

-0.4 0.2721479199 0.3179376254 4.579 x10-2 

-0.3 0.3213995380 0.3702227504 4.882 x10-2 

-0.2 0.3715545147 0.4221854464 5.063 x10-2 

-0.1 0.4224832010 0.4737756156 5.129 x10-2 

0 0.4740239398 0.5249408660 5.092 x10-2 

0.1 0.5259776533 0.5756264394 4.965 x10-2 

0.2 0.5781016126 0.6257751639 4.767 x10-2 

0.3 0.6301023141 0.6753274366 4.523 x10-2 

0.4 0.6816273601 0.7242212372 4.259 x10-2 

0.5 0.7322562239 0.7723921791 4.014 x10-2 

0.6 0.7814897943 0.8197735995 3.828 x10-2 

0.7 0.8287385948 0.8662966938 3.756 x10-2 

0.8 0.8733095464 0.9118906966 3.858 x10-2 

0.9 0.9143911649 0.9564831129 4.209 x10-2 

1.0 0.9510366377 1.0000000000 4.896 x10-2 
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Figure 4.27: Effect of 

Reynolds number 

 Re  on primary 

velocity profile  ,u y t  

 

 

Figure 4.28: Effect of Reynolds number  Re  on secondary velocity profile  ,w y t  
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Figure 4.29: Effect of Reynolds number  Re  on temperature profile  ,y t  

 

Figure 4.30: Effect of radiation parameter  R a  on temperature profile  ,y t  
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Figure 4.31: Effect of radiation parameter  R a  on concentration profile  ,y t  

 

Figure 4.32: Effect of suction parameter  S  on primary velocity profile  ,u y t  
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Figure 4.33: Effect of suction parameter  S  on secondary velocity profile  ,w y t  

 

Figure 4.34: Effect of suction parameter  S  on temperature profile  ,y t  
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Figure 4.35: Effect of suction parameter  S  on concentration profile  ,y t  

 

Figure 4.36: Effect of Prandtl number  Pr  on temperature profile  ,y t  
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Figure 4.37: Effect of Hartman number  Ha  on primary velocity profile  ,u y t  

 

Figure 4.38: Effect of Hartman number  Ha  on secondary velocity profile  ,w y t  
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Figure 4.39: Effect of Schimdt number  Sc  on concentration profile  ,y t  

 

Figure 4.40: Effect of ion slip parameter  Bi  on primary velocity profile  u y  
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Figure 4.41: Effect of ion slip parameter  Bi  on secondary velocity profile  w y  

 

Figure 4.42: Effect of Hall parameter  Be  on primary velocity profile  u y  
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Figure 4.43: Effect of temperature dependent viscosity    on primary velocity 

profile  u y  

 

Figure 4.44: Effect of temperature dependent viscosity    on temperature profile 

 y  
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Figure 4.45: Effect of porosity parameter  P  on primary velocity profile  u y  

4.1.3.1 Discussion of the results of case 3 

Table 4.1 above demonstrates agreement between the results obtained using 

perturbation technique and purely fourth-order Runge Kutta numerical integration 

approach coupled with shooting method at small and moderate parameter values. 

Generally, the difference is of order 10−2. 

Figure 4.27 depicts the graph of primary velocity for different values of Reynolds 

number. It is observed that primary velocity increases and then decreases along distance 

y. Also, increase in Reynolds number leads to decrease in primary velocity 

Figure 4.28 displays the graph of secondary velocity for different values of Reynolds 

number. It is observed that secondary velocity increases and then decreases along 

distance y. Also, increase in Reynolds number leads to increase in secondary velocity 
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Figure 4.29 shows the graph of temperature for different values of Reynolds number. It 

is observed that fluid temperature increases and then decreases along distance y. Also, 

increase in Reynolds number leads to decrease in temperature 

Figure 4.30 shows the graph of temperature for different values of radiation parameter. 

It is observed that fluid temperature increases and then decreases along distance y. Also, 

increase in radiation parameter leads to decrease in temperature 

Figure 4.31 shows the graph of concentration for different values of radiation 

parameter. It is observed that fluid concentration increases and then decreases along 

distance y. Also, increase in radiation parameter leads to increase in concentration 

Figure 4.32 depicts the graph of primary velocity for different values of suction 

parameter. It is observed that primary velocity increases and then decreases along 

distance y. Also, increase in suction parameter leads to decrease in primary velocity. 

Figure 4.33 depicts the graph of secondary velocity for different values of suction 

parameter. It is observed that secondary velocity increases and then decreases along 

distance y. Also, increase in suction parameter leads to decrease in secondary velocity. 

Figure 4.34 depicts the graph of temperature for different values of suction parameter. 

It is observed that temperature increases and then decreases along distance y. Also, 

increase in suction parameter leads to decrease in fluid temperature. 

Figure 4.35 depicts the graph of fluid concentration for different values of suction 

parameter. It is observed that concentration increases and then decreases along distance 

y. Also, increase in suction parameter leads to increase in concentration 
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Figure 4.36 depicts the graph of temperature for different values of Prandtl number. It 

is observed that temperature increases and then decreases along distance y. Also, 

increase in Prandtl number leads to decrease in temperature. 

Figure 4.37 depicts the graph of primary velocity for different values of Hartman 

number. It is observed that primary velocity increases and then decreases along distance 

y. Also, increase in Hartman number leads to increase in primary velocity. 

Figure 4.38 depicts the graph of secondary velocity for different values of Hartman 

number. It is observed that secondary velocity increases and then decreases along 

distance y. Also, increase in Hartman number leads to increase in secondary velocity. 

Figure 4.39 depicts the graph of concentration for different values of Schmidt number. 

It is observed that concentration increases and then decreases along distance y. Also, 

increase in Schmidt number leads to increase in concentration. 

Figure 4.40 depicts the graph of primary velocity for different values of Hall parameter. 

It is observed that primary velocity increases and then decreases along distance y. Also, 

increase in Hall parameter leads to decrease in primary velocity. 

Figure 4.41 depicts the graph of secondary velocity for different values of Hall 

parameter. It is observed that secondary velocity increases and then decreases along 

distance y. Also, increase in Hall parameter leads to decrease in secondary velocity. 

Figure 4.42 depicts the graph of primary velocity for different values of Hall factor. It 

is observed that primary velocity increases and then decreases along distance y. Also, 

increase in Hall decrease leads to decrease in primary velocity. 

Figure 4.43 depicts the graph of primary velocity  ,u y t  for different values of 

temperature dependent viscosity ( ) . It is observed that primary velocity is maximum 
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when viscosity is temperature dependent as compared to when it is independent on 

temperature. Also, increase in temperature dependent viscosity leads to oscillation in 

primary velocity along distance y. 

Figure 4.44depicts the graph of temperature profile  ,y t  for different values of 

temperature dependent viscosity ( ) . It is observed that temperature increases with 

increase in viscosity. Also, increase in temperature dependent viscosity leads to increase 

in temperature along distance y. 

Figure 4.45 shows the effect of porosity parameter on primary velocity profile along 

distance y. it is observed that the primary velocity increases and then decreases along y 

while increase in porosity parameter leads to increase in primary velocity. 
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CHAPTER FIVE 

5.0  CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

For constant and variable pressure gradient  0 0and   respectively, we have 

solved the equations governing the unsteady Couette flow of an electrically conducting 

incompressible fluid bounded by two parallel non conducting porous plates using the 

parameter expansion method and eigenfunction expansion technique. Also, we 

examined the steady state reaction of the flow using the parameter expansion technique. 

The effects of the dimensionless parameters as shown on the graphs were analyzed. 

From the results obtained, all the parameters have appreciable impact on the system 

since the 

I. Radiation parameter reduced the temperature and primary velocity. 

II. Suction parameter decreases primary velocity, secondary velocity and 

temperature while it enhances concentration. 

III. Radiation parameter reduced the temperature and primary velocity. 

IV. Prandtl number is observed to reduce temperature. 

V. Schmidt number enhanced concentration and primary velocity. 

VI. Hartman number enhance both primary and secondary velocities. 

VII. Reynolds number reduced primary velocity and temperature while secondary 

velocity is enhanced. 

VIII. Hall parameter reduced both primary and secondary velocities for steady state 

flow while it enhances secondary velocity for unsteady state flow. 

IX. Constant pressure gradient enhances both temperature and primary velocity 

while variable pressure gradient is observed to reduce both velocities. 
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5.2 Contributions to Knowledge 

From our findings, we achieve the following: 

1. Model formulation by incorporating thermal radiation, chemical reaction 

equation and temperature dependent viscosity. 

2. Existence of unique solution of the model by Lipschitz continuity approach 

3. Properties of solution of transient state by 

-  method of upper and lower solution. 

-  Kolodner and Pederson Lemma 

4. Properties of solution for steady case by  

- method of upper and lower solution. 

5. Analytical solution. 

6. The fluid concentration is at maximum value ( , ) 2.5y t   when 0.5y    while 

the secondary velocity is at maximum value ( , ) 8.0w y t  when 0.5y   . 

7. Fluid flow attained maximum velocity ( ) 55u y  when 0y  . 

8. Graphical representation of the solution via MAPLE 17. 

 

5.3 Recommendations  

We also recommend this work for scientific and industrial use and also recommend for 

further study the flow of a viscous fluid through a cylinder or annulus with slip 

boundary conditions. Flows through a wavy microchannel can also be investigated 

under same boundary conditions as used in this research work. 
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