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Abstract: The recent advancements in Information and Communication Technology (ICT) as well as

increasing demand for vehicular safety has led to significant progressions in Autonomous Vehicle

(AV) technology. Perception and Localisation are major operations that determine the success of AV

development and usage. Therefore, significant research has been carried out to provide AVs with

the capabilities to not only sense and understand their surroundings efficiently, but also provide

detailed information of the environment in the form of 3D maps. Visual Simultaneous Localisation

and Mapping (V-SLAM) has been utilised to enable a vehicle understand its surroundings, map

the environment, and identify its position within the area. This paper presents a detailed review

of V-SLAM techniques implemented for AV perception and localisation. An overview of SLAM

techniques is presented. In addition, an in-depth review is conducted to highlight various V-SLAM

schemes, their strengths, and limitations. Challenges associated with V-SLAM deployment and future

research directions are also provided in this paper.

Keywords: autonomous vehicles; computer vision; localisation; mapping; visual SLAM

1. Introduction

Autonomous Vehicles (AVs) have received widespread attention globally due to their
low deployment costs, low on-board sensor sizes, and improved technology [1–4]. AVs
have the ability to carry out various driving tasks with minimal or no human supervision.
This unique ability of AVs significantly reduces driver workload while increasing driver
comfort and efficiency. Additionally, these systems improve vehicle safety by reducing
human errors, such as drowsiness, intoxication, fatigue, and loss of concentration, which
in turn lead to vehicle accidents [2,5–7]. The end-goal of AV development is to create a
driverless system that can perform diverse driving tasks [8]. The successful operation
of AVs depends on five operational modules which are perception, localisation, decision
making, planning, and control [8,9]. While decision making, planning, and control majorly
involve problem solving, the vehicle can only perform these tasks based on the input from
the perception and localisation modules. Perception, planning, and control are significant
challenges in AV security and safety [10]. Understanding the surroundings is critical in
a vehicle’s operation [11], and sensing the environment is achieved using a variety of
perception technologies such as cameras, lidar, radar, Global Position System (GPS) devices,
and ultrasonic sensors [12]. Localisation involves a vehicle estimating its position and
orientation within a perceived environment. Robust localisation is another key challenge
in AV deployment [13]. Several studies have implemented GPS and Global Navigation
Satellite System (GNSS)-based localisation schemes. However, these techniques have
proven insufficient in terms of precision, and as such, recent research efforts have focused
on the use of lidar and cameras for localisation [13]. A popular technique which utilises
cameras and lidar sensors for perception and localisation is Simultaneous Localisation and
Mapping (SLAM).

Sensors 2022, 22, 8943. https://doi.org/10.3390/s22228943 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228943
https://doi.org/10.3390/s22228943
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0405-5589
https://orcid.org/0000-0002-6796-5814
https://orcid.org/0000-0002-6796-5814
https://doi.org/10.3390/s22228943
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228943?type=check_update&version=1


Sensors 2022, 22, 8943 2 of 16

SLAM is method in which an autonomous navigation system obtains 2D or 3D geo-
metric information about its surroundings, which is usually unknown, estimates its pose
within that environment, and generates a map of the area [14,15]. SLAM-based systems
have been used in a wide range of applications such drones, mobile robots, virtual reality,
and augmented reality [14,16]. A variety of sensors have been used in implementing SLAM
such as lidar, GPS, and Inertial Measurement Unit (IMU) sensors [14,17]. However, SLAM
based on cameras has been widely studied due to the low cost, simpler configuration, low
energy consumption, and versatility of cameras [14,16]. This technique, known as Visual
SLAM (V-SLAM), uses cameras to estimate an autonomous agent’s position and orientation
within an environment, as well as map that environment.

V-SLAM is technique under Visual Odometry (VO) which uses cameras to calculate a
body’s change in position over time [18]. V-SLAM has been implemented with different
camera types and configurations. Monocular, stereo, and RGB-D cameras have also been
successfully used in developing SLAM-based systems [19]. Additionally, these techniques
utilises a variety of feature extraction techniques [20] and some researchers have combined
traditional V-SLAM schemes with machine and deep learning [21]. Furthermore, the maps
generated by SLAM algorithms provide a visual representation of the environment in 2D
forms, as in the case of binary occupancy grid maps [22] or 3D forms such as point cloud
maps [23].

In this paper, a detailed review of V-SLAM techniques implemented in AVs and mobile
robots is presented. The study takes an in-depth look at the techniques, strengths, and
limitations of the methods implemented in these systems. The effectiveness and accuracy
of current V-SLAM techniques are also highlighted in this study. The main objectives of
this paper are as follows:

• Develop a hierarchy of existing V-SLAM methods with a focus on their respective
implementation techniques and perceived advantages over their counterparts;

• Discuss key characteristics of V-SLAM techniques in literature and highlight their
advantages and limitations;

• Perform a comparative analysis of recent V-SLAM technologies and identify their
strengths and shortcomings;

• Identify open issues and propose future research directions in V-SLAM schemes
for AVs.

The rest of this paper is organised as follows. Section 2 provides a background on
SLAM with focus on the different types of SLAM algorithms and their implementations. An
in-depth look at V-SLAM schemes, their types, architectures, and applications are presented
in Section 3. Proposed future directions in the area of V-SLAM research are presented in
Section 4 while the conclusion is provided in Section 5.

2. Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM) is a major problem in the field of
robotics and autonomous navigation systems. The solution to the SLAM problem enables
a mobile robot or AV to create a map of its environment while simultaneously keeping
track of its pose within the same environment [24,25]. In the last three decades, significant
achievements have been recorded in the field of SLAM [16]. SLAM has been implemented
in ground [26], aerial [27], and underwater [28] systems.

The SLAM problem has been solved using a variety of approaches. Filter-based
algorithms such as Extended Kalman Filter (EKF) and Particle Filter (PF) have been used
in SLAM systems. Estimation theoretic approaches such as Bayesian estimation have also
been implemented to solve the SLAM problem [24]. For instance, in [29], an optimized self-
localization technique for SLAM was presented. This method was developed for dynamic
scenes using hypothesis density filters. The novel approach, called GEM-SLAM, achieved
major improvements over three benchmark algorithms namely, the Rao Blackwellized
Probability Hypothesis Density (RB-PHD) filter, the Single Cluster Probability Hypothesis
Density (SC-PHD) filter, and the Factored Solution to SLAM (FastSLAM) algorithm.
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2.1. SLAM Techniques

SLAM techniques can be categorised into two groups: the Filter-based SLAM and the
Graph-based SLAM [29]. The graph-based techniques depend on non-linear optimization
techniques and thus, the method used must ensure convergence to global minima. Addi-
tionally, pose graph optimisation is susceptible to accumulated errors. Loop closure is used
to detect a previously visited location and recalibrates the system’s trajectory [29]. Other
graph-based techniques include Occupancy Grid-based SLAM [30], Graph SLAM [30], and
Incremental Smoothing and Mapping (iSAM) [31,32].

Because of the limitations of graph-based approaches, such as convergence to local
minima and cumulative errors, filter-based techniques have been investigated as possi-
ble alternatives to graph-based techniques. The EKF is one of the earliest methods for
solving SLAM and was proposed by [33]. A clutter resistant SLAM algorithm for au-
tonomous guided vehicles in dynamic industrial environments was presented in [24]. This
clutter-resistant technique uses point features generated from reflectors and line features to
improve SLAM robustness. The technique proved to be accurate and efficient by keeping
the localisation error within 19 mm and 31 mm for the X-axis and Y-axis, respectively.

The Unscented Kalman Filter (UKF) is related to the class of Linear Regression Kalman
Filters. This technique is widely used in SLAM systems to linearize random variable non-
linear functions using linear regression [34]. A localisation technique for Wireless Sensor
Networks (WSNs) based on UKF and PF algorithms was presented in [34]. The authors
modified a Kalman Filter based on UKF and PF localisation. This proposed technique
showed a variety of applications such as target tracking and robot localisation based on the
simulation results.

The PF is also another filter-based method used in SLAM. The PF samples multiple
possibilities (particles) of the observer and filters them based on the likelihood of them
having the correct pose [35,36]. A fast algorithm of SLAM for mobile robots based on ball
PF was presented in [26]. This technique was a modification of the box PF and the firefly
algorithm is used to maintain the diversity of ball particles. This process increased the con-
sistency of the pose estimation and the results demonstrated the superiority in performance
of the technique. In addition, ref. [37] presented an embedded PF SLAM implementation
using a cost effective platform. In this study, a Genetic Algorithm (GA)-based approach
is implemented for calibration and to prevent overfitting. This process provided more
generalizable results, robustness, and improved performance. Furthermore, a PF SLAM
using differential drive mobile robot was presented in [38]. The study implemented a
PF-based SLAM technique on a mobile robot called e-puck. This study observed that the
number of particles used had an effect of the performance of the algorithm. Also, ref. [39]
developed a stratified PF SLAM based on monocular cameras. This study used a sample
weighting algorithm to stratify the particles and was implemented for an Unmanned Aerial
Vehicle (UAV). The results were compared to different sample weighting approaches and
exhibited improved robustness and accuracy.

In addition, the Rao-Blackwellized Particle Filter (RBPF) is used for robust estimation
in SLAM [29]. For instance, ref. [40] presented a study which improved grid-based SLAM
with RBPF by adaptive proposals and selective resampling. This technique computed an
accurate proposal distribution which considers both the movement of the robot and its
most recent observation. The results exhibited the advantage of this technique over other
previous approaches. Another popular filter-based technique used in SLAM is the Factored
Solution to Simultaneous Localization and Mapping (FastSLAM) which is based on the
RBPF [41,42]. The FastSLAM algorithm was later improved by Montemerlo [43,44]. A
hierarchy of the types of SLAM techniques is presented in Figure 1.

2.2. Sensors Used in SLAM

Autonomous navigation systems use a variety of sensors to perceive the environment
and localise themselves. These sensors include lidar, sonar, a Radio Frequency Identifi-
cation (RFID), Global Positioning System (GPS), Inertial Measurement Units (IMU), and



Sensors 2022, 22, 8943 4 of 16

vision sensors [17]. For instance, ref. [45] evaluated the exact flow of particles used for
state estimations in unmanned aerial system navigation. The technique utilised sensor
information obtained from IMU and GPS sensors and implemented a novel Bayesian
filtering SLAM technique for aerial environments. The results proved the effectiveness
of this technique over existing methods in terms of speed of convergence and accuracy.
Furthermore, ref. [46] presented a PF-based landmark mapping for SLAM of mobile robots.
This technique was based on a Radio Frequency Identification (RFID) system and used two
separate filters to estimate position and orientation of the robot and integrated circuit tags.
The experimental results validated the technique and showed its computational efficiency.

Figure 1. Hierarchy of SLAM Techniques.

SLAM based on lidar sensors is a popular research area since the sensor data is not
affected by illumination changes unlike cameras [47]. This technique is considered to
be an accurate and effective method for autonomous agents to create a map and localise
themselves [25]. A conic feature-based SLAM technique was developed for open environ-
ments in [25]. The technique utilised 2D lidar and a defined conic feature-based parametric
approach. The experimental results proved the accuracy of the algorithm in open envi-
ronments. In addition, ref. [48] benchmarked PF algorithms for efficient Velodyne-based
vehicle localisation. Due to the large amount of information obtained by the 3D Velodyne
lidar sensor, an analysis was performed to ascertain the how many points were required
to achieve optimal efficiency and positioning accuracy. The study conclude that an initial
density of two particles per square metre were required to achieve total convergence.

Additionally, Global Navigation Satellite System (GNSS) has been successfully used to
implement localisation techniques in SLAM. GNSS provides multiple positioning solutions
such as precise point positioning, single point position, and Real-time Kinematic (RTK).
GNSS is low cost and works well in an open sky environment [47]. A continuous positioning
algorithm based on RTK and Visual Inertial SLAM (VI-SLAM) was presented in [49]. In
this study, VI-SLAM was used to complement the limitations of RTK such as blockage
of satellite signals by trees and buildings. The results showed the effectiveness of the
technique to provide continuous positioning solutions. Furthermore, sonar sensors have
been successfully implemented in SLAM systems. The sensors’ ability to perform effectively
in underwater water scenarios has made it a popular choice. A PF SLAM with 3D evidence
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grids in underwater environments was presented in [50]. This study utilised the RBPF in a
flooded subterranean environment using sonar data, and provided successful results.

Laser scanners have also been implemented to solve SLAM problems due to their
ability to provide bearing and range information [51]. A PF-based outdoor robot localization
technique using natural features extracted from a laser scanner was presented in [51]. This
method applies batch processing which extracts features from full laser scans. The PF is
applied to reduce the estimation error associated with EKFs and the technique was verified
in real world experiments. Additionally, ref. [52] presented a distributed SLAM technique
using improved PF for mobile robot localisation. This method used data obtained from
laser sensors and dead reckoning. The system exhibited better tolerance and robustness
over Distributed PF SLAM. Table 1 shows the various sensors used in SLAM and highlights
their merits and demerits. The sensors outlined have been implemented in various SLAM
techniques with varying configurations. Thus, they can be used for both feature-based and
graph-based SLAM implementations.

Table 1. Overview of SLAM Sensors.

Sensor Advantages Limitations

Lidar • Can provide 3D and 2D information [25].
• Can be used as a standalone SLAM technique [25].

• High Cost [49].
• Noisy Data [53].

Radar • Provides accurate range information [54]. • High Cost [49].

Sonar • Can be used effectively in underwater scenarios
[50].

• High memory requirements [50].
• High Cost [49].

Camera • Low cost, versatile, and simple configuration [17].
• Can extract semantic information [55].

• Monocular cameras provide no scale information
[16].

• Performance varies in scenes prone to illumination
changes [56].

Inertial Measurement Unit
• Can measure angular velocity and acceleration [16].
• Serves as complementary sensor to cameras [49].
• Good relocalisation capabilities [16].

• Difficult to implement as a stand-alone SLAM sen-
sor.

• Performance unsatisfactory in dynamic environ-
ments since it cannot extract semantic information
[16].

Wheel Encoders • Not susceptible to drift with temperature [57].
• Requires no initialisation [57].

• Only suitable for 2D motion [57].

Laser • Can provide accurate range information [24].
• Susceptible to errors in reflective environments

[24].
• High cost [49].

GPS • - Provides accurate location information [49].
• Susceptible to failure in environments where cover-

age is blocked by trees or buildings [49]

GNSS • Provides multiple positioning solutions [49].
• Fails in environments where coverage is blocked

by trees or buildings [49].

3. Visual Simultaneous Localisation and Mapping (V-SLAM)

3.1. Background of V-SLAM

V-SLAM is a technique in which an autonomous navigation system uses a vision
sensor to construct and update a map of an unknown environment while at the same
time keeping track of its position and orientation within that environment [58,59]. In
comparison to other sensor data such as lidar, camera data can provide rich and abundant
information, which enhances high level operations [60]. The camera route is represented
as a set of relative poses in a world reference frame. The environment is represented by
landmarks which are objects or keypoint features in each frame. The landmarks remain still
in static environments, while the landmarks change their position in the case of dynamic
environments [60].
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The V-SLAM process can be broken down into the following steps [58]:

• Acquire, read, and pre-process the data from the camera and other devices;
• Estimate motion and local map of the scene from adjacent camera frames;
• Optimise and adjust camera poses;
• Detect loops to eliminate errors and complete the map.

V-SLAM primarily uses cameras to solve the SLAM problem due to their low cost,
versatility, efficiency, and simple configuration [14]. The cameras can be classified into
three major types [49], namely: monocular, stereo, and RGB-D cameras. In the monocular
camera setup, only one camera is used for visual perception. Significant research has been
conducted in monocular V-SLAM with excellent results. MonoSLAM is considered to be
the first pure visual monocular SLAM technique. It was presented in 2003 and was capable
of pose estimation and feature measurement on a desktop PC [61]. In 2009, PTAM was
presented, which comprised of two threads; one for feature point tracking and the other for
mapping [62].

ORB-SLAM [63] is a popular and open source monocular SLAM technique which
breaks the SLAM process into three threads: tracking, mapping, and loop detection. Nu-
merous monocular SLAM techniques have been built on the ORB-SLAM framework with
impressive results. A SLAM map restoration algorithm based on submaps and an undi-
rected connected graph was presented in [14]. This technique is a monocular SLAM method
and uses submap connections to reinitialise and rebuild parts of a map in the event of a
system trace failure. The method was simulated on a UAV dataset and the results showed
that the integrity of the map was preserved in the case of tracking failures. Additionally,
semi-direct monocular SLAM with three levels of parallel optimizations was developed
in [64]. In this study, a novel SLAM framework is developed. The first half of the technique
utilises direct method for camera pose tracking while the second half of the technique uses
a feature-based method for refinement of key frames, loop closures, and mapping. This
method showed an increase in accuracy and robustness in motion estimation.

In the monocular camera setup, the scale of the system and environment is ambiguous,
and the field of view is limited. It is difficult to determine the depth of the scene or estimate
distance from the monocular camera setup [49]. Due to these limitations, studies have been
conducted to minimise the effect of inability of monocular cameras to estimate scale. For
instance, a simple but effective scale estimation technique for monocular visual odometry
in road driving scenarios was presented in [65]. The study utilised 3D ground points
to estimate the scale of the camera in monocular V-SLAM. The results showed that the
method was able to achieve an average translation error of 1.19% on the KITTI dataset,
thus, outperforming conventional monocular visual SLAM techniques.

Stereo camera setup utilises two or more cameras to perceive the environment. In
this configuration, the cameras can be placed on both the left and right hand sides of
the field of vision. With this setup, it is easier to estimate the scale of the environment.
Additionally, this configuration allows the use of smartphones in V-SLAM processes since
a significant number of these devices come with multiple cameras [49]. ORB-SLAM2 [19]
which is an extension of ORB-SLAM suitable for stereo and RGB-D cameras caters for the
limitations associated with monocular cameras. In [66], a persistent map saving technique
was developed for visual localisation for AVs. This method was an extension of ORB-
SLAM2 and utilised stereo vision to develop a map saving feature for the technique.
Experimental results show that the method was capable of keeping the relative translation
error of the localisation under 1%. Similarly, a robust stereo visual SLAM technique for
dynamic environments with moving object was developed in [67]. This study is based on
the ORB-SLAM2 technique as well, and uses a fundamental matrix to identify dynamic
feature points and then uses on the static points to estimate the pose. This in turn improved
the localisation accuracy and robustness of the system. The authors in [68] developed an
indirect visual simultaneous localization and mapping scheme based on linear models.
The model was based on the stereo camera configuration and utilised key-frame insertion
and map management to minimise computational redundancy and landmark unreliability.
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The technique showed improved performance when compared to other techniques such as
ORB-SLAM2 and COP-SLAM.

Despite the usefulness of stereo vision in depth estimation, in some devices such as
smartphones, the cameras are closely placed to each other making accurate depth estimation
beyond 2 metres challenging. RGB-D cameras solve this challenge by using Time of Flight
technology to estimate the depth of the environment [49]. KinectFusion proposed the use
of Kinect cameras for 3D reconstruction, laying the groundwork for research in RGB-D-
based SLAM systems although this method was computationally intensive and slow [58].
ORB-SLAM2 [19] has proven to be an effective an popular choice for RGB-D-based V-
SLAM techniques. A pixel-wise motion segmentation for slam in dynamic environments
was developed by [69]. The study developed a novel pixel-wise segmentation technique
for dynamic elements in a quest to improve accuracy and robustness of RGB-D SLAM.
The experimental results showed the novel technique outperformed other state of the art
methods for dynamic object removal in SLAM schemes. Additionally, ref. [17] developed a
real-time cloud visual simultaneous localization and mapping technique for indoor service
robots. The study presents the development of a real-time network-based SLAM technique
which aims at minimising computing costs. The results showed the efficiency of the method
and its ability to bear the network delay in a Local Area Network (LAN).

3.2. V-SLAM Categories

V-SLAM can be categorised into three major classifications, namely: Feature-based
methods (Indirect method), Direct methods, and Multi-Sensor methods [14]. These methods
are presented in Figure 2.

In the feature based or indirect methods, unique features of the camera frame are
extracted and matched with the features of the next frame for tracking. ORB (Oriented FAST
and rotated BRIEF) feature extraction [19,63] is a popular choice in V-SLAM. The choice of
this technique is based on the fact that ORB features are fast to compute and are invariant to
viewpoint. Several V-SLAM studies utilise ORB feature extraction as their method of choice.
In [60], a robust visual localization technique in dynamic environments based on sparse
motion removal was developed. The authors developed a V-SLAM technique for dynamic
environments using Sparse Motion Removal. This method uses ORB feature extraction
and evaluates the similarities between two consecutive frames and the difference between
the current frame and the reference frame. This process identifies dynamic regions in the
SLAM process and the results showed an improvement in the localisation accuracy and
robustness in dynamic environments. Similarly, ref. [70] developed a novel integrated
framework for V-SLAM in an attempt to bridge the gap between visual servoing and
V-SLAM. This study, in a quest to enhance robustness and efficiency, developed a novel
integrated framework which uses V-SLAM to stabilise servo tasks. The technique also
removes feature points of moving objects to enhance operability in dynamic environments.
Furthermore, ref. [71] developed MGC-VSLAM which is a meshing-based and geometric
constraint V-SLAM technique for dynamic indoor environments. The study improves the
accuracy and robustness of the ORB-SLAM2 algorithm by utilising a novel meshing-based
uniform distribution approach. Additionally, a modified geometric constraint method is
used to filter out the dynamic features. The results showed the technique improved the
positioning accuracy of ORB-SLAM2 in highly dynamic surroundings.



Sensors 2022, 22, 8943 8 of 16

Figure 2. V-SLAM Categories.

ORB feature matching can be adversely affected by illumination changes and weak
texture, leading some researchers to explore other feature extraction techniques such as
lines and planes [14,72]. For instance, a SLAM system based on RGBD image and point-line
feature was developed in [72]. This technique uses RGB-D images and point-line features
to improve the accuracy and reliability of SLAM estimations. The results showed an im-
provement in accuracy of pose estimation and map reconstruction. Additionally, ref. [73]
developed DT-SLAM which is a dynamic thresholding-based corner point extraction tech-
nique in SLAM systems. The study presents a dynamic self-adaptive threshold technique
for corner point detection in a quest to improve SLAM localisation performance. This
technique improved upon the ORB corner point extraction in FAST which in turn improved
the localisation performance. Furthermore, ref. [74] developed PL-GM which is an RGB-D
SLAM with a novel 2D and 3D geometric constraint model of point and line features. The
author presented a novel geometric constraint model to utilise both 2D and 3D information
within points and lines. The results showed a comparable performance to contemporary
SLAM techniques based on point and line features. A line flow-based SLAM technique
was presented in [75]. This study uses a line flow to encode line segment observations
along the temporal dimension. This technique showed higher efficiency and localisation
accuracy. The experimental results showed good localisation and mapping abilities in
challenging scenarios.

The direct methods cater for large time consumption associated with feature extraction
and matching. Additionally, since the extracted features only represent a small part of the
overall image, the direct methods use global pixel information. These techniques work on
the assumption that the image intensity should be consistent in corresponding spatial points
of neighbouring frames [14]. For instance, ref. [76] presented a semi-direct visual odometry
which involves extracting the FAST feature points in the camera frame and subsequently
evaluating the pose of the camera transformation according to the information around the
feature points. Similarly, ref. [77] presented Large-Scale Direct (LSD) SLAM method. This
technique computes the depth of semi-dense points with sudden gradient changes such
as corners and edges in place of feature extraction. The technique can be run in real-time
on a CPU and also has the ability to deal with weaker textures and larger scales. Other
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direct V-SLAM methods include Direct Tracking and Mapping (DTAM) and Direct Sparse
Odometry [78].

Due to the ambiguity associated with monocular V-SLAM, the technique can be com-
bined with other devices such as GNSS and IMU sensors. This is the case in the multi sensor
approach [14,49]. These hybrid methods solve the scale ambiguity problem, albeit with
additional configuration, computation, and cost requirements [49]. Visual Inertial SLAM
(VI-SLAM) is a technique where the camera is fused with an IMU sensor. This method
is useful in real-time applications due to its unique properties such as bias correction,
automatic estimator initialisation, online extrinsic calibration, and loop detection [49]. A
Visual-Inertial RGB-D SLAM with encoders for a differential wheeled robot deep learning-
based v-slam techniques was presented in [79]. The study combined encoders with RGB-D
cameras to develop a SLAM technique with improved accuracy and a lower Root Mean
Square Error (RMSE). Additionally, a stereo visual inertial mapping algorithm for au-
tonomous mobile robot was presented in [80]. Here, the authors presented a stereo visual
inertial mapping system in order to enhance the accuracy and consistency of the generated
map. The experimental results proved the robustness and effectiveness of the algorithm.
Furthermore, ref. [27] developed VPS-SLAM which is a visual planar semantic SLAM
technique for aerial robots. The authors presented robust and lightweight visual semantic
SLAM technique for aerial robots. This method combines visual inertial odometry tech-
niques and YOLO v2 to extract semantic information and maps an indoor environment, the
effectiveness of which was validated with several experiments. A summary of additional
works reviewed under the different types of V-SLAM is presented in Table 2.

Table 2. Related Works in V-SLAM Research

Ref. Work Observations

[57]

Uses measurements of RGB-D camera and encoder to
produce robot poses and octo-map, relies on CPU not

GPU, works in both static and dynamic indoor
environments.

Not designed for outdoor environments, problem of
wheel slipping causes inaccuracy, inability to track

dynamic objects.

[81]
Technique proved agreement between system pose

estimates and ground truth.

Performance on dynamic outdoor environment could
not be determined, and depth camera in Kinect

blinded by sunlight during daytime.

[49]

Uses Visual-Inertial SLAM to complement limitations
of RTK such as blockage of satellite signals due to

buildings and trees. This was achieved with a
common smartphone instead of extra specialised

devices.

Further work required to evaluate the model more
accurately, not designed for dynamic outdoor

environments. RTK systems are reliant on further
infrastructure which comes with additional costs

according to [66].

[82]
System uses pre-existing map and compares obtained

images to evaluate user’s position within the map.
Use of pre-existing map not suitable for dynamic

outdoor environments.

[83]
The study presents the development of a new
processing chain based on V-SAM for UAVs.

Data processing performance in real time is low, and
the technique focuses on aerial motion and thus, no
information was provided for ground movement.

[84]
In this study, the authors developed a semantic depth

filter for RGB-D SLAM operations making it more
accurate in dynamic environments.

Simulated using TUM dataset and thus performance
on dynamic outdoor environment could not be

determined.

[85]
The study presents novel panoramic Visual Inertial

SLAM which utilises a wheel encoder to achieve
improved robustness and localisation accuracy.

Simulated using University of Michigan North
Campus Long-Term Vision and LiDAR Dataset

(NCLT) dataset and thus performance on dynamic
outdoor environment could not be determined.
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Table 2. Cont.

Ref. Work Observations

[86]

The study presents a SLAM algorithm coupled with
wheel encoder measures to enhance localisation. A
low cost map was generated to enhance speed and

memory efficiency.

Despite its ability to handle tracking in dynamic
scenarios, the system only considered indoor settings

and no information on outdoor performance was
provided.

[87]

The study uses wheel odometer measurements and
monocular camera to develop a Visual Inertial
Odometry model coupled with non-holonomic

constraints.

Simulated using KITTI and KAIST Complex Urban
datasets and thus, real time performance on dynamic

outdoor environment could not be accurately
determined.

[88]

This article presents Integrated Visual Odometry with
a Stereo Camera (IVO-S), a unique low-cost

underwater visual navigation approach . Unlike pure
visual odometry, the suggested approach combines
data from inertial sensors and a sonar to function in

context-sparse situations.

The suggested approach performs effectively in
underwater sparse-feature settings with high

precision, but existing visual slams or odometries, like
as ORB-SLAM2 and OKVIS, do not. However, the

technique does not include loop closure detection and
map reconstruction operations.

[89]

This research presents a real-time and resilient
point-line based monocular visual inertial SLAM

(VINS) system for smart city mobility robots heading
towards 6G. EDLines with adaptive gamma correction

are used to extract a higher proportion of long line
features among all extracted line features faster.

The experimental findings reveal that the VINS
system outperforms other sophisticated systems in

terms of localization accuracy, and robustness in
challenging situations. However, the performance in
outdoor scenes could not be accurately determined

since the model was not deployed in outdoor settings.

3.3. Deep Learning Applications in V-SLAM

In recent years, V-SLAM has been combined with deep learning techniques. These
deep learning models are utilised in various operations in the SLAM pipeline such as depth
prediction [90], object detection [91], and semantic segmentation [92]. Due to the significant
improvements in accuracy and performance achieved by deep learning techniques, these
methods have become a de facto solution for most computer vision tasks such as object
detection and classification [28].

In [16], a real-time visual-inertial localization technique using semantic segmentation
towards dynamic environments was presented. The study utilises CNN-based semantic
segmentation and multi-view geometric constraints to identify and avoid using dynamic
object feature points. The results showed the technique had higher localisation accuracy
and robustness when compared to other state of the art SLAM techniques. In addition,
ref. [93] presented RDMO-SLAM which is a real-time V-SLAM for dynamic environments
using semantic label prediction with optical flow. This technique, which is an extension
of [92], is a novel semantic visual SLAM technique based on Mask R-CNN and PWC-
Net and was developed to improve the tracking and real time performance of the SLAM
algorithm. The results showed an improvement in real-time performance while retaining
robust tracking capabilities.

Furthermore, ref. [58] developed a mobile robot visual slam system with enhanced
semantics segmentation. The technique was able to improve tracking and speed using
camera and encoder data. This was achieved using enhanced semantic segmentation.
In [94], the authors present a Visual SLAM method based on semantic segmentation and
geometric constraints. This method was suitable for dynamic indoor environments.The
test results on the Oxford and TUM datasets demonstrate that the modified approach
improves the consistency of feature points extracted by 56.3%. Visual SLAM placement
error is decreased by 68.8% on average, and the produced semantic map contains rich
semantic information with less redundancy. However, the accuracy and computation time
could be improved upon. A summary of additional works reviewed in the area of deep
learning-based V-SLAM techniques is presented in Table 3.
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Table 3. Deep Learning-Based V-SLAM Techniques

Ref. Work Observations

[20]

This study presents a SLAM technique that uses objects and
walls as elements of the environment model. The objects are
identified using YOLO v3 technique. The system exhibited

better performance than the RGB-D SLAM and a
comparable performance to ORB SLAM.

The technique was tested in a static indoor environment
and thus, the performance on a dynamic outdoor

environment could not be determined.

[95]

In this study, a semantic filter-based faster R-CNN is
utilised to solve fundamental matrix calculations in ORB

SLAM. This method reduced the trajectory error, number of
low quality feature correspondences, and position error.

Simulated sing KITTI ad ETH datasets and thus
performance on dynamic outdoor environment could not

be determined.

[55]

Developed a novel RGB-D SLAM method combined with
deep learning in order to decrease impact of moving objects
in the estimation of camera pose. This was achieved using

semantic segmentation and multi-view geometry.

Real time performance needs to be improved, not designed
for outdoor environments.

[96]
Technique combined ORB-SLAM2 and PSPNet-based

semantic segmentation to identify and eliminate dynamics
points. This reduced the trajectory and pose errors.

Simulated using the TUM RGB-D dataset and thus
performance on dynamic outdoor environments could not

be determined.

[97]

Here, a Decoder-Encoder Model (DEM) was developed
which uses CNNs to improve depth estimation

performance. Additionally, a loss function was developed
to enhance the training of the DEM.

Simulated using indoor NYU-Depth-v2 and outdoor KITTI
datasets and thus performance on dynamic outdoor

environment could not be determined.

[98]

In this study, YOLO v3 was used to provide semantic
information in order to distinguish edge features and

reduce the effect of unstable features. This process
improved the positioning accuracy of the system.

Simulated using public TUM RGB-D dataset and thus
performance on dynamic outdoor environment could not be

determined.

[16]
The study utilises CNN-based semantic segmentation and

multi-view geometric constraints to identify and avoid
using dynamic object feature points.

Simulated using ADVIO dataset and thus performance on
dynamic outdoor environment could not be determined.

[99]

The study presents a dynamic point detection and rejection
algorithm centred on neural network-based semantic

segmentation. This eliminates dynamic object interference
during pose estimation.

The technique was simulated on the EuRoC dataset and
collected underground images tunnel. However, the

real-time performance could not be evaluated on dynamic
ground outdoor environments.

[100]

Presented in this study was a novel Visual Place Recognition
technique capable of operating under changing viewpoint
and appearance conditions. The system avoids the use of

CNN which has high computational requirements.

The system was simulated on various public VPR datasets
but focused mainly on static environments.

[101]

A deep learning-based real-time visual SLAM technique is
proposed in this work. A parallel semantic thread is created
using the lightweight object detection network YOLOv5s to

obtain semantic information in the scene more quickly.

The experimental findings suggest that the system improves
in terms of accuracy as well as real-time performance.

However, for practicality, the map generating process and
computation speed need to be improved.

4. Challenges and Open Issues in V-SLAM

Based on the reviewed works, a number of challenges associated with V-SLAM deploy-
ment were identified. These salient limitations can serve as open issues for researchers and
provide a focus for future research directions. These challenges are presented as follows:

(a) Reliability in Outdoor Environments: There is room for improvement in the reliabil-
ity of V-SLAM implementations, especially in outdoor environments. The ineffective-
ness of lidar and radar sensors in extreme weather conditions coupled with their high
cost makes them [13,102,103] unsuitable for outdoor conditions. Additionally, despite
the high precision and strong anti-interference ability of laser scans, they provide no
semantic information about the environment [58]. The use of V-SLAM techniques
cater for these limitations, however, these methods are susceptible to unpredictable
and uncontrollable environmental conditions such as illumination changes [104].
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(b) Operability in Dynamic Scenes: The traditional SLAM and V-SLAM techniques
assume a static environment, which is not always the case. V-SLAM techniques based
on static scenes fail when deployed to dynamic environments [57]. The dynamic
environment comprises of moving objects which needs to be taken into account in
localisation and mapping operations. In the case of ORB-SLAM, for instance, it is
not possible to determine if the extracted feature points are from static or dynamic
objects [58]. Although significant research has been carried out in the area of object
detection [91] and semantic segmentation [55], V-SLAM implementations in highly
dynamic sceneries such as road networks and highways have not been exhaustively
explored. Autonomous systems still need to fully comprehend dynamic scenarios
and cope with dynamic objects [55,99].

(c) Robustness in Challenging Scenes: V-SLAM techniques need to be robust enough
to handle various scenarios. V-SLAM systems have the tendency to fail in situations
involving fast motion [57,99]. Additionally, conventional V-SLAM systems rely on
stable visual landmarks, which makes implementation difficult [104]. Therefore,
achieving robust performance in challenging sceneries is paramount to the success of
V-SLAM techniques [105].

(d) Real-time Deployment: Deployment onto embedded hardware is another open issue
for V-SLAM implementations [106]. Existing techniques have high computational
requirements and slow real-time performance, thus, resulting in high deployment
costs. With a high demand of unmanned systems for deployment in sectors such as
Agriculture, Oil and Gas, and Military, the need arises for V-SLAM methods can be
deployment onto microcontrollers and microcomputer systems.

(e) Control Scheme for Navigation: Majority of the reviewed works lack an effective
control technique for navigation based on the V-SLAM output. Considering path
planning and control are major modules in AV deployment [8,9], there is a need
for an effective control mechanism to navigate the AV in relation to the perceived
environment. This will significantly contribute to the advancement towards fully
autonomous vehicles.

5. Conclusions

A detailed review of V-SLAM approaches used for AV perception and localisation was
presented in this paper. In addition, an in-depth study of state-of-the-art methodologies in
V-SLAM was undertaken, as well as a thorough examination of these methods.

An overview on SLAM methods was provided. The classic SLAM methodology is
divided into two types: filter-based and graph-based approaches. Filter-based approaches
are preferable for solving the SLAM problem because they are not prone to accumulation
errors and do not suffer from convergence to local minima. Furthermore, the various types
of sensors utilized in the traditional SLAM technique were addressed, with an emphasis on
their benefits and drawbacks. The various camera configurations (monocular, stereo, and
RGB-D) and V-SLAM algorithms were also investigated. ORB-SLAM has been recognized
as a popular alternative among researchers, particularly as a foundation for developing
modified V-SLAM approaches.

Furthermore, a thorough examination was carried out to highlight various V-SLAM
systems, their strengths and weaknesses. It was observed that Deep learning models
have been used to include tasks such as object identification, semantic segmentation, and
depth prediction into SLAM as a result of developments in deep learning. This paper also
discussed the challenges of V-SLAM implementation and future research directions. The
primary research gaps highlighted were dependability in outdoor environments, operability
in dynamic scenarios, robustness in demanding circumstances, real-time deployment, and
navigation control methods.
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