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Abstract 

The optical flow technique describes and computes motion information between two 

consecutive and adjacent frames. It finds applications in myriad fields, including robotics, 

video and space applications. Various optical flow methods have been implemented, including 

Horn–Schunck (HS), Lucas–Kanade (LK), Farneback optical flows, and recently, a wavelet 

transform-based Optical Flow. The wavelet transform was integrated into the optical flow to 

solve the problem related to the small capture range and low accuracy (in the face of large 

displacement) of the existing optical flow methods. However, wavelets are deficient in dealing 

with multidimensional and multivariate data such as edges, contours and multidimensional 

singularities. By contrast, shearlet transform is highly efficient in dealing with pointwise and 

multidimensional singularities that characterize image and video data. Hence, this research 

proposed a mathematical formulation that showcases the shearlet transform integration with 

the optical flow method. This is intended to achieve an efficient and robust optical flow in the 

motion estimation of multidimensional data. 

Introduction 

ST consists of a multi-scale partition and a directional localization. Pyramid decomposition is 

used in the multi-scale partition to reduce the sensitivity to the image shift. The shearing filter 

is employed to partition the frequency plane into a single low-frequency sub-band and multiple 

trapezoidal high-frequency in directional localization. Consider a 2-D affine system with 

composite dilations as presented in equation (2.19) (Moussa et al., 2018): 

𝐴𝐷𝑆 = {𝜓𝑗,𝑘,𝑚(𝑥) = |𝑑𝑒𝑡 𝐷|
𝑗

2⁄ 𝜓(𝑆𝑘𝐷𝑗𝑥 − 𝑚): 𝑗, 𝑘𝜖ℤ,𝑚𝜖ℤ2}                                                (2.19) 

Where, 

𝐷 is the anisotropic matrix given as [
𝑑 0

0 𝑑
1

2⁄
]  or  [𝑑

1
2⁄ 0

0 𝑑
]  and 𝑑 controls the scale 

𝑆 is the shear matrix given as  [
1 𝑠
0 1

]  or  [
1 0
𝑠 1

]  and 𝑠 controls the shearlet’s direction 

 

The multiscale and multidirectional decomposition can be achieved using the LP and shearing 

filter (SF) such that a high frequency and low frequency sub-images are generated at every LP 

decomposition phase, and the high-frequency sub-band can then be decomposed iteratively 

(Abazari & Lakestani, 2018). Due to its significant advantages, the shearlet transform will be 

applied to improve the optical flow algorithm to achieve a more efficient motion information 

estimation.  

2.2.6 Optical Flow Techniques 

Optical flow is the apparent motion of the image intensity pattern that transmits information 

about images. Optical flow reveals the 3D structure of objects and the motion information of 

the observed objects. In addition, the optical flow technique can estimate the field of motion of 

an image by leveraging relative motion information on continuous frames without prior 



information. Optical flow, therefore, plays a vital role in computer vision and has uses in object 

tracking, robot navigation, target detection, segmentation, and other areas. Many works have 

been done to estimate the motion flow field. Horn–Schunck (HS) developed a global optical 

flow method to estimate dense optical flow. Lucas–Kanade (LK) combined a local and global 

approach to estimate a more robust optical flow; however, the large displacement between the 

two adjacent frames led to low accuracy and robustness. Wavelet approaches, including the 

work of (Magarey & Kingsbury, 1998), (Demonceaux & Kachi-Akkouche, 2003), (Hillerio et 

al., 2012) and (Dérian & Almar, 2017) were employed to estimate optical flow in images. 

However, the abovementioned approaches did not address large motion and small capture 

range challenges. These problems, if not addressed, will affect the robustness and precision of 

the optical flow estimates. Hence, this research will adopt the ST approach due to its shift-

invariance, multi-scale and multi-resolution features.  

The optical flow constraint equation can be expressed in equation (2.20) (Zheng et al., 2019): 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡)                                                                                      (2.20) 

Assuming small and approximate constant movement between image frames, the Taylor’s 

series expansion of equation (2.20) result in equation (2.21): 

𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) =  𝐼(𝑥, 𝑦, 𝑡) + 
𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 + 𝐻. 𝑂. 𝑇                             (2.21) 

Subtracting 𝐼(𝑥, 𝑦, 𝑡) from both sides of equation (2.21) yields equations (2.22) and (2.23): 

𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 = 0   

Or 

(
𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡)/∆𝑡 = 0                                                                                              (2.22) 

 

𝜕𝐼

𝜕𝑥

∆𝑥

∆𝑡
+

𝜕𝐼

𝜕𝑦

∆𝑦

∆𝑡
+

𝜕𝐼

𝜕𝑡
= 0                                                                                                                 (2.23) 

Where,                                                                                                                    
𝜕(.)

𝜕(.)
 denotes partial derivatives 

𝜕𝐼

𝜕𝑥
= 𝐼𝑥,

𝜕𝐼

𝜕𝑦
= 𝐼𝑦,

𝜕𝐼

𝜕𝑡
= 𝐼𝑡 respectively being the partial derivatives of grayscale in 𝑥, 𝑦 and 𝑡 

directions 
∆𝑥

∆𝑡
= 𝑉1 and 

∆𝑦

∆𝑡
= 𝑉2 denote velocity 

 

Therefore, equation (2.23) yields equation (2.24) (Zheng et al., 2019): 

 

𝐼𝑥𝑉1 + 𝐼𝑦𝑉2 + 𝐼𝑡 = 0                                                                                                                     (2.24) 

 

Or 

 

∇𝐼𝑇 . �⃗� = −𝐼𝑡                                                      



 

In equation (2.24), two unknowns are difficult to resolve and are known as aperture problems 

of the optical flow algorithm. 

 

The Lucas-Kanade approach has assumed that the displacement of the image content between 

two adjacent frames is minimal and nearly constant within the region centred at p. The local 

image velocity must satisfy the equation (2.25): 

 

𝐼𝑥(𝑃1)𝑉1 + 𝐼𝑦(𝑃1)𝑉2 = −𝐼𝑡(𝑃1)  

 

𝐼𝑥(𝑃2)𝑉1 + 𝐼𝑦(𝑃2)𝑉2 = −𝐼𝑡(𝑃2)  

 
:
:
:
                                          

:
:
:
 

 

𝐼𝑥(𝑃𝑛)𝑉1 + 𝐼𝑦(𝑃𝑛)𝑉2 = −𝐼𝑡(𝑃𝑛)                                                                                                  (2.25) 

 

where, 

𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃𝑛  are pixels inside a window 

𝐼𝑥, 𝐼𝑦 𝑎𝑛𝑑 𝐼𝑡 are partial derivatives with respect to positions 𝑥, 𝑦, 𝑡 

 

Equation (2.25) can be summarized into equation (2.26) 

 

𝑄𝑣 = 𝑋                                                                                                                                      (2.26) 

  

where, 

 

𝑄 =                                     𝑣 = [
𝑉𝑥
𝑉𝑦

],        

 

𝐼𝑥(𝑃1)       𝐼𝑦(𝑃1)  

𝐼𝑥(𝑃2)      𝐼𝑦(𝑃2)  
:
:
:
                      

:
:
:
 

𝐼𝑥(𝑃𝑛)𝑉1    𝐼𝑦(𝑃𝑛)      

 

𝑋 =  

  

−𝐼𝑡(𝑃1)  

−𝐼𝑡(𝑃2)  

       

:
:
:
   



−𝐼𝑡(𝑃𝑛)      

 

The Lucas-Kanade method gave a good optical flow results; however, with large displacement 

between two consecutive frames, the optical flow generated has low robustness and reduced 

precision. 

Multi-resolution wavelet transform approaches were adopted to alleviate these problems, 

giving stable and computationally efficient optical flow results. However, isotropic Gaussian 

filtering used in the wavelet approaches gave a blurry output and inaccurate detection of 

boundary orientation in the presence of sharp changes in the curvature. It has also been widely 

recognized that conventional wavelets aren't all that successful in dealing with 

multidimensional signals that comprise distributed discontinuities, such as edges (Moussa et 

al., 2018).  

Wavelet transform performs well in approximating signals with pointwise singularities. On the 

contrary, the wavelet transform performs poorly in the presence of multidimensional data such 

as edges, curves and contours. This is because wavelets are isotropic in nature and fail to 

capture directional features inherent in multivariate data (Moussa et al., 2018). To address this 

constraint, basis elements with much greater directional sensitivity and various forms must be 

used to capture the intrinsic geometric characteristics of multidimensional phenomena (Easley 

et al., 2008). 

 

This research will adopt ST due to its numerous advantages, including anisotropic directional 

decomposition, computational stability and efficiency, and scale and translation invariances. 

Consequently, a more stable, computationally efficient, informative, and clearer optical flow 

output will be achieved. 

 

The discrete shearlet basis can be defined as presented in equation (2.27) (S. Singh et al., 2015): 

 

𝜓𝑗,𝑘,𝑚
𝑛 (𝑥, 𝑦) = 2𝑗

3

2𝜓𝑛(𝑆𝑛
𝑘𝐷𝑛

𝑘𝑥 − 𝑚1, 𝑆𝑛
𝑘𝐷𝑛

𝑘𝑦 − 𝑚2)                                                                       (2.27) 

 

where, 

𝐷 is the anisotropic matrix is given as [
𝑑 0

0 𝑑
1

2⁄
]  or  [𝑑

1
2⁄ 0

0 𝑑
]  and 𝑑 controls the scale 

𝑆 is the shear matrix given as  [
1 𝑠
0 1

]  or  [
1 0
𝑠 1

]  and 𝑠 controls the shearlet’s direction 

𝑗, 𝑘 and 𝑚 are scale, direction and shear parameters, respectively. 

 

The inner product of equations (2.23) and (2.27) results in equation (2.28) 

 

〈
𝜕𝐼

𝜕𝑥
𝑉𝑥, 𝜓𝑗,𝑘,𝑚

𝑛 〉 + 〈
𝜕𝐼

𝜕𝑦
𝑉𝑦 , 𝜓𝑗,𝑘,𝑚

𝑛 〉 + 〈
𝜕𝐼

𝜕𝑡
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 = 0   ∀𝑛= 1…𝑁                                                    (2.28) 

 

Since this constant optical flow assumption does not usually hold, the affine model is used here 

to construct the optical flow vector (Demonceaux & Kachi-Akkouche, 2003), which can be 

expressed in equations (2.29) and (2.30) (Zheng et al., 2019): 



 

𝑣1(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐                                                                                                                (2.29)  

           

 𝑣2(𝑥, 𝑦) = 𝑑𝑥 + 𝑒𝑥 + 𝑓                                                                                                               (2.30) 

It can be seen from equations (2.29) and (2.30) that the solution to the optical flow’s solution 

can be reformulated as solving(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓). 

Based on wavelet theory, ∫ 𝜓(𝑥)𝑑𝑥 = 0
∞

−∞
 with equations (2.29) and (2.30) utilizing 

integration by parts on equation (2.24) and recombining N equations, we obtain equations 

(2.31) and (2.32) (Zheng et al., 2019):  

 

𝑎 (〈𝑥𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑥
〉 + 〈𝐼, 𝜓𝑗,𝑘,𝑚

𝑛 〉) + 𝑏 〈𝑦𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑥
〉 + 𝑐 〈

𝜕𝐼

𝜕𝑥
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 + 𝑑 〈𝑥
𝜕𝐼

𝜕𝑦
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 +

𝑒 〈〈𝑦𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑦
〉 + 〈𝐼, 𝜓𝑗,𝑘,𝑚

𝑛 〉〉 + 𝑓 〈
𝜕𝐼

𝜕𝑥
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 = 〈
𝜕𝐼

𝜕𝑡
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 , ∀𝑛 = 1, 2, … . 𝑁                       (2.31) 

 

𝑄𝑢𝑣 = 𝑋𝑢                                                                                                                                     (2.32) 

 

Where, 

𝑄𝑢 = [Α1, Α2, Α3, Α4, Α5, Α6]  

𝜐 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓)𝑇  

𝑋𝑢 = −〈
𝜕𝐼

𝜕𝑡
, 𝜓𝑗,𝑘,𝑚

𝑛 〉  

 

𝐴1 = 〈𝑥𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑥
〉 + 〈𝐼, 𝜓𝑗,𝑘,𝑚

𝑛 〉, 𝐴2 = 〈𝑦𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑥
〉 , 𝐴3 = 〈

𝜕𝐼

𝜕𝑥
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 , 𝐴4 =

〈𝑥
𝜕𝐼

𝜕𝑦
, 𝜓𝑗,𝑘,𝑚

𝑛 〉 , 𝐴5 = 〈〈𝑦𝐼,
𝜕𝜓𝑗,𝑘,𝑚

𝑛

𝜕𝑦
〉 + 〈𝐼, 𝜓𝑗,𝑘,𝑚

𝑛 〉〉 , 𝐴6 = 〈
𝜕𝐼

𝜕𝑥
, 𝜓𝑗,𝑘,𝑚

𝑛 〉                                  (2.33) 

  

 From equation (2.26), we obtain equation (2.34) 

 

𝑄𝑚
𝑗𝑘

𝑣𝑚
𝑗𝑘

= 𝑋𝑚
𝑗𝑘

                                                                                                                     (2.34) 

 

Using a Least Square method, we obtain equation (2.35): 

 

𝑄𝑇𝑄𝑣 = 𝑄𝑇𝑋  

 

Or 

  

𝑣 = (𝑄𝑇𝑄)−1𝑄𝑇𝑋                                                                                                                  (2.35) 

 

Substituting matrix parameters of equations (2.25) into (2.35), it gives: 

 

𝑣𝑚
𝑗𝑘

= ((𝑄𝑚
𝑗𝑘

)𝑇𝑄𝑚
𝑗𝑘

)−1(𝑄𝑚
𝑗𝑘

)𝑇𝑋𝑚
𝑗𝑘

                                                                                           (2.36) 

 



Where, 

𝑄𝑚
𝑗𝑘

  denotes the system matrix 

𝑋𝑚
𝑗𝑘

  is the observation matrix 

𝑣𝑚
𝑗𝑘

  is the affine parameter matrix 

 

Conclusion 

This paper proposes a mathematical formulation integrating the optical flow technique with the 

shearlet transform. This proposed method is expected to improve the small capture range 

associated with the traditional optical flow and extract more descriptive information.  
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