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Abstract—Biotechnological plants, such as Fed Batch 

Fermentation (FBF) systems used in plant culturing, have an 

abundance of uncertainty and complexity, which makes it 

difficult to model these systems and unsuitable to employ 

conventional techniques for control design. Recently, artificial 

intelligence and computational intelligence techniques have 

been employed in modelling and controlling these systems. 

However, most of the techniques employed are hybrid models 

which have high computational requirements. In this study, a 

conventional Fuzzy Logic Controller (FLC) for FBF control is 

presented with the aim of improving efficiency. The 

fermentation plant is modelled as a black box using C 

programming language. The FLC is designed and simulated in 

MATLAB and the results are compared with a nominal feeding 

profile. The FLC resulted in a 137 percent increase in product 

concentration, a 538 percent improvement in productivity, and 

a 14 percent increase in volume. The nominal profile, on the 

other hand, performed better in terms of Biomass, with the FLC 

providing a 70% decrease in Biomass levels of the fermentation 

process. 

Keywords— Artificial Intelligence, Fed Batch 

Fermentation, Fuzzy Logic Controller, Nominal Profile, Plant 

Tissue Culture. 

I. INTRODUCTION 

Fed batch culture is a widely used technique for achieving 
high cell density in plant or microbial cultures by controlling 
the nutrient feeding rate, which is frequently required for high 
product productivity [1]. The fed batch technique is used to 
overcome substrate inhibition or catabolite repression by 
intermittently feeding the substrate to the reactor, as no 
substrate is removed during the process [2]. This technique is 
also usually used for hairy root cultures for the increased 
production of secondary metabolites. However, the 
productivity of the fed batch culturing of plant cells can be 
hampered since plant cell cultures consist of many kinds of 
medium components (Sugars, vitamins, plant growth 
regulators and salts). Plants are cultured in vitro in a variety of 
ways, including the fed batch process, which is carried out in 
fermenters (bioreactors). 

Biotechnological systems, such as Fed Batch 
Fermentation (FBF) systems, have an abundance of 
uncertainty and complexity. This makes them difficult to 
describe, model and subsequently control [3]. Other 
technological processes are difficult to describe due to the 
complex nature of the systems, non-linearity, and complex 
measurement of critical variables. Because of these factors, 
information about these systems can only be obtained through 
experimentation [4]. Fermentation necessitates a number of 
biological and biochemical processes, and there are hundreds 
of state variables due to the large number of metabolic 
byproducts and cell states [5]. The fermentation process and 
performance are far too complex to model. As a result, similar 
non-linear processes are controlled in an open loop, resulting 
in low productivity and excessive material use. 

Recent advancements in the intelligent control of these 
FBF systems have resulted from the use of neural networks, 
fuzzy logic, and computational intelligence in modeling and 
control [2]. However, majority of existing methods are hybrid 
techniques which combine two or more intelligent models, 
which in turn leads to high computational demands. Fuzzy 
modeling is an appropriate black box nonlinear modeling 
technique that can be effective in systems where data is 
obtained experimentally and the structure is not well defined 
[4]. Thus, Fuzzy Logic modelling and control can be 
implemented as a stand-alone method which can provide 
satisfactory results with a reasonable computational cost. 

In this study, an FBF regulation process using a Fuzzy 
Logic Controller (FLC) is presented in order to optimize the 
productivity of the fermentation process. To maximize 
productivity, a black box model was used to represent the 
plant, and an FLC was developed to control the system. The 
rest of this paper is distributed into four parts. Part 2 gives a 
literature review and related works, while part 3 presents the 
research methodology. Part 4 provides the findings of the 
research, while part 5 concludes the paper. 
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II. LITERATURE REVIEW 

In the field of FBF control, there exists several studies. For 
instance, Soufian et al., [2] developed a fermentation process 
control technique based on adaptive clustering and 
computational intelligence The results showed that the 
intelligent techniques (Genetic algorithm-based Fuzzy Logic 
and Fuzzy Neural Network), which both modified the 
adaptive clustering inclusion, produced more biomass 
concentration than the techniques that did not. 

In addition, Rincon et al., [6] developed an improved 
robust adaptive controller for an FBF bioreactor. This 
technique had input saturation and unknown varying control 
gain via dead-zone quadratic forms. The results showed the 
process was able to avoid excessive increase of updated 
parameters, tracking error convergence, and tracking error 
bounding. 

Furthermore, Kim et al., [3] presented a model based 
reinforcement learning and predictive control technique. This 
method was applied to a two stage FBF reactor for optimal 
control. The results indicated that the proposed method was 
reliable and maintained high performance under the 
disturbances. 

Similarly, an adaptive control scheme based on fuzzy logic 
of Specific Growth Rate (SGR) in fed batch process was 
presented in Butkus et al., [5]. The FLC controlled the SGR 
of a fed-batch process and was applied to a model of 
Escherichia coli cultivation process. The results showed that 
the algorithm was suitable to control the SGR in the 
biotechnological process. 

Wu et al., [7] developed an optimal feedback control 
scheme using switched dynamical system method. This 
technique was applied to a class of FBF processes and the 
numerical results justified the effectiveness of the technique. 

Additionally, in Dong et al., [8], an optimal control hybrid 
scheme for FBF was presented. The study utilized a nonlinear 
hybrid dynamic technique and a corresponding linear 
variation solution to study the strong stability of the system. 
The results proved the strong stability by the boundedness 
provided by the technique developed. 

Furthermore, Zheng et al., [9] applied a gradient-free 
optimisation algorithm to enhance yield in an FBF system. 
The system utilized adaptive Particle Swarm Optimisation 
(APSO) and Simulataneous Perturbation Stochastic 
Approximation (SPSA) to optimize a penicillin fermentation 
process. The results showed the APSO outperformed the 
SPSA in terms of optimality, however, the SPSA performed 
better in terms of optimal cost. 

From the aforementioned reviews, it can be observed that 
majority of the works with improved performance rely on 
hybridized models and these combined techniques have high 
computational requirements. Thus, the major contribution of 
this endeavor is to develop a conventional Fuzzy Logic 
Controller (FLC) to optimise a FBF process. The choice and 
justification of the FLC lies in its self-adapting capabilities, 
which allows it to maintain a desirable closed loop 
performance by learning about changes that may impact the 
plant's behavior [10]. This in turn provides optimum 
performance with reasonable computational requirements. 
The output of the FLC is the feeding profile which will be fed 
into the plant to produce an output. The results of the FLC 

performance are compared with the nominal controller for 
performance evaluation. 

III. RESEARCH METHODOLOGY 

A. Process Description 

Fermentation is typically accomplished through three 
methods: batch, fed batch, and continuous. In the batch 
process, all materials are sited into the reactor at the 
beginning of the fermentation process, and the reactor has no 
input or output. There are both inputs and outputs to the 
reactor in the continuous category. Nothing is taken out of the 
reactor during the fed batch process; however, a substrate 
component is intermittently added to regulate the reaction 
[11]. The primary control goal of a fed batch fermenting 
process is to determine the proper feeding rate for the 
substrates, which facilitates both biomass and product 
concentration [2]. Fed batch methods are commonly 
employed in the biotechnology sector since they merge the 
benefits of continuous and batch operations. The method 
begins as a batch process, then the substrate is added until a 
practical restriction prevents the process from continuing 
[12]. The result of the FBF process is a mass of plant cells or 
secondary metabolite depending on the desired end product. 
For growth and production, two substrates are necessary [2].  

For this work, the FBF process is represented as a black 
box model that varies with time. Because the process's 
beginning states and parameters randomly fluctuate from 
batch to batch, the exact output sequence cannot be created 
each time for the same input sequence [2]. The black box has 
a specified set of inputs, outputs, and limitations. The 
process's inputs are two substrate feed rates, u1 and u2. These 
feed rates are employed to supply substrates to the culture 
which results in the production of a secondary metabolite. 
The substrates are complementary in the sense that feeding 
only one of them yields no yield and feeding only one of them 
yields low yield. The process produces biomass, substrate 1, 
substrate 2, product concentration, and volume, which are 
denoted by the letters x, s1, s2, p, and v, respectively. Fig. 1 
depicts a typical fed batch procedure. 

 
 

Fig. 1. A Typical FBF Process 
 

U1 and U2 are the two inputs to the FBF process. Based on 
a nominal feeding profile, these inputs are the feed rates of 
substrates S1 and S2. Equations 1 and 2 yield the nominal 
feeding profile. However, the suggested feeding profile is 
insufficient for output. As a result, the developed controller 
is supposed to provide a regulated feed rate depending on the 
outputs in order to optimize the FBF process's performance. 
The process produces biomass (X), substrates (S1 and S2), 
product concentration (P), and volume (V). 
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The process is constrained by the maximum reactor volume 

(v_maximum = 4000) and maximum feed rates (f_maximum 
= 50). The process's cost function is productivity (J), which 
is described in terms of volume, product concentration, and 
fermentation period (T), which is not fixed (as shown in 
Equation 3). 
  

� =  
�∗�

�
      (3) 

 
Fig. 2 depicts the control system representation. The 

product concentration is the controlled parameter in this 
investigation (P). The setpoint is used as the process's input, 
and the error is calculated as the difference between the 
setpoint and the output (P). This error is sent into the fuzzy 
logic controller, which generates a regulated output in terms 
of feed rates (U1 and U2). The controller's output is sent into 
the fermentation plant, which creates the process's outputs 
(X, S1, S2, P and V).  

 
Fig. 2. FBF Control System 

 
A C-Program function represents the plant. The plant is 

intricate, time-varying, and nonlinear. As a result, given the 
same input sequence, the same output cannot be achieved. 
This makes obtaining a model as a transfer function, state 
space representation, or differential equation problematic. As 
a consequence, the plant is called in MATLAB using a mex 
function each time. The fuzzy logic controller's output (the 
regulated feed rates) is fed into the plant, which provides the 
output values. 

B. Fuzzy Logic Controller Design 

The Mamdani Fuzzy Inference System (FIS) was created 
in this work utilizing the Fuzzy Logic Toolbox in MATLAB 
(version R2019a). In terms of product concentration, the FIS 
had two inputs (error and change in error). The feed rates (U1 
and U2) for substrates S1 and S2 are the FIS outputs. For 
defuzzification, the centroid approach was utilized. 

In this investigation, the trapezoidal Membership 
Function (MF) was applied. Both inputs ranged from 0 to 
3000, with values of vlow, low, med, high, and vhigh. U1 
had a range of 0 to 30 with values of vlow, low, med, high, 
and vhigh. U2 output ranged from 0 to 10, with low, 
medium, and high levels. Fig. 3 and Fig. 4 show the 
membership functions for the input variables, whereas Fig. 5 
and Fig. 6 depict the MFs for the output variables. 

 

 
Fig. 3. MF for Error 

 

 
Fig. 4. MF for Change in Error 

 

 
Fig. 5. MF for U1 

 

 
Fig. 6. MF for U2 

 
The fuzzy rules used for feed rates U1 and U2 are presented 

in Tables I and II, respectively. The fuzzy rules were created 
with the goal of maximizing product concentration, which is 
the controlled variable. The plant model revealed that low U1 
values resulted in increased product concentration and 
moderate volume values. Based on this fact, fuzzy rules were 
created to maximize product concentration while maintaining 
relatively high volume levels. This is due to the fact that 
reduced volume levels result in poorer production, which is 
undesirable. 

TABLE I.  FUZZY RULES FOR FEED RATE (U1) 

Error/ 

Change 

in Error 

VLOW LOW MED HIGH VHIGH 

VLOW MED MED LOW VLOW VLOW 
LOW MED MED LOW VLOW VLOW 
MED MED MED MED MED MED 
HIGH VLOW VLOW VLOW VLOW VLOW 
VHIGH VLOW VLOW VLOW VLOW VLOW 
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TABLE II.  FUZZY RULES FOR FEED RATE (U2) 

Error/ 

Change in 

Error 

VLOW LOW MED HIGH VHIGH 

VLOW MED MED LOW LOW LOW 
LOW MED MED LOW LOW LOW 
MED MED MED MED MED MED 
HIGH LOW LOW LOW LOW LOW 
VHIGH LOW LOW LOW LOW LOW 

IV. RESULTS 

The plant and the Fuzzy Logic Controller (FLC) were 
both simulated in MATLAB (R2019a). The plant is a C-
programming language black box model. To establish an 
interface between MATLAB and the plant, a mex (MATLAB 
extension) file was generated (C program). The nominal 
profile was compiled in the C programming language to 
produce a data file holding the compilation results. The 
MinGW-64 compiler was utilized in this investigation as the 
C compiler. To achieve fuzzy controller results, the FLC was 
constructed and executed in MATLAB. For performance 
evaluation, the FLC data were compared to the nominal 
profile. 

The FLC receives error and change in error as inputs, 
which are assessed in terms of the controlled variable 
(product concentration). The FLC outputs are the feed rates 
for substrates 1 and 2. (U1 and U2). Fig. 7 and Fig. 8 compare 
the feed rates U1 and U2 derived from the FLC to the feed 
rates of the nominal profile. 

 

 
Fig. 7. Feed Rate for Substrate 1 
 
 

 
Fig. 8. Feed Rate for Substrate 2 

 
Fig. 7 illustrates that the feed rate of the nominal profile 

climbs slowly and exhibits unstable behavior near the 
conclusion of the batch duration. The FLC feed rate, on the 
other hand, climbs faster than the nominal profile and remains 
constant at a given level. Similarly, in Fig. 8, the nominal 
profile's feed rate begins steadily and then dips halfway 
through the batch period. However, the feed rate from the 
FLC increases and then stabilizes at a particular level. This 

demonstrates that the FLC output is controlled and regulated 
in terms of both input rates (U1 and U2). 

The FBF plant's inputs are the feed rates U1 and U2. The 
plant produces five (5) outputs: biomass, substrate 1, 
substrate 2, product concentration, and volume, denoted by 
the letters x, s1, s2, p, and v, respectively. Fig. 9 depicts the 
product concentration as determined by the nominal profile 
and the FLC. 
 

 
Fig. 9. Product Concentration of Fed Batch Process 

 
Fig. 9 shows that the nominal profile results in a product 

concentration that steadily increases as the batch duration 
increases. The FLC, on the other hand, offers product 
concentration readings that are in accordance with the 
selected setpoint. The FLC seeks to maintain the controlled 
variable (in this example, product concentration) constant 
while minimizing errors. The roughness of the graph is due 
to the plant's nonlinearity, unpredictability, and complexity. 
The same inputs delivered into the plant will not create the 
same output, making obtaining a straight graph or constant 
output values very challenging. Despite this constraint, the 
FLC's average product concentration is higher than that of the 
nominal profile. 

The volume of the FBF process is depicted in Fig. 10. 
The volume calculated from the FLC was compared to the 
volume calculated from the nominal profile. It can be seen 
that the volume derived from the FLC is similarly constant 
along a particular value, as opposed to the nominal profile, 
which progressively rises. It can also be seen here that, 
despite the fact that the volume from the FLC is not a 
controlled variable, it remains stable and rather consistent. To 
minimize a loss in production, the control scheme keeps 
volume levels modest. 

 

 
Fig. 10. Volume of FBF Process 

 
Fig. 11 compares the biomass produced by the FBF method 

to the nominal profile. The biomass derived by the FLC is 
also consistent, as opposed to the nominal profile, which 
grows progressively as the batch duration increases. 
However, the biomass obtained from the nominal profile is 
much higher than that produced from the FLC in this case. 
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Fig. 11. Biomass of FBF Process 

 
Fig. 12 depicts the productivity graph. The formula in 

Equation 3 is used to calculate productivity. The graph shows 
that the FLC has a greater average productivity than the 
nominal profile. 

 

 
Fig. 12. Productivity of FBF Process 

 
Table III provides a summary of the data collected, 

including average values for both the FLC and nominal 
profiles. The data collected is the average of ten (10) 
simulation runs with a batch time of 120 seconds. 

TABLE III.  SUMMARY OF FBF RESULTS 

Value Pav 

 

Vav Xav U1av U2av  Jav 

Nominal 

Profile 

748.93 2.37 
x103 

24.30 23.51 1.93 2.73 
x104 

FLC 1.77 
x103 

2.71 
x103 

7.20 14.20 4.70 1.74 
x105 

 
Table III shows that the FLC provides a much greater 

product concentration than the nominal profile. The FLC also 
increases productivity and slightly increases volume. The 
FLC, on the other hand, results in a large reduction in 
Biomass. When it comes to feed rates, the FLC provides a 
lower average feed rate for U1 and a greater feed rate for U2. 
This demonstrates that the FLC will provide a larger output 
than the nominal profile with lower feed rates for substrate 1 
and somewhat higher feed rates for substrate 2.  

V. CONCLUSION 

In MATLAB, the Fuzzy Logic Controller (FLC) was 
successfully designed and simulated. The resulting findings 
were compared to the nominal profile using Equations 2 and 
3. The FLC resulted in a 137 percent increase in product 
concentration, a 538 percent improvement in productivity, 
and a 14 percent increase in volume. The nominal profile, on 
the other hand, performed better in terms of Biomass, with 
the FLC providing a 70% decrease in Biomass levels of the 

fermentation process. The FLC may be used to successfully 
regulate a FBF process. Future research might seek to 
overcome the constraint of decreasing biomass by 
constructing a more robust fuzzy inference system that takes 
into account more than one parameter. 
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