
Performance Evaluation of Secured Containerization for

Edge Computing in 5G Communication Network

MOHAMMED, Abubakar Saddiq 1, MOSUDI, Isiaka Olukayode 1 and ZUBAIR, Su-

leiman 1

1 Telecommunication Engineering Department, Federal University of Technology, Minna. Ni-

ger State, Nigeria. abu.sadiq@futminna.edu.ng

Abstract. Portable mobile devices capabilities are bedeviled by shortfall in com-

putational memory, storage, networking and energy carrying capacity. These is-

sues of resource poverty have been challenges the telecommunication industry

had to cope with in portable mobile devices. Earlier research efforts like Cloud-

lets, Cyber Foraging, Mobile Cloud Computing (MCC), and recently, Multi-ac-

cess Edge Computing (MEC) have been proffered. Container workflow orches-

tration provides automation capabilities for MEC to deliver just in time applica-

tions and services. This enables service providers to give ubiquitous access to

specified applications or services since applications infrastructures are pushed to

repositories and can be deployed by downloading from a repository. Containers

are more easily orchestrated unlike virtual machines (VM) or bare metal, this

provides the required DevOps ecosystem for developers and engineers to work

across the entire application lifecycle. This streamlines the process of automating

application setup by establishing standard procedures for rapid deployments

while also reducing human error associated with manual setups. In this paper,

secured containerization techniques were employed in order to achieve end-to-

end low latency figures for MEC infrastructure isolation as required by the Eu-

ropean Technology Standard Institute (ETSI) for MEC application security. An

evaluation was done by comparing secured containerized app deployment in the

cloud and edge scenarios. The result obtained validated that edge computing has

lower User Plane (UP) latency figures, less backhaul traffic and a lower applica-

tion failure rate.

Keywords: Kata Container, Multi-access Edge Computing, User Plane La-

tency.

 Introduction

The deployment of 5G communication standards is a precursor to the

explosive evolution of Information and Communication Technology

(ICT) innovations for mobile devices. Aggregation and integration of

wide-range of applications and operations such as: Machine-to-Machine

(M2M) Communication, Internet of Things (IoT), emerging Vehicle

2

Technologies, Virtual Reality (VR), Augmented Reality (AR), etc are at

its wake. With these comes a correspondingly large increase in the num-

ber of smart mobile devices to approximately over 50 billion. However,

this number is small compared to the exponential growth in the volume

of data generated by these powerful applications and feature-rich con-

tents. This will create a hype for mobile data traffic and high computing

requirements according to Skarpness [1]. As a result, constraints of com-

putational resources and network resources are envisaged for cellular

mobile communication User Equipment (UE).

To resolve these problems, the computational requirements of mobile

applications can be offloaded to tethered external infrastructures with ad-

equate resources for processing. Different interventions have been pro-

posed, which include Cyber Foraging, Cloudlet, Mobile Cloud Compu-

ting (MCC) and Multi-access Edge Computing (MEC), Mosudi et al. [2].

 Containerization

Containerization is the process by which the Operating System (OS) ker-

nel allows running of isolated user-space instances called containers.

These are standard collection of software that bundles up the code and

all its dependencies together as an abstraction at the OS application layer,

thereby enabling the application to run quickly and reliably from one

computing environment to another. Container images are typically tens

of MBs in size. It can handle more applications and require fewer ma-

chines and OS, Adufu et al. [5]. Containers compared to Virtual Ma-

chines (VM) are more suitable for MEC for the sake of storage limitation

and computing resources optimization. Containerization allows hard-

ware resources to be decoupled from software, enabling packaged soft-

ware to execute on multiple hardware architectures providing several

benefits such as rapid construction, instantiation, and initialization of vir-

tualized instances, Taleb et al. [3].

MEC resources can be allocated to containers for better isolation, per-

formance and allowing for easy collaboration and deployment of appli-

cations across different mobile environments, Willis [6]. Orchestrated

containerized MEC will provide efficient infrastructures needed for mi-

gration of monolith legacy applications onto 5G service platforms. This

enables the breaking down of large applications into micro-service

3

deployable on a large number of interconnected MEC platforms, Alam

et al. [4]. The containerization ecosystem has become so matured, pre-

senting a whole lot of its orchestrators such as Docker Swan, Kubernetes

(k8s), Marathon, Amazon container engine. Google Container Engine

(GKE), and Azure container service, Kata [7], Piparo et al.[8], Sanchez

[9], Hoque et al. [10] and Augustyn and Warchal [11]. The test bed ex-

periments in the paper made use of Kata-containers.

2.1 Kata Container

Kata containers run in dedicated kernels to provide isolation of network input/output,

memory and can utilize hardware-enforced isolation with virtualization extensions.

However, it is backward compatible with industry standards such as Open Containers

Initiatives (OCI) container format, Kubernetes Container Runtime Interface (CRI), as

well as legacy virtualization technologies while consistent with standard Linux con-

tainers in performance. Kata is based on the Kernel Virtual Machine (KVM) hypervisor

with an option for Quick Emulator/Net Emulator (QEMU/NEMU). NEMU is actually

a stripped-down version of QEMU by removing emulation not required thereby reduc-

ing the attack surface. It is more secure than a traditional container by replacing default

container runtime (runC) with Kata-runtime. Relying on Kata-agent, shim for I/O while

running Kata runtime instead of runC container runtime as available in Docker. Kata

containers are light and fast containers.

 Design of MEC Deployment Scenario

In this section, the 5G network 3GPP and non-3GPP transport components

specifications were evaluated, and models for MEC deployment scenarios for

5G network were designed. This was carried out to provide the platform to

compare MEC application end-to-end transport latency in 5G and 4G deploy-

ments. This work leveraged on control/user plane separation (CUPS), Lower

Layer Functional Splits (LLFS), and Higher Layer Functional Splits (HLFS)

and 3GPP 5G Service-Based Architecture (SBA), ESTI [12], and distributed

Common Compute Platform (CCP) which permits the location of Virtualized

Network Functions (VNFs) in different parts of the network for management

of different capabilities. MEC hosts were located at the Centralized Unit (CU)

connected directly to the Packet Data Convergence Protocol (PDCP) thereby,

reducing the estimated total UP latency for MEC deployment in 5G.

The end-to-end transport latency has an effect on determining the value of

UP latency, and in combination with CP latency, determines the effective QoE.

Higher Layer Functional Split (HLFS) option 2 for the mid-haul and Lower

Layer Functional Split (LLFS) option 7 for front-haul will permit four RAN

4

deployment scenarios and thus four MEC deployment scenarios (Fig. 1),

Fig. 1. 5G MEC deployment models (SBA RAN)

3.1 Latency Evaluation

The latency figure, T can be obtained using the relationship for the total one-way UP

latency for an application deployed on 4G/LTE,

 T = TRadio + TBackhaul + TCore + TTransport (1)

by modifying (1) for LTE/EPC, we obtain

T = TLTE + TEPC + TTransport (2)

where,

TLTE = one-way packet propagation delay between UE and eNB, plus packet processing

time; TEPC = one-way packet propagation delay between eNB and EPC, plus processing

delay with the core network; TTransport = one-way packet propagation between the EPC

and Packet Data Network (PDN). This might include propagation delay to the internet,

if service requested by the UE has to be sourced from the Internet.

Latency values will vary from one MEC deployment scenario to another. Quantify-

ing all the parameters is challenging due to differences in the performance of equip-

ment. Considering 5G end-to-end network from DU to CU, and MEC host. However,

we assumed a 1-way latency range between 5ms and 8ms between CU and DU and in

essence, 8ms network latency between CU and DU eases the co-location of the CU with

MEC.

5

Therefore, the total one-way user plane latency becomes,

T = TNR + TDU + TCU + TTransport (3)

where,

TNR = the one-way packet propagation for New Radio (NR) delay between UE and

DU, plus packet processing time; TDU = one-way packet propagation delay between

DU and CU, plus processing delay with the CU; TCU = one-way packet propagation

delay between CU and 5GC, plus processing delay within the 5GC; TTransport = one-

way packet propagation between the 5GC and DN. This might include propagation de-

lay to the Internet if the service requested has to be sourced from the Internet.

Deployment of MEC in all the four scenarios in the model above provided the option

for a direct connection between MEC and the CU. The total one-way user plane latency

becomes,

T = TNR + TDU + TCU (4)

There is a need for a 5G-capable integrated development environment in the quest to

investigate the deployment of MEC at the 5G CU, but we could not get a simulator for

this purpose. Instead, leaning on Docker containers, Kata-runtime, and OS-builder -

Kata containers guest OS building scripts, a sandbox application was built to gain in-

sight into the advantages of computing at the network edge compared to at the remote

cloud servers. In order to compare MEC versus MCC deployments of resource-inten-

sive applications, a mobile web application was built, shipped in a secure container

image, saved as a code and pushed to a repository. This combination of definition files

were deployed on Docker engines hosted in the remote cloud and edge servers. The

chosen target was the web application platform because of its capabilities of execution

on a wide range of devices and mobile environments without modification of the appli-

cation codebase.

3.2 Experimental Environment

Experimental environment incorporated Ubuntu server, Ubuntu Docker image and

Docker container engine with its default runtime (runC), replaced with Kata-Runtime.

The Ubuntu Kata-container image was created using OS-builder. Python programming

language was used for application logic, dataset result generation, cleaning and gra-

phing. The test application backend was based on Python Flask micro web framework

while the front-end was built using HTML/CSS/JavaScript. Docker was used for appli-

cation shipping and Locust framework for load testing. Publicly available Atlassian

Bitbucket git and Docker Hub repositories were used for web application code base and

container image repositories respectively. The containerized mobile application was

deployed using Docker, but Kata-runtime replaced runC to ensure app isolation at the

kernel level. This ensured the deployment of the MEC application at the speed of con-

tainers while maintaining the security available in VMs. The test mobile application

6

was a memory and processor-intensive mobile web application that generates Rubik

cubes images and provides a breakdown of the cube details. These details were total

cubelets faces, cubelets and hidden cubelets. It also holds the generated graphics in the

memory while rendering it on the end-user devices. This is comparable to graphics

generation and rendering in mobile game applications.

4 Experimental Results and Discussion

There were two sets of results obtained. The first set was obtained from

the application of 5G transport interface specifications on the four pro-

posed MEC deployment models. Evaluating equation (4) for eMBB pro-

posed four deployment scenarios shown in Fig.1. by applying 5G speci-

fication values Mosudi et al. [2];

4.1 Deployment Scenario

Scenario A : Optimally this prototype produced an estimated round-trip time (RTT)

value of 11.2ms. Using Equation (4),

T = TNR + TDU + TCU

Minimum T = 4000 + 100 + 1500 μsec

= 5.6 x 10-3 s

Maximum T = 4000 + 100 +10000 μsec

 = 14.1 x 10-3 s

Scenario B : Optimally, the RTT is 8.2ms.

T = 4000 + 100 μsec

 = 4.1 x 10-3 s

Scenario C : Optimal RTT is 11ms.

Minimum T = 4000 + 1500 μsec

 = 5.5 x 10-3 s

Maximum T = 4000 +10000 μsec

 = 14 x 10-3 s

Scenario D : Optimal RRT is 8ms.

T = 4000 μsec

 = 4 x 10-3 s

7

4.2 Load Test

The second set of results were obtained from the experimental load test of the secured

containerized mobile web application deployed on remote cloud location and servers.

Fig. 2. depicts the MCC Test Scenario.

 Figure 2. MCC Test Scenario

The results obtained from the experiments included; the total requests per second (req/s)

made to the application deployed, request time stamps, requests failure per second (req/s),

minimum, median and maximum application response time, average application data down-

load size, 50 percentile and 95 percentile application response time among other result pa-

rameters. All these were determined for both edge site and cloud application deployments

respectively. Each time, the experiment lasted about 2 hours. It was observed that the appli-

cation response time and the amount of downloaded application data follow the same pattern

corresponding to the size of the Rubik’s cube being rendered. Likewise, failures were more

prevalent with the MCC deployments compared to the relatively stable MEC deployments.

8

 Fig. 3. Total Request per sec

 Fig. 4. Total Failed Request rate

Request rate for both the edge site and cloud deployments are presented in the results.

The intention to simulate a random Rubik’s cube size between values of three and four-

teen did pay off. The requested rate for both deployments were about the same as indi

cated in Fig 3., which justifies a fair comparison. Fig. 4 shows that failures were more

prevalent in cloud deployments. Application maximum and median response time for

both edge and cloud deployments were presented in Fig. 5.

9

 Fig. 5. Application Max. and Medium Response Time

The average application data download are presented in Fig. 6. The same application version

was deployed for both scenarios and with the convergence in the application request rates

as shown in Fig. 3. These had a significant effect on the amount of application data down-

loaded for both scenarios during the experiments. The application average data download

also converged, validating fair comparison. The application response for half of the experi-

ment duration, 50 percentile, second quartile or median response time is plotted in Fig 7.

 Fig. 6. Average Application Content Download in Bytes

The general application response time over a period of two hours for 50 percentiles is dis-

cussed below. The application response time for less tha 95 per cent of the time span of the

experiment and 95 per cent is presented in Fig 7 and Fig 8.

10

 Fig. 7. Second Quartile Application Response Time

 Fig. 8. 95 Percentile of Response Time

The round-trip times (RTT) from the MEC deployment are all within the latency requirements

for VR and AR of 7-12ms. Tactile Internet is < 10ms, Vehicle-to-Vehicle is < 10ms, Manu

facturing and Robotic, Control/Safety Systems are between 1ms and 10ms. The attendant sav-

ings in compute resources are part of the reasons for the choice of containers over VM.

Considering a production deployment scenario with several thousand geographically dis-

persed UEs connected to a mobile application hosted at a remote cloud data center or within

the operator DN, this will create high bandwidth traffic and exert serious penalty on the oper-

ator backhaul network. However, in the proposed edge site deployment scenario, UEs will

take advantage of consuming MEC applications hosted at the network edge, deployed at the

CU thereby removing the issue of heavy data traffic which can result in bottleneck on the

backhaul networks.

Secondly, both median and maximum application response time were considered for both

edge sites and cloud deployments as indicated in Fig. 5. It was observed that in the maximum

latency figures for the cloud deployment required for smooth running of mobile applications,

there were initial failures reported for both deployment at application startup. In fact, the figure

11

for the edge deployment was very poor, but failure finally disappeared. However, there is

evidence that there is a higher application failure response rate for cloud deployments com-

pared with the edge site deployment as indicated in Fig. 4. This might have adverse effects on

the adoption of new and emerging latency-sensitive applications. The maximum edge re-

sponse time for edge deployment was initially a little above 60sec compared to about 170 sec

for cloud deployment as shown in Fig. 6. This test was not a 5G network but it was obvious

that deployment on a real 5G network with adequate MEC server resources can normalize the

edge figures to more acceptable values. Furthermore, the comparison of minimum application

response time confirms the proposal for containerized applications deployment at the edge for

5G networks.

Clearly, edge deployment response time is more visible looking around low latency values,

unlike the cloud which dominates the graph skyline indicating consistent unacceptably high

latency values. The fact that containers are secure and deployable for MEC infrastructures will

increase the ability of enterprise developers by improving collaboration to quickly deliver

scalable and reliable applications and services at paces required for 5G rollout not jeopardizing

the security of the end-to-end network. Containers can provide the required DevOps ecosys-

tem for developers and engineers to work across the entire application lifecycle, from designs,

development, testing to deployment and operations.

5 Conclusion

Secured containerization technique was used to achieve end-to-end low la-

tency figures with MEC infrastructure isolation and application security. The

secured containerized application was deployment in both the cloud and edge

scenarios, it was validated that the edge scenario has lower User Plane latency

figures, less backhaul traffic and a lower application failure rate. Secured con-

tainers using Docker and Kata containers provide most of the essential features

required for MEC infrastructures making it suitable for resource-intensive mo-

bile applications speed and isolation requirements to guarantee safety within

the mobile ecosystem expected with massive deployment of 5G UEs. Con-

tainer workflow orchestration provides automation capabilities for MEC to de-

liver just in time applications and services, enabling service providers to pro-

vide ubiquitous access to specified applications or services since applications

infrastructures are pushed to repositories and can be deployed by downloading

from the repository.

6 References

1. Skarpness, M. “Beyond the Cloud: Edge Computing,” Keynote speech at Embedded Linux Con-

ference Europe, Prague, Czech Republic, 2017.

2. Mosudi, I.O., Abolarinwa, J. & Zubair, S. “Multi-Access Edge Computing Deployments for 5G

12

Networks” In Proceeding, 3rd International Engineering Conference, pp. 472-479, 2019.

3. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. & Sabella, D. “On Multi-Access Edge

Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration”,

 IEEE Communications Surveys and Tutorials, vol. 19 no. 3, 1657–1681, 2017.

4. Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N. & Chen, Y. “Orchestration of Micro-

 services for IoT Using Docker and Edge Computing”, IEEE Communications Magazine, vol.56

 no. 9, pp. 118–123, 2018.

5. Adufu, T,. Choi, J. & Kim, Y. “Is container-based technology a winner for high performance

 scientific applications”, In proc. of 7th Asia-Pacific Network Operations and Management Sym-

 posium (APNOMS), pp. 507- 510, 2016.

6. Willis, J. Docker and the Three Ways of DevOps. Docker Blog. [Online] May 26, 2015.

https://blog.docker.com/2015/05/docker-three-ways.

7. Kata Containers. (n.d.). Learn: An overview of the Kata Containers project. Retrieved May 17,

 2019, from https://katacontainers.io/learn/.

8. Piparo, D., Tejedor, E., Mato, P., Mascetti, L., Moscicki, J. & Lamanna, M. “SWAN: A service for

 interactive analysis in the cloud” Future Generation Computer Systems, vol. 78, pp. 1071–1078,

 2018.

9. Sanchez C. Scaling docker with Kubernetes. Website. Available online at http://www.infoq.com

 /articles/scaling-docker-with-kubernetes. 35, 2015.

10. Hoque, S., Brito, M. S. D., Willner, A., Keil, O. & Magedanz, T. “Towards Container Orchestration

in Fog Computing Infrastructures”, 41st Annual Computer Software and Applications Conference

(COMPSAC), pp. 294– 299, 2017.

11. Augustyn, D. R. & Warchał, L. “Cloud Service Solving N-Body Problem Based on Windows

 Azure Platform”, In International Conference on Computer Networks, Berlin, Heidelberg, pp. 84-

95, 2010.

12. European Telecommunications Standards Institute (ETSI). (2018, July). TS 129 500 - V15.0.0-

5G; 5G System; Technical Realization of Service Based Architecture. - ETSI. Retrieved May,

2019,https://www.etsi.org/deiver/etsi_ts/129500_129599/129500/15.00.00_60/ts_129500v50000

p.pdf.

https://blog.docker.com/2015/05/docker-three-ways
https://katacontainers.io/learn/
http://www.in/
https://www.etsi.org/deiver/etsi_ts/129500_129599/129500/15.00.00_60/ts_129500v50000p.pdf
https://www.etsi.org/deiver/etsi_ts/129500_129599/129500/15.00.00_60/ts_129500v50000p.pdf

