International Journal of Science and Technology

ISSN 2224-3577

©2013 IJST. All rights reserved

http://www.ejournalofsciences.org

Optimal Analysis of Contaminant Invasion in an Unconfined Aquifer System

K. R. Adeboye, M. D. Shehu, A. Ndanusa

Department of Mathematics & Statistics, Federal University of Technology, Minna, Nigeria

ABSTRACT

The analysis of contaminant invasion in an aquifer system, showing the behavior of contaminants for different values of α , *b* and γ for $0 < t \le 7$ was formulated. For a uniform source of contamination at $C^u(x) = 1$, it was observed that for different values of \propto , *b* and γ the level of contamination reduces over the domain.

Keywords: Contaminant invasion, unconfined aquifer, solute transport, sink fluid, piezometric head

1. INTRODUCTION

Groundwater offers the most abundant source of water to man. It is the cheapest and the most constant in quality and quantity [1]. It is observed that in many developing countries, groundwater plays a major source of support for domestic needs and irrigation purposes [2]. Water shortages occur quite often in many areas of the world, calling for optimal management of both surface and groundwater resources[3], [4]. Groundwater quality is usually better, since they are naturally more protected. Once polluted, their restoration is more difficult, calling for optimal control of groundwater contamination [5], [6]. The analysis of contaminant invasion into an aquifer system, showing the behavior of contaminants over a time period is of paramount importance in the study of geological behavior of the aquifer system. In [7], a fractured confined porous aquifer is considered. They also came up with a modeled solute equation, that analysed the effect of non-Fickian diffusion into surrounding rocks.

2. MATERIALS AND METHODS

We considered the governing equation for solute transport as given by [7] thus:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x_i} (CV_i) + \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial C}{\partial x_j} \right) + R_c , \quad i, j$$

= 1,2,3 (1)

where,

 D_{ij} = Coefficient of hydrodynamic dispersion,

C = Concentration of the solute in the source or sink fluid

$$R_{c} =$$
Sources or sinks

$$V_i = \frac{K_{ij}}{\theta} \frac{\partial h}{\partial x_i}$$
 = Seepage velocity

The initial condition (specification of the concentration distribution of solute at initial time t = 0), can be written as:

$$C(x) = C^{U}(x), \quad x \in \Omega$$
⁽²⁾

where $C^{U}(x)$ indicates a known concentration distribution over the domain of interest Ω . $C^{U} = 1$ for a uniform source of contamination at x = 0.

In the model formulation of an unconfined aquifer, three regions are considered; the upper layer (porous layer1; concentration C_{i1}), middle layer (aquifer layer; concentration C_{i2}) and the lower layer (porous layer 2; concentration C_{i3}).

The partial differential equation describing the contaminant transport in the upper layer is given as:

$$\frac{\partial C_{i1}}{\partial \tau} = D_{i1} \frac{\partial}{\partial y} \left[\frac{\partial^{\alpha} C_{i1}}{\partial y^{\alpha}} \right] \quad 0 < y < \infty, \qquad \tau > 0 \qquad (3)$$
 where,

$$D_{i1}$$
 = Effective diffusivity of porous layer
 C = contaminant concentration

Similarly, the partial differential equation describing the contaminant transport in the aquifer is given as:

$$\frac{\partial c_{i2}}{\partial \tau} + \beta \frac{\partial^{\gamma} c_{i2}}{\partial \tau^{\gamma}} = \overline{D}_2 \frac{\partial}{\partial y} \left(\frac{\partial^{\lambda} c_{i2}}{\partial y^{\lambda}} \right) + D_2 \frac{\partial}{\partial x} \left(\frac{\partial^{\lambda} c_{i2}}{\partial x^{\lambda}} \right) - v \frac{\partial c_{i2}}{\partial x}, \quad -h < y < 0, 0 < x < \infty, \tau > 0$$
(4)

where,

$$0 < y, \qquad \lambda < 1$$

 D_2 and \overline{D}_2 = Effective diffusivities, in the aquifer in the x and y direction, respectively;

- v = Fluid velocity $\tau =$ Time
- β = Capacity coefficient

 $\frac{\partial^{\gamma} C_{i2}}{\partial \tau^{\gamma}}$ is the fraction-in-time derivatives, $\left(\frac{\partial^{\lambda} C_{i2}}{\partial x^{\lambda}}\right)$ is the fraction-in-space derivatives with respect to the horizontal

©2013 IJST. All rights reserved

http://www.ejournalofsciences.org

flow, and $\left(\frac{\partial^{\lambda}C_{i2}}{\partial y^{\lambda}}\right)$ is the fraction-in-space derivatives with respect to the vertical flow. Thus,

$$L\left[\frac{\partial^{\gamma}C_{i2}}{\partial\tau^{\gamma}}\right] = s^{\gamma-1} \left(sL[C_{i2}] - C_{i2}(x,0)\right) \quad (5)$$
$$L\left[\frac{\partial^{\lambda}C_{i2}}{\partial x^{\lambda}}\right] = q^{\lambda-1} \left(qL[C_{i2}] - C_{i2}(\tau,0)\right) \quad (6)$$

Now,

$$\overline{D}_{2}\left(\frac{\partial^{\lambda}C_{i2}}{\partial y^{\lambda}}\right) = D_{1}\left(\frac{\partial^{\alpha}C_{i1}}{\partial y^{\alpha}}\right) \text{ at } y = 0 \quad (7)$$

$$\frac{\partial^{\lambda}C_{i2}}{\partial y^{\lambda}} = 0 \text{ at } y = -h \quad (8)$$

$$C = \frac{1}{h} \int_{-h}^{0} C_{i2} \, dy \quad (9)$$

The Advection–Dispersion equation for the Concentration of Contaminants in the Aquifer is formulated in the following form:

$$\begin{aligned} \frac{\partial C}{\partial \tau} + \beta \frac{\partial^{\gamma} C}{\partial \tau^{\gamma}} &= \frac{D_{1}}{h} \frac{\partial^{\alpha} C_{i1}}{\partial y^{\alpha}} \Big|_{y=0} + D_{2} \frac{\partial}{\partial x} \left(\frac{\partial^{\lambda} C}{\partial x^{\lambda}} \right) - v \frac{\partial C}{\partial x} ,\\ 0 &< x < \infty, \quad \tau > 0 \end{aligned} \tag{10} \\ \varphi(t, x) &= 1 - \left(\frac{-1 + e^{-t}}{t} - \frac{-1 + e^{xb\gamma \cos(\pi\gamma) + x\pi \cos\beta^{2}}}{x(b\gamma \cos(\pi\gamma) + \pi \cos\beta^{2})} \right) \left(\frac{\sin xb \sin \pi \gamma}{\gamma + 1} - \frac{x \sin \pi \beta}{\beta + 1} \right) \end{aligned} \tag{11}$$

Applying Duhamel's Theorem [7], and for a uniform source of contamination at x = 0, we have:

$$C(t,x) = \frac{\partial}{\partial t} \int_{0}^{t} C_{0}(t-\tau)\varphi(\tau-x,x)d\tau \qquad (12)$$

$$C = 1 - \left[\left(\frac{-1+e^{-t}}{t} \right) - \left(\frac{xb\gamma + xt^{\beta} \left(\frac{1}{2} \gamma \right) + \frac{1}{2}}{1-\gamma} \right) + \left(\frac{xt^{\gamma} \left(\frac{1}{2} \beta \right) + \frac{1}{2}}{1+\beta} \right) \right] \qquad (13)$$

$$C = \frac{-\Gamma(-\beta-1)\Gamma(-\gamma+1) + xt^{\beta}\Gamma(-\gamma+1) + x}{\Gamma(-\beta-1)\Gamma(-\gamma+1)} + \frac{bxt^{\gamma}\Gamma(-\beta-1)}{\Gamma(-\beta-1)\Gamma(-\gamma+1)} \qquad (14)$$

where,

$$\beta = \frac{\alpha}{\alpha + 1} \qquad (15)$$

$$\Gamma(\beta) = \int_0^1 t^{\beta-1} e^{-t} dt \quad (16)$$

$$\Gamma(\beta+1) = \int_0^1 t^\beta e^{-t} dt \quad (17)$$

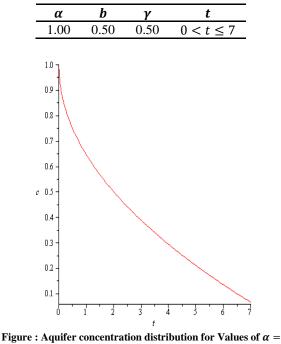
 α = Diffusive transport into the confining layer γ = Diffusive transport within the layer b = Size of the aquifer

Equation (14) describes the behaviour of contaminants invasion under a uniform source of contamination $C^u = 1$ for different values of values of α , *b* and γ for $0 < t \leq 7$.

3. RESULTS AND DISCUSSION

On substituting the values $\alpha = 1.00$, b = 0.5 and $\gamma = 0.5$ for $0 < t \le 7$ into equation (14), as illustrated in Table 1 we obtain the corresponding aquifer concentration distribution graph given by Figure 1.

Table 1 Concentration distribution values for $\alpha = 1.00, b = 0.5$, and $\gamma = 0.5$



1.00, b = 0.5, and $\gamma = 0.5$

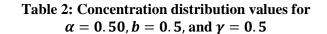
Figure 1 reveals that for a uniform source of contamination, $C^u = 1$, for values of $\alpha = 1.00, b = 0.5$, and $\gamma = 0.5$ the level of contamination is at its peak.

On substituting the values $\alpha = 0.50$, b = 0.5, and $\gamma = 0.5$ for $0 < t \le 7$ into equation (14), as illustrated in Table 2

International Journal of Science and Technology

©2013 IJST. All rights reserved

we obtain the corresponding concentration distribution graph given by Figure 2.



α	b	γ	t
0.50	0.50	0.50	$0 < t \leq 7$

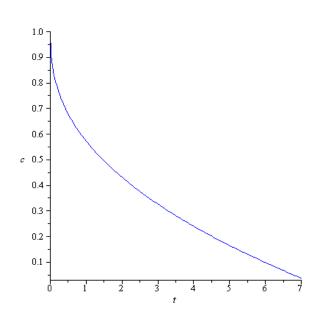


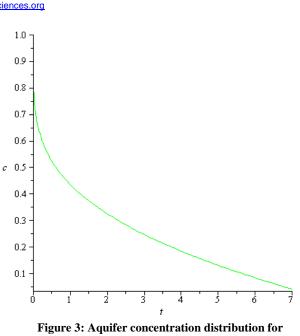
Figure 2 :Aquifer Concentration Distribution for Values of $\alpha = 0.50, b = 0.5$, and $\gamma = 0.5$

Figure 2 shows that a reduction of the value of α by 0.05 leads to a reduction in the level of concentration.

On substituting the values $\alpha = 0.20$, b = 0.5, and $\gamma = 0.5$ for $0 < t \le 7$ into equation (14), as illustrated in Table 3 we obtain the corresponding aquifer concentration distribution graph given by Figure 3.

Table 3 :Concentration distribution values for $\alpha = 0.20, b = 0.5$, and $\gamma = 0.5$

α	b	γ	t
0.20	0.50	0.50	$0 < t \leq 7$



values of $\alpha = 0.20$, b = 0.5, and $\gamma = 0.5$

From Figure 3, it is observed that a further reduction of the value of α to 0.20, results in further reduction in the level of concentration.

For the purpose of comparison, Figure 4 combines the graphs of Figures 1 to Figure 3.

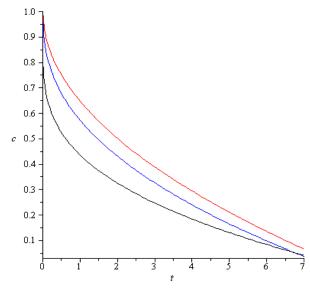


Figure 4: Aquifer concentration distribution for different Values of α , *b* and γ .

4. CONCLUSION

From the results of Figures 1, 2 and 3, it is conclusive that for a uniform source of contamination, the level of contamination reduces over time depending on the values of α , *b* and γ .

International Journal of Science and Technology

©2013 IJST. All rights reserved

http://www.ejournalofsciences.org

REFERENCES

- Olasehinde, P. I. (2010). The groundwaters of Nigeria: A solution to sustainable national water needs, *Inaugural Lecture Series 17*, Federal University of Technology, Minna, Nigeria
- [2]. Thangarajan, M. (2010). Groundwater: Resource evaluation, augmentation, contamination, restoration, modeling and management. Springer. London. pp. 362.
- [3]. Mehrer, H. (2007). Diffusion in solids: Fundamentals, methods, materials, diffusioncontrolled processes. Springer, Berlin. pp. 650.
- [4]. Delleur, J. W. (2006). Elementary groundwater flow and transport processes, in J. W. Delleur (Ed.). *The handbook of groundwater engineering*. 2nd ed. 3. CRC Press, New York.

- [5]. Das, A. and Datta, B. (2001). Application of optimization techniques in groundwater quantity and quality management. *Sadhana*. 26 (4), 293 – 316.
- [6]. Fomin, S., Chugunov, V. and Hashida, T. (2005). The effect of non-Fickian diffusion into surrounding rocks on contaminant transport in a fractured porous aquifer. *Proc.R. Soc. A: Mathematical, Physical and Engineering Sciences.* 461 (2061). 2923 – 2939.
- [7]. Kumar, C. P. (2006). Groundwater flow models, in N. C. Ghosh & K. D. Sharma (Eds.), *Groundwater* modeling and management, Capital Publishing Company, New Delhi, 153 – 178.
- [8]. LeVeque, R. J. and LeVeque, R. (2005). Numerical methods for conservation laws, 2nd ed. Birkhauser Basel, Berlin.