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Abstract—Breast Cancer is one of the most diagnosed cancer
and the leading cause of death among women worldwide, second
only to lung cancer. Mammographic screening has been the most
successful screening technology capable of detecting up to 90%
of all breast cancer even before a lump growth can be felt
using breast exam. However, mammogram is a low intensity
image and the heterogenous nature of breast can make healthy
breast tissue appears as cancerous, this is most common among
women with dense breast (aged 40 – 44). Thus, the sensitivity
for early detection of breast cancer from mammogram has been
estimated to 85 – 90%. This result can be improved by Deep CNN,
however, to achieve good generalization, it must be train with
high voluminous dataset whereas, mammographic dataset exists
in smaller volume. In this paper, we present a method of training
deep CNN with few datasets to achieve high training result and
good generalization. An augmentation technique that increase
both size and variance of the dataset is presented herewith,
the augmented dataset was used to train five state of the art
models. Highest training and validation accuracy (99.01% and
99.99% respectively) were achieved with DensNet. Meanwhile,
SqueezeNet, a deep CNN model with fewer parameter also shows
promising result, which means soon this model can be deployed
into microcontroller and FPGAs for clinical applications.

Index Terms—Breast cancer, Deep Convolution Neural Net-
work, Mammogram, Transfer learning

I. INTRODUCTION

Breast Cancer (BC) is a malignant tumour that begins
its development from the breast cells, commonly the milk-
producing glands called lobules or the milk passages called
ducts. The term carcinoma refers to malignant tumour that
develops from the lining epithelial cells of the breast duct
(ductal carcinoma) or lobules (lobular carcinoma). Over time,
these cancerous cells can invade adjacent breast tissues or
metastasize to remote cells of the body; this is referred to as
Invasive Breast Cancer [1]. About 85-90% of BC result from
genetic and environmental factors while about 5-10% are due
to hereditary [1].

BC is one of the most diagnosed cancer and the leading
cause of death among women worldwide, second only to lung
cancer. It is estimated that every 1 in 8 US women will develop
invasive breast cancer in the course of her lifetime; in China,
the incidence rate of breast cancer is estimated to be 22.1%
in 100,000 people per year [2].

The symptoms of BC ranges from lumps swelling to skin
changes while some may show no obvious symptoms at all.
The full symptoms of BC were outlined by American cancer
Society as follows: swelling of all or part of the breast, skin
irritation or dimpling, breast pain, inward turning of nipple
accompany with pain, thickening or redness of the nipple
or breast skin, unusual nipple discharge and a lump in the
underarm [2]. Early detection of BC is easier to treat, offers
less risk and reduced mortality rate up to 25% [3]. Thus, breast
self-examination has been recommended as part of monthly
health routine for women, meanwhile other diagnosis such as
biopsy, mammogram, breast histopathology, thermography and
ultrasound imaging are highly recommended for women aged
40 years and above [4].

Mammographic screening is the most common and most
effective breast cancer screening technology capable of de-
tecting up to 90% of all breast cancer even before a lump
growth can be felt using breast exam [5]. Mammogram uses
a low-dose X-ray imaging of the breast where tissues in the
breast as well as tumours appear as different shades of grey
on the image whereas fats which are radiolucent appear black
on the image, and masses such as calcifications appears as
white (see Fig. 1). Breast screening and breast diagnosis are
the two type of breast exams performed using mammography.
Mammographic screening aims at detecting the presence of
lesion in the breast while breast diagnosis is a follow-up test
performed on the patients who have demonstrated abnormality
in the clinical findings [6]. Mammographic screening usually
involves two views of the breast pairs namely Cranio-Caudal
(CC) and Medio-Latera oblique (MLO).

Fig. 1. Mammographic Image pair

Mammographic screening has increased early detection of
Breast cancer resulting in early treatment of the tumour.
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However, mammogram is a low intensity image and the
heterogenous nature of breast can make healthy breast tissue
appears cancerous, this is most common among women with
dense breast (aged 40 – 44) [5] [6] [7]. This results in difficulty
of radiologists to interpret results of mammographic screening,
the sensitivity of early detection of breast cancer from mam-
mogram has been estimated to 85 – 90% [8]. To assuage this
problem, double reading method has been employed where
two expert radiologists are employed to interpret a single
mammographic image [6]. This method was found to reduce
false positive rate but at an extra cost and workload, more so,
in some cases, this method is not feasible. Thus, Computer
Aided Detection (CAD) algorithms has been proposed based
on different machine learning techniques [9] [10] [11] [12]
[13]. The most successful of these techniques has been the
application of deep convolution networks to the detection of
mammogram [14] [15] [16] [17] [18]. While this method is
very successful with high accuracy, sensitivity and low false
positive rates, it suffers from data availability. Deep Learning
models requires huge training data to achieve high accuracy,
meanwhile, medical image database is usually small, this has
led to high training error and limited the clinical application
of these models [16][18]. In this paper, we present a method
of training deep learning models using smaller mammogram
dataset. The dataset used contains only 322 images which was
used to train five large and deep Convolution Neural Networks
(CNN) models in a transfer learning approach.

The rest of this paper is organized as follows: theoretical
framework and review of related works were presented in
Section II, our dataset augmentation technique was presented
in Section III along with architecture of models employed in
transfer learning; finally the result was presented in Section
IV.

II. RELATED WORKS

It has been shown that generalization error of deep CNN
increases substantially when the training example is small [19],
more so, all the state of the art models were trained on very
large dataset (typically tens of millions of training dataset) to
ensure their training, validation and test accuracy. However,
medical images are available in limited number (less than
hundreds of thousand), therefore there is need to develop an
effective algorithm which adapt network trained on domains
with voluminous training data to diminutive dataset available
in the medical domain. Domain Adaptation techniques comes
handy in this case, it provides mechanism of transferring
knowledge from a source domain (for instance, domain with
voluminous training examples) to a target domain (where
training data is small) by exploring domain-invariant structures
that underline distribution discrepancy in the two domains.
Transfer learning, an example of domain adaptation technique,
is a method of retraining a previously trained deep CNN
(base model) in a way that facilitate the reuse of their learned
features and applying them on a new task (target model) by
fine-tuning their fully connected layers only [20]. Furthermore,
Zeiler and Fergus [21] shows that regardless of dataset domain,

deep CNN learns similar features in their early layers, owing
to their presence in all natural images these features are
called ‘general’ feature in [22]. Thus, deep CNN are able
to disentangle underlying features in image distribution and
group them together in an hierarchical way in accordance
to their related invariance factors such as edges, curves and
colour blobs [19] [21] [22].

Many researchers have exploited this mechanism to obtain
good classification result from medical images, some also
compare results of different base models. For instance, [6]
trained four different CNN architectures namely: AlexNet,
VGG, GoogLeNet and ResNet while [23] trained only two:
AlexNet and GoogLeNet, their results shows that GoogLeNet
performs better than the other networks models 95.06% and
93.4% respectively were obtained in [6] and [23]. Ten different
(target) model configurations were trained with transferred
weights from AlexNet in [24], similarly, with learned features
from AlexNet [25] built multi-instance network to predict
the presence of cancer in an image. More so, precision of
localizing breast cancer tumour has been greatly by transfer
learning approach [26] [27].

Although impressive results were obtained from transfer
learning, yet, Yosinski et al. shows that model could overfit
if the dataset in the target domain is small [22]. To prevent
overfitting, data augmentation has been used in different forms.
Data augmentation describes methods of increasing the size
and variance of dataset utilized in training a machine learning
model to achieve better generalization and to capture the
underlying distribution of the training dataset. In mammogram
classification, patches extraction is the common practise for
data augmentation [24] [25] [28]. Although this increases size
of the dataset, it fails to introduce variance to the training
set besides lacking practical implication. The augmentation
technique introduced in this paper not only increases the
dataset but introduce variance to the dataset such as ones
encountered in practical settings.

III. METHODOLOGY

This section discusses the methodology taken in this work.
Starting with an introduction to the dataset used, the augmen-
tation algorithm was presented, followed by a brief discussion
on the (base) model architectures used in this work. This
section concludes with the presentation of experimental setup
for training the models.

A. Dataset

To demonstrate how small dataset can be utilize to achieve
great training and validation accuracy, Mammographic Image
Analysis Society (MIAS) database of mammogram version
1.21 was used. It contains 161 pairs (322) of mammogram
taken at resolution of 50 micron which was further reduced
to 200 micron pixel such that each image is 1024×1024
grayscale image. The dataset can be grouped into three classes:
normal, benign and malignant. In the case of malignancy,
the coordinate of centre and radii was provided to locate the
calcification region. However, in the case of invasive (BC)
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where calcifications are widely scattered, centre and radii
coordinates were omitted. The database label was clearly laid
out to avoid mix-up as provided in Table I.

TABLE I
DESCRIPTION OF MIAS DATASET

Column Description
1 MIAS database reference number
2 Character of the breast tissue:

F – Fatty,
G – Fatty-glandular and
D – Dense-glandular

3 Class of Abnormality
CALC – calcification
CIRC – Well-defined masses
SPIC – Spiculated Masses
ARCH – Architectural distortion
ASYM – Asymmetry
NORM – Normal

4 Severity of Abnormality
B – Benign
M – Malignant

5,6 Coordinate of centre of abnormality
7 Approximate radius of a circle enclosing the abnormality

B. Data Augmentation

To train a deep convolution network with little training
dataset as ours without overfitting, data augmentation is very
imperative. Augmentation in this project was done with two
goals: firstly, to increase the dataset and secondly, to increase
variance within the dataset. To achieve these, additional images
were synthesized by randomly performing gaussian blurring,
horizontal flipping, internal refection and mild addition of
white noise.

The Gaussian blurring applies two-dimensional Gaussian
filters on input image with the aim of removing noise but
in this case, Gaussian blurring was used to add within-class
variance to the dataset. The filter is developed as an extension
of one-dimensional Gaussian filter, given by:

G(x) =
1√
2πσ2

e−
x2

2σ2 (1)

Thus, the two-dimensional Gaussian filter is given by:

G(x, y) =
1√
2πσ2

e−
x2+y2

2σ2 (2)

Where σ2 is variance of the Gaussian filter. It can be noticed
that (2) is a product of two Gaussian filters. Applying (2) as
image filter to pixel coordinate (r, c) according [29] to yields:

G(r, c) = e
||r−c||2

v (3)

Where r is the row and c is the column coordinate. From
(3), it shows that Gaussian blurring works by adjusting the
Euclidean distance between neighbouring pixel intensities.
Blurring is common phenomenon encountered in medical
images. It is usually introduced during the process of cap-
turing the mammographic image. Thus, introducing Gaussian
blurring to the training dataset not only increases the dataset,

but also increases the variance within the dataset, making the
model more robust.

The image horizontal reflection is formed by flipping the
row coordinates of the original image to obtain new image,
this is mathematically given by:

I(r′, c) = I(−r, c) (4)

Likewise, the image rotation is achieved by randomly
adding or subtracting small angle φ from the coordinate of
the original image, this is mathematically given by:

(r′, c′) = ±rcosφ± csinφ (5)

The overall augmentation algorithm is as follows: an image
is randomly picked (with replacement) from the dataset, the
three augmentation transformation to be performed are as
defined, then a pipeline of these augmentation transformations
is formed which is then randomly selected from and applied
on the image. After the transformation is applied to the image,
the new augmented image is then saved to disk. This algorithm
is summarized in Fig. 2:

Fig. 2. Data Augmentation Algorithm
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C. CNN Model Architecture

To test the hypothesis, transfer learning was performed us-
ing popular pre-trained CNN models. In this project, AlexNet,
VGG, ResNet, DenseNet and SqueezeNet were used, the
architectures as well as the central design idea of each of
these networks is discussed herewith:

AlexNet [30]: is an eight-layer network consisting of five
convolutional layers and three fully connected layers, pre-
trained on the high-resolution ImageNet dataset. AlexNet,
developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya
Sutskever, won the 2012 ImageNet competition with 15.3%
top-5 error rate and has since become one of the baseline
models in CNN history.

VGG [31]: is a 16-layer CNN developed by the Visual
Geometry Group, Oxford University. The model was pre-
trained on ImageNet dataset for ImageNet competition. VGG
is the 1st runner-up of 2014 ImageNet classification task.
VGG is desired for its uniform 3x3 convolution kernel used
in building the architecture of the model and due to its simple
kernel structure, it has become a favourable model for feature
extraction tasks.

SqueezeNet [32]: achieves similar performance to AlexNet
but with 50% fewer parameters. The parameter reduction
was achieved by using 1×1 filter instead of larger filters and
by decreasing the number of input channels to their 3×3
filters. This follows from [33] and [31] where smaller filters
has been shown as an approximation of larger filters. Thus,
instead of using larger filters, smaller filters are repeatedly used
throughout the network which guarantee parameter reduction.
The accuracy, on the other hand, was maintained by ensuring
that each convolution layer receives large activation maps from
the previous layer, that is, pooling (or downsampling) was not
applied to earlier layers of the network. These key intuitions
were implemented in the fire module of the network, which
comprises of a squeeze module (1×1 filter) and an expand
module (which has a 1×1 filter followed by 3×3 filter). The
model was trained using similar parameters to AlexNet and
its performance was benchmark against AlexNet. It was found
that SqueezeNet perform as well as AlexNet, despite its fewer
parameters [32].

ResNet [34]: generally, deeper convolutional network out-
performs shallow counterpart [35], however training deeper
model increases training error rate due to vanishing gradient
problem [34]. To solve this, ResNet introduced Residual block
(6) which creates a connection between the output of a
convolutional layer and the original input to the layer using
identity mapping [34]. Thus, the activation of a Residual block
is given as:

al = U(al−1) + al−1 (6)

Where al is the activation of layer l , U(·) is a nonlinear
convolutional transformation of the layer and al−1 is the
activation of previous layer l − 1 . The skip connection of
(6) enables more layers to be stacked on each other resulting
in a deep network. The ResNet 152, a 152-layer convolutional

network won the 2015 ImageNet competition with 3.57%
top-5 error rate, higher than human-level performance. In
this work, ResNet 101, a 100-layer convolutional network
pretrained on ImageNet dataset was used.

DenseNet [36]: it is possible to train much deeper network
with fewer parameters and better accuracy than ResNet, by
implementing Dense block (7) instead of residual block (6).
The dense block creates a form of connection that allows any
layer within the network to be connected to all layers that
follows it [36]. That is, layer l receives feature activations
from all its preceding l − 1 layers as follows:

al = T ([a0,a1, . . .a(l−1)]) (7)

Where a is the activation of the lth layer, [a0, a1, . . . a(l−1)]
is a concatenation of all the previous layer activations which
can be seen as a form of collective information gathered by the
network up to layer l − 1. T (·) is a nonlinear transformation
that maps the concatenated activation to the activation of
layer l. Comparing (6) and (7): the element-wise operation of
the skipped connection in (6) resulted in parameter increase
of O(C×C), whereas (7) resulted in fewer parameters of
O(l×k×k) where C is the number of channels, k is the growth
order of the dense connection and l is the number of layers.
For example, ResNet101, a 101 layers convolutional network
has 10.2M parameters while DenseNet-BC (with k = 12), a
100 layers convolutional has 0.8M parameters [36].

D. Experimental Setup

Dataset: The image in the dataset was first resized to
400x400 from its original 1024x1024 resolution to reduce
memory implication. Then augmentation algorithm presented
in Fig. 2 was implemented on these resized images to generate
9,000 images of which 8,000 was used for training and 1,000
for validation.

Parameters: Transfer learning was used to initialize the
weights of each model. The input to all the models is 224x224
grayscale image while the output layer was set to 3, according
to the number of classes in this project. The base learning
rate of 10−4 was used, which was gradually reduced by 0.1
at every 10 epochs. Adam optimization algorithm was used
with momentum of 0.9, mini-batch size of 32 for 50 iteration.
AlexNet, VGG and SqueezeNet were trained with dropout rate
0.4 to prevent overfitting.

Hardware/Software: The setup was implemented on Py-
Torch and trained on Assus with NVIDIA RTX 2070, Intel
Core i7-8750H for three hours.

IV. DISCUSSION OF RESULT

The experimental results are presented in this section.
A performance comparison of augmented and unaugmented
training dataset in deep CNN has been presented in [23], in
this work we focus on improving the performance of deep
CNN with augmented dataset.

Results shown in Table II, Fig. 3 and Fig. 4 were
obtained when the models were trained using augmented
dataset.The best training and validation result were obtained
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TABLE II
RESULT OF TRANSFER LEARNING WITH AUGMENTED DATASET

Model Name Training Accuracy (%) Validation Accuracy(%)
AlexNet 94.5 81.11
SqueezeNet 95.3 77.78
VGG 98.68 96.67
ResNet 98.39 99.99
DenseNet 99.01 99.99

with DenseNet while AlexNet performed least in training
accuracy and SqueezeNet perform least in validation accuracy.
From the result in Table II, the following can be deduced:
• Deeper network outperforms shallow counterparts. The

top training and validation accuracies were obtained from
DenseNet and ResNet which has depth of 100 and 101
respectively. The outstanding performance of DenseNet
owes to their improved information (i.e availability of
more activation maps) and gradient flow throughout the
network, as mentioned earlier, this was made possible by
the dense connection of all layers within the network.

• Smaller filter size is indeed an approximation of larger
counterparts and can improve convergence as well as
performance. For instance, VGG which uses filter size of
3×3 achieves slightly superior training result than deeper
ResNet. This is further proved by SqueezeNet’s better
training performance compared to AlexNet. As earlier
said, SqueezeNet used 1×1 and 3×3 filter size in its
squeeze and expand module respectively, compared to
AlexNet which uses 7×7 filter size in its first layer.

• Lastly, the performance of SqueezeNet raises hope of
hardware realization of breast cancer detection using deep
learning. Given its fewer parameter and low memory
requirement, this can be easily deployed to FPGA and
microcontrollers [32]. Although not shown in this work,
SqueezeNet can be fine-tuned for better performance by
adjusting its hyperparameters.

Fig. 3. Comparison of Training Accuracy using different models

Augmentation is a very germane to application of deep
learning to medical dataset, a carefully augmented dataset
can greatly improve performance. By carefully augmenting
a small dataset, we achieve better performance compared to
those reported in literature. Comparison of our result to those

Fig. 4. Comparison of Validation Accuracy using models

TABLE III
COMPARISON OF OUR RESULT TO THOSE REPORTED IN LITERATURE

Reference Highest Accuracy Reported (%)
[6] 95.06
[23] 93.4
[27] 88
[14] 98.82
[15] 92
[16] 91.5
Our method 99.01

reported in literature is presented in Table III. The highest
accuracy was reported in [14] where 500 mammographic
images were augmented to train a deep CNN in a transferred
learning approach, Table II and Table III show that our
approach yields better accuracy with different models.

V. CONCLUSION

A method of training deep learning models on smaller
medical dataset has been presented in this paper. Medical data
was passed through a pipeline of image transformations so
as to increase size and introduce variance within the dataset.
The augmented dataset is used to train popular deep CNN
architectures. Comparing the result of different model, we
observed that deeper models outperforms shallow ones and
models that uses smaller filter (or kernel) size trains faster and
obtained higher training accuracy than those that use larger
filter size.
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