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ABSTRACT 

An exponentially fitted Improved Runge-Kutta (IRK) method with 5 stages is constructed. The new method integrates exactly 

differential equations where the solution is oscillatory, that is, whose solutions can be expressed as linear combinations of the set 

of functions {𝑒𝜆𝑡 , 𝑒−𝜆𝑡}, 𝜆 ∈ ℂ, and in particular {sin(𝜔𝑡) , cos(ωt)}, where λ = 𝑖𝜔, 𝜔 ∈ ℝ. Analysis of algebraic order of the new 

method indicates that it is of order five like the classical five stages IRK method. Numerical experiments established the 

effectiveness and efficiency of the exponentially fitted method over the non-fitted method. 
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INTRODUCTION 

 

In response to the need to find approximate solutions to 

ordinary differential equations whose solutions cannot be 

found analytically, a great many numerical methods have 

been constructed. One of such methods is the classical 

Runge-Kutta (RK) method. While the Improved Runge-

Kutta (IRK) methods represent an improvement on the 

classical RK methods, the need to develop efficient and 

accurate methods when solutions of initial value problems 

exhibit exponential or oscillatory behaviour led to 

exponentially fitted methods. Exponentially fitted methods 

are thus generally derived to find the numerical integration 

of initial value problems whose solutions are linear 

combinations of the functions {𝑥𝑗𝑒𝜆𝑡, 𝑥𝑗𝑒−𝜆𝑡}  where 𝜆 ∈ ℂ 

(𝜆 can be a real or complex number). One procedure that has 

proven to be very useful toward the construction of 

numerical methods that approximate the solutions to first 

order initial value problems (IVPs) is the adaptation 

technique. The issue of how to choose the frequency in 

exponentially fitted methods is very difficult. For linear 

oscillators, the frequency of the method is the same as the 

frequency of the solution of the differential equation. 

However, for nonlinear problems, the frequency of the 

method is, in general, different from the frequency of the 

exact solution (Ramos and Vigor-Aguiar, 2010). In the case 

of linear multistep methods, a first good theoretical 

foundation, which required that the frequency be estimated 

in advance, was proposed by Gautschi (1961). Following 

this, Vigor-Aguiar and Ferrandiz (1998) proposed a general 

procedure for the construction of adapted multistep 

algorithms. Methods of this type require that the frequency 

𝜔 that appears in the numerical method be chosen near the 

frequency of the exact solution, or it is assumed that the 
frequency is known in advance.  

The study of exponentially fitted Runge-Kutta (EFRK) 

methods is a recent development and of minimal quantity. 

One of the techniques to construct EFRK methods is to select 

the coefficients of the method so that it integrates exactly a 

set of linearly independent functions which are chosen 

depending on the nature of the solutions of the differential 

system is solved. In Paternoster (1998) some implicit Runge-

Kutta-(Nystrom) methods of low algebraic order were 

derived by employing the linear stage representation of a 

Runge-Kutta method introduced in Albrecht’s approach. 

Also, in Simos et al. (1994) and Simos (1998), a fourth order 

explicit Runge-Kutta-(Nystrom) method which integrates 

certain particular first-order initial value problems with 

periodic or exponential solutions was constructed. On the 

other hand, Berghe et al. (2000) introduced a general 

technique for the construction of exponentially fitted 

methods. Of recent, quite a number of authors have studied 

EFRK methods; they include, Berghe et al (2001), Williams 

and Simos (2003), Franco (2004), Calvo et al. (2009), Rabiei 

et al. (2014) and Monovasilis et al. (2015). 

This research work is aimed at developing an exponentially 

fitted fifth order Improved Runge-Kutta method (EFIRK5), 

applying the developed method to solving initial value 

problems whose solutions are oscillatory or exponential and 

comparing the results with those the classical IRK method 
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MATERIALS AND METHODS 

Order conditions for EFIRK5 

The general explicit IRK method for solving the initial value problem  

Similarly, if we let 𝑧 = 𝜔ℎ, then  
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Equations (13), (14), (19) and (20) are now the relations of 

order conditions of the proposed exponentially-fitted 

methods. These equations are solved in order to determine 

the coefficients 𝑐𝑖,𝛾𝑖 , 𝑎𝑖𝑗 𝑎𝑛𝑑 𝑏𝑖 of an EFRK5 method by 

choosing values for a free parameter from existing 

coefficients of an IRK5 method. They replace the equations 

of order conditions of two-step IRK5 methods derived by 

Rabiei et al. (2013) as represented by (21

 
Derivation of EFIRK5 with 𝒔 = 𝒑 = 𝟓 

The Butcher table of coefficients for the Improved Runge-Kutta method of order five (IRK5-5) of Rabiei et al. (2013) is presented 
in Table 1  
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Table 1: Coefficients of IRK5-5 Method  

 

  
To derive the fifth order five stages exponentially fitted IRK (EFIRK5-5) method, we make the substitution 𝑠 = 5, 𝑐1 = 0, 𝛾1 = 1 

in the relations (13) and (14) 

Equations (24) – (31) thus become the equations of order conditions; they now replace order conditions (21). We then substitute 

the values of the free parameters 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑎32, 𝑎42, 𝑎43, 𝑎52, 𝑎53, 𝑎54 from Table I into equations (22), (24), (26),(28) which 

we again solve together with the four additional equations obtained from (21): 
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The values of the remaining parameters in terms of the free parameters are computed thus: 
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Next, the Taylor expansions of (33) and (46) are obtained as (47) and (48) respectively: 

 

The coefficients are substituted into the order conditions (21) and the Taylor expansion obtained as 

 
It is observed that (49) reduces to the order conditions of the IRK5-5, represented by (21), as 𝑧 approaches zero; which confirms 

that the EFIRK5-5 method is of order five. 

Choice of Frequency 

According to Berghe et al. (2000), a mathematical theory to 

determine the frequency 𝜔 in an exact way is non-existent. 

However, a study of the local truncation error (LTE) was 

made, with the goal of making the LTE as small as possible, 

out of which follows a simple heuristically chosen algorithm 

to estimate the 𝜔  in each integration interval [𝑥𝑛, 𝑥𝑛+1] in 

the following way 
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In the case where 𝑦(𝑥) is a linear combination of 

𝑠𝑖𝑛(𝛼𝑥) and 𝑐𝑜𝑠(𝛼𝑥) and 𝑦(𝑥𝑛)  ≠ 0, then it is obtained 

that 𝜔 = 𝛼 and 𝑦(𝑥) will be integrated exactly. The 

expressions for the occurring second derivatives can be 

obtained analytically from the given ODEs or calculated 

numerically using previously derived 𝑦(𝑥𝑛−𝑗) values. The 

𝜔 values used are then in each integration interval taken as 

the positive square root of the numerically obtained 𝜔2. 

Also, if negative 𝜔2-values are obtained, 𝜔 is replaced in the 

corresponding formulae by  (𝑖2 = −1). In fact, in this case, 

the exponential functions instead of the trigonometric ones 

are integrated.Stability Analysis

The general exponentially-fitted improved Runge-Kutta (EFIRK) method (2) can be rewritten as 

 

For finding the region of absolute stability, we set 𝜆ℎ = ℎ̅  to obtain the following expression for the stability polynomial 

 

We note that the expressions for the coefficients of ℎit's in 
(53) are the order conditions up to order five given in (21). 

By setting 𝑦𝑛+1 = 𝜉2 and 𝑦𝑛 = 𝜉 and substituting for these 

order conditions using values from the Taylor series 

expansions presented in (47), as 𝑧 tends to zero, we obtain 

the stability polynomials for the derived EFIRK5 as

  
Figure 1: shows the region of absolute stability of EFIRK5-5 and its interval of absolute stability is (-0.68, 1)   
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RESULTS AND DISCUSSION 

We apply the new method to two problems. We consider the following problems: 

Problem 1:  

 
 

Which has a solution of the form  𝑦(𝑥) = sin(10𝑥). Equation (55) is solved numerically on the interval 0 ≤ 𝑥 ≤ 1 and with 𝜔 =
10 using the aforementioned method. 

Problem 2: 

 

With a solution of the form𝑦(𝑥) = 𝑥2 −
1

3
𝑥e−3𝑥 −

1

9
e−3𝑥, where the frequency 𝜔 is computed as 𝜔 = 5.  

In all our numerical illustrations, we compare the following methods. 

i. The original improved Runge-Kutta method of order five given Table I, that is method of table 1 without exponential 

fitting, indicated as method IRK5-5 

ii. The new exponentially fitted improved Runge-Kutta method of order five indicated as method EFIRK5-5 

iii. The analytic method which gives the exact solution, indicated as y(x).  

 

Table 2: Comparison of results for petroleum 1 in [0, 1], h = 0.05,  w = 10

 

 

   𝒙       𝒚(𝒙)     EFIRK5-5        Error      IRK5-5        Error 

0.05  0.4794255380  0.4794255380 1.3934367E-24  0.4794294216 3.88300269500E-06 

0.10  0.8414709848  0.8414709848 1.1943620E-24  0.8414117419 5.92429509959E-05 

0.15  0.9974949866  0.9974949866 3.4378570E-24  0.9973107823 1.84204278485E-04 

0.20  0.9092974268  0.9092974268 6.1811980E-24  0.9089531377 3.44289091319E-04 

0.25  0.5984721441  0.5984721441 8.7527210E-24  0.5979718411 5.00303044164E-04 

0.30  0.1411200081  0.1411200081 1.0522827E-23  0.1405059596 6.14048480185E-04 

0.35 -0.3507832277 -0.3507832277 1.1058133E-23 -0.3514409042 6.57676549635E-04 

0.40 -0.7568024953 -0.7568024953 1.0227575E-23  -0.7574230009 6.20505579529E-04 

0.45 -0.9775301177 -0.9775301177 8.2345060E-24 -0.9780417540 5.11636319734E-04 

0.50 -0.9589242747 -0.9689242747 5.5668960E-24 -0.9592819984 3.57723761994E-04 

0.55 -0.7055403256 -0.7055403256 2.8778710E-24 -0.7057367766 1.96451068332E-04 

0.60 -0.2794154999 -0.2794154999 8.2579700E-25 -0.2794828016 6.73034187396E-05 

0.65  0.2151199881  0.2151199881 8.6907000E-26  0.2151180874 1.90066201770E-06 

0.70  0.6569865987  0.6569865987 3.6322100E-25  0.6569703430 1.62556740129E-05 

0.75  0.9379999768  0.9379999768 2.0659740E-25  0.9378931229 1.06853847140E-04 

0.80  0.9893582466  0.9893582466 4.6044590E-24  0.9891067330 2.51513588897E-04 

0.85  0.7984871126  0.7984871126 7.3571660E-24  0.7980722955 4.14817149315E-04 

0.90  0.4121184852  0.4121184852 9.6501370E-24  0.4115617031 5.56782121394E-04 

0.95 -0.0751511205 -0.0751511205 1.0921971E-23 -0.0757937709 6.42650528768E-04 

1.00 -0.5440211109 -0.5440211109 1.0861282E-23 -0.5446725097 6.51398790545E-04 
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Table 3:  Comparison of Results for Problem 2 in [0, 1], ℎ = 0.05, 𝜔 = 5 

   𝒙       𝒚(𝒙)     EFIRK5-5        Error      IRK5-5        Error 

0.05 -0.1074793525  -0.1074793526 2.47189770E-11  -0.1074781472 1.205316372E-06 

0.10 -0.0970070763 -0.0970070776 1.35991889E-09  -0.0970024177 4.658623556E-06 

0.15 -0.0802289799 -0.0802289825 -0.0802289E-09  -0.0802200398 8.940196992E-06 

0.20 -0.0575665131 -0.0575665165 3.39311803E-09  -0.0575535890 1.292404682E-05 

0.25 -0.0293490519 -0.0293490561 4.14203276E-09  -0.0293323772 1.667471608E-05 

0.30 0.00416862738  0.0041686226 4.75271549E-09   0.0041888719 2.024454367E-05 

0.35 0.04279195715 0.0427919519 5.24914482E-09   0.0428156329 2.367581192E-05 

0.40 0.08637474819 0.0863747425 5.65130128E-09    0.0864017507 2.700253273E-05 

0.45 0.13480948749 0.1348094815 5.97581595E-09   0.1348397394 3.025193119E-05 

0.50 0.18801939996 0.1880193937 6.23651583E-09   0.1880528456 3.344567637E-05 

0.55 0.24595197135 0.2459519649 6.44488239E-09   0.2459885723 3.660090092E-05 

0.60 0.30857367922 0.3085736726 6.61043669E-09   0.3086134103 3.973104439E-05 

0.65 0.37586572098 0.3758657142 6.74106276E-09   0.3759085675 4.284654969E-05 

0.70 0.44782056360 0.4478205567 6.84327891E-09   0.4478665190 4.595543712E-05 

0.75 0.52443916891 0.5244391619 6.92246526E-09   0.5244882327 4.906377667E-05 

0.80 0.60572877320 0.6057287662 6.98305431E-09   0.6057809493 5.217607574E-05 

0.85 0.69170112063 0.6917011136 7.02869059E-09   0.6917564162 5.529559665E-05 

0.90 0.78237106698 0.7823710599 7.06236412E-09   0.7824294916 5.842461608E-05 

0.95 0.87775548496 0.8777554779 7.08652209E-09   0.8778170496 6.156463634E-05 

1.00 0.97787241406 0.9778724069 7.10316205E-09   0.9779371306 6.471655692E-05 

 

Table 4:  Comparison of Results for Problem 2 in [0, 1], ℎ = 0.05, 𝜔 = 5 

h  EFIRK5-5 IRK5-5 NFEs 

𝟎. 𝟎𝟓 1.10666180000E-23 6.577447507946E-04 10000 

𝟎. 𝟎𝟐𝟓 2.29628809000E-22 3.327995692713E-04 20000 

𝟎. 𝟎𝟏𝟐𝟓 1.07980091732E-19 1.666193812173E-04 40000 

𝟎. 𝟎𝟎𝟔𝟐𝟓 3.77879924219E-17 8.332803981257E-05 80000 

𝟎. 𝟎𝟎𝟑𝟏𝟐𝟓 1.00321288098E-15 4.166602431409E-05 160000 

𝟎. 𝟎𝟎𝟏𝟓𝟔𝟐𝟓 3.33811029343E-13 2.0833253635942-05 320000 

 

𝒉 EFIRK5-5 IRK5-5 NFEs 

𝟎. 𝟎𝟓 7.12276483049E-09 6.66292897824E-03 10000 
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𝟎. 𝟎𝟐𝟓 2.48840446673E-10 3.33239766414E-03 20000 

𝟎. 𝟎𝟏𝟐𝟓 8.20344713044E-12 1.66643253125E-03 40000 

𝟎. 𝟎𝟎𝟔𝟐𝟓 2.62930101153E-13 8.33274769920E-04 80000 

𝟎. 𝟎𝟎𝟑𝟏𝟐𝟓 6.91208257424E-12 4.16652022036E-04 160000 

𝟎. 𝟎𝟎𝟏𝟓𝟔𝟐𝟓 9.53459932039E-10 2.08329671700E-04 320000 

 

The error in each step of integration within the interval [0, 1] 

as given in Table II reveals that the EFIRK5-5 method is 

more accurate than the original IRK5-5 with the same 

number of function evaluations. From Table III, it is evident 

that the new method also provides more accurate integration 

to the problem than the existing IRK5-5 with the same 

computational efficiency. It is clear from Table IV that the 

EFIRK5-5 gives more accurate results than the IRK5-5 

method. On the other hand, the accuracy of the new method 

decreases as the step size grows smaller which also indicates 

that the original method is recovered from our new method 

as ℎ approaches zero. In Table V It is observed that EFIRK5-

5 approaches the original IRK5-5 method as ℎ tends to zero. 

CONCLUSION 
A new five-stage exponentially fitted improved Runge-

Kutta method has been constructed. The method was applied 

to solve oscillatory and exponential problems. The results of 

the numerical examples revealed that for all the problems 

considered, the new exponentially fitted method is much 

more efficient than the original method without exponential 

fitting.  

All computations were carried out using MAPLE 2019 S 
oftware Package. 
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