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 Ozone gas is a greenhouse gas. Accurate measurement of its concentration is 

dependent on the right value of the ozone gas absorption cross-section. In 

the literature, discrepancies and inconsistencies have been however linked 

with ozone gas absorption cross-section. In the literature, information on the 

pressure effect on pressures less than 100 mbar and greater than 100 but less 

than 1000 mbar is not available for the visible spectrum. Thus, creating an 

information gap that this manuscript is intended to fill up. This is the 

problem that has been addressed in this present work. The method of 

simulation with SpectralCalc is the method adopted for the present work. 

HITRAN 2012 simulator, available on spectralcalc.com, was used in 

simulating the ozone gas absorption cross-section to determine the 

simultaneous effect of optical path length and pressure at two peak 

wavelengths in the visible spectrum. Simulation outcomes were obtained for 

an optical path length of 10 cm to 120 cm showing that the optimum 

absorption cross-section value of 5.1084×10-25 m2/molecule at 603 nm and 

4.7182×10-25 m2/molecule at 575 nm for gas cells length between 10 cm and 

120 cm are obtained at peak points. Pressure values at which ozone gas 

absorption cross-section becomes a constant value of 5.1058×10-25 

m2/molecule at 603 nm and 4.7158×10-25 m2/molecule at 575 nm is optical 

path length dependent. The percentage difference between 5.1084×10-25 

m2/molecule and 5.1058×10-25 m2/molecule is 0.05% for all lengths of gas 

cells considered. Similarly, the percentage difference between 4.7182×10-25 

m2/molecule and 4.7158×10-25 m2/molecule is also 0.05% for all lengths of 

gas cells considered. These results are relevant for high-accuracy and high-

precision ozone gas measurements. Furthermore, efficient measurement of 

ozone gas is a direct enhancement of green communication. 
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1. INTRODUCTION 

Accurate measurement of ozone concentration as a greenhouse gas has become crucial in light of 

the aftermath effect of exposure to an unsafe quantity of ozone gas [1], [2]. The measurement of ozone gas 

concentration depends on the accuracy of the ozone gas absorption cross-section [3], [4]. In the literature, 
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however, discrepancies and inconsistencies have trailed values of ozone gas absorption cross-section [5], [6]. 

Above 10% discrepancies in ozone gas absorption cross-section have been reported [7], [8]. Several 

parameters such as temperature [9], pressure [10] sampling frequency [11], and absorption wavelength [6] 

have been investigated previously in relation to the ozone gas absorption cross-section. Marcus et al. 

investigated the effect of pressure on ozone gas absorption cross-section in the ultraviolet (UV) [12]. At a 

peak absorption wavelength of 255.442 nm, a pressure range of 101.3250 mbar to 303.9750 mbar has been 

shown to have no effect on the peak absorption cross value of 1.148×10-21 m2/molecule. Similarly, Voigt et 

al. studied the dependence of ozone gas absorption cross-section on pressure. In their publication, it was 

shown that pressure values of 100 mbar and 1000 mbar for temperature values between 203 K and 293 K do 

not affect ozone absorption cross-section for absorption wavelength between 230 nm and 850 nm [10]. 

However, information on the pressure effect on pressures less than 100 mbar and greater than 100 but less 

than 1000 mbar is not available for the visible spectrum in the literature. Thus, creating an information gap 

that this work is intended to fill up. This is the problem that has been addressed in this present work. In 

addition, ozone gas concentration has been measured using varying lengths of gas cells in the visible 

spectrum: 10 cm, 25 cm, 50 cm [6], 70 cm [13], and 120 cm [10]. Variation in the length of gas cells will 

result in variation in gas cell total volume. Robert Boyle in Boyle's law had stated that pressure and volume 

of a gas are inversely related [14]–[16]. Since the variation in the length of the gas cell will result in total 

volume variation, the concurrent upshot of optical path length and pressure at 603 nm and 575 nm on the 

ozone absorption cross-section is therefore investigated in the visible spectrum.  

 

 

2. OZONE GAS ABSORPTION CROSS-SECTION: AN OVERVIEW 

The authors had previously established in [4] according to literature that error free measurement of 

ozone gas is dependent upon ozone gas absorption cross-section [3]. And this has led to lots of research 

efforts to investigate the accurate value of ozone gas absorption cross-section [4]. High accuracy and high 

precision measurement of ozone gas concentration have become a necessity in light of the revised exposure 

safety limit of ozone gas. The earlier exposure of 0.1 ppm of ozone gas in the workplaces in the US [17], was 

revised to 0.075 ppm in 2008 [18], [19]. International Health and Safety Standards have also placed a limit of 

0.05 ppm to 0.10 ppm of ozone concentration in the air [20]. Ozone gas absorption coefficient (ε) is 

dependent on absorption cross-section according to the following relationship: 𝜀 = 𝜎 × 𝑁𝐴; NA is Avogadro's 

constant with a value of 6.02214199×1023 (molecule/mol) [21]. There have been lots of research efforts to 

obtain correct value of absorption cross-section of ozone gas in the visible spectrum [8], [22]–[25]. Grigg's 

results [23] were in very good agreement with the results obtained by Vigroux; Griggs thus, recommended 

Vigroux results [24] to be used in the Chappuis band [23]. In 1988, Brion [7] showed that Amoruso [26], 

Vigroux [24] and Tanaka [8] agree well on 603 nm and 575 nm as the peak absorption of ozone gas in the 

visible spectrum. Numerical outcomes obtained by simulation in this work were compared with previous 

work with peak absorption cross-section at 603 nm and ozone gas absorption at 576.96 nm [7], [22]. The 

authors had previously defined (1) and (2) that were used in calculating the absorption cross-section (σ) of 

ozone gas in this work [11], [27]–[30].  
 

𝜎 = −
106×𝑅×𝑇𝑃

𝐶𝑃𝑃𝑀×𝑁𝐴×𝑃×𝐿
× ln 𝑇 (1) 

 

Where, c(ppm) = Ozone concentration in ppm, R = Ideal gas constant (atm m3 mol-1 K-1), Tp = temperature 

(K); σ = Absorption cross-section (m2/molecules), NA = Avogadro’s constant (molecule/mol), P = pressure in 

atmosphere (atm), L = Optical path length (m), T = Transmittance. 
 
𝜎−𝜎𝑤

𝜎𝑤
 × 100%  (2) 

 

Where, σ = ozone absorption cross-section at 603 nm, σw = absorption cross-section obtained in this work. 

 

 

3. SIMULATION SOFTWARE AND METHODOLOGY 

The methodology adopted for this work is the use of an online simulator known as Spectralcalc. 

Spectralcalc.com is an online simulator used for high-resolution spectral modeling. The gas cell simulator's 

main option was used primarily for the simulation of absorption cross-section as shown in Figure 1 and 

Figure 2. On the gas simulator main option, Figure 1 shows the observer sub-option. Simulation of 

transmittance was carried out on the observer sub-option within a wavelength range of 0.60202 μm to 

0.60302 μm and 574.5 nm to 575.5 nm. In Figure 2, the gas cell sub-option is displayed. With the gas cell, 
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sub-option ozone gas was selected as the gas of choice and the value of 10 cm to 120 cm was imputed as the 

length of the gas cell. Ozone gas concentrations of 950 ppm and 293 K were considered at room temperature 

[31] and pressure values in mbar were varied between 10 mbar and 1000 mbar. HITRAN 2012 from 

HITRAN database was used for all simulations. It is the latest available line list on Spectralcalc.com 

simulator. For all simulations, an actual spectral line from Spectralcalc.com approximated as 603 nm is 

603.00145129141 nm and at 575 nm (actual value is 575.016232354603 nm). Figure 3 is a summary of the 

methodology employed.  

 

 

 
 

Figure 1. Gas cell simulator: observer sub-option 

 

 

 
 

Figure 2. Gas cell simulator: gas cell sub-option 

 

 

 
 

Figure 3. Simulation methodology using Spectralcalc.com simulator 
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4. RESULTS AND DISCUSSION 

The results section is divided into two parts. In the first part discussions and results on the 

relationship between pressure and admittance are presented. In the second part, the results on pressure effect 

and optical path length on ozone gas absorption cross-section at 603 nm and 575 nm are presented. In our 

discussion, results obtained for pressure effect on ozone gas absorption cross-section at 603 nm and 575 nm 

for pressure values less than 100 mbar and greater than 100 mbar but less than 1000 mbar are novel to this 

work.  

The effect of optical path length on transmittance for pressure values between 10 mbar and 1000 

mbar is shown in Figures 4 and 5. At low-pressure values, there was a convergence towards a transmittance 

value of 1 for all gas cells. Transmittance reduces with increasing pressure and with an increase in gas length. 

The range of transmittance at 10 mbar was between 0.999856 to 0.999988 and 0.985714 to 0.998802 at 1000 

mbar at 603 nm. Similarly, for 575 nm wavelength, at 10 mbar, the range of transmittance is 0.999867 to 

0.999989 and 0.986798 to 0.998893 at 1000 mbar. 

The simulation was carried out in stages. The first stage was at an interval of 100 mbar for all gas 

cells. The exception to this is between 10 mbar and 100 mbar. This is depicted in Figure 6 and Figure 7. 

Figure 6 and Figure 7 show the simulation results for the effect of variation in pressure and length of the gas 

cell on ozone gas absorption cross-section in the visible spectrum at 603 nm and 575 nm respectively. The 

initial simulation was between a pressure range of 10 mbar and 1000 mbar. The results show that the 

absorption cross-section for all gas cells increases from a pressure of 10 mbar until a maximum point which 

depends on the optical path length of the gas cell.  

After the optimum or maximum point is attained, the absorption cross-section becomes a constant. 

Further simulations were carried out to obtain a precise optimum point for each gas cell and corresponding 

values of pressure at these points. Figure 6 and Figure 7 were further used to identify the region of the 

maximum position for each gas cell. The next stage simulation was at an interval of 10 mbar. Figures 8, 9, 

and 10 are for the wavelength of 603 nm. Figure 8 was obtained for lengths of 90 cm to 120 cm by 

simulating a pressure increment of 10 mbar between 10 mbar and 100 mbar. Figure 9 shows the simulation 

results at a pressure increment of 10 mbar between 10 mbar and 500 mbar for gas lengths of 20 cm to 80 cm.  

Figure 10 is the simulation results for the gas cell of 10 cm. A simulation between 700 mbar and 

1000 mbar, was at a step of 10 mbar. For 575 nm wavelength, similar simulations were carried out. Each gas 

cell was however treated separately with respect to the location of the maximum point identified in Figure 7. 

At 603 nm, the absorption cross-section for all gas cells considered at 10 mbar is approximately 5.1060×10-25 

m2/molecule while 5.1084×10-25 m2/molecule is the absorption cross-section value at the maximum points. 

Similarly, at a wavelength of 575 nm, the absorption cross-section for all gas cells considered at 10 mbar is 

approximately 4.7160×10-25 m2/molecule while 4.7182×10-25 m2/molecule is the absorption cross-section 

value at the maximum points.  

Table 1 shows the pressure values at the maximum absorption cross-section for each gas cell for 

both 603 nm and 575 nm wavelengths. Figure 11 shows the length of gas cells and corresponding values of 

pressures where the absorption cross-section became a constant value of 5.1058×10-25 m2/molecule at 603 nm 

and 4.7158×10-25 m2/molecule at 575 nm. 

 

 

  
 

Figure 4. Effect of variation of optical path length 

and pressure on transmittance at 603 nm 
 

 

 

Figure 5. Effect of variation of optical path length 

and pressure on transmittance at 575 nm 
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Figure 6. Effect of variation of optical path length and 

pressure (100 mbar) on ozone cross-section at 603 nm 
 

 

 

Figure 7. Effect of variation of optical path length and 

pressure (100 mbar) on ozone cross-section at 575 nm 
 

 

  
 

Figure 8. Effect of variation of optical path length 

and pressure (10 mbar) on ozone cross-section for 

20 cm to 80 cm at 603 nm 

 

Figure 9. Effect of variation of optical path length and 

pressure (10 mbar) on ozone cross-section for 90 cm 

to 120 cm at 603 nm 
 

 

Figures 12, 13, and 14, show the deviation of absorption cross-section in each gas cell from 5.18×10-25 

m2/molecule at 603 nm [22], [24]. The range of deviation in percentage is from 1.40% at the maximum points to 

1.45% at the points where the absorption cross-section is constant. The percentage difference of 0.05% in 

deviation will be of significance for high accurate and high precision measurements of ozone gas measurements.  
 

 

  
 

Figure 10. Effect of variation of optical path length 

and pressure (10 mbar) on ozone cross-section for  

10 cm 

 

Figure 11. Pressures values for each gas cell where 

ozone absorption cross-section becomes constant 

value of 5.1058×10-25 m2/molecule at 603 nm 
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Figure 12. Deviation from absorption cross-section 

from 5.18×10-25 m2/molecule at 603 nm for 90 cm to 

120 cm 

 

Figure 13. Deviation from absorption cross-section 

from 5.18×10-25 m2/molecule at 603 nm for 20 cm to 

80 cm 

 

 

By comparing the pressure values obtained for both 603 nm and 575 nm, for each gas cell, 8.27% is 

the percentage difference of each corresponding value of either pressure value at peak points or pressure 

values at points where absorption cross-section becomes constant. This value is very close to the percentage 

difference of 8.82%, which is the percentage difference between the absorption cross-section of 5.18×10-25 

m2/molecule at 603 nm [22], [24] and 4.76×10-25 m2/molecule [7], [32] at 576.96 nm. Thus, the absorption 

cross-section is wavelength-dependent. The last stage of the simulation was to identify the precise pressure 

value (up to four decimal points) at maximum points and pressure values where absorption cross-section 

became constant.  

 

 

Table 1. Pressure values at maximum absorption cross-section for each gas cell 

Values 
Presssure 

(mbar) 
Ozone absorption cross-
section (m2/molecule) 

Presssure 
(mbar) 

Ozone absorption cross-
section (m2/molecule) 

Presssure 
(mbar) 

Ozone absorption cross-
section (m2/molecule)  

10 cm 20 cm 30 cm 

603 nm 833.9941 5.1084E-25 416.9970 5.1084E-25 277.9980 5.1084E-25 

575 nm 902.9592 4.7182E-25 451.4796 4.7182E-25 300.9864 4.7182E-25   
40 cm 50 cm 60 

603 nm 208.4985 5.1084E-25 166.7988 5.1084E-25 138.9990 5.1084E-25 

575 nm 255.7398 4.7182E-25 180.5918 4.7182E-25 150.4932 4.7182E-25   
70 cm 80 cm 90 cm 

603 nm 119.1420 5.1084E-25 104.2492 5.1084E-25 92.6660 5.1084E-25 

575 nm 128.9941 4.7182E-25 112.8699 4.7182E-25 100.3288 4.7182E-25  
100 cm 110 cm 120 cm 

603 nm 83.3994 5.1084E-25 75.8176 5.1084E-25 69.4995 5.1084E-25 

575 nm 90.2959 4.7182E-25 82.0872 4.7182E-25 75.2466 4.7182E-25 

 

 

For all lengths of optical gas cells considered, the common pressure value where the absorption 

cross-section becomes constant is 833.9942 mbar for 603 nm and 902.9593 mbar at 575 nm. The results 

obtained on pressure effect on ozone gas absorption cross-section at 603 nm and 575 nm for pressure values 

less than 100 mbar and greater than 100 mbar but less than 1000 mbar are novel to this work. Voigt et al. 

establish that for the 120 cm gas cell, ozone absorption cross-section was constant at both 100 mbar and 1000 

mbar [10].  

This in comparison to the results obtained for the 120 cm gas cell with our simulation shows very 

good agreement. A constant value of absorption cross-section for the 120 cm gas cell begins at 69.4996 

mbar for 603 nm and 75.2467 mbar for 575 nm. This thus confirms other results obtained in this article. 

According to them, there was no variation in absorption cross-section ozone in relation to pressure due  

to the rather short lifetime ozone gas in the upper electronic states [10]. Constant ozone gas absorption 

cross-section or no pressure effect is attributed to upper electronics states of ozone which has a short 

lifetime [10].  
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Figure 14. Deviation from absorption cross-section from 5.18×10-25 m2/molecule at 603 nm for 10 cm 

 

 

Similarly, in comparison with 5.23×10-25 m2/molecule at 603 nm [6], the range of deviation in 

percentage is from 2.38% at the maximum points to 2.43% at the points where the absorption cross-section is 

constant. This also yields a percentage difference of 0.05%. Similarly, at a wavelength of 575 nm, range of 

deviation from 4.76×10-25 m2/molecule [7], [29] in percentage is from 0.89% at the maximum points to 

0.94% at the points where the absorption cross-section is constant. The percentage difference of 0.05% in 

deviation will be of significance for high accurate and high precision measurements of ozone gas 

measurements. Similarly, in comparison with 4.766×10-25 m2/molecule at 575 nm [7], the range of deviation 

in percentage is from 1.01% at the maximum points to 1.06% at the points where the absorption cross-section 

is constant.  

This also yields a percentage difference of 0.05%. The results thus obtained in this work 

compliment the work done previously by Marcus et al. in the UV [12] and that by Voigt et al. Hence, 

simultaneous effect of pressure and optical path length not previously available in the literature for pressures 

less than 100 mbar and greater than 100 but less than 1000 mbar is now made available through this work 

[29]. This is the novelty of this present work. In addition, efficient measurement of ozone gas as a 

greenhouse gas will promote and enhance the realization of green communication. 

 

 

5. CONCLUSION 

In this article, we have simulated absorption cross-section measurement for ozone a greenhouse gas 

in the visible spectrum at 603 nm and 575 nm peak wavelengths. The absorption cross-section obtained has 

shown the dependence of ozone gas absorption cross-section on pressure, optical path length, and sampling 

wavelength. Both optimum and constant values of ozone absorption cross-section occur at different pressure 

values depending on the optical path length of the gas cell and sampling wavelength. In complimenting the 

works of Marcus et al. and Voigt et al. on pressure effect on ozone gas absorption cross-section: it is seen 

from the results that pressure value at which pressure has no effect on ozone gas absorption cross-section for 

a 120 cm gas cell begins at 69.4996 mbar; that for a 10 cm gas cell begins at 833.9942 mbar at 603 nm. 

While at 575 nm, pressure value at which pressure has no effect on ozone gas absorption cross-section for a 

120 cm gas cell begins at 75.2466 mbar; that for a 10 cm gas cell begins at 902.9593 mbar. Thus, the longer 

the optical path length, the more the effect of pressure is reduced. These results obtained on pressure effect 

on ozone gas absorption cross-section at 603 nm and 575 nm for pressure values less than 100 mbar and 

greater than 100 mbar but less than 1000 mbar are novel to this work. Results obtained are essentially relevant 

for high precision and high accuracy measurement of ozone gas absorption cross-section in relation to green 

communications.  
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