
Deep Learning-based Classification of COVID-19
Lung Ultrasound for Tele-operative Robot-assisted

diagnosis
Adeyinka P. ADEDIGBA

Department of Mechatronics Engineering,
Federal University of Technology, Minna, Nigeria.

adeyinka.adedigba@futminna.edu.ng

Steve A. ADESHINA
Department of Computer Engineering

Nile University, Abuja, Nigeria.
steve.adeshina@nileuniversity.edu.ng

associated cost and risks, the American College of Radiology
recommends that CT scan should not be deployed as first-line
test diagnosis of COVID-19 [2].

Further, CT scan is more expensive and unaffordable in
many healthcare facilities. A cheaper imaging modality is
CXR, although with less sensitivity. The following advantages
of CXR imaging for the detection of COVID-19 were identi-
fied in [3]: firstly, CXR is considered the standard healthcare
equipment; thus, it is readily available and accessible in many
hospitals. Secondly, unlike CT scans, portable CXR systems
are available; consequently, imaging can be performed in
isolation rooms. Lastly, in isolation and test centres with many
patients, CXR systems can allow for the rapid triaging of pa-
tients. However, compared to CT scan, it is more challenging
to observe the specific features of COVID-19 infected lungs
from CXR [4].

Aside from CXR, another relatively cheaper imaging modal-
ity is LUS which can be used at point-of-care in the emergency
department as well as intensive care unit [5]. Deployment of
LUS can significantly speed up diagnosis time, reduce crowd-
ing and congestion of the emergency department. Further
advantages of LUS include portability, bedside diagnosis, zero
radiation (unlike CT scan and CXR), and ease of prognosis [5].
Further, like a CT scan, LUS can identify sublime changes in
the histopathologic features of superficial lung tissues peculiar
to COVID-19 patients. This makes LUS very desirable in the
rapid diagnosis and prognosis of COVID-19 patients.

A healthy lung consists mainly of air; this is seen as in-
cident ultrasound waves back-reflected by the visceral pleural
plane, producing artifactual images characterized by horizontal
reverberation on the pleural line, usually referred to as A-
line. In abnormal lungs, the ratio between air, tissue, fluid and
other biological components is reduced. Hence, the lung is
no longer seen as a complete spectacular reflector, but other
localized vertical artefacts begin to appear corresponding to
the alteration of the subpleural tissues in the lungs. In this
case, the artefacts appear as B-lines of varying heterogeneous
appearance [6].

Clinical findings of COVID-19 features on LUS are shown
in stages: first, the pulmonary appears to contain a patchy
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I. INTRODUCTION

The reverse transcriptase-polymerase chain reaction (RT-
PCR) procedure has become the gold standard for diagnosing 
COVID-19, but the diagnosis is slow and could take hours, 
in addition to being in shortage of supply and low sensitivity. 
To this effect, other diagnosis techniques have been explored 
especially medical imaging such as computed tomography
(CT) scans, chest x-ray (CXR) and lung ultrasound (LUS).

CT scan has been identified w ith h igh s ensitivity and
accuracy, higher than RT-PCR test. The CT scan shows
apparent, distinct features for COVID-19 patients such as 
bilateral ground-glass opacities in the lower lobes of the lungs,
patchy bilateral consolidation or peripheral interstitial changes 
in about 97% of confirmed C OVID-19 p atients. H ence CT
scan has been suggested to be more reliable than RT-PCR test
[1]. Although CT scan is very accurate with high sensitivity 
and specificity, i t c omes with t he associated c ost of h igh risk
of radiation exposure and high risk of COVID-19 transmission
to healthy patients and healthcare workers (HCW). There is
an extended protocol for disinfecting and cleaning both CT
scan and the room to prevent transmission, which could take
a considerable time, resulting in high downtime. Based on this
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distribution of interstitial artifactual signs such as single or
confluent vertical artefacts that extend to multiple lung areas
surface as the infection progress. Further, the appearance
evolved to small subpleural consolidation with associated areas
of white lungs, which finally developed towards insufficient
respiration. These appearances are seen as several B-lines
scattered in the image; the higher the number of B-lines, the
more acute the infection severity [7].

In the proceeding paragraphs, we have established the
practicality of LUS in the early detection of COVID-19.
In this paper, we take full advantage of LUS portability to
present a method of minimizing the infection rate of healthcare
workers. According to Udwadia et al. [8] over 3,000 HCW
were infected with COVID-19 within the first three month.
Although more sophisticated protocols have been put in place,
over 300,000 HCW has been infected globally, with more than
7,000 death [9]. This death rate presents a global shortage of
HCW, which could breed more challenges if not curtail.

Due to the portability of LUS, a low-cost teleoperated
robotic LUS scanning platform was developed by Tsumura
et al. in [10]; this robot was brought to Nigeria via the Africa
University of Science and Technology, Abuja to be deployed
for COVID-19 diagnosis at the Nigerian National Hospital,
Abuja. For now, the teleoperated robot required an expert
sonographer and radiology to interpret the acquired images.
The speed of diagnosis and fatigue of human radiologists
present a bottleneck in this operation, leading to congestion of
test centres and misdiagnosis. Hence, we present the automatic
classification of LUS images using deep learning techniques
for the teleoperated robot’s higher efficiency. A successful
deployment of a deep learning enhanced teleoperated robot
will eliminate the threat of infection of HWC workers by
allowing diagnosis and prognosis to be performed at a safe
distance. The diagnosis can be performed faster, and results
generated within seconds; this will reduce wait periods and
decongest test centres.

Therefore, in this paper, we developed a deep learning-
based model for the automatic classification of COVID-19
LUS images. The model was developed to be executed on low-
specification computers using computational- and memory-
efficient mixed-precision training algorithm. This will pre-
vent additional computational burden on the computer which
concurrently run the robotic software and the deep learning
software. The rest of the paper is organized as follows: the
review of related work both on robotic and deep learning-based
COVID-19 classification from LUS images is presented in
Section II, the robotic design, as well as deep learning model,
is presented in Section III; finally, the result and discussion of
the result are presented in Section IV.

II. REVIEW OF RELATED WORKS

The review of related works is presented here under two
subsections. We reviewed related works in the design of
robot-assisted diagnosis and also research efforts towards an
automatic diagnosis of COVID-19 patients from LUS images.

A. Development of Robot-assisted Diagnosis

Robots have been deployed in different fields due to their
ability to handle adverse hazardous environments, speed of
operation, ease of repeatability and precision. In medical
applications, robot assistance has seen increasing research
interest over the years. In this subsection, we focus on robot-
assisted ultrasound.

The design of robot-assisted ultrasound began in late 1990,
with the intent of designing a more user-friendly interface to
enhance sonographers [11]. Since then, robot-assisted ultra-
sound has seen several developments such as human-operator
corporation control, autonomous operation control and tele-
operative robots. Although some of these earlier robots were
designed for general medical operation, several researchers
present robots optimized explicitly for a particular operation
with specific dexterity and constraint needed to carry out the
task.

Examples of operation-specific designs include [12] who
designed an ultrasound-guided robot for breast biopsies, a
robot-assisted carotid artery tracking was presented in [13]
and robot-assisted abdominal ultrasound measurement was
presented in [14]. A more detailed review of robot-assisted
ultrasound is presented in [15]. Apart from the robot used
in this work, another robotic-assisted ultrasound specifically
for COVID-19 was developed in [16] where a 5G-based
teleoperated robot-assisted ultrasound was developed for car-
diopulmonary assessment of COVID-19 patients. The robot is
based on a multi-link robot arm which is not suitable for lung
ultrasound. The advantage of the robot used in this work is its
simplicity of design optimized for low-income regions.

B. Development of automatic COVID-19 diagnosis from LUS

The primary aim of this work is to develop a deep learning-
based automatic diagnosis of COVID-19 from the LUS image.
Hence, a brief review of related works reported in the literature
is presented herewith.

A deep learning framework for automatic diagnosis of
patients at Point-of-care has been presented in various form
in the literature. A deep learning model for the classification
of point-of-care lung ultrasound images was presented in
[17]. The authors trained a model (called POCOVID-NET)
with 1103 images extracted from 67 videos. POCOVID-NET
consists of layers of VGG-16 used as feature extractors and
an additional fully connected layer of 64 neurons followed
by a softmax layer which classified the data into COVID,
bacteria pneumonia and healthy patients. The model achieved
89% accuracy, 96% recall and 95% precision; the sensitivity,
however, was 93%. The strength of this method is in careful
ultrasound video frame editing. Another deep learning model
based on multi-layer feature fusion is proposed in [18]. Feature
fusion was achieved by direct concatenation of all layers into
a fusion block, followed by two fully connected layers and a
softmax layer to classify the dataset into three classes, similar
to [17]. Due to limited information loss, the model performed
well on the dataset with an accuracy of 91.8% and 92.5%
precision. An assessment of B-line using deep learning model
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was presented in [19] where an 8-layer model was trained to
classify 2415 images extracted from 400 video clips of LUS.
After training, a sensitivity of 93% and specificity of 96% was
reported.

Most of the model reported in the literature were trained
from scratch. Traning a model from scratch is computational
and energy-intensive. Therefore, in this work, we explore a
transfer learning approach for the automatic classification of
LUS images. A similar approach was employed in [20] where
a model for the classification of multi-modal medical images
(CXR, CT scan and LUS) was presented. The model was
significantly biased towards a particular image modality – a
common pitfall for multi-modal training. Instead, we focus
on LUS images for faster, less computationally intensive and
accurate classification that compares favourably with models
trained from scratch.

III. METHODOLOGY

A. Design of the Tele-operative Robotic LUS Platform
In emergency cases, such as presented by the COVID-19

pandemic, the bedside LUS in emergency (BLUE)-protocol
is the widely accepted and validated protocol for diagnosing
acute respiratory diseases. The protocol requires an LUS image
to capture hallmark signs at ten different anterior, posterior,
and lateral chest regions. These scan regions are quite difficult
for a multi-link robot arm to cover. Hence the design presented
in [10] used a gantry-style positioning unit that easily covers
the whole chest-length as well as all the regions required by
the BLUE protocol (see Fig. 1).

The gantry-style positioning unit is less costly to fabricate
and is well suited for low-resource regions than robotic
arms. Besides, it provides the robot with manoeuvrability and
reachability to scan the hemithoracic regions with minimal
risk of colliding with the patient’s body. The robot also
features a passive end-effector unit with a spring-based safety
mechanism that prevents the probe from exerting excessive
force on the patient. Lastly, three cameras and a two-way
microphone are attached to the robot for teleoperation reasons
and real-time communication with the patient.

B. Dataset
The deep learning employed in this work was trained on

an open-access benchmark data of COVID-19 related lung
ultrasound image (called COVIDxUS)1 collected and curated
by [21]. The dataset contains 174 videos of lung ultrasounds
from COVID patients, non-COVID patients but with reported
lung infection and normal LUS images for control study. The
dataset was gathered from six sources: the POCUS Atlas2,
GrepMed3, the Butterfly Network4, Life in the Fast Lane
(LITFL)5, The Radiopaedia6 and the CoreUltrasound7. The

1https://github.com/nrc-cnrc/COVID-US
2http://www.thepocusatlas.com/
3http://www.grepmed.com/
4http://www.butterflynetwork.com/
5http://www.litfl.com/
6https://radiopaedia.org/
7https://www.coreultrasound.com/

Fig. 1. The design of Robotic LUS platform consisting of gantry-style
positioning unit, passive-scan end-effector and cameras [10].

distribution of videos in each data source is presented in Table
I. It should be noted that both linear and convex ultrasound
probes were used for data collection.

However, the goal of our robot-assisted diagnosis is to
classified a LUS as COIVD-19 or non-COVID-19. Therefore,
the videos of Normal and others (as shown in Table I) were
merged to form the non-COVID-19 class while the COVID-19
row represents its class.

C. Data Pre-processing

Data pre-processing techniques were carried out in this work
for the following reasons: (1) the dataset contains videos of
varying intensity, illumination and resolution, which must be
normalized for better performance; (2) the videos must be
turned to images by extracting frames from the videos; and (3)
the dataset is biased towards a particular class; hence the data
must be balanced for better specificity and sensitivity. Methods
for achieving these objectives are presented herewith.

1) Video Extraction and Intensity Normalization: The
videos in the dataset were recorded at an average of 30 frames
per seconds, under different illumination and with different
probes.

The videos were loaded from the disk, and frames were
extracted from each video. Before saving to disk, histogram
equalization was performed on each frame to obtain an evenly
distributed intensity and intensity normalization across all the
frames. In all, 7,803 images were processed.

2) Data Augmentation: The data augmentation was carried
out to enhance our model learn invariant features from the
images. Therefore, various transformations were carried out
on the dataset to obtain a different variant of the same
image, which will enable the model to learn invariant features
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TABLE I
DATA DISTRIBUTION PER LABEL AND DATA SOURCES

Class ButterflyNetwork PocusAtlas GrepMed LITFL Radiopaedia CoreUltrasound Total
COVID-19 33 18 8 0 0 1 60
Pneumonia 0 9 9 19 1 3 41
Normal 2 5 3 3 1 1 15
Other 0 0 0 41 3 13 57

TABLE II
TABLE OF PARAMETERS FOR THE AUGMENTATION PRE-PROCESSES

Data Augmentation Parameter Value(s)
Rotation Rotation angle ± [5, 10, 15]
Gaussian Blurring Kernel size 3
Random Zoom Scale 1.3
Random Lighting Intensity 1.4
Random Warp (Affine) Magnitude 0.4

common to these images. Similarly, Gaussian blur and mild
noise were simulated to make the model robust to noise. This
algorithm has been developed in our previous work in [22],
and the parameters of this augmentation were presented in
Table II.

D. Mixed-precision Training

Deep learning training is a repetitive process, usually com-
putationally intensive, leading to high power consumption due
to the longer training time. Several methods have been pro-
posed to reduce this computational burden without negatively
affecting the training accuracy. The mixed-precision training
introduced in [23] was employed in this work.

The concept of mixed-precision training is as follows.
While training deep learning model, in each mini-batch of
data, the following computational steps are carried out: the
forward-propagation, the loss computation, the weight gradient
computation, the backwards-propagation of error and loss
optimization. All these steps are usually carried out in 32-bit
IEEE-745 single-precision floating-point numbers. However,
the computation can be done 16-bit IEEE-745 half-precision
floating-point number but with a loss of accuracy. To pre-
vent this, a master copy of original weights (before weight
update) is kept to retain the accuracy, whereas the forward-
and backwards-propagation were carried out in half-precision.
This mixed-precision ensures the accuracy is retained while
speeding up the training time up to 8 times.

E. CNN Architecture

For the automatic classification of COVID-19 from the LUS
image, CNN architectures with smaller parameters were em-
ployed. We aim to provide a less computational and memory-
intensive deep learning model with high accuracy, specificity
and sensitivity. In addition, the model must have a small
inference time to allow real-time diagnosis.

For this purpose, SqueezeNet and MobileNet are employed.
The architecture is presented herewith.

SqueezeNet [24]: is a small network architecture that
achieves similar performance to AlexNet on ImageNet dataset
but with 50% fewer parameters. The parameter reduction was
achieved by using 1×1 filter instead of larger filter sizes and
decreasing the number of input channels to their 3×3 filters
instead of 7 × 7 filters used in AlexNet. These smaller filter
sizes have been shown to be an approximation of larger filter
sizes in [25]. Thus, instead of using larger filters, smaller filters
are repeatedly used throughout the network. The network has
421K parameters which take only 0.46MB of memory.

MobileNetV2 [26]: is also a small deep CNN network
optimized for mobile phone. It features a reduced number
of parameters (3.4M), smaller memory footprint (0.4MB)
and fast inference time (75 mili-seconds). The architecture
is built on two concepts: depth-wise separable convolutions
and inverted residuals. The depth-wise separable convolution
operation replaces a full convolution operator with a factorized
version that split the convolution into two separate layers.
MobileNetV2 uses 3×3 separable convolutions, which reduces
the computational cost by nine times compared to traditional
convolution. The inverted residual is similar to the residual
blocks in He et al. [27], but the skipped connection is made
between bottleneck blocks.

F. Overview of Experiment

The experiments are carried out using Python programming
language on an HP G8 server with 128GB RAM and 3.5GHz
Intel Xenon processor. The video processing, intensity nor-
malization and data augmentation were carried out using the
Open-CV python library. Training of deep learning models
was carried out using Fastai library8.

The training parameters are as follows: the images were
resized to 224 × 224, and a mini batch-size of 64 was used
for the training. The training was carried out within 30 epoch
to obtain the best performance. Adam optimizer was used with
a learning rate of 0.001, the momentum of 0.98 and the L-2
norm regularization constant of 0.0001. The performance of
each of the model is presented in the next section.

IV. RESULTS AND DISCUSSION OF RESULTS

The CNN models presented in subsection III-E were fine-
tuned with our dataset according to the experimental setup
presented in subsection III-F. The result of this experiment is

8doc.fast.ai
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presented herewith. Also, the performance of our models is
compared with those reported in the literature.

The performance of SqueezeNet and MobileNet is presented
in Table III, this performance is compared with those reported
in the literature and presented in Table IV. A typical infer-
ence from SqueezeNet in real-time is presented in Fig. 2
showing the prediction probabilities for each image and the
loss acquired during the process. From the Figure, the model
makes accurate prediction but with high confidence (average of
0.9) and a lower loss penalty (average of 0.09). Similarly, the
precision and recall rate of our models are quite high (average
of 99.4%).

TABLE III
TRAINING RESULTS

Model Accuracy Recall Precision

MobileNet 99.73 99.38 99.56
SqueezeNet 99.75 99.40 99.60

TABLE IV
COMPARISON OF OUR MODEL WITH THOSE REPORTED IN THE

LITERATURE

Ref Accuracy Precision Recall
[17] 89.0 95.0 96.0
[18] 91.8 92.5 -
[19] - 93.0 96.0
[28] - 85.7 1.0
Our Model 99.75 99.4 99.6

Lastly, the two models were tested on 1,500 LUS images.
A perfect result was obtained, and the summary is presented
in Fig. 4 as a confusion matrix.

The two models were trained end-to-end on the image
without heavy pre-processing or feature engineering. This
means the models can perform well when deployed for real-
world usage without further engineering.

V. CONCLUSION

Deep learning models for the rapid classification of COVID-
19 from LUS images have been presented in this work. The
developed models were based on two small parameters CNN
architectures – SqueezeNet and MobileNetV2 – to be deployed
for tele-operative robotic-assisted lung ultrasound. The models
were trained on 7,803 images of both linear and convex
ultrasound probes gathered from six different data sources.
The models achieves 99.74% (± 1) accuracy, 99.39% (±
1) recall and 99.58% (± 2) precision rate. The model was
tested on 1,500 ultrasound images, and it achieves a perfect
classification accuracy. Further, looking at the inference of the
model, it shows that the classification was performed with
great confidence, lower classification cost and great accuracy.
We believe that a timely deployment of this model on the tele-
operative robot-assisted LUS will remove the risk of infection
of healthcare workers.

Fig. 2. Inference of deep learning-based classification

Fig. 3. Confusion Matrix of SqueezeNet on 1,500 test images
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