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Abstract—Due to the high incident rate of COVID-19, the
number of suspected patients needing diagnosis presents over-
whelming pressure on hospital and health management systems
such that the disease outbreak elapsed into a global pandemic.
More so, the infected patients present a higher risk of being
infected to the health workers because once a patient is positive
of the virus, the progress of recovery or deterioration needs to be
monitored by medical experts and other health workers, which
eventually exposes them to the infection. In this paper, we present
an automatic prognosis of COVID-19 from a CT scan using
deep CNN. The models were trained using a super-convergence
discriminative fine-tuning algorithm, which uses a layer-specific
learning rate to fine-tune a deep CNN model; this learning rate
is increased or decreased per iteration to avoid the saddle-point
problem and achieve the best performance within few training
epochs. The best performance results were obtained as 98.57%
accuracy, 98.59% precision and 98.55% recall rate.

Index Terms—COVID-19, CT Scan, deep CNN, Hyperparam-
eter optimization, medical image, radiology, super-convergence.

I. INTRODUCTION

The novel SARS-CoV-2 virus, which causes COVID-
19, uses widely expressed Angiotensin-converting enzyme-2
(ACE-2) receptor to enter human cells (usually pneumocytes,
respiratory tracts, renal and epithelium) through nasal and
oral pharyngeal mucosa to viremia [1]. The ACE-2 is an
enzyme attached to the membranes of cells located in the
lungs, arteries, heart, kidney, and intestines – the vital organs.
Further, because the virus enters through nasal and oral tracts,
studies show that the respiratory tracts are the primary site
of infection and disease morbidity [2], [3]. This explains why
COVID-19 patients show difficulty in breathing, and many die
within a short period.

Although the virus has a high incident rate and spread
rapidly, there is a broad spectrum of disease severity ranging
from mild (which accounts for 80%), severe case of about
15% and a critical case of about 5%. Globally, the reported
number of COVID-19 cases is over 147.812 million, with
about 3.12 million death, representing 2.11% of reported cases.
In Nigeria, the total number of reported cases is 164,912, with
2063 reported death representing 1.25%. It could be inferred
that although the disease has a high incident rate, the mortality
rate is low.

Due to its high incident rate, the number of suspected
patients needing diagnosis presents overwhelming pressure on

hospital and health management systems such that the disease
outbreak elapses to a global pandemic. More so, the infected
patients present a higher risk of being infected to the health
workers because once a patient is positive of the virus, the
progress of recovery or deterioration needs to be monitored
by medical experts and other health workers, which eventually
exposes them to the infection. Within the first three months,
over 33,000 health workers were infected with the virus in
China, 5000 in Italy with about 60 death [4]. Currently, over
300,000 health workers have been infected with COVID-19
globally, with over 7,000 death recorded in 79 countries [5].
Hence, the development of a CAD system for the detection
of COVID-19 is not sufficient, but a method of automatically
monitoring the recovery progress of infected patients is needed
to reduce the risk of health workers.

Fig. 1. CT Scan of an infected patient showing morphological observations.
Red arrows indicating abnormalities (a) Ground Glass Opacities; (b) consol-
idation; (c) consolidation with GGO; (d) solid nodules [3]

In Fleischner statement [6], the role of medical imaging in
COVID-19 was extensively discuss. This consensus agreement
is based on the expert opinion of a panel of fifteen thoracic
radiologists, ten pulmonologists and one pathologist, in addi-
tion to experts in emergency medicine, infection control and
laboratory medicine drawn from nine advanced countries. The
CT scan was identified to be more sensitive in the statement,
thereby recommended for monitoring disease progression.



Morphological features of the disease infection observable in
CT scan includes the following: ground-glass opacity (GGO),
consolidation, hazy paving, and solid nodules see Fig. 1.

Ground-glass opacity (GGO) is a sign of decreased air
content in the lungs without totally obliterating the alveoli.
This could be due to the lungs air spaces partially filled with
fluid, the walls of the alveoli becoming thickening and the
space between the lungs parenchyma becoming thickening.
GGO is an opacity that does not obscure the underlying
vessels; it appears as grey opacity on CT scan images.

That CT scan can be used for monitoring disease pro-
gression has been demonstrated in literature [3]. A typical
observation by [2] shown in Fig. 2 is a 35 years old woman.
The scan in Fig 2A was obtained on the first day. The scan
shows multiple GGO on the lower lobe of the right lung. The
scan in Fig 2B was obtained on the fifth day; the scan shows an
increased consolidation. Fig 2C was obtained on the eleventh
day; it shows multiple consolidations with a similar extent
as obtained on the fifth day. Lastly, the scan in Fig 2D was
obtained on the fifteenth day; the scan shows a smaller extent
than the eleventh day. Hence, it is clear that a CT scan can
monitor the progress of COVID-19 infected patients. In this
paper, we explore the possibility of automating this process
without exposing the health worker to further risk.

The rest of this paper is organized as follows: the review
of related work is presented in Section II, the methodology
adopted is presented in Section III, while the result and
discussion of the result are presented in Section IV.

II. REVIEW OF RELATED WORK

Most researchers focused on the classification of CT scan
images for the diagnosis of the novel coronavirus. Some of
these research works are reviewed herewith.

Authors gathered a comprehensive dataset of CT scan
images and chest x-rays of normal and infected patients in
[7], then a comparative result of a model trained from scratch
and a fine-tuned model was presented. The fine-tuned model of
AlexNet achieves 98% accuracy while a model trained from
scratch is 94% accurate. Although the result is appreciably
good, the dataset on which these models were trained is too
scanty, leading to model overfitting. Furthermore, the two
models show a wide difference between sensitivity (72%) and
specificity (100%), which indicated the case of overfitting, this
kind of model should be avoided in medical applications. On
the other hand, [8] gathered 104,009 CT scan images of 1,489
patients (unfortunately, the dataset is not publicly available).
They build a new model called COVIDNet-CT, a 90 layer deep
model using the generative-synthesis technique. The result
obtained shows 99.1% accuracy, a comparatively higher result
than ResNet50 architecture, which obtained 98.7% on the
same dataset. While this result is impressive, such a volumi-
nous dataset and the computational power to train such deep
learning models are not evenly distributed, often unavailable to
researchers in low- and middle-income countries. For instance,
without such a large dataset, [9] trained a 10-layer CNN model

from scratch and obtained 82.1% accuracy on 738 CT scan
images.

However, better results were reported when models are
trained using the transfer learning approach. For instance, an
improved result was obtained in [10] where 828 CT scans were
used to fine-tune EfficientNetB0 and accuracy of 96.2% was
obtained. On the other hand, [11] trained eight states of the
art deep learning models using a fine-tuning approach; they
obtained the highest classification accuracy of 89.0% with
DenseNet169. The poor result shows that the desired result
cannot be obtained when transfer learning is not skillfully
done.

Therefore, in this paper, we present a data and computa-
tional efficient fine-tuning approach to achieve high accuracy
without overfitting the small dataset. The design of this algo-
rithm is presented in Section III.

III. METHODOLOGY

In this section, the methodology adopted is discussed.
We present the dataset used in training the deep learning
model, followed by the data augmentation method. Then the
superconvergence discriminative fine-tuning algorithm is then
presented. The algorithm uses layer-specific learning rates to
fine-tune a deep CNN; these learning rates were dynamically
increased or reduced to avoid saddle-point problem. Lastly,
the deep learning architecture used is presented.

A. Dataset

The dataset for this work was collected from Hospitals in
Sao Paulo, Brazil and made publicly available by [12]. The
dataset contains 2484 CT scan images, of which 1252 were
positive of COVID-19 while 1230 were negative. Although
the data is small for training a deep learning model, data
augmentation is performed to obtain a more comprehensive
distribution and curate the dataset from defective scans. The
data augmentation is presented in the following subsection.

B. Data Augmentation

To obtain a good generalization with deep learning models,
they must be trained on a vast dataset in hundreds of millions.
Meanwhile, the medical dataset is very scanty and hard to
get due to privacy issues. The COVID-19 dataset, like every
medical dataset, is very scanty, available in the order of tens
of hundreds. Therefore, data augmentation is an essential step
in the design of a good model.

Unlike general computer vision task, medical images must
be carefully augmented as augmented images may contribute
nuisance images which confuse the model and prevent it
from learning the key desired features from the image [13].
For instance, image flipping and mirroring are well-known
augmentation techniques in computer vision; however, medical
images contain anatomical features with chirality, whereas
these augmentation techniques do not preserve this feature.
Hence, these augmentation techniques and similar techniques
that do not preserve anatomical features of interest must be
avoided.



Fig. 2. CT Scan of a 35yrs old patient infected with COVID-19

More so, in our previous work [13], we showed that
augmentation could be done either at run-time or at the pre-
processing stage. Data augmentation at run-time is commonly
implemented in popular deep learning frameworks such as
PyTorch, TensorFlow, Theano, etc. Data augmentation at the
pre-processing stage was presented in [13]; the result obtained
shows that this is the right way to go, especially for medical
images. We recommended that data augmentation for medical
images be done at the pre-processing stage so that the aug-
mented images can be curated and inappropriate images are
removed before training the model with the dataset.

Hence, the parameters for the augmentation pre-processes
are presented in Table I.

TABLE I
TABLE OF PARAMETERS FOR THE AUGMENTATION PRE-PROCESSES

Data Augmentation Parameter Value(s)
Rotation Rotation angle ± [5, 10, 15]
Gaussian Blurring Kernel size 3
Random Zoom Scale 1.3
Random Lighting Intensity 1.4

C. Discriminative Fine-tuning and Mixed-precision training

To obtain a good generalization, deep learning models must
be trained on a large, well-labelled training dataset, using a
high specification computer with Graphics Processing Units
for a very long time. Hence, the state of the art models in
computer vision were trained on ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) data, consisting of hundreds

of millions of well-labelled training data. When this kind of
huge training data is not available or computational power is
limited, the usual practice is to perform transfer learning.

Transfer learning involves retraining a previously trained
model (base model) on a new dataset from the current problem
(target) domain. Depending on the similarity of the target
domain and the domain where the base model is trained
(usually called source domain), transfer learning could be
feature extraction or fine-tuning. Feature extraction is usually
done when the dataset in the target domain is scanty and is
similar to the source domain. This is done by replacing the last
fully connected layer of the base model architecture with a new
layer corresponding to the target output, initializing the other
layers with the weights from the previous training scenario and
retraining only the newly added layer. Fine-tuning, on the other
hand, is done either when the dataset is scanty or when the
problem domains are different. This is done by replacing the
last layer of the base model with a new layer corresponding to
the target output, initializing the other layers with weights from
the previous training scenario and training the entire network
all over again.

Because fine-tuning involves training the entire network
all over again, the performance of the model on the current
problem depends on how well the training is conducted besides
the high demand for computational power. One of the main
challenges facing fine-tuning is called overfitting, where a
model performed very well on training dataset but poorly
on test or validation data; such model performed woefully
when deployed and should be avoided, especially in medi-



cal applications. Methods of overcoming overfitting include
training with an extensive training set, data augmentation and
regularization. What we mean by an extensive training set is
quite explicit, and data augmentation has been introduced in
subsection III-B. Regularization refers to techniques that make
slight modifications to the learning algorithm such that the
model generalizes better on the unseen dataset. Regularization
can be achieved by optimal selection of hyperparameters such
as learning rates, weight decay, batch size, and dropout. In our
previous work [14] we introduced discriminative fine-tuning,
where we assigned different learning rate and momentum to
each layer of the network. The idea is that we found that
each layer of the network is learning different features and,
as such, has different objectives. Hence, it would be good to
tune each layer with different learning rates and momentum
to facilitate the learning process without getting stuck in the
local minimum or saddle point. This idea has been found
to produce a better result and a good generalization. The
complete algorithm is listed in Algorithm 1.

D. CNN Architecture

To validate the performance of the algorithm, we trained
two deep state of the art architectures – Densenet [15] and
Resnet models [16]. The justification is presented herewith.

Resnet 152 is a 152-layer deep network that surpasses
human-level performance in the 2015 ILSVRC with a 3.57%
top-5 error rate; since then, it has become a state of the art
model in the deep learning community. Deeper networks like
this have been shown to perform substantially better than
shallower counterparts. However, deeper networks are more
prone to vanishing gradient problems, making them hard to
train [16]. This problem was addressed by the implementation
of Residual Block in ResNet. The Residual block modelled
in equation (1) creates a connection between the output of
a convolutional layer and the earlier input to the layer using
identity mapping [16]. Thus, the activation of a Residual block
is given as:

al = H(al−1) + al−1, (1)

where al is the activation of layer l, H(·) is a nonlinear
convolutional transformation of the layer and al−1 is the
activation of previous layer l − 1. The skip connection of (1)
enables more layers to be stacked on each other resulting in
a remarkably deep network.

DenseNet 169 [15] is a 169-layer network with 14 million
parameters, which can easily overfit on small data. This model
is deeper; hence, it achieves higher performance than the
ResNet152 on ImageNet dataset due to its dense block. The
dense block implements a connection that allows a layer to be
connected to all layers before it within the network [15]. That
is, layer l receives feature activations from all its preceding
l − 1 layers as follows:

al = T ([a0,a1, . . .a(l−1)]), (2)

Algorithm 1 Discriminative Fine-tuning Algorithm
1: procedure DFT
2: Input: (αmin : minimum learning rate,
3: αmax : maximum learning rate,
4: mmin: minimum momentum,
5: mmax: maximum momentum,
6: N : size of dataset, batch size)
7: Output: (θ: Network parameters)
8:
9: t ← N

batch size
10: pct ← random number between 0.5 and 1
11: // pct determines how rapidly the learning rate in-

creases or reduces
12:
13: while t ≤ pct × t do:
14: αt ← αmin +

(
αmax−αmin

αmax

)
t // Increase learning

rate for this iteration
15: mt ← mmin +

(
mmax−mmin

mmin

)
t // Increase momen-

tum for this iteration
16: for l in each layer do:
17: αlt ← αmin +

(
αt−αmin

αmin

)
l // Increasing the

learning rate per layer
18: ml

t ← mmin +
(
mt−mmin

mmin

)
l // Increasing the

momentum per layer
19: vlt ← ml

tv
l
t − αlt

dJ(θlt)

θlt
20: θlt ← θlt + vlt // Update the layer parameters
21: end for
22: t← t+ 1
23: end while
24:
25: while pct × t < t < tmax do:
26: αt ← αmax −

(
αmax−αmin

αmax

)
t // Reduce learning

rate for this iteration
27: mt←mmax−

(
mmax−mmin

mmin

)
t // Reduce momentum

for this iteration
28: for l in each layer do:
29: αlt ← αmin +

(
αt−αmin

αmin

)
l

30: ml
t ← mmin +

(
mt−mmin

mmin

)
l

31: vlt ← ml
tv
l
t − αlt

dJ(θlt)

θlt
32: θlt ← θlt + vlt
33: end for
34: t← t+ 1
35: end while

where a is the activation of the lth layer, [a0, a1, . . . a(l−1)]
is a concatenation of all the previous layer activations, which
can be seen as a form of collective information gathered
by the network up to that layer l − 1. T (·) is a nonlinear
transformation function that maps the concatenated activation
to the activation of layer l.

E. Overview of Experiment

A hp G8 server with 128GB RAM and 3.5GHz Intel Xenon
processor was the computer hardware for the experiments



described herewith. The data augmentation experiment was
carried out using Python OpenCV library as follows: the data
was divided into training and validation set using ration 70:30;
then the data augmentation procedure was carried out on each
set, saving each new images to disk; the new images were
then curated, and invalid images were deleted.

The deep learning models were trained using PyTorch deep
learning framework. The inputs to the Discriminative fine-
tuning (see Algorithm 1) are mini batch-size, minimum and
maximum momentum (mmin and mmax); and minimum and
maximum learning rate (αmin and αmax). A batch size of 64
was used for both models; the minimum and maximum mo-
mentum for ResNet was selected as 0.8 and 0.99, respectively,
while 0.79 and 0.9 were chosen for DenseNet, respectively.
The learning rates αmin and αmax were carefully selected
because the values could greatly slow down or hasten the
training process. This learning rate choice was accomplished
by running a single epoch trial experiment on each model
using different learning rates and observing how the loss
function increases or decreases during this epoch. The best
learning rate is selected within the range where the slope
of the loss function reduces sharply, which indicates a large
derivative.

Throughout the experiment, Adam optimizer was used for
the optimization of the backpropagation with a constant L2
norm weight-decay of 0.01. The results of a single epoch and
the training experiment is presented in the next section.

Fig. 3. Finding the optimum learning rate that best optimises the loss function.
The Graph shows the variation of training loss with learning rate.

IV. RESULTS AND DISCUSSION OF RESULTS

The result of the experiment is presented in this section. We
give more consideration to the performance of our model in
terms of precision, recall, sensitivity and specificity. This per-
formance was compared with those reported in the literature,
especially on the same dataset as ours.

The learning rate choice for the DFT algorithm was ac-
complished by running a single epoch trial experiment using
different learning rates and observing how the loss function
increases or decreases during this epoch. Fig. 3 presents the
result of this trial experiment obtained for ResNet; a similar

graph is obtained for DenseNet. The learning rate selected is
within the range where the slope of the loss function reduces
sharply. From Fig. 3, this range is taken from 1e−4 to 1e−3;
hence αmax is 1e−3 while αmin is 1e−4. A similar experiment
was conducted for DenseNet and the αmax was selected to be
1e−2, αmin was 1e−4.

The performance of ResNet and DenseNet trained using
DFT fine-tuning approach is presented in Table II. In addition,
the confusion matrix of the two model is displayed in Fig. 4
and Fig. 5 respectively. From the figures, it can be seen that
both models show a similar trend because their precision and
recall is similar. Hence, the sensitivity and specificity of the
models are 98.81% and 98.73%, respectively.

TABLE II
VALIDATION RESULTS OF DISCRIMINATIVE FINE-TUNING.

Accuracy (%) Precision (%) Recall (%)
DenseNet 98.57 98.59 98.55
ResNet 98.56 98.57 98.56

TABLE III
PERFORMANCE COMPARISON OF OUR RESULT WITH THOSE REPORTED IN

THE LITERATURE

Reference Accuracy (%) Precision (%) Recall (%)
[12] 97.38 99.16 95.53
[17] 95.60 99.00 95.00
[18] 98.70 99.67 84.17
[19] 90.83 95.75 85.89
[20] 94.49 96.55 93.52
Our Model 98.57 98.59 98.55

Fig. 4. Confusion Matrix of DenseNet model on Validation Data.

Lastly, we compare our result with those obtained in the
literature; previous works are done on the dataset we used in



Fig. 5. Confusion Matrix of ResNet model on Validation Data.

this work. The result is presented in Table III. It could be noted
that the models reported in the literature have a low recall rate
compared to precision. The recall is the ability of the model to
identify all relevant positive cases within a dataset, although
most of these model shows near-perfect precision, low recall
rate in the case of medical diagnosis during a pandemic would
not be acceptable. Compared with these result, our model and
approach achieve superiority.

V. CONCLUSION

The automatic prognosis of COVID-19 from CT scan im-
ages using deep convolution neural networks is presented in
this paper. The models were trained using discriminative fine-
tuning, which uses a layer-specific learning rate to fine-tune
a deep CNN model; these learning rates were dynamically
increased or decreased per iteration to avoid the saddle-point
problem and achieve the best performance within few training
epochs. The best performance results were obtained as 98.57%
accuracy, 98.59% precision and 98.55% recall rate.
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